WorldWideScience

Sample records for interplanetary dust detected

  1. A Database of Interplanetary and Interstellar Dust Detected by the Wind Spacecraft

    Science.gov (United States)

    Malaspina, David M.; Wilson, Lynn B., III

    2016-01-01

    It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 micron radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database.

  2. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    Science.gov (United States)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    2005-08-01

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.

  3. Mid-Infrared Spectrum of the Zodiacal Emission: Detection of Crystalline Silicates in Interplanetary Dust

    Science.gov (United States)

    Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.

    2003-01-01

    Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.

  4. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    Science.gov (United States)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  5. Observations of interplanetary dust by the Juno magnetometer investigation

    DEFF Research Database (Denmark)

    Benn, Mathias; Jørgensen, John Leif; Denver, Troelz

    2017-01-01

    One of the Juno magnetometer investigation's star cameras was configured to search for unidentified objects during Juno's transit en route to Jupiter. This camera detects and registers luminous objects to magnitude 8. Objects persisting in more than five consecutive images and moving with an appa...... on the distribution and motion of interplanetary (>μm sized) dust....

  6. Dynamics of interplanetary dust grains

    International Nuclear Information System (INIS)

    Lamy, P.L.

    1975-01-01

    The interaction of spherical grains of various materials-three silicates (quartz, obsidian and andesite), water-ice and iron - whose radii lie in the micronic and submicronic range with the interplanetary medium is solved. This includes: the interaction with the solar radiation field which is solved using Mie scattering theory and taking into account the precise dependence of the optical properties of the five materials upon wavelength; the interaction with the solar wind: corpuscular tangential drag is found to be always important and may even be larger than the Poynting-Robertson drag; the interaction with the interplanetary magnetic field is investigated in terms of a diffusion or random walk through a series of electromagnetic scatterings, leading to a Chapman-Komolgorov equation (i.e., a generalized Liouville equation). Numerical results are presented for these interactions spanning the entire solar system with circularity of elliptical orbits, direct or retrograde, with grains of various materials and sizes and giving -probably for the first time - a clear global picture of the interaction of dust grains with the interplanetary medium. The dynamics of the grains is then investigated using the theory of general perturbations and the numerical integration of trajectories of circum-solar grains

  7. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    Science.gov (United States)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  8. CHARGED DUST GRAIN DYNAMICS SUBJECT TO SOLAR WIND, POYNTING–ROBERTSON DRAG, AND THE INTERPLANETARY MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito, E-mail: christoph.lhotka@oeaw.ac.at, E-mail: philippe.bourdin@oeaw.ac.at, E-mail: yasuhito.narita@oeaw.ac.at [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz (Austria)

    2016-09-01

    We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z -component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.

  9. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    Science.gov (United States)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  10. Migration of Interplanetary Dust and Comets

    Science.gov (United States)

    Ipatov, S. I.; Mather, J. C.

    Our studies of migration of interplanetary dust and comets were based on the results of integration of the orbital evolution of 15,000 dust particles and 30,000 Jupiter-family comets (JFCs) [1-3]. For asteroidal and cometary particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 1000 and 1 microns. The probability of a collision of a dust particle started from an asteroid or JFC with the Earth during a lifetime of the particle was maximum at diameter d ˜100 microns. For particles started from asteroids and comet 10P, this maximum probability was ˜0.01. Different studies of migration of dust particles and small bodies testify that the fraction of cometary dust particles of the overall dust population inside Saturn's orbit is considerable and can be dominant: (1) Cometary dust particles produced both inside and outside Jupiter's orbit are needed to explain the observed constant number density of dust particles at 3-18 AU. The number density of migrating trans-Neptunian particles near Jupiter's orbit is smaller by a factor of several than that beyond Saturn's orbit. Only a small fraction of asteroidal particles can get outside Jupiter's orbit. (2) Some (less than 0.1%) JFCs can reach typical near-Earth object orbits and remain there for millions of years. Dynamical lifetimes of most of the former JFCs that have typical near-Earth object orbits are about 106 -109 yr, so during most of these times they were extinct comets. Such former comets could disintegrate and produce a lot of mini-comets and dust. (3) Comparison of the velocities of zodiacal dust particles (velocities of MgI line) based on the distributions of particles over their orbital elements obtained in our runs [3-4] with the velocities obtained at the WHAM observations shows that only asteroidal dust particles cannot explain these observations, and particles produced by comets, including high-eccentricity comets, are needed for such explanation

  11. Physical and chemical characteristics of interplanetary dust particles

    International Nuclear Information System (INIS)

    Gruen, E.

    1981-01-01

    For the first time, the micrometeoroid experiment on board of Helios allowed the measurement of physical and chemical characteristics of interplanetary dust particles between 0.3AU and 1AU solar distance. During the first 10 orbits of Helios 1,235 impacts of micrometeoroids have been detected. 83 particles have been registered by the ecliptic sensor and 152 by the south sensor. Most of the particles detected by the ecliptic sensor had masses 10 -13 g -10 g and impacted the sensor from the apex direction. The particles observed by the south sensor had masses 10 -15 g -9 g and impacted the sensor from all directions with a slightly enhanced flux from solar direction. The average impact speed of particles with masses 10 -13 g -10 g was 15km/s. From 1AU to.3AU, the observed paritcle flux increased by a factor 5-10. The orbits of the registered particles are highly eccentric, e approx. >= 0.6, and some are hyperbolic. The mass spectra measured upon impact allow the classification of chondritic and iron-rich particles. Approx. 20% of the particles had low densities rho 3 . On 4 particles, a positive electric charge has been observed. (orig.) [de

  12. Oxygen Isotopes in Chondritic Interplanetary Dust: Parent-Bodies and Nebular Oxygen Reservoirs

    International Nuclear Information System (INIS)

    Aleon, J; McKeegan, K D; Leshin, L

    2006-01-01

    Planetary objects have preserved various amounts of oxygen issued from isotopically different oxygen reservoirs reflecting their origin and physico-chemical history. An 16 O-rich component is preserved in refractory inclusions (CAIs) whereas meteorites matrices are enriched in an 16 O-poor component. The origin of these components is still unclear. The most recent models are based on isotope selective photodissociation of CO in a 16 O-rich nebula/presolr cloud resulting in a 16 O-poor gas in the outer part of the nebula. However because most meteorite components are thought to be formed in the inner 3AU of the solar nebula, the precise isotopic composition of outer solar system components is yet unknown. In that respect, the oxygen isotopic composition of cometary dust is a key to understand the origin of the solar system. The Stardust mission will bring back to the Earth dust samples from comet Wild2, a short period comet from the Jupiter family. A precise determination of the oxygen isotope composition of Wild2 dust grains is essential to decipher the oxygen reservoirs of the outer solar system. However, Stardust samples may be extremely fragmented upon impact in the collector. In addition, interplanetary dust particles (IDPs) collected in the stratosphere are likely to contain comet samples. Therefore, they started to investigate the oxygen isotopic composition of a suite of chondritic interplanetary dust particles that includes IDPs of potential cometary origin using a refined procedure to increase the lateral resolution for the analysis of Stardust grains or IDP subcomponents down to ∼ 3 (micro)m. High precision data for 4 IDPs were previously reported, here they have measured 6 additional IDPs

  13. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    Science.gov (United States)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  14. Stochastic diffusion of dust grains by the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.; Wallis, M.K.

    1983-10-01

    The effects of the sectored Interplanetary Magnetic Field on charged dust grains orbiting around the sun under radiation pressure and Poynting-Robertson drag forces are examined for initially circular and non-inclined orbits. The distribution function of the charged grains satisfies a Fokker-Planck equation in which the sectored field is taken as a source of stochastic impulses. By adopting the integrals of the impulse-free motion as variable parameters, the Fokker-Planck equation can be properly treated as a diffusion equation. Analytic solutions of the resulting diffusion equation show that dust grains injected near the ecliptic plane are scattered strongly to high helio-latitudes. The scattering is more pronounced for small grains injected at large distances from the Sun. (author)

  15. Dust analysis on board the Destiny+ mission to 3200 Phaethon

    Science.gov (United States)

    Krüger, H.; Kobayashi, M.; Arai, T.; Srama, R.; Sarli, B. V.; Kimura, H.; Moragas-Klostermeyer, G.; Soja, R.; Altobelli, N.; Grün, E.

    2017-09-01

    The Japanese Destiny+ spacecraft will be launched to the active asteroid 3200 Phaethon in 2022. Among the proposed core payload is an in-situ dust instrument based on the Cassini Cosmic Dust Analyzer. We use the ESA Interplanetary Meteoroid Engineering Model (IMEM), to study detection conditions and fluences of interplanetary and interstellar dust with a dust analyzer on board Destiny+.

  16. Microcharacterization of interplanetary dust collected in the earth's stratosphere

    International Nuclear Information System (INIS)

    Fraundorf, P.B.

    1980-01-01

    This thesis involved an examination of the internal structure of thirteen 10 μm aggregates using selected techniques from the field now known as analytical electron microscopy. The aggregates were collected in the earth's stratosphere at 20 km altitude by impactors mounted on NASA U-2 aircraft. Eleven of them exhibited relative major element abundances similar to those found in chondritic meteorities. For this and other reasons, these eleven particles are believed to represent relatively-unaltered interplanetary dust. Interplanetary dust is thought to be of cometary origin, and comets in turn provide the most promising reservoir for unaltered samples of materials present during the collapse of the solar nebula. This thesis shows that the chondritic aggregates probably contain important information on a wide range of processes in the early solar system. In the course of this study, significant developments were necessary in the techniques of analysis for: (i) selected area electron diffraction (SAED) data; (ii) energy dispersive x-ray spectra; and (iii) spatial heterogeneity in geological materials. These developments include a method for analysing single crystal SAED patterns using spherical geometry. The method makes possible much more efficient use of diffraction data taken with a goniometer specimen stage. It allows major portions of the analysis to be done by a microprocessor, and it has potential for a wide range of on-line applications. Also, a comprehensive approach to the study of point-to-point heterogeneity in geological materials was developed. Some statistical, comparative, petrographic, and physical applications are described in the thesis

  17. Detecting Interplanetary Dust Particles with Radars to Study the Dynamics at the Edge of the Space

    Science.gov (United States)

    Janches, Diego

    2015-01-01

    The Earth's mesosphere is the region of the atmosphere between approximately 60-120 km altitude, where the transition from hydrodynamic flow to molecular diffusion occurs. It is highly dynamic region where turbulence by wave braking is produced and energy is deposited from sources from both, below and above this altitude range. Because aircraft and nearly all balloons reach altitudes below approximately 50 km and orbital spacecrafts are well above approximately 400 km, the mesosphere has only been accessed through the use of sounding rockets or remote sensing techniques, and as a result, it is the most poorly understood part of the atmosphere. In addition, millions of Interplanetary Dust Particles (IDPs) enter the atmosphere. Within the mesosphere most of these IDPs melt or vaporize as a result of collisions with the air particles producing meteors that can be detected with radars. This provides a mean to study the dynamics of this region. In this lecture the basic principles of the utilization of meteor radars to study the dynamics of the mesosphere will be presented. A system overview of these systems will be provided as well as discuss the advantages/disadvantages of these systems, provide details of the data processing methodology and give a brief overview of the current status of the field as well as the vision for the next decade.

  18. Multielement analysis of interplanetary dust particles using TOF-SIMS

    Science.gov (United States)

    Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.

    1993-01-01

    Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.

  19. Water and organics in interplanetary dust particles

    Science.gov (United States)

    Bradley, John

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at 90 km altitude and settle to the Earths surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earths surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend 104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.

  20. GEMS Revealed: Spectrum Imaging of Aggregate Grains in Interplanetary Dust

    Science.gov (United States)

    Keller, L. P.; Messenger, S.; Christoffersen, R.

    2005-01-01

    Anhydrous interplanetary dust particles (IDPs) of cometary origin contain abundant materials that formed in the early solar nebula. These materials were transported outward and subsequently mixed with molecular cloud materials and presolar grains in the region where comets accreted [1]. GEMS (glass with embedded metal and sulfides) grains are a major component of these primitive anhydrous IDPs, along with crystalline Mg-rich silicates, Fe-Ni sulfides, carbonaceous material, and other trace phases. Some GEMS grains (5%) are demonstrably presolar based on their oxygen isotopic compositions [2]. However, most GEMS grains are isotopically solar and have bulk chemical compositions that are incompatible with inferred compositions of interstellar dust, suggesting a solar system origin [3]. An alternative hypothesis is that GEMS grains represent highly irradiated interstellar grains whose oxygen isotopic compositions were homogenized through processing in the interstellar medium (ISM) [4]. We have obtained the first quantitative X-ray maps (spectrum images) showing the distribution of major and minor elements in individual GEMS grains. Nanometer-scale chemical maps provide critical data required to evaluate the differing models regarding the origin of GEMS grains.

  1. Meteoroid Measurements in the Deep Space Cruising and the Jupiter Trojan Rendezvous Phases of the Solar Power Sail Mission by the Arrayed Large-Area Dust Detectors in INterplanetary Space (ALADDIN)-II

    Science.gov (United States)

    Yano, H.; Hirai, T.; Arai, K.; Fujii, M.

    2017-12-01

    The PVDF thin films have been long, space-proven instruments for hypervelocity impact detection in the diverse regions of the Solar System from orbits of Venus by IKAROS and of Pluto by New Horizons. In particular, light weight but large area membranes of a solar sail spacecraft is an ideal location for such detectors to be deployed for detecting statistically enough nubers of so large micrometeoroids that are sensitive to mean motion resonances and other gravitational effects of flux enhancements and voids with planets. The IKAROS spacecraft first detected in situ dust flux enhancement and gap region within the Earth's circumsolar dust ring as well as those of Venus by 0.54 m^2 detection area of ALADDIN sensors on the slar sail membrane. Advancing this heritage, the Solar Power Sail membrane will carry 0.4+ m^2 ALADDIN-II PVDF sensors with improved impact signal prosessng units to detect both hyperveloity dust impacts in the interplanetary space cruising phase and slow dust impacts bound to the Jupiter Trojan region in its rendezvours phase.

  2. Solar and interplanetary disturbances

    CERN Document Server

    Alurkar, S K

    1997-01-01

    Over the last three decades, a spate of solar wind observations have been made with sophisticated ground-based and space-borne instruments. Two highly successful space missions of the Skylab and the twin spacecraft Helios 1 and 2 have amassed an invaluable wealth of information on the large scale structure of the inner heliosphere, the solar and interplanetary magnetic field, coronal holes, interplanetary dust, solar windflows, etc.Solar and interplanetary propagating phenomena have been extensively studied during the last two decades. Very recently, a new simple model based on results from a

  3. The flow of interstellar dust through the solar system: the role of dust charging

    International Nuclear Information System (INIS)

    Sterken, V. J.; Altobelli, N.; Schwehm, G.; Kempf, S.; Srama, R.; Strub, P.; Gruen, E.

    2011-01-01

    Interstellar dust can enter the solar system through the relative motion of the Sun with respect to the Local Interstellar Cloud. The trajectories of the dust through the solar system are not only influenced by gravitation and solar radiation pressure forces, but also by the Lorentz forces due to the interaction of the interplanetary magnetic field with the charged dust particles. The interplanetary magnetic field changes on two major time scales: 25 days (solar rotation frequency) and 22 years (solar cycle). The short-term variability averages out for regions that are not too close (>∼2 AU) to the Sun. This interplanetary magnetic field variability causes a time-variability in the interstellar dust densities, that is correlated to the solar cycle.In this work we characterize the flow of interstellar dust through the solar system using simulations of the dust trajectories. We start from the simple case without Lorentz forces, and expand to the full simulation. We pay attention to the different ways of modeling the interplanetary magnetic field, and discuss the influence of the dust parameters on the resulting flow patterns. We also discuss the possibilities of using this modeling for prediction of dust fluxes for different space missions or planets, and we pay attention to where simplified models are justified, and where or when a full simulation, including all forces is necessary. One of the aims of this work is to understand measurements of spacecraft like Ulysses, Cassini and Stardust.

  4. Interplanetary matter

    International Nuclear Information System (INIS)

    Ceplecha, Z.; Pecina, P.

    1987-01-01

    Of the total number of 57 presented papers 56 have been submitted to INIS. One paper was out of INIS scope. List of sessions (in brackets is the number of papers presented in the respective session and incorporated in the INIS): Preface (2), Comets (17), Asteroids (7), Meteors (19), Interplanetary dust (9), Other bodies (2). (Z.S.). 155 figs., 68 tabs., 1140 refs

  5. Automated thin-film analyses of anhydrous interplanetary dust particles in the analytical electron microscope

    Science.gov (United States)

    Bradley, J. P.; Germani, M. S.; Brownlee, D. E.

    1989-01-01

    An AEM apparatus equipped with digital beam control has obtained quantitative point-count analyses of thin sections taken from eight anhydrous chondritic interplanetary dust particles (IDPs); between 200 and 500 X-ray analyses were collected from each thin section and analyzed for Mg, Al, Si, S, Ca, Cr, Mn, Fe, and Ni. Two types of anhydrous chondritic aggregates were observed in the eight IDPs: one highly porous, the other less so. The eight anhydrous IDPs are characterizable as mixtures of fine- and coarse-grained aggregates, large mineral grains, glass, and carbonaceous materials. Their elemental concentrations follow those of solar abundances, suggesting that they are unperturbed by aqueous alteration.

  6. Ulysses dust measurements near Jupiter.

    Science.gov (United States)

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  7. A Raman spectroscopic study of organic matter in interplanetary dust particles and meteorites using multiple wavelength laser excitation

    OpenAIRE

    Starkey, N. A.; Franchi, I. A.; Alexander, C. M. O'D.

    2013-01-01

    Raman spectroscopy was used to investigate insoluble organic matter (IOM) from a range of chondritic meteorites, and a suite of interplanetary dust particles (IDPs). Three monochromatic excitation wavelengths (473 nm, 514 nm, 632 nm) were applied sequentially to assess variations in meteorite and IDP Raman peak parameters (carbon D and G bands) as a function of excitation wavelength (i.e., dispersion). Greatest dispersion occurs in CVs > OCs > CMs > CRs with type 3 chondrites compared at diff...

  8. The measurement of trace elements in interplanetary dust and cometary particles by ultra-high sensitivity INAA

    International Nuclear Information System (INIS)

    Zolensky, M.E.; Lindstrom, D.J.; Lindstrom, R.M.; Lindstrom, M.M.

    1989-01-01

    Today the major elemental composition of interplanetary dust particles (IDPs) is routinely determined in many laboratories. These and mineralogical studies have revealed the presence of at least two major types of IDPs, chondritic and refractory. Preliminary results of a successful attempt to determine abundances of a large suite of trace elements from both chondritic and refractory IDPs are reported. The analytical procedure can be used in the grain-by-grain analysis of returned cometary samples. Chondritic and refractory IDPs are characterized by standard scanning electron microscopy and energy dispersive x ray spectroscopy (SEM-EDX) techniques. With this system, detection limits for many elements are well below picogram levels, and some approach femtogram levels. This technique is non-destructive, although some sample handling is required, so particles can be analyzed by other techniques after instrument neutron activation analysis (INAA) is completed. Data is presently being reduced from the analyses of 7 IDPs. These are U2015E10, U2015F1, W7029-A2, W7029-A3, W7013A8, LACl (all chondritic) and 705 (refractory). So far, 17 different major and trace elements were detected and measured in these particles, including rare earths and some very volatile elements (Br and Zn)

  9. Comparison of the Oxidation State of Fe in Comet 81P/Wild 2 and Chondritic-Porous Interplanetary Dust Particles

    OpenAIRE

    Ogliore, R. C.; Butterworth, A. L.; Fakra, S. C.; Gainsforth, Z.; Marcus, M. A.; Westphal, A. J.

    2010-01-01

    The fragile structure of chondritic-porous interplanetary dust particles (CP- IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alteration have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured th...

  10. Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    Science.gov (United States)

    Keller, L. P.; Snead, C.; McKeegan, K. D.

    2016-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions.

  11. Investigations of Wind/WAVES Dust Impacts

    Science.gov (United States)

    St Cyr, O. C.; Wilson, L. B., III; Rockcliffe, K.; Mills, A.; Nieves-Chinchilla, T.; Adrian, M. L.; Malaspina, D.

    2017-12-01

    The Wind spacecraft launched in November 1994 with a primary goal to observe and understand the interaction between the solar wind and Earth's magnetosphere. The waveform capture detector, TDS, of the radio and plasma wave investigation, WAVES [Bougeret et al., 1995], onboard Wind incidentally detected micron-sized dust as electric field pulses from the recollection of the impact plasma clouds (an unintended objective). TDS has detected over 100,000 dust impacts spanning almost two solar cycles; a dataset of these impacts has been created and was described in Malaspina & Wilson [2016]. The spacecraft continues to collect data about plasma, energetic particles, and interplanetary dust impacts. Here we report on two investigations recently conducted on the Wind/WAVES TDS database of dust impacts. One possible source of dust particles is the annually-recurring meteor showers. Using the nine major showers defined by the American Meteor Society, we compared dust count rates before, during, and after the peak of the showers using averaging windows of varying duration. However, we found no statistically significant change in the dust count rates due to major meteor showers. This appears to be an expected result since smaller grains, like the micron particles that Wind is sensitive to, are affected by electromagnetic interactions and Poynting-Robertson drag, and so are scattered away from their initial orbits. Larger grains tend to be more gravitationally dominated and stay on the initial trajectory of the parent body so that only the largest dust grains (those that create streaks as they burn up in the atmosphere) are left in the orbit of the parent body. Ragot and Kahler [2003] predicted that coronal mass ejections (CMEs) near the Sun could effectively scatter dust grains of comparable size to those observed by Wind. Thus, we examined the dust count rates immediately before, during, and after the passage of the 350 interplanetary CMEs observed by Wind over its 20+ year

  12. Observations of interplanetary dust by the Juno magnetometer investigation

    DEFF Research Database (Denmark)

    Benn, Mathias; Jørgensen, John Leif; Denver, Troelz

    2017-01-01

    with an apparent angular rate of between 2 and 18,000 arcsec/s were recorded. Among the objects detected were a small group of objects tracked briefly in close proximity to the spacecraft. The trajectory of these objects demonstrates that they originated on the Juno spacecraft, evidently excavated...... by micrometeoroid impacts on the solar arrays. The majority of detections occurred just prior to and shortly after Juno's transit of the asteroid belt. This rather novel detection technique utilizes the Juno spacecraft's prodigious 60 m2 of solar array as a dust detector and provides valuable information...

  13. Automated thin-film analyses of hydrated interplanetary dust particles in the analytical electron microscope

    Science.gov (United States)

    Germani, M. S.; Bradley, J. P.; Brownlee, D. E.

    1990-01-01

    A 200 keV electron microscope was used to obtain elemental analyses from over 4000 points on thin sections of eight 'layer silicate' class interplanetary dust particles (IDPs). Major and minor element abundances from a volume approaching that of a cylinder 50 nm in diameter were observed. Mineral phases and their relative abundances in the thin sections were identified and petrographic characteristics were determined. Three of the particles contained smectite (1.0-1.2 nm basal spacing) and two contained serpentine (0.7 nm basal spacing). The point count analyses and Mg-Si-Fe ternary diagrams show that one of the serpentine-containing IDPs is similar to CI and CM chondritic meteorites. The IDPs exhibit evidence of aqueous processing, but they have typically experienced only short range, submicrometer scale alteration. The IDPs may provide a broad sampling of the asteroid belt.

  14. The origin of the 3.4 micron feature in Wild 2 cometary particles and in ultracarbonaceous interplanetary dust particles

    OpenAIRE

    Matrajt, Graciela; Flynn, George; Brownlee, Don; Joswiak, Dave; Bajt, Sasa

    2013-01-01

    We analyzed 2 ultra-carbonaceous interplanetary dust particles and 2 cometary Wild 2 particles with infrared spectroscopy. We characterized the carrier of the 3.4 micron band in these samples and compared its profile and the CH2/CH3 ratios to the 3.4 micron band in the diffuse interstellar medium (DISM), in the insoluble organic matter (IOM) from 3 primitive meteorites, in asteroid 24 Themis and in the coma of comet 103P/Hartley 2. We found that the 3.4 micron band in both Wild 2 and IDPs is ...

  15. The thermal history of interplanetary dust particles collected in the Earth's stratosphere

    Science.gov (United States)

    Nier, A. O.; Schlutter, D. J.

    1993-01-01

    Fragments of 24 individual interplanetary dust particles (IDPs) collected in the Earth's stratosphere were obtained from NASA's Johnson Space Center collection and subjected to pulse-heating sequences to extract He and Ne and to learn about the thermal history of the particles. A motivation for the investigation was to see if the procedure would help distinguish between IDPs of asteroidal and cometary origin. The use of a sequence of short-duration heat pulses to perform the extractions is an improvement over the employment of a step-heating sequence, as was used in a previous investigation. The particles studied were fragments of larger parent IDPs, other fragments of which, in coordinated experiments, are undergoing studies of elemental and mineralogical composition in other laboratories. While the present investigation will provide useful temperature history data for the particles, the relatively large size of the parent IDPs (approximately 40 micrometers in diameter) resulted in high entry deceleration temperatures. This limited the usefulness of the study for distinguishing between particles of asteroidal and cometary origin.

  16. A simplified Suomi NPP VIIRS dust detection algorithm

    Science.gov (United States)

    Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan

    2017-11-01

    Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.

  17. Infrared Observations of Cometary Dust and Nuclei

    Science.gov (United States)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  18. Dust storm detection using random forests and physical-based ...

    Indian Academy of Sciences (India)

    arid areas of the Middle. East. Due to the influences of dust aerosols on climate and human daily activities, dust detection plays a crucial role in environmental and climatic studies. Detection of dust storms is critical to accurately under- stand dust ...

  19. Detection of Asian Dust Storm Using MODIS Measurements

    Directory of Open Access Journals (Sweden)

    Yong Xie

    2017-08-01

    Full Text Available Every year, a large number of aerosols are released from dust storms into the atmosphere, which may have potential impacts on the climate, environment, and air quality. Detecting dust aerosols and monitoring their movements and evolutions in a timely manner is a very significant task. Satellite remote sensing has been demonstrated as an effective means for observing dust aerosols. In this paper, an algorithm based on the multi-spectral technique for detecting dust aerosols was developed by combining measurements of moderate resolution imaging spectroradiometer (MODIS reflective solar bands and thermal emissive bands. Data from dust events that occurred during the past several years were collected as training data for spectral and statistical analyses. According to the spectral curves of various scene types, a series of spectral bands was selected individually or jointly, and corresponding thresholds were defined for step-by-step scene classification. The multi-spectral algorithm was applied mainly to detect dust storms in Asia. The detection results were validated not only visually with MODIS true color images, but also quantitatively with products of Ozone Monitoring Instrument (OMI and Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP. The validations showed that this multi-spectral detection algorithm was suitable to monitor dust aerosols in the selected study areas.

  20. Electromagnetically Interacting Dust Streams During Ulysses' Second Jupiter Encounter

    International Nuclear Information System (INIS)

    Krueger, H.; Forsyth, R.J.; Graps, A.L.; Gruen, E.

    2005-01-01

    The Jupiter system is a source of collimated burst-like streams of electrically charged 10-nm dust particles. In 2004 the Ulysses spacecraft had its second flyby at Jupiter and from late 2002 to early 2005 it measured a total of 24 dust streams between 0.8 and 3.4 AU from the planet. The grains show strong coupling to the interplanetary magnetic field: their impact directions correlate with the orientation and strength of the interplanetary magnetic field vector (namely its tangential and radial components) and they occur at 26 day intervals, closely matching the solar rotation period. Ulysses measured the dust streams over a large range in jovian latitude (+75 deg. to -35 deg.). Enhanced dust emission was measured along the jovian equator

  1. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  2. Estimation of micrometeorites and satellite dust flux surrounding Mars in the light of MAVEN results

    Science.gov (United States)

    Pabari, J. P.; Bhalodi, P. J.

    2017-05-01

    Recently, MAVEN observed dust around Mars from ∼150 km to ∼1000 km and it is a puzzling question to the space scientists about the presence of dust at orbital altitudes and about its source. A continuous supply of dust from various sources could cause existence of dust around Mars and it is expected that the dust could mainly be from either the interplanetary source or the Phobos/Deimos. We have studied incident projectiles or micrometeorites at Mars using the existing model, in this article. Comparison of results with the MAVEN results gives a new value of the population index S, which is reported here. The index S has been referred in a power law model used to describe the number of impacting particles on Mars. In addition, the secondary ejecta from natural satellites of Mars can cause a dust ring or torus around Mars and remain present for its lifetime. The dust particles whose paths are altered by the solar wind over its lifetime, could present a second plausible source of dust around Mars. We have investigated escaping particles from natural satellites of Mars and compared with the interplanetary dust flux estimation. It has been found that flux rate at Mars is dominated (∼2 orders of magnitude higher) by interplanetary particles in comparison with the satellite originated dust. It is inferred that the dust at high altitudes of Mars could be interplanetary in nature and our expectation is in agreement with the MAVEN observation. As a corollary, the mass loss from Martian natural satellites is computed based on the surface erosion by incident projectiles.

  3. Update on Automated Classification of Interplanetary Dust Particles

    Science.gov (United States)

    Maroger, I.; Lasue, J.; Zolensky, M.

    2018-01-01

    Every year, the Earth accretes about 40,000 tons of extraterrestrial material less than 1 mm in size on its surface. These dust particles originate from active comets, from impacts between asteroids and may also be coming from interstellar space for the very small particles. Since 1981, NASA Jonhson Space Center (JSC) has been systematically collecting the dust from Earth's strastosphere by airborne collectors and gathered them into "Cosmic Dust Catalogs". In those catalogs, a preliminary analysis of the dust particles based on SEM images, some geological characteristics and X-ray energy-dispersive spectrometry (EDS) composition is compiled. Based on those properties, the IDPs are classified into four main groups: C (Cosmic), TCN (Natural Terrestrial Contaminant), TCA (Artificial Terrestrial Contaminant) and AOS (Aluminium Oxide Sphere). Nevertheless, 20% of those particles remain ambiguously classified. Lasue et al. presented a methodology to help automatically classify the particles published in the catalog 15 based on their EDS spectra and nonlinear multivariate projections (as shown in Fig. 1). This work allowed to relabel 155 particles out of the 467 particles in catalog 15 and reclassify some contaminants as potential cosmic dusts. Further analyses of three such particles indicated their probable cosmic origin. The current work aims to bring complementary information to the automatic classification of IDPs to improve identification criteria.

  4. Frontiers in In-Situ Cosmic Dust Detection and Analysis

    International Nuclear Information System (INIS)

    Sternovsky, Zoltan; Auer, Siegfried; Drake, Keith; Gruen, Eberhard; Horanyi, Mihaly; Le, Huy; Xie Jianfeng; Srama, Ralf

    2011-01-01

    In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of β-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.

  5. Dynamics of nanoparticules detected at 1 AU by S/WAVES onboard STEREO spacecraft

    Science.gov (United States)

    Belheouane, Soraya; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Mann, Ingrid

    In order to interpret in detail the S/WAVES data on the interplanetary nanodust discovered by STEREO at 1 AU [Meyer-Vernet et al., 2009], we study the dynamics of nanoparticles in the inner interplanetary medium as well as the distribution of their velocities and directions of arrival, with a model based on [Czechowski and Mann, 2012]. We deduce the charges released by their impacts on the STEREO spacecraft at 1 AU and their dependence on the position of the spacecraft on their orbits. The model studies nanoparticles of size equal or smaller than about 70 nm, assumed to be created via collisional fragmentation of dust grains of larger size moving on keplerian orbits, and sublimation of dust, meteoroids and comets. The nanoparticles are released near the Sun with initial velocities close to keplerian, and mainly subjected to the Lorentz force calculated with a simple solar wind model. A part of the nanoparticles is accelerated to high speeds of the order of 300 km/s, thereby providing impact charges between 10(-14) and 10(-11) Cb [Belheouane, 2014] which enable them to be detected by S/WAVES, whereas another part is trapped within about 0.2 AU from the Sun. We discuss how the fluxes and direction of arrival at 1 AU are expected to change in function of the solar cycle. These results enable us to interpret in detail the STEREO/WAVES observations [Zaslavsky et al., 2012]; [Pantellini et al., 2013]; [Le Chat et al., 2013]. Belheouane, S. (2014). Nanoparticules dans le vent solaire, observations spatiales et theorie. PhD thesis, Pierre and Marie Curie University UPMC. Czechowski, A. and Mann, I. (2012). Nanodust Dynamics in Interplanetary Space, chapter Nanodust Dynamics in Interplanetary Space. Springer Berlin Heidelberg. Le Chat, G., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Belheouane, S., Pantellini, F., Maksimovic, M., Zouganelis, I., Bale, S., and Kasper, J. (2013). Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low

  6. Radio images of the interplanetary turbulent plasma

    International Nuclear Information System (INIS)

    Vlasov, V.I.

    1979-01-01

    The results of the interplanetary scintillation daily observations of approximately 140 radio sources are given. The observations were carried out at the radiotelescope VLPA FIAN during 24 days in October-November 1975 and 6 days in April 1976. The maps (radio images) of interplanetary turbulent plasma are presented. The analysis of the maps reveals the presence of large-scale irregularities in the interplanetary plasma. The variability in large-scale structure of the interplanetary plasma is due mainly to transport of matter from the Sun. A comparison of the scintillation with the geomagnetic activity index detected the presence of a straight connection between them

  7. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    Science.gov (United States)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  8. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    Science.gov (United States)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3

  9. Interplanetary dust profile observed on Juno's cruise from Earth to Jupiter

    Science.gov (United States)

    Joergensen, J. L.; Benn, M.; Jørgensen, P. S.; Denver, T.; Jørgensen, F. E.; Connerney, J. E. P.; Andersen, A. C.; Bolton, S. J.; Levin, S.

    2017-12-01

    Juno was launched August 5th, 2011, and entered the highly-elliptical polar orbit about Jupiter on July 4th, 2016, some 5 years later. Juno's science objectives include the mapping of Jupiter's gravity and magnetic fields and observation of the planet's deep atmosphere, aurora and polar regions. The Juno spacecraft is a large spin-stabilized platform powered by three long solar panel structures, 11 m in length, extending radially outward from the body of the spacecraft with panel normal parallel to the spacecraft spin axis. During almost 5 years in cruise, Juno traversed the inner part of the solar system, from Earth, to a deep space maneuver at 2.2AU, back to 0.8AU for a subsequent rendezvous with Earth for gravity assist, and then out to Jupiter (at 5.4AU at the time of arrival). The solar panels were nearly sun-pointing during the entire cruise phase, with the 60 m2 of solar panel area facing the ram direction (panel normal parallel to the spacecraft velocity vector). Interplanetary Dust Particles (IPDs) impacting Juno's solar panels with typical relative velocities of 20 km/s excavate target mass, some of which will leave the spacecraft at moderate speeds (few m/s) in the form of a few large spallation products. Many of these impact ejecta have been recorded and tracked by one of the autonomous star trackers flown as part of the Juno magnetometer investigation (MAG). Juno MAG instrumentation is accommodated on a boom at the end of one of the solar arrays, and consists of two magnetometer sensor suites each instrumented with two star trackers for accurate attitude determination at the MAG sensors. One of the four star trackers was configured to report such fast moving objects, effectively turning Juno's large solar array area into the largest-aperture IPD detector ever flown - by far. This "detector", by virtue of its prodigious collecting area, is sensitive to the relatively infrequent impacts of particles much larger (at 10's of microns) than those collected

  10. Cometary Dust

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  11. The Stardust Interstellar Dust Collector and Stardust@home

    Science.gov (United States)

    Westphal, A. J.; Anderson, D.; Bastien, R.; Butterworth, A.; Frank, D.; Gainsforth, Z.; Kelley, N.; Lettieri, R.; Mendez, B.; Prasad, R.; Tsitrin, S.; von Korff, J.; Warren, J.; Wertheimer, D.; Zhang, A.; Zolensky, M.

    2006-12-01

    The Stardust sample return mission is effectively two missions in one. Stardust brought back to earth for analytical study the first solid samples from a known solar system body beyond the moon, comet Wild2. The first results of the analyses of these samples are reported elsewhere in this session. In a separate aerogel collector, Stardust also captured and has returned the first samples of contemporary interstellar dust. Landgraf et al. [1] has estimated that ~ 50 interstellar dust particles in the micron size range have been captured in the Stardust Interstellar Dust Collector. Their state after capture is unknown. Before analysis of these particles can begin, they must be located in the collector. Here we describe the current status of Stardust@home, the massively distributed public search for these tiny interstellar dust particles. So far more than 13,000 volunteers have collectively performed more than 10,000,000 searches in stacks of digital images of ~10% of the collector. We report new estimates of the flux of interplanetary dust at ~2 AU based on the results of this search, and will compare with extant models[2]. References: [1] Landgraf et al., (1999) Planet. Spac. Sci. 47, 1029. [2] Staubach et al. (2001) in Interplanetary Dust, E. Grün, ed., Astron. &Astro. Library, Springer, 2001.

  12. Saharan dust detection using multi-sensor satellite measurements

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2017-02-01

    Full Text Available Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T and Aqua (A MODerate-resolution Imaging Spectroradiometer (MODIS, fusing with Ozone Monitoring Instrument (OMI. Previous work by Hao and Qu (2007 had considered a limited number of thermal infrared channels which led to a correlation coefficient R2 value of 0.765 between the Aerosol Optical Thickness (AOT at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R2 value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  13. Interplanetary Coronal Mass Ejections detected by HAWC

    Science.gov (United States)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  14. Global dust sources detection using MODIS Deep Blue Collection 6 aerosol products

    Science.gov (United States)

    Pérez García-Pando, C.; Ginoux, P. A.

    2015-12-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Remote sensing sensors are the most useful tool to locate dust sources. These sensors include microwaves, visible channels, and lidar. On the global scale, major dust source regions have been identified using polar orbiting satellite instruments. The MODIS Deep Blue algorithm has been particularly useful to detect small-scale sources such as floodplains, alluvial fans, rivers, and wadis , as well as to identify anthropogenic sources from agriculture. The recent release of Collection 6 MODIS aerosol products allows to extend dust source detection to the entire land surfaces, which is quite useful to identify mid to high latitude dust sources and detect not only dust from agriculture but fugitive dust from transport and industrial activities. This presentation will overview the advantages and drawbacks of using MODIS Deep Blue for dust detection, compare to other instruments (polar orbiting and geostationary). The results of Collection 6 with a new dust screening will be compared against AERONET. Applications to long range transport of anthropogenic dust will be presented.

  15. In situ extraction and analysis of volatiles and simple molecules in interplanetary dust particles, contaminants, and silica aerogel

    Science.gov (United States)

    Hartmetz, C. P.; Gibson, E. K., Jr.; Blanford, G. E.

    1990-01-01

    Results are presented for the analyses of eight interplanetary dust particles (IDPs) for the volatile elements H, C, N, O, and S and their molecular species, as well as of the volatiles associated with contaminants (i.e., the compounds used during the collection and curation of IDPs), which were carried out using a laser microprobe interfaced with a quadrupole mass spectrometer. It was found that the volatile species from contaminants were always present in the spectra of IDPs. Despite the contamination problems, several indigenous molecular species could be identified, including OH, CO2 or C2H4, C and CS2, CO2 along with CO (possibly indicating the presence of carbonate), H2S, SO, COS, SO2, and CS2. In some cases, the sulfur components can be attributed to aerosols; however, in one of the IDPs, the presence of H2S, SO, COS, and SO2 indicates the possible presence of elemental sulfur.

  16. "Driverless" Shocks in the Interplanetary Medium

    Science.gov (United States)

    Gopalswamy, N.; Kaiser, M. L.; Lara, A.

    1999-01-01

    Many interplanetary shocks have been detected without an obvious driver behind them. These shocks have been thought to be either blast waves from solar flares or shocks due to sudden increase in solar wind speed caused by interactions between large scale open and closed field lines of the Sun. We investigated this problem using a set of interplanetary shock detected {\\it in situ} by the Wind space craft and tracing their solar origins using low frequency radio data obtained by the Wind/WAVES experiment. For each of these "driverless shocks" we could find a unique coronal mass ejections (CME) event observed by the SOHO (Solar and Heliospheric Observatory) coronagraphs. We also found that these CMEs were ejected at large angles from the Sun-Earth line. It appears that the "driverless shocks" are actually driver shocks, but the drivers were not intercepted by the spacecraft. We conclude that the interplanetary shocks are much more extended than the driving CMEs.

  17. Identification of a Compound Spinel and Silicate Presolar Grain in a Chondritic Interplanetary Dust Particle

    Science.gov (United States)

    Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.

    2014-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) have undergone minimal parent body alteration and contain an assemblage of highly primitive materials, including molecular cloud material, presolar grains, and material that formed in the early solar nebula [1-3]. The exact parent bodies of individual IDPs are not known, but IDPs that have extremely high abundances of presolar silicates (up to 1.5%) most likely have cometary origins [1, 4]. The presolar grain abundance among these minimally altered CP IDPs varies widely. "Isotopically primitive" IDPs distinguished by anomalous bulk N isotopic compositions, numerous 15N-rich hotspots, and some C isotopic anomalies have higher average abundances of presolar grains (375 ppm) than IDPs with isotopically normal bulk N (<10 ppm) [5]. Some D and N isotopic anomalies have been linked to carbonaceous matter, though this material is only rarely isotopically anomalous in C [1, 5, 6]. Previous studies of the bulk chemistry and, in some samples, the mineralogy of select anhydrous CP IDPs indicate a link between high C abundance and pyroxene-dominated mineralogy [7]. In this study, we conduct coordinated mineralogical and isotopic analyses of samples that were analyzed by [7] to characterize isotopically anomalous materials and to establish possible correlations with C abundance.

  18. Advances in Electrostatic Dust Detection on Remote Surfaces

    International Nuclear Information System (INIS)

    Voinier, C.; Skinner, C.H.; Roquemore, A.L.

    2005-01-01

    The inventory of dust in next-step magnetic fusion devices will be regulated for safety reasons, however diagnostics to measure in-vessel dust are still in their infancy. Advances in dust particle detection on remote surfaces are reported. Two grids of interlocking circuit traces with spacing in the range 125 (micro)m to 25 (micro)m are biased to 30 V. Impinging dust creates a short circuit and the result current pulse is recorded. The detector response was measured with particles scraped from a carbon fiber composite tile and sorted by size category. The finest 25 (micro)m grid showed a sensitivity more than an order of magnitude higher than the 125 (micro)m grid. The response to the finest particle categories (5-30 (micro)m) was two orders of magnitude higher than the largest (125-250 (micro)m) category. Longer duration current pulses were observed from the coarser particles. The results indicate a detection threshold for fine particles below 1 (micro)g/cm 2

  19. Preparation, analysis, and release of simulated interplanetary grains into low earth orbit

    International Nuclear Information System (INIS)

    Stephens, J.R.; Strong, I.B.; Kunkle, T.D.

    1985-01-01

    Astronomical observations which reflect the optical and dynamical properties of interstellar and interplanetary grains are the primary means of identifying the shape, size, and the chemistry of extraterrestrial grain materials and is a major subject of this workshop. Except for recent samplings of extraterrestrial particles in near-Earth orbit and in the stratosphere, observations have been the only method of deducing the properties of extraterrestrial particles. Terrestrial laboratory experiments typically seek not to reproduce astrophysical conditions but to illuminate fundamental dust processes and properties which must be extrapolated to interesting astrophysical conditions. In this report, we discuss the formation and optical characterization of simulated interstellar and interplanetary dust with particular emphasis on studying the properties on irregularly shaped particles. We also discuss efforts to develop the techniques to allow dust experiments to be carried out in low-Earth orbit, thus extending the conditions under which dust experiments may be performed. The objectives of this study are threefold: (1) Elucidate the optical properties, including scattering and absorption, of simulated interstellar grains including SiC, silicates, and carbon grains produced in the laboratory. (2) Develop the capabilities to release grains and volatile materials into the near-Earth environment and study their dynamics and optical properties. (3) Study the interaction of released materials with the near-Earth environment to elucidate grain behavior in astrophysical environments. Interaction of grains with their environment may, for example, lead to grain alignment or coagulation, which results in observable phenomena such as polarization of lighter or a change of the scattering properties of the grains

  20. Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles

    Science.gov (United States)

    Aléon, Jérôme; Robert, François; Chaussidon, Marc; Marty, Bernard

    2003-10-01

    Nitrogen concentrations and isotopic compositions were measured by ion microprobe scanning imaging in two interplanetary dust particles L2021 K1 and L2036 E22, in which imaging of D/H and C/H ratios has previously evidenced the presence of D-rich macromolecular organic components. High nitrogen concentrations of 10-20 wt% and δ 15N values up to +400‰ are observed in these D-rich macromolecular components. The previous study of D/H and C/H ratios has revealed three different D-rich macromolecular phases. The one previously ascribed to macromolecular organic matter akin the insoluble organic matter (IOM) from carbonaceous chondrites is enriched in nitrogen by one order of magnitude compared to the carbonaceous chondrite IOM, although its isotopic composition is still similar to what is known from Renazzo (δ 15N = +208‰). The correlation observed in macromolecular organic material between the D- and 15N-excesses suggests that the latter originate probably from chemical reactions typical of the cold interstellar medium. These interstellar materials preserved to some extent in IDPs are therefore macromolecular organic components with various aliphaticity and aromaticity. They are heavily N-heterosubstituted as shown by their high nitrogen concentrations >10 wt%. They have high D/H ratios >10 -3 and δ 15N values ≥ +400‰. In L2021 K1 a mixture is observed at the micron scale between interstellar and chondritic-like organic phases. This indicates that some IDPs contain organic materials processed at various heliocentric distances in a turbulent nebula. Comparison with observation in comets suggests that these molecules may be cometary macromolecules. A correlation is observed between the D/H ratios and δ 15N values of macromolecular organic matter from IDPs, meteorites, the Earth and of major nebular reservoirs. This suggests that most macromolecular organic matter in the inner solar system was probably issued from interstellar precursors and further processed

  1. Summary of the results from the Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment (LADEE) Mission

    Science.gov (United States)

    Horanyi, Mihaly

    2016-07-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including

  2. Photoemission of Single Dust Grains for Heliospheric Conditions

    Science.gov (United States)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  3. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  4. Formation and Evolution of Interstellar Dust - Bridging Astronomy and Laboratory Astrophysics.

    Science.gov (United States)

    Contreras, Cesar; Ricketts, C. L.; Salama, F.

    2010-05-01

    The study of the formation and the destruction processes of cosmic dust are essential to understand and to quantify the budget of extraterrestrial organic molecules. PAHs are important chemical building blocks of interstellar (IS) dust. They are detected in Interplanetary dust particles (IDPs) and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs, in their neutral and ionized forms, are an important, ubiquitous component of the interstellar medium. Carbonaceous materials extracts from mixtures of hydrocarbons (C2H2, C2H4, and benzene) contain a high variety of polycyclic aromatic hydrocarbons (PAHs). (From Jager et al. Carbon 45 (2007) 2981-2994). Studies of large molecular and nano-sized interstellar dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species (molecules, molecular fragments, ions, nanoparticles, etc...) formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS), thus providing both spectroscopic and ion mass information in-situ. We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic molecules. Acknowledgments: This research is supported by NASA APRA (Laboratory Astrophysics Program). C. S. C. & C. L. R. acknowledge the support of the NASA Postdoctoral Program.

  5. Dust properties determined from backscattering in the interplanetary and interstellar medium

    International Nuclear Information System (INIS)

    Myers, R.V.

    1984-01-01

    The structure and composition of comet dust were investigated through the dependence of polarization and angular albedo as a function of phase angle. The investigations concentrated on small phase angles (comet near opposition). Polarization measurements over wide ranges of phase angle were made for three comets. The polarization data showed no color dependence from 0.5 μm to 0.8 μm. Data from two comets confirmed that the position angle of the polarization lies parallel to the scattering plane at small phase angles. All polarization data of comets at small phase angles were merged to show that the angular dependence of polarization repeats from comet to comet. Mie models were unable to explain the polarization observations, even though the parameters were varied over wide ranges. Infrared observations of the reflected solar spectrum and the dust thermal spectrum allowed a determination of the angular albedo of comet dust. The angular albedo at all phase angles describes the dust phase functions. A large phase coefficient is characteristic of class C asteroids, asteroids of low albedo. The comet infrared data supports the conclusions of the polarization study. An attempt to observe a polarization signature of comet dust in the Orion Nebula could not be completed because of instrumental problems. Instrumental improvements are suggested

  6. Combined Dust Detection Algorithm by Using MODIS Infrared Channels over East Asia

    Science.gov (United States)

    Park, Sang Seo; Kim, Jhoon; Lee, Jaehwa; Lee, Sukjo; Kim, Jeong Soo; Chang, Lim Seok; Ou, Steve

    2014-01-01

    A new dust detection algorithm is developed by combining the results of multiple dust detectionmethods using IR channels onboard the MODerate resolution Imaging Spectroradiometer (MODIS). Brightness Temperature Difference (BTD) between two wavelength channels has been used widely in previous dust detection methods. However, BTDmethods have limitations in identifying the offset values of the BTDto discriminate clear-sky areas. The current algorithm overcomes the disadvantages of previous dust detection methods by considering the Brightness Temperature Ratio (BTR) values of the dual wavelength channels with 30-day composite, the optical properties of the dust particles, the variability of surface properties, and the cloud contamination. Therefore, the current algorithm shows improvements in detecting the dust loaded region over land during daytime. Finally, the confidence index of the current dust algorithm is shown in 10 × 10 pixels of the MODIS observations. From January to June, 2006, the results of the current algorithm are within 64 to 81% of those found using the fine mode fraction (FMF) and aerosol index (AI) from the MODIS and Ozone Monitoring Instrument (OMI). The agreement between the results of the current algorithm and the OMI AI over the non-polluted land also ranges from 60 to 67% to avoid errors due to the anthropogenic aerosol. In addition, the developed algorithm shows statistically significant results at four AErosol RObotic NETwork (AERONET) sites in East Asia.

  7. Note: Electrostatic detection of stainless steel dust particles for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Landy, P. [Mechanical and Aerospace Engineering Department, Cornell University, Ithaca, New York 14853 (United States); Skinner, C. H.; Schneider, H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-03-15

    Dust accumulation inside next-step fusion devices poses a significant safety concern and dust diagnostics will be needed to assure safe operations. An electrostatic dust detection device has been successfully demonstrated in the National Spherical Torus Experiment, Tore Supra, and the Large Helical Device, and the detector's response to carbon particles was previously characterized in laboratory experiments. This paper presents laboratory results showing that detection of stainless steel particles at levels as low as several μg/cm{sup 2} is also possible.

