WorldWideScience

Sample records for interpenetrating polymer network

  1. Interpenetrating polymer networks based on polyol modified castor ...

    Indian Academy of Sciences (India)

    Interpenetrating polymer networks (IPNs) of glycerol modified castor oil polyurethane (GC–PU) and poly[2-hydroxyethylmethacrylate] (PHEMA) were synthesized using benzoyl peroxide as initiator and N,N-methylene bis acrylamide as crosslinker. GC–PU/PHEMA interpenetrating polymer networks were obtained by ...

  2. Interpenetrating networks of two conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; West, Keld

    2005-01-01

    Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings, and beca......Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings......, and because its reaction products can be removed efficiently after the formation of the composite. Several combinations of polymers are demonstrated, and the versatility of the proposed method allows extensions to a wide range of conjugated polymers. The IPNs show optical and electrochemical characteristics......, which are sums of the characteristics from the participating conducting polymers....

  3. Silk Fibroin/Polyvinyl Pyrrolidone Interpenetrating Polymer Network Hydrogels

    Directory of Open Access Journals (Sweden)

    Dajiang Kuang

    2018-02-01

    Full Text Available Silk fibroin hydrogel is an ideal model as biomaterial matrix due to its excellent biocompatibility and used in the field of medical polymer materials. Nevertheless, native fibroin hydrogels show poor transparency and resilience. To settle these drawbacks, an interpenetrating network (IPN of hydrogels are synthesized with changing ratios of silk fibroin/N-Vinyl-2-pyrrolidonemixtures that crosslink by H2O2 and horseradish peroxidase. Interpenetrating polymer network structure can shorten the gel time and the pure fibroin solution gel time for more than a week. This is mainly due to conformation from the random coil to the β-sheet structure changes of fibroin. Moreover, the light transmittance of IPN hydrogel can be as high as more than 97% and maintain a level of 90% within a week. The hydrogel, which mainly consists of random coil, the apertures inside can be up to 200 μm. Elastic modulus increases during the process of gelation. The gel has nearly 95% resilience under the compression of 70% eventually, which is much higher than native fibroin gel. The results suggest that the present IPN hydrogels have excellent mechanical properties and excellent transparency.

  4. SANS from interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Markotsis, M.G.; Burford, R.P.; Knott, R.B.; Australian Nuclear Science and Technology Organisation, Menai, NSW; Hanley, T.L.; CRC for Polymers,; Australian Nuclear Science and Technology Organisation, Menai, NSW; Papamanuel, N.

    2003-01-01

    Full text: Interpenetrating polymer networks (IPNs) have been formed by combining two polymeric systems in order to gain enhanced material properties. IPNs are a combination of two or more polymers in network form with one network polymerised and/or crosslinked in the immediate presence of the other(s).1 IPNs allow better blending of two or more crosslinked networks. In this study two sets of IPNs were produced and their microstructure studied using a variety of techniques including small angle neutron scattering (SANS). The first system combined a glassy polymer (polystyrene) with an elastomeric polymer (SBS) with the glassy polymer predominating, to give a high impact plastic. The second set of IPNs contained epichlorohydrin (CO) and nitrile rubber (NBR), and was formed in order to produce novel materials with enhanced chemical and gas barrier properties. In both cases if the phase mixing is optimised the probability of controlled morphologies and synergistic behaviour is increased. The PS/SBS IPNs were prepared using sequential polymerisation. The primary SBS network was thermally crosslinked, then the polystyrene network was polymerised and crosslinked using gamma irradiation to avoid possible thermal degradation of the butadiene segment of the SBS. Tough transparent systems were produced with no apparent thermal degradation of the polybutadiene segments. The epichlorohydrin/nitrile rubber IPNs were formed by simultaneous thermal crosslinking reactions. The epichlorohydrin network was formed using lead based crosslinker, while the nitrile rubber was crosslinked by peroxide methods. The use of two different crosslinking systems was employed in order to achieve independent crosslinking thus resulting in an IPN with minimal grafting between the component networks. SANS, Transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to examine the size and shape of the phase domains and investigate any variation with crosslinking level and

  5. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  6. Soft hydrogels interpenetrating silicone – a polymer network for drug releasing medical devices

    DEFF Research Database (Denmark)

    Steffensen, Søren Langer; Merete H., Vestergaard,; Møller, Eva Horn

    2016-01-01

    such a sophisticated material by forming an interpenetrating polymer network (IPN) material through modification of silicone elastomers with a poly(2-hydroxyethyl methacrylate) (PHEMA)-based hydrogel. IPN materials with a PHEMA content in the range of 13%–38% (w/w) were synthesized by using carbon dioxide...

  7. Biodegradation study of enzymatically catalyzed interpenetrating polymer network: Evaluation of agrochemical release and impact on soil fertility

    Directory of Open Access Journals (Sweden)

    Saruchi

    2016-03-01

    Full Text Available A novel interpenetrating polymer network (IPN has been synthesized through enzymatic initiation using lipase as initiator, glutaraldehyde as cross-linker, acrylic acid as primary monomer and acrylamide as secondary monomer. Biodegradability of synthesized interpenetrating polymer network was studied through soil burial and composting methods. Synthesized hydrogel was completely degraded within 70 days using composting method, while it was 86.03% degraded within 77 days using soil burial method. This was confirmed by Fourier transform Infrared spectroscopy (FTIR and Scanning electron microscopy (SEM techniques. Synthesized interpenetrating polymer network hydrogel was used as a device for controlled release of urea and also act as water releasing device. Their impact on soil fertility and plant growth was also studied. The initial diffusion coefficient has a greater value than the later diffusion coefficient indicating a higher fertilizer release rate during the early stage. Fertilizer release kinetic was also studied which showed Non-Fickian diffusion behavior, as the rate of fertilizer release was comparable to the relaxation time of the synthesized matrix. Synthesized IPN enhance the water uptake capacity up to 6.2% and 7.2% in sandy loam and clay soil, respectively.

  8. Processing and Dynamic Failure Characterization of Novel Impact Absorbing Transparent Interpenetrating Polymer Networks (t-IPN)

    Science.gov (United States)

    2014-02-01

    samples were placed into the oven for the same curing treatment as before. The scanning electron microscope (SEM) photo in Figure 19 shows a typical...Interpenetrating Polymer Networks with Polyurethane and Methacrylate-based Polymers,’ S. A . Bird , PhD Dissertation, Department of Polymer and Fiber Engineering...Jajam, H. V. Tippur, S. A . Bird , and M. L. Auad, Proceedings of the 50th SES Annual Technical Meeting and ASME-AMD Summer Meeting, Providence, RI

  9. Interpenetrating polymer networks from acetylene terminated materials

    Science.gov (United States)

    Connell, J. W.; Hergenrother, P. M.

    1989-01-01

    As part of a program to develop high temperature/high performance structural resins for aerospace applications, the chemistry and properties of a novel class of interpenetrating polymer networks (IPNs) were investigated. These IPNs consist of a simple diacetylenic compound (aspartimide) blended with an acetylene terminated arylene ether oligomer. Various compositional blends were prepared and thermally cured to evaluate the effect of crosslink density on resin properties. The cured IPNs exhibited glass transition temperatures ranging from 197 to 254 C depending upon the composition and cure temperature. The solvent resistance, fracture toughness and coefficient of thermal expansion of the cured blends were related to the crosslink density. Isothermal aging of neat resin moldings, adhesive and composite specimens showed a postcure effect which resulted in improved elevated temperature properties. The chemistry, physical and mechanical properties of these materials will be discussed.

  10. Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films.

    Science.gov (United States)

    Mandal, Arup; Chakrabarty, Debabrata

    2015-12-10

    Semi-interpenetrating polymer network (semi-IPN) of poly(vinyl alcohol)/polyacrylamide was reinforced with various doses of nanocellulose. The different composite films thus prepared were characterized with respect to their mechanical, thermal, morphological and barrier properties. The composite film containing 5 wt.% of nanocellulose showed the highest tensile strength. The semi-interpenetrating polymer network of poly(vinyl alcohol)/polyacrylamide; and its various composites with nanocellulose were almost identical in their thermal stability. Each of the composites however exhibited much superior stability with respect to the linear poly(vinyl alcohol) and crosslinked polyacrylamide. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited phase separated morphology where agglomerates of nanocellulose were found to be dispersed in the matrix of the semi-IPN. The moisture vapor transmission rate (MVTR) was the lowest for the film containing 5 wt.% of nanocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Study of SiO2/PMMA/CE tri-component interpenetrating polymer network composites

    International Nuclear Information System (INIS)

    Wang Junlong; Wang Chuang; Jiao Gengsheng; Wang Qiuya

    2010-01-01

    A technology of conjugated tri-component interpenetrating polymer networks was applied to synthesize a nano-SiO 2 /polymethylmethacrylate (PMMA)/cyanate (CE) composite through an asynchronous synthesis way. The microstructure of the composite was characterized using infrared spectroscopy (IR) and transmission electron microscopy (TEM). The mechanical properties were measured in German-made DL-1000B and XCL-40 universal material test machines, respectively. Results showed that both the impact strength and the flexural strength were in the optimum status when 3% SiO 2 /PMMA/CE was chosen as a sample with the PMMA/CE ratio of 20/80. Compared with the strengths of pure cyanate, those of the composite were raised by 137.28% and 31.29%, respectively. When 3% nano-SiO 2 was added, the impact strength was increased by 29.96% and the flexural strength by 20.05%, compared with the strengths of polymers without SiO 2 . Analysis and measurements by IR and TEM indicated that no chemical reactions took place among components in the composite. The interpenetration of the conjugated tri-component improved the loading capacity of the polymer, hence the toughness enhancement of cyanate.

  12. The Reverse Thermal Effect in Epoxy Resins and Moisture Absorption in Semi-Interpenetrating Polymer Networks.

    Science.gov (United States)

    El-Sa'Ad, Leila

    1989-12-01

    Available from UMI in association with The British Library. Requires signed TDF. Epoxy resins exhibit many desirable properties which make them ideal subjects for use as matrices of composite materials in many commercial, military and space applications. However, due to their high cross-link density they are often brittle. Epoxy resin networks have been modified by incorporating tough, ductile thermoplastics. Such systems are referred to as Semi-Interpenetrating Polymer Networks (Semi-IPN). Systematic modification to the thermoplastics backbone allowed the morphology of the blend to be controlled from a homogeneous one-phase structure to fully separated structures. The moisture absorption by composites in humid environments has been found to lead to a deterioration in the physical and mechanical properties of the matrix. Therefore, in order to utilize composites to their full potential, their response to hot/wet environments must be known. The aims of this investigation were two-fold. Firstly, to study the effect of varying the temperature of exposure at different stages in the absorption process on the water absorption behaviour of a TGDDM/DDS epoxy resin system. Secondly, to study water absorption characteristics, under isothermal conditions, of Semi-Interpenetrating Polymer Networks possessing different morphologies, and develop a theoretical model to evaluate the diffusion coefficients of the two-phase structures. The mathematical treatment used in this analysis was based on Fick's second law of diffusion. Tests were performed on specimens immersed in water at 10 ^circ, 40^circ and 70^circC, their absorption behaviour and swelling behaviour, as a consequence of water absorption, were investigated. The absorption results of the variable temperature absorption tests indicated a saturation dependence on the absorption behaviour. Specimens saturated at a high temperature will undergo further absorption when transferred to a lower temperature. This behaviour was

  13. Development of visible-light responsive and mechanically enhanced "smart" UCST interpenetrating network hydrogels.

    Science.gov (United States)

    Xu, Yifei; Ghag, Onkar; Reimann, Morgan; Sitterle, Philip; Chatterjee, Prithwish; Nofen, Elizabeth; Yu, Hongyu; Jiang, Hanqing; Dai, Lenore L

    2017-12-20

    An interpenetrating polymer network (IPN), chlorophyllin-incorporated environmentally responsive hydrogel was synthesized and exhibited the following features: enhanced mechanical properties, upper critical solution temperature (UCST) swelling behavior, and promising visible-light responsiveness. Poor mechanical properties are known challenges for hydrogel-based materials. By forming an interpenetrating network between polyacrylamide (PAAm) and poly(acrylic acid) (PAAc) polymer networks, the mechanical properties of the synthesized IPN hydrogels were significantly improved compared to hydrogels made of a single network of each polymer. The formation of the interpenetrating network was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), the analysis of glass transition temperature, and a unique UCST responsive swelling behavior, which is in contrast to the more prevalent lower critical solution temperature (LCST) behaviour of environmentally responsive hydrogels. The visible-light responsiveness of the synthesized hydrogel also demonstrated a positive swelling behavior, and the effect of incorporating chlorophyllin as the chromophore unit was observed to reduce the average pore size and further enhance the mechanical properties of the hydrogel. This interpenetrating network system shows potential to serve as a new route in developing "smart" hydrogels using visible-light as a simple, inexpensive, and remotely controllable stimulus.

  14. Printing continuously graded interpenetrating polymer networks of acrylate/epoxy by manipulating cationic network formation during stereolithography

    Directory of Open Access Journals (Sweden)

    W. Li

    2016-12-01

    Full Text Available Ultra-violet (UV laser assisted stereolithography is used to print graded interpenetrating polymer networks (IPNs by controlling network formation. Unlike the traditional process where structural change in IPNs is achieved by varying the feeding ratio of monomers or polymer precursors, in this demonstration property is changed by controlled termination of network formation. A photo-initiated process is used to construct IPNs by a combination of radical and cationic network formation in an acrylate/epoxy system. The extent of the cationic network formation is used to control the final properties of the system. Rapid-Scan Fourier Transformation Infrared Spectroscopy (RS-FTIR is used to track the curing kinetics of the two networks and identify key parameters to control the final properties. Atomic force microscopy (AFM and differential scanning calorimetry (DSC confirm the formation of homogenous IPNs, whereas nano-indentation indicates that properties vary with the extent of cationic network formation. The curing characteristics are used to design and demonstrate printing of graded IPNs that show two orders of magnitude variation in mechanical properties in the millimeter scale.

  15. Glass transition temperatures of microphase separated semi-interpenetrating polymer networks of polystyrene-inter-poly(cross)-2-ethylhexyl-methacrylate

    NARCIS (Netherlands)

    de Graaf, L.A.; de Graaf, Leontine A.; Möller, Martin; Moller, M.

    1995-01-01

    The glass transition temperature of semi-interpenetrating polymer networks (semi-IPNs) of atactic polystyrene (PS) in crosslinked methacrylates was studied by systematic variation of the morphology, that is domain size, continuity and concentration in the domains. Semi-IPNs were prepared from

  16. Radiation preparation of interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Sheikh, N.; Ahmadi, M.; Afshar Taromi, F.

    2002-01-01

    Sequential interpenetrating polymer netwoks were prepared using gamma radiation. Styrene-butadiene rubber (SBR) and polymethyl methacrylate (PMMA) were used as elastomer and plastomer components respectively. Dicumyl peroxide (DCP) and ethylene glycol dimethacrylate (EGDMA) were also used as the curing agent of SBR and crosslinker for MMA monomer. The resulting IPNs were characterized by evaluating their mechanical properties. The effect of the amount of DCP on the final properties of product was examined. It was found that amount of curing agent had an important role on the properties of obtained IPNS. The results of the mechanical properties of IPNs showed very good synergistic behavior. (Author)

  17. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    Science.gov (United States)

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-07

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  18. Synthesis and characterization of p and n dopable interpenetrating polymer networks for organic photovoltaic devices

    International Nuclear Information System (INIS)

    Lav, T.X.; Tran-Van, F.; Vidal, F.; Peralta, S.; Chevrot, C.; Teyssie, D.; Grazulevicius, J.V.; Getautis, V.; Derbal, H.; Nunzi, J.-M.

    2008-01-01

    Interpenetrating polymer networks (IPN) based on carbazole derivatives and diacrylate perylene are synthesized in two steps via an in-situ process. From a spin-coated thin film of a mixture of the two precursors, the diacrylate perylene is first photopolymerized to form a network in the presence of the carbazole derivative which is then electropolymerized to elaborate the IPN. Electrochemical characterizations show that the carbazole and perylene are electroactive inside the film which confirm the p and n dopable properties of the IPN. AFM images of the IPNs show a homogenous and smooth surface, compared to single network, which indicate a high quality of association of each network which should allow an efficient p/n bulk heterojunction

  19. Synthesis and characterization of p and n dopable interpenetrating polymer networks for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Lav, T.X. [Laboratoire de Physicochimie des Polymeres et des Interfaces, EA 2528 Universite de Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise Cedex (France); Tran-Van, F. [Laboratoire de Physicochimie des Polymeres et des Interfaces, EA 2528 Universite de Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise Cedex (France)], E-mail: francois.tran-van@u-cergy.fr; Vidal, F.; Peralta, S.; Chevrot, C.; Teyssie, D. [Laboratoire de Physicochimie des Polymeres et des Interfaces, EA 2528 Universite de Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise Cedex (France); Grazulevicius, J.V.; Getautis, V. [Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT 50254 (Lithuania); Derbal, H.; Nunzi, J.-M. [PPF Cellules Solaires Photovoltaiques Plastiques - Laboratoire POMA, UMR-CNRS 6136, Universite d' Angers, 2 bd Lavoisier, 49045 Angers (France)

    2008-08-30

    Interpenetrating polymer networks (IPN) based on carbazole derivatives and diacrylate perylene are synthesized in two steps via an in-situ process. From a spin-coated thin film of a mixture of the two precursors, the diacrylate perylene is first photopolymerized to form a network in the presence of the carbazole derivative which is then electropolymerized to elaborate the IPN. Electrochemical characterizations show that the carbazole and perylene are electroactive inside the film which confirm the p and n dopable properties of the IPN. AFM images of the IPNs show a homogenous and smooth surface, compared to single network, which indicate a high quality of association of each network which should allow an efficient p/n bulk heterojunction.

  20. Understanding interpenetrating-polymer-network-like porous nitrile butadiene rubber hybrids by their long-period miscibility

    International Nuclear Information System (INIS)

    Zhang, Jihua; Wang, Lifeng; Zhao, Yunfeng

    2013-01-01

    Highlights: • Hydrogen bonds are introduced into NBR to develop its IPN-like porous hybrids. • NBR is partly miscible with AO-60. • AO-60 possesses the viscoelastic behavior resembling that of polymers. • Phase separation aggravates and AO-60 crystallizes in the durations. • The porous hybrids may have potential damping applications. - Abstract: In this article, tetrakis [methylene-3-(3, 5-di-tert-butyl-4-hydroxy phenyl) propionyloxy] methane (AO-60) with hydrogen bonds was designed to interpenetrate into the chemical crosslinking bonds of nitrile butadiene rubber (NBR) and then porous materials were prepared. Scanning electron microscopy (SEM), atomic force microscopy (AFM) images and dynamic mechanical analyses (DMA) demonstrate that NBR is partly miscible with AO-60 which induces the micro-pores and interpenetrating-polymer-network (IPN)-like phase morphology in the hybrids. The wide double tan δ peak in DMA curve displays that AO-60 possesses similar viscoelastic behaviors to polymers which come from supramolecular interactions between polar groups of NBR chains and hydroxyl (OH) groups of AO-60. To further understand the supramolecular abilities of AO-60 in the rubber, the long-period observations for their miscibility are conducted. With the increase of durations, the hydrogen bond network from AO-60 is weakened. The phase separation between AO-60 and NBR is aggravated and even extremely few AO-60 crystallizes which develops multi-scale porous morphology in the hybrids. It is believed that these findings can serve as a guide for the designs of the IPN-like hybrids with small molecule substances and their applications of damping materials

  1. Electroactive semi-interpenetrating polymer networks architecture with tunable IR reflectivity

    Science.gov (United States)

    Chevrot, C.; Teyssié, D.; Verge, P.; Goujon, L.; Tran-Van, F.; Vidal, F.; Aubert, P. H.; Peralta, S.; Sauques, L.

    2011-04-01

    A promising alternative of multi-layered devices showing electrochromic properties results from the design of a self-supported semi-interpenetrating polymer network (semi-IPN) including an electronic conductive polymer (ECP) formed within. The formation of the ECP in the network has already been described by oxidative polymerization using iron trichloride as an oxidant and leading to conducting semi-IPN with mixed electronic and ionic conductivities as well as convenient mechanical properties. This presentation relates to the elaboration of such semi-IPN using polyethyleneoxide (PEO) network or a PEO/NBR (Nitrile Butadiene Rubber) IPN in which a linear poly (3,4-ethylenedioxythiophene) (PEDOT) is formed symmetrically and selectively as very thin layers very next to the two main faces of the film matrix. PEO/PEDOT semi-IPNs lead to interesting optical reflective properties in the IR between 0.8 and 25 μm. Reflectance contrasts up to 35 % is observed when, after swelling in an ionic liquid, a low voltage is applied between the two main faces of the film. However the low flexibility and brittleness of the film and a slow degradation in air at temperature up from 60°C prompted to replace the PEO matrix by a flexible PEO/NBR IPN one. Indeed, the combination of NBR and PEO in an IPN leads to materials possessing flexible properties, good ionic conductivity at 25°C as well as a better resistance to thermal ageing. Finally, NBR/PEO/PEDOT semi-IPNs allow observing comparable reflectance contrast in the IR range than those shown by PEO/PEDOT semi-IPNs.

  2. Grafting of Interpenetrating Networks of Two Stimuli-responsive Polymers onto PP

    International Nuclear Information System (INIS)

    Ruiz, J. C.

    2006-01-01

    In this work a new strategy was used to prepare interpenetrating polymer networks (IPNs) of two 'stimuli-responsive' polymers: a thermosensitive poly N-isopropylacrylamide (PNIPAAm) and pH sensitive poly acrylic acid (PAAc), the last grafted onto PP films. IPNs are a combination of two or more polymers in network form, which are mixed together (not chemically but physically), with al least one such polymer polymerized and/or crosslinked in the immediate presence of the other(s). The 'stimuli-responsive' polymers, also called 'smart' polymers, exhibit relatively large and sharp physical or chemical changes in response to small physical or chemical stimuli. These polymers are being used as hydrogels or copolymers for technical applications in chemical and mechanical engineering systems such as mass separation, chemical valves, temperature or pH indicators, biomedical and drug delivery systems. For these applications a rapid response and good mechanical properties are necessary. Formerly when PNIPAAm and PAAc were chemically combined their sensitivity was often altered or eliminated and their copolymer had poor mechanical properties. Attempts to solve this problem by creating IPN's with a reduced gel size or by using a macro-porous structure were successful in preserving sensitivity but failed to produce adequate mechanical properties. The object of this paper is to improve the past results of using a binary graft of PNIPAAm and PAAc onto poly(tetrafluoroethylene) PTFE. Poly acrylic acid was grafted onto polypropylene films (with good mechanical properties) by gamma radiation in air (pre-irradiation method), then these grafts were crosslinked using any of the next two methods: The first one, the grafted film in water and argon atmosphere by gamma radiation; and the second one, in the same conditions, but adding a crosslinking agent N, N'-methylenebisacrylamide (MBAAm). The second network was carried out in situ, in the cross-linked PAAc grafted onto PP films, by

  3. Semi-Interpenetrating Polymer Networks with Predefined Architecture for Metal Ion Fluorescence Monitoring

    Directory of Open Access Journals (Sweden)

    Kyriakos Christodoulou

    2016-11-01

    Full Text Available The development of new synthetic approaches for the preparation of efficient 3D luminescent chemosensors for transition metal ions receives considerable attention nowadays, owing to the key role of the latter as elements in biological systems and their harmful environmental effects when present in aquatic media. In this work, we describe an easy and versatile synthetic methodology that leads to the generation of nonconjugated 3D luminescent semi-interpenetrating amphiphilic networks (semi-IPN with structure-defined characteristics. More precisely, the synthesis involves the encapsulation of well-defined poly(9-anthrylmethyl methacrylate (pAnMMA (hydrophobic, luminescent linear polymer chains within a covalent poly(2-(dimethylaminoethyl methacrylate (pDMAEMA hydrophilic polymer network, derived via the 1,2-bis-(2-iodoethoxyethane (BIEE-induced crosslinking process of well-defined pDMAEMA linear chains. Characterization of their fluorescence properties demonstrated that these materials act as strong blue emitters when exposed to UV irradiation. This, combined with the presence of the metal-binding tertiary amino functionalities of the pDMAEMA segments, allowed for their applicability as sorbents and fluorescence chemosensors for transition metal ions (Fe3+, Cu2+ in solution via a chelation-enhanced fluorescence-quenching effect promoted within the semi-IPN network architecture. Ethylenediaminetetraacetic acid (EDTA-induced metal ion desorption and thus material recyclability has been also demonstrated.

  4. Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks

    Directory of Open Access Journals (Sweden)

    G. Suresh

    2015-02-01

    Full Text Available A series of vinyl ester and polyurethane interpenetrating polymer networks were prepared by changing the component ratios of VER (Vinyl ester and PU (Polyurethane and the polymerization process was confirmed with Fourier Transform infrared spectroscopy. IPN (Inter Penetrating Polymer Network - VER/PU reinforced Glass and carbon fiber composite laminates were made using the Hand lay up technique. The Mechanical properties of the E-glass and carbon fiber specimens were compared from tests including Tensile, Compressive, Flexural, ILSS (Inter Laminar Shear Strength, Impact & Head Deflection Test (HDT. The IPN Reinforced Carbon fiber specimen showed better results in all the tests than E-Glass fibre reinforced IPN laminate with same thickness of the specimen, according to ASTM standards. It was found that the combination of 60%VER and 40%PU IPN exhibits better impact strength and maximum elongation at break, but at the slight expense of mechanical properties such as tensile, compressive, flexural, ILSS properties. The morphology of the unreinforced and reinforced composites was analyzed with help of scanning electron microscopy.

  5. Interpenetrated polymer networks based on commercial silicone elastomers and ionic networks with high dielectric permittivity and self-healing properties

    DEFF Research Database (Denmark)

    Ogliani, Elisa; Yu, Liyun; Skov, Anne Ladegaard

    the applicability. One method used to avoid this limitation is to increase the dielectric permittivity of the material in order to improve the actuation response at a given field. Recently, interpenetrating polymer networks (IPNs) based on covalently cross-linked commercial silicone elastomers and ionic networks...... from amino- and carboxylic acid- functional silicones have been designed[2] (Figure 1). This novel system provides both the mechanical stability and the high breakdown strength given by the silicone part of the IPNs and the high permittivity and the softening effect of the ionic network. Thus......,1 Hz), and the commercial elastomers RT625 and LR3043/30 provide thebest viscoelastic properties to the systems, since they maintain low viscous losses upon addition of ionic network. The values ofthe breakdown strength in all cases remain higher than that of the reference pure PDMS network (ranging...

  6. Interpenetrating Polymer Network Hydrogels Based on Gelatin and PVA by Biocompatible Approaches: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Eltjani-Eltahir Hago

    2013-01-01

    Full Text Available In this work, a new approach was introduced to prepare interpenetrating polymer network PVA/GE hydrogels by cross-linking of various concentration gelatin in the presence of transglutaminase enzyme by using the freezing-thawing cycles technique. The effects of freezing-thawing cycles on the properties of morphological characterization, gel fraction, swelling, mechanical, and MTT assay were investigated. The IPN PVA/GE hydrogels showed excellent physical and mechanical Properties. MTT assay data and the fibroblasts culture also showed excellent biocompatibility and good proliferation. This indicates that the IPN hydrogels are stable enough for various biomedical applications.

  7. Synthesis and characterization of poly (n-butyl acrylate)-poly (methyl methacrylate) latex interpenetrating polymer networks by radiation-induced seeded emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haibo [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Peng Jing [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: jpeng@pku.edu.cn; Zhai Maolin; Li Jiuqiang; Wei Genshuan [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Qiao Jinliang [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013 (China)

    2007-11-15

    A series of latex interpenetrating polymer networks (LIPNs) were prepared via a two-stage emulsion polymerization of methyl methacrylate (MMA) or mixture of MMA and n-butyl acrylate (n-BA) on crosslinked poly(n-butyl acrylate)(PBA) seed latex using {sup 60}Co {gamma}-ray radiation. The particles of resultant latex were produced with diameters between 150 and 250 nm. FTIR spectra identified the formation of crosslinked copolymers of PMMA or P(MMA-co-BA). Dynamic light scattering (DLS) showed that with increasing n-BA concentration in second-stage monomers, the particle size of LIPN increased. Transmission electron microscope(TEM) photographs showed that the morphology of resultant acrylate interpenetrating polymer network (IPN) latex varied from the distinct core-shell structure to homogenous particle structure with the increase of n-BA concentration, and the morphology was mainly controlled by the miscibility between crosslinked PBA seed and second-stage copolymers and polarity of P(MMA-co-BA)copolymers. In addition, differential scanning calorimeter (DSC) measurements indicated the existence of reinforced miscibility between PBA seed and P(MMA-co-BA)copolymer in prepared LIPNs.

  8. Preparation and characterization of shape memory composite foams with interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Yao, Yongtao; Zhou, Tianyang; Yang, Cheng; Leng, Jinsong; Liu, Yanju

    2016-01-01

    The present study reports a feasible approach of fabricating shape memory composite foams with an interpenetrating polymer network (IPN) based on polyurethane (PU) and shape memory epoxy resin (SMER) via a simultaneous polymerization technique. The PU component is capable of constructing a foam structure and the SMER is grafted on the PU network to offer its shape memory property in the final IPN foams. A series of IPN foams without phase separation were produced due to good compatibility and a tight chemical interaction between PU and SMER components. The relationships of the geometry of the foam cell were investigated via varying compositions of PU and SMER. The physical property and shape memory property were also evaluated. The stimulus temperature of IPN shape memory composite foams, glass temperature (T g ), could be tunable by varying the constituents and T g of PU and SMER. The mechanism of the shape memory effect of IPN foams has been proposed. The shape memory composite foam with IPN developed in this study has the potential to extend its application field. (paper)

  9. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong-Liang [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China); Wu, Ya-Pan [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Dong, Wen-Wen [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Zhou, Chun-Sheng [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China)

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition, compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)

  10. Structures and interactions in collapsed hydrogels of thermoresponsive interpenetrating polymer networks

    Czech Academy of Sciences Publication Activity Database

    Hanyková, L.; Spěváček, Jiří; Radecki, M.; Zhigunov, Alexander; Šťastná, J.; Valentová, H.; Sedláková, Zdeňka

    2015-01-01

    Roč. 293, č. 3 (2015), s. 709-720 ISSN 0303-402X R&D Projects: GA ČR(CZ) GA13-23392S Institutional support: RVO:61389013 Keywords : temperature-induced volume phase transition * interpenetrating network * 1H NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.890, year: 2015

  11. Simulation on the Performance of a Driven Fan Made by Polyester/Epoxy interpenetrate polymer network (IPN)

    Science.gov (United States)

    Fahrul Hassan, Mohd; Jamri, Azmil; Nawawi, Azli; Zaini Yunos, Muhamad; Fauzi Ahmad, Md; Adzila, Sharifah; Nasrull Abdol Rahman, Mohd

    2017-08-01

    The main purpose of this study is to investigate the performance of a driven fan design made by Polyester/Epoxy interpenetrate polymer network (IPN) material that specifically used for turbocharger compressor. Polyester/Epoxy IPN is polymer plastics that was used as replacements for traditional polymers and has been widely used in a variety of applications because of their limitless conformations. Simulation based on several parameters which are air pressure, air velocity and air temperature have been carried out for a driven fan design performance of two different materials, aluminum alloy (existing driven fan design) and Polyester/Epoxy IPN using SolidWorks Flow Simulation software. Results from both simulations were analyzed and compared where both materials show similar performance in terms of air pressure and air velocity due to similar geometric and dimension, but Polyester/Epoxy IPN produces lower air temperature than aluminum alloy. This study shows a preliminary result of the potential Polyester/Epoxy IPN to be used as a driven fan design material. In the future, further studies will be conducted on detail simulation and experimental analysis.

  12. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, Optimization and in-vitro characterization.

    Science.gov (United States)

    Anwar, Hina; Ahmad, Mahmood; Minhas, Muhammad Usman; Rehmani, Sahrish

    2017-06-15

    A new natural and synthetic polymeric blend to form interpenetrating polymer network (IPN) hydrogels was synthesized utilizing sodium alginate and PVA as polymers by free radical polymerization employing 2-Acylamido-2-methylpropane-sulfonic acid as monomer (AMPS) and tramadol HCl as model drug through 3 2 level full factorial design to evaluate the impact of selected independent factors i.e. polymer (sodium alginate) and monomer (AMPS) contents on swelling index at 18th hour, percent drug release at 18th hour, time required for 80% drug release and drug entrapment efficiency as dependent variables. FTIR, SEM, sol-gel analysis, equilibrium swelling studies and in-vitro release kinetics were performedfor in-vitro characterization of formulated IPN hydrogels. In-vitro studies carried out at pH 1.2 and pH 7.4 revealed pH independent swelling and drug release from polymeric IPN, providing controlled drug release for an extended period of time with improved entrapment efficiency, thereby concluding that this polymeric blend may be a promising system for the prolonged drug delivery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen.

    Science.gov (United States)

    Madaghiele, Marta; Marotta, Francesco; Demitri, Christian; Montagna, Francesco; Maffezzoli, Alfonso; Sannino, Alessandro

    2014-12-30

    The objective of this work was to develop composite hydrogels based on poly(ethylene glycol) diacrylate (PEGDA) and collagen (Coll), potentially useful for biomedical applications. Semi-interpenetrating polymer networks (semi-IPNs) were obtained by photo-stabilizing aqueous solutions of PEGDA and acrylic acid (AA), in the presence of collagen. Further grafting of the collagen macromolecules to the PEGDA/poly(AA) network was achieved by means of a carbodiimide-mediated crosslinking reaction. The resulting hydrogels were characterized in terms of swelling capability, collagen content and mechanical properties. The grafting procedure was found to significantly improve the mechanical stability of the IPN hydrogels, due to the establishment of covalent bonding between the PEGDA/poly(AA) and the collagen networks. The suitability of the composite hydrogels to be processed by means of stereolithography (SLA) was also investigated, toward creating biomimetic constructs with complex shapes, which might be useful either as platforms for tissue engineering applications or as tissue mimicking phantoms.