  8. Hydrocarbons on Saturns Satellites: Relationship to Interstellar Dust and the Solar Nebula

    Science.gov (United States)

    Cruikshank, D. P.

    2012-01-01

    To understand the origin and evolution of our Solar System, and the basic components that led to life on Earth, we study interstellar and planetary spectroscopic signatures. The possible relationship of organic material detected in carbonaceous meteorites, interplanetary dust particles (IDPs), comets and the interstellar medium have been the source of speculation over the years as the composition and processes that governed the early solar nebula have been explored to understand the extent to which primitive material survived or became processed. The Cassini VIMS has provided new data relevant to this problem. Three of Saturn's satellites, Phoebe, Iapetus, and Hyperion, are found to have aromatic and aliphatic hydrocarbons on their surfaces. The aromatic hydrocarbon signature (C-H stretching mode at 3.28 micrometers) is proportionally significantly stronger (relative to the aliphatic bands) than that seen in other Solar System bodies (e.g., comets) and materials (Stardust samples, IDPs, meteorites) and the distinctive sub-features of the 3.4 micrometer aliphatic band (CH2 and CH3 groups) are reminiscent of those widely detected throughout the diffuse ISM. Phoebe may be a captured object that originated in the region beyond the present orbit of Neptune, where the solar nebula contained a large fraction of original interstellar ice and dust that was less processed than material closer to the Sun. Debris from Phoebe now resident on Iapetus and Hyperion, as well as o Phoebe itself, thus presents a unique blend of hydrocarbons, amenable to comparisons with interstellar hydrocarbons and other Solar System materials. The dust ring surrounding Saturn, in which Phoebe is embedded, probably originated from a collision with Phoebe. Dust ring particles are the likely source of the organic-bearing materials, and perhaps the recently identified small particles of Fe detected on Saturn's satellites. Lab measurements of the absolute band strengths of representative aliphatic and

  9. Experiments on Dust Grain Charging

    Science.gov (United States)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  10. Nano-metric Dust Particles as a Hardly Detectable Component of ...

    Indian Academy of Sciences (India)

    sis of the TNO color index–orbital inclinations. We also .... In our view, during these two processes, their complementarities lead to a certain balance due to the .... dust will form a multi-mineral complex of the hardly detectable dust matter of the.

  11. Sub-micrometer scale minor element mapping in interplanetary dust particles: a test for stratospheric contamination

    International Nuclear Information System (INIS)

    Flynn, G.J.; Keller, L.P.; Sutton, S.R.

    2006-01-01

    We mapped the spatial distribution of minor elements including K, Mn, and Zn in 3 IDPs and found no evidence for the surface coatings (rims) of these elements that would be expected if the enrichments previously reported were due to contamination. Combined X-ray microprobe (XRM), energy dispersive x-ray fluorescence using a Transmission Electron Microscope (TEM), and electron microprobe measurements have determined that the average bulk chemical composition of the interplanetary dust particles (IDPs) collected from the Earth's stratosphere is enriched relative to the CI meteorite composition by a factor of 2 to 4 for carbon and for the moderately volatile elements Na, K, P, Mn, Cu, Zn, Ga, Ge, and Se, and enriched to ∼30 times CI for Br. However, Jessberger et al., who have reported similar bulk enrichments using Proton Induced X-ray Emission (PIXE), attribute the enrichments to contamination by meteor-derived atmospheric aerosols during the several weeks these IDPs reside in the Earth's atmosphere prior to collection. Using scanning Auger spectroscopy, a very sensitive surface analysis technique, Mackinnon and Mogk have observed S contamination on the surface of IDPs, presumably due to the accretion of sulfate aerosols during stratospheric residence. But the S-rich layer they detected was so thin (∼100 angstroms thick) that the total amount of S on the surface was too small to significantly perturb the bulk S-content of a chondritic IDP. Stephan et al. provide support for the contamination hypothesis by reporting the enrichment of Br on the edges of the IDPs using Time-of-Flight Secondary-Ion Mass-Spectrometry (TOF-SIMS), but TOF-SIMS is notorious for producing false edge-effects, particularly on irregularly-shaped samples like IDPs. Sutton et al. mapped the spatial distribution of Fe, Ni, Zn, Br, and Sr, at the ∼2 (micro)m scale, in four IDPs using element-specific x-ray fluorescence (XRF) computed microtomography. They found the moderately volatile

  12. Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths

    International Nuclear Information System (INIS)

    Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.; Moreno, F.; Penttilä, A.; Muinonen, K.

    2017-01-01

    The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected to mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.

  13. Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.; Moreno, F. [Instituto de Astrofìsica de Andalucìa, CSIC, Glorieta de la Astronomìa s/n, E-18008 Granada (Spain); Penttilä, A.; Muinonen, K. [Department of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland)

    2017-03-20

    The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected to mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.

  14. Laboratory Studies of the Formation of Carbonaceous Cosmic Dust from PAH Precursors

    Science.gov (United States)

    Salama, Farid; Contreras, C. S.

    2012-05-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of carbonaceous dust. PAHs are important chemical building blocks of interstellar dust. They are detected in interplanetary dust particles and in meteoritic samples and are an important, ubiquitous component of the interstellar medium. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, it is imperative that laboratory experiments be conducted to study the dynamic processes of carbon grain formation from PAH precursors. Studies of interstellar dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include O, N, and S, have recently been performed using the COSmIC facility in our laboratory under conditions that simulate interstellar and circumstellar environments. The species formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with high-sensitivity cavity ringdown spectroscopy coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS), thus providing both spectroscopic and ion mass information in-situ. We report the measurements obtained in these experiments. Studies with hydrocarbon precursors show the feasibility of specific molecules to form PAHs, while studies with carbon ring systems (benzene and derivatives, PAHs) precursors provide information on pathways toward larger carbonaceous molecules. From these unique measurements, we derive information on the size and the structure of interstellar dust grain particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules. Acknowledgements: This research is

  15. Interplanetary Magnetic Field Guiding Relativistic Particles

    Science.gov (United States)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  16. Whither Cometary Dust?

    Science.gov (United States)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  17. Electrostatic Dust Detection and Removal for ITER

    International Nuclear Information System (INIS)

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-01-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 (micro)m spacing is biased to 30-50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm 2 with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations

  18. Detecting dust hits at Enceladus, Saturn and beyond using CAPS / ELS data from Cassini

    Science.gov (United States)

    Vandegriff, J. D.; Stoneberger, P. J.; Jones, G.; Waite, J. H., Jr.

    2016-12-01

    It has recently been shown (1) that the impact of hypervelocity dust grains on the Cassini spacecraft can be detected by the Cassini Plasma Spectrometer (CAPS) Electron Spectrometer (ELS) instrument. For multiple Enceladus flybys, fine scale features in the lower energy regime of ELS energy spectra can be explained as short-duration, isotropic plasma clouds due to dust impacts. We have developed an algorithm for detecting these hypervelocity dust impacts, and the list of such impacts during Enceladus flybys will be presented. We also present preliminary results obtained when using the algorithm to search for dust impacts in other regions of Saturn's magnetosphere as well as in the solar wind. (1) Jones, Geraint, Hypervelocity dust impact signatures detected by Cassini CAPS-ELS in the Enceladus plume, MOP Meeting, June 1-5, 2015, Atlanta, GA

  19. Interplanetary spheromacs

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Kharshiladze, A.F.

    1985-01-01

    The solution of Helmholtz's equation is used for the representation of force-free magnetic fields as series of spheroidal wave functions. It is assumed that these functions describe painly interplanetary hydromagnetic clouds in the shape of flattered and extended ellipsoids which are formed at the interaction of flare e ections with corona and interplanetary plasma

  20. First Real-Time Detection of Surface Dust in a Tokamak

    International Nuclear Information System (INIS)

    Skinner, C.; Rais, B.; Roquemore, A.L.; Kugel, H.W.; Marsala, R.; Provost, T.

    2010-01-01

    The first real-time detection of surface dust inside a tokamak was made using an electrostatic dust detector. A fine grid of interlocking circuit traces was installed in the NSTX vessel and biased to 50 v. Impinging dust particles created a temporary short circuit and the resulting current pulse was recorded by counting electronics. The techniques used to increase the detector sensitivity by a factor of x10,000 to match NSTX dust levels while suppressing electrical pickup are presented. The results were validated by comparison to lab measurements, by the null signal from a covered detector that was only sensitive to pickup, and by the dramatic increase in signal when Li particles were introduced for wall conditioning purposes.

  1. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Science.gov (United States)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  2. An automated and integrated framework for dust storm detection based on ogc web processing services

    Science.gov (United States)

    Xiao, F.; Shea, G. Y. K.; Wong, M. S.; Campbell, J.

    2014-11-01

    Dust storms are known to have adverse effects on public health. Atmospheric dust loading is also one of the major uncertainties in global climatic modelling as it is known to have a significant impact on the radiation budget and atmospheric stability. The complexity of building scientific dust storm models is coupled with the scientific computation advancement, ongoing computing platform development, and the development of heterogeneous Earth Observation (EO) networks. It is a challenging task to develop an integrated and automated scheme for dust storm detection that combines Geo-Processing frameworks, scientific models and EO data together to enable the dust storm detection and tracking processes in a dynamic and timely manner. This study develops an automated and integrated framework for dust storm detection and tracking based on the Web Processing Services (WPS) initiated by Open Geospatial Consortium (OGC). The presented WPS framework consists of EO data retrieval components, dust storm detecting and tracking component, and service chain orchestration engine. The EO data processing component is implemented based on OPeNDAP standard. The dust storm detecting and tracking component combines three earth scientific models, which are SBDART model (for computing aerosol optical depth (AOT) of dust particles), WRF model (for simulating meteorological parameters) and HYSPLIT model (for simulating the dust storm transport processes). The service chain orchestration engine is implemented based on Business Process Execution Language for Web Service (BPEL4WS) using open-source software. The output results, including horizontal and vertical AOT distribution of dust particles as well as their transport paths, were represented using KML/XML and displayed in Google Earth. A serious dust storm, which occurred over East Asia from 26 to 28 Apr 2012, is used to test the applicability of the proposed WPS framework. Our aim here is to solve a specific instance of a complex EO data

  3. Comparison of the oxidation state of Fe in comet 81P/Wild 2 and chondritic-porous interplanetary dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Ogliore, Ryan C.; Butterworth, Anna L.; Fakra, Sirine C.; Gainsforth, Zack; Marcus, Matthew A.; Westphal, Andrew J.

    2010-07-16

    The fragile structure of chondritic-porous interplanetary dust particles (CP-IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alterations have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We analyzed {approx}300 ng of Wild 2 material - three orders of magnitude more material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation state of these two samples of material are > 2{sigma} different: the CP-IDPs are more oxidized than the Wild 2 grains. We conclude that comet Wild 2 contains material that formed at a lower oxygen fugacity than the parent-body, or parent bodies, of CP-IDPs. If all Jupiter-family comets are similar, they do not appear to be consistent with the origin of CP-IDPs. However, comets that formed from a different mix of nebular material and are more oxidized than Wild 2 could be the source of CP-IDPs.

  4. Metastable carbon in two chondritic porous interplanetary dust particles

    International Nuclear Information System (INIS)

    Rietmeijer, F.J.M.; Mackinnon, I.D.R.

    1986-01-01

    An understanding of carbonaceous matter in primitive extraterrestrial materials is an essential component of studies on dust evolution in the interstellar medium and the early history of the Solar System. Analytical Electron Microscopy (AEM) on carbonaceous material in two Chondritic Porous (CP) aggregrates is presented. The study suggests that a record of hydrocarbon carbonization may also be preserved in these materials

  5. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  6. Prospects of detecting gravitational background radiation by Doppler tracking interplanetary spacecraft

    International Nuclear Information System (INIS)

    Bertotti, B.; Carr, B.J.

    1980-01-01

    We examine the theoretical and experimental prospects of detecting a low-frequency, continuous, stochastic background of gravitational waves by Doppler tracking interplanetary spacecraft. From a theoretical standpoint, such a background may have been generated by various postgalactic processes or by pregalactic black hole formation; there could also exist a primordial background which goes back to the beginning of the universe. We review the characteristic frequency and density ranges which one might anticipate for these backgrounds. From an experimental standpoint, one's ability to detect a background is limited by the finite length of the record available and by an imperfect knowledge of the spectrum of various sources of noise. The fundamental contribution to the noise comes from the clock which regulates the frequency of the tracking waves. If one uses a hydrogen maser clock, this noise becomes progressively less important with decreasing frequency: one might hope to detect a critical density of background radiation at frequencies below 10 -2 Hz and a background with 10 -4 times the critical density at frequencies below 10 -5 Hz. It is encouraging that some of the sorts of background which we anticipate from theoretical considerations fall within the observable regime. We discuss the extent to which other sources of noise may exceed the clock noise and the degree to which they can be eliminated

  7. A Dynamic Enhancement With Background Reduction Algorithm: Overview and Application to Satellite-Based Dust Storm Detection

    Science.gov (United States)

    Miller, Steven D.; Bankert, Richard L.; Solbrig, Jeremy E.; Forsythe, John M.; Noh, Yoo-Jeong; Grasso, Lewis D.

    2017-12-01

    This paper describes a Dynamic Enhancement Background Reduction Algorithm (DEBRA) applicable to multispectral satellite imaging radiometers. DEBRA uses ancillary information about the clear-sky background to reduce false detections of atmospheric parameters in complex scenes. Applied here to the detection of lofted dust, DEBRA enlists a surface emissivity database coupled with a climatological database of surface temperature to approximate the clear-sky equivalent signal for selected infrared-based multispectral dust detection tests. This background allows for suppression of false alarms caused by land surface features while retaining some ability to detect dust above those problematic surfaces. The algorithm is applicable to both day and nighttime observations and enables weighted combinations of dust detection tests. The results are provided quantitatively, as a detection confidence factor [0, 1], but are also readily visualized as enhanced imagery. Utilizing the DEBRA confidence factor as a scaling factor in false color red/green/blue imagery enables depiction of the targeted parameter in the context of the local meteorology and topography. In this way, the method holds utility to both automated clients and human analysts alike. Examples of DEBRA performance from notable dust storms and comparisons against other detection methods and independent observations are presented.

  8. Quantitative detection of settled coal dust over green canopy

    Science.gov (United States)

    Brook, Anna; Sahar, Nir

    2017-04-01

    The main task of environmental and geoscience applications are efficient and accurate quantitative classification of earth surfaces and spatial phenomena. In the past decade, there has been a significant interest in employing spectral unmixing in order to retrieve accurate quantitative information latent in in situ data. Recently, the ground-truth and laboratory measured spectral signatures promoted by advanced algorithms are proposed as a new path toward solving the unmixing problem in semi-supervised fashion. This study presents a practical implementation of field spectroscopy as a quantitative tool to detect settled coal dust over green canopy in free/open environment. Coal dust is a fine powdered form of coal, which is created by the crushing, grinding, and pulverizing of coal. Since the inelastic nature of coal, coal dust can be created during transportation, or by mechanically handling coal. Coal dust, categorized at silt-clay particle size, of particular concern due to heavy metals (lead, mercury, nickel, tin, cadmium, mercury, antimony, arsenic, isotopes of thorium and strontium) which are toxic also at low concentrations. This hazard exposes risk on both environment and public health. It has been identified by medical scientist around the world as causing a range of diseases and health problems, mainly heart and respiratory diseases like asthma and lung cancer. It is due to the fact that the fine invisible coal dust particles (less than 2.5 microns) long lodge in the lungs and are not naturally expelled, so long-term exposure increases the risk of health problems. Numerus studies reported that data to conduct study of geographic distribution of the very fine coal dust (smaller than PM 2.5) and related health impacts from coal exports, is not being collected. Sediment dust load in an indoor environment can be spectrally assessed using reflectance spectroscopy (Chudnovsky and Ben-Dor, 2009). Small amounts of particulate pollution that may carry a signature

  9. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  10. Dust arcs in the region of Jupiter's Trojan asteroids

    Science.gov (United States)

    Liu, Xiaodong; Schmidt, Jürgen

    2018-01-01

    Aims: The surfaces of the Trojan asteroids are steadily bombarded by interplanetary micrometeoroids, which releases ejecta of small dust particles. These particles form the faint dust arcs that are associated with asteroid clouds. Here we analyze the particle dynamics and structure of the arc in the region of the L4 Trojan asteroids. Methods: We calculate the total cross section of the L4 Trojan asteroids and the production rate of dust particles. The motion of the particles is perturbed by a variety of forces. We simulate the dynamical evolution of the dust particles, and explore the overall features of the Trojan dust arc. Results: The simulations show that the arc is mainly composed of grains in the size range 4-10 microns. Compared to the L4 Trojan asteroids, the dust arc is distributed more widely in the azimuthal direction, extending to a range of [30, 120] degrees relative to Jupiter. The peak number density does not develop at L4. There exist two peaks that are azimuthally displaced from L4.

  11. Hypervelocity Dust Impacts in Space and the Laboratory

    Science.gov (United States)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  12. Physical characteristics of cometary dust from dynamical studies - A review

    Science.gov (United States)

    Sekanina, Z.

    1980-01-01

    Progress made in the determination of the physical characteristics of cometary dust particles from studies of dust tail dynamics is reviewed. Applications of the combined dynamical photometric approach of Finson and Probstein (1968) to studies of cometary tails exhibiting continuous light intensity variations are discussed, with attention given to determinations of the particle-size-related distribution function of the solar radiation pressure exerted on the particles, the contribution of comets to the interplanetary dust, calculations of dust ejection rates and a Monte Carlo approach to the analysis of dust tails. Investigations of dust streamers and striae, which are believed to be related to comet outbursts entailing brief but sharp enhancements of dust production, are then reviewed, with particular attention given to observations of Comet West 1976 VI. Finally, the question of cometary particle type is addressed, and it is pointed out that the presence of submicron absorbing particles in the striae of Comet West is not incompatible with the presence of micron-size dielectric particles in the inner coma.

  13. Automated interplanetary shock detection and its application to Wind observations

    Czech Academy of Sciences Publication Activity Database

    Krupařová, Oksana; Maksimovic, M.; Šafránková, J.; Němeček, Z.; Santolík, Ondřej; Krupař, Vratislav

    2013-01-01

    Roč. 118, č. 8 (2013), 4793–4803 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/12/2394 Institutional support: RVO:68378289 Keywords : Interplanetary shocks * instruments and techniques Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50468/abstract

  14. Impact of Aerosol Dust on xMAP Multiplex Detection of Different Class Pathogens

    Directory of Open Access Journals (Sweden)

    Denis A. Kleymenov

    2017-11-01

    Full Text Available Environmental or city-scale bioaerosol surveillance can provide additional value for biodefense and public health. Efficient bioaerosol monitoring should rely on multiplex systems capable of detecting a wide range of biologically hazardous components potentially present in air (bacteria, viruses, toxins and allergens. xMAP technology from LuminexTM allows multiplex bead-based detection of antigens or nucleic acids, but its use for simultaneous detection of different classes of pathogens (bacteria, virus, toxin is questionable. Another problem is the detection of pathogens in complex matrices, e.g., in the presence of dust. In the this research, we developed the model xMAP multiplex test-system aiRDeTeX 1.0, which enables detection of influenza A virus, Adenovirus type 6 Salmonella typhimurium, and cholera toxin B subunit representing RNA virus, DNA virus, gram-negative bacteria and toxin respectively as model organisms of biologically hazardous components potentially present in or spreadable through the air. We have extensively studied the effect of matrix solution (PBS, distilled water, environmental dust and ultrasound treatment for monoplex and multiplex detection efficiency of individual targets. All targets were efficiently detectable in PBS and in the presence of dust. Ultrasound does not improve the detection except for bacterial LPS.

  15. The nature of (sub-)micrometre cometary dust particles detected with MIDAS

    Science.gov (United States)

    Mannel, T.; Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.; Schmied, R.

    2015-10-01

    The MIDAS Atomic Force Microscope (AFM) onboard Rosetta collects dust particles and produces three-dimensional images with nano- to micrometre resolution. To date, several tens of particles have been detected, allowing determination of their properties at the smallest scale. The key features will be presented, including the particle size, their fragile character, and their morphology. These findings will be compared with the results of other Rosetta dust experiments.

  16. Metastable carbon in two chondritic porous interplanetary dust particles

    International Nuclear Information System (INIS)

    Rietmeijer, F.J.M.; Mackinnon, I.D.R.

    1987-01-01

    An analytical electron microscope study is presented on carbonaceous material in two chondritic porous aggregates, W7029* A and W7010* A2, from the Johnson Space Center Cosmic Dust Collection. The finding of well-ordered carbon-2H (lonsdaleite) in the two aggregates suggests that a record of hydrocarbon carbonization may be preserved in these materials. This carbon is a metastable phase resulting from hydrous pyrolysis below 300-350 0 C and may be a precursor to poorly graphitized carbons in primitive extra terrestrial materials. (UK)

  17. Dust coagulation in ISM

    Science.gov (United States)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  18. Signal-adapted tomography as a tool for dust devil detection

    Science.gov (United States)

    Aguirre, C.; Franzese, G.; Esposito, F.; Vázquez, Luis; Caro-Carretero, Raquel; Vilela-Mendes, Rui; Ramírez-Nicolás, María; Cozzolino, F.; Popa, C. I.

    2017-12-01

    Dust devils are important phenomena to take into account to understand the global dust circulation of a planet. On Earth, their contribution to the injection of dust into the atmosphere seems to be secondary. Elsewhere, there are many indications that the dust devil's role on other planets, in particular on Mars, could be fundamental, impacting the global climate. The ability to identify and study these vortices from the acquired meteorological measurements assumes a great importance for planetary science. Here we present a new methodology to identify dust devils from the pressure time series testing the method on the data acquired during a 2013 field campaign performed in the Tafilalt region (Morocco) of the North-Western Sahara Desert. Although the analysis of pressure is usually studied in the time domain, we prefer here to follow a different approach and perform the analysis in a time signal-adapted domain, the relation between the two being a bilinear transformation, i.e. a tomogram. The tomographic technique has already been successfully applied in other research fields like those of plasma reflectometry or the neuronal signatures. Here we show its effectiveness also in the dust devils detection. To test our results, we compare the tomography with a phase picker time domain analysis. We show the level of agreement between the two methodologies and the advantages and disadvantages of the tomographic approach.

  19. Interplanetary magnetic field orientations associated with bidirectional electron heat fluxes detected at ISEE 3

    International Nuclear Information System (INIS)

    Stansberry, J.A.; Gosling, J.T.; Thomsen, M.F.; Bame, S.J.; Smith, E.J.

    1988-01-01

    A statistical survey of interplanetary magnetic field orientations associated with bidirectional electron heat fluxes observed at ISEE 3 in orbit about the Sunward Lagrange point indicates that magnetic connection of the spacecraft to the Earth's bow shock was frequently the source of the bidirectionality. When the interplanetary magnetic field was oriented within 5 0 of the Earth-spacecraft line, backstreaming electrons from the bow shock were clearly observed approximately 18% of the time, and connections apparently occurred for angles as large as ∼30 0 --35 0 . copyright American Geophysical Union 1988

  20. Ground truth of (sub-)micrometre cometary dust - Results of MIDAS onboard Rosetta

    Science.gov (United States)

    Mannel, Thurid; Bentley, Mark; Schmied, Roland; Torkar, Klaus; Jeszenszky, Harald; Romsted, Jens; Levasseur-Regourd, A.; Weber, Iris; Jessberger, Elmar K.; Ehrenfreund, Pascale; Köberl, Christian; Havnes, Ove

    2016-10-01

    The investigation of comet 67P by Rosetta has allowed the comprehensive characterisation of pristine cometary dust particles ejected from the nucleus. Flying alongside the comet at distances as small as a few kilometres, and with a relative velocity of only centimetres per second, the Rosetta payload sampled almost unaltered dust. A key instrument to study this dust was MIDAS (the Micro-Imaging Dust Analysis System), a dedicated atomic force microscope that scanned the surfaces of hundreds of (sub-)micrometre sized particles in 3D with resolutions down to nanometres. This offers the unique opportunity to explore the morphology of smallest cometary dust and expand our current knowledge about cometary material.Here we give an overview of dust collected and analysed by MIDAS and highlight its most important features. These include the ubiquitous agglomerate nature of the dust, which is found at all size scales from the largest (>10 µm) through to the smallest (MIDAS resemble primitive interplanetary dust which is a strong argument for a common cometary origin.

  1. Lithium Wall Conditioning And Surface Dust Detection On NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Allain, J.P.; Bell, M.G.; Friesen, F.Q.L.; Heim, B.; Jaworski, M.A.; Kugel, H.; Maingi, R.; Rais, B.; Taylor, C.N.

    2011-01-01

    Lithium evaporation onto NSTX plasma facing components (PFC) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that binding of D atoms to the polycrystalline graphite material of the PFCs is fundamentally changed by lithium - in particular deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real-time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high voltage 3-phase waveform was evaluated for potential application to fusion reactors

  2. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    Science.gov (United States)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  3. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    Science.gov (United States)

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.

  4. A Raman spectroscopic study of organic matter in interplanetary dust particles and meteorites using multiple wavelength laser excitation

    Science.gov (United States)

    Starkey, N. A.; Franchi, I. A.; Alexander, C. M. O'd.

    2013-10-01

    Raman spectroscopy was used to investigate insoluble organic matter (IOM) from a range of chondritic meteorites, and a suite of interplanetary dust particles (IDPs). Three monochromatic excitation wavelengths (473 nm, 514 nm, 632 nm) were applied sequentially to assess variations in meteorite and IDP Raman peak parameters (carbon D and G bands) as a function of excitation wavelength (i.e., dispersion). Greatest dispersion occurs in CVs > OCs > CMs > CRs with type 3 chondrites compared at different excitation wavelengths displaying conformable relationships, in contrast to type 2 chondrites. These findings indicate homogeneity in the structural nature of type 3 chondrite IOM, while organic matter (OM) in type 2 chondrites appears to be inherently more heterogeneous. If type 2 and type 3 chondrite IOM shares a common source, then thermal metamorphism may have a homogenizing effect on the originally more heterogeneous OM. IDP Raman G bands fall on an extension of the trend displayed by chondrite IOM, with all IDPs having Raman parameters indicative of very disordered carbon, with almost no overlap with IOM. The dispersion effect displayed by IDPs is most similar to CMs for the G band, but intermediate between CMs and CRs for the D band. The existence of some overlapping Raman features in the IDPs and IOM indicates that their OM may share a common origin, but the IDPs preserve more pristine OM that may have been further disordered by ion irradiation. H, C, and N isotopic data for the IDPs reveal that the disordered carbon in IDPs corresponds with higher δ15N and lower δ13C.

  5. Detecting Exoplanets with the New Worlds Observer: The Problem of Exozodiacal Dust

    Science.gov (United States)

    Roberge, A.; Noecker, M. C.; Glassman, T. M.; Oakley, P.; Turnbull, M. C.

    2009-01-01

    Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.

  6. Cometary and interstellar dust grains - Analysis by ion microprobe mass spectrometry and other techniques

    Science.gov (United States)

    Zinner, Ernst

    1991-01-01

    A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.

  7. Delivery of Exogenous Complex Organic Compounds by Solar System Small Bodies and Space Dusts and Its Relevance to Origins of Life

    Science.gov (United States)

    Kobayashi, Kensei; Fushimi, Hidehiko; Motoyama, Takuya; Kaneko, Takeo; Obayashi, Yumiko; Yoshida, Satoshi; Mita, Hajime; Yabuta, Hikaru; Okudaira, Kyoko; Hashimoto, Hirofumi; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    A wide variety of organic compounds including amino acid precursors have been detected in such extraterrestrial bodies as carbonaceous chondrites and comets. It was suggested that these organics were formed in quite cold environments. We irradiated frozen mixtures of possible constituents of ice mantles of interstellar dust particles including water, methanol and ammonia with high-energy heavy ions from HIMAC, National Institute of Radiological Science, Japan. Amino acid precursors with complex structures were detected whose molecular weights are up to a few thousands. Such complex amino acid precursors are much stronger than free amino acids against radiation. Such organics could have been incorporated in solar system small bodies after the formation of the solar system and delivered to the primitive Earth. Possible carriers of such organics are meteorites, comets and interplanetary dust particles (IDPs) that were formed from comets and meteorites. It is suggested that IDPs brought much more organics than meteorites and comets. However, nature of organics in IDPs is little known, since they have been collected only in terrestrial biosphere. We are planning a space experiments named Tanpopo, where IDPs would be collected in aerogel equipped on the Exposure Facility of the International Space Station. In addition, amino acids and their relating compounds would be exposed to space environments to see their possible alteration processes in the interplanetary space. We will report some preliminary results for the preparation of the mission including the capture of amino acid-containing particles at high velocity with ultra-low density aerogel.

  8. Complex Role of Secondary Electron Emissions in Dust Grain Charging in Space Environments: Measurements on Apollo 11 and 17 Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  9. Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust

    Science.gov (United States)

    Liu, Xiaodong; Schmidt, Jrgen

    2018-06-01

    In a previous paper we simulated the orbital evolution of dust particles from the Jupiter Trojan asteroids ejected by the impacts of interplanetary particles, and evaluated their overall configuration in the form of dust arcs. Here we compare the orbital properties of these Trojan dust particles and the Trojan asteroids. Both Trojan asteroids and most of the dust particles are trapped in the Jupiter 1:1 resonance. However, for dust particles, this resonance is modified because of the presence of solar radiation pressure, which reduces the peak value of the semi-major axis distribution. We find also that some particles can be trapped in the Saturn 1:1 resonance and higher order resonances with Jupiter. The distributions of the eccentricity, the longitude of pericenter, and the inclination for Trojans and the dust are compared. For the Trojan asteroids, the peak in the longitude of pericenter distribution is about 60 degrees larger than the longitude of pericenter of Jupiter; in contrast, for Trojan dust this difference is smaller than 60 degrees, and it decreases with decreasing grain size. For the Trojan asteroids and most of the Trojan dust, the Tisserand parameter is distributed in the range of two to three.

  10. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    Science.gov (United States)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  11. Cosmic dust investigations. Pt. 2

    International Nuclear Information System (INIS)

    Simpson, J.A.; Tuzzolino, A.J.

    1989-01-01

    A series of experiments have been completed using accelerator dust particles in the mass range ≅ 10 -9 -10 -6 g and velocity range ≅ 2-12 km/s to measure the velocity loss and degree of fragmentation for dust particles penetrating 6 and 28 μm thick polyvinylidene fluoride (PVDF) dust detectors. These measurements prove that even for a ratio of PVDF foil thickness to particle diameter as large as 0.6, the velocity loss and fragmentation is far less than expected from earlier reports in the literature. For 6 μm thick foils the velocity loss is ≤5%. These experiments are based on an extension of our earlier work which showed that two PVDF foils spaced a given distance apart could provide accurate time-of-flight (TOF) information due to the fast pulse rise time of PVDF detector response. We also report on our present state of development of PVDF position-sensing detectors which identify the x, y coordinates of particle impact, using detector and electronic pulse techniques adapted from our semiconductor position-sensing cosmic-ray detectors. Typical position errors of ≅ 1 mm are readily achieved. Finally, we have combined the above developments into a dust-particle telescope which accurately (≅ 1 0 angular accuracy) measures the trajectory of the incident particle as well as its mass and incident velocity, irrespective of whether it is a charged or neutral particle. We discuss how this practical dust telescope can be combined with dust capture cells for space flight and later recovery for laboratory determination of elemental and isotopic composition of captured dust. We also describe a simpler trajectory array based on discrete mosaics of thin detectors which would measure trajectories with a mean angular error of ≅ 4 0 . We discuss the application of these instruments for distinguishing between interplanetary dust of cometary and asteroidal origin, and for measurements on a space station, from near-Earth trapped dust of artificial origin. (orig.)

  12. Reducing uncertainty in dust monitoring to detect aeolian sediment transport responses to land cover change

    Science.gov (United States)

    Webb, N.; Chappell, A.; Van Zee, J.; Toledo, D.; Duniway, M.; Billings, B.; Tedela, N.

    2017-12-01

    Anthropogenic land use and land cover change (LULCC) influence global rates of wind erosion and dust emission, yet our understanding of the magnitude of the responses remains poor. Field measurements and monitoring provide essential data to resolve aeolian sediment transport patterns and assess the impacts of human land use and management intensity. Data collected in the field are also required for dust model calibration and testing, as models have become the primary tool for assessing LULCC-dust cycle interactions. However, there is considerable uncertainty in estimates of dust emission due to the spatial variability of sediment transport. Field sampling designs are currently rudimentary and considerable opportunities are available to reduce the uncertainty. Establishing the minimum detectable change is critical for measuring spatial and temporal patterns of sediment transport, detecting potential impacts of LULCC and land management, and for quantifying the uncertainty of dust model estimates. Here, we evaluate the effectiveness of common sampling designs (e.g., simple random sampling, systematic sampling) used to measure and monitor aeolian sediment transport rates. Using data from the US National Wind Erosion Research Network across diverse rangeland and cropland cover types, we demonstrate how only large changes in sediment mass flux (of the order 200% to 800%) can be detected when small sample sizes are used, crude sampling designs are implemented, or when the spatial variation is large. We then show how statistical rigour and the straightforward application of a sampling design can reduce the uncertainty and detect change in sediment transport over time and between land use and land cover types.

  13. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-01-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν (880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν (880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10 11 (L ☉ ) and 4-14 × 10 7 (M ☉ ), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution

  14. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  15. Carbonaceous Components in the Comet Halley Dust

    Science.gov (United States)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  16. The cause of high-intensity long-duration continuous AE activity (HILDCAAS): interplanetary Alfven wave trains

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Gonzalez, W.D.

    1987-01-01

    It is shown that high intensity (AE > 1,000 nT), long duration (T > 2 d) continuous auroral activity (HILDCAA) events are caused by outward (from the sun) propagating interplanetary Alfven wave trains. The Alfven waves are often (but not always) detected several days after major interplanetary events, such as shocks and solar wind density enhancements. Presumably magnetic reconnection between the southward components of the Alfven wave magnetic fields and magnetospheric fields is the mechanism for transfer of solar wind energy to the magnetosphere. If the stringent requirements for HILDCAA events are relaxed, there are many more AE events of this type. A brief inspection indicates that these are also related to interplanetary Alfvenic fluctuations. We therefore suggest that most auroral activity may be caused by reconnection associated with Alfven waves in the interplanetary medium. (author)

  17. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  18. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{sub ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  19. On the solar origin of interplanetary disturbances observed in the vicinity of the Earth

    Directory of Open Access Journals (Sweden)

    N. Vilmer

    Full Text Available The solar origin of 40 interplanetary disturbances observed in the vicinity of the Earth between January 1997 and June 1998 is investigated in this paper. Analysis starts with the establishment of a list of Interplanetary Mass Ejections or ICMEs (magnetic clouds, flux ropes and ejecta and of Interplanetary Shocks measured at WIND for the period for which we had previously investigated the coupling of the interplanetary medium with the terrestrial ionospheric response. A search for associated coronal mass ejections (CMEs observed by LASCO/SOHO is then performed, starting from an estimation of the transit time of the inter-planetary perturbation from the Sun to the Earth, assumed to be achieved at a constant speed (i.e. the speed measured at 1 AU. EIT/SOHO and Nançay Radioheliograph (NRH observations are also used as proxies in this identification for the cases when LASCO observations do not allow one to firmly establish the association. The last part of the analysis concerns the identification of the solar source of the CMEs, performed using a large set of solar observations from X-ray to radio wavelengths. In the present study, this association is based on a careful examination of many data sets (EIT, NRH and H images and not on the use of catalogs and of Solar Geophysical Data reports. An association between inter-planetary disturbances and LASCO/CMEs or proxies on the disk is found for 36 interplanetary events. For 32 events, the solar source of activity can also be identified. A large proportion of cases is found to be associated with a flare signature in an active region, not excluding of course the involvement of a filament. Conclusions are finally drawn on the propagation of the disturbances in the interplanetary medium, the preferential association of disturbances detected close to the Earth’s orbit with halos or wide CMEs and the location on the solar disk of solar sources of the interplanetary disturbances during that period

  20. Electrostatic Dust Detector with Improved Sensitivity

    International Nuclear Information System (INIS)

    Boyle, D.P.; Skinner, C.H.; Roquemore, A.L.

    2008-01-01

    Methods to measure the inventory of dust particles and to remove dust if it approaches safety limits will be required in next-step tokamaks such as ITER. An electrostatic dust detector, based on a fine grid of interlocking circuit traces, biased to 30 or 50 V, has been developed for the detection of dust on remote surfaces in air and vacuum environments. Gaining operational experience of dust detection on surfaces in tokamaks is important, however the level of dust generated in contemporary short-pulse tokamaks is comparatively low and high sensitivity is necessary to measure dust on a shot-by-shot basis. We report on modifications in the detection electronics that have increased the sensitivity of the electrostatic dust detector by a factor of up to 120, - a level suitable for measurements on contemporary tokamaks.

  1. The New Horizons and Hubble Space Telescope search for rings, dust, and debris in the Pluto-Charon system

    Science.gov (United States)

    Lauer, Tod R.; Throop, Henry B.; Showalter, Mark R.; Weaver, Harold A.; Stern, S. Alan; Spencer, John R.; Buie, Marc W.; Hamilton, Douglas P.; Porter, Simon B.; Verbiscer, Anne J.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly; New Horizons Science Team

    2018-02-01

    We conducted an extensive search for dust or debris rings in the Pluto-Charon system before, during, and after the New Horizons encounter in July 2015. Methodologies included attempting to detect features by back-scattered light during the approach to Pluto (phase angle α ∼ 15°), in situ detection of impacting particles, a search for stellar occultations near the time of closest approach, and by forward-scattered light imaging during departure (α ∼ 165°). An extensive search using the Hubble Space Telescope (HST) prior to the encounter also contributed to the final ring limits. No rings, debris, or dust features were observed, but our new detection limits provide a substantially improved picture of the environment throughout the Pluto-Charon system. Searches for rings in back-scattered light covered the range 35,000-250,000 km from the system barycenter, a zone that starts interior to the orbit of Styx, the innermost minor satellite, and extends out to four times the orbital radius of Hydra, the outermost known satellite. We obtained our firmest limits using data from the New Horizons LORRI camera in the inner half of this region. Our limits on the normal I/F of an unseen ring depends on the radial scale of the rings: 2 ×10-8 (3σ) for 1500 km wide rings, 1 ×10-8 for 6000 km rings, and 7 ×10-9 for 12,000 km rings. Beyond ∼ 100, 000 km from Pluto, HST observations limit normal I/F to ∼ 8 ×10-8 . Searches for dust features from forward-scattered light extended from the surface of Pluto to the Pluto-Charon Hill sphere (rHill = 6.4 ×106 km). No evidence for rings or dust clouds was detected to normal I/F limits of ∼ 8.9 ×10-7 on ∼ 104 km scales. Four stellar occulation observations also probed the space interior to Hydra, but again no dust or debris was detected. The Student Dust Counter detected one particle impact 3.6 × 106 km from Pluto, but this is consistent with the interplanetary space environment established during the cruise of New

  2. Cometary dust: the diversity of primitive refractory grains.

    Science.gov (United States)

    Wooden, D H; Ishii, H A; Zolensky, M E

    2017-07-13

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta ), as well as through remote sensing ( Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium-aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Authors.

  3. An Enhanced Satellite-Based Algorithm for Detecting and Tracking Dust Outbreaks by Means of SEVIRI Data

    Directory of Open Access Journals (Sweden)

    Francesco Marchese

    2017-05-01

    Full Text Available Dust outbreaks are meteorological phenomena of great interest for scientists and authorities (because of their impact on the climate, environment, and human activities, which may be detected, monitored, and characterized from space using different methods and procedures. Among the recent dust detection algorithms, the RSTDUST multi-temporal technique has provided good results in different geographic areas (e.g., Mediterranean basin; Arabian Peninsula, exhibiting a better performance than traditional split window methods, in spite of some limitations. In this study, we present an optimized configuration of this technique, which better exploits data provided by Spinning Enhanced Visible and Infrared Imager (SEVIRI aboard Meteosat Second Generation (MSG satellites to address those issues (e.g., sensitivity reduction over arid and semi-arid regions; dependence on some meteorological clouds. Three massive dust events affecting Europe and the Mediterranean basin in May 2008/2010 are analysed in this work, using information provided by some independent and well-established aerosol products to assess the achieved results. The study shows that the proposed algorithm, christened eRSTDUST (i.e., enhanced RSTDUST, which provides qualitative information about dust outbreaks, is capable of increasing the trade-off between reliability and sensitivity. The results encourage further experimentations of this method in other periods of the year, also exploiting data provided by different satellite sensors, for better evaluating the advantages arising from the use of this dust detection technique in operational scenarios.

  4. Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    Science.gov (United States)

    Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  5. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    International Nuclear Information System (INIS)

    Temmer, M.; Reiss, M. A.; Hofmeister, S. J.; Veronig, A. M.; Nikolic, L.

    2017-01-01

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind models (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s −1 . Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.

  6. Preconditioning of Interplanetary Space Due to Transient CME Disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Temmer, M.; Reiss, M. A.; Hofmeister, S. J.; Veronig, A. M. [Institute of Physics, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria); Nikolic, L., E-mail: manuela.temmer@uni-graz.at [Canadian Hazards Information Service, Natural Resources Canada, 2617 Anderson Road, Ottawa, Ontario K1A 0Y3 (Canada)

    2017-02-01

    Interplanetary space is characteristically structured mainly by high-speed solar wind streams emanating from coronal holes and transient disturbances such as coronal mass ejections (CMEs). While high-speed solar wind streams pose a continuous outflow, CMEs abruptly disrupt the rather steady structure, causing large deviations from the quiet solar wind conditions. For the first time, we give a quantification of the duration of disturbed conditions (preconditioning) for interplanetary space caused by CMEs. To this aim, we investigate the plasma speed component of the solar wind and the impact of in situ detected interplanetary CMEs (ICMEs), compared to different background solar wind models (ESWF, WSA, persistence model) for the time range 2011–2015. We quantify in terms of standard error measures the deviations between modeled background solar wind speed and observed solar wind speed. Using the mean absolute error, we obtain an average deviation for quiet solar activity within a range of 75.1–83.1 km s{sup −1}. Compared to this baseline level, periods within the ICME interval showed an increase of 18%–32% above the expected background, and the period of two days after the ICME displayed an increase of 9%–24%. We obtain a total duration of enhanced deviations over about three and up to six days after the ICME start, which is much longer than the average duration of an ICME disturbance itself (∼1.3 days), concluding that interplanetary space needs ∼2–5 days to recover from the impact of ICMEs. The obtained results have strong implications for studying CME propagation behavior and also for space weather forecasting.

  7. Meteorites and cosmic dust: Interstellar heritage and nebular processes in the early solar system

    Directory of Open Access Journals (Sweden)

    Engrand C.

    2012-01-01

    Full Text Available Small solar system bodies like asteroids and comets have escaped planetary accretion. They are the oldest and best preserved witnesses of the formation of the solar system. Samples of these celestial bodies fall on Earth as meteorites and interplanetary dust. The STARDUST mission also recently returned to Earth cometary dust from comet 81P/Wild 2, a Jupiter Family Comet (JFC. These samples provide unique insights on the physico-chemical conditions and early processes of the solar system. They also contain some minute amount of materials inherited from the local interstellar medium that have survived the accretion processes in the solar system.

  8. Size Dependence of Dust Distribution around the Earth Orbit

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Takahiro; Takeuchi, Taku [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551 (Japan); Kobayashi, Hiroshi; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro, E-mail: t.ueda@geo.titech.ac.jp [Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602 (Japan)

    2017-05-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  9. Size Dependence of Dust Distribution around the Earth Orbit

    International Nuclear Information System (INIS)

    Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro

    2017-01-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s max  = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  10. Herschel-ATLAS: Dust Temperature and Redshift Distribution of SPIRE and PACS Detected Sources Using Submillimetre Colours

    Science.gov (United States)

    Amblard, A.; Cooray, Asantha; Serra, P.; Temi, P.; Barton, E.; Negrello, M.; Auld, R.; Baes, M.; Baldry, I. K.; Bamford, S.; hide

    2010-01-01

    We present colour-colour diagrams of detected sources in the Herschel-ATLAS Science Demonstration Field from 100 to 500/microns using both PACS and SPIRE. We fit isothermal modified-blackbody spectral energy distribution (SED) models in order to extract the dust temperature of sources with counterparts in GAMA or SDSS with either a spectroscopic or a photometric redshift. For a subsample of 331 sources detected in at least three FIR bands with significance greater than 30 sigma, we find an average dust temperature of (28 plus or minus 8)K. For sources with no known redshifts, we populate the colour-colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters and compare to colours of observed sources to establish the redshift distribution of those samples. For another subsample of 1686 sources with fluxes above 35 mJy at 350 microns and detected at 250 and 500 microns with a significance greater than 3sigma, we find an average redshift of 2.2 plus or minus 0.6.

  11. Tracking a major interplanetary disturbance

    International Nuclear Information System (INIS)

    Tappin, S.J.; Hewish, A.; Gapper, G.R.

    1983-01-01

    The severe geomagnetic storm which occurred during 27-29 August 1978 was remarkable because it arrived unexpectedly and was not related to a solar flare or long-lived coronal hole. Observations on 900 celestial radio sources show that the storm was associated with a large-scale region causing enhanced interplanetary scintillation which enveloped the Earth at the same time. The disturbance was first detected on 26 August, when the outer boundary had reached a distance of about 0.8 a.u. from the Sun and it was tracked until 30 August. The enhancement was followed by a fast solar wind stream and its shape suggests that it was a compression zone caused by the birth of the stream. (author)

  12. Nonthermal Radiation Processes in Interplanetary Plasmas

    Science.gov (United States)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large

  13. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; hide

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  14. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  15. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z ∼ 2 DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Borys, C.; Desai, V.; Sheth, K.; Soifer, B. T.; Le Floc'h, E.; Melbourne, J.

    2009-01-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ∼3 x 10 8 M sun . In comparison to other dusty z ∼ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10 13 L sun versus 6 x 10 12 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ∼30 K) and lower inferred dust masses (3 x 10 8 M sun versus 3 x 10 9 M sun ). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ∼ 2 involves a submillimeter bright, cold-dust, and star

  16. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of ...

  17. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  18. Study of Travelling Interplanetary Phenomena Report

    Science.gov (United States)

    Dryer, Murray

    1987-09-01

    Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.

  19. Risk Assessment of Cassini Sun Sensor Integrity Due to Hypervelocity Impact of Saturn Dust Particles

    Science.gov (United States)

    Lee, Allan Y.

    2016-01-01

    A sophisticated interplanetary spacecraft, Cassini is one of the heaviest and most sophisticated interplanetary spacecraft humans have ever built and launched. Since achieving orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for first and second extended missions through September 2017. In late 2016, the Cassini spacecraft will begin a daring set of ballistic orbits that will hop the rings and dive between the upper atmosphere of Saturn and its innermost D-ring twenty-two times. The "dusty" environment of the inner D-ring region the spacecraft must fly through is hazardous because of the possible damage that dust particles, travelling at speeds as high as 31.4 km/s, can do to spacecraft hardware. During hazardous proximal ring-plane crossings, the Cassini mission operation team plans to point the high-gain antenna to the RAM vector in order to protect most of spacecraft instruments from the incoming energetic ring dust particles. However, this particular spacecraft attitude will expose two Sun sensors (that are mounted on the antenna dish) to the incoming dust particles. High-velocity impacts on the Sun sensor cover glass might penetrate the 2.54-mm glass cover of the Sun sensor. Even without penetration damage, craters created by these impacts on the surface of the cover glass will degrade the transmissibility of light through it. Apart from being directly impacted by the dust particles, the Sun sensors are also threatened by some fraction of ricochet ejecta that are produced by dust particle impacts on the large antenna dish (made of graphite fiber epoxy composite material). Finally, the spacecraft attitude control system must cope with disturbances due to both the translational and angular impulses imparted on the large antenna dish and the long magnetometer boom by the incoming high-velocity projectiles. Analyses performed to quantify the risks the Sun sensors must contend

  20. Development of A Microbalance System For Water and Dust Detection In Mars

    Science.gov (United States)

    Battaglia, R.; Palomba, E.; Palumbo, P.; Colangeli, L.

    The cycle of dust on Mars is a key component of current climate, is relevant in the dynamic and thermodynamic evolution of atmosphere, and is directly involved in the water cloud formation. Furthermore, dust suspended in the atmosphere is a major driver of atmospheric motions at all scales and is suspected of having had great in- fluence on the morphological evolution of the Martian surface. The dust dispersed in the atmosphere thermally influences the behaviour of the lower atmosphere. Most of information on the nature of small particle on Mars is derived from Viking Lander data and Mars Pathfinder observations, even if the Viking orbiter IRTM instrument also was able to provide estimates of particle size distribution of Martian soil. On the other hand water is important as indicator of global climate changes on long time- scale. Seasonal variations in the column abundance are due to the combined effect of exchange of H2O between atmosphere and water reservoirs (e.g. polar caps, re- golith) and atmospheric transport. The Viking orbiters collected accurate information during the period 1976-1979 and much of what we know about water circulation in the Martian atmosphere derives from the observations by the Mars Atmospheric Wa- ter Detection experiments (MAWD). Despite the low absolute water content (0,03%), relative humidity can exceed 100%, leading to the formation of near surface fog and condensation clouds, thanks to low typical Mars temperatures. The typical value of 6.1 mbar (coincident with the triple point in the water phase diagram) of the surficial pressure, makes rather difficult the persistence of liquid water at the surface of Mars. This means that the water is present exclusively in a gaseous and (when the conditions are favourable) solid state. In this context, it is extremely important to study the role of the different contributions to the production of atmospheric water and to the forma- tion of water ice clouds by the three main reservoirs, i

  1. The Evolution of the Surface of Symmetry of the Interplanetary Dust from 24° to 5° Elongation

    Science.gov (United States)

    Stenborg, Guillermo; Howard, Russell A.

    2017-10-01

    The white-light STEREO/SECCHI images include light scattered by dust in orbit about the Sun (the F-corona). We analyzed the evolution of the symmetry axis of the F-corona between 2007 and 2012 in the elongation range covered by the STEREO-A/HI-1 instrument (4°-24° elongation) to characterize the plane of symmetry of the zodiacal dust cloud. The symmetry axes both above and below the ecliptic plane were derived separately without assuming any particular functional form. No noticeable time dependence was observed. However, we did find an evolution with elongation of both the inclination I and the ascending node {{{Ω }}}A of the inferred plane of symmetry. Both parameters appeared fairly constant in the outer half of the elongation range studied (I=˜ 3\\buildrel{\\circ}\\over{.} 7,{{{Ω }}}A=˜ 83^\\circ ; values close to those of Venus’s orbit). Then, they start to evolve, becoming I=˜ 6^\\circ (I.e., a trend toward the solar equatorial plane) and {{{Ω }}}A=˜ 57^\\circ at about 5° elongation. This variation indicates that the zodiacal dust cloud exhibits a warped plane of symmetry, with an estimated center of symmetry at about 0.5 {R}⊙ from the Sun’s center on the side of the heliosphere containing Jupiter. We found a marginal difference between the inclination of the axes below and above the ecliptic. This is suggestive of an increased dust density distribution at certain fixed longitudes, which could be explained by the dust deposition of Kreutz Sun-grazing comets. We conjecture that the circumsolar dust is mainly affected by gravitational forces, other forces becoming dominant only where the more rapid changes occur.

  2. Multifrequency techniques for studying interplanetary scintillations

    International Nuclear Information System (INIS)

    Woo, R.

    1975-01-01

    Rytov's approximation or the method of smooth perturbations is utilized to derive the temporal frequency spectra of the amplitude and phase fluctuations of multifrequency plane and spherical waves propagating in the interplanetary medium and solar corona. It is shown that multifrequency observations of interplanetary scintillations using either compact radio stars or spacecraft radio signals are desirable because the correlation of the multifrequency waves yields additional independent measurements of the solar wind and turbulence. Measurements of phase fluctuations are also desirable because, unlike amplitude fluctuations, they provide information on the full range of scale sizes for the electron density fluctuations. It is shown that a coherent dual-frequency radio system is particularly useful in making such measurements. In addition to providing a means for interpreting observations of multifrequency interplanetary scintillations, the analysis is also essential for estimating the effects of solar corona turbulence on the communications and navigation of a spacecraft whose line-of-sight path passes close to the Sun

  3. Quantitative detection of settled dust over green canopy

    Science.gov (United States)

    Brook, Anna

    2016-04-01

    NMF (SS-NMF), 6) Alternating Least-Square (ALS), and 2) Lin's Projected Gradient (LPG). The performance is evaluated on real hyperspectral imagery data via detailed experimental assessment. The study showed that in certain compression tasks content-adapted sparse representation is provided by state-of-the-art solutions. The NMF algorithm estimates endmembers that are used to remove spurious information. If computationally feasible, it should include interaction terms to make the model more flexible. The optimal NMF algorithms, such as ALS and LPG, are assumed to be the simplest methods that achieve the minimum error on the test set. In summary, this work shows that sediment dust can be assessed using airborne HSI data, making it a potentially powerful tool for environmental studies. References Keshava, N., Mustard, J. (2002). Spectral unmixing. IEEE Signal Process. Mag., 19(1), 44-57. Chudnovsky, A., & Ben-Dor, E. (2009). Reflectance spectroscopy as a tool for settled dust monitoring in office environment. International Journal of Environment and Waste Management, 4(1), 32-49. Brook, A. (2014). Quantitative Detection of Settled dust over Green Canopy using Sparse Unmixing of Airborne Hyperspectral Data. IEEE-Whispers 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2014, Switzerland, 4-8. Keshava, N., Mustard, J. (2002). Spectral unmixing. IEEE Signal Process. Mag., 19(1), 44-57. Bioucas-Dias et al. (2012). Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354 -379.

  4. Detection of Dust Condensations in the Orion Bar Photon-dominated Region

    Science.gov (United States)

    Qiu, Keping; Xie, Zeqiang; Zhang, Qizhou

    2018-03-01

    We report Submillimeter Array dust continuum and molecular spectral line observations toward the Orion Bar photon-dominated region (PDR). The 1.2 mm continuum map reveals, for the first time, a total of nine compact (r < 0.01 pc) dust condensations located within a distance of ∼0.03 pc from the dissociation front of the PDR. Part of the dust condensations are also seen in spectral line emissions of CS (5–4) and H2CS (71,7–61,6), though the CS map also reveals dense gas further away from the dissociation front. We also detect compact emissions in H2CS (60,6–50,5), (62,4–52,3) and C34S, C33S (4–3) toward bright dust condensations. The line ratio of H2CS (60,6–50,5)/(62,4–52,3) suggests a temperature of 73 ± 58 K. A nonthermal velocity dispersion of ∼0.25–0.50 km s‑1 is derived from the high spectral resolution C34S data and indicates a subsonic to transonic turbulence in the condensations. The masses of the condensations are estimated from the dust emission, and range from 0.03 to 0.3 M ⊙, all significantly lower than any critical mass that is required for self-gravity to play a crucial role. Thus the condensations are not gravitationally bound, and could not collapse to form stars. In cooperating with recent high-resolution observations of the compressed surface layers of the molecular cloud in the Bar, we speculate that the condensations are produced as a high-pressure wave induced by the expansion of the H II region compresses and enters the cloud. A velocity gradient along a direction perpendicular to the major axis of the Bar is seen in H2CS (71,7–61,6), and is consistent with the scenario that the molecular gas behind the dissociation front is being compressed.

  5. International Launch Vehicle Selection for Interplanetary Travel

    Science.gov (United States)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  6. Attempt to detect diamagnetic anisotropy of dust-sized crystal orientated to investigate the origin of interstellar dust alignment

    Science.gov (United States)

    Takeuchi, T.; Hisayoshi, K.; Uyeda, C.

    2013-03-01

    Diamagnetic anisotropy Δ χ dia was detected on a submillimeter-sized calcite crystal by observing the rotational oscillation of its magnetically stable axis with respect to the magnetic field direction. The crystal was released in an area of microgravity generated by a 1.5-m-long drop shaft. When the oscillations are observable, the present method can measure Δ χ dia of crystal grains irrespective of how small they are without measuring the sample mass. In conventional Δ χ measurements, the background signal from the sample holder and the difficulty in measuring the sample mass prevent measurement of Δ χ dia for small samples. The present technique of observing Δ χ dia of a submillimeter-sized single crystal is a step toward realizing Δ χ dia measurements of micron-sized grains. The Δ χ dia values of single micron-sized grains can be used to assess the validity of a dust alignment model based on magnetic torque that originates from the Δ χ dia of individual dust particles.

  7. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    International Nuclear Information System (INIS)

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  8. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  9. Intermittent character of interplanetary magnetic field fluctuations

    International Nuclear Information System (INIS)

    Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca

    2007-01-01

    Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field

  10. Comet Dust: The Diversity of "Primitive" Particles and Implications

    Science.gov (United States)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  11. Jovian electron bursts: Correlation with the interplanetary field direction and hydromagnetic waves

    International Nuclear Information System (INIS)

    Smith, E.J.; Tsurutani, B.T.; Chenette, D.L.; Conlon, T.F.; Simpson, J.A.

    1976-01-01

    The bursts of relativistic electrons detected on Pioneer 10 upstream from Jupiter and within 400r/subj/ of the planet have been found to be correlated with the interplanetary magnetic field. In the three examples upon which this study is based, during the month prior to the Pioneer 10 encounter, electrons with energies between 3 and 6 MeV escaping from Jupiter's magnetosphere were observed only when the interplanetary magnetic field was along the Jupiter-spacecraft line. In addition, large-amplitude interplanetary waves with characteristic periods of 10 min were observed and found to be well correlated with intervals during which the field was along the Jupiter-spacecraft line. Abrupt changes in the field away from the preferred direction caused equally abrupt terminations of the waves with an accompanying reduction in the electron flux. These results are consistent with propagation of the electrons from Jupiter to Pioneer along, rather than across, the magnetic field lines. The direction of the interplanetary magnetic field is apparently not affected by the electron bursts or by other particles from Jupiter. The average Parker spiral direction is clear with no enhancement in the Jupiter-spacecraft direction. Two alternative possibilities are considered for the origin of the waves. If they were generated near Jupiter, they would have to propagate to the spacecraft in the whistler mode. The expected attenuation of these waves over distances of several hundred r/subj/ an their long travel times make this explanation unattractive. Alternatively, hydromagnetic wave generation by Jovian charged particles, presumably the relativistic electrons themselves, as they travel upstream, appears to be an attractive explanation

  12. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  13. Variations of interplanetary parameters and cosmic-ray intensities

    International Nuclear Information System (INIS)

    Geranios, A.

    1980-01-01

    Observations of cosmic ray intensity depressions by earth bound neutron monitors and measurements of interplanetary parameter's variations aboard geocentric satellites in the period January 1972-July 1974 are analysed and grouped according to their correlation among them. From this analysis of about 30 cases it came out that the majority of the depressions correlates with the average propagation speed of interplanetary shocks as well as with the amplitude of the interplanetary magnetic field after the eruption of a solar flare. About one fourth of the events correlates with corotating fast solar wind streams. As the recovery time of the shock-related depressions depends strongly on the heliographic longitude of the causitive solar flare, it seems that the cosmic ray modulation region has a corotative-like feature. (Auth.)

  14. Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions

    Science.gov (United States)

    Escamilla-Roa, Elizabeth; Martin-Torres, Javier; Sainz-Díaz, C. Ignacio

    2018-04-01

    Methane has been detected on all planets of our Solar System, and most of the larger moons, as well as in dwarf-planets like Pluto and Eric. The presence of this molecule in rocky planets is very interesting because its presence in the Earth's atmosphere is mainly related to biotic processes. Space instrumentation in orbiters around Mars has detected olivine on the Martian soil and dust. On the other hand the measurements of methane from the Curiosity rover report detection of background levels of atmospheric methane with abundance that is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, elevated levels of methane about this background have been observed implying that Mars is episodically producing methane from an additional unknown source, making the reasons of these temporal fluctuations of methane a hot topic in planetary research. The goal of this study is to investigate at atomic level the interactions during the adsorption processes of methane and other Mars atmospheric species (CO2, H2O) on forsterite surfaces, through electronic structure calculations based on the Density Functional Theory (DFT). We propose two models to simulate the interaction of adsorbates with the surface of dust mineral, such as binary mixtures (5CH4+5H2O/5CH4+5CO2) and as a semi-clathrate adsorption. We have obtained interesting results of the adsorption process in the mixture 5CH4+5CO2. Associative and dissociative adsorptions were observed for water and CO2 molecules. The methane molecules were only trapped and held by water or CO2 molecules. In the dipolar surface, the adsorption of CO2 molecules produced new species: one CO from a CO2 dissociation, and, two CO2 molecules chemisorbed to mineral surface forming in one case a carbonate group. Our results suggest that CO2 has a strong interaction with the mineral surface when methane is present. These results could be confirmed after the

  15. Education and Public Outreach for Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    Science.gov (United States)

    Mendez, Bryan J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA’s Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  16. Sector boundary distortion in the interplanetary medium

    International Nuclear Information System (INIS)

    Suess, S.T.; Feynman, J.

    1977-01-01

    We address the theoretical problem of the effect of a solar wind meridional velocity gradient on the orientation, or tipping, of a line embedded within the interplanetary plasma. We find that rotations of from 30degree to 75degree, between 1.5 solar radii and I AU, are produced when observed values for the solar wind velocity and its meridional gradient are used. This is not a small effect, nor is it difficult to calculate: it is a natural consequence of any meridional velocity gradient in the interplanetary medium. In relating this result to observed sector boundaries we note that the latitude dependence of the width of interplanetary magnetic sectors (dominant polarity or Rosenberg-Coleman effect) implies that sector boundaries at I AU are generally inclined at an angle of from 10degree to 20degree to the solar equatorial plane. Conversely, studies of photospheric magnetic fields have led to the conclusion that sector boundaries near the sun are, on the average, at large angles (approx.90degree) to the solar equatorial plane. If the dominant polarity effect were to be produced by rotation in the interplanetary medium, the sign of the solar wind meridional velocity gradient must not change at the equator, but the gradient does have to change sign for +/- boundary crossings in comparison to -/+ boundary crossings

  17. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    Science.gov (United States)

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  18. Observations of energetic particles in the near and far interplanetary medium

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1979-01-01

    Recent experimental results suggest that acceleration of particles to energies as high as 30 MeV/nucleon is commonplace in the interplanetary medium beyond several AU, and that most of the > or approx. =10 MeV/nucleon particles observed near earth, especially at solar minimum, are predominantly interplanetary in origin. We review experimental observations of the anomalous ''cosmic-ray'' component and of corotating particle streams with an emphasis on the composition of these interplanetary particles. These direct observations, although still rudimentary, are already providing constraints necessary for developing realistic theoretical descriptions of interplanetary acceleration mechanisms and should thus help us to understand similar processes in other astrophysical objects

  19. An investigation of Martian and terrestrial dust devils

    Science.gov (United States)

    Ringrose, Timothy John

    2004-10-01

    It is the purpose of this work to provide an insight into the theoretical and practical dynamics of dust devils and how they are detected remotely from orbit or in situ on planetary surfaces. There is particular interest in the detection of convective vortices on Mars; this has been driven by involvement in the development of the Beagle 2 Environmental Sensor Suite. This suite of sensors is essentially a martian weather station and will be the first planetary lander experiment specifically looking for the presence of dust devils on Mars. Dust devils are characterised by their visible dusty core and intense rotation. The physics of particle motion, including dust lofting and the rotational dynamics within convective vortices are explained and modelled. This modelling has helped in identifying dust devils in meteorological data from both terrestrial and martian investigations. An automated technique for dust devil detection using meteorological data has been developed. This technique searches data looking for the specific vortex signature as well as detecting other transient events. This method has been tested on both terrestrial and martian data with surprising results. 38 possible convective vortices were detected in the first 60 sols of the Viking Lander 2 meteorological data. Tests were also carried out on data from a terrestrial dust devil campaign, which provided conclusive evidence from visual observations of the reliability of this technique. A considerable amount of this work does focus on terrestrial vortices. This is to aid in the understanding of dust devils, specifically how, why and when they form. Both laboratory and terrestrial fieldwork is investigated, providing useful data on the general structure of dust devils.

  20. Dust evolution in protoplanetary disks

    OpenAIRE

    Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume

    2007-01-01

    6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...

  1. The physical and compositional properties of dust: what do we really know?

    Science.gov (United States)

    Jones, A.

    Many things in current interstellar dust studies are taken as well understood givens by much of the community. For example, it is widely held that interstellar dust is made up of only three components, i.e., “astronomical silicates”, graphite and polycyclic aromatic hydrocarbons, and that our understanding of these is now complete and sufficient enough to interpret astronomical observations of dust in galaxies. To zeroth order this is a reasonable approximation. However, while these “three pillars” of dust modelling have been useful in advancing our understanding over the last few decades, it is now apparent that they are insufficient to explain the observed evolution of the dust properties from one region to another. Thus, it is time to abandon the “three pillars” approach and to seek more physically-realistic interstellar dust analogues. The analysis of the pre-solar grains extracted from meteorites, interplanetary dust particles and from the Stardust mission, and the interpretation of x-ray scattering and absorption observations, supports the view that our current view of the interstellar dust composition(s) is indeed too naïve. The aim of this review is to point out where our current views are rather secure and, perhaps more importantly, where they are far from secure and we must re-think our ideas. To this aim ten aspects of interstellar dust will be scrutinised and re-evaluated in terms of their validity within the current observational, experimental, modelling and theoretical constraints. It is concluded from this analysis that we really do need to re-assess many of the fundamental assumptions relating to what we think we really do ‘know’ about interstellar dust. In particular, it is clear that unravelling the nature dust evolution in the interstellar medium is perhaps the key to significantly advancing our current understanding of interstellar dust. For example, the dust in the diffuse interstellar medium, molecular clouds, photo

  2. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  3. Interplanetary medium and geomagnetic activity after compact flare triplets 1966-1981

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Mikerina, N.V.; Pavlov, P.P.

    1986-01-01

    The interplanetary medium state and geomagnetic activity when the Earth is getting into this or that interplanetary disturbance zone after flare triplets, i.e. trains of three solar flares out of an active zone, are considered. There are the following conditionally differentiated zones in the interplanetary disturbance configuration: a forbidden (F), a perturbed (P) and a normal (N) zones of interplanetary disturbance. The interplanetary medium disturbances and geomagnetic activity after trains of three flares of class 2 and higher out of one of active zones depend on the following factors: the magnetic axis orientation of a bipolar group of active zone spots appeared after flares, time interval between the first and second flares in the train, flare intensity. The conditions of maximum disturbance occurrence pointed out. The interplanetary and geomagnetic disturbance intensity in the N zone is higher than that of the F and P zones (i.e. in the proximity of the great circle planes passing through the flares parallel with tha active zone magnetic axes), and it is higher after quasicompact rather than after compact triplets (i.e. it considerably grows when passing over the critical value of the time interval betwenn the first and second triplet flares, τ 12 =16 h)

  4. SOFIA OBSERVATIONS OF SN 2010jl: ANOTHER NON-DETECTION OF THE 9.7 μm SILICATE DUST FEATURE

    International Nuclear Information System (INIS)

    Williams, Brian J.; Fox, Ori D.

    2015-01-01

    We present photometric observations from the Stratospheric Observatory for Infrared Astronomy (SOFIA) at 11.1 μm of the Type IIn supernova (SN IIn) 2010jl. The SN is undetected by SOFIA, but the upper limits obtained, combined with new and archival detections from Spitzer at 3.6 and 4.5 μm, allow us to characterize the composition of the dust present. Dust in other SN IIn has been shown in previous works to reside in a circumstellar shell of material ejected by the progenitor system in the few millenia prior to explosion. Our model fits show that the dust in the system shows no evidence for the strong, ubiquitous 9.7 μm feature from silicate dust, suggesting the presence of carbonaceous grains. The observations are best fit with 0.01–0.05 M ⊙ of carbonaceous dust radiating at a temperature of ∼550–620 K. The dust composition may reveal clues concerning the nature of the progenitor system, which remains ambiguous for this subclass. Most of the single star progenitor systems proposed for SNe IIn, such as luminous blue variables, red supergiants, yellow hypergiants, and B[e] stars, all clearly show silicate dust in their pre-SN outflows. However, this post-SN result is consistent with the small sample of SNe IIn with mid-IR observations, none of which show signs of emission from silicate dust in their IR spectra

  5. SOFIA OBSERVATIONS OF SN 2010jl: ANOTHER NON-DETECTION OF THE 9.7 μm SILICATE DUST FEATURE

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Brian J. [CRESST and X-ray Astrophysics Laboratory, NASA/GSFC, Code 662, 8800 Greenbelt Road, Greenbelt, MD (United States); Fox, Ori D., E-mail: brian.j.williams@nasa.gov [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2015-07-20

    We present photometric observations from the Stratospheric Observatory for Infrared Astronomy (SOFIA) at 11.1 μm of the Type IIn supernova (SN IIn) 2010jl. The SN is undetected by SOFIA, but the upper limits obtained, combined with new and archival detections from Spitzer at 3.6 and 4.5 μm, allow us to characterize the composition of the dust present. Dust in other SN IIn has been shown in previous works to reside in a circumstellar shell of material ejected by the progenitor system in the few millenia prior to explosion. Our model fits show that the dust in the system shows no evidence for the strong, ubiquitous 9.7 μm feature from silicate dust, suggesting the presence of carbonaceous grains. The observations are best fit with 0.01–0.05 M{sub ⊙} of carbonaceous dust radiating at a temperature of ∼550–620 K. The dust composition may reveal clues concerning the nature of the progenitor system, which remains ambiguous for this subclass. Most of the single star progenitor systems proposed for SNe IIn, such as luminous blue variables, red supergiants, yellow hypergiants, and B[e] stars, all clearly show silicate dust in their pre-SN outflows. However, this post-SN result is consistent with the small sample of SNe IIn with mid-IR observations, none of which show signs of emission from silicate dust in their IR spectra.

  6. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  7. VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H. [Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Fauth, A. C.; Kemp, E.; Manganote, E. J. T. [Instituto de Fisica Gleb Wathagin, Universidade Estadual de Campinas, Campinas, SP (Brazil); Leigui de Oliveira, M. A. [Centro de Ciencias Naturais e Humanas da Universidade Federal do ABC, Santo Andre, SP (Brazil); Miranda, P.; Ticona, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA, La Paz Bolivia (United States)

    2012-11-10

    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in

  8. Mars methane detection and variability at Gale crater

    Science.gov (United States)

    Webster, Christopher R.; Mahaffy, Paul R.; Atreya, Sushil K.; Flesch, Gregory J.; Mischna, Michael A.; Meslin, Pierre-Yves; Farley, Kenneth A.; Conrad, Pamela G.; Christensen, Lance E.; Pavlov, Alexander A.; Martín-Torres, Javier; Zorzano, María-Paz; McConnochie, Timothy H.; Owen, Tobias; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Steele, Andrew; Malespin, Charles A.; Archer, P. Douglas; Sutter, Brad; Coll, Patrice; Freissinet, Caroline; McKay, Christopher P.; Moores, John E.; Schwenzer, Susanne P.; Bridges, John C.; Navarro-Gonzalez, Rafael; Gellert, Ralf; Lemmon, Mark T.; MSL Science Team; Abbey, William; Achilles, Cherie; Agard, Christophe; Alexandre Alves Verdasca, José; Anderson, Dana; Anderson, Robert C.; Anderson, Ryan B.; Appel, Jan Kristoffer; Archer, Paul Douglas; Arevalo, Ricardo; Armiens-Aparicio, Carlos; Arvidson, Raymond; Atlaskin, Evgeny; Atreya, Andrew Sushil; Azeez, Aubrey Sherif; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Battalio, Michael; Beach, Michael; Bean, Keri; Beck, Pierre; Becker, Richard; Beegle, Luther; Behar, Alberto; Belgacem, Inès; Bell, James F., III; Bender, Steven; Benna, Mehdi; Bentz, Jennifer; Berger, Jeffrey; Berger, Thomas; Berlanga, Genesis; Berman, Daniel; Bish, David; Blacksberg, Jordana; Blake, David F.; José Blanco, Juan; Blaney, Ávalos Diana; Blank, Jennifer; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Bonnet, Jean-Yves; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, William; Braswell, Shaneen; Breves, Elly; Bridges, John C.; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Burton, John; Buz, Jennifer; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John L.; Cantor, Bruce; Caplinger, Michael; Clifton, Carey, Jr.; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Cavanagh, Patrick; Charpentier, Antoine; Chipera, Steve; Choi, David; Christensen, Lance; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Coman, Ecaterina I.; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy A.; Cropper, Kevin; Cros, Alain; Cucinotta, Francis; d'Uston, Claude; Davis, Scott; Day, Mackenzie; Daydou, Yves; DeFlores, Lauren; Dehouck, Erwin; Delapp, Dorothea; DeMarines, Julia; Dequaire, Tristan; Des Marais, David; Desrousseaux, Roch; Dietrich, William; Dingler, Robert; Domagal-Goldman, Shawn; Donny, Christophe; Downs, Robert; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason P.; Dyar, M. Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher S.; Edwards, Laurence; Edwards, Peter; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jennifer; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Fairén, Alberto; Farley, Kenneth; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Fendrich, Kim; Fischer, Erik; Fisk, Martin; Fitzgibbon, Mike; Flesch, Gregory; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fox, Valerie; Fraeman, Abigail; Francis, Raymond; François, Pascaline; Franz, Heather; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Getty, Stephanie; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Graham, Heather; Grant, John; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Victoria; Hand, Kevin; Hardgrove, Craig; Hardy, Keian; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alexander; Herkenhoff, Kenneth; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Stephen; Israël, Guy; Jackson, Ryan Steele; Jacob, Samantha; Jakosky, Bruce; Jean-Rigaud, Laurent; Jensen, Elsa; Kløvgaard Jensen, Jaqueline; Johnson, Jeffrey R.; Johnson, Micah; Johnstone, Stephen; Jones, Andrea; Jones, John H.; Joseph, Jonathan; Joulin, Mélissa; Jun, Insoo; Kah, Linda C.; Kahanpää, Henrik; Kahre, Melinda; Kaplan, Hannah; Karpushkina, Natalya; Kashyap, Srishti; Kauhanen, Janne; Keely, Leslie; Kelley, Simon; Kempe, Fabian; Kemppinen, Osku; Kennedy, Megan R.; Keymeulen, Didier; Kharytonov, Alexander; Kim, Myung-Hee; Kinch, Kjartan; King, Penelope; Kirk, Randolph; Kirkland, Laurel; Kloos, Jacob; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kotrc, Benjamin; Kozyrev, Alexander; Krau, Johannes; Krezoski, ß. Gillian; Kronyak, Rachel; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean-Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lapôtre, Mathieu; Larif, Marie-France; Lasue, Jérémie; Le Deit, Laetitia; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lee, Rebekka; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette, Alain; Lepore, Malvitte Kate; Leshin, Laurie; Léveillé, Richard; Lewin, Éric; Lewis, Kevin; Li, Shuai; Lichtenberg, Kimberly; Lipkaman, Leslie; Lisov, Denis; Little, Cynthia; Litvak, Maxim; Liu, Lu; Lohf, Henning; Lorigny, Eric; Lugmair, Günter; Lundberg, Angela; Lyness, Eric; Madsen, Morten Bo; Magee, Angela; Mahaffy, Paul; Maki, Justin; Mäkinen, Teemu; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gerard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, David K.; Martin, Mildred; Martin, Peter; Martínez Martínez, Germán; Martínez-Frías, Jesús; Martín-Sauceda, Jaime; Martín-Soler, Martín Javier; Martín-Torres, F. Javier; Mason, Emily; Matthews, Tristan; Matthiä, Daniel; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McBride, Marie; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLain, Hannah; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Mendaza de Cal, Teresa; Merikallio, Sini; Merritt, Sean; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Milkovich, Sarah; Millan, Maëva; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitchell, Julie; Mitrofanov, Igor; Moersch, Jeffrey; Mokrousov, Maxim; Molina, Antonio; Moore, Jurado Casey; Moores, John E.; Mora-Sotomayor, Luis; Moreno, Gines; Morookian, John Michael; Morris, Richard V.; Morrison, Shaunna; Mousset, Valérie; Mrigakshi, Alankrita; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Nastan, Abbey; Navarro López, Sara; Navarro González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nikitczuk, Matthew; Niles, Paul; Nixon, Brian; Noblet, Audrey; Noe, Eldar; Nolan, Dobrea Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; Orthen, Tobias; Owen, Tobias; Ozanne, Marie; de Pablo Hernández, Miguel Ángel; Pagel, Hannah; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Parra, Alex; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alexander; Pavri, Betina; Peinado-González, Verónica; Pepin, Robert; Peret, Laurent; Pérez, René; Perrett, Glynis; Peterson, Joseph; Pilorget, Cedric; Pinet, Patrick; Pinnick, Veronica; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Rapin, William; Raulin, François; Ravine, Michael; Reitz, Günther; Ren, Jun; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Ritter, Birgit; Rivera-Hernández, Frances; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; José Romeral-Planelló, Julio; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Said, David; Salamon, Andrew; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne P.; Sciascia Borlina, Cauê; Scodary, Anthony; Sebastián Martínez, Eduardo; Sengstacken, Aaron; Shechet, Jennifer Griffes; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, John J.; Sirven, Jean-Baptiste; Slavney, Susan; Sletten, Ronald; Smith, Michael D.; Sobron Sanchez, Pablo; Spanovich, Nicole; Spray, John; Spring, Justin; Squyres, Steven; Stack, Katie; Stalport, Fabien; Starr, Richard; Stein, Andrew Steele Thomas; Stern, Jennifer; Stewart, Noel; Stewart, Wayne; Stipp, Svane Susan Louise; Stoiber, Kevin; Stolper, Edward; Sucharski, Robert; Sullivan, Robert; Summons, Roger; Sumner, Dawn Y.; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge Loes; Thomas, Alicia; Thomas, Peter; Thompson, Lucy; Thuillier, Franck; Thulliez, Emmanual; Tokar, Robert; Toplis, Michael; de la Torre Juárez, Manuel; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Ullán-Nieto, Aurora; Urqui-O'Callaghan, Roser; Valentín-Serrano, Patricia; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin R.; Vasconcelos, Paulo; de Vicente-Retortillo Rubalcaba, Álvaro; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Watkins, Jessica; Webster, Christopher R.; Weigle, Gerald; Wellington, Danika; Westall, Frances; Wiens, Roger; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B.; Williford, Kenneth; Wilson, Michael A.; Wilson, Sharon A.; Wimmer-Schweingruber, Robert; Wolff, Michael; Wong, Michael; Wray, James; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2015-01-01

    Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source.

  9. Techniques For Near-Earth Interplanetary Matter Detection And Characterisation From Optical Ground-Based Observatories

    Science.gov (United States)

    Ocaña, Francisco

    2017-05-01

    PhD Thesis defended the 5th June 2017. Universidad Complutense de Madrid.This dissertation undertakes the research of the interplanetary matter near the Earth using two different observational approaches.The first one is based on the detection of the sunlight reflected by the bodies. The detection and characterisation of these nearby population require networks of medium-sized telescopes to survey and track them. We design a robotic system (the TBT telescopes) for the European Space Agency as a prototype for a future network. The first unit is already installed in Spain and we present the results of the commissioning. Additionally we evaluate the expected performance of such an instrument using a simulation with a synthetic population. We consider that the system designed is a powerful instrument for nearby asteroid discovery and tracking. It is based on commercial components, and therefore ready for a scalable implementation in a global network.Meanwhile the bodies smaller than asteroids are observed using the atmosphere as a detector. When these particles collide with the atmospheric molecules they are heated, ablated, sublimated, and finally light is emitted by these hot vapours, what we call meteors. We conduct the investigation of these meteors to study the meteoroids. In particular we address two different topics: On one hand we explore the size/mass frequency distribution of meteoroids using flux determination when the collide into the atmosphere. We develop a method to determine this flux using video observations of meteors and analyse the properties of meteors as an optical proxy to meteoroids in order to maximise the detection. It yields three ground-based observational solutions that we transform into instrumental designs. First we design and develop a meteor all-sky detection station for Observatorio UCM and use the Draconids 2011 campaign as a showcase for the flux determination, with successful results. Then we investigate the observation of meteors

  10. Positive and negative sudden impulses caused by fast forward and reverse interplanetary shocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrioli, Vania Fatima; Savian, Jairo Francisco, E-mail: vaniafatima@gmail.com, E-mail: savian@lacesm.ufsm.br [Space Science Laboratory of Santa Maria - LACESM/CT - UFSM, Universidade Federal de Santa Maria - UFSM, Centro Tecnologico, Santa Maria, RS (Brazil); Echer, Ezequiel, E-mail: eecher@dge.inpe.br [National Institute for Space Research - INPE - MCT, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge, E-mail: njschuch@lacesm.ufsm.br [Southern Regional Space Research Center - CRSPE/INPE - MCT, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS (Brazil)

    2007-07-01

    Fast forward interplanetary shocks (FFS) are characterized by positive jump in all interplanetary plasma parameters (solar wind speed, temperature and density) and interplanetary magnetic field. However the fast reverse interplanetary shocks (FRS) are characterized by negative jump in all mentioned parameters except solar wind speed. Observations show that FFS cause positive sudden impulses (SI) while FRS cause negative SI in the H-component of the geomagnetic field. In this work we investigate the SI caused by interplanetary shocks. We use the observed plasma parameters, upstream and downstream, to calculate the variation of dynamic pressure. We observe that the SI amplitude is larger for positive SI than for negative ones, as a consequence of the fact that FFS have larger dynamic pressure variations as compared to FRS. (author)

  11. Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network.

    Science.gov (United States)

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Croce, R P; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; DeBra, D; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Gushwa, K; Gustafson, E K; Gustafson, R; Ha, J; Hall, E D; Hamilton, W; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Holt, K; Hopkins, P; Horrom, T; Hoske, D; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Ingram, D R; Inta, R; Islas, G; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, S; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, D Nanda; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lam, P K; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, P J; Leonardi, M; Leong, J R; Leonor, I; Le Roux, A; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lopez, E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Ma, Y; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Omar, S; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Recchia, S; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Reula, O; Rhoades, E; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S B; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sankar, S; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schilman, M; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tao, J; Tarabrin, S P; Taylor, R; Tellez, G; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Tuennermann, H; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wolovick, N; Worden, J; Wu, Y; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, H; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Aptekar, R L; Atteia, J L; Cline, T; Connaughton, V; Frederiks, D D; Golenetskii, S V; Hurley, K; Krimm, H A; Marisaldi, M; Pal'shin, V D; Palmer, D; Svinkin, D S; Terada, Y; von Kienlin, A

    2014-07-04

    We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  12. Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by the Interplanetary Network

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackbum, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.; hide

    2014-01-01

    We present the results of a search for gravitational waves associated with 223 gamma ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(exp-2) solar mass c(exp 2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

  13. THE INTERPLANETARY NETWORK RESPONSE TO LIGO GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D. [Ioffe Physical Technical Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Boynton, W. [University of Arizona, Department of Planetary Sciences, Tucson, AZ 85721 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A.; Kienlin, A. von; Zhang, X. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching, D-85748 Germany (Germany); Connaughton, V.; Meegan, C. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Cline, T.; Gehrels, N., E-mail: khurley@ssl.berkeley.edu [NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States)

    2016-09-20

    We have performed a blind search for a gamma-ray transient of arbitrary duration and energy spectrum around the time of the LIGO gravitational-wave event GW150914 with the six-spacecraft interplanetary network (IPN). Four gamma-ray bursts were detected between 30 hr prior to the event and 6.1 hr after it, but none could convincingly be associated with GW150914. No other transients were detected down to limiting 15–150 keV fluences of roughly 5 ×10{sup −8}–5 × 10{sup −7} erg cm{sup −2}. We discuss the search strategies and temporal coverage of the IPN on the day of the event and compare the spatial coverage to the region where GW150914 originated. We also report the negative result of a targeted search for the Fermi -GBM event reported in conjunction with GW150914.

  14. Heliomagnetic cycle of magneto-ionospheric and interplanetary activities

    International Nuclear Information System (INIS)

    Zaretskij, N.S.; Krymskij, P.F.; Maksimov, Ya.Ya.

    1983-01-01

    The difference in frequency distributions of geomagnetic- and ionospheric disturbance levels are revealed within generalized intervals: odd-even- and even-odd 11-year solar activity cycles. The interplanetary medium of the first half of the 20th cycle (before reversal of the general heliomagnetic field polarity) is characterized by the background vertical component of the interplanetary magnetic field (IMF) in the north direction, rather small variability of the interplanetary field and low solar wind velocity. The south field component, higher field dispersion and high-velocity corpuscular fluxes are characteristic of the second half of the cycle. The 22-year variation in the number of small and moderate values of the geomagnetic activity within the limits of the 20th cycle is satisfactorily described by the behaviour of the quantities of the corresponding values of the IMF north-south component, field variability and solar wind velocity

  15. Diagnostics of mobile dust in scrape-off layer plasmas

    International Nuclear Information System (INIS)

    Ratynskaia, S; Castaldo, C; Bergsaaker, H; Rudakov, D

    2011-01-01

    Dust production and accumulation pose serious safety and operational implications for the next generation fusion devices. Mobile dust particles can result in core plasma contamination with impurities, and those with high velocities can significantly contribute to the wall erosion. Diagnostics for monitoring dust in tokamaks during plasma discharges are hence important as they can provide information on dust velocity and size, and-in some cases-on dust composition. Such measurements are also valuable as an input for theoretical models of dust dynamics in scrape-off layer plasmas. Existing in situ dust diagnostics, focusing on the range of dust parameters they can detect, are reviewed. Particular attention is paid to the diagnostics which allow us to detect tails of the dust velocity and size distributions, e.g. small and very fast particles. Some of the techniques discussed have been adopted from space-related research and have been shown to be feasible and useful for tokamak applications as well.

  16. Gravitational-wave bursts from the nuclei of distant galaxies and quasars: proposal for detection using Doppler tracking of interplanetary spacecraft

    International Nuclear Information System (INIS)

    Thorne, K.S.; Braginsky, V.B.

    1976-01-01

    It is likely that supermassive black holes (Mapprox. =10 6 to 10 10 M/sub sun/) exist in the nuclei of many quasars and galaxies. The collapse which forms these holes and subsequent collisions between them should produce strong, broad-band bursts of gravitational waves: for a source of mass M at the Hubble distance of approx.10 10 light-years, the dimensionless amplitude would be h approx. 2 x 10 -17 x (M/10 6 M/sub sun/), and the duration of the burst would be tauapprox. (90 s) x (M/10 6 M/sub sun/). Such bursts might arrive at Earth as often as 50 times per year: or as rarely as once each 300 years. The detection of such bursts may be possible within the next few years using dual-frequency Doppler tracking of interplanetary spacecraft

  17. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins.

    Science.gov (United States)

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Eduard, Wijnand; Klemsdal, Sonja Sletner

    2006-12-01

    Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes.

  18. Particle acceleration by coronal and interplanetary shock waves

    International Nuclear Information System (INIS)

    Pesses, M.E.

    1982-01-01

    Utilizing many years of observation from deep space and near-earth spacecraft a theoretical understanding has evolved on how ions and electrons are accelerated in interplanetary shock waves. This understanding is now being applied to solar flare-induced shock waves propagating through the solar atmosphere. Such solar flare phenomena as gamma-ray line and neutron emissions, interplanetary energetic electron and ion events, and Type II and moving Type IV radio bursts appear understandable in terms of particle acceleration in shock waves

  19. Relationships between interplanetary quantities and the global auroral electrojet index

    International Nuclear Information System (INIS)

    Meloni, A.; Wolfe, A.; Lanzerotti, L.J.

    1982-01-01

    We have studied, using linear cross correlation and multilinear regression analyses, statistical relations between the magnetospheric auroral electrojet intensity index AE and various parameters characterizing the interplanetary plasma and magnetic field. We also consider the recently proposed epsilon parameter as an independent variable. The analyses were carried out separately for twenty-eight days in mid 1975 and for each of five individual magnetic storm intervals that have been previously discussed extensively in the literature. We find that when the interplanetary data set is not distinguished as to the direction of the north-south component B/sub z/, the interplanetary electric field -VB/sub z/ carried to the front of the magnetosphere correlates with AE substantially better than does epsilon. Considering only data during which B/sub z/ is negative gives a slightly better correlation of epsilon with AE than of the electric field with AE. The correlations are valid for the specific storm periods as well as for the unrestricted twenty-eight days of data. Our results suggest that the physical processes involved in energy transfer to the nightside magnetosphere depend upon the direction of the north-south component of the interplanetary magnetic field: the interplanetary electric field plays an important role during northward B/sub z/ and the epsilon parameter and the electric field both provide an indication of energy transfer and substorm activity during southward B/sub z/

  20. Evolution of Cometary Dust Particles to the Orbit of the Earth: Particle Size, Shape, and Mutual Collisions

    Science.gov (United States)

    Yang, Hongu; Ishiguro, Masateru

    2018-02-01

    In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.

  1. Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium

    International Nuclear Information System (INIS)

    Barnes, A.

    1983-01-01

    The solar wind does not flow quietly. It seethes and undulates, fluctuating on time scales that range from the solar rotation period down to fractions of milliseconds. Most of the power in interplanetary waves and turbulence lies at hydromagnetic scales. These fluctuations are normally of large amplitude, containing enough energy to affect solar and galactic cosmic rays, and may be the remnants of a coronal turbulence field powerful enough to play a major role in accelerating the solar wind itself. The origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large-scale dynamics of the solar wind are among the most fundamental questions of solar-terrestrial physics. First hydrodynamic waves and turbulences in the interplanetary medium are discussed in two sections, respectively. Because the length and time scales for hydromagnetic fluctuations are very much smaller than the corresponding Coulomb collision scales of the plasma ions and electrons, the interplanetary variations are modelled as fluctuations in a magnetohydrodynamic fluid. In the last section, collisionless phenomena are discussed. They are of qualitative significance. (Auth.)

  2. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on

  3. Interplanetary laser ranging - an emerging technology for planetary science missions

    Science.gov (United States)

    Dirkx, D.; Vermeersen, L. L. A.

    2012-09-01

    Interplanetary laser ranging (ILR) is an emerging technology for very high accuracy distance determination between Earth-based stations and spacecraft or landers at interplanetary distances. It has evolved from laser ranging to Earth-orbiting satellites, modified with active laser transceiver systems at both ends of the link instead of the passive space-based retroreflectors. It has been estimated that this technology can be used for mm- to cm-level accuracy range determination at interplanetary distances [2, 7]. Work is being performed in the ESPaCE project [6] to evaluate in detail the potential and limitations of this technology by means of bottom-up laser link simulation, allowing for a reliable performance estimate from mission architecture and hardware characteristics.

  4. Evolution of coronal and interplanetary magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.

    1980-01-01

    Numerous studies have provided the detailed information necessary for a substantive synthesis of the empirical relation between the magnetic field of the sun and the structure of the interplanetary field. The author points out the latest techniques and studies of the global solar magnetic field and its relation to the interplanetary field. The potential to overcome most of the limitations of present methods of analysis exists in techniques of modelling the coronal magnetic field using observed solar data. Such empirical models are, in principle, capable of establishing the connection between a given heliospheric point and its magnetically-connected photospheric point, as well as the physical basis for the connection. (Auth.)

  5. Effect of prior dust collection on detection, counting efficiency, and energy resolution for alpha continuous air monitors

    International Nuclear Information System (INIS)

    Newton, G.J.; Hoover, M.D.

    1994-01-01

    For the past several years, we have supported the DOE Waste Isolation Pilot Plant (WIPP) project by evaluating the capabilities and performance of the Eberline Alpha 6 continuous air monitor (CAM). This evalution has focused on the ability of the CAM to correctly report plutonium in the presence of salt dust. Tests involving the simultaneous collection of plutonium and salt have shown that burial by salt can degrade the detection of plutonium, but that this interference is negligible when salt concentrations are below about 0.2 mg/m 3 . Throughout the evalution, it has been assumed that salt burial is a concern for slow, chronic release of plutonium, but that any acute release of plutonium would be collected on the top surface of the filter or salt and would be unattenuated. The spectral quality of alpha radiation detection on membrane filters is observed to improve with filter loading. This is attributed to the probability that accumulations of dust tend to fill in surface irregularities of the collection filter at a a faster rate than they create additional surface irregularities. The validity of these assumptions about the improved detection of plutonium on salt-layer surfaces has recently been questioned. Based on electron micrographic examination of salt-laden filters, it has been speculated that collection of salt dust on a membrane filter results in formation of pores, fissures, and dendritic shapes of salt on the filter surface. If plutonium were collected, particles could penetrate into the pores and fissures, resulting in a degraded or lost signal from the plutonium. Because no experimental evidence existed to answer the concern, the purpose of the current study was to quantify any differences between detection of plutonium on clean or salt-laden filters

  6. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  7. Machine learning and evolutionary techniques in interplanetary trajectory design

    OpenAIRE

    Izzo, Dario; Sprague, Christopher; Tailor, Dharmesh

    2018-01-01

    After providing a brief historical overview on the synergies between artificial intelligence research, in the areas of evolutionary computations and machine learning, and the optimal design of interplanetary trajectories, we propose and study the use of deep artificial neural networks to represent, on-board, the optimal guidance profile of an interplanetary mission. The results, limited to the chosen test case of an Earth-Mars orbital transfer, extend the findings made previously for landing ...

  8. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    Science.gov (United States)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  9. Type II solar radio bursts, interplanetary shocks, and energetic particle events

    International Nuclear Information System (INIS)

    Cane, H.V.; Stone, R.G.

    1984-01-01

    Using the ISEE 3 radio astronomy experiment data we have identified 37 interplanetary type II bursts in the period 1978 September to 1981 December. We lists these events and the associated phenomena. The events are preceded by intense, soft X-ray events with long decay times and type II or type IV bursts, or both, at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range appears as a fast drift radio feature which we refer to as a shock associated radio event. The shock associated event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energetic soalr particles detected at 1 A.U. are generatd by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients. The transients are fast: i.e., velocities greater than 500 km s -1

  10. Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere

    Science.gov (United States)

    Badruddin; Mustajab, F.; Derouich, M.

    2018-05-01

    A coronal mass ejections (CME) is the huge mass of plasma with embedded magnetic field ejected abruptly from the Sun. These CMEs propagate into interplanetary space with different speed. Some of them hit the Earth's magnetosphere and create many types of disturbances; one of them is the disturbance in the geomagnetic field. Individual geomagnetic disturbances differ not only in their magnitudes, but the nature of disturbance is also different. It is, therefore, desirable to understand these differences not only to understand the physics of geomagnetic disturbances but also to understand the properties of solar/interplanetary structures producing these disturbances of different magnitude and nature. In this work, we use the spacecraft measurements of CMEs with distinct magnetic properties propagating in the interplanetary space and generating disturbances of different levels and nature. We utilize their distinct plasma and field properties to search for the interplanetary parameter(s) playing important role in influencing the geomagnetic response of different coronal mass ejections.

  11. Criteria of interplanetary parameters causing intense magnetic storms (Dsub(st) < -100 nT)

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Tsurutani, B.T.

    1987-01-01

    Ten intense magnetic storms (Dsub(st) 5 mV m -1 , that last for intervals > 3 h. Because we find a one-to-one relationship between these interplanetary events and intense storms, we suggest that these criteria can, in the future, be used as predictors of intense storms by an interplanetary monitor such as ISEE-3. The close proximity of the Bsub(z) events and magnetic storms to the onset of high speed streams or density enhancement events is in sharp contrast to interplanetary Alfven waves and HILDCAA events previously reported and thus the two interplanetary features and corresponding geomagnetic responses can be thought of as being complementary in nature. An examination of opposite polarity (northward) Bsub(z) events with the same criteria shows that their occurrence is similar both in number as well as in their relationship to interplanetary disturbances, and that they lead to low levels of geomagnetic activity. (author)

  12. GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Abraham C.-L.; Loew, Murray H. [Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Feng, Heng Q. [Institute of Space Physics, Luoyang Normal University, Luoyang (China); Hu, Qiang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Miranda, Rodrigo A. [UnB-Gama Campus, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Muñoz, Pablo R. [Department of Physics and Astronomy, University of La Serena, Av. Juan Cisternas 1200, La Serena (Chile); Sibeck, David G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wu, De J., E-mail: abraham.chian@gmail.com [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-12-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  13. Study of interplanetary hydrogen from Lyman alpha emission and absorption determination

    International Nuclear Information System (INIS)

    Cazes, Serge.

    1979-09-01

    The purpose of the work submitted in this paper is to contribute to the study of interplanetary hydrogen from Lyman alpha emission and absorption measurements, carried out on board the D2A, OSO-8 and Copernicus satellites. This study, which was undertaken from the D2A satellite, moved us to study the interplanetary environment as from observations made from the following experiments placed on board the OSO-8 and Copernicus satellites. The experiment set up on board the OSO-8 satellite made it possible to obtain the profile of the solar alpha Lyman emission. An absorption profile was observed for the first time on these profiles and this made it possible to attribute them to interplanetary hydrogen and enabled us to make a direct and local determination of the solar ionization rate. - The spectrometer set up on board Copernicus made it possible to obtain the emission spectrum of the interplanetary environment at the same time as the geocorona. The overall velocity of the interplanetary environment was deduced from the Doppler shift between the two spectra. In the first part, the principle of the REA and POLAR experiments is recalled but only the REA experiment is described in detail, particularly the problems arising from the construction and calibration of the cell. In the second part, a study of the interplanetary environment made from the D2A determinations is presented in synthesized form. On the other hand, the study to which theses initial results led us is presented in detail. Finally, in the third part, the results obtained by means of the OSO-8 and Copernicus satellites are given [fr

  14. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    International Nuclear Information System (INIS)

    Ng, C.K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation

  15. Coronal and interplanetary propagation, interplanetary acceleration, cosmic-ray observations by deep space network and anomalous component

    Science.gov (United States)

    Ng, C. K.

    1986-01-01

    The purpose is to provide an overview of the contributions presented in sessions SH3, SH1.5, SH4.6 and SH4.7 of the 19th International Cosmic Ray Conference. These contributed papers indicate that steady progress continues to be made in both the observational and the theoretical aspects of the transport and acceleration of energetic charged particles in the heliosphere. Studies of solar and interplanetary particles have placed emphasis on particle directional distributions in relation to pitch-angle scattering and magnetic focusing, on the rigidity and spatial dependence of the mean free path, and on new propagation regimes in the inner and outer heliosphere. Coronal propagation appears in need of correlative multi-spacecraft studies in association with detailed observation of the flare process and coronal magnetic structures. Interplanetary acceleration has now gone into a consolidation phase, with theories being worked out in detail and checked against observation.

  16. Modelling interplanetary CMEs using magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.

    Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies

  17. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations

    Science.gov (United States)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  18. Interplanetary Alfvenic fluctuations: A stochastic model

    International Nuclear Information System (INIS)

    Barnes, A.

    1981-01-01

    The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested

  19. 3-D model of ICME in the interplanetary medium

    Science.gov (United States)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  20. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2016-01-01

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S 350μm = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10 7 M ⊙ and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  1. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chul [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Hwang, Ho Seong [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of); Lee, Gwang-Ho, E-mail: jclee@kasi.re.kr [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-12-20

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S{sub 350μm} = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10{sup 7} M {sub ⊙} and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  2. The nature of cometary dust as determined from infrared observations

    Science.gov (United States)

    Swamy, K. S. Krishna; Sandford, Scott A.; Allamandola, Louis J.; Witteborn, Fred C.; Bregman, Jesse D.