  14. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Olfat Gsib

    2017-12-01

    Full Text Available Interpenetrating polymer networks (IPNs have gained great attention for a number of biomedical applications due to their improved properties compared to individual components alone. In this study, we investigated the capacity of newly-developed naturally-derived IPNs as potential biomaterials for tissue engineering. These IPNs combine the biologic properties of a fibrous fibrin network polymerized at the nanoscale and the mechanical stability of polyethylene oxide (PEO. First, we assessed their cytotoxicity in vitro on L929 fibroblasts. We further evaluated their biocompatibility ex vivo with a chick embryo organotypic culture model. Subcutaneous implantations of the matrices were subsequently conducted on nude mice to investigate their biocompatibility in vivo. Our preliminary data highlighted that our biomaterials were non-cytotoxic (viability above 90%. The organotypic culture showed that the IPN matrices induced higher cell adhesion (across all the explanted organ tissues and migration (skin, intestine than the control groups, suggesting the advantages of using a biomimetic, yet mechanically-reinforced IPN-based matrix. We observed no major inflammatory response up to 12 weeks post implantation. All together, these data suggest that these fibrin-based IPNs are promising biomaterials for tissue engineering.

  15. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing

    International Nuclear Information System (INIS)

    Kweon, HaeYong; Yeo, Joo-hong; Lee, Kwang-gill; Lee, Hyun Chul; Na, Hee Sam; Won, Young Ho; Cho, Chong Su

    2008-01-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing

  16. Soft silicone based interpenetrating networks as materials for actuators

    DEFF Research Database (Denmark)

    Yu, Liyun; Gonzalez, Lidia; Hvilsted, Søren

    2014-01-01

    A new approach based on silicone interpenetrating networks with orthogonal chemistries has been investigated with focus on developing soft and flexible elastomers with high energy densities and small viscous losses. The interpenetrating networks are made as simple two pot mixtures...... as for the commercial available silylation based elastomers such as Elastosil RT625. The resulting interpenetrating networks are formulated to be softer than RT625 to increase the actuation caused when applying a voltage due to their softness combined with the significantly higher permittivity than the pure silicone...

  17. Microstructured poly(2-hydroxyethyl methacrylate)/poly(glycerol monomethacrylate) interpenetrating network hydrogels: UV-scattering induced accelerated formation and tensile behavior

    Czech Academy of Sciences Publication Activity Database

    Sadakbayeva, Zhansaya; Dušková-Smrčková, Miroslava; Šturcová, Adriana; Pfleger, Jiří; Dušek, Karel

    2018-01-01

    Roč. 101, April (2018), s. 304-313 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA17-08531S Institutional support: RVO:61389013 Keywords : hydrogels * interpenetrating polymer networks * kinetics Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  18. Interpenetrating polymer networks based on cyanate ester and fluorinated ethynyl-terminated imide oligomers

    Directory of Open Access Journals (Sweden)

    Y. Wen

    2017-12-01

    Full Text Available Highly soluble fluorinated ethynyl-terminated imide (FETI oligomers were prepared via a conventional one-step method in m-cresol, using 4, 4′-(hexafluoroisopropylidene diphthalic anhydride and 2, 2′-bis(trifluoromethyl benzidine as the monomers, and ethynylphthalic anhydride as the end-capper; then interpenetrating polymer networks (IPN were formulated from FETI oligomers and bisphenol A dicyanate ester (BADCy through a solvent-free procedure, and their thermal, mechanical, and dielectric properties were fully characterized. The curing mechanism was studied by model reactions using nitrogen nuclear magnetic resonance. As evidenced by differential scanning calorimetry analysis and rheological measurements, the FETI/BADCy blends exhibited lower curing temperature and shorter gelation time in comparison with pure BADCy due to the catalytic effects of ethynyl and residue amic acid groups. The properties of IPNs were fully compared with those of polycyanurate, and the results revealed that the incorporation of FETI into cyanate ester resins could significantly improve the toughness, glass transition temperatures, mechanical and dielectric properties of the resultant IPNs.

  19. Segmental dynamics in poly(methyl acrylate)-poly(methyl methacrylate) sequential interpenetrating polymer networks: structural relaxation experiments

    International Nuclear Information System (INIS)

    Ribelles, J L Gomez; Duenas, J M Meseguer; Cabanilles, C Torregrosa; Pradas, M Monleon

    2003-01-01

    The miscibility of poly(methyl acrylate)-poly(methyl methacrylate) sequential interpenetrating polymer networks (IPNs) has been studied by probing the conformational mobility of the component polymer chains. These IPNs exhibit the phenomenon of forced compatibilization. In a conventional heating differential scanning calorimetry (DSC) thermogram, the highly cross-linked IPN shows a single glass transition which covers a temperature interval of around 100 d eg C; in contrast, loosely cross-linked IPNs show two glass transitions. The conformational mobility in these IPNs is studied by subjecting them to isothermal annealings at temperatures in the region of the glass transition and below it. The DSC scans measured after these treatments allow one to determine the temperature interval in which the sample is out of thermodynamic equilibrium but keeps enough conformational mobility to relax during the isothermal annealing in such a way that the enthalpy loss is measurable with the sensitivity of a conventional DSC. The results allow one to reach some conclusions about the compositional distribution of the IPN on the nanometre scale

  20. Preparation and wear behavior of polymer matrix composites with an interpenetrating network structure derived from natural sponge

    International Nuclear Information System (INIS)

    Wang Tianchi; Zhou Tianle; Xiong Dangsheng

    2010-01-01

    Natural sponge was used as a template to produce carbon/epoxy resin and (carbon+silicon carbide)/epoxy resin composites with interpenetrating network structures. Carbon with a network structure was first obtained by pyrolysis of the natural sponge. The composites were then obtained by injecting epoxy resin and silicone resin into the carbon. Their microstructures and wear properties were analyzed. The results show that the natural structure of sponge controlled the interpenetrating network structures of the composites. The netlike carbon in the composites reduced the wear rate of the epoxy resin. Compared with the carbon/epoxy resin composite, the (carbon+silicon carbide)/epoxy resin composite shows better wear resistance.

  1. Polymer matrix of fiber-reinforced composites: Changes in the semi-interpenetrating polymer network during the shelf life.

    Science.gov (United States)

    Khan, Aftab A; Al-Kheraif, Abdulaziz A; Al-Shehri, Abdullah M; Säilynoja, Eija; Vallittu, Pekka K

    2018-02-01

    This laboratory study was aimed to characterize semi-interpenetrating polymer network (semi-IPN) of fiber-reinforced composite (FRC) prepregs that had been stored for up to two years before curing. Resin impregnated prepregs of everStick C&B (StickTech-GC, Turku, Finland) glass FRC were stored at 4°C for various lengths of time, i.e., two-weeks, 6-months and 2-years. Five samples from each time group were prepared with a light initiated free radical polymerization method, which were embedded to its long axis in self-curing acrylic. The nanoindentation readings on the top surface toward the core of the sample were made for five test groups, which were named as "stage 1-5". To evaluate the nanohardness and modulus of elasticity of the polymer matrix, a total of 4 slices (100µm each) were cut from stage 1 to stage 5. Differences in nanohardness values were evaluated with analysis of variance (ANOVA), and regression model was used to develop contributing effect of the material's different stages to the total variability in the nanomechanical properties. Additional chemical and thermal characterization of the polymer matrix structure of FRC was carried out. It was hypothesized that time of storage may have an influence on the semi-IPN polymer structure of the cured FRC. The two-way ANOVA test revealed that the storage time had no significant effect on the nanohardness of FRC (p = 0.374). However, a highly significant difference in nanohardness values was observed between the different stages of FRC (Pprepregs might be due to phase-segregation of components of semi-IPN structure of FRC prepregs before their use. This may have an influence to the surface bonding properties of the cured FRC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. UV-radiation curing of simultaneous interpenetrating polymer network hydrogels for enhanced heavy metal ion removal

    International Nuclear Information System (INIS)

    Wang, Jingjing; Liu, Fang

    2012-01-01

    Highlights: ► Simultaneous IPN hydrogels were prepared by hybrid photopolymerization of AM and DVE-3. ► The synergistic complexation was found in the adsorption studies. ► The simultaneous IPN hydrogels could be used as fast-responsive and renewable sorbent materials. - Abstract: Simultaneous interpenetrating polymer network (IPN) hydrogels have been prepared by UV-initiated polymerization of a mixture of acrylamide (AM) and triethylene glycol divinyl ether (DVE-3). The consumption of each monomer upon UV-irradiation was monitored in situ by real-time infrared (RTIR) spectroscopy. The acrylamide monomer AM was shown to polymerize faster and more extensively than the vinyl ether monomer DVE-3, which was further consumed upon storage of the sample in the dark, due to the living character of the cationic polymerization. The IPN hydrogels were used to remove heavy metal ions from aqueous solution under the non-competitive condition. The effects of pH values of the feed solution and the DVE-3 content in the formulation on the adsorption capacity were investigated. The results indicated that the adsorption capacity of the IPN hydrogels increased with the pH values and DVE-3 content in the formulation. Furthermore, the synergistic complexation of metal ions with two polymer networks in the IPN was found in the adsorption studies. Adsorption kinetics and regeneration studies suggested that the IPN hydrogels could be used as fast-responsive and renewable sorbent materials in heavy metal removing processes.

  3. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    permittivity and the Young's modulus of the elastomer. One system that potentially achieves this involves interpenetrating polymer networks (IPNs), based on commercial silicone elastomers and ionic networks from amino- and carboxylic acid-functional silicones. The applicability of these materials as DEs...... are obtained while dielectric breakdown strength and Young's modulus are not compromised. These good overall properties stem from the softening effect and very high permittivity of ionic networks – as high as ε′ = 7500 at 0.1 Hz – while the silicone elastomer part of the IPN provides mechanical integrity...

  4. Physical properties of a high molecular weight hydroxyl-terminated polydimethylsiloxane modified castor oil based polyurethane/epoxy interpenetrating polymer network composites

    Science.gov (United States)

    Chen, Shoubing; Wang, Qihua; Wang, Tingmei

    2011-06-01

    A series of polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effects of HTPDMS content on the phase structure, damping properties and the glass transition temperature ( Tg) of the HTPDMS-modified PU/EP IPN composites were studied by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). Thermogravimetric analysis (TGA) showed that the thermal decomposition temperature of the composites increased with the increase of HTPDMS content. The tensile strength and impact strength of the IPN composites were also significantly improved, especially when the HTPDMS content was 10%. The modified IPN composites were expected to be used as structural damping materials in the future.

  5. Amphiphilic semi-interpenetrating polymer networks using pulverized rubber

    Science.gov (United States)

    Shahidi, Nima

    Scrap rubber materials provide a significant challenge to either reuse or safe disposal. Every year, millions of tires are discarded to landfills in the United States, consuming a staggering amount of land space, creating a high risk for large fires, breeding mosquitoes that spread diseases, and wasting the planet's natural resources. This situation cannot be sustained. The challenge of reusing scrap rubber materials is mainly due to the crosslinked structure of vulcanized rubber that prevent them from melting and further processing for reuse. The most feasible recycling approach is believed to be a process in which the vulcanized rubber is first pulverized into a fine powder and then incorporated into new products. The production of fine rubber particles is generally accomplished through the use of a cryogenic process that is costly. Therefore, development of a cost effective technology that utilizes a large quantity of the scrap rubber materials to produce high value added materials is an essential element in maintaining a sustainable solution to rubber recycling. In this research, a cost effective pulverization process, solid state shear extrusion (SSSE), was modified and used for continuous pulverization of the rubber into fine particles. In the modified SSSE process, pulverization takes place at high compressive shear forces and a controlled temperature. Furthermore, an innovative particle modification process was developed to enhance the chemical structure and surface properties of the rubber particles for manufacturing of high value added products. Modification of rubber particles was accomplished through the polymerization of a hydrophilic monomer mixture within the intermolecular structure of the hydrophobic rubber particles. The resulting composite particles are considered as amphiphilic particulate phase semi-interpenetrating polymer networks (PPSIPNs). The modified rubber particles are water dispersible and suitable for use in a variety of aqueous media

  6. Injectable and inherently vascularizing semi-interpenetrating polymer network for delivering cells to the subcutaneous space.

    Science.gov (United States)

    Mahou, Redouan; Zhang, David K Y; Vlahos, Alexander E; Sefton, Michael V

    2017-07-01

    Injectable hydrogels are suitable for local cell delivery to the subcutaneous space, but the lack of vasculature remains a limiting factor. Previously we demonstrated that biomaterials containing methacrylic acid promoted vascularization. Here we report the preparation of a semi-interpenetrating polymer network (SIPN), and its evaluation as an injectable carrier to deliver cells and generate blood vessels in a subcutaneous implantation site. The SIPN was prepared by reacting a blend of vinyl sulfone-terminated polyethylene glycol (PEG-VS) and sodium polymethacrylate (PMAA-Na) with dithiothreitol. The swelling of SIPN was sensitive to the PMAA-Na content but only small differences in gelation time, permeability and stiffness were noted. SIPN containing 20 mol% PMAA-Na generated a vascular network in the surrounding tissues, with 2-3 times as many vessels as was obtained with 10 mol% PMAA-Na or PEG alone. Perfusion studies showed that the generated vessels were perfused and connected to the host vasculature as early as seven days after transplantation. Islets embedded in SIPN were viable and responsive to glucose stimulation in vitro. In a proof of concept study in a streptozotocin-induced diabetic mouse model, a progressive return to normoglycemia was observed and the presence of insulin positive islets was confirmed when islets were embedded in SIPN prior to delivery. Our approach proposes a biomaterial-mediated strategy to deliver cells while enhancing vascularization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes.

    Science.gov (United States)

    Do, Yu Seong; Lee, Won Hee; Seong, Jong Geun; Kim, Ju Sung; Wang, Ho Hyun; Doherty, Cara M; Hill, Anita J; Lee, Young Moo

    2016-11-15

    Highly permeable, thermally rearranged polymer membranes based on bismaleimide derivatives that exhibit excellent CO 2 permeability up to 5440 Barrer with a high BET surface area (1130 m 2 g -1 ) are reported for the first time. In addition, the membranes can be easily used to form semi-interpenetrating networks with other polymers endowing them with superior gas transport properties.

  8. Semi-interpenetrating networks based on POLY(N-isopropyl acrilamide and POLY(N-vinylpyrrolidone

    Directory of Open Access Journals (Sweden)

    Žugić Dragana

    2007-01-01

    Full Text Available Three series of semi-interpenetrating polymer networks based on cross-linked poly(N-isopropylacrylamide, PNIPA, and 1, 2 and 3 wt% of linear poly(N-vinylpyrrolidone, PVP, were synthesized in order to improve the mechanical properties of PNIPA gels. The effect of the incorporation of the linear PVP polymer into the temperature responsive networks on the phase transition temperature, swelling behavior and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25/1 to 100/1 of the monomer (N-isopropylacrylamide to the cross linker (N,N'-methylene-bisacrylamide. The hydrogels were characterized by determination of the equilibrium degree of swelling at 25 °C, the dynamic shear modulus and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. Furthermore, the deswelling kinetics of the hydrogels was also studied by measuring their water retention capacity. The inclusion of the linear hydrophilic PVP in the PNIPA networks increased the equilibrium degree of swelling, the highest values of which were obtained for samples with 2 and 3 wt% of PVP and the NIPA/MBA molar ratio of 75/1 and 100/1. The highest reinforcement effect, evaluated from the ratio of G'red(semi-IPN to G'red(PNIPA, was obtained by incorporation of 2 wt% PVP. The tensile strength of the semi-IPNs reinforced with linear PVP was higher than that of the PNIPA networks. The elongation at break of these semi-IPNs varied between 22 and 55%, which are 22^11% larger than those for single PNIPA networks. The tensile measurements confirmed that the presence of 2 wt% of the linear polymer significantly reinforced the PNIPA network.

  9. Dielectric electroactive polymers comprising an ionic supramolecular structure

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an ionic interpenetrating polymer network comprising at least one elastomer and an ionic supramolecular structure comprising the reaction product of at least two chemical compounds wherein each of said compounds has at least two functional groups and wherein said ...... compounds are able to undergo Lewis acid-base reactions. The interpenetrating polymer network may be used as dielectric electroactive polymers (DEAPs) having a high dielectric permittivity....

  10. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  11. Interpenetrating Polymer Network (IPN with Epoxidized and Acrylated Bioresins and their Composites with Glass and Jute Fibres

    Directory of Open Access Journals (Sweden)

    Francisco Cardona

    2016-02-01

    Full Text Available Epoxidized (EHO and acrylated (AEHO bio-resins from hemp oil were synthesized, and their interpenetrating networks (IPNs were investigated in reinforced bio-composites with natural jute fibres and glass fibres. The mechanical properties (tensile, flexural, Charpy impact, and inter-laminar shear and viscoelastic properties (glass transition temperature, storage modulus, and crosslink density of the bio-resins and their hybrid IPNs EHO/AEHO system were investigated as a function of the level of bio-resin hybridization. The hybrid bio-resins exhibited interpenetrating network (IPN behaviour. Composites prepared with the synthetic vinyl ester (VE and epoxy resins showed superior mechanical and viscoelastic properties compared with their bio-resins and IPNs-based counterparts. With glass fibre (GF reinforcement, increases in the EHO content of the IPNs resulted in increased stiffness of the composites, while the strength, inter-laminar shear strength (ILSS, and impact resistance decreased. However, in the jute fibre reinforced bio-composites, increases in AEHO content generated increased tensile modulus, ILSS, and mechanical strength of the bio-materials. Crosslink density and glass transition temperature (Tg were also higher for the synthetic resins than for the bio-resins. Increased AEHO content of the IPNs resulted in improved viscoelastic properties.

  12. Thermosetting polyimide resin matrix composites with interpenetrating polymer networks for precision foil resistor chips based on special mechanical performance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y., E-mail: wxy@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Ma, J.X.; Li, C.G. [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Wang, H.X. [ZHENGHE electronics Co., Ltd, Jining 272023 (China)

    2014-04-01

    Highlights: • Macromolecular materials were chosen to modify thermosetting polyimide (TSPI). • The formation of IPN structure in TSPI composite polymers was discussed. • The special mechanical properties required were the main study object. • The desired candidate materials should have proper hardness and toughness. • The specific mechanical data are quantitatively determined by experiments. - Abstract: Based on interpenetrating networks (IPNs) different macromolecular materials such as epoxy, phenolic, and silicone resin were chosen to modify thermosetting polyimide (TSPI) resin to solve the lack of performance when used for protecting precision foil resistor chips. Copolymerization modification, controlled at curing stage, was used to prepare TSPI composites considering both performance and process requirements. The mechanical properties related to trimming process were mainly studied due to the special requirements of the regularity of scratch edges caused by a tungsten needle. The analysis on scratch edges reveals that the generation and propagation of microcracks caused by scratching together with crack closure effect may lead to regular scratch traces. Experiments show that the elongation at break of TSPI composites is the main reason that determines the special mechanical properties. The desired candidate materials should have proper hardness and toughness, and the specific mechanical data are that the mean elongation at break and tensile strength of polymer materials are in the range of 9.2–10.4% and 100–107 MPa, respectively. Possible reasons for the effect of the modifiers chosen on TSPI polymers, the reaction mechanisms on modified TSPI resin and the IPN structure in TSPI composite polymers were discussed based on IR and TG analysis.

  13. Thermosetting polyimide resin matrix composites with interpenetrating polymer networks for precision foil resistor chips based on special mechanical performance requirements

    International Nuclear Information System (INIS)

    Wang, X.Y.; Ma, J.X.; Li, C.G.; Wang, H.X.

    2014-01-01

    Highlights: • Macromolecular materials were chosen to modify thermosetting polyimide (TSPI). • The formation of IPN structure in TSPI composite polymers was discussed. • The special mechanical properties required were the main study object. • The desired candidate materials should have proper hardness and toughness. • The specific mechanical data are quantitatively determined by experiments. - Abstract: Based on interpenetrating networks (IPNs) different macromolecular materials such as epoxy, phenolic, and silicone resin were chosen to modify thermosetting polyimide (TSPI) resin to solve the lack of performance when used for protecting precision foil resistor chips. Copolymerization modification, controlled at curing stage, was used to prepare TSPI composites considering both performance and process requirements. The mechanical properties related to trimming process were mainly studied due to the special requirements of the regularity of scratch edges caused by a tungsten needle. The analysis on scratch edges reveals that the generation and propagation of microcracks caused by scratching together with crack closure effect may lead to regular scratch traces. Experiments show that the elongation at break of TSPI composites is the main reason that determines the special mechanical properties. The desired candidate materials should have proper hardness and toughness, and the specific mechanical data are that the mean elongation at break and tensile strength of polymer materials are in the range of 9.2–10.4% and 100–107 MPa, respectively. Possible reasons for the effect of the modifiers chosen on TSPI polymers, the reaction mechanisms on modified TSPI resin and the IPN structure in TSPI composite polymers were discussed based on IR and TG analysis

  14. Adsorption of ammonium and phosphate by feather protein based semi-interpenetrating polymer networks hydrogel as a controlled-release fertilizer.

    Science.gov (United States)

    Su, Yuan; Liu, Jia; Yue, Qinyan; Li, Qian; Gao, Baoyu

    2014-01-01

    A new feather protein-grafted poly(potassium acrylate)/polyvinyl alcohol (FP-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was produced through graft copolymerization with FP as a basic macromolecular skeletal material, acrylic acid as a monomer and PVA as a semi-IPNs polymer. The adsorption of ammonium and phosphate ions from aqueous solution using the new hydrogel as N and P controlled-release fertilizer with water-retention capacity was studied. The effects of pH value, concentration, contact time and ion strength on NH4+ and PO3-4 removal by FP-g-PKA/PVA semi-IPNs hydrogel were investigated using batch adsorption experiments. The results indicated that the hydrogel had high adsorption capacities and fast adsorption rates for NH4+ and PO3-4 in wide pH levels ranging from 4.0 to 9.0. Kinetic analysis presented that both NH4+ and PO3-4 removal were closely fitted with the pseudo-second-order model. Furthermore, the adsorption isotherms of hydrogel were best represented by the Freundlich model. The adsorption-desorption experimental results showed the sustainable stability of FP-g-PKA/PVA semi-IPNs hydrogel for NH4+ and PO3-4 removal. Overall, FP-g-PKA/PVA could be considered as an efficient material for the removal and recovery of nitrogen and phosphorus with the agronomic reuse as a fertilizer.

  15. Thermosensitive Behavior and Antibacterial Activity of Cotton Fabric Modified with a Chitosan-poly(N-isopropylacrylamide Interpenetrating Polymer Network Hydrogel

    Directory of Open Access Journals (Sweden)

    Boxiang Wang

    2016-03-01

    Full Text Available To increase the themosensitive behavior and antibacterial activity of cotton fabric, a series of poly (N-isopropylacrylamide/chitosan (PNIPAAm/Cs hydrogels was synthesized by interpenetrating polymer network (IPN technology using a redox initiator. The IPN PNIPAAm/Cs hydrogel was characterized by Fourier transform infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The results indicated that the IPN PNIPAAm/Cs hydrogel has a lower critical solution temperature (LCST at 33 °C. The IPN hydrogel was then used to modify cotton fabric using glutaric dialdehyde (GA as a crosslinking agent following a double-dip-double-nip process. The results demonstrated that the modified cotton fabric showed obvious thermosensitive behavior and antibacterial activity. The contact angle of the modified cotton fabric has a sharp rise around 33 °C, and the modified cotton fabric showed an obvious thermosensitive behavior. The bacterial reduction of modified cotton fabric against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli were more than 99%. This study presents a valuable route towards smart textiles and their applications in functional clothing.

  16. Self-assembled interpenetrating networks by orthogonal self assembly of surfactants and hydrogelators

    NARCIS (Netherlands)

    Brizard, Aurelie M.; Stuart, Marc C. A.; van Esch, Jan H.

    2009-01-01

    Interpenetrating networks (IPN) consist of two or more networks of different components which are entangled on a molecular scale and cannot be separated without breaking at least one of the networks. They are of great technological interest because they allow the blending of two or more otherwise

  17. Taste masking of ofloxacin and formation of interpenetrating polymer network beads for sustained release

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2017-08-01

    Full Text Available The objective of this study was to carry out taste masking of ofloxacin (Ofl by ion exchange resins (IERs followed by sustained release of Ofl by forming interpenetrating polymer network (IPN beads. Drug-resin complexes (DRCs with three different ratios of Ofl to IERs (1:1, 1:2, 1:4 were prepared by batch method and investigated for in vivo and in vitro taste masking. DRC of methacrylic acid-divinyl benzene (MD resin and Ofl prepared at a ratio of 1:4 was used to form IPN beads. IPN beads of MD 1:4 were prepared by following the ionic cross-linking method using sodium carboxymethyl xanthan gum (SCMXG and SCMXG-sodium carboxymethyl cellulose (SCMXG-SCMC. IPN beads were characterized with FT-IR and further studied on sustained release of Ofl at different pH. In vivo taste masking carried out by human volunteers showed that MD 1:4 significantly reduced the bitterness of Ofl. Characterization studies such as FT-IR, DSC, P-XRD and taste masking showed that complex formation took place between drug and resin. In vitro study at gastric pH showed complete release of drug from MD 1:4 within 30 min whereas IPN beads took 5 h at gastric pH and 10 h at salivary pH for the complete release of drug. As the crosslinking increased the release kinetics changed into non-Fickian diffusion to zero-order release mechanism. MD 1:4 showed better performance for the taste masking of Ofl and IPNs beads prepared from it were found useful for the sustained release of Ofl at both the pH, indicating a versatile drug delivery system.

  18. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-09-01

    Vanadium redox flow batteries (VRFBs) with their high flexibility in configuration and operation, as well as long cycle life are competent for the requirement of future energy storage systems. Nevertheless, due to the application of perfluorinated membranes, VRFBs are plagued by not only the severe migration issue of vanadium ions, but also their high cost. Herein, we fabricate semi-interpenetrating polymer networks (SIPNs), consisting of cross-linked polyvinylpyrrolidone (PVP) and polysulfone (PSF), as alternative membranes for VRFBs. It is demonstrated that the PVP-based SIPNs exhibit extremely low vanadium permeabilities, which contribute to the well-established hydrophilic/hydrophobic microstructures and the Donnan exclusion effect. As a result, the coulombic efficiencies of VRFBs with PVP-based SIPNs reach almost 100% at 40 mA cm-2 to 100 mA cm-2; the energy efficiencies are more than 3% higher than those of VRFBs with Nafion 212. More importantly, the PVP-based SIPNs exhibit a superior chemical stability, as demonstrated both by an ex situ immersion test and continuously cycling test. Hence, all the characterizations and performance tests reported here suggest that PVP-based SIPNs are a promising alternative membrane for redox flow batteries to achieve superior cell performance and excellent cycling stability at the fraction of the cost of perfluorinated membranes.

  19. Taste masking of ciprofloxacin by ion-exchange resin and sustain release at gastric-intestinal through interpenetrating polymer network

    Directory of Open Access Journals (Sweden)

    A. Michael Rajesh

    2015-07-01

    Full Text Available The aim of the study was to taste mask ciprofloxacin (CP by using ion-exchange resins (IERs followed by sustain release of CP by forming interpenetrating polymer network (IPN. IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised. Drug-resin complexes (DRCs with three different ratios of drug to IERs (1:1, 1:2, 1:4 were prepared & evaluated for taste masking by following in vivo and in vitro methods. Human volunteers graded ADC 1:4, acrylic acid-divinyl benzene (ADC-3 resin as tasteless. Characterization studies such as FTIR, SEM, DSC, P-XRD differentiated ADC 1:4, from physical mixture (PM 1:4 and confirmed the formation of complex. In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid (SGF i.e. pH 1.2. IPN beads were prepared with ADC 1:4 by using sodium alginate (AL and sodium alginate-chitosan (AL-CS for sustain release of CP at SGF pH and followed by simulated intestinal fluid (SIF i.e. pH 7.4. FTIR spectra confirmed the formation of IPN beads. The release of CP was sustain at SGF pH (75%. The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.

  20. Ion conducting interpenetrated lattices for lithium generators; Reseaux interpenetres conducteurs ioniques pour generateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Grosz, M.; Boileau, S. [College de France, 75 - Paris (France); Guegan, P.; Cheradame, H. [Centre National de la Recherche Scientifique (CNRS), 94 - Thiais (France). LPCB; Deshayes, A. [CNET, 92 - Issy-les-Moulineaux (France)

    1996-12-31

    Interpenetrated lattices (IPL) are combinations of reticulated polymers linked together by permanent crisscross. This structure is well-adapted to combined highly incompatible pairs of polymers. The in-situ sequential method has been applied successfully to the synthesis of ethylene poly-oxides / poly-siloxanes IPLs. The results concerning the preparation of such lattices and their behaviour as solid polymer electrolytes are presented in this paper. (J.S.) 24 refs.

  1. Ion conducting interpenetrated lattices for lithium generators; Reseaux interpenetres conducteurs ioniques pour generateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Grosz, M; Boileau, S [College de France, 75 - Paris (France); Guegan, P; Cheradame, H [Centre National de la Recherche Scientifique (CNRS), 94 - Thiais (France). LPCB; Deshayes, A [CNET, 92 - Issy-les-Moulineaux (France)

    1997-12-31

    Interpenetrated lattices (IPL) are combinations of reticulated polymers linked together by permanent crisscross. This structure is well-adapted to combined highly incompatible pairs of polymers. The in-situ sequential method has been applied successfully to the synthesis of ethylene poly-oxides / poly-siloxanes IPLs. The results concerning the preparation of such lattices and their behaviour as solid polymer electrolytes are presented in this paper. (J.S.) 24 refs.

  2. Synthesis and characterization of sulfonic acid membranes based on interpenetrating polymer networks for application in fuel cells; Sintese e caracterizacao de membranas sulfonadas baseadas em redes polimericas interpenetrantes para aplicacao em celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Lyzed Toloza; Loureiro, Felipe A.M.; Rocco, Ana Maria [Grupo de Materiais Condutores e Energia, Escola de Quimica, Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)], e-mail: amrocco@eq.ufrj.br; Pereira, Robson Pacheco [Instituto de Ciencias Exatas, Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil)

    2011-07-01

    In the present work, the synthesis and characterization of sulfonic membranes based on interpenetrating polymer networks (IPN). In order to obtain such systems, the diglycidyl ether of bisphenol A (DGEBA) was polymerized in presence of polyethyleneimine (PEI). These membranes were submitted to sulfonation reactions, originating IPN-SO{sub 3}H membranes. The characterization by FTIR evidenced the formation of a Semi-IPN structure, while sulfonation reactions resulted in systems containing -SO{sub 3}H groups covalently bonded to the chains. The membranes exhibited water retention up to 200 degree C, in a temperature range sufficient for application in PEMFC under hydration. (author)

  3. Photoinduced FT-IR spectroscopy and CW-photocurrent measurements of conjugated polymers and fullerenes blended into a conventional polymer matrix

    NARCIS (Netherlands)

    Brabec, C.J.; Johannson, H.; Padinger, F.; Neugebauer, H.; Hummelen, J.C.; Sariciftci, N.S.

    2000-01-01

    In this work we present an investigation of the photoexcited states in conjugated polymer (donor) - fullerene (acceptor) interpenetrating networks embedded into conventional polymer hosts like polystyrene (PS), polyvinylcarbazole (PVK) or polyvinylbenzylchloride (PVBC) (guest - host approach), using

  4. Microstructure and Mechanical Properties of Heterogeneous Ceramic-Polymer Composite Using Interpenetrating Network

    International Nuclear Information System (INIS)

    Eun-Hee, K.; Yeon-Gil, J.; Chang-Yong, J.

    2012-01-01

    Prepolymer, which can be polymerized by a photo, has been infiltrated into a porous ceramic to improve the addition effect of polymer into the ceramic, as a function of the functionality of prepolymer. It induces the increase in the mechanical properties of the ceramic. The porous alumina (Al 2 O 3 ) and the polyurethane acrylate (PUA) with a network structure by photo-polymerization were used as the matrix and infiltration materials, respectively. The porous Al 2 O 3 matrix without the polymer shows lower values in fracture strength than the composites, since the stress is transmitted more quickly via propagation of cracks from intrinsic defects in the porous matrix. However, in the case of composites, the distribution of stress between hetero phases results in the improved mechanical properties. In addition, the mechanical properties of composites, such as elastic modulus and fracture strength, are enhanced with increasing the functionality of prepolymer attributed to the crosslinking density of polymer.

  5. Novel composite membrane coated with a poly(diallyldimethylammonium chloride)/urushi semi-interpenetrating polymer network for non-aqueous redox flow battery application

    Science.gov (United States)

    Cho, Eunhae; Won, Jongok

    2016-12-01

    Novel composite membranes of a semi-interpenetrating network (semi-IPN) coated on the surfaces of a porous Celgard 2400 support are prepared and investigate for application in a non-aqueous redox flow battery (RFB). A natural polymer, urushi, is used for the matrix because of its high mechanical robustness, and poly(diallyldimethylammonium chloride) (PDDA) provides anionic exchange sites. The PDDA/urushi (P/U) semi-IPN film is prepared by the photo polymerization of urushiol in the presence of PDDA. The thin layer composed of the P/U semi-IPN on the porous support provides selectivity while maintaining the ion conductivity. The coulombic and energy efficiencies increase with increasing amounts of PDDA in the P/U semi-IPN layer, and the values reach 69.5% and 42.5%, respectively, for the one containing 40 wt% of PDDA. These values are substantially higher than those of the Neosepta AHA membrane and the Celgard membrane, indicating that the selective layer reduces the crossover of the redox active species through the membrane. This result implies that the formation of composite membranes using semi-IPN selective layers on the dimensionally stable porous membrane enable the successful use of a non-aqueous RFB for future energy storage systems.