    1989-01-01

    The infrared measurements of comets, the compositional information available from interplanetary dust particles (IDPs), and the recent results of flybys to Comet Halley can help in restricting the nature and composition of cometary dust models (c.f., Proceedings of the 20th ESLAB Symposium on Exploration of Halley's Comet, 1986). Researchers tried to incorporate some of these results into a coherent model to account for the observed cometary infrared emission. The presence of 10 and 3.4 micron features in Comet Halley (c.f. Bregman et al. 1987; Wickramasinghe and Allen 1986) indicated the presence of at least two components in the grain material, namely silicates and some form of amorphous carbon. These two components could reside in separate grains or may be parts of composite particles. Both these cases have been considered (see Krishna Swamy el a. 1988a, 1988b). In the absence of refractive index data for cometary analogs, the authors used the optical constants of olivine-rich lunar material 12009.48 (Perry et al. 1972) for the infrared region and that of alpha:C-H film for amorphous carbon (angus et al. 1986). For the visible region, a value of m = 1.38-0.39i was used for the silicates, and values published by Arakawa et al. (1985) were used for the amorphous carbon. These materials should give a representative behavior of the expected results. The model results were compared to observational data. The strength of the 3.4 micron and 10 micron features relative to the adjacent continuum, as well as the slope of the continuum between 2500 and 1250 cm(exp -1) (4 to 8 microns), were used as criteria for comparison. Model calculations with alpha approx. equals -3.5, and also the size distribution function inferred for Comet Halley, with a mass fraction (X) of silicate to amorphous carbon grains of about 40 to 1 can fit the data. A good match is obtained for the infrared spectra of Comets Halley and West from a 40 to 1 mixture of silicate and amorphous carbon grains

  3. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles

    Science.gov (United States)

    Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)

    2002-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron

  4. Astronomical and Meteoritic Evidence for the Nature of Interstellar Dust and Its Processing in Protoplanetary Disks

    Science.gov (United States)

    Alexander, C. M. O'd.; Boss, A. P.; Keller, L. P.; Nuth, J. A.; Weinberger, A.

    Here we compare the astronomical and meteoritic evidence for the nature and origin of interstellar dust, and how it is processed in protoplanetary disks. The relative abundances of circumstellar grains in meteorites and interplanetary dust particles (IDPs) are broadly consistent with most astronomical estimates of galactic dust production, although graphite/amorphous C is highly underabundant. The major carbonaceous component in meteorites and IDPs is an insoluble organic material (IOM) that probably formed in the interstellar medium, but a solar origin cannot be ruled out. GEMS (glass with embedded metal and sulfide) that are isotopically solar within error are the best candidates for interstellar silicates, but it is also possible that they are solar system condensates. No dust from young stellar objects has been identified in IDPs, but it is difficult to differentiate them from solar system material or indeed some circumstellar condensates. The crystalline silicates in IDPs are mostly solar condensates, with lesser amounts of annealed GEMS. The IOM abundances in IDPs are roughly consistent with the degree of processing indicated by their crystallinity if the processed material was ISM dust. The IOM contents of meteorites are much lower, suggesting that there was a gradient in dust processing in the solar system. The microstructure of much of the pyroxene in IDPs suggests that it formed at temperatures >1258 K and cooled relatively rapidly (~1000 K/h). This cooling rate favors shock heating rather than radial transport of material annealed in the hot inner disk as the mechanism for producing crystalline dust in comets and IDPs. Shock heating is also a likely mechanism for producing chondrules in meteorites, but the dust was probably heated at a different time and/or location to chondrules.

  5. Transceiver optics for interplanetary communications

    Science.gov (United States)

    Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.

    2017-11-01

    In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.

  6. Relation of geomagnetic activity index variations with parameters of interplanetary scintillations

    International Nuclear Information System (INIS)

    Vlasov, V.I.; Shishov, V.I.; Shishova, T.D.

    1985-01-01

    A correlation between the Asub(p)-index of geomagnetic activity, index of interplanetary scintillations and solar wind velocity, has been considered depending on the spatial position of the interplanetary plasma (IPP) regions under study. It is shown, that the scintillation index can be used to forecast the geomagnetic activity, whereas the solar wind velocity can not be used for the purpose. Heliolongitudinal dependence of geoeffectiveness of IPP sreading perturbations agrees well with their structure in the heliolongitudinal cross section (and, on the whole, with the angular structure and direction of IPP perturbation spread). To use interplanetary scintillations in forecasting the geomagnetic activity (on the level of correlation not below 0.5), the angular distance of the investigated IPP regions relative to the Sun-Earth line on the average should not exceed 30-40 deg. The time of delay between the moments of observation of variations in the scintillation index the time of passage of the corresponding heliocentric distances at an average rate of the interplanetary perturbation spread approximately 500 km/s

  7. The HOSTS Survey—Exozodiacal Dust Measurements for 30 Stars

    Science.gov (United States)

    Ertel, S.; Defrère, D.; Hinz, P.; Mennesson, B.; Kennedy, G. M.; Danchi, W. C.; Gelino, C.; Hill, J. M.; Hoffmann, W. F.; Rieke, G.; Shannon, A.; Spalding, E.; Stone, J. M.; Vaz, A.; Weinberger, A. J.; Willems, P.; Absil, O.; Arbo, P.; Bailey, V. P.; Beichman, C.; Bryden, G.; Downey, E. C.; Durney, O.; Esposito, S.; Gaspar, A.; Grenz, P.; Haniff, C. A.; Leisenring, J. M.; Marion, L.; McMahon, T. J.; Millan-Gabet, R.; Montoya, M.; Morzinski, K. M.; Pinna, E.; Power, J.; Puglisi, A.; Roberge, A.; Serabyn, E.; Skemer, A. J.; Stapelfeldt, K.; Su, K. Y. L.; Vaitheeswaran, V.; Wyatt, M. C.

    2018-05-01

    The Hunt for Observable Signatures of Terrestrial Systems survey searches for dust near the habitable zones (HZs) around nearby, bright main-sequence stars. We use nulling interferometry in the N band to suppress the bright stellar light and to probe for low levels of HZ dust around the 30 stars observed so far. Our overall detection rate is 18%, including four new detections, among which are the first three around Sun-like stars and the first two around stars without any previously known circumstellar dust. The inferred occurrence rates are comparable for early-type and Sun-like stars, but decrease from {60}-21+16% for stars with previously detected cold dust to {8}-3+10% for stars without such excess, confirming earlier results at higher sensitivity. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal excess luminosity function, we put upper limits on the median HZ dust level of 13 zodis (95% confidence) for a sample of stars without cold dust and of 26 zodis when focusing on Sun-like stars without cold dust. However, our data suggest that a more complex luminosity function may be more appropriate. For stars without detectable Large Binocular Telescope Interferometer (LBTI) excess, our upper limits are almost reduced by a factor of two, demonstrating the strength of LBTI target vetting for future exo-Earth imaging missions. Our statistics are limited so far, and extending the survey is critical to informing the design of future exo-Earth imaging surveys.

  8. CAWSES November 7-8, 2004, Superstorm: Complex Solar and Interplanetary Features in the Post-Solar Maximum Phase

    Science.gov (United States)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-01-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to 44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  9. Dust coma of Halley comet: measurements with the dust counter and mass analyzer (DUSMA)

    International Nuclear Information System (INIS)

    Simpson, J.A.; Sagdeev, R.Z.; Tuzzolino, A.J.; AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij)

    1986-01-01

    The paper represents a preliminary report on measurements of spatial and temporal distribution of mass and flows of dust particles coming from comet nucleus performed by means of devices constructed on the new principle of detecting comet dust specks. The device has a high time resolution (∼ 4 μs) in the wide range of mass and dust flows. On the base of a preliminary analysis the following conclusions are drawn: dust coma in quiet state (''Vega-2'') as well as at the presence of considerable emissions (''Vega-1'') manifests the presence of important short-term out-bursts having by time a quasi-periodic structure. Integral mass spectra show flows intensity growth with the decrease of measured mass (which contradicts some theoretical models). Flow levels lie approximately in the region previously determined by ground observations. The coma is extremely dynamic both in space and in time which proves the complex structure of regions of dust emission from the nucleus

  10. Is there dust in galactic haloes

    International Nuclear Information System (INIS)

    Greenberg, J.M.; Ferrini, F.; Pisa Univ.; Barsella, B.; Aiello, S.

    1987-01-01

    The ubiquitous presence of dust within the disks of spiral galaxies is well established. The authors predict that the presence of dust in these regions may be revealed in bright edge-on galaxies, especially by using the polarization of the scattered light from the symmetric lanes. The detection of scattered light above the galactic plane may be an indicator that the parent galaxy has not suffered close encounters with other galaxies at least within the timescale required to establish the dust layers. (author)

  11. Effects of the interplanetary conditions on the magnetic activity observed in the southern auroral zone

    International Nuclear Information System (INIS)

    Cazeneuve, H.A.; Tabocchini, H.

    1981-01-01

    The relationship between the interplanetary conditions and the magnetic activity recorded at Belgrano is examined. H-component magnetograms, rheometer records and the concurrent interplanetary data are used. It is found that the geomagnetic activity is generated by the combined effect of a variety of interplanetary conditions. The data distinctly show that each physical entity of the interplanetary medium has a specific and precise role in the development of active periods. The reversal of the IMF polarity appears to be the critical step in the generation of geomagnetic activity. (author)

  12. Observations of interplanetary scintillation and their application to the space weather forecast

    International Nuclear Information System (INIS)

    Kojima, Masayoshi; Kakinuma, Takakiyo

    1989-01-01

    The interplanetary scintillation (IPS) method using natural radio sources can observe the solar wind near the sun and at high latitudes that have never been accessible to any spacecraft. Therefore, the IPS has been the most powerful method to observe the solar wind in three-dimensional space. Although the IPS method cannot predict when a flare will occur or when a filament will disappear, it can be used to forecast the propagation of interplanetary disturbances and to warn when they will attack the earth. Thus, the IPS method can be used to forecast recurrent interplanetary phenomena as well as transient phenomena. (author)

  13. Relativistic electron dropout echoes induced by interplanetary shocks

    Science.gov (United States)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.

    2017-12-01

    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  14. He Puff System For Dust Detector Upgrade

    International Nuclear Information System (INIS)

    Rais, B.; Skinner, C.H.; Roquemore, A.L.

    2010-01-01

    Local detection of surface dust is needed for the safe operation of next-step magnetic fusion devices such as ITER. An electrostatic dust detector, based on a 5 cm x 5 cm grid of interlocking circuit traces biased to 50 V, has been developed to detect dust on remote surfaces and was successfully tested for the first time on the National Spherical Torus Experiment (NSTX). We report on a helium puff system that clears residual dust from this detector and any incident debris or fibers that might cause a permanent short circuit. The entire surface of the detector was cleared of carbon particles by two consecutive helium puffs delivered by three nozzles of 0.45 mm inside diameter. The optimal configuration was found to be with the nozzles at an angle of 30o with respect to the surface of the detector and a helium backing pressure of 6 bar.

  15. 14 July 2000, a near-global coronal event and its association with energetic electron events detected in the interplanetary medium

    Czech Academy of Sciences Publication Activity Database

    Maia, D.; Pick, M.; Hawkins, S. E.; Fomichev, V. V.; Jiřička, Karel

    2001-01-01

    Roč. 204, 1/2 (2001), s. 199-214 ISSN 0038-0938 Institutional research plan: CEZ:AV0Z1003909 Keywords : coronal mass ejections * solar radio emissions * interplanetary particles Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.103, year: 2001

  16. Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events.

    Science.gov (United States)

    Yoo, Min-Sang; Shin, Minguk; Kim, Younghun; Jang, Min; Choi, Yoon-E; Park, Si Jae; Choi, Jonghoon; Lee, Jinyoung; Park, Chulhwan

    2017-05-01

    We developed a single-walled carbon nanotubes (SWCNTs)-based electrochemical biosensor for the detection of Bacillus subtilis, one of the microorganisms observed in Asian dust events, which causes respiratory diseases such as asthma and pneumonia. SWCNTs plays the role of a transducer in biological antigen/antibody reaction for the electrical signal while 1-pyrenebutanoic acid succinimidyl ester (1-PBSE) and ant-B. subtilis were performed as a chemical linker and an acceptor, respectively, for the adhesion of target microorganism in the developed biosensor. The detection range (10 2 -10 10  CFU/mL) and the detection limit (10 2  CFU/mL) of the developed biosensor were identified while the response time was 10 min. The amount of target B. subtilis was the highest in the specificity test of the developed biosensor, compared with the other tested microorganisms (Staphylococcus aureus, Flavobacterium psychrolimnae, and Aquabacterium commune). In addition, target B. subtilis detected by the developed biosensor was observed by scanning electron microscope (SEM) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Investigating A Novel Flame Retardant Known as V6: Measurements in Baby Products, House Dust and Car Dust

    Science.gov (United States)

    Fang, Mingliang; Webster, Thomas F.; Gooden, David; Cooper, Ellen M.; McClean, Michael D.; Carignan, Courtney; Makey, Colleen; Stapleton, Heather M.

    2013-01-01

    With the phase-out of polybrominated diphenyl ether (PBDE) flame retardants, the use of new and alternate flame retardants has been increasing. 2,2-bis(chloromethyl)propane-1,3-diyltetrakis(2-chloroethyl) bisphosphate, known as V6, is a flame retardant applied to polyurethane foam commonly found in furniture and automobile foam. However, to the authors’ knowledge, no research has been conducted on V6 levels in the environment. The intention of this study was to measure the concentration of V6 in foam collected from baby products where it was recently detected, and measure levels in dust samples collected from homes and automobiles in the Boston, MA area. To accomplish this a pure V6 commercial standard was purchased from a Chinese manufacturer and purified (> 98%). An analytical method to measure V6 in dust samples using liquid chromatography tandem mass spectrometry (LC/MS-MS) was developed. Extraction was conducted using Accelerated Solvent Extraction (ASE) and extracts were purified using an ENVI-Florisil SPE column (500 mg, 3mL). V6 was measured in foam samples collected from baby products with a concentration ranging from 24,500,000 to 59,500,000 ng/g of foam (n = 12, average ± sd: 46,500,000 ± 12,000,000 ng/g; i.e., on average, 4.6 % of the foam mass was V6). V6 was also detected in 19 of 20 car dust samples and 14 of 20 house dust samples analyzed. The concentration of V6 in the house dust ranged from car dust with a median of 103.0 ng/g. Concentrations in car dust were significantly higher than the house dust, potentially indicating higher use of V6 in automobiles compared to products found in the home. Furthermore, tris (2-chloroethyl) phosphate (TCEP), a known carcinogen, was found in the V6 commercial mixture (14% by weight) as an impurity and was consistently detected with V6 in the foam samples analyzed. A significant correlation was also observed between V6 and TCEP in the dust samples, suggesting that the use of V6 is a significant source of TCEP

  18. Tracking heliospheric disturbances by interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    M. Tokumaru

    2006-01-01

    Full Text Available Coronal mass ejections are known as a solar cause of significant geospace disturbances, and a fuller elucidation of their physical properties and propagation dynamics is needed for space weather predictions. The scintillation of cosmic radio sources caused by turbulence in the solar wind (interplanetary scintillation; IPS serves as an effective ground-based method for monitoring disturbances in the heliosphere. We studied global properties of transient solar wind streams driven by CMEs using 327-MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL of Nagoya University. In this study, we reconstructed three-dimensional features of the interplanetary (IP counterpart of the CME from the IPS data by applying the model fitting technique. As a result, loop-shaped density enhancements were deduced for some CME events, whereas shell-shaped high-density regions were observed for the other events. In addition, CME speeds were found to evolve significantly during the propagation between the corona and 1 AU.

  19. PROGRA2 experiment: new results for dust clouds and regoliths

    Science.gov (United States)

    Renard, J.-B.; Hadamcik, E.; Worms, J.-C.; Levasseur-Regourd, A.-C.; Daugeron, D.

    With the CNES-sponsored PROGRA2 facility, linear polarization of scattered light is performed on various types of dust clouds in microgravity during parabolic flights onboard the CNES- and ESA-sponsored A300 Zéro-G aircraft. Clouds of fluffy aggregates are also studied on the ground when lifted by an air-draught. The effect of the physical properties of the particles, such as the grains size and size distribution, the real part of the refractive index, and the structure is currently being studied. The size distribution of the agglomerates is measured in the field of view from the polarized component images. The large number of phase curves already obtained in the various conditions of measurements, in order to build a database (about 160 curves) allows us to better connect the physical properties with the observed polarization of the dust in the clouds. The aim is to compare these curves with those obtained in the solar system by remote-sensing and in-situ techniques for interplanetary dust, cometary coma, and solid particles in planetary atmospheres (Renard et al., 2003). Measurements on layers of particles (i.e. on the ground) are then compared with remote measurements on asteroidal regoliths and planetary surfaces. New phase curves will be presented and discussed i.e. for quartz samples, crystals, fluffy mixtures of alumina and silica, and a high porosity ``regolith'' analogue made of micron-sized silica spheres. This work will contribute to the choice of the samples to be studied with the IMPACT/ICAPS instrument onboard the ISS. J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms and A.-C. Levasseur-Regourd (2003). Polarization imaging of dust cloud particles: improvement and applications of the PROGRA2 instrument, ASR 31, 12, 2511-2518.

  20. Air-conditioner filters enriching dust mites allergen.

    Science.gov (United States)

    Zhan, Xiaodong; Li, Chaopin; Xu, Haifeng; Xu, Pengfei; Zhu, Haibin; Diao, Jidong; Li, Na; Zhao, Beibei

    2015-01-01

    We detected the concentration of dust mites allergen (Der f1 & Der p1) in the air of different places before and after the starting of air-conditioners in Wuhu City, Anhui, China, and to discuss the relation between the dust mites allergen in air-conditioner filters and the asthma attack. The dust samples were collected from the air-conditioner filters in dining rooms, shopping malls, hotels and households respectively. Concentrations of dust mites major group allergen 1 (Der f 1, Der p1) were detected with enzyme linked immunosorbent assay (ELISA), and the dust mite immune activities were determined by dot-ELISA. The concentration of Der f1 in dining rooms, shopping malls, hotels and households was 1.52 μg/g, 1.24 μg/g, 1.31 μg/g and 1.46 μg/g respectively, and the concentration of Der p1 in above-mentioned places was 1.23 μg/g, 1.12 μg/g, 1.16 μg/g and 1.18 μg/g respectively. The concentration of Der f1 & Der p1 in air was higher after the air-conditioners starting one hours later, and the difference was significant (Pair-conditioner filters can enrich dust mites major group allergen, and the allergens can induce asthma. The air-conditioner filters shall be cleaned or replaced regularly to prevent or reduce accumulation of the dust mites and its allergens.

  1. Investigating the use of the Saharan dust index as a tool for the detection of volcanic ash in SEVIRI imagery

    Science.gov (United States)

    Taylor, Isabelle; Mackie, Shona; Watson, Matthew

    2015-10-01

    Despite the similar spectral signatures of ash and desert dust, relatively little has been done to explore the application of dust detection techniques to the problem of volcanic ash detection. The Saharan dust index (SDI) is routinely implemented for dust monitoring at some centres and could be utilised for volcanic ash detection with little computational expense, thereby providing a product that forecasters already have some familiarity with to complement the suite of existing ash detection tools. We illustrate one way in which the index could be implemented for the purpose of ash detection by applying it to three scenes containing volcanic ash from the 2010 Eyjafjallajökull eruption, Iceland and the 2011 eruption of Puyehue, Chile. It was also applied to an image acquired over Etna in January 2011, where a volcanic plume is clearly visible but is unlikely to contain any ash. These examples demonstrate the potential of the SDI as a tool for ash monitoring under different environmental and atmospheric conditions. In addition to presenting a valuable qualitative product to aid monitoring, this work includes a quantitative assessment of the detection skill using a manually constructed expert ash mask. The optimum implementation of any technique is likely to be dependent on both atmospheric conditions and on the properties of the imaged ash (which is often unknown in a real-time situation). Here we take advantage of access to a 'truth' rarely available in a real-time situation and calculate an ash mask based on the optimum threshold for the specific scene, which is then used to demonstrate the potential of the SDI. The SDI mask is compared to masks calculated from a simplistic implementation of the more traditional split window method, again exploiting our access to the 'truth' to set the most appropriate threshold for each scene, and to a probabilistic method that is implemented without reference to the 'truth' and which provides useful insights into the likely

  2. Relationship between Interplanetary (IP) Parameters and ...

    Indian Academy of Sciences (India)

    3SITAA-SAC, Indian Space Research Organisation, Ahmedabad, Gujarat 380 015, India. 4Indian Space Research Organisation-Head Quarters, Bangalore, Karnataka, India. Abstract. In the present study, .... Lepping, R. P., Jones, J. A., Burlaga, L. F. 1990, Magnetic field structure of Interplanetary. Magnetic Clouds at 1 A.U; ...

  3. On-line automatic detection of wood pellets in pneumatically conveyed wood dust flow

    Science.gov (United States)

    Sun, Duo; Yan, Yong; Carter, Robert M.; Gao, Lingjun; Qian, Xiangchen; Lu, Gang

    2014-04-01

    This paper presents a piezoelectric transducer based system for on-line automatic detection of wood pellets in wood dust flow in pneumatic conveying pipelines. The piezoelectric transducer senses non-intrusively the collisions between wood pellets and the pipe wall. Wavelet-based denoising is adopted to eliminate environmental noise and recover the collision events. Then the wood pellets are identified by sliding a time window through the denoised signal with a suitable threshold. Experiments were carried out on a laboratory test rig and on an industrial pneumatic conveying pipeline to assess the effectiveness and operability of the system.

  4. Radio Interferometric Detection of TiO and TiO_2 in VY Canis Majoris: "seeds" of Inorganic Dust Formation

    Science.gov (United States)

    Brunken, S.; Muller, H. S. P.; Kaminski, T.; Menten, K. M.; Gott-Lieb, C. A.; Patel, N. A.; Young, K. H.; McCarthy, M. C.; Winters, J. M.; Decin, L.

    2013-06-01

    Circumstellar envelopes around late-type stars harbour a rich variety of molecular gas and copious amounts of dust, originating from the mass-loss of the central star during the asymptotic giant branch (AGB) or the red supergiant phase. The formation of dust in these objects, in particular the first nucleation stages out of gas phase molecules, is still poorly understood. Here we report the first detection of pure rotational transitions of the two simplest titanium oxides, TiO and TiO_2, towards the oxygen-rich red supergiant VY Canis Majoris (VY CMa). This actually represents the first secure identification of TiO_2 in space. Observations of several rotational emission lines of both species with the Submillimeter Array (SMA) in the 345 GHz-band and with the IRAM Plateau de Bure Interferometer (PdBI) around 220 GHz confirm the presence of these refractory species in the cool (<1000 K) circumstellar envelope in a region several times the size of the dust formation zone. The role of Ti oxides as "seeds" of inorganic dust formation in oxygen-rich circumstellar envelopes will be discussed in view of the present observations.

  5. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    Science.gov (United States)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  6. Propagation Characteristics of Two Coronal Mass Ejections from the Sun Far into Interplanetary Space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaowei; Liu, Ying D.; Hu, Huidong; Wang, Rui, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-01

    Propagation of coronal mass ejections (CMEs) from the Sun far into interplanetary space is not well understood, due to limited observations. In this study we examine the propagation characteristics of two geo-effective CMEs, which occurred on 2005 May 6 and 13, respectively. Significant heliospheric consequences associated with the two CMEs are observed, including interplanetary CMEs (ICMEs) at the Earth and Ulysses , interplanetary shocks, a long-duration type II radio burst, and intense geomagnetic storms. We use coronagraph observations from SOHO /LASCO, frequency drift of the long-duration type II burst, in situ measurements at the Earth and Ulysses , and magnetohydrodynamic propagation of the observed solar wind disturbances at 1 au to track the CMEs from the Sun far into interplanetary space. We find that both of the CMEs underwent a major deceleration within 1 au and thereafter a gradual deceleration when they propagated from the Earth to deep interplanetary space, due to interactions with the ambient solar wind. The results also reveal that the two CMEs interacted with each other in the distant interplanetary space even though their launch times on the Sun were well separated. The intense geomagnetic storm for each case was caused by the southward magnetic fields ahead of the CME, stressing the critical role of the sheath region in geomagnetic storm generation, although for the first case there is a corotating interaction region involved.

  7. Novel diagnostics for dust in space, Laboratory and fusion plasmas

    International Nuclear Information System (INIS)

    Castaldo, C.

    2011-01-01

    In situ diagnostics for mobile dust, based on dust impact ionization phenomena, as well as silica aerogel dust collectors are discussed for applications to space and fusion plasmas. The feasibility of an electro-optical probe to detect hypervelocity (>1 km/s) dust particles in tokamaks is evaluated. For quiescent plasmas, a diagnostic of submicron dust based on measurements of plasma fluctuation spectra can be used (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    International Nuclear Information System (INIS)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-01-01

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  9. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    International Nuclear Information System (INIS)

    Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.; Calzetti, Daniela; Cybulski, Ryan; Giavalisco, Mauro; Kirkpatrick, Allison; Montaña, Alfredo; Aretxaga, Itziar; Hughes, David; Limousin, Marceau; Marchesini, Danilo; Kado-Fong, Erin; Alberts, Stacey; Avila-Reese, Vladimir; Bermejo-Climent, José Ramón; Brammer, Gabriel; Bravo-Alfaro, Hector; Chary, Ranga-Ram; Keller, Erica

    2017-01-01

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10 10 L ⊙ and an obscured star formation rate of 14.6 ± 4.5 M ⊙ yr −1 . The unobscured star formation rate from the UV is only 4.1 ± 0.3 M ⊙ yr −1 , which means the total star formation rate (18.7 ± 4.5 M ⊙ yr −1 ) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10 9 M ⊙ , MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.

  10. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.; Calzetti, Daniela; Cybulski, Ryan; Giavalisco, Mauro; Kirkpatrick, Allison [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Montaña, Alfredo; Aretxaga, Itziar; Hughes, David [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, 72840 Puebla (Mexico); Limousin, Marceau [Aix Marseille Univ, CNRS, LAM, Laboratoire d' Astrophysique de Marseille, Marseille (France); Marchesini, Danilo; Kado-Fong, Erin [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Alberts, Stacey [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Avila-Reese, Vladimir [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, CDMX (Mexico); Bermejo-Climent, José Ramón [Departamento de Astrofísica, Universidad de La Laguna. Vía Láctea s/n, La Laguna 38200, Tenerife (Spain); Brammer, Gabriel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bravo-Alfaro, Hector [Departamento de Astronomia, Universidad de Guanajuato, Apdo. Postal 144, Guanajuato 36000 (Mexico); Chary, Ranga-Ram [Infrared Processing and Analysis Center, MS314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Keller, Erica, E-mail: pope@astro.umass.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); and others

    2017-04-01

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10{sup 10} L {sub ⊙} and an obscured star formation rate of 14.6 ± 4.5 M {sub ⊙} yr{sup −1}. The unobscured star formation rate from the UV is only 4.1 ± 0.3 M {sub ⊙} yr{sup −1}, which means the total star formation rate (18.7 ± 4.5 M {sub ⊙} yr{sup −1}) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10{sup 9} M {sub ⊙}, MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.

  11. Dust-forming molecules in VY Canis Majoris (and Betelgeuse)

    Science.gov (United States)

    Kamiński, T.; Gottlieb, C. A.; Schmidt, M. R.; Patel, N. A.; Young, K. H.; Menten, K. M.; Brünken, S.; Müller, H. S. P.; Winters, J. M.; McCarthy, M. C.

    2013-05-01

    The formation of inorganic dust in circumstellar environments of evolved stars is poorly understood. Spectra of molecules thought to be most important for the nucleation, i.e. AlO, TiO, and TiO2, have been recently detected in the red supergiant VY CMa. These molecules are effectively formed in VY CMa and the observations suggest that non-equilibrium chemistry must be involved in their formation and nucleation into dust. In addition to exploring the recent observations of VY CMa, we briefly discuss the possibility of detecting these molecules in the "dust-poor" circumstellar environment of Betelgeuse.

  12. Extinction and dust properties in a clumpy medium

    OpenAIRE

    Scicluna, P.; Siebenmorgen, R.

    2015-01-01

    (abridged) The dust content of the universe is primarily explored via its interaction with stellar photons, producing interstellar extinction. However, owing to the physical extension of the observing beam, observations may detect scattered photons, resulting in a change in the observed (or effective) extinction, depending on the spatial distribution of the dust and the resolution of the instrument. We investigate the influence of clumpy dust distributions on effective extinction toward embed...

  13. Dust Dynamics Near Planetary Surfaces

    Science.gov (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    streams observed by Apollo astronauts and potentially also by the Clementine spacecraft. In addition to the Surveyor images of lunar horizon glow and the high altitude streamer measurements, the Apollo 17 Lunar Ejecta and Meteorite surface package detected signals consistent with the impact of relatively slow-moving dust particles that may have been charged dust electrostatically levitated from the surface. There is renewed interest in this near-surface dust environment with plans to return robotic landers and astronauts to the lunar surface. No Apollo-era instruments were specifically designed to detect or measure dust levitated off the lunar surface. One new experiment under study is the Autonomous Lunar Dust Observer (ALDO). ALDO is a high-sensitivity scanning lidar (laser radar) that autonomously maps and records its 3-D dust environment. Flexibility of programmable scan pattern enables ALDO to characterize the dust context in and around experiment sites. Repeated shallow angle scans in a vertical plane enable high vertical resolution studies of dust levitation near the ground. Single elevation angle sector or full azimuth scans enable large-area statistical surveys of the frequency and size of ejecta plumes from micrometeoroid impacts, and vertical or fixed-angle stares enable very high sensitivity dust profiles to extended ranges. It is estimated that backscatter from dust concentrations as low as 1/cm3 can be measured. The concept is equally applicable to surface and atmospheric studies of other airless bodies.

  14. Can we detect Galactic spiral arms? 3D dust distribution in the Milky Way

    Science.gov (United States)

    Rezaei Kh., Sara; Bailer-Jones, Coryn A. L.; Fouesneau, Morgan; Hanson, Richard

    2018-04-01

    We present a model to map the 3D distribution of dust in the Milky Way. Although dust is just a tiny fraction of what comprises the Galaxy, it plays an important role in various processes. In recent years various maps of dust extinction have been produced, but we still lack a good knowledge of the dust distribution. Our presented approach leverages line-of-sight extinctions towards stars in the Galaxy at measured distances. Since extinction is proportional to the integral of the dust density towards a given star, it is possible to reconstruct the 3D distribution of dust by combining many lines-of-sight in a model accounting for the spatial correlation of the dust. Such a technique can be used to infer the most probable 3D distribution of dust in the Galaxy even in regions which have not been observed. This contribution provides one of the first maps which does not show the ``fingers of God'' effect. Furthermore, we show that expected high precision measurements of distances and extinctions offer the possibility of mapping the spiral arms in the Galaxy.

  15. Acceleration of H, He, and heavy ions observed in the magnetosheath, magnetotail, and near-by interplanetary space

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.; Hovestadt, D.

    1975-01-01

    Pulses of electrons and ions composed of H, He, and heavier elements were observed in the magnetosheath, magnetotail, and near-by interplanetary space. From the spatial positions where these particles were detected and the ion flow directions we conclude that they were accelerated at the bow shock near the sub-solar point and in the near-earth region of the neutral sheet of the magnetotail. (orig.) [de

  16. Investigating a novel flame retardant known as V6: measurements in baby products, house dust, and car dust.

    Science.gov (United States)

    Fang, Mingliang; Webster, Thomas F; Gooden, David; Cooper, Ellen M; McClean, Michael D; Carignan, Courtney; Makey, Colleen; Stapleton, Heather M

    2013-05-07

    With the phase-out of polybrominated diphenyl ether (PBDE) flame retardants, the use of new and alternate flame retardants has been increasing. 2,2-bis(chloromethyl)propane-1,3-diyltetrakis(2-chloroethyl) bisphosphate, known as V6, is a flame retardant applied to polyurethane foam commonly found in furniture and automobile foam. However, to the authors' knowledge, no research has been conducted on V6 levels in the environment. The intention of this study was to measure the concentration of V6 in foam collected from baby products where it was recently detected and measure levels in dust samples collected from homes and automobiles in the Boston, MA area. To accomplish this, a pure V6 commercial standard was purchased from a Chinese manufacturer and purified (>98%). An analytical method to measure V6 in dust samples using liquid chromatography tandem mass spectrometry (LC/MS-MS) was developed. Extraction was conducted using accelerated solvent extraction (ASE) and extracts were purified using an ENVI-Florisil SPE column (500 mg, 3 mL). V6 was measured in foam samples collected from baby products with a concentration ranging from 24,500,000 to 59,500,000 ng/g of foam (n = 12, average ± sd: 46,500,000 ± 12,000,000 ng/g; i.e., on average, 4.6% of the foam mass was V6). V6 was also detected in 19 of 20 car dust samples and 14 of 20 house dust samples analyzed. The concentration of V6 in the house dust ranged from <5 ng/g to 1110 ng/g with a median of 12.5 ng/g, and <5 ng/g to 6160 ng/g in the car dust with a median of 103.0 ng/g. Concentrations in car dust were significantly higher than in the house dust potentially indicating higher use of V6 in automobiles compared to products found in the home. Furthermore, tris (2-chloroethyl) phosphate (TCEP), a known carcinogen, was found in the V6 commercial mixture (14% by weight) as an impurity and was consistently detected with V6 in the foam samples analyzed. A significant correlation was also observed between V6 and TCEP in

  17. Measurement of nicotine in household dust

    International Nuclear Information System (INIS)

    Kim, Sungroul; Aung, Ther; Berkeley, Emily; Diette, Gregory B.; Breysse, Patrick N.

    2008-01-01

    An analytical method of measuring nicotine in house dust was optimized and associations among three secondhand smoking exposure markers were evaluated, i.e., nicotine concentrations of both house dust and indoor air, and the self-reported number of cigarettes smoked daily in a household. We obtained seven house dust samples from self-reported nonsmoking homes and 30 samples from smoking homes along with the information on indoor air nicotine concentrations and the number of cigarettes smoked daily from an asthma cohort study conducted by the Johns Hopkins Center for Childhood Asthma in the Urban Environment. House dust nicotine was analyzed by isotope dilution gas chromatography-mass spectrometry (GC/MS). Using our optimized method, the median concentration of nicotine in the dust of self-reported nonsmoking homes was 11.7 ng/mg while that of smoking homes was 43.4 ng/mg. We found a substantially positive association (r=0.67, P<0.0001) between house dust nicotine concentrations and the numbers of cigarettes smoked daily. Optimized analytical methods showed a feasibility to detect nicotine in house dust. Our results indicated that the measurement of nicotine in house dust can be used potentially as a marker of longer term SHS exposure

  18. Dust-Tolerant Intelligent Electrical Connection System

    Science.gov (United States)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  19. Study of Travelling Interplanetary Phenomena (STIP) workshop travel

    Science.gov (United States)

    Wu, S. T.

    1986-01-01

    Thirty six abstracts are provided from the SCOSTEP/STIP Symposium on Retrospective Analyses and Future Coordinated Intervals held in Switzerland on June 10 to 12, 1985. Six American scientists participated in the symposium and their abstracts are also included. The titles of their papers are: (1) An analysis of near surface and coronal activity during STIP interval 12, by T. E. Gergely; (2) Helios images of STIP intervals 6, B. V. Jackson; (3) Results from the analysis of solar and interplanetary observations during STIP interval 7, S. R. Kane; (4) STIP interval 19, E. Cliver; (5) Hydrodynamic buoyancy force in the solar atmosphere, T. Yeh; and (6) A combined MHD modes for the energy and momentum transport from solar surface to interplanetary space, S. T. Wu.

  20. Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint

    Science.gov (United States)

    Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.

    1996-01-01

    Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.

  1. Mars atmosphere. Mars methane detection and variability at Gale crater.

    Science.gov (United States)

    Webster, Christopher R; Mahaffy, Paul R; Atreya, Sushil K; Flesch, Gregory J; Mischna, Michael A; Meslin, Pierre-Yves; Farley, Kenneth A; Conrad, Pamela G; Christensen, Lance E; Pavlov, Alexander A; Martín-Torres, Javier; Zorzano, María-Paz; McConnochie, Timothy H; Owen, Tobias; Eigenbrode, Jennifer L; Glavin, Daniel P; Steele, Andrew; Malespin, Charles A; Archer, P Douglas; Sutter, Brad; Coll, Patrice; Freissinet, Caroline; McKay, Christopher P; Moores, John E; Schwenzer, Susanne P; Bridges, John C; Navarro-Gonzalez, Rafael; Gellert, Ralf; Lemmon, Mark T

    2015-01-23

    Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. Copyright © 2015, American Association for the Advancement of Science.

  2. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    Science.gov (United States)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  3. House dust mites in the city of Lima, Peru.

    Science.gov (United States)

    Croce, M; Costa-Manso, E; Baggio, D; Croce, J

    2000-01-01

    Since mites are the most common house dust allergens, knowledge about the species most prevalent in a region is important for diagnostic and specific immunotherapy purposes. In order to establish the prevalence of house dust mites in different city districts, 100 house dust samples were collected from different parts of Lima. Lima is a city of tropical climate located along the coast of the Pacific Ocean. The relative air humidity is 80-90% and the various districts studied are located at altitudes ranging from 37-355 meters. The mite Blomia tropicalis was the organism most frequently detected, being present in 59% of the house dust samples. Dermatophagoides pteronyssinus occupied second place (15.9%), followed by Chortoglyphus arcuatus and Tyrophagus putrescentiae. These four mites, taken together, represented more than 90% of the mites detected. No specimen of the species Dermatophagoides farinae was detected. We conclude that B. tropicalis and D. pteronyssinus are the most common house dust mites in Lima. Considering the high prevalence of B. tropicalis in Lima and the fact that its cross-reactivity with antigens of the mites of the family Pyroglyphidae is minimal, we conclude that sensitization to this mite should be investigated separately in allergic patients living in Lima.

  4. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607–8471 (Japan)

    2017-03-10

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  5. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-01-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  6. Analysis Of Interplanetary Phenomenon, Geomagnetic And ...

    African Journals Online (AJOL)

    The storm was found to be a double step storm with the first Dstmin resulting mainly from ring current injection due to increase in solar wind density while magnetospheric convection electric field played the leading role in the development of the second Dstmin . The analysis of the interplanetary and foF2 data show that the ...

  7. Modern Meteor Science An Interdisciplinary View

    CERN Document Server

    Hawkes, Robert; Brown, Peter

    2005-01-01

    This volume represents a blend of leading edge research and authoritative reviews in meteor science. It provides a comprehensive view of meteoroid research including the dynamics, sources and distribution of these bodies, and their chemistry and physical processes in the interplanetary medium and the Earth’s atmosphere. Techniques for investigation of meteor phenomena in the book include conventional and large aperture radar systems, spacecraft detection, optical systems, spectral measurements, and laboratory based interplanetary dust particle studies. The book will be of interest to researchers and students in astronomy, astrophysics, cosmochemistry, space engineering and space science. Cover photograph was taken by Masayuki Toda.

  8. Manifestation of interplanetary medium parameters in development of a geomagnetic storm initial phase

    International Nuclear Information System (INIS)

    Chkhetiya, A.M.

    1988-01-01

    The role of solar wind plasma parameters in formation of a geomagnetic storm initial phase is refined. On the basis of statistical analysis an empirical formula relating the interplanetary medium parameters (components of interplanetary magnetic field, proton velocity and concentration) and D st -index during the geomagnetic storm initial phase is proposed

  9. Dust extinction in high-z galaxies with gamma-ray burst afterglow spectroscopy

    DEFF Research Database (Denmark)

    Elíasdóttir, Á.; Fynbo, J. P. U.; Hjorth, J.

    2009-01-01

    We report the clear detection of the 2175 Å dust absorption feature in the optical afterglow spectrum of the gamma-ray burst (GRB) GRB 070802 at a redshift of z = 2.45. This is the highest redshift for a detected 2175 Å dust bump to date, and it is the first clear detection of the 2175 Å bump...

  10. Pixel-based dust-extinction mapping in nearby galaxies: A new approach to lifting the veil of dust

    Science.gov (United States)

    Tamura, Kazuyuki

    In the first part of this dissertation, I explore a new approach to mapping dust extinction in galaxies, using the observed and estimated dust-free flux- ratios of optical V -band and mid-IR 3.6 micro-meter emission. Inferred missing V -band flux is then converted into an estimate of dust extinction. While dust features are not clearly evident in the observed ground-based images of NGC 0959, the target of my pilot study, the dust-map created with this method clearly traces the distribution of dust seen in higher resolution Hubble images. Stellar populations are then analyzed through various pixel Color- Magnitude Diagrams and pixel Color-Color Diagrams (pCCDs), both before and after extinction correction. The ( B - 3.6 microns) versus (far-UV - U ) pCCD proves particularly powerful to distinguish pixels that are dominated by different types of or mixtures of stellar populations. Mapping these pixel- groups onto a pixel-coordinate map shows that they are not distributed randomly, but follow genuine galactic structures, such as a previously unrecognized bar. I show that selecting pixel-groups is not meaningful when using uncorrected colors, and that pixel-based extinction correction is crucial to reveal the true spatial variations in stellar populations. This method is then applied to a sample of late-type galaxies to study the distribution of dust and stellar population as a function of their morphological type and absolute magnitude. In each galaxy, I find that dust extinction is not simply decreasing radially, but that is concentrated in localized clumps throughout a galaxy. I also find some cases where star-formation regions are not associated with dust. In the second part, I describe the application of astronomical image analysis tools for medical purposes. In particular, Source Extractor is used to detect nerve fibers in the basement membrane images of human skin-biopsies of obese subjects. While more development and testing is necessary for this kind of work

  11. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  12. The effects of variable dust size and charge on dust acoustic waves propagating in a hybrid Cairns–Tsallis complex plasma

    Science.gov (United States)

    El-Taibany, W. F.; El-Siragy, N. M.; Behery, E. E.; Elbendary, A. A.; Taha, R. M.

    2018-05-01

    The propagation characteristics of dust acoustic waves (DAWs) in a dusty plasma consisting of variable size dust grains, hybrid Cairns-Tsallis-distributed electrons, and nonthermal ions are studied. The charging of the dust grains is described by the orbital-motion-limited theory and the size of the dust grains obeys the power law dust size distribution. To describe the nonlinear propagation of the DAWs, a Zakharov-Kuznetsov equation is derived using a reductive perturbation method. It is found that the nonthermal and nonextensive parameters influence the main properties of DAWs. Moreover, our results reveal that the rarefactive waves can propagate mainly in the proposed plasma model while compressive waves can be detected for a very small range of the distribution parameters of plasma species, and the DAWs are faster and wider for smaller size dust grains. Applications of the present results to dusty plasma observations are briefly discussed.

  13. A SEARCH FOR DUST EMISSION IN THE LEO INTERGALACTIC CLOUD

    International Nuclear Information System (INIS)

    Bot, Caroline; Helou, George; Puget, Jeremie; Latter, William B.; Schneider, Stephen; Terzian, Yervant

    2009-01-01

    We present a search for infrared dust emission associated with the Leo cloud, a large intergalactic cloud in the M96 group. Mid-infrared and far-infrared images were obtained with the InfraRed Array Camera and the Multiband Imaging Photometer for Spitzer on the Spitzer Space Telescope. Our analysis of these maps is done at each wavelength relative to the H I spatial distribution. We observe a probable detection at 8 μm and a marginal detection at 24 μm associated with the highest H I column densities in the cloud. At 70 and 160 μm, upper limits on the dust emission are deduced. The level of the detection is low so that the possibility of a fortuitous cirrus clump or of an overdensity of extragalactic sources along the line of sight cannot be excluded. If this detection is confirmed, the quantities of dust inferred imply a dust-to-gas ratio in the intergalactic cloud up to a few times solar but no less than 1/20 solar. A confirmed detection would therefore exclude the possibility that the intergalactic cloud has a primordial origin. Instead, this large intergalactic cloud could therefore have been formed through interactions between galaxies in the group.

  14. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  15. Detection of radioactive dust from the British nuclear bombs of October 1953

    Energy Technology Data Exchange (ETDEWEB)

    Ryder, N V; Watson-Munro, C N

    1954-01-01

    The dust collected from the atmosphere showed an absence of ..cap alpha..-activity and a ..beta..-activity characteristic of fission products. The material was collected in Wellington, approximately 3500 km from Woomera, Australia, the explosion site. The initial dust activity was found approximately 30 hours after the test.

  16. Geomagnetic response to solar and interplanetary disturbances

    Czech Academy of Sciences Publication Activity Database

    Saiz, E.; Cerrato, Y.; Cid, C.; Dobrica, V.; Hejda, Pavel; Nenovski, P.; Stauning, P.; Bochníček, Josef; Danov, D.; Demetrescu, C.; Gonzalez, W. D.; Maris, G.; Teodosiev, D.; Valach, F.

    2013-01-01

    Roč. 3, July (2013), A26/1-A26/20 ISSN 2115-7251 R&D Projects: GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : solar activity * interplanetary medium * indices * ionosphere (general) * ring current Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.519, year: 2013

  17. Radar Characterization of the Interplanetary Meteoroid Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new modeling effort that will make substantial refinements and improvements to our existing models of the interplanetary meteoroid environment near...

  18. BACODINE/3rd Interplanetary Network burst localization

    International Nuclear Information System (INIS)

    Hurley, K.; Barthelmy, S.; Butterworth, P.; Cline, T.; Sommer, M.; Boer, M.; Niel, M.; Kouveliotou, C.; Fishman, G.; Meegan, C.

    1996-01-01

    Even with only two widely separated spacecraft (Ulysses and GRO), 3rd Interplanetary Network (IPN) localizations can reduce the areas of BATSE error circles by two orders of magnitude. Therefore it is useful to disseminate them as quickly as possible following BATSE bursts. We have implemented a system which transmits the light curves of BACODINE/BATSE bursts directly by e-mail to UC Berkeley immediately after detection. An automatic e-mail parser at Berkeley watches for these notices, determines the Ulysses crossing time window, and initiates a search for the burst data on the JPL computer as they are received. In ideal cases, it is possible to retrieve the Ulysses data within a few hours of a burst, generate an annulus of arrival directions, and e-mail it out to the astronomical community by local nightfall. Human operators remain in this loop, but we are developing a fully automated routine which should remove them, at least for intense events, and reduce turn-around times to an absolute minimum. We explain the current operations, the data types used, and the speed/accuracy tradeoffs

  19. Modelling of mid-infrared interferometric signature of hot exozodiacal dust emission

    Science.gov (United States)

    Kirchschlager, Florian; Wolf, Sebastian; Brunngräber, Robert; Matter, Alexis; Krivov, Alexander V.; Labdon, Aaron

    2018-01-01

    Hot exozodiacal dust emission was detected in recent surveys around two dozen main-sequence stars at distances of less than 1 au using the H- and K-band interferometry. Due to the high contrast as well as the small angular distance between the circumstellar dust and the star, direct observation of this dust component is challenging. An alternative way to explore the hot exozodiacal dust is provided by mid-infrared interferometry. We analyse the L, M and N bands interferometric signature of this emission in order to find stronger constraints for the properties and the origin of the hot exozodiacal dust. Considering the parameters of nine debris disc systems derived previously, we model the discs in each of these bands. We find that the M band possesses the best conditions to detect hot dust emission, closely followed by L and N bands. The hot dust in three systems - HD 22484 (10 Tau), HD 102647 (β Leo) and HD 177724 (ζ Aql) - shows a strong signal in the visibility functions, which may even allow one to constrain the dust location. In particular, observations in the mid-infrared could help to determine whether the dust piles up at the sublimation radius or is located at radii up to 1 au. In addition, we explore observations of the hot exozodiacal dust with the upcoming mid-infrared interferometer Multi AperTure mid-Infrared SpectroScopic Experiment (MATISSE) at the Very Large Telescope Interferometer.

  20. Optimizing Materials for Energy Harvesting on Interplanetary Return Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Manned interplanetary missions will only be desirable once the ability to return is established. Even using improved fuel technologies we have not resourced the fuel...

  1. Interplanetary sources of magnetic storms: A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed T......-p/T-exp, together with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more...

  2. Interplanetary sources to magnetic storms - A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed Tp/Texp, together...... with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more so. Only...

  3. Control of dust production in ITER

    International Nuclear Information System (INIS)

    Rodriguez-Rodrigo, L.; Ciattaglia, S.; Elbez-Uzan, J.

    2006-01-01

    dust, as well as production, transport, localisation, detection and cleaning studies, which are in a research phase mainly in Europe and USA. It is also pointed out that dust production itself is a study to be performed in ITER and that validation by R-and-D of simulation codes relevant from the safety point of view needs to be deepened. The strategy and needs for future R-and-D on dust production, transport and characterisation, diagnostics for production control, cleaning systems, and evaluation of dust risk explosion is discussed. (author)

  4. An Investigation of Interplanetary Structures for Solar Cycles 23 and 24 and their Space Weather Consequences.

    Science.gov (United States)

    Sultan, M. S.; Jules, A.; Marchese, P.; Damas, M. C.

    2017-12-01

    It is crucial to study space weather because severe interplanetary conditions can cause geomagnetic storms that may damage both space- and ground-based technological systems such as satellites, communication systems, and power grids. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the primary drivers of geomagnetic storms. As they travel through interplanetary space and reach geospace, their spatial structures change which can result in various geomagnetic effects. Therefore, studying these drivers and their structures is essential in order to better understand and mitigate their impact on technological systems, as well as to forecast geomagnetic storms. In this study, over 150 storms were cross-checked for both solar cycles (SC) 23 and 24. This data has revealed the most common interplanetary structures, i.e., sheath (Sh); magnetic cloud following a shock front (sMC); sheath region and magnetic cloud (Sh/MC); and corotating interaction regions (CIRs). Furthermore, plasma parameters as well as variation in the intensity and duration of storms resulting from different interplanetary structures are studied for their effect on geomagnetically induced currents (GICs), as well as for their effect on power grids. Although preliminary results for SC 23 indicate that storm intensity may play a dominant role for GICs, duration might also be a factor, albeit smaller. Results from both SC 23 and 24 are analyzed and compared, and should lead to an enhanced understanding of space weather consequences of interplanetary structures and their possible forecasting.

  5. Near Real-Time Dust Aerosol Detection with Support Vector Machines for Regression

    Science.gov (United States)

    Rivas-Perea, P.; Rivas-Perea, P. E.; Cota-Ruiz, J.; Aragon Franco, R. A.

    2015-12-01

    Remote sensing instruments operating in the near-infrared spectrum usually provide the necessary information for further dust aerosol spectral analysis using statistical or machine learning algorithms. Such algorithms have proven to be effective in analyzing very specific case studies or dust events. However, very few make the analysis open to the public on a regular basis, fewer are designed specifically to operate in near real-time to higher resolutions, and almost none give a global daily coverage. In this research we investigated a large-scale approach to a machine learning algorithm called "support vector regression". The algorithm uses four near-infrared spectral bands from NASA MODIS instrument: B20 (3.66-3.84μm), B29 (8.40-8.70μm), B31 (10.78-11.28μm), and B32 (11.77-12.27μm). The algorithm is presented with ground truth from more than 30 distinct reported dust events, from different geographical regions, at different seasons, both over land and sea cover, in the presence of clouds and clear sky, and in the presence of fires. The purpose of our algorithm is to learn to distinguish the dust aerosols spectral signature from other spectral signatures, providing as output an estimate of the probability of a data point being consistent with dust aerosol signatures. During modeling with ground truth, our algorithm achieved more than 90% of accuracy, and the current live performance of the algorithm is remarkable. Moreover, our algorithm is currently operating in near real-time using NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) servers, providing a high resolution global overview including 64, 32, 16, 8, 4, 2, and 1km. The near real-time analysis of our algorithm is now available to the general public at http://dust.reev.us and archives of the results starting from 2012 are available upon request.

  6. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    Science.gov (United States)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  7. Asian dust events of April 1998

    Science.gov (United States)

    Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.

    2001-01-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative

  8. Ground and satellite-based remote sensing of mineral dust using AERI spectra and MODIS thermal infrared window brightness temperatures

    Science.gov (United States)

    Hansell, Richard Allen, Jr.

    The radiative effects of dust aerosol on our climate system have yet to be fully understood and remain a topic of contemporary research. To investigate these effects, detection/retrieval methods for dust events over major dust outbreak and transport areas have been developed using satellite and ground-based approaches. To this end, both the shortwave and longwave surface radiative forcing of dust aerosol were investigated. The ground-based remote sensing approach uses the Atmospheric Emitted Radiance Interferometer brightness temperature spectra to detect mineral dust events and to retrieve their properties. Taking advantage of the high spectral resolution of the AERI instrument, absorptive differences in prescribed thermal IR window sub-band channels were exploited to differentiate dust from cirrus clouds. AERI data collected during the UAE2 at Al-Ain UAE was employed for dust retrieval. Assuming a specified dust composition model a priori and using the light scattering programs of T-matrix and the finite difference time domain methods for oblate spheroids and hexagonal plates, respectively, dust optical depths have been retrieved and compared to those inferred from a collocated and coincident AERONET sun-photometer dataset. The retrieved optical depths were then used to determine the dust longwave surface forcing during the UAE2. Likewise, dust shortwave surface forcing is investigated employing a differential technique from previous field studies. The satellite-based approach uses MODIS thermal infrared brightness temperature window data for the simultaneous detection/separation of mineral dust and cirrus clouds. Based on the spectral variability of dust emissivity at the 3.75, 8.6, 11 and 12 mum wavelengths, the D*-parameter, BTD-slope and BTD3-11 tests are combined to identify dust and cirrus. MODIS data for the three dust-laden scenes have been analyzed to demonstrate the effectiveness of this detection/separation method. Detected daytime dust and cloud

  9. Formation of GEMS from shock-accelerated crystalline dust in Superbubbles

    International Nuclear Information System (INIS)

    Westphal, A; Bradley, J P

    2004-01-01

    Interplanetary dust particles (IDPs) contain enigmatic sub-micron components called GEMS (Glass with Embedded Metal and Sulfides). The compositions and structures of GEMS indicate that they have been processed by exposure to ionizing radiation but details of the actual irradiation environment(s) have remained elusive. Here we propose a mechanism and astrophysical site for GEMS formation that explains for the first time the following key properties of GEMS; they are stoichiometrically enriched in oxygen and systematically depleted in S, Mg, Ca and Fe (relative to solar abundances), most have normal (solar) oxygen isotopic compositions, they exhibit a strikingly narrow size distribution (0.1-0.5 (micro)m diameter), and some of them contain ''relict'' crystals within their silicate glass matrices. We show that the compositions, size distribution, and survival of relict crystals are inconsistent with amorphization by particles accelerated by diffusive shock acceleration. Instead, we propose that GEMS are formed from crystalline grains that condense in stellar outflows from massive stars in OB associations, are accelerated in encounters with frequent supernova shocks inside the associated superbubble, and are implanted with atoms from the hot gas in the SB interior. We thus reverse the usual roles of target and projectile. Rather than being bombarded at rest by energetic ions, grains are accelerated and bombarded by a nearly monovelocity beam of atoms as viewed in their rest frame. Meyer, Drury and Ellison have proposed that galactic cosmic rays originate from ions sputtered from such accelerated dust grains. We suggest that GEMS are surviving members of a population of fast grains that constitute the long-sought source material for galactic cosmic rays. Thus, representatives of the GCR source material may have been awaiting discovery in cosmic dust labs for the last thirty years

  10. Correlation of variations of charged particle fluxes in the flare on 3 November, 1973 with change of parameters of interplanetary medium according to the data of the ''Mars-7'' automatic interplanetary station and ''Prognoz-3'' artificial Earth's satellite

    International Nuclear Information System (INIS)

    Kuzhevskij, B.M.; Mineev, Yu.V.; Savenko, I.A.; Spir'kova, E.S.; Surova, G.M.; ShestopaloV, I.P.

    1979-01-01

    The experimental data on the charged particle fluxes in the flare on the 3d of November, 1973 are analyzed. The experiments were carried out at the ''Prognoz-3'' artificial Earth satellite and ''Mars-7'' automatic interplanetary station with the help of devices recorded Esub(e) >= 30 keV energy electrons, 1 <= Esub(p) <= 5 MeV energy protons and 1-150 MeV energy protons. Presented are the data on variations of the intensity of cosmic ray particles which are compared with the data on interplanetary magnetic fields. The character of proton and electron intensity variations is explained by the change of interplanetary medium parameters. It is supposed that the electron splashes and proton intensity variations recorded at the satellites are conditioned by the sign change of the interplanetary magnetic field

  11. Earlier vegetation green-up has reduced spring dust storms.

    Science.gov (United States)

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-10-24

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

  12. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    Science.gov (United States)

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  13. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Collette, Andrew; Drake, Keith; Northway, Paige [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Gruen, Eberhard [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Mocker, Anna [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Munsat, Tobin [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Srama, Ralf [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  14. Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions

    International Nuclear Information System (INIS)

    Leubner, M.P.

    2004-01-01

    Numerous in situ observations indicate clearly the presence of nonthermal electron and ion structures as ubiquitous and persistent feature in a variety of astrophysical plasma environments. In particular, the detected suprathermal particle populations are accurately represented by the family of κ-distributions, a power-law in particle speed. After clarifying the characteristics of high-energy tail distributions under various space plasma conditions, different generation mechanisms of energetic particles are introduced where numerical simulations of wave-particle interaction based on a Fokker-Planck approach demonstrate how Landau interaction ultimately leads to κ-like distributions. Because of lack of theoretical justification, the use of the analytical form of κ-functions was frequently criticized. It is shown that these distributions turn out as consequence of an entropy generalization favored by nonextensive thermo-statistics, thus providing the missing link for powerlaw models of suprathermal tails from fundamental physics, along with a physical interpretation of the structure parameter κ. Moreover, with regard to the full nonextensive formalism, compatible also with negative values of κ, it is demonstrated that core-halo distribution structures, as observed for instance under typical interplanetary plasma conditions, are a natural content of the pseudo-additive entropy concept. The significance of the complete κ-distribution family with regard to observed core-halo electron and double-humped ion velocity space characteristics is illuminated, where the observed peak separation scale of interplanetary proton distributions is compatible with a maximum entropy condition

  15. Implementing a Near-Optimal Optical Receiver for Inter-Planetary Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Objective: Interplanetary communications signals are inherently weak at the receiver. In fact, for a desired data rate the received optical pulses may...

  16. Fast, Autonomous Chemical Interplanetary Mission Design via Hybrid Optimal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Interplanetary mission design is historically a complex and expensive process requiring many human-hours of work. This proposal outlines a novel technique for...

  17. DustEM: Dust extinction and emission modelling

    Science.gov (United States)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  18. Direct HST Dust Lane Detection in Powerful Narrow-Line Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Edgar A.; Aretxaga, Itziar [Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla (Mexico); Tadhunter, Clive N. [Department of Physics and Astronomy, University of Sheffield, Sheffield (United Kingdom); Lopez-Rodriguez, Enrique [NASA Ames Research Center, SOFIA Science Center, SOFIA/USRA, Mountain View, CA (United States); Department of Astronomy, University of Texas at Austin, Austin, TX (United States); McDonald Observatory, University of Texas at Austin, Austin, TX (United States); Packham, Chris, E-mail: e.ramirez@inaoep.mx [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); National Astronomical Observatory of Japan, Tokyo (Japan)

    2017-11-22

    We present the analysis of near-infrared Hubble Space Telescope imaging of 10 Fanaroff Riley II powerful radio galaxies at low redshift (0.03 < z < 0.11) optically classified as narrow-line radio galaxies. The photometric properties of the host galaxy are measured using galfit, and compared with those from the literature. Our high resolution near-infrared observations provide new and direct information on the central kpc-scale dust lanes in our sample that could be connected to the pc-scale torus structure. Moreover, analyzing the infrared spectrograph Spitzer spectra of our sample, we suggest properties of the dust size of the torus.

  19. Interplanetary and lunar surface SP-100 nuclear power applications

    International Nuclear Information System (INIS)

    Josloff, A.T.; Shepard, N.F.; Smith, M.; Stephen, J.D.

    1992-01-01

    This paper describes how the SP-100 Space Reactor Power System (SRPS) can be tailored to meet the specific requirements for a lunar surface power system to meet the needs of the consolidation and utilization phases outlined in the 90-day NASA SEI study report. This same basic power system can also be configured to obtain the low specific masses needed to enable robotic interplanetary science missions employing Nuclear Electric Propulsion (NEP). In both cases it is shown that the SP-100 SRPS can meet the specific requirements. For interplanetary NEP missions, performance upgrades currently being developed in the area of light weight radiators and improved thermoelectric material are assumed to be technology ready in the year 2000 time frame. For lunar applications, some system rearrangement and enclosure of critical components are necessary modifications to the present baseline design

  20. The Interplanetary Network Supplement to the Fermi GBM Catalog - An AO-2 and AO-3 Guest Investigator Project

    Science.gov (United States)

    Hurley, K.; Briggs, M.; Connaughton, V.; Meegan, C.; von Kienlin, A.; Rau, A.; Zhang, X.; Golenetskii, S.; Aptekar, R.; Mazets, E.; hide

    2012-01-01

    In the first two years of operation of the Fermi GBM, the 9-spacecraft Interplanetary Network (IPN) detected 158 GBM bursts with one or two distant spacecraft, and triangulated them to annuli or error boxes. Combining the IPN and GBM localizations leads to error boxes which are up to 4 orders of magnitude smaller than those of the GBM alone. These localizations comprise the IPN supplement to the GBM catalog, and they support a wide range of scientific investigations.

  1. Searching for Lunar Horizon Glow With the Lunar Orbiter Laser Altimeter (LOLA)

    Science.gov (United States)

    Barker, M. K.; Mazarico, E. M.; McClanahan, T. P.; Sun, X.; Smith, D. E.; Neumann, G. A.; Zuber, M. T.; Head, J. W., III

    2017-12-01

    The dust environment of the Moon is sensitive to the interplanetary meteoroid population and dust transport processes near the lunar surface, and this affects many aspects of lunar surface science and planetary exploration. The interplanetary meteoroid population poses a significant risk to spacecraft, yet it remains one of the more uncertain constituents of the space environment. Observed and hypothesized lunar dust transport mechanisms have included impact-generated dust plumes, electrostatic levitation, and dynamic lofting. Many details of the impactor flux and impact ejection process are poorly understood, a fact highlighted by recent discrepant estimates of the regolith mixing rate. Apollo-era observations of lunar horizon glow (LHG) were interpreted as sunlight forward-scattered by exospheric dust grains levitating in the top meter above the surface or lofted to tens of kilometers in altitude. However, recent studies have placed limits on the dust density orders of magnitude less than what was originally inferred, raising new questions on the time variability of the dust environment. Motivated by the need to better understand dust transport processes and the meteoroid population, the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) is conducting a campaign to search for LHG with the LOLA Laser Ranging (LR) system. Advantages of this LOLA LHG search include: (1) the LOLA-LR telescope can observe arbitrarily close to the Sun at any time during the year without damaging itself or the other instruments, (2) a long temporal baseline with observations both during and outside of meteor streams, which will improve the chances of detecting LHG, and (3) a focus on altitudes methodology, and preliminary results.

  2. IPS observations of transient interplanetary phenomena associated with solar filament activity in late august

    International Nuclear Information System (INIS)

    Watanabe, Takashi; Marubashi, Katsuhide.

    1985-01-01

    Large-scale structures of the solar wind plasma during the severe geomagnetic storm of August 27-29, 1978 are studied on the basis of IPS and spacecraft observations. Three-dimensional configuration of an interplanetary disturbance which caused the SSC of August 27, 1978 was an oblate sphere having an axial ratio of 1.7. Approximate excess mass and kinetic energy contained within the high-speed portion of the disturbance (--500 km s -1 ) were 10 16 g and 3 x 10 31 erg, respectively. An interplanetary disturbance was also observed on August 28, 1978 during the main phase of the geomagnetic storm. It is suggested that the solar-filament activity which took place near the solar disk center in August 23-25, 1978 caused these interplanetary disturbances. (author)

  3. Dynamics of magnetic clouds in interplanetary space

    International Nuclear Information System (INIS)

    Yeh, T.

    1987-01-01

    Magnetic clouds observed in interplanetary space may be regarded as extraneous bodies immersed in the magnetized medium of the solar wind. The interface between a magnetic cloud and its surrounding medium separates the internal and external magnetic fields. Polarization currents are induced in the peripheral layer to make the ambient magnetic field tangential. The motion of a magnetic cloud through the interplanetary medium may be partitioned into a translational motion of the magnetic cloud as a whole and an expansive motion of the volume relative to the axis of the magnetic cloud. The translational motion is determined by two kinds of forces, i.e., the gravitational force exerted by the Sun, and the hydromagnetic buoyancy force exerted by the surrounding medium. On the other hand, the expansive motion is determined by the pressure gradient sustaining the gross difference between the internal and external pressures and by the self-induced magnetic force that results from the interaction among the internal currents. The force resulting from the internal and external currents is a part of the hydromagnetic buoyancy force, manifested by a thermal stress caused by the inhomogeneity of the ambient magnetic pressure

  4. Dynamics of magnetic clouds in interplanetary space

    Science.gov (United States)

    Yeh, Tyan

    1987-09-01

    Magnetic clouds observed in interplanetary space may be regarded as extraneous bodies immersed in the magnetized medium of the solar wind. The interface between a magnetic cloud and its surrounding medium separates the internal and external magnetic fields. Polarization currents are induced in the peripheral layer to make the ambient magnetic field tangential. The motion of a magnetic cloud through the interplanetary medium may be partitioned into a translational motion of the magnetic cloud as a whole and an expansive motion of the volume relative to the axis of the magnetic cloud. The translational motion is determined by two kinds of forces, i.e., the gravitational force exerted by the Sun, and the hydromagnetic buoyancy force exerted by the surrounding medium. On the other hand, the expansive motion is determined by the pressure gradient sustaining the gross difference between the internal and external pressures and by the self-induced magnetic force that results from the interaction among the internal currents. The force resulting from the internal and external currents is a part of the hydromagnetic buoyancy force, manifested by a thermal stress caused by the inhomogeneity of the ambient magnetic pressure.

  5. A Wealth of Dust Grains in Quasar Winds

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version This plot of data captured by NASA's Spitzer Space Telescope reveals dust entrained in the winds rushing away from a quasar, or growing black hole. The quasar, called PG2112+059, is located deep inside a galaxy 8 billion light-years away. Astronomers believe the dust might have been forged in the winds, which would help explain where dust in the very early universe came from. The data were captured by Spitzer's infrared spectrograph, an instrument that splits apart light from the quasar into a spectrum that reveals telltale signs of different minerals. Each type of mineral, or dust grain, has a unique signature, as can be seen in the graph, or spectrum, above. The strongest features are from the mineral amorphous olivine, or glass (purple); the mineral forsterite found in sand (blue); and the mineral corundum found in rubies (light blue). The detection of forsterite and corundum is highly unusual in galaxies without quasars. Therefore, their presence is a key clue that these grains might have been created in the quasar winds and not by dying stars as they are in our Milky Way galaxy. Forsterite is destroyed quickly in normal galaxies by radiation, so it must be continually produced to be detected by Spitzer. Corundum is hard, and provides a seed that softer, more common minerals usually cover up. As a result, corundum is usually not seen in spectra of galaxies. Since Spitzer did detect the mineral, it is probably forming in a clumpy environment, which is expected in quasar winds. All together, the signatures of the unusual minerals in this spectrum point towards dust grains forming in the winds blowing away from quasars.

  6. Dome C UltraCarbonaceous Antarctic MicroMeteorites Infrared and Raman fingerprints

    OpenAIRE

    Dartois, E.; Engrand, C.; Duprat, J.; Godard, M.; Charon, E.; Delauche, L.; Sandt, C.; Borondics, F.

    2017-01-01

    UltraCarbonaceous Antarctic MicroMeteorites (UCAMMs) represent a small fraction of interplanetary dust particles reaching the Earth's surface and contain large amounts of an organic component not found elsewhere. They are most probably sampling a contribution from the outer regions of the solar system to the local interplanetary dust particle flux. We characterize UCAMMs composition focusing on the organic matter, and compare the results to the insoluble organic matter (IOM) from primitive me...

  7. Commercially-driven human interplanetary propulsion systems: Rationale, concept, technology, and performance requirements

    International Nuclear Information System (INIS)

    Williams, C.H.; Borowski, S.K.

    1996-01-01

    Previous studies of human interplanetary missions are largely characterized by long trip times, limited performance capabilities, and enormous costs. Until these missions become dramatically more open-quote open-quote commercial-friendly close-quote close-quote, their funding source and rationale will be restricted to national governments and their political/scientific interests respectively. A rationale is discussed for human interplanetary space exploration predicated on the private sector. Space propulsion system requirements are identified for interplanetary transfer times of no more than a few weeks/months to and between the major outer planets. Nuclear fusion is identified as the minimum requisite space propulsion technology. A conceptual design is described and evolutionary catalyzed-DD to DHe 3 fuel cycles are proposed. Magnetic nozzles for direct thrust generation and quantifying the operational aspects of the energy exchange mechanisms between high energy reaction products and neutral propellants are identified as two of the many key supporting technologies essential to satisfying system performance requirements. Government support of focused, breakthrough technologies is recommended at funding levels appropriate to other ongoing federal research. copyright 1996 American Institute of Physics

  8. Reference Design for a Simple, Durable and Refuelable Interplanetary Spacecraft

    Science.gov (United States)

    McConnell, B. S.; Tolley, A. M.

    This article describes a reference design for interplanetary vessels, composed mostly of water, that utilize simplified RF engines for low thrust, long duration propulsion, and hydrogen peroxide for short duration, high thrust burns. The electrothermal engines are designed to heat a wide range of liquid materials, possibly also milled solids or surface dusts. The system emphasizes simple components and processes based on older technologies, many well known since the 1960s, that are understandable, can process a variety of materials, and are easily serviced in flight. The goal is to radically simplify systems and their inter-dependencies, to a point where a reasonably skilled person can learn to operate these vessels, not unlike a sailboat, and to eliminate many design and testing bottlenecks in their construction. The use of water, or hydrogen peroxide generated in situ from that water, is multiply advantageous because it can be used for structure, consumption, irrigation, radiation and debris shielding, and thermal regulation, and thus greatly reduce dead weight by creating an almost fully consumable ship. This also enables the ship to utilize a wide range of in situ materials, and eventually obtain reaction mass from lower gravity sites. The ability to switch between low thrust, constant power and high thrust, short duration maneuvers will enable these ships to travel freely and reach many interesting destinations throughout the solar system. One can think of them as “spacecoaches”, not unlike the prairie schooners of the Old West, which were rugged, serviceable by tradesmen, and easily maintained.

  9. Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study

    Science.gov (United States)

    Liu, Z.; Zong, Q.; Hao, Y.; Zhou, X.; Ma, X.; Liu, Y.

    2017-12-01

    "Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.

  10. Search for interplanetary shock signals using the Tupi telescope at the ascending phase of the solar cycle 24

    International Nuclear Information System (INIS)

    Augusto, C.R.A.; Kopenkin, V.; Navia, C.E.; Tsui, K.H.; Shigueoka, H.; Fauth, A.C.; Kemp, E.; Manganote, E.J.T.; Oliveira, M.A. Leigui de; Miranda, P.; Ticona, R.; Velarde, A.

    2012-01-01

    Full text: This paper presents the results of an on-going survey on the association between the muon flux variation at ground level registered by the Tupi telescopes (Niteroi-Brazil, 22.9 deg S; 43.2 deg W, 3 m above sea level) in the South Atlantic Anomaly (SAA) region and interplanetary shocks detected by space-borne detectors (SOHO, ACE, GOES). The SAA provides favorable conditions for observation of shock driven geomagnetic storms, including those of very small scale. Geomagnetic storms are usually originated by the transient events such as solar flares, coronal mass ejections (CMEs) and corotating interaction regions (CIRs). In most cases scientific research showed variation in the cosmic particle flux at ground level in correlation with large scale CMEs solar flares characterized by high absolute values of geomagnetic activity Kp index. In our analysis we found that the muon flux associated with the interplanetary shock signals changes also in response to low solar activity and to fast rise in Kp index. We report experimental data obtained by the Tupi telescopes in the period from June 2010 to December 2011. This time period corresponds to the rising phase of the solar cycle 24. These observations are compared with publicly available observations from the CELIAS/MTOF Proton Monitor on SOHO satellite in order to study the origin of the shocks. Among 28 interplanetary shocks reported in present analysis, there are 12 possibly associated with the CMEs and solar flares, 2 events - with the CIR related shocks (forward or reverse shocks), and the origin of the remaining 13 events has not been determined by the satellite detectors. By comparing the observed time (delayed or anticipated) of the shock related signal on Earth (the Tupi telescopes) with the trigger time of the shock registered by satellites located at the Lagrange point L1 (SOHO, ACE), we find that it is possible to estimate the type of the shock (forward or reverse). This method can be useful in

  11. Search for interplanetary shock signals using the Tupi telescope at the ascending phase of the solar cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, C.R.A.; Kopenkin, V.; Navia, C.E.; Tsui, K.H.; Shigueoka, H. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Fauth, A.C.; Kemp, E.; Manganote, E.J.T. [Universidade Estadual de Campinas (IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin; Oliveira, M.A. Leigui de [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Miranda, P.; Ticona, R.; Velarde, A. [Universidad Mayor de San Andres (UMSA), La Paz (Bolivia, Plurinational State of). Inst. de Investigaciones Fisicas

    2012-07-01

    Full text: This paper presents the results of an on-going survey on the association between the muon flux variation at ground level registered by the Tupi telescopes (Niteroi-Brazil, 22.9 deg S; 43.2 deg W, 3 m above sea level) in the South Atlantic Anomaly (SAA) region and interplanetary shocks detected by space-borne detectors (SOHO, ACE, GOES). The SAA provides favorable conditions for observation of shock driven geomagnetic storms, including those of very small scale. Geomagnetic storms are usually originated by the transient events such as solar flares, coronal mass ejections (CMEs) and corotating interaction regions (CIRs). In most cases scientific research showed variation in the cosmic particle flux at ground level in correlation with large scale CMEs solar flares characterized by high absolute values of geomagnetic activity Kp index. In our analysis we found that the muon flux associated with the interplanetary shock signals changes also in response to low solar activity and to fast rise in Kp index. We report experimental data obtained by the Tupi telescopes in the period from June 2010 to December 2011. This time period corresponds to the rising phase of the solar cycle 24. These observations are compared with publicly available observations from the CELIAS/MTOF Proton Monitor on SOHO satellite in order to study the origin of the shocks. Among 28 interplanetary shocks reported in present analysis, there are 12 possibly associated with the CMEs and solar flares, 2 events - with the CIR related shocks (forward or reverse shocks), and the origin of the remaining 13 events has not been determined by the satellite detectors. By comparing the observed time (delayed or anticipated) of the shock related signal on Earth (the Tupi telescopes) with the trigger time of the shock registered by satellites located at the Lagrange point L1 (SOHO, ACE), we find that it is possible to estimate the type of the shock (forward or reverse). This method can be useful in

  12. Mapping the three-dimensional dust extinction towards the supernova remnant S147 - the S147 dust cloud

    Science.gov (United States)

    Chen, B.-Q.; Liu, X.-W.; Ren, J.-J.; Yuan, H.-B.; Huang, Y.; Yu, B.; Xiang, M.-S.; Wang, C.; Tian, Z.-J.; Zhang, H.-W.

    2017-12-01

    We present a three-dimensional (3D) extinction analysis in the region towards the supernova remnant (SNR) S147 (G180.0-1.7) using multiband photometric data from the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC), 2MASS and WISE. We isolate a previously unrecognized dust structure likely to be associated with SNR S147. The structure, which we term as 'S147 dust cloud', is estimated to have a distance d = 1.22 ± 0.21 kpc, consistent with the conjecture that S147 is associated with pulsar PSR J0538 + 2817. The cloud includes several dense clumps of relatively high extinction that locate on the radio shell of S147 and coincide spatially with the CO and gamma-ray emission features. We conclude that the usage of CO measurements to trace the SNR associated MCs is unavoidably limited by the detection threshold, dust depletion and the difficulty of distance estimates in the outer Galaxy. 3D dust extinction mapping may provide a better way to identify and study SNR-MC interactions.

  13. Dust acoustic shock wave at high dust density

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.

    2003-01-01

    Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak

  14. INVESTIGATION OF PRIMORDIAL BLACK HOLE BURSTS USING INTERPLANETARY NETWORK GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, T. N. [Director' s Postdoctoral Fellow, Space and Remote Sensing (ISR-2), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); MacGibbon, J. H. [Department of Physics, University of North Florida, Jacksonville, FL 32224 (United States); Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal' shin, V. D. [Ioffe Physical Technical Institute, St. Petersburg, 194021 (Russian Federation); Goldsten, J. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Boynton, W. [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States); Kozyrev, A. S. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A.; Kienlin, A. von; Zhang, X. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching, D-85748 (Germany); Connaughton, V. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Yamaoka, K. [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558 (Japan); Ohno, M. [Department of Physics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ohmori, N. [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki-shi, Miyazaki 889-2192 (Japan); Feroci, M. [INAF/IAPS-Roma, via Fosso del Cavaliere 100, I-00133, Roma (Italy); Frontera, F., E-mail: tilan@lanl.gov [Department of Physics and Earth Science, University of Ferrara, via Saragat 1, I-44122 Ferrara (Italy); and others

    2016-07-20

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10{sup 13}–10{sup 18} cm (7–10{sup 5} au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  15. Rapid formation of large dust grains in the luminous supernova 2010jl.

    Science.gov (United States)

    Gall, Christa; Hjorth, Jens; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C

    2014-07-17

    The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.

  16. A study of the inferred interplanetary magnetic field polarity periodicities

    International Nuclear Information System (INIS)

    Xanthakis, J.; Tritakis, V.P.; Zerefos, Ch.

    1981-01-01

    A detailed Power Spectrum Analysis applied on the daily polarities of the inferred interplanetary magnetic field, published by Svalgaard, has pointed out that the main periodicity apparent in these data is 27-28 days, which suggests a recurrency of a 2-sector structure. There is also a secondary periodicity of 13-14 days which mainly appears in the yers of the descending branch of the solar cycle and superimposes on the 2-sector structure, transforming it into a 4-sector structure. A strict statistical study of the correlation between the predominant polarity of the interplanetary magnetic field and the heliographic latitude of the Earth, also known as the Rosenberg-Coleman effect, pointed out that perhaps there is a faint correspondence between these two elements, but one cannot speak of a systematic effect. (Auth.)

  17. Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium

    Science.gov (United States)

    Smith, Charles W.

    1992-01-01

    The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.

  18. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  19. [Gohieria fusca found in dust of air-conditioner filters].

    Science.gov (United States)

    Qiang, Chai; Xiao-Dong, Zhan; Wei, Guo; Chao-Pin, Li

    2017-09-25

    To investigate the pollution status of Gohieria fusca in the air conditioner-filters of different places in Wuhu City. The dust samples were collected from the filters of air-conditioners in dining rooms, shopping malls, hotels and households between June and September, 2013, and G. fusca was detected in the dust samples. There were 430 dust samples collected and 98 were G. fusca positive with the breeding rate of 22.79%. The difference of breeding rates of G. fusca were statistically significant among the different places ( χ 2 =18.294, P air-conditioner filters in Wuhu City gravely.

  20. Toxicity of lunar dust assessed in inhalation-exposed rats.

    Science.gov (United States)

    Lam, Chiu-wing; Scully, Robert R; Zhang, Ye; Renne, Roger A; Hunter, Robert L; McCluskey, Richard A; Chen, Bean T; Castranova, Vincent; Driscoll, Kevin E; Gardner, Donald E; McClellan, Roger O; Cooper, Bonnie L; McKay, David S; Marshall, Linda; James, John T

    2013-10-01

    Humans will again set foot on the moon. The moon is covered by a layer of fine dust, which can pose a respiratory hazard. We investigated the pulmonary toxicity of lunar dust in rats exposed to 0, 2.1, 6.8, 20.8 and 60.6 mg/m(3) of respirable-size lunar dust for 4 weeks (6 h/day, 5 days/week); the aerosols in the nose-only exposure chambers were generated from a jet-mill ground preparation of a lunar soil collected during the Apollo 14 mission. After 4 weeks of exposure to air or lunar dust, groups of five rats were euthanized 1 day, 1 week, 4 weeks or 13 weeks after the last exposure for assessment of pulmonary toxicity. Biomarkers of toxicity assessed in bronchoalveolar fluids showed concentration-dependent changes; biomarkers that showed treatment effects were total cell and neutrophil counts, total protein concentrations and cellular enzymes (lactate dehydrogenase, glutamyl transferase and aspartate transaminase). No statistically significant differences in these biomarkers were detected between rats exposed to air and those exposed to the two low concentrations of lunar dust. Dose-dependent histopathology, including inflammation, septal thickening, fibrosis and granulomas, in the lung was observed at the two higher exposure concentrations. No lesions were detected in rats exposed to ≤6.8 mg/m(3). This 4-week exposure study in rats showed that 6.8 mg/m(3) was the highest no-observable-adverse-effect level (NOAEL). These results will be useful for assessing the health risk to humans of exposure to lunar dust, establishing human exposure limits and guiding the design of dust mitigation systems in lunar landers or habitats.

  1. DECLINE AND RECOVERY OF THE INTERPLANETARY MAGNETIC FIELD DURING THE PROTRACTED SOLAR MINIMUM

    International Nuclear Information System (INIS)

    Smith, Charles W.; Schwadron, Nathan A.; DeForest, Craig E.

    2013-01-01

    The interplanetary magnetic field (IMF) is determined by the amount of solar magnetic flux that passes through the top of the solar corona into the heliosphere, and by the dynamical evolution of that flux. Recently, it has been argued that the total flux of the IMF evolves over the solar cycle due to a combination of flux that extends well outside of 1 AU and is associated with the solar wind, and additionally, transient flux associated with coronal mass ejections (CMEs). In addition to the CME eruption rate, there are three fundamental processes involving conversion of magnetic flux (from transient to wind-associated), disconnection, and interchange reconnection that control the levels of each form of magnetic flux in the interplanetary medium. This is distinct from some earlier models in which the wind-associated component remains steady across the solar cycle. We apply the model of Schwadron et al. that quantifies the sources, interchange, and losses of magnetic flux to 50 yr of interplanetary data as represented by the Omni2 data set using the sunspot number as a proxy for the CME eruption rate. We do justify the use of that proxy substitution. We find very good agreement between the predicted and observed interplanetary magnetic flux. In the absence of sufficient CME eruptions, the IMF falls on the timescale of ∼6 yr. A key result is that rising toroidal flux resulting from CME eruption predates the increase in wind-associated IMF

  2. Atmospheric dust additions as a soil formation factor

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Hernandez, J. L.; Ruoss, J.

    2009-07-01

    The Mediterranean area is distinguished by a least four features that determine the nature of its soils. These are its climate, its mountains, the addition of exogenous dust and ongoing anthropogenic effects. We here present three cases in which the influence of atmospheric dust additions can be detected in the soils of representative circum-Saharan contexts the Canary Islands, Betic intramontane depressions, and the Sierra Bermeja peridotite massif (Malaga). The unique position of the Canary Islands determines important rates of dust deposit, largely depending on position on the relief. the nature of the dust contrasts with the rocky substratum of the islands, and the marine and volcanic context can also affect the nature of the deposits. The numerous, extensive intramontane basins of the Betic Cordilleras act as large captors of atmospheric dust, with rates similar to those found in the Canary archipelago. The carbonate content of these exogenous additions represents a significant components that should be taken into account when establishing the carbonate accumulation regime in these soils. (Author) 13 refs.

  3. Use of SEVIRI images and derived products in a WMO Sand and dust Storm Warning System

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, M A; Ruiz, J; Cuevas, E [Agencia Estatal de MeteorologIa (AEMET) (Spain)], E-mail: mig@inm.es

    2009-03-01

    The Visible/IR images of SEVIRI (Spinning Enhanced Visible and Infrared Imager), on board Meteosat Second Generation (MSG) satellites, are used to monitor dust events. Satellite-based detection of dust is a difficult problem due in part to the observing-system limitations. The main difficulty is that the dust can be confused with water/ice clouds. SEVIRI is not as optimal for the viewing of dust as SEAWIFS or MODIS, due to the fact that both of them count with additional short-wavelength channels. However, the SEVIRI 15-minute loop images can detect small dust plumes as well as subtle changes from one image to the next. A description of how the AEMET, former INM, is developing the environment to support MSG satellite imagery to the WMO/GEO Sand and Dust Storm Warning System (SDS WS) for Europe, Africa and Middle East Regional Centre will be briefly presented, together with some on-going operational developments to best monitor dust events.

  4. Observations of the interplanetary sector structure up to heliographic latitudes of 160: Pioneer 11

    International Nuclear Information System (INIS)

    Smith, E.J.; Tsurutani, B.T.; Rosenberg, R.L.

    1978-01-01

    A study of the interplanetary sector structure at heliographic latitudes up to 16 0 N is reported. The study is based on magnetic field measurements made on board Pioneer 11 as the spacecraft traveled along the post-Jupiter-encounter trajectory. Preliminary measurements are used to determine the dominant polarity of the interplanetary magnetic field during 43 successive solar rotations including Pioneer's ascent to its maximum latitude and motion inward from 5 to 3.7 AU. As the latitude of Pioneer increased, the dominant polarity became continually more positive, corresponding to an outward-directed solar interplanetary field. When the spacecraft reached the highest latitude, the usual sector structure had essentially disappeared. A histogram of the field longitude angle, based on data acquired during 1 month at 16 0 latitude, shows an almost total absence of inward-directed fields. A comparison with interplanetary field polarities in the ecliptic, as inferred from geomagnetic field variations, rules out the possibility that a time variation rather than a latitude dependence is responsible. The Pioneer 11 observations imply that the boundary between adjacent sectors corresponds physically to a current sheet surrounding the sun and lying near parallel to the solar equatorial plane. Above this current sheet, in the northern hemisphere, the field polarity at this phase of the solar cycle is outward, and below the current sheet, in the southern hemisphere, it is inward. The Pioneer observations confirm earlier theoretical suggestions regarding the existence and equatorial orientation of this current sheet. The properties of the current sheet and some major implications and questions associated with it are discussed. It is shown that the radial component of the sheet current is compensated by the distributed currents in the northern and southern hemispheres associated with the spiraled interplanetary field

  5. The use of x-ray pulsar-based navigation method for interplanetary flight

    Science.gov (United States)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  6. Investigating dust trapping in transition disks with millimeter-wave polarization

    Science.gov (United States)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For

  7. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  8. Adapting MODIS Dust Mask Algorithm to Suomi NPP VIIRS for Air Quality Applications

    Science.gov (United States)

    Ciren, P.; Liu, H.; Kondragunta, S.; Laszlo, I.

    2012-12-01

    Despite pollution reduction control strategies enforced by the Environmental Protection Agency (EPA), large regions of the United States are often under exceptional events such as biomass burning and dust outbreaks that lead to non-attainment of particulate matter standards. This has warranted the National Weather Service (NWS) to provide smoke and dust forecast guidance to the general public. The monitoring and forecasting of dust outbreaks relies on satellite data. Currently, Aqua/MODIS (MODerate resolution Imaging Spectrometer) and Terra/MODIS provide measurements needed to derive dust mask and Aerosol Optical Thickness (AOT) products. The newly launched Suomi NPP VIIRS (Visible/Infrared Imaging Radiometer Suite) instrument has a Suspended Matter (SM) product that indicates the presence of dust, smoke, volcanic ash, sea salt, and unknown aerosol types in a given pixel. The algorithm to identify dust is different over land and ocean but for both, the information comes from AOT retrieval algorithm. Over land, the selection of dust aerosol model in the AOT retrieval algorithm indicates the presence of dust and over ocean a fine mode fraction smaller than 20% indicates dust. Preliminary comparisons of VIIRS SM to CALIPSO Vertical Feature Mask (VFM) aerosol type product indicate that the Probability of Detection (POD) is at ~10% and the product is not mature for operational use. As an alternate approach, NESDIS dust mask algorithm developed for NWS dust forecast verification that uses MODIS deep blue, visible, and mid-IR channels using spectral differencing techniques and spatial variability tests was applied to VIIRS radiances. This algorithm relies on the spectral contrast of dust absorption at 412 and 440 nm and an increase in reflectivity at 2.13 μm when dust is present in the atmosphere compared to a clear sky. To avoid detecting bright desert surface as airborne dust, the algorithm uses the reflectances at 1.24 μm and 2.25 μm to flag bright pixels. The

  9. Impact of dust filter installation in ironworks and construction on brownfield area on the toxic metal concentration in street and house dust (Celje, Slovenia).

    Science.gov (United States)

    Zibret, Gorazd

    2012-05-01

    This article presents the impact of the ecological investment in ironworks (dust filter installation) and construction works at a highly contaminated brownfield site on the chemical composition of household dust (HD) and street sediment (SS) in Celje, Slovenia. The evaluation is based on two sampling campaigns: the first was undertaken 1 month before the ecological investment became operational and the second 3 years later. The results show that dust filter installations reduced the content of Co, Cr, Fe, Mn, Mo, W and Zn on average by 58% in HD and by 51% in SS. No reduction was observed at sampling points in the upwind direction from the ironworks. By contrast, the impact of the construction works on the highly contaminated brownfield site was detected by a significant increase (on average by 37%) of elements connected to the brownfield contamination in SS. Such increase was not detected in HD.

  10. August 1972 solar-terrestrial events: interplanetary magnetic field observations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E J [Jet Propulsion Lab., Pasadena, Calif. (USA)

    1976-10-01

    A review is presented of the interplanetary magnetic field observations acquired in early August 1972 when four solar flares erupted in McMath Plage region 1976. Measurements of the interplanetary field were obtained by Earth satellites, HEOS-2 and Explorer 41, and by Pioneers 9 and 10 which, by good fortune, were radially aligned and only 45/sup 0/ east of the Earth-Sun direction. In response to the four flares, four interplanetary shocks were seen at Earth and at Pioneer 9, which was then at a heliocentric distance of 0.78 AU. However, at Pioneer 10, which was 2.2 AU from the Sun, only two forward shocks and one reverse shock were seen. The available magnetic field data acquired in the vicinity of the shocks are presented. Efforts to identify corresponding shocks at the several locations and to deduce their velocities of propagation between 0.8 and 2.2 AU are reviewed. The early studies were based on average velocities between the Sun and Pioneer 9, the Sun and Earth and the Sun and Pioneer 10. A large deceleration of the shocks between the Sun and 0.8 AU as well as between 0.8 and 2.2 AU was inferred. More recently the local velocities of the shocks at Pioneers 9 and 10 have become available. A comparision of these velocities shows little, if any, deceleration between 0.8 and 2.2 AU and implies that most or all of the deceleration actually occurred nearer the Sun. Evidence is also presented that shows a significant departure of the flare-generated shock fronts from spherical symmetry.

  11. Solar events and their influence on the interplanetary medium

    Science.gov (United States)

    Joselyn, Jo Ann

    The Workshop on Solar Events and Their Influence on the Interplanetary Medium very successfully met its goal “to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances.” Organized by the National Oceanic and Atmospheric Administration Space Environment Laboratory and funded by the national Aeronautics and Space Administration (NASA) Solar Maximum Mission Principal Investigators and the Space Environment Laboratory, this meeting was held held September 8—11, 1986, in Estes Park, Colo. A total of 94 scientists, including representatives from Argentina, Germany, Japan, France, Scotland, England, Australia, Poland, Israel, Greece, China and the United States attended. A novel meeting schedule was adopted, with no formal presentations other than a keynote address by Rainer Schwenn of the Max Planck Institut fur Aeronomie (Federal republic of Germany), entitled “Transients on the Sun and Their Effects on the Interplanetary Medium: An Interdisciplinary Challenge” a Gordon A. Newkirk Memorial talk on “Early History of the Coronagraph” by John Eddy of the University Corporation for Atmospheric Research Office of Interdisciplinary Earth Studies (Boulder, Colo.); and introductory and summary statements by working group leaders. Instead, there were three working groups, which met either independently or with one of the other groups according to a prearranged plan. Suggested roundtable discussion topics were distributed in advance to the members of each group, but primarily, each group was expected to think of questions for the other groups and respond to requests for information from them. As may be expected, for some topics there was group consensus. Other topics were contentious.

  12. The near-Earth and interplanetary plasma

    International Nuclear Information System (INIS)

    Al'pert, Y.L.

    1983-01-01

    This monograph is an extensive revision and expansion of the original paper which first appeared in 1976 in the encyclopedia, Handbuch der Physik. It presents a detailed and comprehensive treatment of wave processes and of the motion of bodies through plasma around moving bodies such as artificial satellites, and with natural plasma waves and oscillations. Contents, abridged: General properties of the near-Earth and interplanetary plasma. Refractive indexes of cold magnetoplasma. Growth rates for the different oscillation branches. Nonlinear effects in a plasma. Group velocity, trajectories, and trapping of electromagnetic waves in a magnetoplasma. Indexes

  13. Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z- M relationship

    Science.gov (United States)

    Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di

    2018-02-01

    With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.

  14. Coal Mine Dust Desquamative Chronic Interstitial Pneumonia: A Precursor of Dust-Related Diffuse Fibrosis and of Emphysema.

    Science.gov (United States)

    Jelic, Tomislav M; Estalilla, Oscar C; Sawyer-Kaplan, Phyllis R; Plata, Milton J; Powers, Jeremy T; Emmett, Mary; Kuenstner, John T

    2017-07-01

    Diseases associated with coal mine dust continue to affect coal miners. Elucidation of initial pathological changes as a precursor of coal dust-related diffuse fibrosis and emphysema, may have a role in treatment and prevention. To identify the precursor of dust-related diffuse fibrosis and emphysema. Birefringent silica/silicate particles were counted by standard microscope under polarized light in the alveolar macrophages and fibrous tissue in 25 consecutive autopsy cases of complicated coal worker's pneumoconiosis and in 21 patients with tobacco-related respiratory bronchiolitis. Coal miners had 331 birefringent particles/high power field while smokers had 4 (pcoal miner had intra-alveolar macrophages with silica/silicate particles and interstitial fibrosis ranging from minimal to extreme. All coal miners, including those who never smoked, had emphysema. Fibrotic septa of centrilobular emphysema contained numerous silica/silicate particles while only a few were present in adjacent normal lung tissue. In coal miners who smoked, tobacco-associated interstitial fibrosis was replaced by fibrosis caused by silica/silicate particles. The presence of silica/silicate particles and anthracotic pigment-laden macrophages inside the alveoli with various degrees of interstitial fibrosis indicated a new disease: coal mine dust desquamative chronic interstitial pneumonia, a precursor of both dust-related diffuse fibrosis and emphysema. In studied coal miners, fibrosis caused by smoking is insignificant in comparison with fibrosis caused by silica/silicate particles. Counting birefringent particles in the macrophages from bronchioalveolar lavage may help detect coal mine dust desquamative chronic interstitial pneumonia, and may initiate early therapy and preventive measures.

  15. Mass transfer of PBDEs from plastic TV casing to indoor dust via three migration pathways — A test chamber investigation

    International Nuclear Information System (INIS)

    Rauert, C.; Harrad, S.

    2015-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely detected in humans with substantial exposure thought to occur in indoor environments and particularly via contact with indoor dust. Despite this, knowledge of how PBDEs migrate to indoor dust from products within which they are incorporated is scarce. This study utilises an in-house designed and built test chamber to investigate the relative significance of different mechanisms via which PBDEs transfer from source materials to dust, using a plastic TV casing treated with the Deca-BDE formulation as a model source. Experiments at both room temperature and 60 °C revealed no detectable transfer of PBDEs from the TV casing to dust via volatilisation and subsequent partitioning. In contrast, substantial transfer of PBDEs to dust was detected when the TV casing was abraded using a magnetic stirrer bar. Rapid and substantial PBDE transfer to dust was also observed in experiments in which dust was placed in direct contact with the source. Based on these experiments, we suggest that for higher molecular weight PBDEs like BDE-209; direct dust:source contact is the principal pathway via which source-to-dust transfer occurs. - Highlights: • Transfer from a TV casing to dust of high molecular weight PBDEs examined. • Direct source:dust contact effected rapid and most substantial transfer. • Substantial source:dust transfer also occurred via abrasion of source

  16. Solar cycle variation of cosmic ray intensity along with interplanetary and solar wind plasma parameters

    International Nuclear Information System (INIS)

    Mishra, R.K.; Tiwari, S.; Agarwal, R.

    2008-01-01

    Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V , B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V , B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23. (Authors)

  17. Outer Radiation Belt Dropout Dynamics Following the Arrival of Two Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.; hide

    2016-01-01

    Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.

  18. STEREO Observations of Interplanetary Coronal Mass Ejections in 2007–2016

    Science.gov (United States)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Galvin, A. B.

    2018-03-01

    We have conducted a survey of 341 interplanetary coronal mass ejections (ICMEs) using STEREO A/B data, analyzing their properties while extending a Level 3 product through 2016. Among the 192 ICMEs with distinguishable sheath region and magnetic obstacle, the magnetic field maxima in the two regions are comparable, and the dynamic pressure peaks mostly in the sheath. The north/south direction of the magnetic field does not present any clear relationship between the sheath region and the magnetic obstacle. About 71% of ICMEs are expanding at 1 au, and their expansion speed varies roughly linearly with their maximum speed except for ICMEs faster than 700 km s‑1. The total pressure generally peaks near the middle of the well-defined magnetic cloud (MC) passage, while it often declines along with the non-MC ICME passage, consistent with our previous interpretation concerning the effects of sampling geometry on what is observed. The hourly average iron charge state reaches above 12+ ∼31% of the time for MCs, ∼16% of the time for non-MC ICMEs, and ∼1% of the time for non-ICME solar wind. In four ICMEs abrupt deviations of the magnetic field from the nominal field rotations occur in the magnetic obstacles, coincident with a brief drop or increase in field strength—features could be related to the interaction with dust. In comparison with the similar phases of solar cycle 23, the STEREO ICMEs in this cycle occur less often and are generally weaker and slower, although their field and pressure compressions weaken less than the background solar wind.

  19. A new propulsion concept for interplanetary missions

    Science.gov (United States)

    Dujarric, C.

    2001-11-01

    When tons of payload must be brought back from the planets to Earth, the current launch-system technology hits size limitations. The huge Saturn-V launcher that enabled the Apollo missions to go to the Moon would be dwarfed by a single launcher capable of sending men to a destination like Mars and bringing them back. Keeping interplanetary missions within a reasonable size and cost therefore requires technological progress in terms of both vehicle weight reduction and propulsion efficiency.

  20. A smart dust biosensor powered by kinesin motors.

    Science.gov (United States)

    Fischer, Thorsten; Agarwal, Ashutosh; Hess, Henry

    2009-03-01

    Biosensors can be miniaturized by either injecting smaller volumes into micro- and nanofluidic devices or immersing increasingly sophisticated particles known as 'smart dust' into the sample. The term 'smart dust' originally referred to cubic-millimetre wireless semiconducting sensor devices that could invisibly monitor the environment in buildings and public spaces, but later it also came to include functional micrometre-sized porous silicon particles used to monitor yet smaller environments. The principal challenge in designing smart dust biosensors is integrating transport functions with energy supply into the device. Here, we report a hybrid microdevice that is powered by ATP and relies on antibody-functionalized microtubules and kinesin motors to transport the target analyte into a detection region. The transport step replaces the wash step in traditional double-antibody sandwich assays. Owing to their small size and autonomous function, we envision that large numbers of such smart dust biosensors could be inserted into organisms or distributed into the environment for remote sensing.

  1. Tetrabromobisphenol A in Indoor Dust from Houses and Internet Cafes

    Directory of Open Access Journals (Sweden)

    Ma. Pythias B. Espino

    2011-12-01

    Full Text Available Tetrabromobisphenol A or TBBPA is a widely used brominated flame retardant in modern materials such as electronic products, plastics and building materials. TBBPA can leach out of flame retardant-treated products during production, use, reuse, and final disposal of these consumer products. It has thus become a contemporary environmental contaminant. This study reports the levels of TBBPA in indoor dust from houses (n=4 and internet cafes (n=5 in Angono and Quezon City, in the Philippines. TBBPA in indoor dust was analyzed by ultrasonication-assisted hexane extraction and HPLC-UV determination. The instrument and method detection limits were 0.004 ng uL-1 and 1275 ng g-1, respectively. The standard calibration solutions ranged from 0.03 to 0.30 ng uL-1 (r2=0.9956. The extraction recovery was 78% (n=3. TBBPA was found in six of the nine indoor dust samples studied where the concentrations ranged from not detected to 4916 ng g-1. The occurrence and levels of TBBPA in indoor dusts are significant and suggest the need for further investigations especially in other microenvironments where people may be exposed to this contaminant.

  2. Cultural ethology as a new approach of interplanetary crew's behavior

    Science.gov (United States)

    Tafforin, Carole; Giner Abati, Francisco

    2017-10-01

    From an evolutionary perspective, during short-term and medium-term orbital flights, human beings developed new spatial and motor behaviors to compensate for the lack of terrestrial gravity. Past space ethological studies have shown adaptive strategies to the tri-dimensional environment, with the goal of optimizing relationships between the astronaut and unusual sensorial-motor conditions. During a long-term interplanetary journey, crewmembers will have to develop new individual and social behaviors to adapt, far from earth, to isolation and confinement and as a result to extreme conditions of living and working together. Recent space psychological studies pointed out that heterogeneity is a feature of interplanetary crews, based on personality, gender mixing, internationality and diversity of backgrounds. Intercultural issues could arise between space voyagers. As a new approach we propose to emphasize the behavioral strategies of human groups' adaptation to this new multicultural dimension of the environment.