  6. Morphology and damping behavior of polyurethane/PMMA simultaneous interpenetrating networks

    Directory of Open Access Journals (Sweden)

    Wang S.H.

    2001-01-01

    Full Text Available A series of polyurethane/PMMA simultaneous interpenetrating networks (SINs with various hard segment contents (X in the polyurethane phase (X = 15.5 to 36.5% in polyurethane and wide range of polyurethane (PU to polyacrylate (PA ratio (PU/PA = 20:80 to 80:20 were prepared, and the damping and mechanical properties of these materials were studied. The damping of polyurethane soft phase was increased and shifted to lower temperature with increased content of PA vitreous phase. The mechanical properties were improved with increasing PA contents. The results show that PA and the polyurethane hard segment interaction play a special role in chain interpenetration density and its magnitude is revealed by the decreased dispersed domain size observed by scanning electron microscopy (SEM and increased loss area as measured by dynamic mechanical thermal analysis (DMTA. When the weight ratio of PU/PA was 40:60, the resulting SIN materials possessed better damping properties, independent of X concentration.

  7. Some experiments to study diffusive transport through a semi interpenetrating polymeric network in the absence and presence of aqueous electrolytes

    Science.gov (United States)

    Biswas, Pritha; Das, Atreyee; Yasmin, Tanvee; Kanjilal, Baishali; Chakrabarti, Haimanti

    2018-05-01

    The study of ion transport in biological system has become a topic of great current interest. This work presents the diffusive transport properties through a typical semi interpenetrating polymeric network (SIPN) which mimics many characteristic features of the walls of human food pipes. The SIPN matrix has been synthesised from Polyvinyl alcohol, Acrylamide monomer, Glutaraldehyde and Ammonium Per sulphate in our laboratory is utilised to study the diffusive transport in the absence and presence of aqueous electrolyte (KCl) at varying concentrations. The diffusivity of the SIPN polymer hydrogel was estimated by the `Theory of Elastomer' to get an insight into process of Potassium and Chlorine ion transport through the SIPN.

  8. Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks.

    Science.gov (United States)

    Wan, Haixiao; Shen, Jianxiang; Gao, Naishen; Liu, Jun; Gao, Yangyang; Zhang, Liqun

    2018-03-28

    Designing a multiple-network structure at the molecular level to tailor the mechanical properties of polymeric materials is of great scientific and technological importance. Through the coarse-grained molecular dynamics simulation, we successfully construct an interpenetrating polymer network (IPN) composed of a flexible polymer network and a stiff polymer network. First, we find that there is an optimal chain stiffness for a single network (SN) to achieve the best stress-strain behavior. Then we turn to study the mechanical behaviors of IPNs. The result shows that the stress-strain behaviors of the IPNs appreciably exceed the sum of that of the corresponding single flexible and stiff network, which highlights the advantage of the IPN structure. By systematically varying the stiffness of the stiff polymer network of the IPNs, optimal stiffness also exists to achieve the best performance. We attribute this to a much larger contribution of the non-bonded interaction energy. Last, the effect of the component concentration ratio is probed. With the increase of the concentration of the flexible network, the stress-strain behavior of the IPNs is gradually enhanced, while an optimized concentration (around 60% molar ration) of the stiff network occurs, which could result from the dominant role of the enthalpy rather than the entropy. In general, our work is expected to provide some guidelines to better tailor the mechanical properties of the IPNs made of a flexible network and a stiff network, by manipulating the stiffness of the stiff polymer network and the component concentration ratio.

  9. Exploring 3D non-interpenetrated metal-organic framework with malonate-bridged Co(II) coordination polymer: structural elucidation and theoretical study

    Science.gov (United States)

    Hossain, Anowar; Mandal, Tripti; Mitra, Monojit; Manna, Prankrishna; Bauzá, Antonio; Frontera, Antonio; Seth, Saikat Kumar; Mukhopadhyay, Subrata

    2017-12-01

    A Co(II)-based coordination polymer with tetranuclear cobalt(II)-malonate cluster has been easily generated by aqueous medium self-assembly from Cobalt(II) chloride hexahydrate and malonic acid. The structure exhibits a non-interpenetrating, highly undulating two-dimensional (2D) bi-layer network with (4,4) topology. The crystal structure is composed of infinite interdigitated 2D metal-organic bi-layers which extended to an intricate 3D framework through the interbilayer hydrogen bonds. We have studied energetically by means of Density Functional Theory (DFT) calculations the H-bonding interactions that connect the 2D metal-organic bi-layers. The finite theoretical models have been used to compute conventional O‒H•••O and unconventional C‒H•••O interactions which plays a key role to build 3D architecture.

  10. Microstructure and Mechanical Properties of Heterogeneous Ceramic-Polymer Composite Using Interpenetrating Network

    OpenAIRE

    Kim, Eun-Hee; Jung, Yeon-Gil; Jo, Chang-Yong

    2012-01-01

    Prepolymer, which can be polymerized by a photo, has been infiltrated into a porous ceramic to improve the addition effect of polymer into the ceramic, as a function of the functionality of prepolymer. It induces the increase in the mechanical properties of the ceramic. The porous alumina (Al2O3) and the polyurethane acrylate (PUA) with a network structure by photo-polymerization were used as the matrix and infiltration materials, respectively. The porous Al2O3 matrix without t...

  11. Photonic shape memory polymer with stable multiple colors

    NARCIS (Netherlands)

    Moirangthem, M.; Engels, T.A.P.; Murphy, J.; Bastiaansen, C.W.M.; Schenning, A.P.H.J.

    2017-01-01

    A photonic shape memory polymer film that shows large color response (∼155 nm) in a wide temperature range has been fabricated from a semi-interpenetrating network of a cholesteric polymer and poly(benzyl acrylate). The large color response is achieved by mechanical embossing of the photonic film

  12. Concept of polymer alloy electrolytes: towards room temperature operation of lithium-polymer batteries

    International Nuclear Information System (INIS)

    Noda, Kazuhiro; Yasuda, Toshikazu; Nishi, Yoshio

    2004-01-01

    Polymer alloy technique is very powerful tool to tune the ionic conductivity and mechanical strength of polymer electrolyte. A semi-interpenetrating polymer network (semi-IPN) polymer alloy electrolyte, composed of non-cross-linkable siloxane-based polymer and cross-linked 3D network polymer, was prepared. Such polymer alloy electrolyte has quite high ionic conductivity (more than 10 -4 Scm -1 at 25 o C and 10 -5 Scm -1 at -10 o C) and mechanical strength as a separator film with a wide electrochemical stability window. A lithium metal/semi-IPN polymer alloy solid state electrolyte/LiCoO 2 cell demonstrated promising cycle performance with room temperature operation of the energy density of 300Wh/L and better rate performance than conventional PEO based lithium polymer battery ever reported

  13. Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD)

    International Nuclear Information System (INIS)

    Baburin, I.A.; Blatov, V.A.; Carlucci, L.; Ciani, G.; Proserpio, D.M.

    2005-01-01

    Interpenetration in metal-organic and inorganic networks has been investigated by a systematic analysis of the crystallographic structural databases. We have used a version of TOPOS (a package for multipurpose crystallochemical analysis) adapted for searching for interpenetration and based on the concept of Voronoi-Dirichlet polyhedra and on the representation of a crystal structure as a reduced finite graph. In this paper, we report comprehensive lists of interpenetrating inorganic 3D structures from the Inorganic Crystal Structure Database (ICSD), inclusive of 144 Collection Codes for equivalent interpenetrating nets, analyzed on the basis of their topologies. Distinct Classes, corresponding to the different modes in which individual identical motifs can interpenetrate, have been attributed to the entangled structures. Interpenetrating nets of different nature as well as interpenetrating H-bonded nets were also examined

  14. Polycaprolactone diacrylate crosslinked biodegradable semi-interpenetrating networks of polyacrylamide and gelatin for controlled drug delivery

    International Nuclear Information System (INIS)

    Jaiswal, Maneesh; Koul, Veena; Dinda, Amit K; Gupta, Asheesh

    2010-01-01

    A biodegradable semi-interpenetrating hydrogel network (semi-IPN) of polyacrylamide and gelatin was prepared using polycaprolactone diacrylate (mol. wt ∼ 640) as a crosslinker. The drug-polymer interaction and IPN formation were investigated by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and thermal gravimetric analysis (TGA). Scanning electron micrographs of lyophilized matrices revealed porous internal structure with varying pore sizes under equilibrium hydrated conditions, depending upon formulation composition. pH-dependent swelling and degradation was enhanced with increasing gelatin content and decreasing crosslinker concentration (Cs). Compression modulus (CM) (at 20% strain) increased significantly from 23 ± 1.4 to 75 ± 2.7 kPa (p 0 C). Fitting of drug release data in the Korsmeyer-Peppas model suggested sustained release behavior up to 10 days with a combination of diffusion and erosion mechanism (0.5 t /M ∞ ≤ 0.6). The newly developed porous, biodegradable and elastic semi-IPNs may serve as an ideal matrix for controlled drug release and wound healing applications. The possibilities can be explored for pharmaceutical and tissue engineering applications.

  15. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    Science.gov (United States)

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structure and properties of semi-interpenetrating network hydrogel based on starch.

    Science.gov (United States)

    Zhu, Baodong; Ma, Dongzhuo; Wang, Jian; Zhang, Shuang

    2015-11-20

    Starch-g-P(acrylic acid-co-acrylamide)/PVA semi-interpenetrating network (semi-IPN) hydrogels were prepared by aqueous solution polymerization method. Starch grafting copolymerization reaction, semi-IPN structure and crystal morphology were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The PVA in the form of partial crystallization distributing in the gel matrix uniformly were observed by Field emission scanning electron microscope (FESEM). The space network structure, finer microstructure and pore size in the interior of hydrogel were presented by biomicroscope. The results demonstrated that absorption ratio of water and salt generated different degree changes with the effect of PVA. In addition, the mechanical strength of hydrogel was improved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Temperature-induced phase transition in hydrogels of interpenetrating networks poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide)

    Czech Academy of Sciences Publication Activity Database

    Šťastná, J.; Hanyková, L.; Sedláková, Zdeňka; Valentová, H.; Spěváček, Jiří

    2013-01-01

    Roč. 291, č. 10 (2013), s. 2409-2417 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1281 Institutional support: RVO:61389013 Keywords : temperature-induced volume phase transition * poly (N-isopropylmethacrylamide) poly (Nisopropylacrylamide) interpenetrating network * 1H NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.410, year: 2013

  18. Simple synthesis of nitrogen-rich polymer network and its further amination with PEI for CO2 adsorption

    Science.gov (United States)

    Yin, Fengqin; Zhuang, Linzhou; Luo, Xianyong; Chen, Shuixia

    2018-03-01

    The nitrogen-rich polymer network (MF/PAM) was synthesized through interpenetration between the molecular chains of melamine-formaldehyde resin(MF) and polyacrylamide (PAM), to which the polyethylene imine (PEI) was grafted to obtain solid amine adsorbent (MF/PAM-g-PEI). Compared with MF, the swelling capacity of MF/PAM was greatly enhanced, it could swell rapidly and directly in water. Although the interpenetration of PAM into MF may reduce the porosity of MF/PAM, the CO2 capture capacity of the solid amine adsorbents (MF/PAM-g-PEI) could still reach 2.8 mmol/g at 273 K. The adsorbents also exhibited promising adsorption kinetics and regeneration performances. The kinetics observation showed that the Avrami model could better descript the CO2 adsorption process compared with the pseudo-first-order model and pseudo-second-order model. Meanwhile, the Avrami kinetic orders (na) range from 1.21 to 1.56, displaying that the both physisorption and chemisorption exist in the adsorption process and the PEI have successfully grafted onto the polymer network, which also can be confirmed by the adsorption activation energy value. After 18 adsorption-desorption recycles, the MF/PAM-g-PEI could preserve its initial capacity without any decrease. Our work provides a new method to achieve promising solid amine adsorbents with higher adsorption capacity and better regeneration performance.

  19. Interpenetrating network ceramic-resin composite dental restorative materials.

    Science.gov (United States)

    Swain, M V; Coldea, A; Bilkhair, A; Guess, P C

    2016-01-01

    This paper investigates the structure and some properties of resin infiltrated ceramic network structure materials suitable for CAD/CAM dental restorative applications. Initially the basis of interpenetrating network materials is defined along with placing them into a materials science perspective. This involves identifying potential advantages of such structures beyond that of the individual materials or simple mixing of the components. Observations from a number of recently published papers on this class of materials are summarized. These include the strength, fracture toughness, hardness and damage tolerance, namely to pointed and blunt (spherical) indentation as well as to burr adjustment. In addition a summary of recent results of crowns subjected to simulated clinical conditions using a chewing simulator are presented. These results are rationalized on the basis of existing theoretical considerations. The currently available ceramic-resin IPN material for clinical application is softer, exhibits comparable strength and fracture toughness but with substantial R-curve behavior, has lower E modulus and is more damage tolerant than existing glass-ceramic materials. Chewing simulation observations with crowns of this material indicate that it appears to be more resistant to sliding/impact induced cracking although its overall contact induced breakage load is modest. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Development and optimization of locust bean gum and sodium alginate interpenetrating polymeric network of capecitabine.

    Science.gov (United States)

    Upadhyay, Mansi; Adena, Sandeep Kumar Reddy; Vardhan, Harsh; Pandey, Sureshwar; Mishra, Brahmeshwar

    2018-03-01

    The objective of the study was to develop interpenetrating polymeric network (IPN) of capecitabine (CAP) using natural polymers locust bean gum (LBG) and sodium alginate (NaAlg). The IPN microbeads were optimized by Box-Behnken Design (BBD) to provide anticipated particle size with good drug entrapment efficiency. The comparative dissolution profile of IPN microbeads of CAP with the marketed preparation proved an excellent sustained drug delivery vehicle. Ionotropic gelation method utilizing metal ion calcium (Ca 2+ ) as a cross-linker was used to prepare IPN microbeads. The optimization study was done by response surface methodology based Box-Behnken Design. The effect of the factors on the responses of optimized batch was exhibited through response surface and contour plots. The optimized batch was analyzed for particle size, % drug entrapment, pharmacokinetic study, in vitro drug release study and further characterized by FTIR, XRD, and SEM. To study the water uptake capacity and hydrodynamic activity of the polymers, swelling studies and viscosity measurement were performed, respectively. The particle size and % drug entrapment of the optimized batch was 494.37 ± 1.4 µm and 81.39 ± 2.9%, respectively, closer to the value predicted by Minitab 17 software. The in vitro drug release study showed sustained release of 92% for 12 h and followed anomalous drug release pattern. The derived pharmacokinetic parameters of optimized batch showed improved results than pure CAP. Thus, the formed IPN microbeads of CAP proved to be an effective extended drug delivery vehicle for the water soluble antineoplastic drug.

  1. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration.

    Science.gov (United States)

    Radhakrishnan, Janani; Subramanian, Anuradha; Sethuraman, Swaminathan

    2017-11-01

    Articular hyaline cartilage regeneration remains challenging due to its less intrinsic reparability. The study develops injectable biphasic semi-interpenetrating polymer networks (SIPN) hydrogel impregnated with chondroitin sulfate (ChS) nanoparticles for functional cartilage restoration. ChS loaded zein nanoparticles (∼150nm) prepared by polyelectrolyte-protein complexation were interspersed into injectable SIPNs developed by blending alginate with poly(vinyl alcohol) and calcium crosslinking. The hydrogel exhibited interconnected porous microstructure (39.9±5.8μm pore diameter, 57.7±5.9% porosity), 92% swellability and >350Pa elastic modulus. Primary chondrocytes compatibility, chondrocyte-matrix interaction with cell-cell clustering and spheroidal morphology was demonstrated in ChS loaded hydrogel and long-term (42days) proliferation was also determined. Higher fold expression of cartilage-specific genes sox9, aggrecan and collagen-II was observed in ChS loaded hydrogel while exhibiting poor expression of collagen-I. Immunoblotting of aggregan and collagen II demonstrate favorable positive influence of ChS on chondrocytes. Thus, the injectable biphasic SIPNs could be promising composition-mimetic substitute for cartilage restoration at irregular defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou

    2011-08-01

    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  3. Robust solid polymer electrolyte for conducting IPN actuators

    Science.gov (United States)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-10-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10-3 S cm-1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V.

  4. Intégration d'actionneurs à base de polymères conducteurs électroniques pour des applications aux microsystèmes

    OpenAIRE

    Khaldi , Alexandre

    2012-01-01

    The aim of this work is the realization of new microactuators based on electronicconducting polymer (ECP) for a flapping wing nano-aerial vehicle.Two Interpenetrating Polymer Networks (IPNs) PEO/PTHF(polyethyleneoxide/polytetrahydrofurane) and PEO/NBR (polyethyleneoxide/NitrileButadiene Rubber) were synthesized and characterized. By controlling the synthesis of these IPNs, a phase co-continuity of the two networks could be obtained. This work has enabled the production of materials combining ...

  5. Robust solid polymer electrolyte for conducting IPN actuators

    International Nuclear Information System (INIS)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-01-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10 −3 S cm −1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V. (paper)

  6. Exploration of the biomacromolecular interactions of an interpenetrating proteo-saccharide hydrogel network at the mucosal interface

    CSIR Research Space (South Africa)

    Mashingaidze, F

    2013-09-01

    Full Text Available EXPLORATION OF THE BIOMACROMOLECULAR INTERACTIONS OF AN INTERPENETRATING PROTEO-SACCHARIDE HYDROGEL NETWORK AT THE MUCOSAL INTERFACE 1Felix Mashingaidze, 1Yahya E. Choonara, 1Pradeep Kumar, 1Lisa C. du Toit, 2Vinesh Maharaj, 3Eckhart Buchmann, 4Valence M..., Department of Biosciences, Meiring Naud_e Road, Brummeria, Pretoria, South Africa 3University of the Witwatersrand, Faculty of Health Sciences, Department of Obstetrics and Gynecology, 7 York Road, Parktown, 2193, Johannesburg, South Africa 4St. John’s...

  7. EFFICIENT POLYMER PHOTOVOLTAIC DEVICES BASED ON POLYMER D-A BLENDS

    Institute of Scientific and Technical Information of China (English)

    Xian-yu Deng; Li-ping Zheng; Yue-qi Mo; Gang Yu; Wei Yang; Wen-hua Weng; Yong Cao

    2001-01-01

    Recent work demonstrated that efficient solar-energy conversion could be achieved in polymer photovoltaic cells (PVCs) based on interpenetrating bi-continuous networks[1,2]. In this paper we present a comprehensive study on improving energy conversion efficiencies of PVCs based on composite films of MEHPPV and fullerene derivatives. Carrier collection efficiency of ca. 30% el/ph and energy conversion efficiency of 3.9% were achieved at 500 nm. At reverse bias of 15 V, the photosensitivity reached 0.8 A/W, corresponding to a quantum efficiency over 100% el/ph. These results suggest that high efficiency photoelectric conversion can be achieved in polymer devices with M-P-M structure. These devices are promising for practical applications such as plastic solar cells and plastic photodetectors.

  8. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    Science.gov (United States)

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  9. Three new 5-fold interpenetrating diamondoid frameworks constructed by rigid diimidazole and dicarboxylate ligands

    Science.gov (United States)

    Huo, Jianqiang; Yan, Shuai; Li, Haiqiang; Yu, Donghui; Arulsamy, Navamoney

    2018-03-01

    A series of three-dimensional coordination polymers, namely, [Cd(BIMB)(SCA)]n (1), [M(BIMB)(trans-CHDC)]n (2, M = Cd2+; 3, M = Co2+), where BIMB = 1,4-di(1H-imidazol-1-yl)benzene, SCA2- = succinate dianion, CHDC2- = cyclohexane-1,4-dicarboxylate dianion) are synthesized hydro/solvatothermal methods. The products are characterized by elemental analysis and single-crystal X-ray diffraction data. Both the dianion and BIMB bridge different pairs of the metal ions, the three complexes are polymeric and their three-dimensional topology feature a diamond-like metal-organic framework (MOF). Owing to the length of the two bridging ligands, moderate size voids are formed in the diamondoid networks. However, the voids are filled by mutual interpenetration of four independent equivalent frameworks in a 5-fold interpenetrating architecture, and there is no sufficient void volume available for any guest molecules. The phase purity and thermal stability of the compounds are verified by powder X-ray diffraction (PXRD) and thermogravimetric (TG) data. The solid-state fluorescence spectra for the 3d10 Cd2+ MOF's 1 and 2 reveal significant enhancement in their emission intensities in comparison to the non-metallated BIMB. The enhanced emission is attributed to perturbation of intra-ligand emission states due to Cd2+ coordination.

  10. A 12-Fold ThSi2 Interpenetrated Network Utilizing a Glycine-Based Pseudopeptidic Ligand

    Directory of Open Access Journals (Sweden)

    Edward Loukopoulos

    2018-01-01

    Full Text Available We report the synthesis and characterization of a 3D Cu(II coordination polymer, [Cu3(L12(H2O8]·8H2O (1, with the use of a glycine-based tripodal pseudopeptidic ligand (H3L1 = N,N′,N″-tris(carboxymethyl-1,3,5-benzenetricarboxamide or trimesoyl-tris-glycine. This compound presents the first example of a 12-fold interpenetrated ThSi2 (ths net. We attempt to justify the unique topology of 1 through a systematic comparison of the synthetic parameters in all reported structures with H3L1 and similar tripodal pseudopeptidic ligands. We additionally explore the catalytic potential of 1 in the A3 coupling reaction for the synthesis of propargylamines. The compound acts as a very good heterogeneous catalyst with yields up to 99% and loadings as low as 3 mol %.

  11. Synthesis of PVA Hydrogel for Prosthetic Discus Nucleus Pulposus: Formation of Interpenetrating Polymer Network (IPN) PVA Hydrogel by Gamma Rays

    International Nuclear Information System (INIS)

    Darwis, Darmawan; Erizal; Lely Hardiningsih; Razzak, Mirzan T.

    2004-01-01

    Research on synthesis of IPN PVA hydrogel for using as prosthetic discus nucleus has been carried out. Base hydrogel network (network I) was made by reacting the solution of polyvinyl alcohol (PVA) 10 - 15 % w/w with formaldehyde at 80 o C for several hours. Hydrogel network II (as IPN network) was then made by immersion of base hydrogel into polymer solution (PVP or PVA) until hydrogel swell to equilibrium volume. The hydrogel then irradiated using gamma rays at various doses. The results show that IPN PVA-PVP and IPN PVA-PVP hydrogels have higher compression strength compared to base hydrogel. IPN PVA-PVA hydrogel made by irradiating base hydrogel (immersed into polymer solution) with 25, 50 and 100 kGy have compression strength at 5 mm displacement 2.72; 2.83; and 3.25 kg/cm 2 respectively, While base hydrogel has compression strength of 1.75 kg/cm 2 . IPN PVA-PVP and PVA-PVA hydrogels made by irradiating base hydrogel with 100 kGy still retain high water content i.e. 72 and 74 % respectively. Beside that they show good re-absorption property after compression treatment that is hydrogel can return to the original shape after compressed to 12 mm displacement (80% of initial height on hydrogel) at relatively short time, less than 15 minutes. (author)

  12. Interpenetrated Uranyl-Organic Frameworks with bor and pts Topology: Structure, Spectroscopy, and Computation.

    Science.gov (United States)

    Liu, Chao; Chen, Fang-Yuan; Tian, Hong-Rui; Ai, Jing; Yang, Weiting; Pan, Qing-Jiang; Sun, Zhong-Ming

    2017-11-20

    Two novel three-dimensional interpenetrated uranyl-organic frameworks, (NH 4 ) 4 [(UO 2 ) 4 (L 1 ) 3 ]·6H 2 O (1) and [(UO 2 ) 2 (H 2 O) 2 L 2 ]·2H 2 O (2), where L 1 = tetrakis(3-carboxyphenyl)silicon and L 2 = tetrakis(4-carboxyphenyl)silicon, were synthesized by a combination of two isomeric tetrahedral silicon-centered ligands with 3-connected triangular [(UO 2 )(COO) 3 ] - and 4-connected dinuclear [(UO 2 ) 2 (COO) 4 ] units, respectively. Structural analyses indicate that 1 possesses a 2-fold interpenetrating anion bor network, while 2 exhibits a 3-fold interpenetrated 4,4-connected neutral network with pts topology. Both compounds were characterized by thermogravimetric analysis and IR, UV-vis, and photoluminescence spectroscopy. A relativistic density functional theory (DFT) investigation on 10 model compounds of 1 and 2 shows good agreement of the structural parameters, stretching vibrational frequencies, and absorption with experimental results; the time-dependent DFT calculations unravel that low-energy absorption bands originate from ligand-to-uranium charge transfer.

  13. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ling, E-mail: qinling@hfut.edu.cn [Department of Chemical Engineering and Food Processing, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, Anhui (China); Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials (CEM), School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology (China); State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Qiao, Wen-Cheng; Zuo, Wei-Juan; Zeng, Si-Ying; Mei, Cao; Liu, Chang-Jiang [Department of Chemical Engineering and Food Processing, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, Anhui (China)

    2016-07-15

    Two zinc coordination polymers {[Zn_2(TPPBDA)(oba)_2]·DMF·1.5H_2O}{sub n} (1), {[Zn(TPPBDA)_1_/_2(tpdc)]·DMF}{sub n} (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymers have been investigated in detail. - Graphical abstract: Two zinc coordination polymers have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. In addition, the photoluminescent properties for TPPBDA ligand under different status and coordination polymers have been investigated in detail. Display Omitted - Highlights: • Two Zn coordination polymers based on mononuclear or dinuclear cluster units have been synthesized. • Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. • Compound 2 is a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. • The photoluminescent properties for TPPBDA with different state and two coordination polymers have been investigated.

  14. Polycaprolactone diacrylate crosslinked biodegradable semi-interpenetrating networks of polyacrylamide and gelatin for controlled drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Maneesh; Koul, Veena [Centre for Biomedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Dinda, Amit K [Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029 (India); Gupta, Asheesh, E-mail: veenak_iitd@yahoo.co [Department of Biochemical Pharmacology, Defense Institute of Physiology and Allied Sciences, Ministry of Defense, New Delhi 110059 (India)

    2010-12-15

    A biodegradable semi-interpenetrating hydrogel network (semi-IPN) of polyacrylamide and gelatin was prepared using polycaprolactone diacrylate (mol. wt {approx} 640) as a crosslinker. The drug-polymer interaction and IPN formation were investigated by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and thermal gravimetric analysis (TGA). Scanning electron micrographs of lyophilized matrices revealed porous internal structure with varying pore sizes under equilibrium hydrated conditions, depending upon formulation composition. pH-dependent swelling and degradation was enhanced with increasing gelatin content and decreasing crosslinker concentration (Cs). Compression modulus (CM) (at 20% strain) increased significantly from 23 {+-} 1.4 to 75 {+-} 2.7 kPa (p < 0.02) with increasing Cs (from 0.5 to 2.0 mol%), while it decreased from 162 {+-} 6.4 to 23 {+-} 1.4 kPa (p < 0.05) with decreasing PAm/G ratio. Cell viability studies by MTT assay showed excellent cytocompatibility of matrices with fibroblast L929 cells. Curcumin, a hydrophobic phytochemical, was loaded by a diffusion method and its release profile was investigated in 4% w/v aqueous BSA solution at 75 rpm (at 37 {+-} 0.2 {sup 0}C). Fitting of drug release data in the Korsmeyer-Peppas model suggested sustained release behavior up to 10 days with a combination of diffusion and erosion mechanism (0.5 < n < 1.0; M{sub t}/M{sub {infinity} {<=}} 0.6). The newly developed porous, biodegradable and elastic semi-IPNs may serve as an ideal matrix for controlled drug release and wound healing applications. The possibilities can be explored for pharmaceutical and tissue engineering applications.

  15. Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Hassager, Ole; Larsen, Niels Bent

    2007-01-01

    A highly conducting stretchable polymer material has been patterned using additive inkjet printing and by subtractive agarose stamping of a deactivation agent (hypochlorite). The material consisted of elastomeric polyurethane combined in an interpenetrating network with a conductive polymer, poly(3....... Inkjet printing of the material was only possible if a short-chain polyurethane was used as elastomer to overcome strain hardening at the neck of the droplets produced for printing. Reproducible line widths down to 200 μm could be achieved by inkjet printing. Both methods were used to fabricate test...

  16. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose.

    Science.gov (United States)

    Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A

    2016-10-01

    Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Semi-interpenetrating network of acrylamide-grafted-sodium alginate microspheres for controlled release of diclofenac sodium, preparation and characterization.

    Science.gov (United States)

    Al-Kahtani, Ahmed A; Sherigara, B S

    2014-03-01

    The semi-interpenetrating networks (semi-IPNs) of acrylamide grafted sodium alginate (AAm-g-NaAlg) microspheres (MPs) were prepared by emulsion-crosslinking method using glutaraldehyde (GA) as a crosslinking agent. The grafting of acrylamide onto sodium alginate was prepared by free-radical graft polymerization using ceric ammonium nitrate (CAN) as initiator at three acrylamide concentrations with monomer to polymer ratio of 1:1, 2:1 and 3:1, respectively. The grafting efficiency was found to be 91%. The produced MPs are almost spherical in nature with smooth surfaces. Diclofenac sodium (DS), an anti-inflammatory drug was successfully encapsulated into the MPs. The encapsulation efficiency was found to vary between 83% and 95%. The MPs were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The diffusion coefficient (D) was dependent upon the amount of crosslinking agent (GA) and amount of grafting ratio in the matrix. The rate of release was found to be dependent on the amount of GA, AAm:NaAlg grafting ratio and % drug loading in the MPs. The release data have been fitted to an empirical equation to investigate the diffusional exponent (n), which indicated that the release mechanism from MPs follows the super Case II transport. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Enhancement of Lactobacillus reuteri KUB-AC5 survival in broiler gastrointestinal tract by microencapsulation with alginate-chitosan semi-interpenetrating polymer networks.

    Science.gov (United States)

    Rodklongtan, A; La-ongkham, O; Nitisinprasert, S; Chitprasert, P

    2014-07-01

    To evaluate an alginate-chitosan microcapsule for an intestinal probiotic delivery system for broilers. Lactobacillus reuteri KUB-AC5 was successfully microencapsulated with alginate and chitosan mixtures using an emulsion cross-linking method with high microencapsulation efficiency. Scanning electron microscopy revealed a large number of the bacteria entrapped in the semi-interpenetrating network. The microcapsule effectively protected the cells against strong acids. The in vitro study showed that the 8 log CFU g(-1) was released at the jejunum and ileum. For the in vivo study, the number of probiotics was detected by a polymerase chain reaction-based random amplified polymorphic DNA technique. From provision of 10 log CFU, cell numbers of 5-8 log CFU were observed in the intestine. The alginate-chitosan microcapsule can serve as a potential intestine-targeted probiotic delivery system. To the best of our knowledge, this is the first comparison study of the in vitro and in vivo gastrointestinal profiles of microencapsulated probiotics used as feed additives for broilers. This study reveals the similarities and differences of the in vitro and in vivo probiotic profiles and provides convincing evidence of the potential use of the alginate-chitosan microcapsule as a probiotic delivery system. © 2014 The Society for Applied Microbiology.

  19. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries

    International Nuclear Information System (INIS)

    Ben youcef, Hicham; Garcia-Calvo, Oihane; Lago, Nerea; Devaraj, Shanmukaraj; Armand, Michel

    2016-01-01

    Semi-interpenetrated network Solid Polymer Electrolytes (SPEs) were fabricated by UV-induced cross-linking of poly(ethyleneglycol) diacrylate (PEGDA) and divinylbenzene (DVB) within a poly(ethyleneoxide) (PEO) matrix (M v = 5 × 10 6 g mol −1 ), comprising lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), at a molar ratio of EO:Li ∼ 30:1. The influence of the DVB content on the final SPE properties was investigated in detail. An increase of DVB concentration resulted in self-standing polymer electrolytes. The DVB cross-linker incorporation was found to decrease the crystallinity of the PEO matrix from 34% to 23%, with a decrease in the melting temperature (T m ) of the membrane from 50 °C to 34 °C. Moreover, the influence of the DVB concentration on the ionic conductivity was determined for polymer electrolytes with 0, 10, 20 and 45% DVB from room temperature (RT) to 80 °C. The resulting SPEs showed a high electrochemical stability of 4.3 V as well as practical conductivity values exceeding 10 −4 S cm −1 at 70 °C. Cycling performance of these semi-interpenetrated SPE’s have been shown with a Li metal polymer battery and all solid -state Li sulphur battery.

  20. Highly water-absorbing silk yarn with interpenetrating network via in situ polymerization.

    Science.gov (United States)

    Lee, Ka I; Wang, Xiaowen; Guo, Xia; Yung, Ka-Fu; Fei, Bin

    2017-02-01

    Silk was modified via in situ polymerization of two monomers acrylamide and sodium acrylate by swelling in an effective LiBr dissolution system. Swelling of natural silks in LiBr solutions of low concentration was clearly observed under optical microscope, and their conformational changes were revealed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Dissolution tests and FTIR spectra of these modified silks suggested the presence of interpenetrating network of polyacrylamide and poly(sodium acrylate) in the silk yarns. These modified silks exhibited superior water absorption to that of raw silk and greatly improved mechanical properties in both dry and wet states. These novel modified silks also showed low cytotoxicity towards skin keratinocytes, having potential applications in biomedical textiles. This modification method by in situ polymerization after swelling in LiBr provides a new route to highly enhance the properties and performance of silk for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electroactive polymer gels based on epoxy resin

    Science.gov (United States)

    Samui, A. B.; Jayakumar, S.; Jayalakshmi, C. G.; Pandey, K.; Sivaraman, P.