  3. A DATABASE OF >20 keV ELECTRON GREEN'S FUNCTIONS OF INTERPLANETARY TRANSPORT AT 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona, Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki, Helsinki (Finland)

    2012-10-15

    We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.

  4. Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites.

    Science.gov (United States)

    Vollmer, Christian; Kepaptsoglou, Demie; Leitner, Jan; Busemann, Henner; Spring, Nicole H; Ramasse, Quentin M; Hoppe, Peter; Nittler, Larry R

    2014-10-28

    Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight (15)N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C-O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C-O bonding environments and nanoglobular organics with dominant aromatic and C-N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid.

  5. Method development for analysis of urban dust using scanning electron microscopy with energy dispersive x-ray spectrometry to detect the possible presence of world trade center dust constituents

    Science.gov (United States)

    Bern, A.M.; Lowers, H.A.; Meeker, G.P.; Rosati, J.A.

    2009-01-01

    The collapse of the World Trade Center Towers on September 11, 2001, sent dust and debris across much of Manhattan and in the surrounding areas. Indoor and outdoor dust samples were collected and characterized by U.S. Geological Survey (USGS) scientists using scanning electron microscopy with energy-dispersive spectrometry (SEM/EDS). From this characterization, the U.S. Environmental Protection Agency and USGS developed a particulate screening method to determine the presence of residual World Trade Center dust in the indoor environment using slag wool as a primary "signature". The method describes a procedure that includes splitting, ashing, and sieving of collected dust. From one split, a 10 mg/mL dust/ isopropanol suspension was prepared and 10-30 ??L aliquots of the suspension placed on an SEM substrate. Analyses were performed using SEM/EDS manual point counting for slag wool fibers. Poisson regression was used to identify some of the sources of uncertainty, which are directly related to the small number of fibers present on each sample stub. Preliminary results indicate that the procedure is promising for screening urban background dust for the presence of WTC dust. Consistent sample preparation of reference materials and samples must be performed by each laboratory wishing to use this method to obtain meaningful and accurate results. ?? 2009 American Chemical Society.

  6. IS DUST FORMING ON THE RED GIANT BRANCH IN 47 Tuc?

    International Nuclear Information System (INIS)

    Boyer, Martha L.; Gordon, Karl D.; Meixner, Margaret; Sewilo, Marta; Shiao, Bernie; Van Loon, Jacco Th.; McDonald, Iain; Babler, Brian; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles; Misselt, Karl; Hora, Joe; Indebetouw, Remy; Whitney, Barbara

    2010-01-01

    Using Spitzer Infrared Array Camera (IRAC) observations from the SAGE-SMC Legacy program and archived Spitzer IRAC data, we investigate dust production in 47 Tuc, a nearby massive Galactic globular cluster. A previous study detected infrared excess, indicative of circumstellar dust, in a large population of stars in 47 Tuc, spanning the entire red giant branch (RGB). We show that those results suffered from effects caused by stellar blending and imaging artifacts and that it is likely that no stars below ∼1 mag from the tip of the RGB are producing dust. The only stars that appear to harbor dust are variable stars, which are also the coolest and most luminous stars in the cluster.

  7. Remarks on transport theories of interplanetary fluctuations

    International Nuclear Information System (INIS)

    Ye Zhou; Matthaeus, W.H.

    1990-01-01

    The structure of approximate transport theories for the radial behavior of interplanetary fluctuations is reconsidered. The emphasis is on theories derived under the assumption of scale separation; i.e., the correlation length of the fluctuations is much less than the scale of large inhomogeneities. In these cases the zero-wavelength limit provides a first approximation to the spectral evolution equations for the radial dependence of interplanetary fluctuation spectra. The goal here is to investigate the structure of a recently presented (Zhou and Matthaeus, 1989) transport theory, in which coupling of inward- and outward-type fluctuations appears in the leading order, an effect the authors call mixing. In linear theory, mixing-type couplings of inward-type and outward-type waves are formally a nonresonant effect. However, leading order mixing terms do not vanish at zero wavelength for fluctuations that vary nearly perpendicular to the local magnetic field, or when the mean magnetic field is weak. Leading order mixing terms also survive when the dispersion relation fails and there is a nonunique relationship between frequency and wave number. The former case corresponds to nearly two-dimensional structures; these are included, for example, in isotropic models of turbulence. The latter instance occurs when wave-wave couplings are sufficiently strong. Thus there are a variety of situations in which leading order mixing effects are expected to be present

  8. THE DISTORTION OF THE COSMIC MICROWAVE BACKGROUND SPECTRUM DUE TO INTERGALACTIC DUST

    Energy Technology Data Exchange (ETDEWEB)

    Imara, Nia; Loeb, Abraham, E-mail: nimara@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-07-10

    Infrared emission from intergalactic dust might compromise the ability of future experiments to detect subtle spectral distortions in the Cosmic Microwave Background (CMB) from the early universe. We provide the first estimate of foreground contamination of the CMB signal due to diffuse dust emission in the intergalactic medium. We use models of the extragalactic background light to calculate the intensity of intergalactic dust emission and find that emission by intergalactic dust at z ≲ 0.5 exceeds the sensitivity of the planned Primordial Inflation Explorer to CMB spectral distortions by 1–3 orders of magnitude. In the frequency range ν = 150–2400 GHz, we place an upper limit of 0.06% on the contribution to the far-infrared background from intergalactic dust emission.

  9. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.

    1984-01-01

    ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.

  10. Prospective Out-of-ecliptic White-light Imaging of Interplanetary Corotating Interaction Regions at Solar Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ming; Yang, Liping; Liu, Ying D.; Keiji, Hayashi; Li, Huichao [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Davies, Jackie A.; Harrison, Richard A. [RAL Space, STFC-Rutherford Appleton Laboratory, Harwell Campus, Didcot (United Kingdom); Li, Bo; Xia, Lidong, E-mail: mxiong@spacweather.ac.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai (China)

    2017-07-20

    Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory ( STEREO ) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations of both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.

  11. Coal Mine Dust Desquamative Chronic Interstitial Pneumonia: A Precursor of Dust-Related Diffuse Fibrosis and of Emphysema

    Directory of Open Access Journals (Sweden)

    Tomislav M Jelic

    2017-07-01

    Full Text Available Background: Diseases associated with coal mine dust continue to affect coal miners. Elucidation of initial pathological changes as a precursor of coal dust-related diffuse fibrosis and emphysema, may have a role in treatment and prevention. Objective: To identify the precursor of dust-related diffuse fibrosis and emphysema. Methods: Birefringent silica/silicate particles were counted by standard microscope under polarized light in the alveolar macrophages and fibrous tissue in 25 consecutive autopsy cases of complicated coal worker's pneumoconiosis and in 21 patients with tobacco-related respiratory bronchiolitis. Results: Coal miners had 331 birefringent particles/high power field while smokers had 4 (p<0.001. Every coal miner had intra-alveolar macrophages with silica/silicate particles and interstitial fibrosis ranging from minimal to extreme. All coal miners, including those who never smoked, had emphysema. Fibrotic septa of centrilobular emphysema contained numerous silica/silicate particles while only a few were present in adjacent normal lung tissue. In coal miners who smoked, tobacco-associated interstitial fibrosis was replaced by fibrosis caused by silica/silicate particles. Conclusion: The presence of silica/silicate particles and anthracotic pigment-laden macrophages inside the alveoli with various degrees of interstitial fibrosis indicated a new disease: coal mine dust desquamative chronic interstitial pneumonia, a precursor of both dust-related diffuse fibrosis and emphysema. In studied coal miners, fibrosis caused by smoking is insignificant in comparison with fibrosis caused by silica/silicate particles. Counting birefringent particles in the macrophages from bronchioalveolar lavage may help detect coal mine dust desquamative chronic interstitial pneumonia, and may initiate early therapy and preventive measures.

  12. Fipronil and its degradates in indoor and outdoor dust

    Science.gov (United States)

    Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Musgrove, M.; Zaugg, S.D.; Burkhardt, M.R.

    2009-01-01

    Fipronil is a potent insecticide used for control of termites, fleas, roaches, ants, and other pests. We measured fipronil, fipronil sulfide, and desulfinyl fipronil concentrations in indoor and outdoor dust from 24 residences in Austin, Texas. At least one of these three fipronil compounds was detected in every sample. Fipronil accounted for most of the total fipronil (T-fipronil; fipronil+desulfinyl fipronil+fipronil sulfide), followed by desulfinyl fipronil and fipronil sulfide. Nineteen of 24 samples of indoor dust had T-fipronil concentrations less than 270 ??g/kg; the remaining five had concentrations from 1320 to 14,200 ??g/kg. All three of the residences with a dog on which a flea-control product containing fipronil was used were among the five residences with elevated fipronil concentrations. In outdoor dust, all concentrations of T-fipronil were less than 70??g/kg with one exception (430??g/kg). For every residence, the concentration of T-fipronil in indoor dust exceeded that in outdoor dust, and the median concentration of T-fipronil was 15 times higher indoors than outdoors.

  13. Dust confinement and dust acoustic waves in a magnetized plasma

    Science.gov (United States)

    Piel, A.

    2005-10-01

    Systematic laboratory experiments on dust acoustic waves require the confinement of dust particles. Here we report on new experiments in a magnetized plasma region in front of an additional positively biased disk electrode in a background plasma which is generated in argon at 27MHz between a disk and grid electrode. The plasma diffuses through the grid along the magnetic field. The three-dimensional dust distribution is measured with a horizontal sheet of laser light and a CCD camera, which are mounted on a vertical translation stage. Depending on magnetic field and discharge current, cigar or donut-shaped dust clouds are generated, which tend to rotate about the magnetic field direction. Measurements with emissive probes show that the axial confinement of dust particles with diameters between 0.7-2 μm is achieved by a balance of ion-drag force and electric field force. Dust levitation and radial confinement is due to a strong radial electric field. Dust acoustic waves are destabilized by the ion flow or can be stimulated by a periodic bias on the disk electrode. The observed wave dispersion is compared with fluid and kinetic models of the dust acoustic wave.

  14. Martian Methane From a Cometary Source: A Hypothesis

    Science.gov (United States)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; hide

    2016-01-01

    In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.

  15. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  16. The thickness of the interplanetary collisionless shock waves

    International Nuclear Information System (INIS)

    Pinter, S.

    1980-05-01

    The thicknesses of magnetic structures of the interplanetary shock waves related to the upstream solar wind plasma parameters are studied. From this study the following results have been obtained: the measured shock thickness increases for decreasing upstream proton number density and decreases for increasing proton flux energy. The shock thickness strongly depends on the ion plasma β, i.e. for higher values of the β the thickness decreases. (author)

  17. 3rd Interplanetary Network Gamma-Ray Burst Website

    Science.gov (United States)

    Hurley, Kevin

    1998-05-01

    We announce the opening of the 3rd Interplanetary Network web site at http://ssl.berkeley.edu/ipn3/index.html This site presently has four parts: 1. A bibliography of over 3000 publications on gamma-ray bursts, 2. IPN data on all bursts triangulated up to February 1998, 3. A master list showing which spacecraft observed which bursts, 4. Preliminary IPN data on the latest bursts observed.

  18. Exploring the Dust Content of Galactic Winds with Herschel. II. Nearby Dwarf Galaxies*

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-03-01

    We present results from analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20% of the total dust mass in these galaxies resides outside of their stellar disks, but this fraction reaches ˜60% in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disk by energy inputs from on-going star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disk by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disk that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  19. Detection of cometary dust particles by atomic force microscopy

    International Nuclear Information System (INIS)

    Ruedenauer, F.G.; Fehringer, H.M.

    1995-08-01

    This report contains a collection of manuscripts written by ARCS personnell which have been used in the formulation of the instrument proposal 'Micro - Imaging Dust Analysis System (MIDAS)' for the comet orbiter of the ESA - mission ROSETTA. Since in the proposal itself the scientific problems can only be expounded in a very compressed form, this collection of manuscripts is intended to serve as a basis for extended investigations necessary in the course of the MIDAS project. (author)

  20. Gathering dust: A galaxy-wide study of dust emission from cloud complexes in NGC 300

    Science.gov (United States)

    Riener, M.; Faesi, C. M.; Forbrich, J.; Lada, C. J.

    2018-05-01

    Aims: We use multi-band observations by the Herschel Space Observatory to study the dust emission properties of the nearby spiral galaxy NGC 300. We compile a first catalogue of the population of giant dust clouds (GDCs) in NGC 300, including temperature and mass estimates, and give an estimate of the total dust mass of the galaxy. Methods: We carried out source detection with the multiwavelength source extraction algorithm getsources. We calculated physical properties, including mass and temperature, of the GDCs from five-band Herschel PACS and SPIRE observations from 100 to 500 μm; the final size and mass estimates are based on the observations at 250 μm that have an effective spatial resolution of 170 pc. We correlated our final catalogue of GDCs to pre-existing catalogues of HII regions to infer the number of GDCs associated with high-mass star formation and determined the Hα emission of the GDCs. Results: Our final catalogue of GDCs includes 146 sources, 90 of which are associated with known HII regions. We find that the dust masses of the GDCs are completely dominated by the cold dust component and range from 1.1 × 103 to 1.4 × 104 M⊙. The GDCs have effective temperatures of 13-23 K and show a distinct cold dust effective temperature gradient from the centre towards the outer parts of the stellar disk. We find that the population of GDCs in our catalogue constitutes 16% of the total dust mass of NGC 300, which we estimate to be about 5.4 × 106 M⊙. At least about 87% of our GDCs have a high enough average dust mass surface density to provide sufficient shielding to harbour molecular clouds. We compare our results to previous pointed molecular gas observations in NGC 300 and results from other nearby galaxies and also conclude that it is very likely that most of our GDCs are associated with complexes of giant molecular clouds. The catalogue is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http

  1. Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers

    DEFF Research Database (Denmark)

    Langer, Sarka; Weschler, Charles J.; Fischer, Andreas

    2010-01-01

    (diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(isobutyl) phthalate (DiBP), butyl benzyl phthalate (BBzP), di(2-ethylhexyl) phthalate (DEHP)) and three PAHs (pyrene, benz[a]anthracene (B[a]A) and benzo[a]pyrene (B[a]P)). The three PAHs and DEHP were detected in dust samples from all sites, while...... DEP. DnBP, DiBP and BBzP were detected in more than 75% of the bedrooms and more than 90% of the daycare centers. The dust mass-fractions of both phthalates and PAHs were log-normally distributed. With the exception of DEP, the mass-fractions of phthalates in dust were higher in daycare centers than...... homes: PAH mass-fractions in dust were similar in the two locations. There was no correlation among the different phthalates in either homes or daycare centers. In contrast, the PAH were correlated with one another more strongly so in homes (R-2 = 0.80-0.90) than in daycare centers (R-2 = 0...

  2. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship

    Science.gov (United States)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  3. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  4. Measuring Dust Emission from the Mojave Desert (USA) by Daily Remote-Camera Observations and Wind-Erosion Measurements: Bearing on "Unseen" Sources and Global Dust Abundance

    Science.gov (United States)

    Reynolds, R. L.; Urban, F.; Goldstein, H. L.; Fulton, R.

    2017-12-01

    A large gap in understanding the effects of atmospheric dust at all spatial scales is uncertainty about how much and whence dust is emitted annually. Digital recording of dust emission at high spatial and temporal resolution would, together with periodic flux measurements, support improved estimates of local-scale dust flux where infrastructure could support remote internet enabled cameras. Such recording would also elucidate wind-erosion dynamics when combined with meteorological data. Remote camera recording of dust-emitting settings on and around Soda Lake (Mojave Desert) was conducted every 15 minutes during daylight between 10 Nov. 2010 and 31 Dec. 2016 and images uploaded to a web server. Examination of 135,000 images revealed frequent dust events, termed "dust days" when plumes obscured mountains beyond source areas. Such days averaged 68 (sd=10) per year (2011 through 2016). We examined satellite retrievals (MODIS, GOES) for dust events during six cloudless days of highest and longest duration dust emission but none were observed. From Apr. 2000 through May 2013, aeolian sediments collected at three sites were sampled and weighed. Estimates of the emitted mass of silt- and clay-size fractions were made on the basis of measured horizontal mass flux, particle sizes of sediment in collectors, and roughly determined areas of dust generation. Over this period, nearly 4 Tg yr-1 of dust (as particulate matter flood in the basin in late Dec. 2010 that deposited flood sediment across the lake basin. Increased emission was likely related to the availability of fresh, unanchored flood sediment. Within the Mojave and Great Basin deserts of North America, many settings akin to those at Soda Lake similarly emit dust that is rarely detected in satellite retrievals. These findings strongly imply that local and regional dust emissions from western North America are far underestimated and that, by extension to relatively small dust-source areas across all drylands, global

  5. Asian Dust Storm Outbreaks: A Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, Si-Chee

    2006-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during springtime. Asian dust typically originates in desert areas far from polluted urban regions. During the transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in the mid-Pacific Ocean, etc.), as well as societal concerns (e.g., adverse health effects to humans). The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network (e.g. AERONET, SKY NET, MPLNET, etc.). Recently, many field campaigns (e.g., ACE-Asia-2001, TRACEP-2001, ADE-2002 & -2003, APEX-2001 & -2003, etc.) were designed and executed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. I will present an overview of the outbreak of Asian dust storms from space and surface observations and to address the climatic effects and societal impacts.

  6. Effect of the Global Topology of the Interplanetary Magnetic Field on the Properties of Impulsive Acceleration Processes in Distant Regions of the Earth's Magnetospheric Tail

    International Nuclear Information System (INIS)

    Grigorenko, E.E.; Zelenyi, L.M.; Fedorov, A.O.; Sauvaud, J.-A.

    2005-01-01

    The paper is devoted to a statistical study of high-speed ion beams (beamlets) observed by the Interball-1 and Interball-2 satellites in the boundary region of the plasma sheet of the geomagnetic tail and in the high-latitude auroral regions of the Earth's magnetosphere. Beamlets result from nonlinear acceleration processes occurring in the current sheet in the distant regions of the geomagnetic tail. They propagate toward the Earth along the magnetic field lines and are detected in the boundary region of the plasma sheet and near the high-latitude boundary of the plasma sheet in the auroral region in the form of short (with a duration of 1-2 min) bursts of high-energy (with energies of about several tens of keV) ions. The sizes of the latitudinal zones where the beamlets are localized in the tail and in the auroral region are determined using the epoch superposition method. The relationship between the frequency of beamlet generation in the boundary region of the plasma sheet and the prehistory of the direction of the interplanetary magnetic field (the magnitude of a clock angle) is investigated. It was established that this direction exerts a global effect on the beamlet generation frequency; moreover, it was found that the beamlet generation frequency in the midnight local time sector of the tail and at the flanks depends differently on the direction of the interplanetary magnetic field. In the midnight sector, the beamlets are observed at almost all directions of the interplanetary field, whereas the frequency of their generation at the flanks is maximal only when the interplanetary magnetic field has a large y component

  7. GIOTTO DUST IMPACT DETECTOR SYSTEM DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Dust Impact Detection System (DIDSY) consists of six independent subsystems with the primary aim of registering the impacts of all particulates of significant mass...

  8. Counterstreaming electrons in small interplanetary magnetic flux ropes

    Science.gov (United States)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  9. Identification of Dust and Ice Cloud Formation from A-Train Datasets

    Science.gov (United States)

    Russell, D. S.; Liou, K. N.

    2014-12-01

    Dust aerosols are effective ice nuclei for clouds and instances of nucleation have been well studied in laboratory experiments. We used CALIOP/CALIPSO, MODIS/Aqua, and CloudSat on the A-Train to find collocated instances of clouds characterized as water by MODIS, but contain ice water as indicated by CloudSat. The vertical profiles of CALIPSO detect the presence of dust and polluted dust near clouds. This study concentrates on high dust aerosol areas including the regions surrounding the Sahara Desert as well as South Asia including the Tibetan Plateau. These cases display the effects of dust acting as ice nuclei in the time frame between MODIS overpass and CloudSat overpass (~45 seconds). Utilizing available datasets, we then carried out radiative transfer calculations to understand spectral radiative forcing differences between water and ice clouds, particularly over snow surfaces at the Tibetan Plateau.

  10. The measurement of interplanetary scintillations in conditions of strong radio interference

    International Nuclear Information System (INIS)

    Duffett-Smith, P.J.

    1980-01-01

    Observations of interplanetary scintillations (IPS) are often severely limited by interference from man-made transmissions within the receiver pass-band. A new method of measuring IPS is described which can give useful data even in conditions of bad interference. (author)

  11. Inactivation of dust mites, dust mite allergen, and mold from carpet.

    Science.gov (United States)

    Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin

    2014-01-01

    Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.

  12. Dust modelling of fast flyby missions - Implications of in situ measurements

    Science.gov (United States)

    Carey, W. C.; McDonnell, J. A. M.

    Using the Divine approach to modelling of cometary dust distributions within the dust envelope, together with the Reference Model parameters established by the Comet Halley Environment Working Group, predicted flux and fluence values are presented for each of the Giotto Dust Impact Detection System (DIDSY) subsystems. Implications for returned DIDSY data are discussed with particular reference to mass-size distribution and particle fluence as a function of time. It is also shown that the first particle impact event recorded by any of the DIDSY subsystems is likely to be of sufficient mass to penetrate the front shield of the Giotto spacecraft.

  13. Evolution and interaction of large interplanetary streams

    International Nuclear Information System (INIS)

    Whang, Y.C.; Burlaga, L.F.

    1985-02-01

    A computer simulation for the evolution and interaction of large interplanetary streams based on multi-spacecraft observations and an unsteady, one-dimensional MHD model is presented. Two events, each observed by two or more spacecraft separated by a distance of the order of 10 AU, were studied. The first simulation is based on the plasma and magnetic field observations made by two radially-aligned spacecraft. The second simulation is based on an event observed first by Helios-1 in May 1980 near 0.6 AU and later by Voyager-1 in June 1980 at 8.1 AU. These examples show that the dynamical evolution of large-scale solar wind structures is dominated by the shock process, including the formation, collision, and merging of shocks. The interaction of shocks with stream structures also causes a drastic decrease in the amplitude of the solar wind speed variation with increasing heliocentric distance, and as a result of interactions there is a large variation of shock-strengths and shock-speeds. The simulation results shed light on the interpretation for the interaction and evolution of large interplanetary streams. Observations were made along a few limited trajectories, but simulation results can supplement these by providing the detailed evolution process for large-scale solar wind structures in the vast region not directly observed. The use of a quantitative nonlinear simulation model including shock merging process is crucial in the interpretation of data obtained in the outer heliosphere

  14. Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters

    Science.gov (United States)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2011-02-01

    We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976-2000, have analyzed 798 geomagnetic storms with D st ≤ -50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/ are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.

  15. The case study on elemental analyses of Asian dust particles by using an analytical scanning electron microscope

    International Nuclear Information System (INIS)

    Takeuchi, Jo; Masaki, Kazushige; Emoto, Yuji

    2009-01-01

    The individual particle analyses of suspended particulate matter (SPM: particles less than 10 μm in size) collected on tape filters during April 17-18, 2006, in Kawasaki, Japan, were carried out. The chemical elements present in aerosol particles were investigated by using a scanning electron microscope with an energy-dispersive X-ray spectrometer. The fraction of chemical elements detected in the particles collected on April 18, 2006, except for S, was in good agreement with that in Asian dust particles from the Loess Plateau, China. S was not detected in Asian dust particles but was detected in the particles collected on April 18, 2006. Therefore, it was concluded that the particles collected in April 18, 2006, in Kawasaki were Asian dust particles transported from the Asian continent, and the absorption of SO 2 or the coagulation of sulfate occurred during the transportation of Asian dust particles. (author)

  16. Motion of the sources for type II and type IV radio bursts and flare-associated interplanetary disturbances

    Science.gov (United States)

    Sakurai, K.; Chao, J. K.

    1974-01-01

    Shock waves are indirectly observed as the source of type II radio bursts, whereas magnetic bottles are identified as the source of moving metric type IV radio bursts. The difference between the expansion speeds of these waves and bottles is examined during their generation and propagation near the flare regions. It is shown that, although generated in the explosive phase of flares, the bottles behave quite differently from the waves and that the bottles are generally much slower than the waves. It has been suggested that the waves are related to flare-associated interplanetary disturbances which produce SSC geomagnetic storms. These disturbances may, therefore, be identified as interplanetary shock waves. The relationship among magnetic bottles, shock waves near the sun, and flare-associated disturbances in interplanetary space is briefly discussed.

  17. Development of an Electrostatic Dust Detector for use in a Tokamak Reactor

    International Nuclear Information System (INIS)

    Bader, A.; Skinner, C.H.; Roquemore, A.L.; Langish, S.

    2003-01-01

    Initial results from a novel device to detect dust particles settling on remote surfaces are presented. Dust particle inventories are a concern in next-step fusion devices. The increase in duty cycle will lead to a scale-up in the amount of particles generated by plasma material interactions. These particles will be chemically and radiologically hazardous and it will be important to establish that the in-vessel particle inventory is within regulatory limits. The detection device consists of two interlocking combs of closely spaced conductive traces on a Teflon circuit board. When a DC bias is applied impinging dust creates a transient short circuit between the traces. The increase in bias current generates a signal pulse that is counted by standard nuclear counting electronics. We present data on the response of the device in air and vacuum to carbon particles

  18. Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling

    Science.gov (United States)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-01-01

    Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

  19. Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study

    Science.gov (United States)

    Hansell, R. A.; Liou, K. N.; Ou, S. C.; Tsay, S. C.; Ji, Q.; Reid, J. S.

    2008-09-01

    Numerical simulations and sensitivity studies have been performed to assess the potential for using brightness temperature spectra from a ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the United Arab Emirates Unified Aerosol Experiment (UAE2) for detecting/retrieving mineral dust aerosol. A methodology for separating dust from clouds and retrieving the dust IR optical depths was developed by exploiting differences between their spectral absorptive powers in prescribed thermal IR window subbands. Dust microphysical models were constructed using in situ data from the UAE2 and prior field studies while composition was modeled using refractive index data sets for minerals commonly observed around the UAE region including quartz, kaolinite, and calcium carbonate. The T-matrix, finite difference time domain (FDTD), and Lorenz-Mie light scattering programs were employed to calculate the single scattering properties for three dust shapes: oblate spheroids, hexagonal plates, and spheres. We used the Code for High-resolution Accelerated Radiative Transfer with Scattering (CHARTS) radiative transfer program to investigate sensitivity of the modeled AERI spectra to key dust and atmospheric parameters. Sensitivity studies show that characterization of the thermodynamic boundary layer is crucial for accurate AERI dust detection/retrieval. Furthermore, AERI sensitivity to dust optical depth is manifested in the strong subband slope dependence of the window region. Two daytime UAE2 cases were examined to demonstrate the present detection/retrieval technique, and we show that the results compare reasonably well to collocated AERONET Sun photometer/MPLNET micropulse lidar measurements. Finally, sensitivity of the developed methodology to the AERI's estimated MgCdTe detector nonlinearity was evaluated.

  20. Exploring the dust content of galactic winds with Herschel - II. Nearby dwarf galaxies

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-06-01

    We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20 per cent of the total dust mass in these galaxies resides outside of their stellar discs, but this fraction reaches ˜60 per cent in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disc by energy inputs from ongoing star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disc by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disc that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  1. The interaction of a very large interplanetary magnetic cloud with the magnetosphere and with cosmic rays

    International Nuclear Information System (INIS)

    Lepping, R.P.; Burlaga, L.F.; Ogilvie, K.W.; Tsurutani, B.T.; Lazarus, A.J.; Evans, D.S.; Klein, L.W.

    1991-01-01

    A large interplanetary magnetic cloud has been observed in the mid-December 1982 data from ISEE 3. It is estimated to have a heliocentric radial extent of approx-gt 0.4 AU, making it one of the largest magnetic clouds yet observed at 1 AU. The magnetic field measured throughout the main portion of the cloud was fairly tightly confined to a plane as it changed direction by 174 degree while varying only moderately in magnitude. Throughout nearly the entire duration of the cloud's passage, IMP 8 was located in the Earth's dawn magnetosheath providing observations of this cloud's interaction with the bow shock and magnetopause; the cloud is shown to maintain its solar wind characteristics during the interaction. Near the end of the cloud passage, at 0806 UT on December 17, ISEE 3 (and IMP 8 at nearly the same time) observed an oblique fast forward interplanetary shock closely coincident in time with a geomagnetic storm sudden commencement. The shock, moving much faster than the cloud (radial speeds of 700 and 390 km/s, respectively, on the average), was in the process of overtaking the cloud. The index Dst decreased monotonically by ∼ 130 nT during the 2-day cloud passage by the Earth and was well correlated with the B z component of the interplanetary magnetic field. There was no significant decrease in the cosmic ray intensity recorded by ground-based neutron monitors at this time of rather strong, smoothly changing fields. However, a Forbush decrease did occur immediately after the interplanetary shock, during a period of significant field turbulence. Thus a large, smooth, interplanetary helical magnetic field configuration engulfing the Earth does not necessarily deflect cosmic rays sufficiently to cause a Forbush decrease, but there is a suggestion that such a decrease may be caused by particle scattering by turbulent magnetic fields

  2. Dust appearance rates during neutral beam injection and after oxygen bake in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Yu, J.H.; Smirnov, R.D.; Rudakov, D.L.

    2011-01-01

    A simple model to quantify source and sink terms of dust observed in tokamaks using fast visible imaging is presented. During neutral beam injection (NBI), dust appearance rates increase in front of the neutral beam port by up to a factor of 5. The images show dust streaming from the port box as previously settled dust becomes mobilized during beam injection. Following an oxygen bake and vent, the dust observation rate is a factor of 2 lower than that after a vessel entry vent with no oxygen bake. Detected dust levels decay on a shot-to-shot basis in a roughly exponential fashion, with a decay time of approximately 20 s of plasma exposure. Appearance rates of dust mass are estimated using assumed lognormal and power law functional forms for the dust size distribution. The two dust size distributions differ significantly on the amount the dust material carried by the largest particles, highlighting the need for further dust studies in order to make accurate forecasts to ITER.

  3. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.

    Science.gov (United States)

    Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng

    2013-06-01

    The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.

  4. Dust Destruction in the ISM: A Re-Evaluation of Dust Lifetimes

    Science.gov (United States)

    Jones, A. P.; Nuth, J. A., III

    2011-01-01

    There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.

  5. Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

    International Nuclear Information System (INIS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S. Y.; Rankin, R.

    2016-01-01

    On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ~1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ~1300 to 0100 LT. We then conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. Furthermore, the dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.

  6. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1983-12-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking. Six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients

  7. Potential Cislunar and Interplanetary Proving Ground Excursion Trajectory Concepts

    Science.gov (United States)

    McGuire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; MacDonald, Mark A.; McElrath, Timothy P.; Landau, Damon F.; Lantoine, Gregory; Hack, Kurt J.; Lopez, Pedro

    2016-01-01

    NASA has been investigating potential translunar excursion concepts to take place in the 2020s that would be used to test and demonstrate long duration life support and other systems needed for eventual Mars missions in the 2030s. These potential trajectory concepts could be conducted in the proving ground, a region of cislunar and near-Earth interplanetary space where international space agencies could cooperate to develop the technologies needed for interplanetary spaceflight. Enabled by high power Solar Electric Propulsion (SEP) technologies, the excursion trajectory concepts studied are grouped into three classes of increasing distance from the Earth and increasing technical difficulty: the first class of excursion trajectory concepts would represent a 90-120 day round trip trajectory with abort to Earth options throughout the entire length, the second class would be a 180-210 day round trip trajectory with periods in which aborts would not be available, and the third would be a 300-400 day round trip trajectory without aborts for most of the length of the trip. This paper provides a top-level summary of the trajectory and mission design of representative example missions of these three classes of excursion trajectory concepts.

  8. Dust-forming molecules in VY Canis Majoris (and Betelgeuse)

    OpenAIRE

    Kaminski, T.; Gottlieb, C. A.; Schmidt, M. R.; Patel, N. A.; Young, K. H.; Menten, K. M.; Brunken, S.; Muller, H. S. P.; Winters, J. M.; McCarthy, M. C.

    2013-01-01

    The formation of inorganic dust in circumstellar environments of evolved stars is poorly understood. Spectra of molecules thought to be most important for the nucleation, i.e. AlO, TiO, and TiO2, have been recently detected in the red supergiant VY CMa. These molecules are effectively formed in VY CMa and the observations suggest that non-equilibrium chemistry must be involved in their formation and nucleation into dust. In addition to exploring the recent observations of VY CMa, we briefly d...

  9. Laboratory polarization and permittivity measurements to interpret dust polarimetric observations and in-situ radar studies. Significance for Rosetta mission at 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Brouet, Yann; Hadamcik, Edith; Heggy, Essam; Hines, Dean; Lasue, Jérémie; Renard, Jean-Baptiste

    2015-08-01

    Polarimetric astronomical observations on dust clouds and regolithic surfaces require laboratory simulations on samples to provide information on properties (size distribution, porosity, refractive index) of the scattering media. Similarly, in-situ radar investigations in the solar system require laboratory studies on samples to infer physical properties (e.g. porosity, ice/dust ratio) of sub-surfaces and interiors. Recent developments are illustrated with present studies related to the Rosetta mission, which begun its rendezvous with comet 67P/Churyumov-Gerasimeko (C-G) and landed the Philae module on its nucleus in 2014.We will summarize laboratory simulations with the PROGRA2 suite of instruments that study (in the visible to near IR domain) the polarimetric properties of dust samples in microgravity conditions or on surfaces [1], with emphasis on the interpretation of polarimetric observations of C-G, during its previous perihelion passages from Earth observatories, and currently from HST [2,3]. The presence of large dust particles in the pre-perihelion coma previously inferred from remote observations agrees with Rosetta ground truth [4]. We will also present measurements on the permittivity (in the millimeter to meter domain) of various dust samples, with emphasis on porous samples [5,6]. Results provide constraints on the properties of the subsurface and interior of C-G, as explored by MIRO on Rosetta and CONSERT on Philae.Such studies are relevant for the interpretation of polarimetric observations of other dust clouds (e.g. debris disks, interplanetary dust cloud, clouds in planetary atmospheres) and surfaces (e.g. planets, moons), as well as for those of other radar characterization studies (e.g. Mars, moons, asteroids).[1] Levasseur-Regourd et al. In Polarization of stars and planetary systems, Cambridge UP, in press 2015.[2] Hadamcik et al. A&A 517 2010.[3] Hines and Levasseur-Regourd, PSS submitted 2015.[4] Schulz et al. Nature 518 2015.[5] Heggy et al

  10. AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Krupar, V.; Eastwood, J. P. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Kruparova, O.; Santolik, O.; Soucek, J., E-mail: v.krupar@imperial.ac.uk, E-mail: jonathan.eastwood@imperial.ac.uk, E-mail: ok@ufa.cas.cz, E-mail: os@ufa.cas.cz, E-mail: soucek@ufa.cas.cz [Institute of Atmospheric Physics CAS, Prague (Czech Republic); and others

    2016-05-20

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  11. Effect of cigarette smoking on the detection of small radiographic opacities in inorganic dust diseases

    International Nuclear Information System (INIS)

    Blanc, P.D.; Gamsu, G.

    1988-01-01

    Whether cigarette smoking can cause radiographic opacities indistinguishable from those due to pneumoconiosis remains controversial. The situation becomes clearer when one limits the abnormalities to those that can be standardized under the International Labour Office (ILO) classification system. The bulk of the evidence indicates that, using the ILO system, cigarette smoking alone is not associated with radiographic opacities that would be mistaken for pneumoconiosis with sufficient frequency to be of any practical importance. The effects of cigarette smoking, as a cofactor, in conjunction with occupational dust exposure depend on the type of dust. No relationship has been convincingly demonstrated for coal dust or silica. Only with asbestos exposure does there appear to be a significant cigarette smoking-associated increase in the frequency of irregular radiographic opacities. This increase does not appear to translate into a restrictive impairment in pulmonary function. The limited information available indicates that the features of asbestosis on high-resolution computed tomography are not similarly related to cigarette smoking. Additional research is needed to substantiate the relationship between smoking and occupational exposure to dust of many types, and also the possible imaging and pathophysiologic significance of their interactions. 47 references

  12. Toxigenic Fusarium spp. as determinants of trichothecene mycotoxins in settled grain dust.

    Science.gov (United States)

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Klemsdal, Sonja Sletner; Elen, Oleif; Clasen, Per-Erik; Eduard, Wijnand

    2006-12-01

    Trichothecenes are immunosuppressive mycotoxins produced mainly by Fusarium spp. and often are detected as natural contaminants of grain and other agricultural products. Exposure to trichothecenes through inhalation during grain work may represent possible health risks for grain farmers. We aimed, therefore, to investigate the level of Fusarium spp. and trichothecenes in settled grain dust collected during work on 92 Norwegian farms. Mycotoxins were determined by gas chromatography-mass spectrometry, whereas the Fusarium spp. were identified and quantified both by species-specific semiquantitative polymerase chain reaction (PCR) and by cultivation. All potential trichothecene-producing molds in the grain dust were quantified using a PCR assay specific for tri5, the gene coding for trichodiene synthase that catalyzes the first step in the trichothecene biosynthesis. We performed correlation analysis between mold-DNA and mycotoxins to assess whether the PCR-detected DNA could be used as indicators of the mycotoxins. The methodological problem of detecting small amounts of airborne mycotoxins during grain work may then be avoided. Whereas the trichothecene-producing Fusarium species in grain dust could not be identified or quantified to a sufficient extent by cultivation, all investigated Fusarium spp. could be specifically detected by PCR and quantified from the DNA agarose gel band intensities. Furthermore, we observed a strong correlation between the trichothecenes HT-2 toxin (HT-2) or T-2 toxin (T-2) and DNA specific for tri5 (r = 0.68 for HT-2 and r = 0.50 for T-2; p grain dust during work, but the use of Fusarium-DNA as indicators for trichothecenes should be used cautiously.

  13. Geochemical characterization of critical dust source regions in the American West

    Science.gov (United States)

    Aarons, Sarah M.; Blakowski, Molly A.; Aciego, Sarah M.; Stevenson, Emily I.; Sims, Kenneth W. W.; Scott, Sean R.; Aarons, Charles

    2017-10-01

    The generation, transport, and deposition of mineral dust are detectable in paleoclimate records from land, ocean, and ice, providing valuable insight into earth surface conditions and cycles on a range of timescales. Dust deposited in marine and terrestrial ecosystems can provide critical nutrients to nutrient-limited ecosystems, and variations in dust provenance can indicate changes in dust production, sources and transport pathways as a function of climate variability and land use change. Thus, temporal changes in locations of dust source areas and transport pathways have implications for understanding interactions between mineral dust, global climate, and biogeochemical cycles. This work characterizes dust from areas in the American West known for dust events and/or affected by increasing human settlement and livestock grazing during the last 150 years. Dust generation and uplift from these dust source areas depends on climate and land use practices, and the relative contribution of dust has likely changed since the expansion of industrialization and agriculture into the western United States. We present elemental and isotopic analysis of 28 potential dust source area samples analyzed using Thermal Ionization Mass Spectrometry (TIMS) for 87Sr/86Sr and 143Nd/144Nd composition and Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) for 176Hf/177Hf composition, and ICPMS for major and trace element concentrations. We find significant variability in the Sr, Nd, and Hf isotope compositions of potential source areas of dust throughout western North America, ranging from 87Sr/86Sr = 0.703699 to 0.740236, εNd = -26.6 to 2.4, and εHf = -21.7 to -0.1. We also report differences in the trace metal and phosphorus concentrations in the geologic provinces sampled. This research provides an important resource for the geochemical tracing of dust sources and sinks in western North America, and will aid in modeling the biogeochemical impacts of increased

  14. Detection and Symbol Synchronization for Multiple-bit Per Photon Optical Communications

    Science.gov (United States)

    Marshall, W. K.

    1985-01-01

    Methods of detection and synchronization in a highly efficient direct detection optical communication system are reported. Results of measurements on this moderate-rate demonstration system capable of transmitting 2.5 bits/detected photon in low-background situations indicate that symbol slot synchronization is not a problem, and that a simple symbol detection scheme is adequate for this situation. This system is a candidate for interplanetary optical communications.

  15. A SPITZER SURVEY FOR DUST IN TYPE IIn SUPERNOVAE

    International Nuclear Information System (INIS)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This paper presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from 10 targets (∼15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at ∼1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable progenitors.

  16. The Origin and Evolution of Interstellar Dust in the Local and High-redshift Universe

    Science.gov (United States)

    Dwek, Eliahu

    2012-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that approx. 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of sN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history .

  17. HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Roberge, A. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Kamp, I. [Kapteyn Astronomical Institute, University of Groningen, 9700 AV Groningen (Netherlands); Montesinos, B. [Departamento de Astrofisica, Centro de Astrobiologia (INTA-CSIC), ESAC Campus, PO Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Dent, W. R. F. [ALMA, Avda Apoquindo 3846, Piso 19, Edificio Alsacia, Las Condes, Santiago (Chile); Meeus, G.; Eiroa, C. [Departmento Fisica Teorica, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Donaldson, J. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Olofsson, J. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117, Heidelberg (Germany); Moor, A. [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary); Augereau, J.-C.; Thi, W.-F. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble, UMR 5274, F-38041, Grenoble (France); Howard, C.; Sandell, G. [SOFIA-USRA, NASA Ames Research Center, Building N232, PO Box 1, Moffett Field, CA 94035 (United States); Ardila, D. R. [NASA Herschel Science Center, California Institute of Technology, 1200 E. California Blvd., Mail Stop 220-6, Pasadena, CA 91125 (United States); Woitke, P., E-mail: Aki.Roberge@nasa.gov [University of Vienna, Department of Astronomy, Tuerkenschanzstr. 17, A-1180, Vienna (Austria)

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the ''Gas in Protoplanetary Systems'' (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 {mu}m; 49 Cet is significantly extended in the 70 {mu}m image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 {mu}m and [C II] 158 {mu}m. The C II line was detected at the 5{sigma} level-the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  18. The structure of plasma-density irregularities in the interplanetary medium

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1975-01-01

    The conflict in the literature as to whether the plasma-density spatial spectrum of the irregularities in the interplanetary medium is of Gaussian or power law form is discussed. Particular attention is paid to the interplanetary scintillation effects ascribed to these irregularities. It is shown that the phase-screen theory of scintillations can be invoked to devise a set of critical tests which provide a means of discriminating between the conflicting hypotheses. Differences in the predicted behaviour of the single sensor temporal spectra of the scintillations for the two irregularity forms provide the main tests of the conflicting hypotheses. However, it is also shown that the two hypotheses lead to different forms of the variation of scintillation index with the observing frequency and the solar elongation of the scintillating source. Consideration is given to the optimum conditions for observing the Fourier and Bessel temporal spectra modulation which is due to the Fresnel filtering of the spatial spectrum. Determination of irregularity shape, orientation and motion in terms of this modulation is also discussed. (author)

  19. ANALYSIS OF SOIL AND DUST SAMPLES FOR POLYCHLORINATED BIPHENYLS BY ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

    Science.gov (United States)

    An inhibition enzyme-linked immunosorbent assay (ELISA) was used to determine polychlorinated biphenyls (PCBs) in house dust and soil. Soil and house dust samples were analyzed for PCB by both gas chromatography/electron capture detection (GC/ECD) and ELISA methods. A correlati...

  20. Measuring the incombustible content of mine dust using backscatter of low energy gamma rays

    International Nuclear Information System (INIS)

    Stewart, R.F.; Martin, J.W.

    1970-01-01

    Low energy gamma radiation directionally applied in a method, and by an adjustable apparatus to a layer of mine dust produces scattered gammas whose reflected radiation detected at a predetermined distance from the mine dust acts to cause the generation of an electrical control input for a meter indicating the incombustible content of the mine dust substantially independently of the effects on such indicating which are normally due to its bulk density and any moisture content thereof. (U.S.)

  1. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  2. First Taste of Hot Channel in Interplanetary Space

    Science.gov (United States)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.; Li, G.; Wang, Y. M.

    2015-04-01

    A hot channel (HC) is a high temperature (˜10 MK) structure in the inner corona first revealed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Eruptions of HCs are often associated with flares and coronal mass ejections (CMEs). Results of previous studies have suggested that an HC is a good proxy for a magnetic flux rope (MFR) in the inner corona as well as another well known MFR candidate, the prominence-cavity structure, which has a normal coronal temperature (˜1-2 MK). In this paper, we report a high temperature structure (HTS, ˜1.5 MK) contained in an interplanetary CME induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R ⊙ , and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds, which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit expansion of the HC and cool it down to a low temperature.

  3. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.

    2002-01-01

    A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential

  4. Using ACE Observations of Interplanetary Particles and Magnetic Fields as Possible Contributors to Variations Observed at Van Allen Probes during Major events in 2013

    Science.gov (United States)

    Armstrong, T. P.; Manweiler, J. W.; Gerrard, A. J.; Gkioulidou, M.; Lanzerotti, L. J.; Patterson, J. D.

    2013-12-01

    Observations from ACE EPAM including energy spectra of protons, helium, and oxygen will be prepared for coordinated use in estimating the direct and indirect access of energetic particles to inner and outer geomagnetic trapping zones. Complete temporal coverage from ACE at 12 seconds, 5 minutes, 17 minutes, hourly and daily cadences will be used to catalog interplanetary events arriving at Earth including interplanetary magnetic field sector boundaries, interplanetary shocks, and interplanetary coronal mass ejections, ICMEs. The first 6 months of 2013 have included both highly disturbed times, March 17 and May 22, and extended quiet periods of little or no variations. Among the specific questions that ACE and Van Allen Probes coordinated observations may aid in resolving are: 1. How much, if any, direct capture of interplanetary energetic particles occurs and what conditions account for it? 2. How much influence do interplanetary field and particle variations have on energization and/or loss of geomagnetically trapped populations? The poster will also present important links and describe methods and important details of access to numerically expressed ACE EPAM and Van Allen Probes RBSPICE observations that can be flexibly and easily accessed via the internet for student and senior researcher use.

  5. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  6. The Role of Jet Adjustment Processes in Subtropical Dust Storms

    Science.gov (United States)

    Pokharel, Ashok Kumar; Kaplan, Michael L.; Fiedler, Stephanie

    2017-11-01

    Meso-α/β/γ scale atmospheric processes of jet dynamics responsible for generating Harmattan, Saudi Arabian, and Bodélé Depression dust storms are analyzed with observations and high-resolution modeling. The analysis of the role of jet adjustment processes in each dust storm shows similarities as follows: (1) the presence of a well-organized baroclinic synoptic scale system, (2) cross mountain flows that produced a leeside inversion layer prior to the large-scale dust storm, (3) the presence of thermal wind imbalance in the exit region of the midtropospheric jet streak in the lee of the respective mountains shortly after the time of the inversion formation, (4) dust storm formation accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-β scale adjustment process, (5) substantial low-level turbulence kinetic energy (TKE), and (6) emission and uplift of mineral dust in the lee of nearby mountains. The thermally forced meso-γ scale adjustment processes, which occurred in the canyons/small valleys, may have been the cause of numerous observed dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and TKE generation. This study points to the importance of meso-β to meso-γ scale adjustment processes at low atmospheric levels due to an imbalance within the exit region of an upper level jet streak for the formation of severe dust storms. The low level TKE, which is one of the prerequisites to deflate the dust from the surface, cannot be detected with the low resolution data sets; so our results show that a high spatial resolution is required for better representing TKE as a proxy for dust emission.

  7. Exploring Dust around HD 142527 down to 0.″025 (4 au) Using SPHERE/ZIMPOL

    Energy Technology Data Exchange (ETDEWEB)

    Avenhaus, H.; Quanz, S. P.; Schmid, H. M.; Szulágyi, J.; Bazzon, A. [ETH Zurich, Institute for Astronomy, Wolfgang-Pauli-Str. 27, CH-8093, Zurich (Switzerland); Dominik, C.; Stolker, T. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Ginski, C.; De Boer, J. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Garufi, A. [Universidad Autonónoma de Madrid, Dpto. Física Teórica, Módulo 15, Facultad de Ciencias, Campus de Cantoblanco, E-28049 Madrid (Spain); Zurlo, A. [Millennium Nucleus “Protoplanetary Disk”, Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Hagelberg, J.; Benisty, M.; Ménard, F. [Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Henning, T. [Max-Planck-Institut fur Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Meyer, M. R. [Department of Astronomy, University of Michigan, 1085 S. University, Ann Arbor, MI 48109 (United States); Baruffolo, A. [INAF Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Beuzit, J. L. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Costille, A.; Dohlen, K., E-mail: havenhaus@gmail.com [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); and others

    2017-07-01

    We have observed the protoplanetary disk of the well-known young Herbig star HD 142527 using ZIMPOL polarimetric differential imaging with the very broad band (∼600–900 nm) filter. We obtained two data sets in 2015 May and 2016 March. Our data allow us to explore dust scattering around the star down to a radius of ∼0.″025 (∼4 au). The well-known outer disk is clearly detected at higher resolution than before and shows previously unknown substructures, including spirals going inward into the cavity. Close to the star, dust scattering is detected at high signal-to-noise ratio, but it is unclear whether the signal represents the inner disk, which has been linked to the two prominent local minima in the scattering of the outer disk that are interpreted as shadows. An interpretation of an inclined inner disk combined with a dust halo is compatible with both our and previous observations, but other arrangements of the dust cannot be ruled out. Dust scattering is also present within the large gap between ∼30 and ∼140 au. The comparison of the two data sets suggests rapid evolution of the inner regions of the disk, potentially driven by the interaction with the close-in M-dwarf companion, around which no polarimetric signal is detected.