    2007-04-01

    Five types of epoxy gels have been synthesized from common epoxy resins and hardeners. Fumed silica and nanoclay, respectively, were used as fillers and butyl methacrylate/acrylamide were used as monomer(s) for making interpenetrating polymer networks (IPNs) in three compositions. Swelling study, tensile property evaluation, dynamic mechanical thermal analysis, thermo-gravimetric analysis, scanning electron microscopy and electroactive property evaluation were done. The gels have sufficient mechanical strength and the time taken for bending to 20° was found to be 22 min for forward bias whereas it was just 12 min for reverse bias.

  2. Quantitative characterization of the formation of an interpenetrating phase composite in polystyrene from the percolation of multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Kota, Arun K; Cipriano, Bani H; Powell, Dan; Raghavan, Srinivasa R; Bruck, Hugh A

    2007-01-01

    For the first time, an interpenetrating phase polymer nanocomposite formed by the percolation of multiwalled carbon nanotubes (MWCNTs) in polystyrene (PS) has been quantitatively characterized through electrical conductivity measurements and melt rheology. Both sets of measurements, in conjunction with scanning electron microscopy (SEM) images, indicate the presence of a continuous phase of percolated MWCNTs appearing at particle concentrations exceeding 2 vol% MWCNTs in PS. To quantify the amount of this continuous phase present in the PS/MWCNT composite, electrical conductivity data at various MWCNT concentrations, β, are correlated with a proposed degree of percolation, C-bar(β), developed using a conventional power-law formula with and without a percolation threshold. To quantify the properties of the interpenetrating phase polymer nanocomposite, the PS/MWCNT composite is treated as a combination of two phases: a continuous phase consisting of a pseudo-solid-like network of percolated MWCNTs, and a continuous PS phase reinforced by non-interacting MWCNTs. The proposed degree of percolation is used to quantify the distribution of MWCNTs among the phases, and is then used in a rule-of-mixtures formulation for the storage modulus, G'(β, C-bar(β), ω), and the loss modulus, G''(β, C-bar(β), ω), to quantify the properties of the continuous phase consisting of percolated MWCNTs and the continuous PS phase reinforced by non-interacting MWCNTs from the experimental melt rheology data. The properties of the continuous phase of percolated MWCNTs are indicative of a scaffold-like microstructure exhibiting an elastic behavior with a complex modulus of 360 kPa at lower frequencies and viscoplastic behavior with a complex viscosity of 6 kPa s rad -1 at higher frequencies, most likely due to a stick-slip friction mechanism at the interface of the percolated MWCNTs. Additional evidence of this microstructure was obtained via scanning electron microscopy. This research

  3. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.

    Science.gov (United States)

    Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L

    2017-06-01

    Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A model of cell wall expansion based on thermodynamics of polymer networks

    Science.gov (United States)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  5. Simulation of Stimuli-Responsive Polymer Networks

    Directory of Open Access Journals (Sweden)

    Thomas Gruhn

    2013-11-01

    Full Text Available The structure and material properties of polymer networks can depend sensitively on changes in the environment. There is a great deal of progress in the development of stimuli-responsive hydrogels for applications like sensors, self-repairing materials or actuators. Biocompatible, smart hydrogels can be used for applications, such as controlled drug delivery and release, or for artificial muscles. Numerical studies have been performed on different length scales and levels of details. Macroscopic theories that describe the network systems with the help of continuous fields are suited to study effects like the stimuli-induced deformation of hydrogels on large scales. In this article, we discuss various macroscopic approaches and describe, in more detail, our phase field model, which allows the calculation of the hydrogel dynamics with the help of a free energy that considers physical and chemical impacts. On a mesoscopic level, polymer systems can be modeled with the help of the self-consistent field theory, which includes the interactions, connectivity, and the entropy of the polymer chains, and does not depend on constitutive equations. We present our recent extension of the method that allows the study of the formation of nano domains in reversibly crosslinked block copolymer networks. Molecular simulations of polymer networks allow the investigation of the behavior of specific systems on a microscopic scale. As an example for microscopic modeling of stimuli sensitive polymer networks, we present our Monte Carlo simulations of a filament network system with crosslinkers.

  6. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    Science.gov (United States)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  7. Statistical mechanics of polymer networks of any topology

    International Nuclear Information System (INIS)

    Duplantier, B.

    1989-01-01

    The statistical mechanics is considered of any polymer network with a prescribed topology, in dimension d, which was introduced previously. The basic direct renormalization theory of the associated continuum model is established. It has a very simple multiplicative structure in terms of the partition functions of the star polymers constituting the vertices of the network. A calculation is made to O(ε 2 ), where d = 4 -ε, of the basic critical dimensions σ L associated with any L=leg vertex (L ≥ 1). From this infinite series of critical exponents, any topology-dependent critical exponent can be derived. This is applied to the configuration exponent γ G of any network G to O(ε 2 ), including L-leg star polymers. The infinite sets of contact critical exponents θ between multiple points of polymers or between the cores of several star polymers are also deduced. As a particular case, the three exponents θ 0 , θ 1 , θ 2 calculated by des Cloizeaux by field-theoretic methods are recovered. The limiting exact logarithmic laws are derived at the upper critical dimension d = 4. The results are generalized to the series of topological exponents of polymer networks near a surface and of tricritical polymers at the Θ-point. Intersection properties of networks of random walks can be studied similarly. The above factorization theory of the partition function of any polymer network over its constituting L-vertices also applies to two dimensions, where it can be related to conformal invariance. The basic critical exponents σ L and thus any topological polymer exponents are then exactly known. Principal results published elsewhere are recalled

  8. Network approach towards understanding the crazing in glassy amorphous polymers

    Science.gov (United States)

    Venkatesan, Sudarkodi; Vivek-Ananth, R. P.; Sreejith, R. P.; Mangalapandi, Pattulingam; Hassanali, Ali A.; Samal, Areejit

    2018-04-01

    We have used molecular dynamics to simulate an amorphous glassy polymer with long chains to study the deformation mechanism of crazing and associated void statistics. The Van der Waals interactions and the entanglements between chains constituting the polymer play a crucial role in crazing. Thus, we have reconstructed two underlying weighted networks, namely, the Van der Waals network and the entanglement network from polymer configurations extracted from the molecular dynamics simulation. Subsequently, we have performed graph-theoretic analysis of the two reconstructed networks to reveal the role played by them in the crazing of polymers. Our analysis captured various stages of crazing through specific trends in the network measures for Van der Waals networks and entanglement networks. To further corroborate the effectiveness of network analysis in unraveling the underlying physics of crazing in polymers, we have contrasted the trends in network measures for Van der Waals networks and entanglement networks in the light of stress-strain behaviour and voids statistics during deformation. We find that the Van der Waals network plays a crucial role in craze initiation and growth. Although, the entanglement network was found to maintain its structure during craze initiation stage, it was found to progressively weaken and undergo dynamic changes during the hardening and failure stages of crazing phenomena. Our work demonstrates the utility of network theory in quantifying the underlying physics of polymer crazing and widens the scope of applications of network science to characterization of deformation mechanisms in diverse polymers.

  9. Self-Assembly of Diblock Molecular Polymer Brushes in the Spherical Confinement of Nanoemulsion Droplets.

    Science.gov (United States)

    Steinhaus, Andrea; Pelras, Théophile; Chakroun, Ramzi; Gröschel, André H; Müllner, Markus

    2018-05-02

    Understanding the self-assembly behavior of polymers of various topologies is key to a reliable design of functional polymer materials. Self-assembly under confinement conditions emerges as a versatile avenue to design polymer particles with complex internal morphologies while simultaneously facilitating scale-up. However, only linear block copolymers have been studied to date, despite the increasing control over macromolecule composition and architecture available. This study extends the investigation of polymer self-assembly in confinement from regular diblock copolymers to diblock molecular polymer brushes (MPBs). Block-type MPBs with polystyrene (PS) and polylactide (PLA) compartments of different sizes are incorporated into surfactant-stabilized oil-in-water (chloroform/water) emulsions. The increasing confinement in the nanoemulsion droplets during solvent evaporation directs the MPBs to form solid nano/microparticles. Microscopy studies reveal an intricate internal particle structure, including interpenetrating networks and axially stacked lamellae of PS and PLA, depending on the PS/PLA ratio of the brushes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Separating topographical and chemical analysis of nanostructure of polymer composite in low voltage SEM

    International Nuclear Information System (INIS)

    Wan, Q; Plenderleith, R A; Claeyssens, F; Rodenburg, C; Dapor, M; Rimmer, S

    2015-01-01

    The possibility of separating the topographical and chemical information in a polymer nano-composite using low-voltage SEM imaging is demonstrated, when images are acquired with a Concentric Backscattered (CBS) detector. This separation of chemical and topographical information is based on the different angular distribution of electron scattering which were calculated using a Monte Carlo simulation. The simulation based on angular restricted detection was applied to a semi-branched PNIPAM/PEGDA interpenetration network for which a linear relationship of topography SEM contrast and feature height data was observed. (paper)

  11. Flory-Stockmayer analysis on reprocessable polymer networks

    Science.gov (United States)

    Li, Lingqiao; Chen, Xi; Jin, Kailong; Torkelson, John

    Reprocessable polymer networks can undergo structure rearrangement through dynamic chemistries under proper conditions, making them a promising candidate for recyclable crosslinked materials, e.g. tires. This research field has been focusing on various chemistries. However, there has been lacking of an essential physical theory explaining the relationship between abundancy of dynamic linkages and reprocessability. Based on the classical Flory-Stockmayer analysis on network gelation, we developed a similar analysis on reprocessable polymer networks to quantitatively predict the critical condition for reprocessability. Our theory indicates that it is unnecessary for all bonds to be dynamic to make the resulting network reprocessable. As long as there is no percolated permanent network in the system, the material can fully rearrange. To experimentally validate our theory, we used a thiol-epoxy network model system with various dynamic linkage compositions. The stress relaxation behavior of resulting materials supports our theoretical prediction: only 50 % of linkages between crosslinks need to be dynamic for a tri-arm network to be reprocessable. Therefore, this analysis provides the first fundamental theoretical platform for designing and evaluating reprocessable polymer networks. We thank McCormick Research Catalyst Award Fund and ISEN cluster fellowship (L. L.) for funding support.

  12. Polymer-Cement Composites Containing Waste Perlite Powder

    Directory of Open Access Journals (Sweden)

    Paweł Łukowski

    2016-10-01

    Full Text Available Polymer-cement composites (PCCs are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction.

  13. Vapor-phase deposition of regioregular and oriented poly(3-hexylthiophene) structures and novel nanostructured composites of interpenetrating poly(3-hexylthiophene) and polyaniline exhibiting full-color wavelength (400-1000 nm) photoluminescence

    Science.gov (United States)

    Biswas, A.; Bayer, I. S.; Karulkar, P. C.; Tripathi, A.; Avasthi, D. K.

    2007-10-01

    A promising solvent-free technique of electron-beam-assisted vapor-phase codeposition method is presented which allows uniform blending of different conjugated and nonconjugated polymers at the nanoscale. The technique allows direct incorporation of regioregular poly(3-hexylthiophene) (P3HT) polymer with different structural orientations into conventional and semiconducting polymers without fractionation or degradation of P3HT while maintaining the nanoscale morphology of deposited organic films. The results of fabricated novel nanostructured organic composites (˜100-200nm) comprising regioregular and oriented P3HT and different conjugated and nonconjugated polymers including selective assembly of P3HT nanonodules into a copolymer template are presented. We show a typical example of blending of P3HT and polyaniline (PANI) that formed a unique nanoscale morphology comprising interpenetrating networks of different shapes and sizes of nanospherulites (˜100nm) of P3HT in PANI. The so fabricated nanocomposites (˜200nm) exhibited remarkable broadband photoluminescence features covering the entire blue, green, and red wavelength regions between 400 and 1000nm. Such organic nanocomposites might be useful for flexible full-color screen flat panel displays and organic white-light solid-state lighting applications.

  14. Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdulra'uf Lukman Bola

    2013-11-01

    Full Text Available The need for clean, inexpensive and renewable energy has increasingly turned research attention towards polymer photovoltaic cells. However, the performance efficiency of these devices is still low in comparison with silicon-based devices. The recent introduction of new materials and processing techniques has resulted in a remarkable increase in power-conversion efficiency, with a value above 10%. Controlling the interpenetrating network morphology is a key factor in obtaining devices with improved performance. This review focuses on the influence of controlled nanoscale morphology on the overall performance of bulk-heterojunction (BHJ photovoltaic cells. Strategies such as the use of solvents, solvent annealing, polymer nanowires (NWs, and donor–acceptor (D–A blend ratios employed to control the active-layer morphologies are all discussed.

  15. Highly Efficient Cooperative Catalysis by Co III (Porphyrin) Pairs in Interpenetrating Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zekai; Zhang, Zhi-Ming; Chen, Yu-Sheng; Lin, Wenbin (UC); (Xiamen)

    2016-12-02

    A series of porous twofold interpenetrated In-CoIII(porphyrin) metal–organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent CoIII(porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In-CoIII(porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated CoIII(porphyrin) centers, thus highlighting the potential application of MOFs in cooperative catalysis.

  16. Tribological Properties of AlSi12-Al₂O₃ Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy.

    Science.gov (United States)

    Dolata, Anna Janina

    2017-09-06

    Alumina-Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al₂O₃ interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells.

  17. Hybrid Polymer-Network Hydrogels with Tunable Mechanical Response

    Directory of Open Access Journals (Sweden)

    Sebastian Czarnecki

    2016-03-01

    Full Text Available Hybrid polymer-network gels built by both physical and covalent polymer crosslinking combine the advantages of both these crosslinking types: they exhibit high mechanical strength along with excellent fracture toughness and extensibility. If these materials are extensively deformed, their physical crosslinks can break such that strain energy is dissipated and irreversible fracturing is restricted to high strain only. This mechanism of energy dissipation is determined by the kinetics and thermodynamics of the physical crosslinking contribution. In this paper, we present a poly(ethylene glycol (PEG based material toolkit to control these contributions in a rational and custom fashion. We form well-defined covalent polymer-network gels with regularly distributed additional supramolecular mechanical fuse links, whose strength of connectivity can be tuned without affecting the primary polymer-network composition. This is possible because the supramolecular fuse links are based on terpyridine–metal complexation, such that the mere choice of the fuse-linking metal ion adjusts their kinetics and thermodynamics of complexation–decomplexation, which directly affects the mechanical properties of the hybrid gels. We use oscillatory shear rheology to demonstrate this rational control and enhancement of the mechanical properties of the hybrid gels. In addition, static light scattering reveals their highly regular and well-defined polymer-network structures. As a result of both, the present approach provides an easy and reliable concept for preparing hybrid polymer-network gels with rationally designed properties.

  18. Creep-induced anisotropy in covalent adaptable network polymers.

    Science.gov (United States)

    Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai

    2017-10-11

    Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.

  19. Applications of Modulated Temperature Differential Scanning Calorimetry to Polymer Blends and Related Systems

    Science.gov (United States)

    Hourston, Douglas J.; Song, Mo

    It has been shown in this chapter that the MTDSC technique is a very useful tool in the study of several aspects of polymer blends and related materials including structured latexes and interpenetrating polymer networks. It is important to note that the dC p/dT versus temperature signal may be used not only qualitatively as a sensitive detector of transitions impossible to spot by other thermal techniques such as conventional DSC and DMTA, but it may also be used to significant advantage in a quantitative way. It has been shown that it is sensitive to the diffuse interface between phases. Thus, from dC p/dT versus temperature signals, the weight fraction of the diffuse interface can be quantified. There are many situations where this will prove to be very valuable.

  20. Selective removal of heavy metal ions by disulfide linked polymer networks

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Dongah [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Lee, Joo Sung [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Patel, Hasmukh A. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Jakobsen, Mogens H. [Department of Micro and Nano technology, Technical University of Denmark, Ørsteds Plads, 345B, 2800 Kgs. Lyngby (Denmark); Hwang, Yuhoon [Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 01811 (Korea, Republic of); Yavuz, Cafer T. [Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 (Korea, Republic of); Hansen, Hans Chr. Bruun [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Andersen, Henrik R., E-mail: henrik@ndersen.net [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark)

    2017-06-15

    Highlights: • Disulfide/thiol polymer networks are promising as sorbent for heavy metals. • Rapid sorption and high Langmuir affinity constant (a{sub L}) for stormwater treatment. • Selective sorption for copper, cadmium, and zinc in the presence of calcium. • Reusability likely due to structure stability of disulfide linked polymer networks. - Abstract: Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions–copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

  1. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selective removal of heavy metal ions by disulfide linked polymer networks

    DEFF Research Database (Denmark)

    Ko, Dongah; Sung Lee, Joo; Patel, Hasmukh A.

    2017-01-01

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has...... a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal...... sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions―copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water....

  3. Kinetic studies of uranyl ion adsorption on acrylonitrile (AN) / polyethylene glycol (PEG) interpenetrating networks (IPN)

    International Nuclear Information System (INIS)

    Aycik, G.A.; Gurellier, R.

    2004-01-01

    The kinetics of the adsorption of uranyl ions on amidoximated acrylonitrile (AN)/ polyethylene glycol (PEG) interpenetrating network (IPNs) from aqueous solutions was studied as a function of time and temperature. Adsorption analyses were performed for definite uranyl ion concentrations of 1x10 -2 M and at four different temperatures as 290K, 298K, 308K and 318K. Adsorption time was increased from zero to 48 hours. Adsorption capacities of uranyl ions by PEG/AN IPNS were determined by gamma spectrometer. The results indicate that adsorption capacity increases linearly with increasing temperature. The max adsorption capacity was found as 602 mgu/g IPN at 308K. Adsorption rate was evaluated from the curve plotted of adsorption capacity versus time, for each temperature. Rate constants for uranyl ions adsorption on amidoximated ipns were calculated for 290K, 298K, 308K and 318K at the solution concentration of 1x10 -2 M . The results showed that as the temperature increases the rate constant increases exponentially too. The mean activation energy of uranyl ions adsorption was found as 34.6 kJ/mole by using arrhenius equation. (author)

  4. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Rennerfeldt, Deena A; Renth, Amanda N; Talata, Zsolt; Gehrke, Stevin H; Detamore, Michael S

    2013-11-01

    Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells. © 2013 Elsevier Ltd. All rights reserved.

  5. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.

    Science.gov (United States)

    Woodard, Lindsay N; Page, Vanessa M; Kmetz, Kevin T; Grunlan, Melissa A

    2016-12-01

    Thermoresponsive shape memory polymers (SMPs) based on poly(ε-caprolactone) (PCL) whose shape may be actuated by a transition temperature (T trans ) have shown utility for a variety of biomedical applications. Important to their utility is the ability to modulate mechanical and degradation properties. Thus, in this work, SMPs are formed as semi-interpenetrating networks (semi-IPNs) comprised of a cross-linked PCL diacrylate (PCL-DA) network and thermoplastic poly(l-lactic acid) (PLLA). The semi-IPN uniquely allows for requisite crystallization of both PCL and PLLA. The influence of PLLA (PCL:PLLA wt% ratio) and PCL-DA molecular weight (n) on film properties are investigated. PCL-PLLA semi-IPNs are able to achieve enhanced mechanical properties and accelerated rates of degradation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polymerization speed and diffractive experiments in polymer network LC test cells

    Science.gov (United States)

    Braun, Larissa; Gong, Zhen; Habibpourmoghadam, Atefeh; Schafforz, Samuel L.; Wolfram, Lukas; Lorenz, Alexander

    2018-02-01

    Polymer-network liquid crystals (LCs), where the response properties of a LC can be enhanced by the presence of a porous polymer network, are investigated. In the reported experiments, liquid crystals were doped with a small amount (situ generated polymer network, the electro-optic response properties of photo cured samples were enhanced. For example, their continuous phase modulation properties led to more localized responses in samples with interdigitated electrodes, which caused suppression of selected diffraction orders in the diffraction patterns recorded in polymer network LC samples. Moreover, capacitance changes were investigated during photopolymerization of a blue phase LC.

  7. Synthesis and characterization of the mixed ligand coordination polymer CPO-5

    International Nuclear Information System (INIS)

    Kongshaug, K.O.; FjellvAg, Helmer

    2003-01-01

    The synthesis and crystal structures of a novel coordination polymer and its high-temperature variant are described. The as-synthesized material (CPO-5-as), of composition Zn(4,4'-bipyridine)(4,4'-biphenyldicarboxylate)·3H 2 O, crystallizes in the triclinic space group P-1 (No. 2) with a=11.0197(2), b=14.2975(3), c=7.6586(1) A, α=95.9760(9) deg. , β=108.026(1) deg. , γ=91.373(1) deg. and V=1139.16(4) A 3 . CPO-5-as is composed of tetrahedral zinc centers that are connected by the organic linkers to give five independent, interpenetrating diamond networks. In the structure, there is additional space for channels that are filled with three water molecules. These water molecules can be removed, leading to an anhydrous variant at 130 o C. CPO-5-130, of composition Zn(4,4'-bipyridine)(4,4'-biphenyldicarboxylate), crystallizes in the triclinic space group P-1 (No. 2) with a=11.1844(6), b=14.0497(7), c=7.7198(3) A, α=96.917(2) deg. , β=109.527(2) deg. , γ=89.115(3) deg. and V=1134.6(1) A 3 . The structure of the five interpenetrating networks is virtually unchanged after the dehydration resulting in CPO-5-130 being a porous structure with an estimated free volume of 19.8%

  8. A new three-dimensional bis(benzimidazole)-based cadmium(II) coordination polymer

    Science.gov (United States)

    Hao, Shao Yun; Hou, Suo Xia; Hao, Zeng Chuan; Cui, Guang Hua

    2018-01-01

    A new coordination polymer (CP), formulated as [Cd(L)(DCTP)]n (1) (L = 1,1‧-(1,4-butanediyl)bis(2-methylbenzimidazole), H2DCTP = 2,5-dichloroterephthalic acid), was synthesized under hydrothermal conditions and the performance as luminescent probe was also investigated. Single-crystal X-ray diffraction reveals CP 1 is a 3D 3-fold interpenetrated dia network with large well-defined pores. It is found that CP 1 revealed highly sensitive luminescence sensing for Fe3 + ions in acetonitrile solution with a high quenching efficiency of KSV = 2541.238 L·mol- 1 and a low detection limit of 3.2 μM (S/N = 3). Moreover, the photocatalytic efficiency of 1 for degradation of methylene blue could reach 82.8% after 135 min. Therefore, this coordination polymer could be viewed as multifunctional material for selectively sensing Fe3 + ions and effectively degrading dyes.

  9. Novel blends of acrylonitrile butadiene rubber and polyurethane-silica hybrid networks

    Directory of Open Access Journals (Sweden)

    X. P. Wang

    2012-07-01

    Full Text Available Novel blends of acrylonitrile butadiene rubber (NBR and polyurethane-silica (PU-SiO2 hybrid networks have been prepared by melt blending. The PU-SiO2 hybrid networks were formed via the reaction of NCO groups of NCO-terminated PU prepolymer and OH groups of SiO2 in the absence of an external crosslinking agent (i.e. alcohols and amines during the curing process of NBR. Both in the neat PU-SiO2 system and the NBR/(PU-SiO2 system, the NCO-terminated PU prepolymer could be crosslinked by SiO2 to form PU-SiO2 hybrid networks. The effects of PU-SiO2 introduction into the NBR, on the properties of the resulting blends were studied. It was found that the vulcanization was activated by the incorporation of PU-SiO2. Transmission electronic microscopy (TEM studies indicated that the interpenetration and entanglement structures between NBR and PU-SiO2 increased with increasing PU-SiO2 content and the quasi-interpenetrating polymer networks (quasi-IPN structures were formed when the PU-SiO2 was 50 wt% in the NBR/(PU-SiO2 systems. The microstructures formed in the blends led to good compatibility between NBR and PU-SiO2 and significantly improved the mechanical properties, abrasion resistance and flex-fatigue life of the blends.

  10. PEGDA/PVdF/F127 gel type polymer electrolyte membranes for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Jie; Kim, Dukjoon [Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University, Suwon, Kyunggi 440-746 (Korea)

    2007-03-30

    A novel porous gel polymer electrolyte (GPE) membrane based on poly(ethylene glycol) diacrylate (PEGDA), poly(vinylidene fluoride) (PVdF), and polyethylene oxide-co-polypropylene oxide-co-polyethylene oxide (PEO-PPO-PEO, F127) was fabricated by a phase inversion technique. The PEGDA cross-linking oligomer could be randomly mixed with unraveled PVdF polymer chains to form the interpenetrating polymer network (IPN) structure. Several experimental techniques including infrared (IR) spectra, differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and potentiostat/galvanostat were employed to investigate the characteristics of the polymer membranes. PEGDA and F127 influenced the porous size and structure. The mechanical strength and flexibility of the membrane were controlled by its composition. The membrane with the composition of PEGDA/PVdF/F127 (0/4/4) showed the highest electrolyte uptake of 152.6% and the maximum ionic conductivity of 2.0 x 10{sup -3} S cm{sup -1} at room temperature. All GPEs prepared in this study were electrochemically stable up to 4.5 V. (author)

  11. Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review

    Science.gov (United States)

    Samiey, Babak; Cheng, Chil-Hung; Wu, Jiangning

    2014-01-01

    Over the past decades, organic-inorganic hybrid polymers have been applied in different fields, including the adsorption of pollutants from wastewater and solid-state separations. In this review, firstly, these compounds are classified. These compounds are prepared by sol-gel method, self-assembly process (mesopores), assembling of nanobuilding blocks (e.g., layered or core-shell compounds) and as interpenetrating networks and hierarchically structures. Lastly, the adsorption characteristics of heavy metals of these materials, including different kinds of functional groups, selectivity of them for heavy metals, effect of pH and synthesis conditions on adsorption capacity, are studied. PMID:28788483

  12. Chemical and phase structure of poly cyanurate-polyurethane grafted semi interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Fainleib, A.M.; Gomza, Yu.P.; Privalko, V.P.; Bershtein, V.A.; Carini, G.

    2001-01-01

    In this research the phase morphology and properties of dicyanate ester of bisphenol A (DCEBA) based poly cyanurate network (PCN) modified with linear polyurethane (LPU) were successfully studied by the combination of infra-red spectroscopy, small-angle X-ray scattering (SAXS), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry and laser-interferometric creep rate spectroscopy

  13. Conducting Polymeric Hydrogel Electrolyte Based on Carboxymethylcellulose and Polyacrylamide/Polyaniline for Supercapacitor Applications

    Science.gov (United States)

    Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.

    Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.

  14. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  15. Topological structure and mechanics of glassy polymer networks.

    Science.gov (United States)

    Elder, Robert M; Sirk, Timothy W

    2017-11-22

    The influence of chain-level network architecture (i.e., topology) on mechanics was explored for unentangled polymer networks using a blend of coarse-grained molecular simulations and graph-theoretic concepts. A simple extension of the Watts-Strogatz model is proposed to control the graph properties of the network such that the corresponding physical properties can be studied with simulations. The architecture of polymer networks assembled with a dynamic curing approach were compared with the extended Watts-Strogatz model, and found to agree surprisingly well. The final cured structures of the dynamically-assembled networks were nearly an intermediate between lattice and random connections due to restrictions imposed by the finite length of the chains. Further, the uni-axial stress response, character of the bond breaking, and non-affine displacements of fully-cured glassy networks were analyzed as a function of the degree of disorder in the network architecture. It is shown that the architecture strongly affects the network stability, flow stress, onset of bond breaking, and ultimate stress while leaving the modulus and yield point nearly unchanged. The results show that internal restrictions imposed by the network architecture alter the chain-level response through changes to the crosslink dynamics in the flow regime and through the degree of coordinated chain failure at the ultimate stress. The properties considered here are shown to be sensitive to even incremental changes to the architecture and, therefore, the overall network architecture, beyond simple defects, is predicted to be a meaningful physical parameter in the mechanics of glassy polymer networks.

  16. Photo-induced Mass Transport through Polymer Networks

    Science.gov (United States)

    Meng, Yuan; Anthamatten, Mitchell

    2014-03-01

    Among adaptable materials, photo-responsive polymers are especially attractive as they allow for spatiotemporal stimuli and response. We have recently developed a macromolecular network capable of photo-induced mass transport of covalently bound species. The system comprises of crosslinked chains that form an elastic network and photosensitive fluorescent arms that become mobile upon irradiation. We form loosely crosslinked polymer networks by Michael-Addition between multifunctional thiols and small molecule containing acrylate end-groups. The arms are connected to the network by allyl sulfide, that undergoes addition-fragmentation chain transfer (AFCT) in the presence of free radicals, releasing diffusible fluorophore. The networks are loaded with photoinitiator to allow for spatial modulation of the AFCT reactions. FRAP experiments within bulk elastomers are conducted to establish correlations between the fluorophore's diffusion coefficient and experimental variables such as network architecture, temperature and UV intensity. Photo-induced mass transport between two contacted films is demonstrated, and release of fluorophore into a solvent is investigated. Spatial and temporal control of mass transport could benefit drug release, printing, and sensing applications.

  17. Design and Application of Nanogel-Based Polymer Networks

    Science.gov (United States)

    Dailing, Eric Alan

    Crosslinked polymer networks have wide application in biomaterials, from soft hydrogel scaffolds for cell culture and tissue engineering to glassy, high modulus dental restoratives. Composite materials formed with nanogels as a means for tuning network structure on the nanoscale have been reported, but no investigation into nanogels as the primary network component has been explored to this point. This thesis was dedicated to studying network formation from the direct polymerization of nanogels and investigating applications for these unique materials. Covalently crosslinked polymer networks were synthesized from polymerizable nanogels without the use of reactive small monomers or oligomers. Network properties were controlled by the chemical and physical properties of the nanogel, allowing for materials to be designed from nanostructured macromolecular precursors. Nanogels were synthesized from a thermally initiated solution free radical polymerization of a monomethacrylate, a dimethacrylate, and a thiol-based chain transfer agent. Monomers with a range of hydrophilic and hydrophobic character were copolymerized, and polymerizable groups were introduced through an alcohol-isocyanate click reaction. Nanogels were dispersible in water up to 75 wt%, including nanogels that contained a relatively high fraction of a conventionally water-insoluble component. Nanogels with molecular weights that ranged from 10's to 100's of kDa and hydrodynamic radii between 4 and 10 nm were obtained. Macroscopic crosslinked polymer networks were synthesized from the photopolymerization of methacrylate-functionalized nanogels in inert solvent, which was typically water. The nanogel composition and internal branching density affected both covalent and non-covalent interparticle interactions, which dictated the final mechanical properties of the networks. Nanogels with progressively disparate hydrophilic and hydrophobic character were synthesized to explore the potential for creating

  18. Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin.

    Science.gov (United States)

    Kulkarni, Raghavendra V; Sreedhar, V; Mutalik, Srinivas; Setty, C Mallikarjun; Sa, Biswanath

    2010-11-01

    Interpenetrating network (IPN) hydrogel membranes of sodium alginate (SA) and poly(vinyl alcohol) (PVA) were prepared by solvent casting method for transdermal delivery of an anti-hypertensive drug, prazosin hydrochloride. The prepared membranes were thin, flexible and smooth. The X-ray diffraction studies indicated the amorphous dispersion of drug in the membranes. Differential scanning calorimetric analysis confirmed the IPN formation and suggests that the membrane stiffness increases with increased concentration of glutaraldehyde (GA) in the membranes. All the membranes were permeable to water vapors depending upon the extent of cross-linking. The in vitro drug release study was performed through excised rat abdominal skin; drug release depends on the concentrations of GA in membranes. The IPN membranes extended drug release up to 24 h, while SA and PVA membranes discharged the drug quickly. The primary skin irritation and skin histopathology study indicated that the prepared IPN membranes were less irritant and safe for skin application. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering.

    Science.gov (United States)

    Yu, Feng; Cao, Xiaodong; Zeng, Lei; Zhang, Qing; Chen, Xiaofeng

    2013-08-14

    In order to mimic the natural cartilage extracellular matrix, a novel biological degradable interpenetrating network hydrogel was synthesized from the gelatin (G), hyaluronic acid (HA) and chondroitin sulfate (CS) by Diels-Alder "click" chemistry. HA was modified with furylamine and G was modified with furancarboxylic acid respectively. (1)H NMR spectra and elemental analysis showed that the substitution degrees of HA-furan and G-furan were 71.5% and 44.5%. Then the hydrogels were finally synthesized by cross-linking furan-modified HA and G derivatives with dimaleimide poly(ethylene glycol) (MAL-PEG-MAL). The mechanical and degradation properties of the hydrogels could be tuned simply through varying the molar ratio between furan and maleimide. Rheological, mechanical and degradation studies demonstrated that the Diels-Alder "click" chemistry is an efficient method for preparing high performance biological interpenetrating hydrogels. This biomimic hydrogel with improved mechanical properties could have great potential applications in cartilage tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. S Prasannakumar. Articles written in Bulletin of Materials Science. Volume 24 Issue 5 October 2001 pp 535-538 Polymers. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly(2-hydroxyethylmethacrylate): Synthesis, chemical, ...

  1. Radiation synthesis and characterization of network structure of natural/synthetic double-network superabsorbent polymers

    International Nuclear Information System (INIS)

    Sen, M.; Hayrabolulu, H.