  8. Food allergens in mattress dust in Norwegian homes - a potentially important source of allergen exposure.

    Science.gov (United States)

    Bertelsen, R J; Faeste, C K; Granum, B; Egaas, E; London, S J; Carlsen, K-H; Lødrup Carlsen, K C; Løvik, M

    2014-01-01

    Sensitization to food allergens and food allergic reactions are mostly caused by ingesting the allergen, but can also occur from exposure via the respiratory tract or the skin. Little is known about exposure to food allergens in the home environment. The objective of this study was firstly to describe the frequency of detection of allergens from fish, egg, milk, and peanut in mattress dust collected from homes of 13-year-old adolescents and secondly to identify home characteristics associated with the presence of food allergen contamination in dust. Food allergens were measured by dot blot analysis in mattress dust from 143 homes in Oslo, Norway. We analysed associations between home characteristics (collected by parental questionnaires and study technicians) and food allergens by multivariate regression models. Fish allergen was detected in 46%, peanut in 41%, milk in 39%, and egg allergen in 22% of the mattress dust samples; only three samples contained none of these allergens. All four food allergens were more frequently detected in mattresses in small dwellings (Food allergens occurred frequently in beds in Norwegian homes, with dwelling size and proximity of kitchen and bedroom as the most important determinants. Due to the amount of time children spent in the bedroom, mattress dust may be an important source of exposure to food allergens. © 2013 John Wiley & Sons Ltd.

  9. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  10. Saharan dust contribution to PM levels: The EC LIFE+ DIAPASON project

    Science.gov (United States)

    Gobbi, G. P.; Wille, H.; Sozzi, R.; Angelini, F.; Barnaba, F.; Costabile, F.; Frey, S.; Bolignano, A.; Di Giosa, A.

    2012-04-01

    The contribution of Saharan-dust advections to both daily and annual PM average values can be significant all over Southern Europe. The most important effects of dust on the number of PM exceedances are mostly observed in polluted areas and large cities. While a wide literature exists documenting episodes of Saharan dust transport towards the Euro-Mediterranean region and Europe in general, a limited number of studies are still available providing statistically significant results on the impact of Saharan dust on the particulate matter loads over the continent. A four-year (2001-2004) study performed in Rome (Italy) found these events to contribute to the average ground PM10 with about 15±10 µg/m3 on about 17% of the days in a year. Since the PM10 yearly average of many traffic stations in Rome is close to 40 μg/m3, these events can cause the PM10 concentration to exceed air quality limit values (50 μg/m3 as daily average) set by the EU Air Quality Directive 2008/50/EC. Although the European legislation allows Member States to subtract the contribution of natural sources before counting PM10 exceedances, definition of an optimal methodology to quantitatively assess such contribution is still in progress. On the basis of the current European Guidelines on the assessment of natural contributions to PM, the DIAPASON project ("Desert-dust Impact on Air quality through model-Predictions and Advanced Sensors ObservatioNs", recently funded under the EC LIFE+ program) has been formulated to provide a robust, user-oriented methodology to assess the presence of desert dust and its contribution to PM levels. To this end, in addition to satellite-based data and model forecasts, the DIAPASON methodology will employ innovative and affordable technologies, partly prototyped within the project itself, as an operational Polarization Lidar-Ceilometer (laser radar) capable of detecting and profiling dust clouds from the ground up to 10 km altitude. The DIAPASON Project (2011

  11. DETECTION OF REMNANT DUST CLOUD ASSOCIATED WITH THE 2007 OUTBURST OF 17P/HOLMES

    International Nuclear Information System (INIS)

    Ishiguro, Masateru; Kim, Yoonyoung; Kwon, Yuna G.; Sarugaku, Yuki; Kuroda, Daisuke; Maehara, Hiroyuki; Hanayama, Hidekazu; Takahashi, Jun; Terai, Tsuyoshi; Usui, Fumihiko; Vaubaillon, Jeremie J.; Morokuma, Tomoki; Kobayashi, Naoto; Watanabe, Jun-ichi

    2016-01-01

    This article reports a new optical observation of 17P/Holmes one orbital period after the historical outburst event in 2007. We detected not only a common dust tail near the nucleus but also a long narrow structure that extended along the position angle 274.°6 ± 0.°1 beyond the field of view (FOV) of the Kiso Wide Field Camera, i.e., >0.°2 eastward and >2.°0 westward from the nuclear position. The width of the structure decreased westward with increasing distance from the nucleus. We obtained the total cross section of the long extended structure in the FOV, C FOV  = (2.3 ± 0.5) × 10 10 m 2 . From the position angle, morphology, and mass, we concluded that the long narrow structure consists of materials ejected during the 2007 outburst. On the basis of the dynamical behavior of dust grains in the solar radiation field, we estimated that the long narrow structure would be composed of 1 mm–1 cm grains having an ejection velocity of >50 m s −1 . The velocity was more than one order of magnitude faster than that of millimeter–centimeter grains from typical comets around a heliocentric distance r h of 2.5 AU. We considered that sudden sublimation of a large amount of water-ice (≈10 30 mol s −1 ) would be responsible for the high ejection velocity. We finally estimated a total mass of M TOT  = (4–8) × 10 11 kg and a total kinetic energy of E TOT  = (1–6) × 10 15 J for the 2007 outburst ejecta, which are consistent with those of previous studies that were conducted soon after the outburst

  12. Radio emission from coronal and interplanetary shocks

    International Nuclear Information System (INIS)

    Cane, H.V.

    1987-01-01

    Observational data on coronal and interplanetary (IP) type II burst events associated with shock-wave propagation are reviewed, with a focus on the past and potential future contributions of space-based observatories. The evidence presented by Cane (1983 and 1984) in support of the hypothesis that the coronal (metric) and IP (kilometric) bursts are due to different shocks is summarized, and the fast-drift kilometric events seen at the same time as metric type II bursts (and designated shock-accelerated or shock-associated events) are characterized. The need for further observations at 0.5-20 MHz is indicated. 20 references

  13. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  14. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant.

    Science.gov (United States)

    Camplani, M; Malizia, A; Gelfusa, M; Barbato, F; Antonelli, L; Poggi, L A; Ciparisse, J F; Salgado, L; Richetta, M; Gaudio, P

    2016-01-01

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  15. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  16. A Spitzer Survey for Dust in Type IIn Supernovae

    Science.gov (United States)

    Fox, Ori D.; Chevalier, Roger A.; Skrutskie, Michael F.; Soderberg, Alicia M.; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Smith, Nathan; Steele, Thea N.

    2011-01-01

    Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (greater than 100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (less than 10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days postdiscovery. The detection of late-time emission from ten targets (approximately 15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at approximately 1000-2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.

  17. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    Science.gov (United States)

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  18. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  19. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the

  20. Synergistic Use of Remote Sensing and Modeling for Tracing Dust Storms in the Mediterranean

    Directory of Open Access Journals (Sweden)

    D. G. Kaskaoutis

    2012-01-01

    Full Text Available This study focuses on the detection of the dust source region and monitoring of the transport of the dust plume from its primary outflow to final deposition. The application area is the Sahara desert and the eastern Mediterranean, where two dust events occurred during the period 4–6 February 2009, an unusual event for a winter period. The Aqua-MODIS and OMI observations clearly define the spatial distribution of the dust plumes, while the CALIPSO observations of total attenuated backscatter (TAB at 532 nm, depolarization ratio (DR, and attenuated color ratio (1064/532 nm on 5 February 2009 provide a clear view and vertical structure of the dust-laden layer. The dust source region is defined to be near the Chad-Niger-Libyan borders, using satellite observations and model (DREAM output. This dust plume is vertically extended up to 2.5 km and is observed as a mass plume of dust from surface level to that altitude, where the vertical variation of TAB (0.002 to 0.2 and DR (0.2–0.5 implies dust-laden layer with non-spherical particles. CALIPSO profiles show that after the dust plume reached at its highest level, the dust particles start to be deposited over the Mediterranean and the initial dust plume was strongly attenuated, while features of dust were limited below about 1–1.5 km for latitudes northern of ~36° (Greek territory.

  1. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H ...

    Indian Academy of Sciences (India)

    E). We also study the effect of vertical component of interplanetary magnetic field (IMF) on the variation of the magnitude of H component during storm time of April, July and. November 2004. Results show that before sudden storm commencement. (SSC) time magnitude of H component and IMF show smooth variation but.

  2. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    Science.gov (United States)

    Hoard, D.W.; Debes, John H.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin

    2013-01-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks. It is possible that the current census of white dwarfs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The white dwarf dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.

  3. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    Science.gov (United States)

    Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-10-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar/space physics and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. Although the effect of the twist on the behavior of MFRs had been widely studied in observations, theory, modeling, and numerical simulations, it is still unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably overestimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about 0.6l/R radians, where l/R is the aspect ratio of a MFR, with a cutoff at about 12π radians AU-1, (2) most of them are significantly larger than 2.5π radians but well bounded by 2l/R radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.

  4. Searching for Biosignatures in Exoplanetary Impact Ejecta.

    Science.gov (United States)

    Cataldi, Gianni; Brandeker, Alexis; Thébault, Philippe; Singer, Kelsi; Ahmed, Engy; de Vries, Bernard L; Neubeck, Anna; Olofsson, Göran

    2017-08-01

    With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20 km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future. Key Words: Biosignatures-Exoplanets-Impacts-Interplanetary

  5. Radio Emissions from Electrical Activity in Martian Dust Storms

    Science.gov (United States)

    Majid, W.; Arabshahi, S.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, event rate, and the strength of the generated electric fields. The detection and characterization of electric activity in Martian dust storms has important implications for habitability, and preparations for human exploration of the red planet. Furthermore, electrostatic discharges may be linked to local chemistry and plays an important role in the predicted global electrical circuit. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the Deep Space Network (DSN) is the only facility in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity from large scale convective dust storms at Mars. We will describe a newly inaugurated program at NASA's Madrid Deep Space Communication Complex to carry out a long-term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The ground-based detections will also have important implications for the design of a future instrument that could make similar in-situ measurements from orbit or from the surface of Mars, with far greater sensitivity and duty cycle, opening up a new window in our understanding of the Martian environment.

  6. EISCAT measurements of solar wind velocity and the associated level of interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    R. A. Fallows

    2002-09-01

    Full Text Available A relative scintillation index can be derived from EISCAT observations of Interplanetary Scintillation (IPS usually used to study the solar wind velocity. This provides an ideal opportunity to compare reliable measurements of the solar wind velocity derived for a number of points along the line-of-sight with measurements of the overall level of scintillation. By selecting those occasions where either slow- or fast-stream scattering was dominant, it is shown that at distances from the Sun greater than 30 RS , in both cases the scintillation index fell with increasing distance as a simple power law, typically as R-1.7. The level of scintillation for slow-stream scattering is found to be 2.3 times the level for fast-stream scattering.Key words. Interplanetary physics (solar wind plasma

  7. Evidence of scattering effects on the sizes of interplanetary Type III radio bursts

    Science.gov (United States)

    Steinberg, J. L.; Hoang, S.; Dulk, G. A.

    1985-01-01

    An analysis is conducted of 162 interplanetary Type III radio bursts; some of these bursts have been observed in association with fast electrons and Langmuir wave events at 1 AU and, in addition, have been subjected to in situ plasma parameter measurements. It is noted that the sizes of burst sources are anomalously large, compared to what one would anticipate on the basis of the interplanetary plasma density distribution, and that the variation of source size with frequency, when compared with the plasma frequency variation measured in situ, implies that the source sizes expand with decreasing frequency to fill a cone whose apex is at the sun. It is also found that some local phenomenon near the earth controls the apparent size of low frequency Type III sources.

  8. A COOL DUST FACTORY IN THE CRAB NEBULA: A HERSCHEL STUDY OF THE FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, H. L.; Clark, C. J. R.; Gomez, E. L.; Gear, W. K. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Krause, O.; Besel, M.-A.; Bouwman, J.; Henning, Th. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Matsuura, M. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Rho, J. [SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, MS 232, Moffett Field, CA 94035 (United States); Ivison, R. J.; Sibthorpe, B. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Polehampton, E. T. [Space Science and Technology Department, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX (United Kingdom)

    2012-11-20

    Whether supernovae are major sources of dust in galaxies is a long-standing debate. We present infrared and submillimeter photometry and spectroscopy from the Herschel Space Observatory of the Crab Nebula between 51 and 670 {mu}m as part of the Mass Loss from Evolved StarS program. We compare the emission detected with Herschel with multiwavelength data including millimeter, radio, mid-infrared, and archive optical images. We carefully remove the synchrotron component using the Herschel and Planck fluxes measured in the same epoch. The contribution from line emission is removed using Herschel spectroscopy combined with Infrared Space Observatory archive data. Several forbidden lines of carbon, oxygen, and nitrogen are detected where multiple velocity components are resolved, deduced to be from the nitrogen-depleted, carbon-rich ejecta. No spectral lines are detected in the SPIRE wavebands; in the PACS bands, the line contribution is 5% and 10% at 70 and 100 {mu}m and negligible at 160 {mu}m. After subtracting the synchrotron and line emission, the remaining far-infrared continuum can be fit with two dust components. Assuming standard interstellar silicates, the mass of the cooler component is 0.24{sup +0.32} {sub -0.08} M {sub Sun} for T = 28.1{sup +5.5} {sub -3.2} K. Amorphous carbon grains require 0.11 {+-} 0.01 M {sub Sun} of dust with T = 33.8{sup +2.3} {sub -1.8} K. A single temperature modified blackbody with 0.14 M {sub Sun} and 0.08 M {sub Sun} for silicate and carbon dust, respectively, provides an adequate fit to the far-infrared region of the spectral energy distribution but is a poor fit at 24-500 {mu}m. The Crab Nebula has condensed most of the relevant refractory elements into dust, suggesting the formation of dust in core-collapse supernova ejecta is efficient.

  9. The origin of low mass particles within and beyond the dust coma envelopes of Comet Halley

    Science.gov (United States)

    Simpson, J. A.; Rabinowitz, D.; Tuzzolino, A. J.; Ksanfomality, L. V.; Sagdeev, R. Z.

    1987-01-01

    Measurements from the Dust Counter and Mass Analyzer (DUCMA) instruments on VEGA-1 and -2 revealed unexpected fluxes of low mass (up to 10 to the minus 13th power g) dust particles at very great distances from the nucleus (300,000 to 600,000 km). These particles are detected in clusters (10 sec duration), preceded and followed by relatively long time intervals during which no dust is detected. This cluster phenomenon also occurs inside the envelope boundaries. Clusters of low mass particles are intermixed with the overall dust distribution throughout the coma. The clusters account for many of the short-term small-scale intensity enhancements previously ascribed to microjets in the coma. The origin of these clusters appears to be emission from the nucleus of large conglomerates which disintegrate in the coma to yield clusters of discrete, small particles continuing outward to the distant coma.

  10. Simulation of W dust transport in the KSTAR tokamak, comparison with fast camera data

    Directory of Open Access Journals (Sweden)

    A. Autricque

    2017-08-01

    Full Text Available In this paper, dust transport in tokamak plasmas is studied through both experimental and modeling aspects. Image processing routines allowing dust tracking on CCD camera videos are presented. The DUMPRO (DUst Movie PROcessing code features a dust detection method and a trajectory reconstruction algorithm. In addition, a dust transport code named DUMBO (DUst Migration in a plasma BOundary is briefly described. It has been developed at CEA in order to simulate dust grains transport in tokamaks and to evaluate the contribution of dust to the impurity inventory of the plasma. Like other dust transport codes, DUMBO integrates the Orbital Motion Limited (OML approach for dust/plasma interactions modeling. OML gives direct expressions for plasma ions and electrons currents, forces and heat fluxes on a dust grain. The equation of motion is solved, giving access to the dust trajectory. An attempt of model validation is made through comparison of simulated and measured trajectories on the 2015 KSTAR dust injection experiment, where W dust grains were successfully injected in the plasma using a gun-type injector. The trajectories of the injected particles, estimated using the DUMPRO routines applied on videos from the fast CCD camera in KSTAR, show two distinct general dust behaviors, due to different dust sizes. Simulations were made with DUMBO to match the measurements. Plasma parameters were estimated using different diagnostics during the dust injection experiment plasma discharge. The experimental trajectories show longer lifetimes than the simulated ones. This can be due to the substitution of a boiling/sublimation point to the usual vaporization/sublimation cooling, OML limitations (eventual potential barriers in the vicinity of a dust grain are neglected and/or to the lack of a vapor shielding model in DUMBO.

  11. Detection and monitoring of two dust storm events by multispectral modis images.

    Digital Repository Service at National Institute of Oceanography (India)

    Mehta P.S.; Kunte, P.D.

    of Oman, over Arabian Sea to the coast of Pakistan. The dust storm lasted over the Arabian Sea till 30th March. MODIS sensors on both Terra and Aqua Satellites captured images of both events. From the difference in emissive/transmissive nature...

  12. Pulmonary function evaluations of dogs exposed to uranium ore dust

    International Nuclear Information System (INIS)

    Loscutoff, S.M.; Buschbom, R.L.; Palmer, R.F.; Cross, F.T.

    1980-01-01

    Pulmonary function evaluations were conducted on dogs exposed to carnotite uranium ore dust. Significant changes were detected in the slope of the single-breath N 2 washout curve, suggesting an uneven distribution of ventilation

  13. Climate change implications and use of early warning systems for global dust storms

    Science.gov (United States)

    Harriman, Lindsey M.

    2014-01-01

    With increased changes in land cover and global climate, early detection and warning of dust storms in conjunction with effective and widespread information broadcasts will be essential to the prevention and mitigation of future risks and impacts. Human activities, seasonal variations and long-term climatic patterns influence dust storms. More research is needed to analyse these factors of dust mobilisation to create more certainty for the fate of vulnerable populations and ecosystems in the future. Early warning and communication systems, when in place and effectively implemented, can offer some relief to these vulnerable areas. As an issue that affects many regions of the world, there is a profound need to understand the potential changes and ultimately create better early warning systems for dust storms.

  14. Solar sail time-optimal interplanetary transfer trajectory design

    International Nuclear Information System (INIS)

    Gong Shengpin; Gao Yunfeng; Li Junfeng

    2011-01-01

    The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable. A solar sail is a method of propulsion that does not consume fuel. Transfer time is one of the most pressing problems of solar sail transfer trajectory design. This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius. The optimal control law is derived from the principle of maximization. An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables, which are normalized within a unit sphere. The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit. A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories. For the cases where no time-optimal transfer trajectories exist, first-order necessary conditions of the optimal control are proposed to obtain feasible solutions. The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration. For a solar sail with a small lightness number, the transfer time may be evaluated analytically for a three-phase transfer trajectory. The analytical results are compared with previous results and the associated numerical results. The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.

  15. Building an industry-wide occupational exposure database for respirable mineral dust - experiences from the IMA dust monitoring programme

    International Nuclear Information System (INIS)

    Houba, Remko; Jongen, Richard; Vlaanderen, Jelle; Kromhout, Hans

    2009-01-01

    Building an industry-wide database with exposure measurements of respirable mineral dust is a challenging operation. The Industrial Minerals Association (IMA-Europe) took the initiative to create an exposure database filled with data from a prospective and ongoing dust monitoring programme that was launched in 2000. More than 20 industrial mineral companies have been collecting exposure data following a common protocol since then. Recently in 2007 ArboUnie and IRAS evaluated the quality of the collected exposure data for data collected up to winter 2005/2006. The data evaluated was collected in 11 sampling campaigns by 24 companies at 84 different worksites and considered about 8,500 respirable dust measurements and 7,500 respirable crystalline silica. In the quality assurance exercise four criteria were used to evaluate the existing measurement data: personal exposure measurements, unique worker identity, sampling duration not longer than one shift and availability of a limit of detection. Review of existing exposure data in the IMA dust monitoring programme database showed that 58% of collected respirable dust measurements and 62% of collected respirable quartz could be regarded as 'good quality data' meeting the four criteria mentioned above. Only one third of the measurement data included repeated measurements (within a sampling campaign) that would allow advanced statistical analysis incorporating estimates of within- and between-worker variability in exposure to respirable mineral dust. This data came from 7 companies comprising measurements from 23 sites. Problematic data was collected in some specific countries and to a large extent this was due to local practices and legislation (e.g. allowing 40-h time weighted averages). It was concluded that the potential of this unique industry-wide exposure database is very high, but that considerable improvements can be made. At the end of 2006 relatively small but essential changes were made in the dust monitoring

  16. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    Science.gov (United States)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  17. DUST-BATHING BEHAVIORS OF AFRICAN HERBIVORES AND THE POTENTIAL RISK OF INHALATIONAL ANTHRAX.

    Science.gov (United States)

    Barandongo, Zoe R; Mfune, John K E; Turner, Wendy C

    2018-01-01

    :  Anthrax in herbivorous wildlife and livestock is generally assumed to be transmitted via ingestion or inhalation of Bacillus anthracis spores. Although recent studies have highlighted the importance of the ingestion route for anthrax transmission, little is known about the inhalational route in natural systems. Dust bathing could aerosolize soilborne pathogens such as B. anthracis, exposing dust-bathing individuals to inhalational infections. We investigated the potential role of dust bathing in the transmission of inhalational anthrax to herbivorous wildlife in Etosha National Park, Namibia, an area with endemic seasonal anthrax outbreaks. We 1) cultured soils from dust-bathing sites for the presence and concentration of B. anthracis spores, 2) monitored anthrax carcass sites, the locations with the highest B. anthracis concentrations, for evidence of dust bathing, including a site where a zebra died of anthrax on a large dust bath, and 3) characterized the ecology and seasonality of dust bathing in plains zebra ( Equus quagga), blue wildebeest ( Connochaetes taurinus), and African savanna elephant ( Loxodonta africana) using a combination of motion-sensing camera traps and direct observations. Only two out of 83 dust-bath soils were positive for B. anthracis, both with low spore concentrations (≤20 colony-forming units per gram). We also detected no evidence of dust baths occurring at anthrax carcass sites, perhaps due to carcass-induced changes in soil composition that may deter dust bathing. Finally, despite observing some seasonal variation in dust bathing, preliminary evidence suggests that the seasonality of dust bathing and anthrax mortalities are not correlated. Thus, although dust bathing creates a dramatic cloud of aerosolized soil around an individual, our microbiologic, ecologic, and behavioral results in concert demonstrate that dust bathing is highly unlikely to transmit inhalational anthrax infections.

  18. In-situ detection of micron-sized dust particles in near-Earth space

    Science.gov (United States)

    Gruen, E.; Zook, H. A.

    1985-01-01

    In situ detectors for micron sized dust particles based on the measurement of impact ionization have been flown on several space missions (Pioneer 8/9, HEOS-2 and Helios 1/2). Previous measurements of small dust particles in near-Earth space are reviewed. An instrument is proposed for the measurement of micron sized meteoroids and space debris such as solid rocket exhaust particles from on board an Earth orbiting satellite. The instrument will measure the mass, speed, flight direction and electrical charge of individually impacting debris and meteoritic particles. It is a multicoincidence detector of 1000 sq cm sensitive area and measures particle masses in the range from 10 to the -14th power g to 10 to the -8th power g at an impact speed of 10 km/s. The instrument is lightweight (5 kg), consumes little power (4 watts), and requires a data sampling rate of about 100 bits per second.

  19. 2-methylanthraquinone as a marker of occupational exposure to teak wood dust in boatyards.

    Science.gov (United States)

    Gori, Giampaolo; Carrieri, Mariella; Scapellato, Maria Luisa; Parvoli, Giorgio; Ferrara, Daniela; Rella, Rocco; Sturaro, Alberto; Bartolucci, Giovanni Battista

    2009-01-01

    A new gas chromatographic/mass spectrometric (GC/MS) method was developed to detect 2-methylanthraquinone (2-MeA) in wood dust. 2-MeA is present in teak wood (a suspected human carcinogen) but not in oak, beech, mahogany, birch, ash or pine. The method involved collection of workplace dust on filters and extraction of 2-MeA with methanol and GC/MS analysis. The method was tested on teak wood dust samples (n = 43) collected on polyvinylchloride membrane filters during various work operations in four small factories making furniture and fittings for leisure craft and boatyards (air teak wood dust concentration: range 0.32-14.32 mg m(-3)). A high correlation coefficient for the content of 2-MeA versus teak dust was obtained (logarithmic correlation: y = 1.5308x + 0.0998, r = 0.9215). Determination of airborne 2-MeA is a useful technique to confirm occupational exposure to teak wood dust.

  20. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    Science.gov (United States)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free

  1. THE ORIGIN OF DUST IN EARLY-TYPE GALAXIES AND IMPLICATIONS FOR ACCRETION ONTO SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Paul [Department of Astronomy and Center for Cosmology and Astroparticle Physics, The Ohio State University, Columbus, OH 43210 (United States); Dicken, Daniel [Institut de Astrophysique Spatiale, Paris (France); Storchi-Bergmann, Thaisa [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Caixa Postal 15051, 91501-970 Porto Alegre, RS (Brazil)

    2013-04-01

    We have conducted an archival Spitzer study of 38 early-type galaxies in order to determine the origin of the dust in approximately half of this population. Our sample galaxies generally have good wavelength coverage from 3.6 {mu}m to 160 {mu}m, as well as visible-wavelength Hubble Space Telescope (HST) images. We use the Spitzer data to estimate dust masses, or establish upper limits, and find that all of the early-type galaxies with dust lanes in the HST data are detected in all of the Spitzer bands and have dust masses of {approx}10{sup 5}-10{sup 6.5} M{sub Sun }, while galaxies without dust lanes are not detected at 70 {mu}m and 160 {mu}m and typically have <10{sup 5} M{sub Sun} of dust. The apparently dust-free galaxies do have 24 {mu}m emission that scales with the shorter-wavelength flux, yet substantially exceeds the expectations of photospheric emission by approximately a factor of three. We conclude this emission is dominated by hot, circumstellar dust around evolved stars that does not survive to form a substantial interstellar component. The order-of-magnitude variations in dust masses between galaxies with similar stellar populations rule out a substantial contribution from continual, internal production in spite of the clear evidence for circumstellar dust. We demonstrate that the interstellar dust is not due to purely external accretion, unless the product of the merger rate of dusty satellites and the dust lifetime is at least an order of magnitude higher than expected. We propose that dust in early-type galaxies is seeded by external accretion, yet the accreted dust is maintained by continued growth in externally accreted cold gas beyond the nominal lifetime of individual grains. The several Gyr depletion time of the cold gas is long enough to reconcile the fraction of dusty early-type galaxies with the merger rate of gas-rich satellites. As the majority of dusty early-type galaxies are also low-luminosity active galactic nuclei and likely fueled

  2. Mesospheric dust and its secondary effects as observed by the ESPRIT payload

    Directory of Open Access Journals (Sweden)

    O. Havnes

    2009-03-01

    Full Text Available The dust detector on the ESPRIT rocket detected two extended dust/aerosol layers during the launch on 1 July 2006. The lower layer at height ~81.5–83 km coincided with a strong NLC and PMSE layer. The maximum dust charge density was ~−3.5×109 e m−3 and the dust layer was characterized by a few strong dust layers where the dust charge density at the upper edges changed by factors 2–3 over a distance of ≲10 m, while the same change at their lower edges were much more gradual. The upper edge of this layer is also sharp, with a change in the probe current from zero to IDC=−10−11 A over ~10 m, while the same change at the low edge occurs over ~500 m. The second dust layer at ~85–92 km was in the height range of a comparatively weak PMSE layer and the maximum dust charge density was ~−108 e m−3. This demonstrates that PMSE can be formed even if the ratio of the dust charge density to the electron density P=NdZd /n_e≲0.01. In spite of the dust detector being constructed to reduce possible secondary charging effects from dust impacts, it was found that they were clearly present during the passage through both layers. The measured secondary charging effects confirm recent results that dust in the NLC and PMSE layers can be very effective in producing secondary charges with up to ~50 to 100 electron charges being rubbed off by one impacting large dust particle, if the impact angle is θi≳20–35°. This again lends support to the suggested model for NLC and PMSE dust particles (Havnes and Næsheim, 2007 as a loosely bound water-ice clump interspersed with a considerable number of sub-nanometer-sized meteoric smoke particles, possibly also contaminated with meteoric atomic species.

  3. Mesospheric dust and its secondary effects as observed by the ESPRIT payload

    Science.gov (United States)

    Havnes, O.; Surdal, L. H.; Philbrick, C. R.

    2009-03-01

    The dust detector on the ESPRIT rocket detected two extended dust/aerosol layers during the launch on 1 July 2006. The lower layer at height ~81.5-83 km coincided with a strong NLC and PMSE layer. The maximum dust charge density was ~-3.5×109 e m-3 and the dust layer was characterized by a few strong dust layers where the dust charge density at the upper edges changed by factors 2-3 over a distance of ≲10 m, while the same change at their lower edges were much more gradual. The upper edge of this layer is also sharp, with a change in the probe current from zero to IDC=-10-11 A over ~10 m, while the same change at the low edge occurs over ~500 m. The second dust layer at ~85-92 km was in the height range of a comparatively weak PMSE layer and the maximum dust charge density was ~-108 e m-3. This demonstrates that PMSE can be formed even if the ratio of the dust charge density to the electron density P=NdZd /n_e≲0.01. In spite of the dust detector being constructed to reduce possible secondary charging effects from dust impacts, it was found that they were clearly present during the passage through both layers. The measured secondary charging effects confirm recent results that dust in the NLC and PMSE layers can be very effective in producing secondary charges with up to ~50 to 100 electron charges being rubbed off by one impacting large dust particle, if the impact angle is θi≳20-35°. This again lends support to the suggested model for NLC and PMSE dust particles (Havnes and Næsheim, 2007) as a loosely bound water-ice clump interspersed with a considerable number of sub-nanometer-sized meteoric smoke particles, possibly also contaminated with meteoric atomic species.

  4. Experimental demonstration and visual observation of dust trapping in an electron storage ring

    Directory of Open Access Journals (Sweden)

    Yasunori Tanimoto

    2009-11-01

    Full Text Available Sudden decreases in the beam lifetime, which are attributed to the dust trappings, sometimes occur at the electron storage ring Photon Factory Advanced Ring (PF-AR. Since these dust events cause difficulties in user operations, we have been carefully observing this phenomenon for many years. Our observations indicated that the dust trappings could be caused by electric discharges in vacuum ducts. In order to demonstrate this hypothesis experimentally, we designed a new vacuum device that intentionally generates electric discharges and installed it in PF-AR. Using this device, we could repeatedly induce sudden decreases in the beam lifetime because of the generated electric discharge. We also detected decreases in the beam lifetime caused by mechanical movement of the electrodes in the device. Moreover, we could visually observe the dust trapping phenomenon; the trapped dust particle was observed by two video cameras and appeared as a luminous body that resembled a shooting star. This was the first direct observation of a luminous dust particle trapped by the electron beam.

  5. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 29; Issue 1-2. Effect of Interplanetary Magnetic Field and Disturb Storm Time on H Component. Rajni Devi Smita Dubey Shailendra Saini Babita Devi Ajay Dhar S. K. Vijay A. K. Gwal. Volume 29 Issue 1-2 March-June 2008 pp 281-286 ...

  6. Parameterizing the interstellar dust temperature

    Science.gov (United States)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-08-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.

  7. How large is the cosmic dust flux into the Earth's atmosphere?

    Science.gov (United States)

    Plane, John; Janches, Diego; Gomez-Martin, Juan Carlos; Bones, David; Diego Carrillo-Sanchez, Juan; James, Sandy; Nesvorny, David; Pokorny, Petr

    2016-07-01

    , ionization and radar detection can be used to compute the probability of detecting a specified meteoroid in the Arecibo beam; an upper limit to the cosmic dust input of 16 t d ^{-1} has been obtained from the radar observations. Underpinning this modelling work is a novel laboratory experiment at the University of Leeds, where a novel Meteor Ablation Simulator is used to study the evaporation of metals from cosmic dust particles that are flash heated to over 3000 K. Finally, rocket-borne measurements of charged meteoric smoke particles indicate that about 5 t d ^{-1} of this cosmic dust ablates in the atmosphere, and another 6 t d ^{-1} fall to the surface as cosmic spherules.

  8. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  9. Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study

    Science.gov (United States)

    Szabo, Adam; Koval, A

    2008-01-01

    The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.

  10. Scaling exponents of the velocity structure functions in the interplanetary medium

    Directory of Open Access Journals (Sweden)

    V. Carbone

    Full Text Available We analyze the scaling exponents of the velocity structure functions, obtained from the velocity fluctuations measured in the interplanetary space plasma. Using the expression for the energy transfer rate which seems the most relevant in describing the evolution of the pseudo-energy densities in the interplanetary medium, we introduce an energy cascade model derived from a simple fragmentation process, which takes into account the intermittency effect. In the absence and in the presence of the large-scale magnetic field decorrelation effect the model reduces to the fluid and the hydromagnetic p-model, respectively. We show that the scaling exponents of the q-th power of the velocity structure functions, as obtained by the model in the absence of the decorrelation effect, furnishes the best-fit to the data analyzed from the Voyager 2 velocity field measurements at 8.5 AU. Our results allow us to hypothesize a new kind of scale-similarity for magnetohydrodynamic turbulence when the decorrelation effect is at work, related to the fourth-order velocity structure function.

  11. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    Science.gov (United States)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  12. Interplanetary Magnetic Field and Plasma Values Related to Hildcaas Events

    Science.gov (United States)

    Prestes, A.; Serra, S. L.; Vieira, L. A.

    2013-05-01

    In this work we investigate the interplanetary conditions during the occurrence of 150 HILDCAAs/QUASI-HILDCAAs events occurred between 1998 and 2007. These events were chosen by following strictly the selection criteria for this kind of phenomena and with some criteria flexible. Among the criteria used to characterize events HILDCAAs, the criterion that considers "the AE values never dropped below 200 nT for more than 2 h at a time" was more restrictive, thus only this was modified by changing from 2 to 4 hours the period in which the AE value can't be below 200 nT. In the interplanetary medium, HILDCAAs are associated with high speed solar wind streams, which are frequently embedded with alfvénic fluctuations. At the Sun, these high speed streams are originated in coronal holes. The distribution of events HILDCAAs/quasi-HILDCAAs along the solar cycle shows a pattern of double peak, a less intense around the maximum of the sunspot cycle and other intense in the descending phase, similar to the distribution of low-latitude coronal holes. For each one of the selected events we have found the most probable value of interplanetary magnetic field and plasma. The average values of AE, AU, AL and Dst indices, the density and temperature of the solar wind protons, the solar wind speed, the Bz component of the IMF, the IMF intensity, dynamic pressure and factor beta, among all the 150 events HILDCAAs/quasi-HILDCAAs, were: AE (344.5 ± 65.0 nT), AU (131.0 ± 33.0 nT), AL (-213.7 ± 51.2 nT), Dst (-25.8 ± 12.2 nT), Density (5,0 ± 1,8 cm-3), Temperature (151269.5 ± 48907.7 K), |V| (538.2 ± 83.3 km/s) Bz (-0.71 ± 1.02 nT), |B| (6.7 ± 1.4 nT) pressure (2.6 ± 0.7 nPa) and Beta (0.66 ± 0.27).

  13. Ion Microprobe Measurements of Comet Dust and Implications for Models of Oxygen Isotope Heterogeneity in the Solar System

    Science.gov (United States)

    Snead, C. J.; McKeegan, K. D.; Keller, L. P.; Messenger, S.

    2017-01-01

    The oxygen isotopic compositions of anhydrous minerals in carbonaceous chondrites reflect mixing between a O-16-rich and O-17, O18-rich reservoir. The UV photodissociation of CO (i.e. selfshielding) has been proposed as a mass-independent mechanism for producing these isotopically distinct reservoirs. Self-shielding models predict the composition for the CO gas reservoir to be O-16-rich, and that the accreting primordial dust was in isotopic equilibrium with the gaseous reservoir [1, 2]. Self-shielding also predicts that cometary water, presumed to represent the O-17, O-18-rich reservoir, should be enriched in O-17 and O-18, with compositions of 200 -1000per mille, and that the interaction with this O-17, O-18-rich H2O reservoir altered the compositions of the primordial dust toward planetary values. The bulk composition of the solar nebula, which may be an approximation to the 16O-rich gaseous reservoir, has been constrained by the Genesis results [3]. However, material representing the O-17, O-18-rich end-member is rare [4], and dust representing the original accreting primordial dust has been challenging to conclusively identify in current collections. Anhydrous dust from comets, which accreted in the distal cold regions of the nebula at temperatures below approximately 30K, may provide the best opportunity to measure the oxygen isotope composition of primordial dust. Chondritic porous interplanetary dust particles (CP-IDPs) have been suggested as having cometary origins [5]; however, until direct comparisons with dust from a known comet parent body were made, link between CP-IDPs and comets remained circumstantial. Oxygen isotope analyses of particles from comet 81P/Wild 2 collected by NASA's Stardust mission have revealed surprising similarities to minerals in carbonaceous chondrites which have been interpreted as evidence for large scale radial migration of dust components from the inner solar nebula to the accretion regions of Jupiter- family comets [6

  14. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes

    Directory of Open Access Journals (Sweden)

    T. D. Fairlie

    2010-04-01

    Full Text Available We use a 3-D global chemical transport model (GEOS-Chem to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during the INTEX-B campaign of April–May 2006. The model includes explicit transport of size-resolved mineral dust and its alkalinity, nitrate, and sulfate content. The observations show that particulate nitrate is primarily associated with dust, sulfate is primarily associated with ammonium, and Asian dust remains alkaline across the Pacific. This can be reproduced in the model by using a reactive uptake coefficient for HNO3 on dust (γ(HNO3 ~10−3 much lower than commonly assumed in models and possibly reflecting limitation of uptake by dust dissolution. The model overestimates gas-phase HNO3 by a factor of 2–3, typical of previous model studies; we show that this cannot be corrected by uptake on dust. We find that the fraction of aerosol nitrate on dust in the model increases from ~30% in fresh Asian outflow to 80–90% over the Northeast Pacific, reflecting in part the volatilization of ammonium nitrate and the resulting transfer of nitrate to the dust. Consumption of dust alkalinity by uptake of acid gases in the model is slow relative to the lifetime of dust against deposition, so that dust does not acidify (at least not in the bulk. This limits the potential for dust iron released by acidification to become bio-available upon dust deposition. Observations in INTEX-B show no detectable ozone depletion in Asian dust plumes, consistent with the model. Uptake of HNO3 by dust, suppressing its recycling to NOx, reduces Asian pollution influence on US surface ozone in the model by 10–15% or up to 1 ppb.

  15. Multiple spacecraft observations of interplanetary shocks: characteristics of the upstream ulf turbulence

    International Nuclear Information System (INIS)

    Russell, C.T.; Smith, E.J.; Tsurutani, B.T.; Gosling, J.T.; Bame, S.J.

    1982-01-01

    All interplanetary shocks observed by ISEE-3 and either ISEE-1 or ISEE-2 or both in 1978 and 1979 are examined for evidence of upstream waves. In order to characterize the properties of these shocks it is necessary to determine accurate shock normals. We invert an overdetermined set of equations to obtain shock normals, velocities and error estimates for all these shocks. Tests of the method indicate it is quite reliable. Using these normals we then calculate the Mach number and angle between the interplanetary magnetic field and the shock normal for each shock. These parameters allow us to separate the upstream waves into two classes: whistler-mode precursors which occur at low Mach numbers and upstream turbulence whose amplitude at Mach numbers greater than 1.5 is controlled by the angle of the field to the shock normal. The former waves are right-hand circularly polarized and quite monochromatic. The latter waves are more linearly polarized and have a broadband featureless spectrum

  16. EVIDENCE OF CONFINEMENT OF SOLAR-ENERGETIC PARTICLES TO INTERPLANETARY MAGNETIC FIELD LINES

    International Nuclear Information System (INIS)

    Chollet, E. E.; Giacalone, J.

    2011-01-01

    We present new observations of solar-energetic particles (SEPs) associated with impulsive solar flares that show evidence for their confinement to interplanetary magnetic field lines. Some SEP events exhibit intermittent intensity dropouts because magnetic field lines filled with and empty of particle flux mix together. The edges of these dropouts are observed to be very sharp, suggesting that particles cannot easily move from a filled to an empty field line in the time available during their transport from the Sun. In this paper, we perform high time-resolution observations of intensity fall-off at the edges of observed SEP dropouts in order to look for signatures of particle motion off field lines. However, the statistical study is dominated by one particularly intense event. The inferred length scale of the intensity decay is comparable to the gyroradii of the particles, suggesting that particles only rarely scatter off magnetic field lines during interplanetary transport.

  17. Dust as a surfactant

    International Nuclear Information System (INIS)

    Ignatov, A M; Schram, P P J M; Trigger, S A

    2003-01-01

    We argue that dust immersed in a plasma sheath acts as a surfactant. By considering the momentum balance in a plasma sheath, we evaluate the dependence of the plasma surface pressure on the dust density. It is shown that the dust may reduce the surface pressure, giving rise to a sufficiently strong tangential force. The latter is capable of confining the dust layer inside the sheath in the direction perpendicular to the ion flow

  18. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  19. Identification of dust outbreaks on infrared MSG-SEVIRI data by using a Robust Satellite Technique (RST)

    Science.gov (United States)

    Sannazzaro, Filomena; Filizzola, Carolina; Marchese, Francesco; Corrado, Rosita; Paciello, Rossana; Mazzeo, Giuseppe; Pergola, Nicola; Tramutoli, Valerio

    2014-01-01

    Dust storms are meteorological phenomena of great interest for scientific community because of their potential impact on climate changes, for the risk that may pose to human health and due to other issues as desertification processes and reduction of the agricultural production. Satellite remote sensing, thanks to global coverage, high frequency of observation and low cost data, may highly contribute in monitoring these phenomena, provided that proper detection methods are used. In this work, the known Robust Satellite Techniques (RST) multitemporal approach, used for studying and monitoring several natural/environmental hazards, is tested on some important dust events affecting Mediterranean region in May 2004 and Arabian Peninsula in February 2008. To perform this study, data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) have been processed, comparing the generated dust maps to some independent satellite-based aerosol products. Outcomes of this work show that the RST technique can be profitably used for detecting dust outbreaks from space, providing information also about areas characterized by a different probability of dust presence. They encourage further improvements of this technique in view of its possible implementation in the framework of operational warning systems.

  20. Nonlinear Alfvén waves, discontinuities, proton perpendicular acceleration, and magnetic holes/decreases in interplanetary space and the magnetosphere: intermediate shocks?

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2005-01-01

    Full Text Available Alfvén waves, discontinuities, proton perpendicular acceleration and magnetic decreases (MDs in interplanetary space are shown to be interrelated. Discontinuities are the phase-steepened edges of Alfvén waves. Magnetic decreases are caused by a diamagnetic effect from perpendicularly accelerated (to the magnetic field protons. The ion acceleration is associated with the dissipation of phase-steepened Alfvén waves, presumably through the Ponderomotive Force. Proton perpendicular heating, through instabilities, lead to the generation of both proton cyclotron waves and mirror mode structures. Electromagnetic and electrostatic electron waves are detected as well. The Alfvén waves are thus found to be both dispersive and dissipative, conditions indicting that they may be intermediate shocks. The resultant 'turbulence' created by the Alfvén wave dissipation is quite complex. There are both propagating (waves and nonpropagating (mirror mode structures and MDs byproducts. Arguments are presented to indicate that similar processes associated with Alfvén waves are occurring in the magnetosphere. In the magnetosphere, the 'turbulence' is even further complicated by the damping of obliquely propagating proton cyclotron waves and the formation of electron holes, a form of solitary waves. Interplanetary Alfvén waves are shown to rapidly phase-steepen at a distance of 1AU from the Sun. A steepening rate of ~35 times per wavelength is indicated by Cluster-ACE measurements. Interplanetary (reverse shock compression of Alfvén waves is noted to cause the rapid formation of MDs on the sunward side of corotating interaction regions (CIRs. Although much has been learned about the Alfvén wave phase-steepening processfrom space plasma observations, many facets are still not understood. Several of these topics are discussed for the interested researcher. Computer simulations and theoretical developments will be particularly useful in making further progress in

  1. North-South asymmetry of interplanetary plasma and solar parameters

    International Nuclear Information System (INIS)

    El-Borie, M. A.

    2001-01-01

    Data of interplanetary plasma (field magnitude, solar wind speed, ion plasma density and temperature) and solar parameters (sunspot number, solar radio flux, and geomagnetic index) over the period 1965-1991, have been used to examine the asymmetry between the solar field north and south of the heliospheric current sheet (HCS). The dependence of N-S asymmetry of field magnitude (B) upon the interplanetary solar polarities is statistically insignificant. There is no clear indication for the presence of N-S asymmetry in the grand-average field magnitude over the solar cycles. During the period 1981-89 (qA<0; negative solar polarity state), the solar plasma was more dense and cooler south of the HCS than north of it. The solar flux component of toward field vector is larger in magnitude than those of away field vector during the qA<0 epoch, and no asymmetry observed in the qA<0 epoch. Furthermore, the sign of the N-S asymmetry in the solar activity depends positively upon the solar polarity state. In addition, it was studied the N-S asymmetry of solar parameters near the HCS, throughout the periods of northern and southern hemispheres were more active than the other. Some asymmetries (with respect to the HCS) in plasma parameters existed during the periods of southern hemisphere predominance

  2. INVESTIGATION OF SAHARAN DUST TRANSPORT ON THE BASIS OF AEROLOGICAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    R. TÓTH

    2016-03-01

    Full Text Available The Sahara Desert is the largest dust source on Earth. Its dust is frequently emitted into the Mediterranean atmosphere and transported by the winds sometimes as far north as Central Europe. The accumulated particles contribute to soil forming processes, while the atmospheric mineral dust has an impact on the radiation budget, cloud forming processes, the pH of precipitation and biogeochemical cycles of marine ecosystems. The PM (particulate matter in ambient air does not contain only primary particles but secondary particles formed in the atmosphere from precursor gases as well. Especially these latter ones have significant negative impacts to human health. There are in average four-five Saharan dust episodes annually in Hungary, sometimes in form of colour precipitation (brown rainfall, red snow. There are several possibilities for providing evidence for the Saharan origin of the dust observed in our country: back-trajectories using NOAA HYSPLIT model, TOMS satellite maps of NASA, maps of aerosol index of Ozone Monitoring Instrument, observations of spectral aerosol optical depth of Aerosol Robotic Network, satellite maps of EUMETSAT, elemental analysis of dust samples. In this study we try to reveal the suitability of the upper-air wind fields in detection of Saharan dust episodes in Central Europe. We deployed the global upper-air data base of the last 41 years that is available by courtesy of College of Engineering and Applied Sciences at University of Wyoming. We apply this method also for tracking air pollution of vegetation fires.

  3. Observation of Dust in DIII-D Divertor and SOL by Visible Imaging

    International Nuclear Information System (INIS)

    Rudakov, D L; West, W P; Groth, M; Yu, J H; Wong, C C; Boedo, J A; Brooks, N H; Evans, T E; Fenstermacher, M E; Hollmann, E M; Hyatt, A W; Lasnier, C J; McLean, A G; Moyer, R A; Pigarov, A; Smirnov, R; Solomon, W M; Watkins, J G

    2007-01-01

    Dust is commonly found in fusion devices. Though generally of no concern in the present day machines, dust may pose serious safety and operational concerns for ITER. Micron-size dust usually dominates the samples collected from tokamaks. During a plasma discharge micron-size dust particles can become highly mobile and travel over distances of a few meters. Once inside the plasma, dust particles heat up to over 3000 K and emit thermal radiation that can be detected by visible imaging techniques. Observations of naturally occurring and artificially introduced dusts have been performed in DIII-D divertor and scrape-off layer (SOL) using standard frame rate CMOS cameras, a gated-intensified CID camera, and a fast-framing CMOS camera. In the first 2-3 plasma discharges after a vent with personnel entry inside the vacuum vessel ('dirty vent') dust levels were quite high with thousands of particles observed in each discharge. Individual particles moving at velocities of up to a few hundred m/s and breakup of larger particles into pieces were observed. After about 15 discharges dust was virtually gone during the stationary portion of a discharge, and appeared at much reduced levels during the plasma initiation and termination phases. After a few days of plasma operations (about 70 discharges) dust levels were further reduced to just a few observed events per discharge except in discharges with current disruptions that produced significant amounts of dust. An injection of a few milligram of micron-size (6 micron median diameter) carbon dust into a high-power lower single-null ELMing H-mode discharge with strike points swept across the lower divertor floor was performed. A significant increase of the core carbon radiation was observed for about 250 ms after the injection, as the total radiated power increased twofold. Dust particles from the injection were observed by the fast framing camera in the outboard SOL near the midplane. The amount of dust observed by the fast

  4. Long-term Regularities in Distribution of Global Solar and Interplanetary Magnetic Fields

    Czech Academy of Sciences Publication Activity Database

    Ambrož, Pavel

    2013-01-01

    Roč. 37, č. 2 (2013), s. 637-642 ISSN 1845-8319. [Hvar Astrophysical Colloquium /12./. Hvar, 03.09.2012-07.09.2012] R&D Projects: GA AV ČR IAA300030808 Institutional support: RVO:67985815 Keywords : interplanetary magnetic field * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  5. Numerical Prediction of Dust. Chapter 10

    Science.gov (United States)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; hide

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  6. THE DUST PROPERTIES OF z ∼ 3 MIPS-LBGs FROM PHOTOCHEMICAL MODELS

    International Nuclear Information System (INIS)

    Fan, X. L.; Pipino, A.; Matteucci, F.

    2013-01-01

    The stacked spectral energy distribution (SED) 24 μm Lyman break galaxies (MIPS-LBGs) detected by the Multiband Imaging Photometer for Spitzer (MIPS) is fitted by means of the spectrophotometric model GRASIL with an ''educated'' fitting approach which benefits from the results of chemical evolution models. The star formation rate-age-metallicity degeneracies of SED modeling are broken by using star formation history (SFH) and chemical enrichment history suggested by chemical models. The dust mass, dust abundance, and chemical pattern of elements locked in the dust component are also directly provided by chemical models. Using our new ''fitting'' approach, we derive the total mass M tot , stellar mass M * , gas mass M g , dust mass M d , age, and star formation rate (SFR) of the stacked MIPS-LBG in a self-consistent way. Our estimate of M * = 8 × 10 10 of the stacked MIPS-LBG agrees with other works based on UV-optical SED fitting. We suggest that the MIPS-LBGs at z ∼ 3 are young (0.3-0.6 Gyr), massive (M tot ∼ 10 11 M ☉ ), dusty (M d ∼ 10 8 M ☉ ), and metal-rich (Z ∼ Z ☉ ) progenitors of elliptical galaxies undergoing a strong burst of star formation (SFR ∼ 200 M ☉ yr –1 ). Our estimate of M d = 7 × 10 7 M ☉ of the stacked MIPS-LBG is about a factor of eight lower than the estimated value based on single temperature graybody fitting, suggesting that self-consistent SED models are needed to estimate dust mass. By comparing with Milky Way molecular cloud and dust properties, we suggest that denser and dustier environments and flatter dust size distribution are likely in high-redshift massive star-forming galaxies. These dust properties, as well as the different types of SFHs, can cause different SED shapes between high-redshift star-forming ellipticals and local starburst templates. This discrepancy of SED shapes could in turn explain the non-detection at submillimeter wavelengths of IR luminous (L IR ⪰10 12 L ☉ ) MIPS-LBGs.