    2011-01-01

    Complete text of publication follows. Superabsorbent polymers (SAPs) are moderately cross linked, 3-D, hydrophilic network polymers that can absorb and conserve considerable amounts of aqueous fluids even under certain heat or pressure. Because of the unique properties superior to conventional absorbents, SAPs have found potential application in many fields such as hygienic products, disposable diapers, horticulture, gel actuators, drug-delivery systems, as well as water-blocking tapes coal dewatering, water managing materials for the renewal of arid and desert environment, etc. In recent years, naturally available resources, such as polysaccharides have drawn considerable attention for the preparation of SAPs. Since the mechanical properties of polysaccharide based natural polymers are low, researchers have mostly focused on natural/synthetic polymer/monomer mixtures to obtain novel SAPs. The aim of this study is to synthesize and characterization of network structure of novel double-network (DN) hydrogels as a SAP. Hydrogels with high mechanical strength have been prepared by radiation induced polymerization and crosslink of acrylic acid sodium salt in the presence of natural polymer locust bean gum. Liquid retention capacities and absorbency under load (AUL) analysis of synthesized SAPs was performed at different temperatures in water and synthetic urine solution, in order to determine their SAP character. For the characterization of network structure of the semi-IPN hydrogels, the average molecular weight between cross links (M c ) were evaluated by using uniaxial compression and oscillatory dynamical mechanical analyses and the advantage and disadvantage of these two technique for the characterization of network structures were compared.

  2. Semi-interpenetrating hybrid membranes containing ADOGEN{sup ®} 364 for Cd(II) transport from HCl media

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Tamez, Lucía; Rodríguez de San Miguel, Eduardo; Briones-Guerash, Ulrich; Munguía-Acevedo, Nadia M.; Gyves, Josefina de, E-mail: degyves@unam.mx

    2014-09-15

    Graphical abstract: - Highlights: • Semi-interpenetrating hybrid membranes are used for quantitative cadmium(II) recovery. • Optimization of membrane and solutions compositions is performed. • Membranes present increased stability respect to polymer inclusion membranes. • Models for cadmium (II) extraction and transport are proposed. • Excellent selectivity for Cd(II) over Ni(II), Cu(II) and Pb(II) was achieved. - Abstract: Cd(II) transport from 1 mol dm{sup −3} HCl media was investigated across semi-interpenetrating hybrid membranes (SIHMs) that were prepared by mixing an organic matrix composed of ADOGEN{sup ®} 364 as an extracting agent, cellulose triacetate as a polymeric support and nitrophenyloctyl ether as a plasticizer with an organic/inorganic network (silane phase, SP) composed of polydimethylsiloxane and a crosslinking agent. The stripping phase used was a 10{sup −2} mol dm{sup −3} ethanesulfonic acid solution. The effects of tetraorthoethoxysilane, phenyltrimethoxysilane and N′,N′-bis[3-tri(methoxysilyl)propyl]ethylendiamine as crosslinking agents on the transport were studied. H{sub 3}PO{sub 4} was used as an acid catalyst during the SP synthesis and optimized for transport performance. Solid–liquid extraction experiments were performed to determine the model that describe the transport of Cd(II) via ADOGEN{sup ®} 364. The transport was found to be chained-carrier controlled with a percolation threshold of 0.094 mmol g{sup −1}. The selective recovery of Cd(II) was studied with respect to Ni(II), Zn(II), Cu(II), and Pb(II) at a 1:1 molar ratio, and the optimized membrane system was applied for the recovery of Cd(II) from a real sample consisting of a Ni/Cd battery with satisfactory results. Finally, stability experiments were performed using the same membrane for 14 cycles. The results obtained showed that SIHMs had excellent stability and selectivity, with permeabilities comparable to those of PIMs.

  3. Control of polymer network topology in semi-batch systems

    Science.gov (United States)

    Wang, Rui; Olsen, Bradley; Johnson, Jeremiah

    Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.

  4. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    Science.gov (United States)

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale.

  5. Implicit multi-fluid simulation of interpenetrating plasmas

    International Nuclear Information System (INIS)

    Rambo, P.W.; Denavit, J.

    1992-01-01

    A one dimensional simulation code for interpenetrating multi-component plasmas is presented. Separate fluid equations for multiple species and the Poisson equation for the electric field are solved implicitly to allow stable accurate solutions over a wide range of the time scale parameters ω p Δt and ν c Δt (ω p is the plasma frequency, ν c a typical collision frequency and Δt the time step). In regions where ω p Δt c Δt p Δt >>1 and/or ν c Δt>>1, the ambipolar and/or diffusion models are recovered. In regions of low collisionality, particles may be created and deleted which are followed using particle and cell techniques combined with scatter and drag due to collisions with the fluids. Applications of this code to interpenetrating laser generated plasmas are presented

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 2. Studies on in vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid. K Kumari P P Kundu. Polymers Volume 31 Issue 2 April 2008 pp 159-167 ...

  7. B S Sherigara

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. B S Sherigara. Articles written in Bulletin of Materials Science. Volume 24 Issue 5 October 2001 pp 535-538 Polymers. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and poly(2-hydroxyethylmethacrylate): Synthesis, chemical, mechanical ...

  8. Mechanical properties of polymer-infiltrated-ceramic-network materials.

    Science.gov (United States)

    Coldea, Andrea; Swain, Michael V; Thiel, Norbert

    2013-04-01

    To determine and identify correlations between flexural strength, strain at failure, elastic modulus and hardness versus ceramic network densities of a range of novel polymer-infiltrated-ceramic-network (PICN) materials. Four ceramic network densities ranging from 59% to 72% of theoretical density, resin infiltrated PICN as well as pure polymer and dense ceramic cross-sections were subjected to Vickers Indentations (HV 5) for hardness evaluation. The flexural strength and elastic modulus were measured using three-point-bending. The fracture response of PICNs was determined for cracks induced by Vickers-indentation. Optical and scanning electron microscopy (SEM) was employed to observe the indented areas. Depending on the density of the porous ceramic the flexural strength of PICNs ranged from 131 to 160MPa, the hardness values ranged between 1.05 and 2.10GPa and the elastic modulus between 16.4 and 28.1GPa. SEM observations of the indentation induced cracks indicate that the polymer network causes greater crack deflection than the dense ceramic material. The results were compared with simple analytical expressions for property variation of two phase composite materials. This study points out the correlation between ceramic network density, elastic modulus and hardness of PICNs. These materials are considered to more closely imitate natural tooth properties compared with existing dental restorative materials. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  9. Gas adsorption/separation properties of metal directed self-assembly of two coordination polymers with 5-nitroisophthalate

    Energy Technology Data Exchange (ETDEWEB)

    Arıcı, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, İstanbul (Turkey); Şahin, Onur [Scientific and Technological Research Application and Research Center, Sinop University, 57010 Sinop (Turkey)

    2014-02-15

    Two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Thermal properties of the complexes showed that both complexes were stable over 320 °C. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. - Graphical abstract: In this study, two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. Display Omitted - Highlights: • Two new coordination polymers with 5-nitroisophthalate and 1,2-bis(4-pyridyl)ethane. • Atomically detailed simulation studies of the complexes. • Complex 2 can be proposed as molecular sieve to separate CO{sub 2} from CH{sub 4} at low pressures.

  10. Development of air stable polymer solar cells using an inverted gold on top anode structure

    International Nuclear Information System (INIS)

    Sahin, Yuecel; Alem, Salima; Bettignies, Remi de; Nunzi, Jean-Michel

    2005-01-01

    We developed indium-tin-oxide/perylene diimide (or bathocuproine (BCP))/poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene (MEH-PPV) and [6,6]-phenyl C 60 butyric acid methyl ester (PCBM) blend/copper phthalocyanine (CuPc)/Au interpenetrated network polymer solar cells in order to improve air stability. The stability properties of the cells were characterized by current-voltage measurements under the influence of light and air. We achieved long lifetime solar cells which work at least 2 weeks under ambient air conditions without encapsulation. Solar energy conversion efficiency of the cells decrease 30% of the first day value at the end of 2 weeks. Photocurrent absorption properties of the devices were also investigated

  11. Effect of chain rigidity on network architecture and deformation behavior of glassy polymer networks

    Science.gov (United States)

    Knowles, Kyler Reser

    Processing carbon fiber composite laminates creates molecular-level strains in the thermoset matrix upon curing and cooling which can lead to failures such as geometry deformations, micro-cracking, and other issues. It is known strain creation is attributed to the significant volume and physical state changes undergone by the polymer matrix throughout the curing process, though storage and relaxation of cure-induced strains remain poorly understood. This dissertation establishes two approaches to address the issue. The first establishes testing methods to simultaneously measure key volumetric properties of a carbon fiber composite laminate and its polymer matrix. The second approach considers the rigidity of the polymer matrix in regards to strain storage and relaxation mechanisms which ultimately control composite performance throughout manufacturing and use. Through the use of a non-contact, full-field strain measurement technique known as digital image correlation (DIC), we describe and implement useful experiments which quantify matrix and composite parameters necessary for simulation efforts and failure models. The methods are compared to more traditional techniques and show excellent correlation. Further, we established relationships which represent matrix-fiber compatibility in regards to critical processing constraints. The second approach involves a systematic study of epoxy-amine networks which are chemically-similar but differ in chain segment rigidity. Prior research has investigated the isomer effect of glassy polymers, showing sizeable differences in thermal, volumetric, physical, and mechanical properties. This work builds on these themes and shows the apparent isomer effect is rather an effect of chain rigidity. Indeed, it was found that structurally-dissimilar polymer networks exhibit very similar properties as a consequence of their shared average network rigidity. Differences in chain packing, as a consequence of chain rigidity, were shown to

  12. Transient response of nonlinear polymer networks: A kinetic theory

    Science.gov (United States)

    Vernerey, Franck J.

    2018-06-01

    Dynamic networks are found in a majority of natural materials, but also in engineering materials, such as entangled polymers and physically cross-linked gels. Owing to their transient bond dynamics, these networks display a rich class of behaviors, from elasticity, rheology, self-healing, or growth. Although classical theories in rheology and mechanics have enabled us to characterize these materials, there is still a gap in our understanding on how individuals (i.e., the mechanics of each building blocks and its connection with others) affect the emerging response of the network. In this work, we introduce an alternative way to think about these networks from a statistical point of view. More specifically, a network is seen as a collection of individual polymer chains connected by weak bonds that can associate and dissociate over time. From the knowledge of these individual chains (elasticity, transient attachment, and detachment events), we construct a statistical description of the population and derive an evolution equation of their distribution based on applied deformation and their local interactions. We specifically concentrate on nonlinear elastic response that follows from the strain stiffening response of individual chains of finite size. Upon appropriate averaging operations and using a mean field approximation, we show that the distribution can be replaced by a so-called chain distribution tensor that is used to determine important macroscopic measures such as stress, energy storage and dissipation in the network. Prediction of the kinetic theory are then explored against known experimental measurement of polymer responses under uniaxial loading. It is found that even under the simplest assumptions of force-independent chain kinetics, the model is able to reproduce complex time-dependent behaviors of rubber and self-healing supramolecular polymers.

  13. Dissolution of covalent adaptable network polymers in organic solvent

    Science.gov (United States)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  14. 2D parallel interpenetration of [M2(bpp)4X4] [M, Fe(II)/Co(II); bpp, 4,4'-trimethylenedipyridine; X, SCN-, SeCN- and N3-] complexes: Pseudohalide-dependent conformation of bpp

    International Nuclear Information System (INIS)

    Manna, Subal Chandra; Jana, Atish Dipankar; Rosair, Georgina M.; Drew, Michael G.B.; Mostafa, Golam; Ray Chaudhuri, Nirmalendu

    2008-01-01

    Three coordination complexes of Co(II)/Fe(II) with 4,4'-trimethylenedipyridine (bpp) and pseudohalides (SCN - , SeCN - and N 3 - ) have been synthesized. The complexes have been characterized by X-ray single crystal structure determination. They are isomorphous having 2D layers in which two independent wavy nets display parallel interwoven structures. Pseudohalide binds metal centers through N terminal and occupies the trans axial positions of the octahedral metal coordination environment. Pseudohalide remains pendant on both sides of the polymeric layer and help the stacking through hydrogen bonding. The conformation of bpp in the interpenetrated nets is observed to be dependent on the choice of pseudohalide. - Graphical abstract: Complexes of [M 2 (bpp) 4 X 4 ] [M, Fe(II)/Co(II); bpp, 4,4'-trimethylenedipyridine; X, SCN - , SeCN - and N3 - ] have been synthesized. The structural analysis reveals undulated 2D network with (4,4) net topology adopting two different conformations of bpp alternately. Two such networks undergo parallel interpenetration. Pseudohalides are observed to help in stacking the interpenetrated nets through hydrogen bonding

  15. Synergistic stiffening in double-fiber networks

    NARCIS (Netherlands)

    Rombouts, W.H.; Giesbers, M.; Lent, van J.W.M.; Wolf, de F.A.; Gucht, van der J.

    2014-01-01

    Many biological materials are composite structures, interpenetrating networks of different types of fibers. The composite nature of such networks leads to superior mechanical properties, but the origin of this mechanical synergism is still poorly understood. Here we study soft composite networks,

  16. Interpenetrating polymer networks based on polyol modified castor ...

    Indian Academy of Sciences (India)

    Unknown

    glycerol modification of castor oil results in more crosslinked and stiffer IPNs possessing better mechanical properties over that of unmodified castor oil polyurethane/. PHEMA IPNs. 3.5 Chemical resistance. The percentage weight loss of IPNs were determined in. H2SO4, CH3COOH, HCl, HNO3, NaCl and NaOH etc and.

  17. Role of architecture in the elastic response of semiflexible polymer and fiber networks

    Science.gov (United States)

    Heussinger, Claus; Frey, Erwin

    2007-01-01

    We study the elasticity of cross-linked networks of thermally fluctuating stiff polymers. As compared to their purely mechanical counterparts, it is shown that these thermal networks have a qualitatively different elastic response. By accounting for the entropic origin of the single-polymer elasticity, the networks acquire a strong susceptibility to polydispersity and structural randomness that is completely absent in athermal models. In extensive numerical studies we systematically vary the architecture of the networks and identify a wealth of phenomena that clearly show the strong dependence of the emergent macroscopic moduli on the underlying mesoscopic network structure. In particular, we highlight the importance of the polymer length, which to a large extent controls the elastic response of the network, surprisingly, even in parameter regions where it does not enter the macroscopic moduli explicitly. Understanding these subtle effects is only possible by going beyond the conventional approach that considers the response of typical polymer segments only. Instead, we propose to describe the elasticity in terms of a typical polymer filament and the spatial distribution of cross-links along its backbone. We provide theoretical scaling arguments to relate the observed macroscopic elasticity to the physical mechanisms on the microscopic and mesoscopic scales.

  18. Gas permeation through a polymer network

    International Nuclear Information System (INIS)

    Schmittmann, B; Gopalakrishnan, Manoj; Zia, R K P

    2005-01-01

    We study the diffusion of gas molecules through a two-dimensional network of polymers with the help of Monte Carlo simulations. The polymers are modelled as non-interacting random walks on the bonds of a two-dimensional square lattice, while the gas particles occupy the lattice cells. When a particle attempts to jump to a nearest-neighbour empty cell, it has to overcome an energy barrier which is determined by the number of polymer segments on the bond separating the two cells. We investigate the gas current J as a function of the mean segment density ρ, the polymer length l and the probability q m for hopping across m segments. Whereas J decreases monotonically with ρ for fixed l, its behaviour for fixed ρ and increasing ldepends strongly on q. For small, non-zero q, J appears to increase slowly with l. In contrast, for q = 0, it is dominated by the underlying percolation problem and can be non-monotonic. We provide heuristic arguments to put these interesting phenomena into context

  19. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    International Nuclear Information System (INIS)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-01-01

    Three new metal-organic coordination polymers [Co(4-bbc) 2 (bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H 2 O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H 2 pdc=3,5-pyridinedicarboxylic acid, 1,4-H 2 ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co II ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3 2 ·4·5·6 2 ·7 4 ) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated

  20. Entanglement effects in model polymer networks

    Science.gov (United States)

    Everaers, R.; Kremer, K.

    The influence of topological constraints on the local dynamics in cross-linked polymer melts and their contribution to the elastic properties of rubber elastic systems are a long standing problem in statistical mechanics. Polymer networks with diamond lattice connectivity (Everaers and Kremer 1995, Everaers and Kremer 1996a) are idealized model systems which isolate the effect of topology conservation from other sources of quenched disorder. We study their behavior in molecular dynamics simulations under elongational strain. In our analysis we compare the measured, purely entropic shear moduli G to the predictions of statistical mechanical models of rubber elasticity, making extensive use of the microscopic structural and topological information available in computer simulations. We find (Everaers and Kremer 1995) that the classical models of rubber elasticity underestimate the true change in entropy in a deformed network significantly, because they neglect the tension along the contour of the strands which cannot relax due to entanglements (Everaers and Kremer (in preparation)). This contribution and the fluctuations in strained systems seem to be well described by the constrained mode model (Everaers 1998) which allows to treat the crossover from classical rubber elasticity to the tube model for polymer networks with increasing strand length within one transparant formalism. While this is important for the description of the effects we try to do a first quantitative step towards their explanation by topological considerations. We show (Everaers and Kremer 1996a) that for the comparatively short strand lengths of our diamond networks the topology contribution to the shear modulus is proportional to the density of entangled mesh pairs with non-zero Gauss linking number. Moreover, the prefactor can be estimated consistently within a rather simple model developed by Vologodskii et al. and by Graessley and Pearson, which is based on the definition of an entropic

  1. Anion-Controlled Architecture and Photochromism of Naphthalene Diimide-Based Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Jian-Jun Liu

    2018-02-01

    Full Text Available Three new cadmium coordination polymers, namely [Cd(NO32(DPNDI(CH3OH]·CH3OH (1, [Cd(SCN2(DPNDI] (2, and [Cd(DPNDI2(DMF2]·2ClO4 (3 (DPNDI = N,N-di(4-pyridyl-1,4,5,8-naphthalene diimide, DMF = N,N-dimethylformamide have been synthesized by reactions of DPNDI with Cd(NO32, Cd(SCN2, and Cd(ClO42, respectively. Compound 1 is a one-dimensional coordination polymer with strong lone pair-π interactions between the coordinated NO3− anions and the imide ring of DPNDI; while 2 is a two-dimensional network with a (4, 4 net topology. In the case of 3, due to the presence of uncoordinated perchlorate counter ions, it exhibits a non-interpenetrated square-grid coordination polymer containing one-dimensional rhomboid channels. The structural diversity in these compounds is attributed to different coordination abilities and geometries of counter anions. Due to the presence of electron-deficient NDI moiety, the photochromic behavior of these compounds was studied. Interestingly, only compounds 1 and 3 exhibit color changes under light irradiation. The influence of the anions on the photochromism process of the NDI-based materials has been discussed.

  2. Ductile thermoset polymers via controlling network flexibility.

    Science.gov (United States)

    Hameed, N; Salim, N V; Walsh, T R; Wiggins, J S; Ajayan, P M; Fox, B L

    2015-06-18

    We report the design and synthesis of a polymer structure from a cross-linkable epoxy-ionic liquid system which behaves like a hard and brittle epoxy thermoset, perfectly ductile thermoplastic and an elastomer, all depending on controllable network compositions.

  3. Shape memory polymers based on uniform aliphatic urethane networks

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  4. Interpenetrating polymer network hydrogels based on poly(2-hydroxyethyl methacrylate): morphology effects on formation, swelling, optical, and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Dušková-Smrčková, Miroslava; Sadakbayeva, Zhansaya; Steinhart, Miloš; Šturcová, Adriana; Pfleger, Jiří; Dušek, Karel

    2017-01-01

    Roč. 254, 20 August (2017), s. 40 ISSN 0065-7727. [ACS National Meeting & Exposition /254./. 20.08.2017-24.08.2017, Washington] Institutional support: RVO:61389013 Keywords : IPN * poly(2-hydroxyethyl methacrylate) * hydrogel Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  5. Fracture Simulation of Highly Crosslinked Polymer Networks: Triglyceride-Based Adhesives

    Science.gov (United States)

    Lorenz, Christian; Stevens, Mark; Wool, Richard

    2003-03-01

    The ACRES program at the U. of Delaware has shown that triglyceride oils derived from plants are a favorable alternative to the traditional adhesives. The triglyceride networks are formed from an initial mixture of styrene monomers, free-radical initiators and triglycerides. We have performed simulations to study the effect of physical composition and physical characteristics of the triglyceride network on the strength of triglyceride network. A coarse-grained, bead-spring model of the triglyceride system is used. The average triglyceride consists of 6 beads per chain, the styrenes are represented as a single bead and the initiators are two bead chains. The polymer network is formed using an off-lattice 3D Monte Carlo simulation, in which the initiators activate the styrene and triglyceride reactive sites and then bonds are randomly formed between the styrene and active triglyceride monomers producing a highly crosslinked polymer network. Molecular dynamics simulations of the network under tensile and shear strains were performed to determine the strength as a function of the network composition. The relationship between the network structure and its strength will also be discussed.

  6. Modelling the permeability of polymers: a neural network approach

    NARCIS (Netherlands)

    Wessling, Matthias; Mulder, M.H.V.; Bos, A.; Bos, A.; van der Linden, M.K.T.; Bos, M.; van der Linden, W.E.

    1994-01-01

    In this short communication, the prediction of the permeability of carbon dioxide through different polymers using a neural network is studied. A neural network is a numeric-mathematical construction that can model complex non-linear relationships. Here it is used to correlate the IR spectrum of a

  7. Modeling fiber Bragg grating device networks in photomechanical polymer optical fibers

    Science.gov (United States)

    Lanska, Joseph T.; Kuzyk, Mark G.; Sullivan, Dennis M.

    2015-09-01

    We report on the modeling of fiber Bragg grating (FBG) networks in poly(methyl methacrylate) (PMMA) polymer fibers doped with azo dyes. Our target is the development of Photomechanical Optical Devices (PODs), comprised of two FBGs in series, separated by a Fabry-Perot cavity of photomechanical material. PODs exhibit photomechanical multi-stability, with the capacity to access multiple length states for a fixed input intensity when a mechanical shock is applied. Using finite-difference time-domain (FDTD) numerical methods, we modeled the photomechanical response of both Fabry-Perot and Bragg-type PODs in a single polymer optical fiber. The polymer fiber was modeled as an instantaneous Kerr-type nonlinear χ(3) material. Our model correctly predicts the essential optical features of FBGs as well as the photomechanical multi-stability of nonlinear Fabry-Perot cavity-based PODs. Networks of PODs may provide a framework for smart shape-shifting materials and fast optical computation where the decision process is distributed over the entire network. In addition, a POD can act as memory, and its response can depend on input history. Our models inform and will accelerate targeted development of novel Bragg grating-based polymer fiber device networks for a variety of applications in optical computing and smart materials.

  8. A membrane actuator based on an ionic polymer network and carbon nanotubes: the synergy of ionic transport and mechanical properties

    International Nuclear Information System (INIS)

    Dai, Chi-An; Hsiao, Chih-Chun; Weng, Shih-Chun; Kao, An-Cheng; Liu, Chien-Pan; Tsai, Wei-Bor; Chen, Wen-Shiang; Liu, Wei-Ming; Shih, Wen-Pin; Ma, Chien-Ching

    2009-01-01

    There is a growing interest in the development of ionic polymer–metal composites (IPMC) as sensors and actuators for biomedical applications due to their large deformation under low driving voltage. In this study, we employed poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PVA/PAMPS) blend membranes as semi-interpenetrating polymer networks for ion exchange in IPMC construction. To improve the mechanical and electrical properties of the IPMC, multi-walled carbon nanotubes (MWNT) were added into PVA/PAMPS membranes. The actuator performance of the membranes was measured as a function of their water uptake, ion exchange capacity, ionic conductivity and the amount of MWNT in the membrane. The dispersion quality of the modified MWNT in the PVA/PAMPS membrane was measured using transmission electron microscopy. The cantilever-type IPMC actuator bends under applied voltage and its bending angle and the generative tip force were measured. Under an applied voltage, IPMC with ∼1 wt% MWNT showed the largest deflection and generated the largest blocking tip force compared with those of IPMC with other various amounts of MWNT. These results show that a small addition of MWNT can optimize the actuation performance of IPMC. The result indicates that IPMC with MWNT shows potential for use as biomimetic artificial muscle

  9. Interpenetrating polyaniline-gold electrodes for SERS and electrochemical measurements

    Science.gov (United States)

    West, R. M.; Semancik, S.

    2016-11-01

    Facile fabrication of nanostructured electrode arrays is critical for development of bimodal SERS and electrochemical biosensors. In this paper, the variation of applied potential at a polyaniline-coated Pt electrode is used to selectivity deposit Au on the polyaniline amine sites or on the underlying Pt electrode. By alternating the applied potential, the Au is grown simultaneously from the top and the bottom of the polyaniline film, leading to an interpenetrated, nanostructured polymer-metal composite extending from the Pt electrode to the electrolyte solution. The resulting films have unique pH-dependent electrochemical properties, e.g. they retain electrochemical activity in both acidic and neutral solutions, and they also include SERS-active nanostructures. By varying the concentration of chloroaurate used during deposition, Au nanoparticles, nanodendrites, or nanosheets can be selectively grown. For the films deposited under optimal conditions, using 5 mmol/L chloroaurate, the SERS enhancement factor for Rhodamine 6G was found to be as high as 1.1 × 106 with spot-to-spot and electrode-to-electrode relative standard deviations as low as 8% and 12%, respectively. The advantages of the reported PANI-Au composite electrodes lie in their facile fabrication, enabling the targeted deposition of tunable nanostructures on sensing arrays, and their ability to produce orthogonal optical and electrochemical analytical results.

  10. Realization of highly efficient polymer solar cell based on PBDTTT-EFT and [71]PCBM

    Science.gov (United States)

    Bharti, Vishal; Chand, Suresh; Dutta, Viresh

    2018-04-01

    In this work, we have fabricated highly efficient polymer solar cells based on the blend of PBDTTT-EFT:PC71BM in the inverted device configuration. By using low temperature processed zinc oxide (ZnO) nanoparticles as an electron-transport layer (ETL) and 1,8-diiodooctane (DIO) as additive in chlorobenzene (CB) solvent we have achieved PCE of 9.43% with an excellent short-circuit current density (Jsc) of 17.6 mAcm-2, open circuit voltage (Voc) of 0.80 V and fill factor (FF) of 0.67. These results reveals that addition of 3% DIO additive in CB solvent improve the morphology (lower charge carrier recombination and better metal/organic semiconductor interface) and provide uniform interpenetrating networks in PBDTTT-EFT:PC71BM blend active layer.

  11. Pros and Cons of the Interpenetrating Panel Design

    Science.gov (United States)

    Paul C. Van Deusen

    2000-01-01

    The interpenetrating sample design has been selected for the USDA Forest Service's Annual Forest Inventory System. The advantages and disadvantages of this design are discussed by considering alternatives such as the formerly used periodic design, a concentrated grid design, and disturbance based sampling. Factors considered for each design include fulfilling 1998...

  12. Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent.

    Science.gov (United States)

    Lv, Daofei; Shi, Renfeng; Chen, Yongwei; Wu, Ying; Wu, Houxiao; Xi, Hongxia; Xia, Qibin; Li, Zhong

    2018-03-07

    The separation of ethane from ethylene using cryogenic distillation is an energy-intensive process in the industry. With lower energetic consumption, the adsorption technology provides the opportunities for developing the industry with economic sustainability. We report an iron-based metal-organic framework PCN-245 with interpenetrated structures as an ethane-selective adsorbent for ethylene/ethane separation. The material maintains stability up to 625 K, even after exposure to 80% humid atmosphere for 20 days. Adsorptive separation experiments on PCN-245 at 100 kPa and 298 K indicated that ethane and ethylene uptakes of PCN-245 were 3.27 and 2.39 mmol, respectively, and the selectivity of ethane over ethylene was up to 1.9. Metropolis Monte Carlo calculations suggested that the interpenetrated structure of PCN-245 created greater interaction affinity for ethane than ethylene through the crossing organic linkers, which is consistent with the experimental results. This work highlights the potential application of adsorbents with the interpenetrated structure for ethane separation from ethylene.

  13. Substituted Polyacetylenes Prepared with Rh Catalysts: From Linear to Network-Type Conjugated Polymers

    Czech Academy of Sciences Publication Activity Database

    Sedláček, J.; Balcar, Hynek

    2017-01-01

    Roč. 57, č. 1 (2017), s. 31-51 ISSN 1558-3724 Institutional support: RVO:61388955 Keywords : conjugated polymers * polyacetylenes * conjugated polymer networks Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Polymer science Impact factor: 6.459, year: 2016

  14. Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution.

    Science.gov (United States)

    Kailasam, Kamalakannan; Schmidt, Johannes; Bildirir, Hakan; Zhang, Guigang; Blechert, Siegfried; Wang, Xinchen; Thomas, Arne

    2013-06-25

    Two emerging material classes are combined in this work, namely polymeric carbon nitrides and microporous polymer networks. The former, polymeric carbon nitrides, are composed of amine-bridged heptazine moieties and showed interesting performance as a metal-free photocatalyst. These materials have, however, to be prepared at high temperatures, making control of their chemical structure difficult. The latter, microporous polymer networks have received increasing interest due to their high surface area, giving rise to interesting applications in gas storage or catalysis. Here, the central building block of carbon nitrides, a functionalized heptazine as monomer, and tecton are used to create microporous polymer networks. The resulting heptazine-based microporous polymers show high porosity, while their chemical structure resembles the ones of carbon nitrides. The polymers show activity for the photocatalytic production of hydrogen from water, even under visible light illumination. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fullerene derivatives as components for 'plastic' photovoltaic cells

    NARCIS (Netherlands)

    Hummelen, J.C.; Knol, J.; Kadish, KM; Ruoff, RS

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (beta-junction) materials, are useful in 'plastic' photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of

  16. Copper-catalyzed azide alkyne cycloaddition polymer networks

    Science.gov (United States)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo

  17. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers

    Science.gov (United States)

    Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto; Barker, Thomas H.

    2017-01-01

    In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.

  18. Prediction of Polymer Flooding Performance with an Artificial Neural Network: A Two-Polymer-Slug Case

    Directory of Open Access Journals (Sweden)

    Jestril Ebaga-Ololo

    2017-07-01

    Full Text Available Many previous contributions to methods of forecasting the performance of polymer flooding using artificial neural networks (ANNs have been made by numerous researchers previously. In most of those forecasting cases, only a single polymer slug was employed to meet the objective of the study. The intent of this manuscript is to propose an efficient recovery factor prediction tool at different injection stages of two polymer slugs during polymer flooding using an ANN. In this regard, a back-propagation algorithm was coupled with six input parameters to predict three output parameters via a hidden layer composed of 10 neurons. Evaluation of the ANN model performance was made with multiple linear regression. With an acceptable correlation coefficient, the proposed ANN tool was able to predict the recovery factor with errors of <1%. In addition, to understand the influence of each parameter on the output parameters, a sensitivity analysis was applied to the input parameters. The results showed less impact from the second polymer concentration, owing to changes in permeability after the injection of the first polymer slug.

  19. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Science.gov (United States)

    Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori

    2010-01-01

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers. PMID:28883360

  20. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Directory of Open Access Journals (Sweden)

    Tetsuro Hori

    2010-11-01

    Full Text Available Organic thin-film solar cells with a conducting polymer (CP/fullerene (C60 interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene (PAT6/Au have been improved by the insertion of molybdenum trioxide (VI (MoO3 and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers.

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. A K Bajpai. Articles written in Bulletin of Materials Science. Volume 28 Issue 6 October 2005 pp 529-534 Review—Polymers. Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: A hard biopolymer.

  2. T V Thanikai Velan

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. T V Thanikai Velan. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 425-429 Polymers. Aliphatic amine cured PDMS–epoxy interpenetrating network system for high performance engineering applications—Development and characterization.

  3. Fullerene Derivatives as Components for ‘Plastic’ Photovoltaic Cells

    NARCIS (Netherlands)

    Knol, Joop; Hummelen, Jan C.

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (β-junction) materials, are useful in ‘plastic’ photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of our

  4. I Mohammed Bilal

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. I Mohammed Bilal. Articles written in Bulletin of Materials Science. Volume 23 Issue 5 October 2000 pp 425-429 Polymers. Aliphatic amine cured PDMS–epoxy interpenetrating network system for high performance engineering applications—Development and characterization.

  5. Synthesis and Photophysical Properties of Novel Fullerene Derivatives as Model Compounds for Bulk-Heterojunction PV Cells

    NARCIS (Netherlands)

    Hal, P.A. van; Langeveld-Voss, B.M.W.; Peeters, E.; Janssen, R.A.J.; Knol, J.; Hummelen, J.C.

    2000-01-01

    Covalent and well-defined oligomer-fullerene donor-acceptor molecular structures can serve as important model systems for plastic PV cells, based on interpenetrating networks of conjugated polymers and fullerene derivatives. Two series of [60]fullerene-oligomer dyads and triads were prepared and

  6. An Atomic Force Microscopy Study of the Interactions Involving Polymers and Silane Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo L. Oréfice

    1998-12-01

    Full Text Available ABSTRACT: Silane coupling agents have been frequently used as interfacial agents in polymer composites to improve interfacial strength and resistance to fluid migration. Although the capability of these agents in improving properties and performance of composites has been reported, there are still many uncertainties regarding the processing-structure-property relationships and the mechanisms of coupling developed by silane agents. In this work, an Atomic Force Microscope (AFM was used to measure interactions between polymers and silica substrates, where silane networks with a series of different structures were processed. The influence of the structure of silane networks on the interactions with polymers was studied and used to determine the mechanisms involved in the coupling phenomenon. The AFM results showed that phenomena such as chain penetration, entanglements, intersegment bonding, chain conformation in the vicinities of rigid surfaces were identified as being relevant for the overall processes of adhesion and adsorption of polymeric chains within a silane network. AFM adhesion curves showed that penetration of polymeric chains through a more open silane network can lead to higher levels of interactions between polymer and silane agents.

  7. Effect of pH on chitosan hydrogel polymer network structure.

    Science.gov (United States)

    Xu, Hongcheng; Matysiak, Silvina

    2017-06-29

    Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.

  8. Engineering the Mechanical Properties of Polymer Networks with Precise Doping of Primary Defects.

    Science.gov (United States)

    Chan, Doreen; Ding, Yichuan; Dauskardt, Reinhold H; Appel, Eric A

    2017-12-06

    Polymer networks are extensively utilized across numerous applications ranging from commodity superabsorbent polymers and coatings to high-performance microelectronics and biomaterials. For many applications, desirable properties are known; however, achieving them has been challenging. Additionally, the accurate prediction of elastic modulus has been a long-standing difficulty owing to the presence of loops. By tuning the prepolymer formulation through precise doping of monomers, specific primary network defects can be programmed into an elastomeric scaffold, without alteration of their resulting chemistry. The addition of these monomers that respond mechanically as primary defects is used both to understand their impact on the resulting mechanical properties of the materials and as a method to engineer the mechanical properties. Indeed, these materials exhibit identical bulk and surface chemistry, yet vastly different mechanical properties. Further, we have adapted the real elastic network theory (RENT) to the case of primary defects in the absence of loops, thus providing new insights into the mechanism for material strength and failure in polymer networks arising from primary network defects, and to accurately predict the elastic modulus of the polymer system. The versatility of the approach we describe and the fundamental knowledge gained from this study can lead to new advancements in the development of novel materials with precisely defined and predictable chemical, physical, and mechanical properties.

  9. Networks 90: Polymer Networks Group Meeting (10th) and IUPAC international Symposium on Polymer Networks (10th) Held in Jerusalem on 20-25 May 1990. Programme and Abstracts

    Science.gov (United States)

    1990-05-25

    Ingenieria Quimica, 12 de octubre 1842, 8000 Bahia Blanca, Argentina. P-36 BRANCHING KINETICS OF EPOXY POLYMERIZATION OF 1,4-BUTANEDIOL DIGLYCIDYL ETHER...OF ENTANGLED POLYMERS IN MELTS L-6 J. des Cloizeaux (France) 14:45-15:05 THE CONCEPT OF INTRINSIC CHAIN STRESS IN L-7 POLYMER NETWORKS J.J. Weiner, J...RELATION TO DIFFUSIVE TRANSPORT A.M. Weiss, K. Adler, A.J. Grodzinsky, M.L. Yarmush (Israel, USA) 15:05-15:25 DIFFUSION BEHAVIOUR IN SOLUTIONS OF L-25

  10. Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material.

    Science.gov (United States)

    Al-Jawoosh, Sara; Ireland, Anthony; Su, Bo

    2018-04-10

    To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms, which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerised tomography (Micro-CT). Three-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using micro-CT. Depending on the volume fraction of the ceramic preform, the density of the final composite ranged from 2.92 to 3.36g/cm 3 , compressive strength ranged from 206.26 to 253.97MPa, flexural strength from 97.73 to 145.65MPa, hardness ranged from 1.46 to 1.62GPa, and fracture toughness from 3.91 to 4.86MPam 1/2 . Freeze-casting provides a novel method to engineer composite materials with a unique aligned honeycomb-like interpenetrating structure, consisting of two continuous phases, inorganic and organic. There was a correlation between the ceramic fraction and the subsequent, density, strength, hardness and fracture toughness of the composite material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  11. Beyond Creation of Mesoporosity: The Advantages of Polymer-Based Dual-Function Templates for Fabricating Hierarchical Zeolites

    KAUST Repository

    Tian, Qiwei

    2016-02-05

    Direct synthesis of hierarchical zeolites currently relies on the use of surfactant-based templates to produce mesoporosity by the random stacking of 2D zeolite sheets or the agglomeration of tiny zeolite grains. The benefits of using nonsurfactant polymers as dual-function templates in the fabrication of hierarchical zeolites are demonstrated. First, the minimal intermolecular interactions of nonsurfactant polymers impose little interference on the crystallization of zeolites, favoring the formation of 3D continuous zeolite frameworks with a long-range order. Second, the mutual interpenetration of the polymer and the zeolite networks renders disordered but highly interconnected mesopores in zeolite crystals. These two factors allow for the synthesis of single-crystalline, mesoporous zeolites of varied compositions and framework types. A representative example, hierarchial aluminosilicate (meso-ZSM-5), has been carefully characterized. It has a unique branched fibrous structure, and far outperforms bulk aluminosilicate (ZSM-5) as a catalyst in two model reactions: conversion of methanol to aromatics and catalytic cracking of canola oil. Third, extra functional groups in the polymer template can be utilized to incorporate desired functionalities into hierarchical zeolites. Last and most importantly, polymer-based templates permit heterogeneous nucleation and growth of mesoporous zeolites on existing surfaces, forming a continuous zeolitic layer. In a proof-of-concept experiment, unprecedented core-shell-structured hierarchical zeolites are synthesized by coating mesoporous zeolites on the surfaces of bulk zeolites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Contribution of Charges in Polyvinyl Alcohol Networks to Marine Antifouling.

    Science.gov (United States)

    Yang, Wufang; Lin, Peng; Cheng, Daocang; Zhang, Longzhou; Wu, Yang; Liu, Yupeng; Pei, Xiaowei; Zhou, Feng

    2017-05-31

    Semi-interpenetrated polyvinyl alcohol polymer networks (SIPNs) were prepared by integrating various charged components into polyvinyl alcohol polymer. Contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and tensile tests were used to characterize the physicochemical properties of the prepared SIPNs. To investigate the contribution of charges to marine antifouling, the adhesion behaviors of green algae Dunaliella tertiolecta and diatoms Navicula sp. in the laboratory and of the actual marine animals in field test were studied for biofouling assays. The results suggest that less algae accumulation densities are observed for neutral-, anionic-, and zwitterionic-component-integrated SIPNs. However, for the cationic SIPNs, despite the hydration shell induced by the ion-dipole interaction, the resistance to biofouling largely depends on the amount of cationic component because of the possible favorable electrostatic attraction between the cationic groups in SIPNs and the negatively charged algae. Considering that the preparation of novel nontoxic antifouling coating is a long-standing and cosmopolitan industrial challenge, the SIPNs may provide a useful reference for marine antifouling and some other relevant fields.

  13. Static semicoercive normal compliance contact problem with limited interpenetration

    Czech Academy of Sciences Publication Activity Database

    Jarušek, Jiří

    2015-01-01

    Roč. 66, č. 5 (2015), s. 2161-2172 ISSN 0044-2275 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985840 Keywords : contact * limited interpenetration * friction Subject RIV: BA - General Mathematics Impact factor: 1.560, year: 2015 http://link.springer.com/article/10.1007%2Fs00033-015-0539-5

  14. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China); Yuan, Yasheng, E-mail: yuanyasheng@163.com [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China); Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 (United States); Chi, Fanglu [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China)

    2014-09-01

    We describe the development of alginate/polyacrylamide (ALG/PAAm) porous hydrogels based on interpenetrating polymer network structure for human mesenchymal stem cell proliferation and chondrogenesis. Three ALG/PAAm hydrogels at molar ratios of 10/90, 20/80, and 30/70 were prepared and characterized with enhanced elastic and rubbery mechanical properties, which are similar to native human cartilage tissues. Their elasticity and swelling properties were also studied under different physiological pH conditions. Finally, in vitro tests demonstrated that human mesenchymal stem cells could proliferate on the as-synthesized hydrogels with improved alkaline phosphatase activities. These results suggest that ALG/PAAm hydrogels may be a promising biomaterial for cartilage tissue engineering. - Highlights: • ALG/PAAm hydrogels were prepared at different molar ratios for cartilage tissue engineering. • ALG/PAAm hydrogels feature an interpenetrating polymer network structure. • ALG/PAAm hydrogels demonstrate strengthened elastic and rubbery mechanical properties. • hMSCs could be cultured on the ALG/PAAm hydrogels for proliferation and chondrogenesis.

  15. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis

    International Nuclear Information System (INIS)

    Guo, Peng; Yuan, Yasheng; Chi, Fanglu

    2014-01-01

    We describe the development of alginate/polyacrylamide (ALG/PAAm) porous hydrogels based on interpenetrating polymer network structure for human mesenchymal stem cell proliferation and chondrogenesis. Three ALG/PAAm hydrogels at molar ratios of 10/90, 20/80, and 30/70 were prepared and characterized with enhanced elastic and rubbery mechanical properties, which are similar to native human cartilage tissues. Their elasticity and swelling properties were also studied under different physiological pH conditions. Finally, in vitro tests demonstrated that human mesenchymal stem cells could proliferate on the as-synthesized hydrogels with improved alkaline phosphatase activities. These results suggest that ALG/PAAm hydrogels may be a promising biomaterial for cartilage tissue engineering. - Highlights: • ALG/PAAm hydrogels were prepared at different molar ratios for cartilage tissue engineering. • ALG/PAAm hydrogels feature an interpenetrating polymer network structure. • ALG/PAAm hydrogels demonstrate strengthened elastic and rubbery mechanical properties. • hMSCs could be cultured on the ALG/PAAm hydrogels for proliferation and chondrogenesis

  16. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    International Nuclear Information System (INIS)

    Xin Lingyun; Liu Guangzhen; Wang Liya

    2011-01-01

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H 2 PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H 2 O)] n (1), [Zn(PHDA)(BPP)] n (2), and [Cu 2 (PHDA) 2 (BPP)] n (3) (H 2 PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D→2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4 8 6 6 8 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state. - Graphical Abstract: We show diverse supramolecular frameworks based on the same ligands (PHDA and BPP) and different metal acetate salts including 1D double-stranded chain, 2D → 2D twofold interpenetrated layer, and 3D self-penetration networks. Highlights: → Three metal(II = 2 /* ROMAN ) coordination polymers were synthesized using H 2 PHDA and BPP. → The diversity of structures show a remarked sensitivity to metal(II) center. → Complexes show the enhancement of fluorescence compared to that of free ligand.

  17. The Integration of Nanoscale Techniques for an Improved Battery Technology

    Science.gov (United States)

    2012-06-08

    anodized aluminum oxide ( AAO ) membranes that were 13...nanoporous anodized aluminum oxide ( AAO ) substrate [13]. During sputtering, thickened columnar growths form around the pores of the substrate...investigates an interpenetrating network structure where ―tubes‖ of polymer electrolyte are placed in the nanopores of anodic aluminum oxide ( AAO

  18. Synthesis and characterization of castor oil based polyurethane ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A series of interpenetrating polymer networks (IPNs) of castor oil based polyurethane/polyacrylo- nitrile (PU/PAN: 80/20, 60/40, 50/50, 40/60 and 20/80) were synthesized by condensation reaction of castor oil with methylene diisocyanate and acrylonitrile, employing benzoyl peroxide (BPO) and ethylene glycol ...

  19. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    Science.gov (United States)

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols

  20. Kinetic studies of uranyl ion adsorption on acrylonitrile (AN)/polyethylene glycol (PEG) interpenetrating networks (IPN)

    International Nuclear Information System (INIS)

    Aycik, G.A.; Gurellier, R.

    2004-01-01

    Full text: The kinetics of the adsorption of uranyl ions on amidoximated acrylonitrile (AN)/ polyethylene glycol (PEG) interpenetrating network (IPNs) from aqueous solutions was studied as a function of time and temperature. The IPNs were prepared by irradiation initiated gamma polymerisation using Co-60 gamma source. Adsorption capacities were performed for definite uranyl ion concentrations of 1x10 -2 M and at four different temperatures as 290K, 298K, 308K and 318K by gamma spectrometer. Adsorption time was increased from zero to 48 hours. The results indicate that adsorption capacity increases linearly with increasing temperature. Temperature and agitation hardly influence equilibrium and kinetics and decreasing of temperature results in a slightly greater time to reach equilibrium. The adsorption of uranyl ions has been studied in a multi step mechanism processes thus comparing chemical sorption and diffusion sorption processes. The experimental data was analysed using various kinetic models to determine the best-fit equation for the adsorption mechanisms. However, it was shown that all models, in general according to the reaction time and uranyl ion concentration in the solution, could describe the adsorption of uranyl ion onto amidoximated IPN, the adsorption kinetics was best described by zeroth order and intraparticle diffusion model whereas that of in increasing time by pseudo first and pseudo second order response respectively. External-intraparticle diffusion and zeroth order process in the IPN structure is proposed as a mass transfer mechanism and the results indicate a diffusion-controlled process. The Mean Activation Energy Of Uranyl Ions Adsorption Was Found As 4,1 Kj/Mole By Using Arrhenius Equation. The Rate Constant, The Equilibrium Adsorption Capacity And The Initial Adsorption Rate Were Calculated For All Models At Each Temperature. Kinetic Parameters Of All Models And The Normalized Standard Deviations Between The Measured And Predicted

  1. 2D→3D polycatenated and 3D→3D interpenetrated metal–organic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands

    Energy Technology Data Exchange (ETDEWEB)

    Erer, Hakan [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Arıcı, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, İstanbul (Turkey); Büyükgüngör, Orhan [Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun (Turkey)

    2014-02-15

    Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks, namely, [Zn(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (1), [Cd(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (2), and ([Cd{sub 2}(µ{sub 3}-tdc){sub 2}(µ-dimb){sub 2}]·(H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D→3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D→3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: • Complexes 1 and 2 display polycatenated 2D+2D→3D framework. • Complex 3 exhibits a new 4-fold interpenetrating 3D framework. • Complex 1 adsorbs the highest amount of

  2. Novel patternable and conducting metal-polymer nanocomposites: a step towards advanced mutlifunctional materials

    Science.gov (United States)

    Rodríguez-Cantó, Pedro J.; Martínez-Marco, Mariluz; Abargues, Rafael; Latorre-Garrido, Victor; Martínez-Pastor, Juan P.

    2013-03-01

    In this work, we present a novel patternable conducting nanocomposite containing gold nanoparticles. Here, the in-situ polymerization of 3T is carried out using HAuCl4 as oxidizing agent inside PMMA as host matrix. During the bake step, the gold salt is also reduced from Au(III) to Au(0) generating Au nanoparticles in the interpenetrating polymer network (IPN) system. We found that this novel multifunctional resist shows electrical conductivity and plasmonic properties as well as potential patterning capability provided by the host matrix. The resulting nanocomposite has been investigated by TEM and UV-Vis spectroscopy. Electrical characterization was also conducted for different concentration of 3T and Au(III) following a characteristic percolation behaviour. Conductivities values from 10-5 to 10 S/cm were successfully obtained depending on the IPN formulation. Moreover, The Au nanoparticles generated exhibited a localized surface plasmon resonance at around 520 nm. This synthetic approach is of potential application to modify the conductivity of numerous insulating polymers and synthesize Au nanoparticles preserving to some extent their physical and chemical properties. In addition, combination of optical properties (Plasmonics), electrical, and lithographic capability in the same material allows for the design of materials with novel functionalities and provides the basis for next generation devices.

  3. Formation of interfacial network structure via photo-crosslinking in carbon fiber/epoxy composites

    Directory of Open Access Journals (Sweden)

    S. H. Deng

    2014-07-01

    Full Text Available A series of diblock copolymers (poly(n-butylacrylate-co-poly(2-hydroxyethyl acrylate-b-poly(glycidyl methacrylate ((PnBA-co-PHEA-b-PGMA, containing a random copolymer block PnBA-co-PHEA, were successfully synthesized by atom transfer radical polymerization (ATRP. After being chemically grafted onto carbon fibers, the photosensitive methacrylic groups were introduced into the random copolymer, giving a series of copolymers (poly(n-butylacrylate-co-poly(2-methacryloyloxyethyl acrylate-b-poly(glycidyl methacrylate((PnBA-co-PMEA-b-PGMA. Dynamic mechanical analysis indicated that the random copolymer block after ultraviolet (UV irradiation was a lightly crosslinked polymer and acted as an elastomer, forming a photo-crosslinked network structure at the interface of carbon fiber/epoxy composites. Microbond test showed that such an interfacial network structure greatly improved the cohesive strength and effectively controlled the deformation ability of the flexible interlayer. Furthermore, three kinds of interfacial network structures, i physical crosslinking by H-bonds, ii chemical crosslinking by photopolymerization, and iii interpenetrating crosslinked network by photopolymerization and epoxy curing reaction were received in carbon fiber/epoxy composite, depending on the various preparation processes.

  4. An electroactive polymer energy harvester for wireless sensor networks

    International Nuclear Information System (INIS)

    McKay, T G; Rosset, S; Shea, H; Anderson, I A

    2013-01-01

    This paper reports the design, fabrication, and testing of a soft electroactive polymer power generator that has a volume of 1cm 3 . The generator provides an opportunity to harvest energy from environmental sources to power wireless sensor networks because it can harvest from low frequency motions, is compact, and lightweight. Electroactive polymers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged electroactive polymer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. Although electroactive polymers have impressively displayed energy densities as high as 550 mJ/g, they have been based on films with thicknesses of tens to hundreds of micrometers, thus a generator covering a large area would be required to provide useful power. Energy harvesters covering large areas are inconvenient to deploy in a wireless sensor network with a large number of nodes, so a generator that is compact in all three dimensions is required. In this work we fabricated a generator that can fit within a 11×11×9 mm envelope by stacking 42, 11mm diameter generator films on top of each other. When compressed cyclically at a rate of 0.5 Hz our generator produced 300 uW of power which is a sufficient amount of power for a low power wireless sensor node. The combination of our generator's small form factor and ability to harvest useful energy from low frequency motions provides an opportunity to deploy large numbers of wireless sensor nodes without the need for periodic, costly battery replacement

  5. Stagnation and interpenetration of laser-created colliding plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pollaine, S.M.; Albritton, J.R.; Kauffman, R.; Keane, C.J. (Lawrence Livermore National Lab., CA (USA)); Berger, R.L.; Bosch, R.; Delameter, N.D.; Failor, B.H. (KMS Fusion, Inc., Ann Arbor, MI (USA))

    1990-11-05

    A KMS laser experiment collides Aluminum (A1) and Magnesium (Mg) plasmas. The measurements include electron density, time and space resolved Ly-alpha and He-alpha lines of Al and Mg, and x-ray images. These measurements were analyzed with a hydrodynamic code, LASNEX, and a special two-fluid code OFIS. The results strongly suggest that at early times, the Al interpenetrates the counterstreaming Mg and deposits in the dense Mg region. At late times, the Al plasma stagnates against the Mg plasma.

  6. Starch and chitosan oligosaccharides as interpenetrating phases in poly(N-isopropylacrylamide) injectable gels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jacquelin N.; Posada, James J. [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Rezende, Rodrigo A. [Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil); Sabino, Marcos A., E-mail: msabino@usb.ve [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil)

    2014-04-01

    Thermosensitive interpenetrating gels were prepared by physically blending poly(N-isopropylacrylamide) (PNIPA) as the matrix and the following polysaccharides as interpenetrating phases: chitosan oligosaccharides (identified as QNAD and QNED) and soluble starch (STARCH). The molecular weight of the dispersed phase, the free water/bound water ratio and the thermosensitivity (transition temperature: LCST) of the gels were determined. It was found that these gels are pseudoplastic and that their viscosity depends on the molecular weight of the dispersed phase. LCST transition occurred around 35–37 °C. The morphology of the porosity of the freeze-dried samples was studied by Scanning Electron Microscopy (SEM). An in vitro test of cell hemolysis on blood agar showed that these gels are noncytotoxic. According to the results obtained, these interpenetrating gels show characteristics of an injectable material, and have a transition LCST at body temperature, which reinforces their potential to be used in the surgical field and as scaffolds for tissue engineering. - Highlights: • Physical blends were prepared to obtain thermosensitive gels PNIPA/polysaccharides. • Rheological test allowed verifying the injectability of the gels. • Gels showed a LCST ∼ 37 °C, which makes them interesting for biomedical applications. • Porosity is a function of hydrophobicity/hydrophilicity/molecular weight of phases. • The PNIPA/starch gel showed better morphology as scaffold for tissue engineering.

  7. Covalently crosslinked diels-alder polymer networks.

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Christopher (University of Colorado, Boulder, CO); Adzima, Brian J. (University of Colorado, Boulder, CO); Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis of the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.

  8. Biomimetic oral mucin from polymer micelle networks

    Science.gov (United States)

    Authimoolam, Sundar Prasanth

    -functional implant coats. KEYWORDS: Biomimic, Bioapplication, Drug delivery, Filomicelle, Mucin, Polymer networks.

  9. Exact critical properties of two-dimensional polymer networks from conformal invariance

    International Nuclear Information System (INIS)

    Duplantier, B.

    1988-03-01

    An infinity of exact critical exponents for two-dimensional self-avoiding walks can be derived from conformal invariance and Coulomb gas techniques applied to the O(n) model and to the Potts model. They apply to polymer networks of any topology, for which a general scaling theory is given, valid in any dimension d. The infinite set of exponents has also been calculated to O(ε 2 ), for d=4-ε. The 2D study also includes other universality classes like the dense polymers, the Hamiltonian walks, the polymers at their θ-point. Exact correlation functions can be further given for Hamiltonian walks, and exact winding angle probability distributions for the self-avoiding walks

  10. Ion deceleration in interpenetrating plasma jets

    International Nuclear Information System (INIS)

    Renner, O.; Krousky, E.; Larroche, O.; Liska, R.

    2010-01-01

    Complete text of publication follows. Inertial and magnetic confinement fusion schemes involve collisions of high-temperature plasma jets and their interaction with solid surfaces (the so-called plasma-wall interaction, PWI). A fundamental understanding of the PWI effects requires a detailed characterization of the transient collisional phenomena occurring in the interaction region. In this paper we discuss a PWI experiment with double-foil Al/Mg targets fielded at the PALS laser system. An energetic plasma jet was created at the rear (non-irradiated) side of the 0.8-μm-thick Al foil exploded by the main laser beam (50-200 J, 0.44/1.315 μm, 0.25-0.3 ns, 16 W/cm 2 ). This plasma jet streamed towards the 2-μm-thick Mg foil, where the secondary plasma was created either by an auxiliary 5 J laser beam or by the main laser radiation transmitted through the Al foil, together with radiation and particles emitted from the Al foil. The environmental conditions in the plasma were diagnosed by means of high-resolution x-ray spectroscopy and temporally-resolved x-ray imaging. For the first time, the deceleration of the incident Al ions in the near-wall region was directly observed and quantitatively characterized from the Doppler shift of the J-satellite from the Al Lyα spectral group. The interaction scenario was numerically modeled by two concerted codes, namely, i) the Prague Arbitrary Lagrangian Eulerian 2-D code PALE, which solves the Lagrangian mesh distortions by smoothing and conservative remapping of conserved quantities, and ii) the multispecies 1.5-D code MULTIF which models the hydrodynamics of an arbitrary number of interpenetrating ion species in a single space dimension while assuming self-similar plasma expansion in the other directions, and taking into account detailed Coulombian collisional processes. PALE was used to model two counter-streaming Al/Mg plasma plumes until the beginning of their interaction, and the resulting plasma state was then used as

  11. Depression of Glass Transition Temperatures of Polymer Networks by Diluents

    NARCIS (Netherlands)

    Brinke, Gerrit ten; Karasz, Frank E.; Ellis, Thomas S.

    1983-01-01

    A classical thermodynamic theory is used to derive expressions for the depression of the glass transition temperature Tg of a polymer network by a diluent. The enhanced sensitivity of Tg in cross-linked systems to small amounts of diluent is explained. Predictions of the theory are in satisfactory

  12. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  13. Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers

    International Nuclear Information System (INIS)

    Şen, Murat; Hayrabolulu, Hande

    2012-01-01

    In this study radiation synthesis and characterisation of the network structure of acrylic acid sodium salt/locust bean gum, (AAcNa/LBG) natural/synthetic double-network super absorbent polymers were investigated. Quartet systems composed of acrylic acid sodium salt/locust bean gum/N,N methylene bis acrylamide/water (AAcNa/LBG/MBAAm/water) were prepared at varying degree of neutralisations (DN) by controlling the DN value of AAc and irradiated with gamma rays at ambient temperature at a very low dose rate. The influences of the DN on the swelling and network properties were examined. It was observed that the DN strongly affected the gelation and super absorption properties of the gels. Molecular weight between crosslinks (M ¯ c ), effective crosslink density (ν e ) and mesh size (ξ) of SAPs were calculated from swelling and shear modules data obtained from compression and oscillatory frequency sweep tests. M ¯ c values obtained from the uniaxial deformation experiments were very close to those obtained from the oscillatory shear experiments excluding the completely neutralised gel system. It was concluded that the uniaxial compression technique could be used for the characterisation of the network structure of a hydrogel as along with the rheological analyses; however, a very precise control of the gel size was also needed. - Highlights: ► Radiation synthesis and characterisation of AAcNa/LBG super absorbent polymers described. ► Influences of the DN on the swelling and network properties were examined. ► Molecular weight between crosslinks and effective crosslink density of SAPs were calculated. ► Suitability of rheology technique for the characterisation of hydrogels were demonstrated.

  14. Influence of Ethylene Glycol Methacrylate to the Hydration and Transition Behaviors of Thermo-Responsive Interpenetrating Polymeric Network Hydrogels

    Directory of Open Access Journals (Sweden)

    Bing Li

    2018-01-01

    Full Text Available The influence of ethylene glycol methacrylate (EGMA to the hydration and transition behaviors of thermo-responsive interpenetrating polymeric network (IPN hydrogels containing sodium alginate, N-isopropylacrylamide (NIPAAm, and EGMA were investigated. The molar ratios of NIPAAm and EGMA were varied from 20:0 to 19.5:0.5 and 18.5:1.5 in the thermo-responsive alginate-Ca2+/P(NIPAAm-co-EGMA IPN hydrogels. Due to the more hydrophilicity and high flexibility of EGMA, the IPN hydrogels exhibited higher lower critical solution temperature (LCST and lower glass transition temperature (Tg when the ratio of EGMA increases. The swelling/deswelling kinetics of the IPN hydrogels could be controlled by adjusting the NIPAAm/EGMA molar ratio. A faster water uptake rate and a slower water loss rate could be realized by increase the amount of EGMA in the IPN hydrogel (the shrinking rate constant was decreased from 0.01207 to 0.01195 and 0.01055 with the changing of NIPAAm/EGMA ratio from 20:0, 19.5:0.5 to 18.5:1.5. By using 2-Isopropylthioxanthone (ITX as a photo initiator, the obtained alginate-Ca2+/P(NIPAAm-co-EGMA360 IPN hydrogels were successfully immobilized on cotton fabrics. The surface and cross section of the hydrogel were probed by scanning electron microscopy (SEM. They all exhibited a porous structure, and the pore size was increased with the amount of EGMA. Moreover, the LCST values of the fabric-grafted hydrogels were close to those of the pure IPN hydrogels. Their thermal sensitivity remained unchanged. The cotton fabrics grafted with hydrogel turned out to be much softer with the continuous increase of EGMA amount. Therefore, compared with alginate-Ca2+/PNIPAAm hydrogel, alginate-Ca2+/P(NIPAAm-co-EGMA360 hydrogel is a more promising candidate for wound dressing in the field of biomedical textile.

  15. Transition state analogue imprinted polymers as artificial amidases for amino acid p-nitroanilides: morphological effects of polymer network on catalytic efficiency.

    Science.gov (United States)

    Mathew, Divya; Thomas, Benny; Devaky, K S

    2017-11-13

    The morphology of the polymer network - porous/less porous - plays predominant role in the amidase activities of the polymer catalysts in the hydrolytic reactions of amino acid p-nitroanilides. Polymers with the imprints of stable phosphonate analogue of the intermediate of hydrolytic reactions were synthesized as enzyme mimics. Molecular imprinting was carried out in thermodynamically stable porogen dimethyl sulphoxide and unstable porogen chloroform, to investigate the morphological effects of polymers on catalytic amidolysis. It was found that the medium of polymerization has vital influence in the amidase activities of the enzyme mimics. The morphological studies of the polymer catalysts were carried out by scanning electron microscopy and Bruner-Emmett-Teller analysis. The morphology of the polymer catalysts and their amidase activities are found to be dependent on the composition of reaction medium. The polymer catalyst prepared in dimethyl sulphoxide is observed to be efficient in 1:9 acetonitrile (ACN)-Tris HCl buffer and that prepared in chloroform is noticed to be stereo specifically and shape-selectively effective in 9:1 ACN-Tris HCl buffer. The solvent memory effect in catalytic amidolysis was investigated using the polymer prepared in acetonitrile.

  16. Integration of conducting polymer network in non-conductive polymer substrates

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole

    2006-01-01

    Anew method for integration ofconjugated, inherently conducting polymers into non-conductive polymer substrates has been developed. Alayer of the conducting polymer is polymerised by chemical oxidation, e.g. using Fe(ID) p-toluene sulfonate (ferri tosylate) followed by washing with a solvent which...... simultaneously removes residual and spent oxidant and at the same time dissolves the top layer of the polymer substrate. This results in an integration of the conducting polymer into the surface layers of the polymer substrate. Several combinations of conducting polymers and substrates have been tested...... absorption during sequential reactive ion etching has allowed for analysis of the PEDOT distribution within the surface layer of thePMMA substrate. The surface resistance ofthe conducting polymer layer remains low while the surface layer at the same time adapts some of the mechanical properties...

  17. Dielectric Actuation of Polymers

    Science.gov (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  18. Effect of fillers on parameters of dry and swollen polymer matrix networks

    Directory of Open Access Journals (Sweden)

    Stojčeva-Radovanović Blaga

    2002-01-01

    Full Text Available The effect of nano- and micro- particle size of SiO2 on dry and swollen parameter network of the polymer matrix blends of acrylontrile-butadiene (NBR and chlorosulphonated polyethylene (CSM such as: volume and mass degree of swelling Rv and Rw; volume fraction of NBR-CSM polymer matrix in swollen gel V2 elasticity modulus G; interaction parameter between NBR-CSM polymer matrix and solvent λ and crossiinking density ν, was tested. The influence of nano-and micro- particle size of SiO2 on physical and mechanical properties, as well as effectiveness volume ratio of filiers in NBR-CSM polymer matrix at 300% elongation was tested using Einstein-Quth-Gold equation. The Kraus equation for swelling test of NBR-CSM polymer matrix containing nano- and micro- particle size of SiO2. Test results have shown that a greater interaction of nano-particie size of SiO2 with NBR-CSM polymer matrix, and possible chemical bonding, than the one of micro-silica was a consequence of a greater contact area. This results in better physical and mechanical properties.

  19. High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.

    Science.gov (United States)

    Kuang, Xiao; Zhao, Zeang; Chen, Kaijuan; Fang, Daining; Kang, Guozheng; Qi, Hang Jerry

    2018-04-01

    Design and direct fabrication of high-performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high-speed 3D printing of high-performance epoxy thermosets via a two-stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h -1 . It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two-stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high-performance and functional applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Proton conducting semi-IPN based on Nafion and crosslinked poly(AMPS) for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Cho, Ki-Yun; Jung, Ho-Young; Shin, Seung-Shik; Choi, Nam-Soon; Sung, Shi-Joon; Park, Jung-Ki; Choi, Jong-Ho; Park, Kyung-Won; Sung, Yung-Eun

    2004-01-01

    For direct methanol fuel cell, the proton conducting membrane based on semi-interpenetrating polymer networks (IPNs) of Nafion and crosslinked poly(AMPS) was prepared and characterized. The modification of Nafion with crosslinked poly(AMPS) such as hydrocarbon polymer changed the state of water in membranes. Without a significant increase of the membrane resistance, the semi-IPNs demonstrated a reduction of the methanol permeability, comparing to the native Nafion. And the maximum power density of AMPS60 increased as much as 22.2% compared with Nafion

  1. Physical Properties of Polymers (Ultrastructure Processing of Polymers)

    Science.gov (United States)

    1982-09-30

    vinyl benzene Network-Diluent Systems". 17. J . Appl. Polym. Sci. 28, 219-224 (1983) (with R. Vukovic and W.J. MacKnight) "Compatibility of Some...Temperature of Polymer Networks by Dil uents". 23. J . Appl. Polym. Sci. 28, 1379-1389 (1983) (with R. Vukovic , V. Kuresevic, N. Segudovic, and W.J...AFOSR 80-0101 IV. DATES: 1 January 1980 - 30 September 1982 V. SENIOR RESEARCH PERSONNEL*: Dr. C. Crosby Dr. G. ten Brinke Dr. T. Ellis Dr. R. Vukovic

  2. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  3. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  4. Subsurface imaging of carbon nanotube networks in polymers with DC-biased multifrequency dynamic atomic force microscopy.

    Science.gov (United States)

    Thompson, Hank T; Barroso-Bujans, Fabienne; Herrero, Julio Gomez; Reifenberger, Ron; Raman, Arvind

    2013-04-05

    The characterization of dispersion and connectivity of carbon nanotube (CNT) networks inside polymers is of great interest in polymer nanocomposites in new material systems, organic photovoltaics, and in electrodes for batteries and supercapacitors. We focus on a technique using amplitude modulation atomic force microscopy (AM-AFM) in the attractive regime of operation, using both single and dual mode excitation, which upon the application of a DC tip bias voltage allows, via the phase channel, the in situ, nanoscale, subsurface imaging of CNT networks dispersed in a polymer matrix at depths of 10-100 nm. We present an in-depth study of the origins of phase contrast in this technique and demonstrate that an electrical energy dissipation mechanism in the Coulomb attractive regime is key to the formation of the phase contrast which maps the spatial variations in the local capacitance and resistance due to the CNT network. We also note that dual frequency excitation can, under some conditions, improve the contrast for such samples. These methods open up the possibility for DC-biased amplitude modulation AFM to be used for mapping the variations in local capacitance and resistance in nanocomposites with conducting networks.