  7. Comparison of air samples, nasal swabs, ear-skin swabs and environmental dust samples for detection of Methicillin Resistant Staphylococcus aureus (MRSA) in pig herds

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Vigre, Håkan; Cavaco, Lina

    2014-01-01

    To identify a cost-effective and practical method for detection of methicillin-resistant Staphylococcus aureus (MRSA) in pig herds, the relative sensitivity of four sample types: nasal swabs, ear-skin (skin behind the ears) swabs, environmental dust swabs and air was compared. Moreover, dependency......-herd prevalence ⩾25%]. The results indicate that taking swabs of skin behind the ears (ten pools of five) was even more sensitive than taking nasal swabs (ten pools of five) at the herd level and detected significantly more positive samples. spa types t011, t034 and t4208 were observed. In conclusion, MRSA...... detection by air sampling is easy to perform, reduces costs and analytical time compared to existing methods, and is recommended for initial testing of herds. Ear-skin swab sampling may be more sensitive for MRSA detection than air sampling or nasal swab sampling....

  8. The role of automatic control in future interplanetary spaceflight

    Science.gov (United States)

    Scull, J. R.; Moore, J. W.

    1976-01-01

    The paper reviews the guidance and automatic control techniques used in previous U.S. and Soviet lunar and planetary exploration spacecraft, and examines the objectives and requirements of potential future interplanetary missions from the viewpoint of their further demands on automatic control technology. These missions include the Venus orbital imaging radar mission, the Pioneer Mars penetrator mission, the Mars surface sample return mission, Pioneer Saturn/Uranus/Titan probe missions, the Mariner Jupiter orbiter with daughter satellite, and comet and asteroid missions.

  9. Mid-infrared spectra of cometary dust: the evasion of its silicate mineralogy

    Science.gov (United States)

    Kimura, H.; Chigai, T.; Yamamoto, T.

    2008-04-01

    Infrared spectra of dust in cometary comae provide a way to identify its silicate constituents, and this is crucial for correctly understanding the condition under which our planetary system is formed. Recent studies assign a newly detected peak at a wavelength of 9.3 μm to pyroxenes and regard them as the most abundant silicate minerals in comets. Here we dispense with this pyroxene hypothesis to numerically reproduce the infrared features of cometary dust in the framework of our interstellar dust models. Presolar interstellar dust in a comet is modeled as fluffy aggregates consisting of submicrometer-sized organic grains with an amorphous-silicate core that undergoes nonthermal crystallization in a coma. We assert that forsterite (Mg2SiO4) is the carrier of all the observed features, including the 9.3 μm peak and that the major phase of iron is sulfides rather than iron-rich silicates.

  10. Universal instability of dust ion-sound waves and dust-acoustic waves

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Watanabe, K.

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  11. Autonomous aerobraking for low-cost interplanetary missions

    Science.gov (United States)

    Carrelli, David; O'Shaughnessy, Daniel; Strikwerda, Thomas; Kaidy, James; Prince, Jill; Powell, Richard

    2014-01-01

    Aerobraking has previously been used to reduce the propellant required to deliver an orbiter to its desired final orbit. In principle, aerobraking should be possible around any target planet or moon having sufficient atmosphere to permit atmospheric drag to provide a portion of the mission ΔV, in lieu of supplying all of the required ΔV propulsively. The spacecraft is flown through the upper atmosphere of the target using multiple passes, ensuring that the dynamic pressure and thermal loads remain within the spacecraft's design parameters. NASA has successfully conducted aerobraking operations four times, once at Venus and three times at Mars. While aerobraking reduces the fuel required, it does so at the expense of time (typically 3-6 months), continuous Deep Space Network (DSN) coverage, and a large ground staff. These factors can result in aerobraking being a very expensive operational phase of the mission. However, aerobraking has matured to the point that much of the daily operation could potentially be performed autonomously onboard the spacecraft, thereby reducing the required ground support and attendant aerobraking related costs. To facilitate a lower-risk transition from ground processing to an autonomous capability, the NASA Engineering and Safety Center (NESC) has assembled a team of experts in aerobraking and interplanetary guidance and control to develop a high-fidelity, flight-like simulation. This simulation will be used to demonstrate the overall feasibility while exploring the potential for staff and DSN coverage reductions that autonomous aerobraking might provide. This paper reviews the various elements of autonomous aerobraking and presents an overview of the various models and algorithms that must be transformed from the current ground processing methodology to a flight-like environment. Additionally the high-fidelity flight software test bed, being developed from models used in a recent interplanetary mission, will be summarized.

  12. Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans

    Science.gov (United States)

    Paulino-Lima, Ivan Gláucio; Pilling, Sérgio; Janot-Pacheco, Eduardo; de Brito, Arnaldo Naves; Barbosa, João Alexandre Ribeiro Gonçalves; Leitão, Alvaro Costa; Lage, Claudia de Alencar Santos

    2010-08-01

    The radiation-resistant bacterium Deinococcus radiodurans was exposed to a simulated interplanetary UV radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Bacterial samples were irradiated on different substrates to investigate the influence of surface relief on cell survival. The effects of cell multi-layers were also investigated. The ratio of viable microorganisms remained virtually the same (average 2%) for integrated doses from 1.2 to 12 kJ m -2, corresponding to 16 h of irradiation at most. The asymptotic profiles of the curves, clearly connected to a shielding effect provided by multi-layering cells on a cavitary substrate (carbon tape), means that the inactivation rate may not change significantly along extended periods of exposure to radiation. Such high survival rates reinforce the possibility of an interplanetary transfer of viable microbes.

  13. MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour

    Science.gov (United States)

    Colangeli, L.; Lopez-Moreno, J. J.; Nørnberg, P.; Della Corte, V.; Esposito, F.; Mazzotta Epifani, E.; Merrison, J.; Molfese, C.; Palumbo, P.; Rodriguez-Gomez, J. F.; Rotundi, A.; Visconti, G.; Zarnecki, J. C.; The International Medusa Team

    2009-07-01

    Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.

  14. Dependence of the amount of open magnetic flux on the direction of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Akasofu, S.I.; Ahn, B.H.

    1980-01-01

    The power generated by the solar wind-magnetosphere dynamo is proportional to the amount of the open magnetic flux phi. It is difficult to use this fact in determining observationally the dependence of phi on the orientation of the interplanetary magnetic field vector. It is shown that, for a simple vacuum superposition of the earth's dipole field and a uniform magnetic field, PHI is very closely proportional to sin(theta/2) for a wide range of the intensity of the uniform field, where theta denotes the polar angle of the interplanetary magnetic field vector in the Y-Z plane of solar-magnetospheric coordinates. (author)

  15. DETECTION OF REMNANT DUST CLOUD ASSOCIATED WITH THE 2007 OUTBURST OF 17P/HOLMES

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru; Kim, Yoonyoung; Kwon, Yuna G. [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Sarugaku, Yuki [Kiso Observatory, Institute of Astronomy, Graduate School of Science, The University of Tokyo, Mitake, Kiso-machi, Kiso, Nagano 397-0101 (Japan); Kuroda, Daisuke; Maehara, Hiroyuki [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024 (Japan); Takahashi, Jun [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Sayo, Hyogo 679-5313 (Japan); Terai, Tsuyoshi [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Usui, Fumihiko [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Vaubaillon, Jeremie J. [Observatoire de Paris, I.M.C.C.E., Denfert Rochereau, Bat. A., F-75014 Paris (France); Morokuma, Tomoki; Kobayashi, Naoto [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Watanabe, Jun-ichi [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2016-01-20

    This article reports a new optical observation of 17P/Holmes one orbital period after the historical outburst event in 2007. We detected not only a common dust tail near the nucleus but also a long narrow structure that extended along the position angle 274.°6 ± 0.°1 beyond the field of view (FOV) of the Kiso Wide Field Camera, i.e., >0.°2 eastward and >2.°0 westward from the nuclear position. The width of the structure decreased westward with increasing distance from the nucleus. We obtained the total cross section of the long extended structure in the FOV, C{sub FOV} = (2.3 ± 0.5) × 10{sup 10} m{sup 2}. From the position angle, morphology, and mass, we concluded that the long narrow structure consists of materials ejected during the 2007 outburst. On the basis of the dynamical behavior of dust grains in the solar radiation field, we estimated that the long narrow structure would be composed of 1 mm–1 cm grains having an ejection velocity of >50 m s{sup −1}. The velocity was more than one order of magnitude faster than that of millimeter–centimeter grains from typical comets around a heliocentric distance r{sub h} of 2.5 AU. We considered that sudden sublimation of a large amount of water-ice (≈10{sup 30} mol s{sup −1}) would be responsible for the high ejection velocity. We finally estimated a total mass of M{sub TOT} = (4–8) × 10{sup 11} kg and a total kinetic energy of E{sub TOT} = (1–6) × 10{sup 15} J for the 2007 outburst ejecta, which are consistent with those of previous studies that were conducted soon after the outburst.

  16. HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS

    International Nuclear Information System (INIS)

    Dobinson, Jack; Leinhardt, Zoë M.; Lines, Stefan; Carter, Philip J.; Dodson-Robinson, Sarah E.; Teanby, Nick A.

    2016-01-01

    Observations of the youngest planets (∼1–10 Myr for a transitional disk) will increase the accuracy of our planet formation models. Unfortunately, observations of such planets are challenging and time-consuming to undertake, even in ideal circumstances. Therefore, we propose the determination of a set of markers that can preselect promising exoplanet-hosting candidate disks. To this end, N-body simulations were conducted to investigate the effect of an embedded Jupiter-mass planet on the dynamics of the surrounding planetesimal disk and the resulting creation of second-generation collisional dust. We use a new collision model that allows fragmentation and erosion of planetesimals, and dust-sized fragments are simulated in a post-process step including non-gravitational forces due to stellar radiation and a gaseous protoplanetary disk. Synthetic images from our numerical simulations show a bright double ring at 850 μm for a low-eccentricity planet, whereas a high-eccentricity planet would produce a characteristic inner ring with asymmetries in the disk. In the presence of first-generation primordial dust these markers would be difficult to detect far from the orbit of the embedded planet, but would be detectable inside a gap of planetary origin in a transitional disk

  17. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  18. K-ras mutations in sinonasal cancers in relation to wood dust exposure

    International Nuclear Information System (INIS)

    Bornholdt, Jette; Vogel, Ulla; Husgafvel-Pursiainen, Kirsti; Wallin, Håkan; Hansen, Johnni; Steiniche, Torben; Dictor, Michael; Antonsen, Annemarie; Wolff, Henrik; Schlünssen, Vivi; Holmila, Reetta; Luce, Danièle

    2008-01-01

    Cancer in the sinonasal tract is rare, but persons who have been occupationally exposed to wood dust have a substantially increased risk. It has been estimated that approximately 3.6 million workers are exposed to inhalable wood dust in EU. In previous small studies of this cancer, ras mutations were suggested to be related to wood dust exposure, but these studies were too limited to detect statistically significant associations. We examined 174 cases of sinonasal cancer diagnosed in Denmark in the period from 1991 to 2001. To ensure uniformity, all histological diagnoses were carefully reviewed pathologically before inclusion. Paraffin embedded tumour samples from 58 adenocarcinomas, 109 squamous cell carcinomas and 7 other carcinomas were analysed for K-ras codon 12, 13 and 61 point mutations by restriction fragment length polymorphisms and direct sequencing. Information on occupational exposure to wood dust and to potential confounders was obtained from telephone interviews and from registry data. Among the patients in this study, exposure to wood dust was associated with a 21-fold increased risk of having an adenocarcinoma than a squamous cell carcinoma compared to unexposed [OR = 21.0, CI = 8.0–55.0]. K-ras was mutated in 13% of the adenocarcinomas (seven patients) and in 1% of squamous cell carcinomas (one patient). Of these eight mutations, five mutations were located in the codon 12. The exact sequence change of remaining three could not be identified unambiguously. Among the five identified mutations, the G→A transition was the most common, and it was present in tumour tissue from two wood dust exposed adenocarcinoma patients and one patient with unknown exposure. Previously published studies of sinonasal cancer also identify the GGT → GAT transition as the most common and often related to wood dust exposure. Patients exposed to wood dust seemed more likely to develop adenocarcinoma compared to squamous cell carcinomas. K-ras mutations were detected

  19. Suprathermal protons in the interplanetary solar wind

    Science.gov (United States)

    Goodrich, C. C.; Lazarus, A. J.

    1976-01-01

    Using the Mariner 5 solar wind plasma and magnetic field data, we present observations of field-aligned suprathermal proton velocity distributions having pronounced high-energy shoulders. These observations, similar to the interpenetrating stream observations of Feldman et al. (1974), are clear evidence that such proton distributions are interplanetary rather than bow shock associated phenomena. Large Alfven speed is found to be a requirement for the occurrence of suprathermal proton distribution; further, we find the proportion of particles in the shoulder to be limited by the magnitude of the Alfven speed. It is suggested that this last result could indicate that the proton thermal anisotropy is limited at times by wave-particle interactions

  20. The topology of intrasector reversals of the interplanetary magnetic field

    Science.gov (United States)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.

    1996-11-01

    A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.

  1. Engineering-scale dust control experiments

    International Nuclear Information System (INIS)

    Winberg, M.R.; Pawelko, R.J.; Jacobs, N.C.; Thompson, D.N.

    1990-12-01

    This report presents the results of engineering scale dust-control experiments relating to contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of misting systems, soil fixatives, and dust suppression agents. The Dryfog Ultrasonic Misting Head, manufactured by Sonics, Incorporated, and ENTAC, an organic resin derived from tree sap manufactured by ENTAC Corporation, were tested. The results of the experiments include product performance and recommended application methods. 19 figs., 7 refs., 6 tabs

  2. Mesospheric dust and its secondary effects as observed by the ESPRIT payload

    Energy Technology Data Exchange (ETDEWEB)

    Havnes, O. [Department of Physics and Technology, University of Tromsoe, Tromsoe (Norway); Surdal, L.H. [Narvik University College, Norvik, and Andoeya Rocket Range, Andenes (Norway); Philbrick, C.R. [Pennsylvania State University, Electrical Engineering Department (United States)

    2009-07-01

    The dust detector on the ESPRIT rocket detected two extended dust/aerosol layers during the launch on 1 July 2006. The lower layer at height {proportional_to}81.5-83 km coincided with a strong NLC and PMSE layer. The maximum dust charge density was {proportional_to}-3.5 x 10{sup 9} e m{sup -3} and the dust layer was characterized by a few strong dust layers where the dust charge density at the upper edges changed by factors 2-3 over a distance of dust layer at {proportional_to}85-92 km was in the height range of a comparatively weak PMSE layer and the maximum dust charge density was {proportional_to}-10{sup 8} e m{sup -3}. This demonstrates that PMSE can be formed even if the ratio of the dust charge density to the electron density P=N{sub d}Z{sub d}/n{sub e}dust detector being constructed to reduce possible secondary charging effects from dust impacts, it was found that they were clearly present during the passage through both layers. The measured secondary charging effects confirm recent results that dust in the NLC and PMSE layers can be very effective in producing secondary charges with up to {proportional_to}50 to 100 electron charges being rubbed off by one impacting large dust particle, if the impact angle is {theta}{sub i}>or similar 20-35 . This again lends support to the suggested model for NLC and PMSE dust particles (Havnes and Naesheim, 2007) as a loosely bound water-ice clump interspersed with a considerable number of sub-nanometer-sized meteoric smoke particles, possibly also contaminated with meteoric atomic species.

  3. Determinants of manganese levels in house dust samples from the CHAMACOS cohort

    Energy Technology Data Exchange (ETDEWEB)

    Gunier, R.B., E-mail: gunier@berkeley.edu [Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA (United States); Jerrett, M. [Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA (United States); Smith, D.R.; Jursa, T. [Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA (United States); Yousefi, P.; Camacho, J.; Hubbard, A.; Eskenazi, B.; Bradman, A. [Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA (United States)

    2014-11-01

    Introduction: Manganese (Mn) is an essential nutrient, but at high exposure levels Mn is a neurotoxicant. The fungicides maneb and mancozeb are approximately 21% Mn by weight and more than 150,000 kg are applied each year to crops in the Salinas Valley, California. It is not clear, however, whether agricultural use of these fungicides increases Mn levels in homes. Materials and methods: We collected house dust samples from 378 residences enrolled in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study with a second sample collected approximately nine months later from 90 of the residences. House dust samples were analyzed for Mn using inductively coupled plasma optical emission spectroscopy. Information from interviews, home inspections, and pesticide use reports was used to identify potential predictors of Mn dust concentrations and loadings. Results: Mn was detectable in all dust samples. The median Mn concentration was 171 μg/g and median Mn loading was 1,910 μg/m{sup 2} at first visit. In multivariable models, Mn dust concentrations and loadings increased with the number of farmworkers in the home and the amount of agricultural Mn fungicides applied within three kilometers of the residence during the month prior to dust sample collection. Dust concentrations of Mn and other metals (lead, cadmium and chromium) were higher in residences located in the southern Salinas Valley compared those located in other areas of the Salinas Valley. Dust loadings of Mn and other metals were also higher in residences located on Antioch Loam soil than other soil types, and in homes with poor or average housekeeping practices. Conclusions: Agricultural use of Mn containing fungicides was associated with Mn dust concentrations and loadings in nearby residences and farmworker homes. Housekeeping practices and soil type at residence were also important factors related to dust metal concentrations and loadings. - Highlights: • Manganese dust

  4. Mite fauna and fungal flora in house dust from homes of asthmatic children.

    Science.gov (United States)

    Ishii, A; Takaoka, M; Ichinoe, M; Kabasawa, Y; Ouchi, T

    1979-12-01

    Mite fauna and fungal flora in the house dust from homes of asthmatic children with positive and negative skin test to house dust allergen and non-asthmatic controls were examined. There was no conspicuous difference in mite species distribution among the three groups. Pyroglyphid mites dominate the mite fauna in house dust more than half of which being Dermatophagoides: D. pteronyssinus and D. farinae. There was no statistically significant difference in numbers between the two species and either species could dominate depending on the conditions of the individual houses. The average number of acarina in 0.5 g of fine dust did not differ statistically among the three groups; however, mite number per square meter floor differed between patients with positive skin test and negative skin test. The results suggest that house-cleaning might influence the possible sensitization of children. The genetic distribution of mould fungi in house dust was largely similar to that of airborne fungi. The average number of fungal colonies detected in 0.5 g of dust did not differ statistically among the three groups. Wallemia with its minute spores may cause sensitization but has so far been insufficiently investigated.

  5. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    Science.gov (United States)

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  6. Gravimetric dust sampling for control purposes and occupational dust sampling.

    CSIR Research Space (South Africa)

    Unsted, AD

    1997-02-01

    Full Text Available Prior to the introduction of gravimetric dust sampling, konimeters had been used for dust sampling, which was largely for control purposes. Whether or not absolute results were achievable was not an issue since relative results were used to evaluate...

  7. Analysis of proton irradiation products in simulated interstellar dusts by mass spectrometry

    International Nuclear Information System (INIS)

    Kasamatsu, Takashi; Kaneko, Takeo; Tsuchiya, Masahiko; Kobayashi, Kensei

    1996-01-01

    It is known that various kinds of organic compounds exist in space. In order to study the possibility of the formation of organic compounds in comets or their precursory bodies (interstellar dust grains), ice mixtures of carbon monoxide (or methane), ammonia and water made in a cryostat at 10 K ('simulated cometary ices') were irradiated with high energy protons. Irradiated ice products were warmed up to room temperature, while sublimed gases were analyzed with a quadrupole mass spectrometer. Some hydrocarbons and alcohols were detected. 'Amino acid precursors' (compounds yielding amino acids after hydrolysis) were detected in non-volatile products remaining on the substrate at room temperature. These results suggest the possible formation of organic compounds in interstellar dust grains by cosmic radiation. (author)

  8. DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO

    Energy Technology Data Exchange (ETDEWEB)

    Pinte, C.; Ménard, F. [UMI-FCA, CNRS/INSU, France (UMI 3386), and Dept. de Astronomía, Universidad de Chile, Santiago (Chile); Dent, W. R. F.; Hales, A.; Hill, T.; Cortes, P.; Gregorio-Monsalvo, I. de, E-mail: christophe.pinte@obs.ujf-grenoble.fr [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago (Chile)

    2016-01-01

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.

  9. Respiratory Toxicity of Lunar Highland Dust

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Wallace, William T.

    2009-01-01

    Lunar dust exposures occurred during the Apollo missions while the crew was on the lunar surface and especially when microgravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes and in some cases respiratory symptoms were elicited. NASA s vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust need to be assessed. NASA has performed this assessment with a series of in vitro and in vivo tests on authentic lunar dust. Our approach is to "calibrate" the intrinsic toxicity of lunar dust by comparison to a nontoxic dust (TiO2) and a highly toxic dust (quartz) using intratrachael instillation of the dusts in mice. A battery of indices of toxicity is assessed at various time points after the instillations. Cultures of selected cells are exposed to test dusts to assess the adverse effects on the cells. Finally, chemical systems are used to assess the nature of the reactivity of various dusts and to determine the persistence of reactivity under various environmental conditions that are relevant to a space habitat. Similar systems are used to assess the dissolution of the dust. From these studies we will be able to set a defensible inhalation exposure standard for aged dust and predict whether we need a separate standard for reactive dust. Presently-available data suggest that aged lunar highland dust is slightly toxic, that it can adversely affect cultured cells, and that the surface reactivity induced by grinding the dust persists for a few hours after activation.

  10. Commission 22: Meters, Meteorites and Interplanetary Dust

    Science.gov (United States)

    Watanabe, Junichi; Jenniskens, Peter; Spurný, Pavel; Borovička, Jiří; Campbell-Brown, Margaret; Consolmagno, Guy; Jopek, Tadeusz; Vaubaillon, Jeremie; Williams, Iwan P.; Zhu, Jin

    2010-05-01

    The business meeting of commission 22 was held at the room 5 in the SulAmerica Convention Center in Rio de Janeiro(14:00-15:30). Fifteen people attended at this meeting:J.Borovička, E.Bowell, G.Consolmagno, D.Green, P. Jenniskens, A. Pellinen-Wannberg, R. Rudawska, J. Watanabe, J. Zhu, P. H. A. Hasselmann, F. Ostroviski, D. A. Oszkiewicz, W. Thuillot, P. Mahajani, and A. Sule. This meeting was managed by Junichi Watanabe, the current C22 Vice-President. The summary of the meeting is described.

  11. Emissions of road dust by winter tyres and the contributions of different road dust sources in road side particle samples; Talvirenkaiden poelypaeaestoet ja eri katupoelylaehteiden osuudet kadunvarrella keraetyissae hiukkasnaeytteissae

    Energy Technology Data Exchange (ETDEWEB)

    Kupiainen, K.; Pirjola, L.; Ritola, R.; Stojiljkovic, A.; Malinen, A.

    2013-09-01

    material deposited on the road surface. Resuspension is detected in street conditions throughout the year, but the seasonal variation is high. The measurements conducted in early April represented the situation at high resuspension levels. Emissions were 15-20-fold greater than during low resuspension conditions. No significant differences in the emission levels of the different winter tires were detected. Initial conditions of the resuspension were so high that the increment emissions from pavement wear by studs were not detectable. At low resuspension conditions, still approximately 50 -60 percent of the studded tyre's overall emissions were explained by resuspension. The remaining 40 - 50 percent was accounted to the pavement wear by studs. Reducing the number of studs per tyre reduced also the PM{sub 10} emission. The tyre that complied with the new studded tyre requirements that will enter into force in July 2013 reduced the emissions by 10 - 28 percent. The results obtained in low resuspension conditions demonstrate that studded tires increase the formation of dust compared to non-studded tires. Tire wear was observed to change its particulate emissions significantly. Increasing tread wear reduced the tyre's PM{sub 10} emissions. Tyre wear resulted in changes in both resuspension and pavement wear emissions. Further studies on factors affecting the PM10 emissions of worn tires should be conducted. (orig.)

  12. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs

    Science.gov (United States)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.

    2013-01-01

    The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.

  13. Estimating dust distances to Type Ia supernovae from colour excess time evolution

    Science.gov (United States)

    Bulla, M.; Goobar, A.; Amanullah, R.; Feindt, U.; Ferretti, R.

    2018-01-01

    We present a new technique to infer dust locations towards reddened Type Ia supernovae and to help discriminate between an interstellar and a circumstellar origin for the observed extinction. Using Monte Carlo simulations, we show that the time evolution of the light-curve shape and especially of the colour excess E(B - V) places strong constraints on the distance between dust and the supernova. We apply our approach to two highly reddened Type Ia supernovae for which dust distance estimates are available in the literature: SN 2006X and SN 2014J. For the former, we obtain a time-variable E(B - V) and from this derive a distance of 27.5^{+9.0}_{-4.9} or 22.1^{+6.0}_{-3.8} pc depending on whether dust properties typical of the Large Magellanic Cloud (LMC) or the Milky Way (MW) are used. For the latter, instead, we obtain a constant E(B - V) consistent with dust at distances larger than ∼50 and 38 pc for LMC- and MW-type dust, respectively. Values thus extracted are in excellent agreement with previous estimates for the two supernovae. Our findings suggest that dust responsible for the extinction towards these supernovae is likely to be located within interstellar clouds. We also discuss how other properties of reddened Type Ia supernovae - such as their peculiar extinction and polarization behaviour and the detection of variable, blue-shifted sodium features in some of these events - might be compatible with dust and gas at interstellar-scale distances.

  14. Are interplanetary magnetic clouds manifestations of coronal transients at 1 AU

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1984-01-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga (1982) and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected control periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients. (orig.)

  15. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating ...

    Indian Academy of Sciences (India)

    cantly modifies the dispersion properties of these two electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. Keywords. Dusty plasmas; dust-cyclotron waves; dust-lower-hybrid waves.

  16. Are Polar Field Magnetic Flux Concentrations Responsible for Missing Interplanetary Flux?

    Science.gov (United States)

    Linker, Jon A.; Downs, C.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.

    2012-05-01

    Magnetohydrodynamic (MHD) simulations are now routinely used to produce models of the solar corona and inner heliosphere for specific time periods. These models typically use magnetic maps of the photospheric magnetic field built up over a solar rotation, available from a number of ground-based and space-based solar observatories. The line-of-sight field at the Sun's poles is poorly observed, and the polar fields in these maps are filled with a variety of interpolation/extrapolation techniques. These models have been found to frequently underestimate the interplanetary magnetic flux (Riley et al., 2012, in press, Stevens et al., 2012, in press) near the minimum part of the cycle unless mitigating correction factors are applied. Hinode SOT observations indicate that strong concentrations of magnetic flux may be present at the poles (Tsuneta et al. 2008). The ADAPT flux evolution model (Arge et al. 2010) also predicts the appearance of such concentrations. In this paper, we explore the possibility that these flux concentrations may account for a significant amount of magnetic flux and alleviate discrepancies in interplanetary magnetic flux predictions. Research supported by AFOSR, NASA, and NSF.

  17. Video tracking and post-mortem analysis of dust particles from all tungsten ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Endstrasser, N., E-mail: Nikolaus.Endstrasser@ipp.mpg.de [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Brochard, F. [Institut Jean Lamour, Nancy-Universite, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Rohde, V., E-mail: Volker.Rohde@ipp.mpg.de [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Balden, M. [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Lunt, T.; Bardin, S.; Briancon, J.-L. [Institut Jean Lamour, Nancy-Universite, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Neu, R. [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-08-01

    2D dust particle trajectories are extracted from fast framing camera videos of ASDEX Upgrade (AUG) by a new time- and resource-efficient code and classified into stationary hot spots, single-frame events and real dust particle fly-bys. Using hybrid global and local intensity thresholding and linear trajectory extrapolation individual particles could be tracked up to 80 ms. Even under challenging conditions such as high particle density and strong vacuum vessel illumination all particles detected for more than 50 frames are tracked correctly. During campaign 2009 dust has been trapped on five silicon wafer dust collectors strategically positioned within the vacuum vessel of the full tungsten AUG. Characterisation of the outer morphology and determination of the elemental composition of 5 x 10{sup 4} particles were performed via automated SEM-EDX analysis. A dust classification scheme based on these parameters was defined with the goal to link the particles to their most probable production sites.

  18. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  19. Control of harmful dust in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, B; Bower, K; Mitchell, D

    1973-01-01

    This handbook consists of a series of short chapters devoted to: sources of airborne dust; dust standards and methods of sampling; dust prevention on mechanized faces; ventilation and dust extraction; distribution and use of water; dust control on mechanized faces; dust control in drivages and headings; drilling and shotfiring; dust control in transport; some outbye dust control techniques (hygroscopic salts, impingement curtains); water infusion; personal protective equipment. (CIS Abstr.)

  20. Effect of non-Maxwellian particle trapping and dust grain charging on dust acoustic solitary waves

    International Nuclear Information System (INIS)

    Rubab, N.; Murtaza, G.; Mushtaq, A.

    2006-01-01

    The role of adiabatic trapped ions on a small but finite amplitude dust acoustic wave, including the effect of adiabatic dust charge variation, is investigated in an unmagnetized three-component dusty plasma consisting of electrons, ions and massive micron sized negatively charged dust particulates. We have assumed that electrons and ions obey (r,q) velocity distribution while the dust species is treated fluid dynamically. It is found that the dynamics of dust acoustic waves is governed by a modified r dependent Korteweg-de Vries equation. Further, the spectral indices (r,q) affect the charge fluctuation as well as the trapping of electrons and ions and consequently modify the dust acoustic solitary wave

  1. The global distribution of mineral dust

    International Nuclear Information System (INIS)

    Tegen, I; Schepanski, K

    2009-01-01

    Dust aerosol particles produced by wind erosion in arid and semi arid regions affect climate and air quality, but the magnitude of these effects is largely unquantified. The major dust source regions include the Sahara, the Arabian and Asian deserts; global annual dust emissions are currently estimated to range between 1000 and 3000 Mt/yr. Dust aerosol can be transported over long distances of thousands of kilometers, e.g. from source regions in the Saharan desert over the North Atlantic, or from the Asian deserts towards the Pacific Ocean. The atmospheric dust load varies considerably on different timescales. While dust aerosol distribution and dust effects are important on global scales, they strongly depend on dust emissions that are controlled on small spatial and temporal scales.

  2. THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C. T. [University of California, Los Angeles, CA 90095-1567 (United States); Mewaldt, R. A.; Cohen, C. M. S.; Leske, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Luhmann, J. G. [University of California, Berkeley, CA 94720 (United States); Mason, G. M. [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Von Rosenvinge, T. T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gomez-Herrero, R. [University of Alcala, E-28871 Alcala de Henares (Spain); Klassen, A. [Kiel University, D-24118 Kiel (Germany); Galvin, A. B.; Simunac, K. D. C., E-mail: ctrussell@igpp.ucla.edu [University of New Hampshire, Durham, NH 03824 (United States)

    2013-06-10

    The giant, superfast, interplanetary coronal mass ejection, detected by STEREO A on 2012 July 23, well away from Earth, appears to have reached 1 AU with an unusual set of leading bow waves resembling in some ways a subsonic interaction, possibly due to the high pressures present in the very energetic particles produced in this event. Eventually, a front of record high-speed flow reached STEREO. The unusual behavior of this event is illustrated using the magnetic field, plasma, and energetic ion observations obtained by STEREO. Had the Earth been at the location of STEREO, the large southward-oriented magnetic field component in the event, combined with its high speed, would have produced a record storm.

  3. Dust in H II regions

    International Nuclear Information System (INIS)

    Isobe, S.

    1977-01-01

    Several pieces of evidence indicate that H II regions may contain dust: 1) the continuum light scattered by dust grains (O'Dell and Hubbard, 1965), 2) thermal radiation from dust grains at infrared wavelengths (Ney and Allen, 1969), 3) the abnormal helium abundance in some H II regions (Peimbert and Costero, 1969), etc. Although observations of the scattered continuum suggest that the H II region cores may be dust-free, dust grains and gas must be well mixed in view of the infrared observations. This difficulty may be solved by introducing globules with sizes approximately 0.001 pc. These globules and the molecular clouds adjacent to H II regions are the main sources supplying dust to H II regions. (Auth.)

  4. Convection in the polar ionosphere and the state of the interplanetary medium

    Science.gov (United States)

    Uvarov, V. M.; Barashkov, P. D.

    A model of the continuous distribution of electric fields (E) controlled by parameters of the interplanetary medium has been developed which reproduces all the empirically known types of E distributions. This model is used to calculate the corresponding types of plasma convection in the polar ionosphere, represented by two-, three-, and four-vortex structures.

  5. The VISTA spacecraft: Advantages of ICF [Inertial Confinement Fusion] for interplanetary fusion propulsion applications

    International Nuclear Information System (INIS)

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted

  6. The Spatial Variation of Dust Particulate Matter Concentrations during Two Icelandic Dust Storms in 2015

    Directory of Open Access Journals (Sweden)

    Pavla Dagsson-Waldhauserova

    2016-06-01

    Full Text Available Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 µg·m−3 (PM10 = 7 to 583 µg·m−3. The mean PM1 concentrations were 97–241 µg·m−3 with a maximum of 261 µg·m−3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34–0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  7. Dust in Snow in the Colorado River Basin: Spatial Variability in Dust Concentrations, Radiative Forcing, and Snowmelt Rates

    Science.gov (United States)

    Skiles, M.; Painter, T.; Deems, J. S.; Landry, C.; Bryant, A.

    2012-12-01

    Since the disturbance of the western US that began with the Anglo settlement in the mid 19th century, the mountain snow cover of the Colorado River Basin (CRB) has been subject to five-fold greater dust loading. This dust deposition accelerates snowmelt through its direct reduction of albedo and its further reduction of albedo by accelerating the growth of snow effective grain size. We have previously quantified the impacts of dust in snow using a 6-year record of dust concentration and energy balance fluxes at the alpine and subalpine towers in the Senator Beck Basin Study Area (SBBSA), San Juan Mountains in southwestern Colorado, USA. Dust loading exhibited interannual variability, and end of year dust concentrations were not necessarily related to the number of dust deposition events. Radiative forcing enhanced springtime melt by 21 to 51 days with the magnitude of advanced loss being linearly related to total dust concentration at the end of snow cover. To expand our understanding of dust on snow deposition patterns we utilize collections of dust concentration at the Colorado Dust on Snow (CODOS) study sites, established in 2009 along the western side of the CRB, to assess spatial variability in dust loading. In situ sampling of dust stratigraphy and concentration occurs twice each season, once over peak snow water equivalent (15 April), and again during melt (15 May). Dust loading occurs at all sites; dust concentrations are always higher in May, vary between sites, and the highest and lowest dust years were 2009 and 2012, respectively. In the absence of regular sampling and energy balance instrumentation these sites do not allow us to quantify the advanced melt due to dust. To facilitate this a new energy balance site, Grand Mesa Study plot (GMSP), was established for water year 2010 in west central Colorado, 150 km north of SBBSA. Back trajectories indicate similar Colorado Plateau dust sources at both SBBSA and GMSP, yet GMSP exhibits slightly lower dust

  8. Dust control at Yucca Mountain project

    International Nuclear Information System (INIS)

    Kissell, F.; Jurani, R.; Dresel, R.; Reaux, C.

    1999-01-01

    This report describes actions taken to control silica dust at the Yucca Mountain Exploratory Studies Facility, a tunnel located in Southern Nevada that is part of a scientific program to determine site suitability for a potential nuclear waste repository. The rock is a volcanic tuff containing significant percentages of both quartz and cristobalite. Water use for dust control was limited because of scientific test requirements, and this limitation made dust control a difficult task. Results are reported for two drifts, called the Main Loop Drift and the Cross Drift. In the Main Loop Drift, dust surveys and tracer gas tests indicated that air leakage from the TBM head, the primary ventilation duct, and movement of the conveyor belt were all significant sources of dust. Conventional dust control approaches yielded no significant reductions in dust levels. A novel alternative was to install an air cleaning station on a rear deck of the TBM trailing gear. It filtered dust from the contaminated intake air and discharged clean air towards the front of the TBM. The practical effect was to produce dust levels below the exposure limit for all TBM locations except close to the head. In the Cross Drift, better ventilation and an extra set of dust seals on the TBM served to cut down the leakage of dust from the TBM cutter head. However, the conveyor belt was much dustier than the belt in the main loop drift. The problem originated with dirt on the bottom of the belt return side and much spillage from the belt top side. Achieving lower dust levels in hard rock tunneling operations will require new approaches as well as a more meticulous application of existing technology. Planning for dust control will require specific means to deal with dust that leaks from the TBM head, dust that originates with leaky ventilation systems, and dust that comes from conveyor belts. Also, the application of water could be more efficient if automatic controls were used to adjust the water flow

  9. Studies of Solar Flare and Interplanetary Particle Acceleration and Coordination of Ground-Based Solar Observations in Support of US and International Space Missions

    Science.gov (United States)

    Kiplinger, Alan L.

    1998-01-01

    A primary focus has been to conduct studies of particular types of hard X-ray evolution in solar flares and their associations with high energy interplanetary protons observed near Earth. Previously, two large investigations were conducted that revealed strong associations between episodes of progressive spectral hardening seen in solar events and interplanetary proton events (Kiplinger, 1995). An algorithm was developed for predicting interplanetary protons that is more accurate than those currently in use when hard X-ray spectra are available. The basic research on a third study of the remaining independent subset of Hard X-ray Burst Spectrometer (HXRBS) events randomly not selected by the original studies was completed. This third study involves independent analyses of the data by two analysts. The results echo the success of the earlier studies. Of 405 flares analyzed, 12 events were predicted to have associated interplanetary protons at the Space Environment Service Center (SESC) level. Of these, five events appear to be directly associated with SESC proton events, six other events had lower level associated proton events, and there was only one false alarm with no protons. Another study by Garcia and Kiplinger (1995) established that progressively hardening hard X-ray flares associated with interplanetary proton events are intrinsically cooler and not extremely intense in soft X-rays unless a "contaminating" large impulsive flare accompanies the hardening flare.

  10. Comparison of methods to evaluate the fungal biomass in heating, ventilation, and air-conditioning (HVAC) dust.

    Science.gov (United States)

    Biyeyeme Bi Mve, Marie-Jeanne; Cloutier, Yves; Lacombe, Nancy; Lavoie, Jacques; Debia, Maximilien; Marchand, Geneviève

    2016-12-01

    Heating, ventilation, and air-conditioning (HVAC) systems contain dust that can be contaminated with fungal spores (molds), which may have harmful effects on the respiratory health of the occupants of a building. HVAC cleaning is often based on visual inspection of the quantity of dust, without taking the mold content into account. The purpose of this study is to propose a method to estimate fungal contamination of dust in HVAC systems. Comparisons of different analytical methods were carried out on dust deposited in a controlled-atmosphere exposure chamber. Sixty samples were analyzed using four methods: culture, direct microscopic spore count (DMSC), β-N-acetylhexosaminidase (NAHA) dosing and qPCR. For each method, the limit of detection, replicability, and repeatability were assessed. The Pearson correlation coefficients between the methods were also evaluated. Depending on the analytical method, mean spore concentrations per 100 cm 2 of dust ranged from 10,000 to 682,000. Limits of detection varied from 120 to 217,000 spores/100 cm 2 . Replicability and repeatability were between 1 and 15%. Pearson correlation coefficients varied from -0.217 to 0.83. The 18S qPCR showed the best sensitivity and precision, as well as the best correlation with the culture method. PCR targets only molds, and a total count of fungal DNA is obtained. Among the methods, mold DNA amplification by qPCR is the method suggested for estimating the fungal content found in dust of HVAC systems.

  11. Statistical simulations of the dust foreground to cosmic microwave background polarization

    Science.gov (United States)

    Vansyngel, F.; Boulanger, F.; Ghosh, T.; Wandelt, B.; Aumont, J.; Bracco, A.; Levrier, F.; Martin, P. G.; Montier, L.

    2017-07-01

    The characterization of the dust polarization foreground to the cosmic microwave background (CMB) is a necessary step toward the detection of the B-mode signal associated with primordial gravitational waves. We present a method to simulate maps of polarized dust emission on the sphere that is similar to the approach used for CMB anisotropies. This method builds on the understanding of Galactic polarization stemming from the analysis of Planck data. It relates the dust polarization sky to the structure of the Galactic magnetic field and its coupling with interstellar matter and turbulence. The Galactic magnetic field is modeled as a superposition of a mean uniform field and a Gaussian random (turbulent) component with a power-law power spectrum of exponent αM. The integration along the line of sight carried out to compute Stokes maps is approximated by a sum over a small number of emitting layers with different realizations of the random component of the magnetic field. The model parameters are constrained to fit the power spectra of dust polarization EE, BB, and TE measured using Planck data. We find that the slopes of the E and B power spectra of dust polarization are matched for αM = -2.5, an exponent close to that measured for total dust intensity but larger than the Kolmogorov exponent - 11/3. The model allows us to compute multiple realizations of the Stokes Q and U maps for different realizations of the random component of the magnetic field, and to quantify the variance of dust polarization spectra for any given sky area outside of the Galactic plane. The simulations reproduce the scaling relation between the dust polarization power and the mean total dust intensity including the observed dispersion around the mean relation. We also propose a method to carry out multifrequency simulations, including the decorrelation measured recently by Planck, using a given covariance matrix of the polarization maps. These simulations are well suited to optimize

  12. Magnetically aligned dust and SiO maser polarisation in the envelope of the red supergiant VY Canis Majoris

    Science.gov (United States)

    Vlemmings, W. H. T.; Khouri, T.; Martí-Vidal, I.; Tafoya, D.; Baudry, A.; Etoka, S.; Humphreys, E. M. L.; Jones, T. J.; Kemball, A.; O'Gorman, E.; Pérez-Sánchez, A. F.; Richards, A. M. S.

    2017-07-01

    Aims: Polarisation observations of circumstellar dust and molecular (thermal and maser) lines provide unique information about dust properties and magnetic fields in circumstellar envelopes of evolved stars. Methods: We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 5 science verification observations of the red supergiant VY CMa to study the polarisation of SiO thermal/maser lines and dust continuum at 1.7 mm wavelength. We analyse both linear and circular polarisation and derive the magnetic field strength and structure, assuming the polarisation of the lines originates from the Zeeman effect, and that of the dust originates from aligned dust grains. We also discuss other effects that could give rise to the observed polarisation. Results: We detect, for the first time, significant polarisation ( 3%) of the circumstellar dust emission at millimeter wavelengths. The polarisation is uniform with an electric vector position angle of 8°. Varying levels of linear polarisation are detected for the J = 4 - 328SiO v = 0, 1, 2, and 29SiO v = 0, 1 lines, with the strongest polarisation fraction of 30% found for the 29SiO v = 1 maser. The linear polarisation vectors rotate with velocity, consistent with earlier observations. We also find significant (up to 1%) circular polarisation in several lines, consistent with previous measurements. We conclude that the detection is robust against calibration and regular instrumental errors, although we cannot yet fully rule out non-standard instrumental effects. Conclusions: Emission from magnetically aligned grains is the most likely origin of the observed continuum polarisation. This implies that the dust is embedded in a magnetic field >13 mG. The maser line polarisation traces the magnetic field structure. The magnetic field in the gas and dust is consistent with an approximately toroidal field configuration, but only higher angular resolution observations will be able to reveal more detailed field structure. If the

  13. Dayside auroras in relation to the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.; Lybekk, B.; Deehr, C.S.

    1986-01-01

    Dynamics of dayside auroras, including cusp emissions, and their relation to the interplanetary magnetic field (IMF) have been investigated by optical ground-based observations from Svalbard, Norway, and IMF data from various satellites. Combined with the Svalbard program, simultaneous night-side observations from Alaska provide information on the large-scale behaviour of the auroral oval. Drift characteristics, spatial scale, time of duration and repetition frequency of auroral structures on the day-side, occuring at the time of large-scale oval expansions (IMF B z z positive and negative values

  14. Level and distribution of employee exposures to total and respirable wood dust in two Canadian sawmills.

    Science.gov (United States)

    Teschke, K; Hertzman, C; Morrison, B

    1994-03-01

    Personal respirable (N = 230) and total (N = 237) dust measurements were made in two coastal British Columbia sawmills using a sampling strategy that randomly selected workers from all jobs in the mills over two seasons. Information about job title, department, season, weather conditions, location of the job relative to wood-cutting machines, and control measures also was collected at the time of sampling. Only 16 respirable wood dust samples were above the detection limit of 0.08 mg/m3; all 16 had levels industry, but most sawmill investigations report mean wood dust concentrations lower than those measured in the furniture and cabinetmaking industries, where concerns about wood dust exposures initially were raised.

  15. Neutral Hydrogen Structures Trace Dust Polarization Angle: Implications for Cosmic Microwave Background Foregrounds.

    Science.gov (United States)

    Clark, S E; Hill, J Colin; Peek, J E G; Putman, M E; Babler, B L

    2015-12-11

    Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-Hi) survey, we show that linear structure in Galactic neutral hydrogen (Hi) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise dominated, the Hi data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either Hi-derived angles, starlight polarization angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination.

  16. Possible mechanism of the interplanetary medium effect on the diurnal rotation rate of the Earth

    International Nuclear Information System (INIS)

    Krymskij, P.F.

    1993-01-01

    Mechanism is proposed for effect of the solar wind and interplanetary magnetic field on the Earth rotation. In the mechanism base is Hall current generation in the plasma layer of the magnetosphere tail

  17. Turbulence in the solar atmosphere and in the interplanetary plasma

    International Nuclear Information System (INIS)

    Chashei, I.V.; Shishov, V.I.

    1984-01-01

    Analysis of the basic properties of the turbulence in the solar chromosphere, corona, and supercorona (the plasma acceleration zone) indicates that the energy of acoustic disturbances generated at the photospheric level will be conveyed outward into the interplanetary plasma jointly by nonlinear wave interactions and wave propagation effects. Above the chromosphere, damping will be strongest at heights Rroughly-equal0.4 R/sub sun/ for acoustic-type waves and at Rroughly-equalR/sub sun/ for Alfven waves

  18. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign

    Science.gov (United States)

    Tang, Kai; Huang, Zhongwei; Huang, Jianping; Maki, Teruya; Zhang, Shuang; Shimizu, Atsushi; Ma, Xiaojun; Shi, Jinsen; Bi, Jianrong; Zhou, Tian; Wang, Guoyin; Zhang, Lei

    2018-05-01

    Previous studies have shown that bioaerosols are injected into the atmosphere during dust events. These bioaerosols may affect leeward ecosystems, human health, and agricultural productivity and may even induce climate change. However, bioaerosol dynamics have rarely been investigated along the transport pathway of Asian dust, especially in China where dust events affect huge areas and massive numbers of people. Given this situation, the Dust-Bioaerosol (DuBi) Campaign was carried out over northern China, and the effects of dust events on the amount and diversity of bioaerosols were investigated. The results indicate that the number of bacteria showed remarkable increases during the dust events, and the diversity of the bacterial communities also increased significantly, as determined by means of microscopic observations with 4,6-diamidino-2-phenylindole (DAPI) staining and MiSeq sequencing analysis. These results indicate that dust clouds can carry many bacteria of various types into downwind regions and may have potentially important impacts on ecological environments and climate change. The abundances of DAPI-stained bacteria in the dust samples were 1 to 2 orders of magnitude greater than those in the non-dust samples and reached 105-106 particles m-3. Moreover, the concentration ratios of DAPI-stained bacteria to yellow fluorescent particles increased from 5.1 % ± 6.3 % (non-dust samples) to 9.8 % ± 6.3 % (dust samples). A beta diversity analysis of the bacterial communities demonstrated the distinct clustering of separate prokaryotic communities in the dust and non-dust samples. Actinobacteria, Bacteroidetes, and Proteobacteria remained the dominant phyla in all samples. As for Erenhot, the relative abundances of Acidobacteria and Chloroflexi had a remarkable rise in dust events. In contrast, the relative abundances of Acidobacteria and Chloroflexi in non-dust samples of R-DzToUb were greater than those in dust samples. Alphaproteobacteria made the major

  19. Undisturbed dust as a metric of long-term indoor insecticide exposure: Residential DDT contamination from indoor residual spraying and its association with serum levels in the VHEMBE cohort.

    Science.gov (United States)

    Gaspar, Fraser W; Chevrier, Jonathan; Bornman, Riana; Crause, Madelein; Obida, Muvhulawa; Barr, Dana Boyd; Bradman, Asa; Bouwman, Henk; Eskenazi, Brenda

    2015-12-01

    Although approximately 123 million people may be exposed to high levels of insecticides through the use of indoor residual spraying (IRS) for malaria control, few studies exist on indoor insecticide contamination due to IRS and its relationship with human exposure. In the present study, we developed a sampling method to collect undisturbed dust from 50 homes in Limpopo, South Africa, a region where dichlorodiphenyltrichloroethane (DDT) has been used in IRS programs to prevent malaria for ~70years. We quantified DDT and its degradation products, dichlorodiphenyldichloroethylene (DDE), and dichlorodiphenyldichloroethane (DDD) in dust samples to determine dust loading levels and compared these levels to paired serum concentrations of p,p'-DDT and p,p'-DDE in women residents. p,p'-DDT and p,p'-DDE had the highest detection frequencies in both dust (58% and 34% detection, respectively) and serum samples (98% and 100% detection, respectively). Significantly higher detection frequencies for o,p'-DDT, p,p'-DDE, and p,p'-DDD were observed in dust samples collected in buildings that had been previously sprayed for malaria control. We also observed a significant, positive association between dust loading and serum concentrations of p,p'-DDT and p,p'-DDE (Spearman's rho=0.68 and 0.54, respectively). Despite the low detection frequency in dust, our results indicate that undisturbed dust may be a good metric to quantify long-term home exposure to DDT-related compounds and that contamination of the home environment may be an important determinant/source of DDT and DDE exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nonlinear generation of the fundamental radiation of interplanetary type III radio bursts

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Alves, M.V.

    1988-01-01

    A new generation mechanism of interplanetary type III radio bursts at the fundamental electron plasma frequency is discussed. It is shown that the electromagnetic oscillating two-stream instability, driven by two oppositely propagating Langmuir waves, can account for the experimental observations. In particular, the major difficulties encountered by the previously considered electromagnetic decay instability are removed. 19 references