  5. Mesoscopic Simulations of Crosslinked Polymer Networks

    Science.gov (United States)

    Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.

    2016-08-01

    A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.

  6. 1D helix, 2D brick-wall and herringbone, and 3D interpenetration d10 metal-organic framework structures assembled from pyridine-2,6-dicarboxylic acid N-oxide.

    Science.gov (United States)

    Wen, Li-Li; Dang, Dong-Bin; Duan, Chun-Ying; Li, Yi-Zhi; Tian, Zheng-Fang; Meng, Qing-Jin

    2005-10-03

    Five novel interesting d(10) metal coordination polymers, [Zn(PDCO)(H2O)2]n (PDCO = pyridine-2,6-dicarboxylic acid N-oxide) (1), [Zn2(PDCO)2(4,4'-bpy)2(H2O)2.3H2O]n (bpy = bipyridine) (2), [Zn(PDCO)(bix)]n (bix = 1,4-bis(imidazol-1-ylmethyl)benzene) (3), [Zn(PDCO)(bbi).0.5H2O]n (bbi = 1,1'-(1,4-butanediyl)bis(imidazole)) (4), and [Cd(PDCO)(bix)(1.5).1.5H2O]n (5), have been synthesized under hydrothermal conditions and structurally characterized. Polymer 1 possesses a one-dimensional (1D) helical chainlike structure with 4(1) helices running along the c-axis with a pitch of 10.090 Angstroms. Polymer 2 has an infinite chiral two-dimensional (2D) brick-wall-like layer structure in the ac plane built from achiral components, while both 3 and 4 exhibit an infinite 2D herringbone architecture, respectively extended in the ac and ab plane. Polymer 5 features a most remarkable and unique three-dimensional (3D) porous framework with 2-fold interpenetration related by symmetry, which contains channels in the b and c directions, both distributed in a rectangular grid fashion. Compounds 1-5, with systematic variation in dimensionality from 1D to 2D to 3D, are the first examples of d(10) metal coordination polymers into which pyridinedicarboxylic acid N-oxide has been introduced. In addition, polymers 1, 4, and 5 display strong blue fluorescent emissions in the solid state. Polymer 3 exhibits a strong SHG response, estimated to be approximately 0.9 times that of urea.

  7. Reversible networks in supramolecular polymers

    NARCIS (Netherlands)

    Havermans - van Beek, D.J.M.

    2007-01-01

    Non–covalent interactions between low molecular weight polymers form the basis of supramolecular polymers. The material properties of such polymers are determined by the strength and lifetime of the non–covalent reversible interactions. Due to the reversibility of the interactions between the low

  8. Synthesis, ionic conductivity, and thermal properties of proton conducting polymer electrolyte for high temperature fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Takahito; Hamaguchi, Yohei; Uno, Takahiro; Kubo, Masataka [Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1577 Kurima Machiya-cho, Tsu, Mie 514-8507 (Japan); Aihara, Yuichi; Sonai, Atsuo [Samsung Yokohama Research Institute, 2-7 Sugasawa-cho, Tsurumi-ku, Yokohama 230-0027 (Japan)

    2006-01-16

    Hyperbranched polymer (poly-1a) with sulfonic acid groups at the end of chains was successfully synthesized. Interpenetration reaction of poly-1a with a hyperbranched polymer with acryloyl groups at the end of chains (poly-1b) as a cross-linker afforded a tough electrolyte membrane. The poly-1a and the resulting electrolyte membrane showed the ionic conductivities of 7x10{sup -4} and 8x10{sup -5} S/cm, respectively, at 150C under dry condition. The ionic conductivities of the poly-1a and the electrolyte membrane exhibited the VTF type temperature dependence. And also, both poly-1a and the resulting electrolyte membrane were thermally stable up to 200C. (author)

  9. Associating Polymer Networks Based on Cyclodextrin Inclusion Compounds for Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Xi Li

    2018-01-01

    Full Text Available This work evaluates an approach to improve the enhanced heavy oil recovery performance of hydrophobic associating polymer. A polymeric system based on water-soluble hydrophobic associating polymer (WSHAP and cyclodextrin (CD polymer was proposed in this work. Addition of CD polymer to WSHAP forms interpolymer bridges by inclusion of CD groups with hydrophobic tails, and thereby the network structure is strengthened. The proposed system offers good viscoelasticity, pronounced shear thinning, and interesting viscosity-temperature relations. Sand pack tests indicated that the proposed system can build high resistance factor during the propagation in porous media, and its moderate adsorption phenomenon was represented by the thickness of the adsorbed layer. The relationship between effective viscosity and oil recovery increment indicated that the proposed system can significantly reduce the residual oil saturation due to the “piston-like” propagation. The overall oil recovery was raised by 5.7 and 24.5% of the original oil in place compared with WSHAP and partially hydrolyzed polyacrylamide (HPAM, respectively.

  10. Swelling and Shrinking Properties of Thermo-Responsive Polymeric Ionic Liquid Hydrogels with Embedded Linear pNIPAAM

    Directory of Open Access Journals (Sweden)

    Simon Gallagher

    2014-03-01

    Full Text Available In this study, varying concentrations of linear pNIPAAM have been incorporated for the first time into a thermo-responsive polymeric ionic liquid (PIL hydrogel, namely tributyl-hexyl phosphonium 3-sulfopropylacrylate (P-SPA, to produce semi-interpenetrating polymer networks. The thermal properties of the resulting hydrogels have been investigated along with their thermo-induced shrinking and reswelling capabilities. The semi-interpenetrating networks (IPN hydrogels were found to have improved shrinking and reswelling properties compared with their PIL counterpart. At elevated temperatures (50–80 °C, it was found that the semi-IPN with the highest concentration of hydrophobic pNIPAAM exhibited the highest shrinking percentage of ~40% compared to the conventional P-SPA, (27%. This trend was also found to occur for the reswelling measurements, with semi-IPN hydrogels producing the highest reswelling percentage of ~67%, with respect to its contracted state. This was attributed to an increase in water affinity due to the presence of hydrophilic pNIPAAM. Moreover, the presence of linear pNIPAAM in the polymer matrix leads to improved shrinking and reswelling response compared to the equivalent PIL.

  11. An equal force theory for network models of soft materials with arbitrary molecular weight distribution

    Science.gov (United States)

    Verron, E.; Gros, A.

    2017-09-01

    Most network models for soft materials, e.g. elastomers and gels, are dedicated to idealized materials: all chains admit the same number of Kuhn segments. Nevertheless, such standard models are not appropriate for materials involving multiple networks, and some specific constitutive equations devoted to these materials have been derived in the last few years. In nearly all cases, idealized networks of different chain lengths are assembled following an equal strain assumption; only few papers adopt an equal stress assumption, although some authors argue that such hypothesis would reflect the equilibrium of the different networks in contact. In this work, a full-network model with an arbitrary chain length distribution is derived by considering that chains of different lengths satisfy the equal force assumption in each direction of the unit sphere. The derivation is restricted to non-Gaussian freely jointed chains and to affine deformation of the sphere. Firstly, after a proper definition of the undeformed configuration of the network, we demonstrate that the equal force assumption leads to the equality of a normalized stretch in chains of different lengths. Secondly, we establish that the network with chain length distribution behaves as an idealized full-network of which both chain length and density of are provided by the chain length distribution. This approach is finally illustrated with two examples: the derivation of a new expression for the Young modulus of bimodal interpenetrated polymer networks, and the prediction of the change in fluorescence during deformation of mechanochemically responsive elastomers.

  12. Synthesis of Nanometer-Sized Poly (methyl methacrylate) Polymer Network by Gold Nanoparticle Template

    Science.gov (United States)

    Liu, Fu-Ken; Hsieh, Shang-Yu; Ko, Fu-Hsiang; Chu, Tieh-Chi; Dai, Bau-Tong

    2003-06-01

    Gold nanoparticle/polymer composites have been produced using a one-system polymer synthesis. The linear polymer, poly (methyl methacrylate) (PMMA, MW = 15,000 g/mol) is applied for the stabilization of gold nanoparticles. The Fourier transfer infrared (FT-IR) analysis data and transition electron microscopy (TEM) image reveal that the core shell structure of gold/PMMA nanocomposite has been synthesized. The ratio of the concentration of the capping polymer material to the concentration of the gold precursor could control the sizes of gold nanoparticles. With specific concentration of the reductant, the core-shell nanostructure could be fluctuated in order. After heating treatment, the network structure of PMMA capped gold nanoparticles could be synthesized as confirmed by the TEM image. The result indicates that PMMA not only acts as the stabilizer, but also as the bridge of the neighboring gold nanoparticles.

  13. Thomson scattering measurements of ion interpenetration in cylindrically converging, supersonic magnetized plasma flows

    Science.gov (United States)

    Swadling, George

    2015-11-01

    Ion interpenetration driven by high velocity plasma collisions is an important phenomenon in high energy density environments such as the interiors of ICF vacuum hohlraums and fast z-pinches. The presence of magnetic fields frozen into these colliding flows further complicates the interaction dynamics. This talk focuses on an experimental investigation of ion interpenetration in collisions between cylindrically convergent, supersonic, magnetized flows (M ~10, Vflow ~ 100km/s, ni ~ 1017cm-3) . The flows used in this study were plasma ablation streams produced by tungsten wire array z-pinches, driven by the 1.4MA, 240ns Magpie facility at Imperial College, and diagnosed using a combination of optical Thomson scattering, Faraday rotation and interferometry. Optical Thomson scattering (TS) provides time-resolved measurements of local flow velocity and plasma temperature across multiple (7 to 14) spatial positions. TS spectra are recorded simultaneously from multiple directions with respect to the probing beam, resulting in separate measurements of the rates of transverse diffusion and slowing-down of the ion velocity distribution. The measurements demonstrate flow interpenetration through the array axis at early time, and also show an axial deflection of the ions towards the anode. This deflection is induced by a toroidal magnetic field (~ 10T), frozen into the plasma that accumulates near the axis. Measurements obtained later in time show a change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams, and rapid radial collapse of the magnetized plasma column. The quantitative nature of the spatial profiles of the density, flow velocities and ion temperatures measured in these experiments will allow detailed verification of MHD and PIC codes used by the HEDP community. Work Supported by EPSRC (Grant No. EP/G001324/1), DOE (Cooperative Agreement Nos. DE-F03-02NA00057 & DE-SC-0001063) & Sandia National

  14. Micropore analysis of polymer networks by gas sorption and 129Xe NMR spectroscopy: toward a better understanding of intrinsic microporosity.

    Science.gov (United States)

    Weber, Jens; Schmidt, Johannes; Thomas, Arne; Böhlmann, Winfried

    2010-10-05

    The microporosity of two microporous polymer networks is investigated in detail. Both networks are based on a central spirobifluorene motif but have different linker groups, namely, imide and thiophene units. The microporosity of the networks is based on the "polymers of intrinsic microporosity (PIM)" design strategy. Nitrogen, argon, and carbon dioxide were used as sorbates in order to analyze the microporosity in greater detail. The gas sorption data was analyzed with respect to important parameters such as specific surface area, pore volume, and pore size (distribution). It is shown that the results can be strongly model dependent and swelling effects have to be regarded. (129)Xe NMR was used as an independent technique for the estimation of the average pore size of the polymer networks. The results indicate that both networks are mainly ultramicroporous (pore sizes microporous matter might have a different micropore size in the solvent swollen/filled state that in the dry state.

  15. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.

    Science.gov (United States)

    Liu, Ye; Li, Ying; Yang, Guang; Zheng, Xiaotong; Zhou, Shaobing

    2015-02-25

    In this study, we developed a thermoresponsive and water-responsive shape-memory polymer nanocomposite network by chemically cross-linking cellulose nanocrystals (CNCs) with polycaprolactone (PCL) and polyethylene glycol (PEG). The nanocomposite network was fully characterized, including the microstructure, cross-link density, water contact angle, water uptake, crystallinity, thermal properties, and static and dynamic mechanical properties. We found that the PEG[60]-PCL[40]-CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 °C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights. In addition, Alamar blue assays based on osteoblasts indicated that the nanocomposites possessed good cytocompatibility. Therefore, this thermoresponsive and water-responsive shape-memory nanocomposite could be potentially developed into a new smart biomaterial.

  16. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R

    2002-01-01

    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  17. Design of polymer networks by variation of precursor structure and crosslinking regime

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Dušková, Miroslava; Huybrecht, J.

    2003-01-01

    Roč. 44, č. 1 (2003), s. 62-63 ISSN 0032-3934. [ACS National Meeting "Crosslinking Materials and Processes"/254./. New Orleans, 23.03.2003-27.03.2003] R&D Projects: GA AV ČR KSK4050111 Keywords : polymer networks * designed precursor * crosslinking Subject RIV: CD - Macromolecular Chemistry

  18. Polymer and Water Dynamics in Poly(vinyl alcohol/Poly(methacrylate Networks. A Molecular Dynamics Simulation and Incoherent Neutron Scattering Investigation

    Directory of Open Access Journals (Sweden)

    Ester Chiessi

    2011-10-01

    Full Text Available Chemically cross-linked polymer networks of poly(vinyl alcohol/poly(methacrylate form monolitic hydrogels and microgels suitable for biomedical applications, such as in situ tissue replacement and drug delivery. In this work, molecular dynamics (MD simulation and incoherent neutron scattering methods are used to study the local polymer dynamics and the polymer induced modification of water properties in poly(vinyl alcohol/poly(methacrylate hydrogels. This information is particularly relevant when the diffusion of metabolites and drugs is a requirement for the polymer microgel functionality. MD simulations of an atomic detailed model of the junction domain at the experimental hydration degree were carried out at 283, 293 and 313 K. The polymer-water interaction, the polymer connectivity and the water dynamics were investigated as a function of temperature. Simulation results are compared with findings of elastic and quasi-elastic incoherent neutron scattering measurements, experimental approaches which sample the same space-time window of MD simulations. This combined analysis shows a supercooled water component and an increase of hydrophilicity and mobility with temperature of these amphiphilic polymer networks.

  19. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Pan-Sang Kang

    2016-06-01

    Full Text Available Polymer flooding is now considered a technically- and commercially-proven method for enhanced oil recovery (EOR. The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.

  20. Tactile feedback display with spatial and temporal resolutions.

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  1. Tactile Feedback Display with Spatial and Temporal Resolutions

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  2. Structural diversification and photocatalytic properties of three Cd(II) coordination polymers decorated with different auxiliary ligands

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Wen-Yu; Zhuang, Guo-Yong; Huang, Zuo-Long; Cheng, Hong-Jian; Zhou, Li; Ma, Man-Hong; Wang, Hao; Tang, Xiao-Yan, E-mail: xytang@cslg.edu.cn; Ma, Yun-Sheng; Yuan, Rong-Xin, E-mail: yuanrx@cslg.edu.cn

    2016-03-15

    Three cadmium coordination polymers, [Cd(bismip)]{sub n} (1), {[Cd(bismip)(phen)]·H_2O}{sub n} (2) and {[Cd_2(bismip)_2(4,4′-bipy)]·2H_2O}{sub n} (3) (H{sub 2}bismip=5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine) have been prepared under solvothermal conditions. In 1, the [Cd{sub 4}(bismip){sub 3}] units are jointed by bismip ligands to afford a three-dimensional (3D) architecture. Complex 2 exhibits a 3D supramolecular framework based on the interconnection of 1D chains through hydrogen bonding interactions and π-π packing interactions. 3 is a two-fold interpenetrating 3D architecture with a (4·8{sup 2})(4{sup 2}·8{sup 4}) Schläfli symbol in which 2D layers are interlinked by 4,4′-bipy ligands. The diverse structures of compounds 1–3 indicate that the auxiliary ligands have significant effects on the final structures. The photoluminescent properties and photocatalytic properties of these coordination polymers in the solid state were also investigated. Remarkably, 3 shows the wide gap semiconductor nature and exhibit excellent photocatalytic performance. - Graphical abstract: Three cadmium coordination polymers with different architectures based on 5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid have been prepared. Their photoluminescent properties were also investigated. - Highlights: • Three new Cd(II) Cps were synthesized based on H{sub 2}bismip. • Compounds 1 and 3 show 3D networks and 2 exhibits a 1D chain. • Compoud 3 exhibits good catalytic activity of methylene blue photodegradation.

  3. Time dependent mechanical modeling for polymers based on network theory

    Energy Technology Data Exchange (ETDEWEB)

    Billon, Noëlle [MINES ParisTech, PSL-Research University, CEMEF – Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse 06904 Sophia Antipolis Cedex (France)

    2016-05-18

    Despite of a lot of attempts during recent years, complex mechanical behaviour of polymers remains incompletely modelled, making industrial design of structures under complex, cyclic and hard loadings not totally reliable. The non linear and dissipative viscoelastic, viscoplastic behaviour of those materials impose to take into account non linear and combined effects of mechanical and thermal phenomena. In this view, a visco-hyperelastic, viscoplastic model, based on network description of the material has recently been developed and designed in a complete thermodynamic frame in order to take into account those main thermo-mechanical couplings. Also, a way to account for coupled effects of strain-rate and temperature was suggested. First experimental validations conducted in the 1D limit on amorphous rubbery like PMMA in isothermal conditions led to pretty goods results. In this paper a more complete formalism is presented and validated in the case of a semi crystalline polymer, a PA66 and a PET (either amorphous or semi crystalline) are used. Protocol for identification of constitutive parameters is described. It is concluded that this new approach should be the route to accurately model thermo-mechanical behaviour of polymers using a reduced number of parameters of some physical meaning.

  4. Carbohydrate polymer based pH-sensitive IPN microgels: Synthesis, characterization and drug release characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Eswaramma, S. [Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003 (India); Reddy, N. Sivagangi [Advanced Nanomaterials Lab, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241 (Korea, Republic of); Rao, K.S.V. Krishna, E-mail: ksvkr@yogivemanauniversity.ac.in [Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003 (India)

    2017-07-01

    pH-sensitive interpenetrating polymer network (IPN) microgels of chitosan (CS) and guargum-g-poly((2-dimethylamino)ethylmethacrylate) (GG-g-PDMAEMA) were developed by emulsion crosslinking method using glutaraldehyde as a crosslinker. In this regard, primarily guargum (GG) is grafted with (2-dimethylamino)ethylmethacrylate (DMAEMA) followed by blended with CS to prepare various microgel formulations. These microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil (5-FU). The maximum % encapsulation efficiency was found to be 81. Fourier transform infrared analysis was used to investigate the formation of graft copolymer (GG-g-PDMAEMA), chemical structure of microgels as well as the chemical interactions of drug molecules with the polymer matrix. The surface morphological studies and average particle size were examined by scanning electron microscopy. The average size of microgels is 130 ± 20 μm. Thermal behavior and molecular distribution of 5-FU within the polymer matrix were confirmed from thermogravimetric analysis and X-ray diffraction experiments. The pH-sensitive swelling behavior of IPN microgels was investigated in different pH solutions. To study the release profile of 5-FU, in vitro release profiles were performed in both pH 1.2 and 7.4. The release kinetics showed pH- dependent drug release and IPN microgels exhibited an excellent controlled release pattern for 5-FU over a period of more than 24 h. The release mechanism was analyzed by evaluating the release data using different empirical equations. - Highlights: • poly((2-dimethylamino)ethylmethacrylate) was grafted on to guargum backbone. • pH-responsive IPN microgels were developed from chitosan and graft copolymer. • Microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil. • Swelling and drug release studies were greatly dependent on pH.

  5. Carbohydrate polymer based pH-sensitive IPN microgels: Synthesis, characterization and drug release characteristics

    International Nuclear Information System (INIS)

    Eswaramma, S.; Reddy, N. Sivagangi; Rao, K.S.V. Krishna

    2017-01-01

    pH-sensitive interpenetrating polymer network (IPN) microgels of chitosan (CS) and guargum-g-poly((2-dimethylamino)ethylmethacrylate) (GG-g-PDMAEMA) were developed by emulsion crosslinking method using glutaraldehyde as a crosslinker. In this regard, primarily guargum (GG) is grafted with (2-dimethylamino)ethylmethacrylate (DMAEMA) followed by blended with CS to prepare various microgel formulations. These microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil (5-FU). The maximum % encapsulation efficiency was found to be 81. Fourier transform infrared analysis was used to investigate the formation of graft copolymer (GG-g-PDMAEMA), chemical structure of microgels as well as the chemical interactions of drug molecules with the polymer matrix. The surface morphological studies and average particle size were examined by scanning electron microscopy. The average size of microgels is 130 ± 20 μm. Thermal behavior and molecular distribution of 5-FU within the polymer matrix were confirmed from thermogravimetric analysis and X-ray diffraction experiments. The pH-sensitive swelling behavior of IPN microgels was investigated in different pH solutions. To study the release profile of 5-FU, in vitro release profiles were performed in both pH 1.2 and 7.4. The release kinetics showed pH- dependent drug release and IPN microgels exhibited an excellent controlled release pattern for 5-FU over a period of more than 24 h. The release mechanism was analyzed by evaluating the release data using different empirical equations. - Highlights: • poly((2-dimethylamino)ethylmethacrylate) was grafted on to guargum backbone. • pH-responsive IPN microgels were developed from chitosan and graft copolymer. • Microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil. • Swelling and drug release studies were greatly dependent on pH.

  6. Conducting polymer networks synthesized by photopolymerization-induced phase separation

    Science.gov (United States)

    Yamashita, Yuki; Komori, Kana; Murata, Tasuku; Nakanishi, Hideyuki; Norisuye, Tomohisa; Yamao, Takeshi; Tran-Cong-Miyata, Qui

    2018-03-01

    Polymer mixtures composed of double networks of a polystyrene derivative (PSAF) and poly(methyl methacrylate) (PMMA) were alternatively synthesized by using ultraviolet (UV) and visible (Vis) light. The PSAF networks were generated by UV irradiation to photodimerize the anthracene (A) moieties labeled on the PSAF chains, whereas PMMA networks were produced by photopolymerization of methyl methacrylate (MMA) monomer and the cross-link reaction using ethylene glycol dimethacrylate (EGDMA) under Vis light irradiation. It was found that phase separation process of these networks can be independently induced and promptly controlled by using UV and Vis light. The characteristic length scale distribution of the resulting co-continuous morphology can be well regulated by the UV and Vis light intensity. In order to confirm and utilize the connectivity of the bicontinuous morphology observed by confocal microscopy, a very small amount, 0.1 wt%, of multi-walled carbon nanotubes (MWCNTs) was introduced into the mixture and the current-voltage (I-V) relationship was subsequently examined. Preliminary data show that MWCNTs are preferentially dispersed in the PSAF-rich continuous domains and the whole mixture became electrically conducting, confirming the connectivity of the observed bi-continuous morphology. The experimental data obtained in this study reveal a promising method to design various scaffolds for conducting soft matter taking advantages of photopolymerization-induced phase separation.

  7. Predictive Methods for Dense Polymer Networks: Combating Bias with Bio-Based Structures

    Science.gov (United States)

    2016-03-16

    Combating bias with bio - based structures 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew J. Guenthner...unlimited. PA Clearance 16152 Integrity  Service  Excellence Predictive methods for dense polymer networks: Combating bias with bio -based...Architectural Bias • Comparison of Petroleum-Based and Bio -Based Chemical Architectures • Continuing Research on Structure-Property Relationships using

  8. Electron transfer between a quinohemoprotein alcohol dehydrogenase and an electrode via a redox polymer network

    NARCIS (Netherlands)

    Stigter, E.C.A.; Jong, G.A.H. de; Jongejan, J.A.; Duine, J.A.; Lugt, J.P. van der; Somers, W.A.C.

    1996-01-01

    A quinohemoprotein alcohol dehydrogenase (QH-EDH) from Comamonas testosteroni was immobilized on an electrode in a redox polymer network consisting of a polyvinylpyridine partially N-complexed with osmiumbis-(bipyridine)chloride. The enzyme effectively transfers electrons to the electrode via the

  9. Positron annihilation lifetime spectroscopy study on the structural relaxation of phenylmethylsiloxane-modified epoxy hybrids at different aging temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chia-Wen [Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Ma, Chen-Chi M., E-mail: ccma@che.nthu.edu.tw [Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Tan, Chung-Sung [Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Li, Hsun-Tien [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China)

    2015-07-15

    The cured network conformations and structural relaxation behaviours of the diglycidyl ether of bisphenol A (DGEBA)-methylhexahydrophthalic anhydride (MHHPA) modified with phenylmethylsiloxane-modified epoxy (PMSE) at different aging temperatures were studied using dynamic mechanical analysis (DMA) and positron annihilation lifetime spectroscopy (PALS). The DMA results revealed that the cured PMSE network can insert into the cured DGEBA network to form interpenetrating polymer networks (IPNs). The structural relaxation behaviours of DGEBA–PMSE-0.4 produced using DGEBA, PMSE, and MHHPA at a ratio of 0.6:0.4:1 by equivalent weight were studied using PALS at 150 °C and 55 °C. The aging-induced free volume relaxation parameters of DGEBA–PMSE-0.4 at 150 °C and 55 °C were investigated using the double additive exponential model and the Kohlrausch–Williams–Watts exponential model. For double additive exponential model, only one relaxation time (ζ) of 584.5 h was found at 150 °C; By contrast, there were two separate relaxation times of 37.4 h (ζ{sub 1}) and 753.6 h (ζ{sub 2}) at 55 °C. The ζ{sub 1} of the IPNs hybrid can be attributed to the network relaxation of PMSE, and the ζ{sub 2} can be attributed to the network relaxation of DGEBA at 55 °C. The results suggested the double additive exponential model can effectively predict DGEBA–PMSE hybrid relaxation behaviours. - Highlights: • The cured network conformations of DGEBA–PMSE hybrids were studied using DMA. • The structural relaxation behaviours of DGEBA–PMSE hybrids were studied using PALS. • The cured DGEBA–PMSE hybrids were interpenetrating polymer networks (IPNs). • PALS studies provided a quantitative demonstration of relaxation behaviours. • Double additive exponential model effectively predicted the relaxation times of hybrids.

  10. Positron annihilation lifetime spectroscopy study on the structural relaxation of phenylmethylsiloxane-modified epoxy hybrids at different aging temperatures

    International Nuclear Information System (INIS)

    Hsu, Chia-Wen; Ma, Chen-Chi M.; Tan, Chung-Sung; Li, Hsun-Tien

    2015-01-01

    The cured network conformations and structural relaxation behaviours of the diglycidyl ether of bisphenol A (DGEBA)-methylhexahydrophthalic anhydride (MHHPA) modified with phenylmethylsiloxane-modified epoxy (PMSE) at different aging temperatures were studied using dynamic mechanical analysis (DMA) and positron annihilation lifetime spectroscopy (PALS). The DMA results revealed that the cured PMSE network can insert into the cured DGEBA network to form interpenetrating polymer networks (IPNs). The structural relaxation behaviours of DGEBA–PMSE-0.4 produced using DGEBA, PMSE, and MHHPA at a ratio of 0.6:0.4:1 by equivalent weight were studied using PALS at 150 °C and 55 °C. The aging-induced free volume relaxation parameters of DGEBA–PMSE-0.4 at 150 °C and 55 °C were investigated using the double additive exponential model and the Kohlrausch–Williams–Watts exponential model. For double additive exponential model, only one relaxation time (ζ) of 584.5 h was found at 150 °C; By contrast, there were two separate relaxation times of 37.4 h (ζ 1 ) and 753.6 h (ζ 2 ) at 55 °C. The ζ 1 of the IPNs hybrid can be attributed to the network relaxation of PMSE, and the ζ 2 can be attributed to the network relaxation of DGEBA at 55 °C. The results suggested the double additive exponential model can effectively predict DGEBA–PMSE hybrid relaxation behaviours. - Highlights: • The cured network conformations of DGEBA–PMSE hybrids were studied using DMA. • The structural relaxation behaviours of DGEBA–PMSE hybrids were studied using PALS. • The cured DGEBA–PMSE hybrids were interpenetrating polymer networks (IPNs). • PALS studies provided a quantitative demonstration of relaxation behaviours. • Double additive exponential model effectively predicted the relaxation times of hybrids

  11. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    Science.gov (United States)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  12. Theory of liquid crystal elastomers and polymer networks : Connection between neoclassical theory and differential geometry.

    Science.gov (United States)

    Nguyen, Thanh-Son; Selinger, Jonathan V

    2017-09-01

    In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.

  13. Study of castor oil polyurethane - poly(methyl methacrylate semi-interpenetrating polymer network (SIPN reaction parameters using a 2³ factorial experimental design

    Directory of Open Access Journals (Sweden)

    Fernanda Oliveira Vieira da Cunha

    2004-12-01

    Full Text Available In this work was employed a 2³ factorial experiment design to evaluate the castor oil polyurethane-poly(methyl methacrylate semi-IPN synthesis. The reaction parameters used as independent variables were NCO/OH molar ratio, polyurethane polymerization time and methyl methacrylate (MMA content. The semi-IPNs were cured over 28 h using two thermal treatments. The polymers were characterized by infrared and Raman spectroscopy, thermal analysis and swelling profiles in n-hexane. The glass transition temperature (Tg and the swelling were more affect by the NCO/OH molar ratio variation. The semi-IPNs showed Tg from - 27 to - 6 °C and the swelling range was from 3 to 22%, according to the crosslink density. The IPN mechanical properties were dependent on the cure temperature and MMA content in it. Lower elastic modulus values were observed in IPNs cured at room temperature.

  14. Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid)

    Institute of Scientific and Technical Information of China (English)

    Bing LIU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FT-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.

  15. An unprecedented extended architecture constructed from a 2-D interpenetrating cationic coordination framework templated by SiW12O404- anion

    International Nuclear Information System (INIS)

    Wang Xiuli; Lin Hongyan; Bi Yanfeng; Chen Baokuan; Liu Guocheng

    2008-01-01

    A novel inorganic-organic hybrid compound based on polyoxometalates (POMs) and organic ligand formulated as [Cu 2 (bpp) 4 (H 2 O) 2 ](SiW 12 O 40 )∼6H 2 O (1) [bpp=1,3-bis(4-pyridyl)propane], was hydrothermally synthesized and structurally characterized by elemental analysis, single-crystal X-ray diffraction analysis, IR, TG, and cyclic voltammetry. Crystal data for 1: Orthorhombic, Pbcn, a=23.0085(19) A, b=14.6379(12) A, c=23.6226(19) A, V=7956.0(11) A 3 , Z=4, Dc=3.315 g cm -3 , and R(final)=0.0826. X-ray diffraction study reveals that compound 1 was the first interpenetrating network of 2-D metal-organic cationic coordination framework [Cu 2 (bpp) 4 (H 2 O) 2 ] n 4n+ , in which Keggin-type anions SiW 12 O 40 4- has been used as a non-coordinating anionic template. The electrochemical property of 1-bulk modified carbon paste electrode (1-CPE) has been studied, and the results indicate that 1-CPE has good electrocatalytic activities toward the reduction of nitrite in 1 M H 2 SO 4 aqueous solution. - Graphical abstract: Compound [Cu 2 (bpp) 4 (H 2 O) 2 ](SiW 12 O 40 )∼6H 2 O (1) represents the first 2-D interpenetrating cationic metal-organic frameworks (MOFs) templated by Keggin-type anions. These MOF layers are stacked together along the crystallographic c axis exactly to construct large cubic-like channels (with dimensions of 12.3x13.6 A) occupied by SiW 12 O 40 4- clusters

  16. Sulfonate-grafted porous polymer networks for preferential CO(2) adsorption at low pressure

    NARCIS (Netherlands)

    Lu, W.; Yuan, D.; Sculley, J.; Zhao, D.; Krishna, R.; Zhou, H.-C.

    2011-01-01

    A porous polymer network (PPN) grafted with sulfonic acid (PPN-6-SO3H) and its lithium salt (PPN-6-SO3Li) exhibit significant increases in isosteric heats of CO2 adsorption and CO2-uptake capacities. IAST calculations using single-component-isotherm data and a 15/85 CO2/N2 ratio at 295 K and 1 bar

  17. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network

    Science.gov (United States)

    Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu

    2014-01-01

    Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246

  18. Transforming Anaerobic Adhesives into Highly Durable and Abrasion Resistant Superhydrophobic Organoclay Nanocomposite Films: A New Hybrid Spray Adhesive for Tough Superhydrophobicity

    Science.gov (United States)

    Bayer, Ilker S.; Brown, Andrea; Steele, Adam; Loth, Eric

    2009-12-01

    The authors report fabrication of tough nanostructured self-cleaning superhydrophobic polymer-organoclay films from anaerobic acrylic adhesives displaying strong adhesion to metal surfaces. Both industrial and bio-grade anaerobic adhesives such as bone cements could be used. Montmorillonite clay filled anaerobic adhesives were modified by blending with a water dispersed fluoro-methacrylic latex in solution to form abrasion resistant interpenetrating polymer network films upon spray casting. The adhesive films could cure by thermosetting in oxygen-rich environments. Very high contact angles with low hysteresis were also measured for acidic (pH 2) and basic (pH 11) aqueous buffer solutions indicating resistance to acidic and basic media.

  19. Calculation of the band structure of 2d conducting polymers using the network model

    International Nuclear Information System (INIS)

    Sabra, M. K.; Suman, H.

    2007-01-01

    the network model has been used to calculate the band structure the gap energy and Fermi level of conducting polymers in two dimensions. For this purpose, a geometrical classification of possible polymer chains configurations in two dimensions has been introduced leading to a classification of the unit cells based on the number of bonds in them. The model has been applied to graphite in 2D, represented by a three bonds unit cell, and, as a new case, the anti-parallel Polyacetylene chains (PA) in two dimensions, represented by a unit cell with four bons. The results are in good agreement with the first principles calculations. (author)

  20. Theoretical Investigations of CO 2 and H 2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; McLaughlin, Keith; Tudor, Brant; Nugent, Patrick; Hogan, Adam; Mullen, Ashley; Cioce, Christian R.; Zaworotko, Michael J.; Space, Brian

    2013-01-01

    Simulations of CO2 and H2 sorption and separation were performed in [Cu(dpa)2SiF6-i], a metal-organic material (MOM) consisting of an interpenetrated square grid of Cu2+ ions coordinated to 4,4′-dipyridylacetylene (dpa) rings and pillars of SiF6 2

  1. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JI (Canada); Hall, G. N. [Blackett Laboratory, Imperial College, London, United Kingdom SW7 2BW and Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2014-12-15

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  2. Novel Shape-Memory Polymer with Two Transition Temperature Based on Two Different Memory Mechanism

    Institute of Scientific and Technical Information of China (English)

    Liu Guoqin; Ding Xiaobing; Cao Yiping; Zheng Zhaohui; Peng Yuxing

    2004-01-01

    As an important kind of intelligent materials, shape-memory materials have been received increasing attention on account of their interesting properties and potential applications in recent years. Particularly, the rise of shape-memory polymers by far surpasses well-known metallic shape-memory alloys in their shape-memory properties. The advantages of polymers compared to other materials are their easier availability and their wide range of mechanical and physical properties. The polymers designed to exhibit a shape-memory effect require two components on the molecular level: crosslinks to determine the permanent shape and switching segments with Ttrans to fix the temporary shape. Up to now almost all papers on shape-memory polymers introduce switching segments with the covalent linking method. On the other hand, only several cases concern non-covalent interaction. However, the research works mentioned above is based on a single Ttrans (i.e., Tm or Tg).Following our previous work, here, we first report a novel kind of polymer consisted of PMMA-PEG semi-interpenetrating polymer networks (semi-IPN), which exhibiting independently two shape memory effects based on Tm and Tg, respectively. This result can also extend the shape memory polymer categories from one Ttrans to two Ttrans, and the combination of Tm and Tg give rise to an extremely excellent shape-memory effect.Two different shape memory behaviors of this material based on two transition temperatures were evaluated by bending test as follows: a straight strip of the specimen was folded at a temperature above Ttrans and kept in this shape. The so-deformed sample was cooled down to a temperature Tlow< Ttrans and the deforming stress were released. When the sample was heated up to the measuring temperature Thigh > Ttrans, it recovered its initial shape. The deformation angle θ f varied as a function of time and the ratio of the recovery was defined as θ f /180. The PMMA-PEG polymer behaved as a hard plastic

  3. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    CERN Document Server

    2002-01-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical a...

  4. Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.; Lee, Hang Woo; Bao, Zhenan

    2009-01-01

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. © 2009 American Chemical Society.

  5. Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.

    2009-06-23

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. © 2009 American Chemical Society.

  6. Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks

    NARCIS (Netherlands)

    Head, D.A.; Levine, A.M.; Mac Kintosh, F.C.

    2003-01-01

    Semiflexible polymers such as filamentous actin (F-actin) play a vital role in the mechanical behavior of cells, yet the basic properties of cross-linked F-actin networks remain poorly understood. To address this issue, we have performed numerical studies of the linear response of homogeneous and

  7. Structural diversity of a series of terpyridyl carboxylate coordination polymers: Luminescent sensor and magnetic properties

    Science.gov (United States)

    Yuan, Fei; Yuan, Chun-Mei; Hu, Huai-Ming; Wang, Ting-Ting; Zhou, Chun-Sheng

    2018-02-01

    Eleven new coordination polymers, [Zn2(ctpy)2(HCOO)2]n·3nH2O (1), [Zn2(ctpy)2(HCOO)2(H2O)2]n·nH2O (2), [Zn2(ctpy)2(H2O)4]n·2n(CH3COO)·nH2O (3), [Zn2(ctpy)2(CH3COO)2]n·nH2O (4), [Zn(ctpy)2]n·nH2O (5), [Zn2(ctpy)2(Hidc)(H2O)2]n(6), [Cd2(ctpy)4]n(7), [Cd2(ctpy)2(Hidc)]n(8), [Co2(ctpy)2(HCOO)2(H2O)2]n·nH2O (9), [Co(ctpy)(DMF)(ox)0.5]n(10), [Co(ctpy)(ox)0.5]n(11) and the closely related compound [Zn(ctpy)(ox)0.5]n·0.5nH2O (12) (Hctpy = 4‧-carboxy-4,2‧:6‧,4‧‧-terpyridine, H2ox = oxalic acid and H3idc = imidazole-4,5-dicarboxylic acid) have been synthesized by hydro(solvo)thermal reaction of 4‧-carboxy-4,2‧:6‧,4‧‧-terpyridine with divalent metal salts and characterized by elemental analysis, IR spectra, single crystal X-ray diffraction. Compounds 1 and 4 have similar structure which demonstrate a two-fold interpenetrating 3D framework with a 3-connected utp topological net, which contains the same number of left and right-handed 21 helical chains. Compounds 2 and 9 are isostructural 2D layer with a 3-connected hcb topological net. Similar to 2, compound 3 also displays a 3-connected 2D hcb topological net. Compounds 5 and 10 are a 2D layer with a 4-connected sql topological net. Compound 6 shows a chiral 2D layer based on a 1D left- or right-handed helical chains, which are further extended into an achiral 2D + 2D→3D supramolecular network by hydrogen bonds with alternately arrangement. Compound 7 features an unusual 2-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,5)-connected binodal topological net with the Schläfli symbol of (52·6)(53·63·73·8). Compound 8 shows a 2D→3D supramolecular structure based on (3,4)-connected 2D bilayers with the Schläfli symbol of (44·62). Compound 11 displays an unusual three-dimensional coordination network which exhibits an intriguing (3,8)-connected binodal new topological net with Schläfli symbol (42·62)2(42·623·83). Compound 12 features a two

  8. Syntheses, crystal structures and fluorescent properties of Cd(II), Hg(II) and Ag(I) coordination polymers constructed from 1H-1,2,4-triazole-1-acetic acid

    International Nuclear Information System (INIS)

    Ding Degang; Xie Lixia; Fan Yaoting; Hou Hongwei; Xu Yan

    2009-01-01

    Three new d 10 coordination polymers, namely [Cd(taa)Cl] n 1, [Hg(taa)Cl] n 2, and [Ag 1.5 (taa)(NO 3 ) 0.5 ] n 3 (taa=1H-1,2,4-triazole-1-acatate anion) have been prepared and characterized by elemental analysis, IR, and single crystal X-ray diffraction. Compound 1 consists of two-dimensional layers constructed by carboxyl-linked helical chains, which are further linked through carboxyl group to generate a unique 3D open framework. Topological analysis reveals that the structure of 1 can be classified as an unprecedented (3,8)-connected network with the Schlaefli symbol (4.5 2 ) 2 (4 2 .5 8 .6 14 .7 3 .8). Compound 2 manifests a doubly interpenetrated decorated α-polonium cubic network with the Schlaefli symbol of (4 10 .6 2 .8 3 ). Compound 3 consists of 2D puckered layers made up of Ag centers and taa - bridges. In addition, all of these compounds are photoluminescent in the solid state with spectra that closely resemble those of the ligand precursor. - Graphical abstract: Three new compounds based on 1H-1,2,4-triazole-1-acetic acid and Cd(II), Hg(II) and Ag(I) salts display luminescent properties and may be potential candidates for luminescent materials.

  9. Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zou, LF; Feng, DW; Liu, TF; Chen, YP; Fordham, S; Yuan, S; Tian, J; Zhou, HC

    2015-01-01

    Stable porphyrin based porous polymer networks, PPN-23 and PPN-24, have been synthesized through a facile one-pot approach by the aromatic substitution reactions of pyrrole and aldehydes. PPN-24(Fe) shows high catalytic efficiency as a biomimetic catalyst in the oxidation reaction of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2.

  10. Reactive polymer fused deposition manufacturing

    Science.gov (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  11. Porphyrin coordination polymer nanospheres and nanorods

    Science.gov (United States)

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  12. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery.

    Science.gov (United States)

    Singh, Baljit; Sharma, Vikrant

    2014-01-30

    The present article deals with design of tragacanth gum-based pH responsive hydrogel drug delivery systems. The characterization of hydrogels has been carried out by SEMs, EDAX, FTIR, (13)C NMR, XRD, TGA/DTA/DTG and swelling studies. The correlation between reaction conditions and structural parameters of polymer networks such as polymer volume fraction in the swollen state (ϕ), Flory-Huggins interaction parameter (χ), molecular weight of the polymer chain between two neighboring cross links (M¯c), crosslink density (ρ) and mesh size (ξ) has been determined. The different kinetic models such as zero order, first order, Higuchi square root law, Korsmeyer-Peppas model and Hixson-Crowell cube root model were applied and it has been observed that release profile of amoxicillin best followed the first order model for the release of drug from the polymer matrix. The swelling of the hydrogels and release of drug from the drug loaded hydrogels occurred through non-Fickian diffusion mechanism in pH 7.4 solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Swelling of polymer networks with topological constraints: Application of the Helmis-Heinrich-Straube model

    Directory of Open Access Journals (Sweden)

    B. Basterra-Beroiz

    2018-08-01

    Full Text Available For the first time since its formulation in 1986, the theoretical approach proposed by Helmis, Heinrich and Straube (HHS model, which considers the contribution of topological restrictions from entanglements to the swelling of polymer networks, is applied to experimental data. The main aspects and key equations are reviewed and their application is illustrated for unfilled rubber compounds. The HHS model is based on real networks and gives new perspectives to the interpretation of experimental swelling data for which the entanglement contributions are usually neglected by considering phantom network models. This investigation applies a reliable constrained-chain approach through a deformation-dependent tube model for defining the elastic contribution of swollen networks, which is one of the main limitations on the applicability of classical (affine Flory-Rehner and (non-affine phantom models. This short communication intends to provide a baseline for the application and validation of this modern approach for a broader class of rubber materials.

  14. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Q., E-mail: qwan2@sheffield.ac.uk [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Masters, R.C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Lidzey, D. [Department of Physics and Astronomy, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Abrams, K.J. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Dapor, M. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), via Sommarive 18, I-38123 Trento (Italy); Plenderleith, R.A. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Rimmer, S. [Department of Chemistry, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Claeyssens, F.; Rodenburg, C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-12-15

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  15. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    International Nuclear Information System (INIS)

    Wan, Q.; Masters, R.C.; Lidzey, D.; Abrams, K.J.; Dapor, M.; Plenderleith, R.A.; Rimmer, S.; Claeyssens, F.; Rodenburg, C.

    2016-01-01

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  16. Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments.

    Science.gov (United States)

    Simoes, Ricardo; Silva, Jaime; Vaia, Richard; Sencadas, Vítor; Costa, Pedro; Gomes, João; Lanceros-Méndez, Senentxu

    2009-01-21

    The low concentration behaviour and the increase of the dielectric constant in carbon nanotubes/polymer nanocomposites near the percolation threshold are still not well understood. In this work, a numerical model has been developed which focuses on the effect of the inclusion of conductive fillers in a dielectric polymer matrix on the dielectric constant and the dielectric strength. Experiments have been carried out in carbon nanotubes/poly(vinylidene fluoride) nanocomposites in order to compare to the simulation results. This work shows how the critical concentration is related to the formation of capacitor networks and that these networks give rise to high variations in the electrical properties of the composites. Based on numerical studies, the dependence of the percolation transition on the preparation of the nanocomposite is discussed. Finally, based on numerical and experimental results, both ours and from other authors, the causes of anomalous percolation behaviour of the dielectric constant are identified.

  17. Fiscal 1993 R and D project for industrial science and technology. Report on results in developing methane-fueled aircraft engine (R and D on silicon-based polymeric material); 1993 nendo methane nenryo kokukiyo engine kaihatsu seika hokokusho. Keisokei kobunshi zairyo no gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    R and D was conducted on silicon-based polymeric materials for structural use, for the purpose of establishing fundamental technologies such as molecular design, synthesis, material forming and evaluation method concerning silicon-based polymers, with the fiscal 1993 results summarized. In the studies of synthesis technologies of silicon-based polymeric materials having a sea-island structure, a series of polymers with an Si-C main chain structure were prepared by ring-opening polymerization of the cyclic monomers. In the studies of interpenetrating polymer network (IPN) structure forming technologies, polycarbosilanes with superior thermal stability and solvent solubility were synthesized through structural control based on molecular design. In the studies of composite structural materials between organic metallic complex and silicon-based high polymer, the compounding was carried out by introducing or blending organic metallic complex into the main chain of silicon polymer, with evaluation made on the heat resistance. The studies of silicon polymer structural materials having a ring structure were conducted on high heat resistant polymers that were obtained by dehydrocoupling polymerization with magnesia as a catalyst. (NEDO)

  18. Revealing the Supramolecular Nature of Side-Chain Terpyridine-Functionalized Polymer Networks

    Directory of Open Access Journals (Sweden)

    Jérémy Brassinne

    2015-01-01

    Full Text Available Nowadays, finely controlling the mechanical properties of polymeric materials is possible by incorporating supramolecular motifs into their architecture. In this context, the synthesis of a side-chain terpyridine-functionalized poly(2-(dimethylaminoethyl methacrylate is reported via reversible addition-fragmentation chain transfer polymerization. By addition of transition metal ions, concentrated aqueous solutions of this polymer turn into metallo-supramolecular hydrogels whose dynamic mechanical properties are investigated by rotational rheometry. Hence, the possibility for the material to relax mechanical constrains via dissociation of transient cross-links is brought into light. In addition, the complex phenomena occurring under large oscillatory shear are interpreted in the context of transient networks.

  19. Molecular network considerations in the deformation of glassy polymers

    International Nuclear Information System (INIS)

    Henkee, C.S.

    1985-01-01

    Thin films of polystyrene (PS) are crosslinked with electron irradiation and are strained in tension until regions of local plastic deformation, either crazes or plane stress deformation zones (DZ's), have grown. The behavior of the PS glass is consistent with its being a network of molecular strands of total density nu = nu/sub x/ + nu/sub e/, where nu/sub e/ is the entangled strand density, and nu/sub x/ is the density of crosslinked strands. When nu is less than 4 x 10 25 m -3 only crazes are observed. As nu increases from 4 x 10 25 to 8 x 10 -5 m -3 , only shear DZ's are observed. The local extension ratio, lambda, in the crazes and DZ's correlate well with lambda/sub max/, the maximum extension ratio of a strand in a network of density nu computed using the Porod-Kratky model. Crosslinking to still higher crosslink densities, e.g. nu = 14nu/sub e/, results in cracks that propagate in a catastrophic manner at low applied strains. An optimum nu thus exists, one not too high to suppress local shear ductility but high enough to suppress crazes which can act as crack nucleation sites. Comparison of the results in crosslinked PS with those in other linear, but entangled polymer systems implies that chain scission is the major mechanism by which strands in the entanglement network are removed in forming fibril surfaces. Craze suppression by increasing nu is due to the extra energy required to break more main chain bonds to form these surfaces

  20. Enhanced adsorption of methyl violet and congo red by using semi and full IPN of polymethacrylic acid and chitosan.

    Science.gov (United States)

    Maity, Jayabrata; Ray, Samit Kumar

    2014-04-15

    Semi and full interpenetrating polymer network (IPN) type hydrogels were prepared by free radical in situ polymerization of methacrylic acid in presence of chitosan using N,N'-methylene-bis-acrylamide (MBA) and glutaraldehyde (for full IPN) as crosslinker. Several semi and full IPN type hydrogels were prepared by varying initiator and crosslinker concentration and also monomer to chitosan mass ratio. These hydrogels were characterized and used for removal of methyl violet and congo red dye from water. Isotherms and kinetics of dye adsorption were also evaluated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Self-Healing, High-Permittivity Silicone Dielectric Elastomer

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    possesses high dielectric permittivity and consists of an interpenetrating polymer network of silicone elastomer and ionic silicone species that are cross-linked through proton exchange between amines and acids. The ionically cross-linked silicone provides self-healing properties after electrical breakdown...... or cuts made directly to the material due to the reassembly of the ionic bonds that are broken during damage. The dielectric elastomers presented in this paper pave the way to increased lifetimes and the ability of dielectric elastomers to survive millions of cycles in high-voltage conditions....

  2. Organic photovoltaics concepts and realization

    CERN Document Server

    Dyakonov, Vladimir; Parisi, Jürgen; Sariciftci, Niyazi

    2003-01-01

    Achieving efficient solar energy conversion at both large scale and low cost is among the most important technological challenges for the near future. The present volume describes and explains the fundamentals of organic/plastic solar cells in a manner accessible to both researchers and students. It provides a comprehensive analysis of the operational principles underlying several types of solar cells that have absorber layers based on polymer materials and small molecules. It addresses competing approaches, such as polymer solar cells and dye-sensitized cells, while considering the thermodynamic principles within the context of these schemes. Organic Photovoltaics also analyzes in detail the charge-transfer processes in the bulk-heterojunction devices corresponding to the relevant mechanism of carrier generation. Emphasized throughout is the concept of interpenetrating polymer-fullerene networks, due to their high potential for improving power efficiency.

  3. Wood hemicellulose/chitosan-based semi-interpenetrating network hydrogels : mechanical swelling and controlled drug release properties

    Science.gov (United States)

    Ahmet M. Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2010-01-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the...

  4. Fiscal 1992 R and D project for next generation infrastructure technology. Report on results of R and D on silicon-based polymeric material; 1992 nendo keisokei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    R and D was conducted with the purpose of establishing fundamental technologies for molecular design, synthesis, material formation and evaluation method concerning silicon-based polymer. with the fiscal 1992 results summarized. In the studies on synthesis technology of electrically conductive silicon-based polymeric materials, silicon-based compounds were synthesized including in particular -Si-Si- bond and carbon multiple bond like -C-C-, with acquisition/analysis of material data started. In the studies on new silicon-based polymeric materials capable of circuit plotting, syntheses were performed for network polysilanes through the disproportionation reaction of alkoxydisilanes. In the studies on new silicon-based polymeric materials having a light emitting function, evaluation of oxidation-reduction potential and search for synthesizing conditions were performed for halosilanes and hydrosilanes. In the studies on silicon-based photoelectric conversion materials, molecular design progressed using a crystal orbital method. Furthermore, researches were implemented on such subjects as silicon-based polymeric materials having a sea-island structure, interpenetrating polymer network forming technologies, and composite structural materials composed of organic metallic complex and silicon-based polymers. (NEDO)

  5. Drug delivery matrices based on scleroglucan/alginate/borax gels.

    Science.gov (United States)

    Matricardi, Pietro; Onorati, Ilenia; Coviello, Tommasina; Alhaique, Franco

    2006-06-19

    The aim of this work is to obtain a new drug delivery matrix, especially designed for protein delivery, based on biodegradable and biocompatible polymers, and to describe its main physico-chemical properties. A polysaccharide based semi-interpenetrating polymer network (semi-IPN) was built up, composed by sodium alginate chains interspersed into a scleroglucan/borax hydrogel network. Tablets were obtained by compression of the resulting freeze-dried hydrogel. The different release and physico-chemical properties possessed by the two starting polymers in various aqueous media were combined in the new matrix. In this work, description is given of the in vitro ability of the matrix to deliver in a controlled manner a protein, Myoglobin, in distilled water, simulated gastric fluid and simulated intestinal fluid; the release, simulating a gastric passage, followed by an enteric delivery, was also carried out. Water uptake data, colorimetric experiments and scanning electron microscopy images are given for the characterization of this new solid dosage form; the importance of the borax presence is also discussed.

  6. Modeling of an ionic polymer metal composite actuator based on an extended Kalman filter trained neural network

    International Nuclear Information System (INIS)

    Truong, Dinh Quang; Ahn, Kyoung Kwan

    2014-01-01

    An ion polymer metal composite (IPMC) is an electroactive polymer that bends in response to a small applied electric field as a result of mobility of cations in the polymer network and vice versa. This paper presents an innovative and accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC actuators. The model is constructed via a general multilayer perceptron neural network (GMLPNN) integrated with a smart learning mechanism (SLM) that is based on an extended Kalman filter with self-decoupling ability (SDEKF). Here the GMLPNN is built with an ability to autoadjust its structure based on its characteristic vector. Furthermore, by using the SLM based on the SDEKF, the GMLPNN parameters are optimized with small computational effort, and the modeling accuracy is improved. An apparatus employing an IPMC actuator is first set up to investigate the IPMC characteristics and to generate the data for training and validating the model. The advanced NBBM model for the IPMC system is then created with the proper inputs to estimate IPMC tip displacement. Next, the model is optimized using the SLM mechanism with the training data. Finally, the optimized NBBM model is verified with the validating data. A comparison between this model and the previously developed model is also carried out to prove the effectiveness of the proposed modeling technique. (paper)

  7. Development of the optical sensor for discriminating isomers of fatty acids based on emissive network polymers composed of polyhedral oligomeric silsesquioxane.

    Science.gov (United States)

    Narikiyo, Hayato; Kakuta, Takahiro; Matsuyama, Hiroki; Gon, Masayuki; Tanaka, Kazuo; Chujo, Yoshiki

    2017-07-01

    It was shown that water-soluble network polymers composed of polyhedral oligomeric silsesquioxane (POSS) had hydrophobic spaces inside the network because of strong hydrophobicity of the cubic silica cage. In this study, the water-soluble POSS network polymers connected with triphenylamine derivatives (TPA-POSS) were synthesized, and their functions as a sensor for discriminating the geometric isomers of fatty acids were investigated. Accordingly, in the photoluminescence spectra, different time-courses of intensity and peak wavelengths of the emission bands were detected from the TPA-POSS-containing solution in the presence of cis- or trans-fatty acids during incubation. Furthermore, variable time-dependent changes were obtained by changing coexisting ratios between two geometric isomers. From the mechanistic investigation, it was implied that these changes could be originated from the difference in the degree of interaction between the POSS networks and each fatty acid. Our data could be applicable for constructing a sensing material for generation and proportion of trans-fatty acids in the oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Three luminescent d{sup 10} metal coordination polymers assembled from a semirigid V-shaped ligand with high selective detecting of Cu{sup 2+} ion and nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China); Institute of Functional Materials, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Liu, Ping; Liang, Yu-Tong; Cui, Lin; Xi, Zheng-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China); Wang, Yao-Yu, E-mail: wyaoyu@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China)

    2015-08-15

    Three 2D luminescent coordination polymers with helical frameworks, [ZnL{sub 2}]{sub n} (1) and ([ML{sub 2}]·(H{sub 2}O)){sub n} (M=Zn (2), Cd (3)) (HL=4-((2-methyl-1 H-imidazol-1-yl)methyl)benzoic acid), have been assembled under hydro(solvo)thermal conditions. Complex 1 is in chiral space group and displays a rare 2D→2D 2-fold parallel interpenetrated layer network with two types of chiral double helixes. Interestingly, the single crystal structure analyses indicate the coexistence of enantiomers la and 1b in one pot, while the bulk crystallization of 1 are racemic mixtures based on the CD measurement. 2 and 3 are isostructural, in the structure, there are two kinds of 2D chiral helical-layers which stack in an -ABAB- sequence leading to the overall structure are mesomer and achiral. All compounds display intense luminescence in solid state at room temperature with high chemical and thermal stability. More importantly, 1 has been successfully applied in the detection of Cu{sup 2+} ions in aqueous media and nitrobenzene and the probable detecting mechanism was also discussed. - Graphical abstract: Three luminescent d{sup 10} metal coordination polymers with helical-layer based on 4-((2-methyl-1H-imidazol-1-yl)methyl)benzoic acid have been obtained. Compound 1 shows high selective detecting for Cu{sup 2+} ion in aqueous and nitrobenzene. - Highlights: • Three coordination polymers with chiral helical-layer have been obtained. • 1 Can luminescent detect Cu{sup 2+} ion in aqueous media and nitrobenzene. • Racemic mixture or mesomer compounds can be obtained by controlling the reaction conditions.

  9. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas.

    Science.gov (United States)

    Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan

    2006-09-06

    Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.

  11. Synthesis, characterization and applications of polymer-metal ...

    Indian Academy of Sciences (India)

    Abstract. 4-Acryloxy acetophenone was prepared and subjected to suspension polymerization with divinyl- benzene as a cross-linking agent. The resulting network polymer was ligated with benzoyl hydrazone. The functional polymer was treated with metal ions [Cu(II), Fe(II)]. The polymer-metal complexes obtained.

  12. IPN's of Acrylic Acid and N-Isopropylacrylamide by Gamma and Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Burillo, G.

    2006-01-01

    In recent years, temperature and pH sensitive hydrogels have been investigated widely because of their unique properties and versatile applications in medicine and biotechnology, as well as drug delivery. However a serious limitation of hydrogels in many applications is the low mechanical strength of such gels when highly swollen. To overcome this problem, sensitive hydrogels were prepared with satisfactory mechanical properties as a semi-interpenetranting network, where one of them is a mechanically stable polymer. In this work temperature sensitive monomer N-isopropylacrylamide (NIPAAm) and a pH sensitive monomer, acrylic acid (AAc) were prepared as an interpenetranting network by a sequential method. Poly (AAc) hydrogels were prepared in glass tubes 3 mm inner diameter, at room temperature from an aqueous solutions 50%vol under argon atmosphere, and irradiated with a Co 6 0 gamma source, at doses from 5 to 30 kGy and dose rate of 3 kGy/h. Poly (AAc) hydrogels were also prepared by electron beam irradiation with a Van de Graaff at a dose rate of 19.4 kGy/min, and radiation doses from 10 to 30 kGy. After polymerization and crosslinking, the gels were washed in water during 48 h, and dried in vacuo to constant weight. Poly (NIPAAm) as secondary gel was synthetized directly within the primary gels in aqueous solution with the croslinker N, N' methylenebisacrylamide (BIS), the accelerator N,N,N , N tetramethyl ethylenediamidne TMEDA, and potasium persulfate as initiator. Equilibrium swelling properties of hydrogels were studied in pH 2.2-8 range and temperature 10-45degree; LCST and pH critic point of the IPN's were determined; the composition of the interpenetrating network was measured by elemental analysis, and the morphological structure characterized by SEM. The volume of the cells of PAAC hydrogels decreased with increase in radiation dose, their mechanic hardness increased and they lost elasticity. The interpenetrating networks of samples with PAAc irradiated

  13. A morphological investigation of conductive networks in polymers loaded with carbon nanotubes

    KAUST Repository

    Lubineau, Gilles

    2017-01-13

    Loading polymers with conductive nanoparticles, such as carbon nanotubes, is a popular approach toward improving their electrical properties. Resultant materials are typically described by the weight or volume fractions of their nanoparticles. Because these conductive particles are only capable of charge transfer over a very short range, most do not interact with the percolated paths nor do they participate to the electrical transfer. Understanding how these particles are arranged is necessary to increase their efficiency. It is of special interest to understand how these particles participate in creating percolated clusters, either in a specific or in all directions, and non-percolated clusters. For this, we present a computational modeling strategy based on a full morphological analysis of a network to systematically analyse conductive networks and show how particles are arranged. This study provides useful information for designing these types of materials and examples suitable for characterizing important features, such as representative volume element, the role of nanotube tortuosity and the role of tunneling cutoff distance.

  14. A morphological investigation of conductive networks in polymers loaded with carbon nanotubes

    KAUST Repository

    Lubineau, Gilles; Mora Cordova, Angel; Han, Fei; Odeh, I.N.; Yaldiz, R.

    2017-01-01

    Loading polymers with conductive nanoparticles, such as carbon nanotubes, is a popular approach toward improving their electrical properties. Resultant materials are typically described by the weight or volume fractions of their nanoparticles. Because these conductive particles are only capable of charge transfer over a very short range, most do not interact with the percolated paths nor do they participate to the electrical transfer. Understanding how these particles are arranged is necessary to increase their efficiency. It is of special interest to understand how these particles participate in creating percolated clusters, either in a specific or in all directions, and non-percolated clusters. For this, we present a computational modeling strategy based on a full morphological analysis of a network to systematically analyse conductive networks and show how particles are arranged. This study provides useful information for designing these types of materials and examples suitable for characterizing important features, such as representative volume element, the role of nanotube tortuosity and the role of tunneling cutoff distance.

  15. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    International Nuclear Information System (INIS)

    Jiang Xianrong; Yuan Hongyan; Feng Yunlong

    2012-01-01

    Five Zn(II) and Cd(II) coordination polymers, [Zn 2 (BOABA)(bpp)(OH)]·0.5H 2 O (1), [Cd 3 (BOABA) 2 (bpp) 2 (H 2 O) 6 ]·2H 2 O (2), [Cd 3 (BOABA) 2 (2,2′-bipy) 3 (H 2 O) 4 ]·5.5H 2 O (3), [CdNa(BOABA)(H 2 O)] 2 ·H 2 O (4) and [Cd 2 (BOABA)(bimb)Cl(H 2 O) 2 ]·H 2 O (5) (H 3 BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2′-bipy=2,2′-bipyridine, bimb=1,4-bis(imidazol-1′-yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2′-bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {Cd 2 Na 2 } clusters and BOABA 3– ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {Cd 4 Cl 2 } clusters and BOABA 3– ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d 10 metal(II) coordination polymers based on H 3 BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: ► Five d 10 metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. ► The polymers were structurally characterized by single-crystal X-ray diffraction. ► Polymers 1–5 display different topological structures. ► They show strong fluorescent emission bands in the solid state.

  16. Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates

    Science.gov (United States)

    Franciosi, Patrick; Spagnuolo, Mario; Salman, Oguz Umut

    2018-04-01

    Composites comprising included phases in a continuous matrix constitute a huge class of meta-materials, whose effective properties, whether they be mechanical, physical or coupled, can be selectively optimized by using appropriate phase arrangements and architectures. An important subclass is represented by "network-reinforced matrices," say those materials in which one or more of the embedded phases are co-continuous with the matrix in one or more directions. In this article, we present a method to study effective properties of simple such structures from which more complex ones can be accessible. Effective properties are shown, in the framework of linear elasticity, estimable by using the global mean Green operator for the entire embedded fiber network which is by definition through sample spanning. This network operator is obtained from one of infinite planar alignments of infinite fibers, which the network can be seen as an interpenetrated set of, with the fiber interactions being fully accounted for in the alignments. The mean operator of such alignments is given in exact closed form for isotropic elastic-like or dielectric-like matrices. We first exemplify how these operators relevantly provide, from classic homogenization frameworks, effective properties in the case of 1D fiber bundles embedded in an isotropic elastic-like medium. It is also shown that using infinite patterns with fully interacting elements over their whole influence range at any element concentration suppresses the dilute approximation limit of these frameworks. We finally present a construction method for a global operator of fiber networks described as interpenetrated such bundles.

  17. Comparison of Polymer Networks Synthesized by Conventional Free Radical and RAFT Copolymerization Processes in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Patricia Pérez-Salinas

    2017-05-01

    Full Text Available There is a debate in the literature on whether or not polymer networks synthesized by reversible deactivation radical polymerization (RDRP processes, such as reversible addition-fragmentation radical transfer (RAFT copolymerization of vinyl/divinyl monomers, are less heterogeneous than those synthesized by conventional free radical copolymerization (FRP. In this contribution, the syntheses by FRP and RAFT of hydrogels based on 2-hydroxyethylene methacrylate (HEMA and ethylene glycol dimethacrylate (EGDMA in supercritical carbon dioxide (scCO2, using Krytox 157 FSL as the dispersing agent, and the properties of the materials produced, are compared. The materials were characterized by differential scanning calorimetry (DSC, swelling index (SI, infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Studies on ciprofloxacin loading and release rate from hydrogels were also carried out. The combined results show that the hydrogels synthesized by FRP and RAFT are significantly different, with apparently less heterogeneity present in the materials synthesized by RAFT copolymerization. A ratio of experimental (Mcexp to theoretical (Mctheo molecular weight between crosslinks was established as a quantitative tool to assess the degree of heterogeneity of a polymer network.

  18. Effect of artificial aging on polymeric surge arresters and polymer insulators for electricity distribution networks

    Directory of Open Access Journals (Sweden)

    Carlos A. Ferreira

    2011-01-01

    Full Text Available A study was conducted to evaluate new and laboratory-aged samples of surge arresters and anchorage polymeric insulators, for 12 and 24 kV networks, which are used by the Rio Grande Energia (RGE. Power Utility Polymeric compounds were analyzed by Differential Scanning Calorimetry (DSC, Thermogravimetric Analysis (TG, Dynamic-Mechanic Analysis (DMA, Fourier Transformed Infrared Spectroscopy (FTIR and Scanning Electronic Microscopy (SEM to verify changes in the insulator properties due to degradation occurred during the experiments. The analyses were carried out before and after 6 months of aging in laboratory devices (weatherometer, 120 °C, salt spray, immersion in water. After the aging experiments, high-voltage electrical tests were also conducted: a radio interference voltage test and, simultaneously, the total and the internal leakage currents were measured to verify the surface degradation of the polymeric material used in the housing. The impulse current test was applied with current values close to 5, 10 and 30 kA, in order to force an internal degradation. Results showed that only surface degradation is detected at the polymer. The main properties of the parts were not affected by the aging. It confirms that polymer insulator and surge arrestor are appropriate for use in electricity distribution networks.

  19. Effect of artificial aging on polymeric surge arresters and polymer insulators for electricity distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Carlos A.; Coser, E. [Laboratorio de Materiais Polimericos, Departamento de Engenharia de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)], e-mail: ferreira.carlos@ufrgs.br; Angelini, Joceli M.G. [Departamento de Materiais Eletricos, CPqD, Campinas, SP (Brazil); Rossi, Jose A.D. [Materiais Alta Tensao, CPqD, Campinas, SP (Brazil); Martinez, Manuel L.B. [Departamento de Engenharia Eletrica, UNIFEI, Itajuba, MG (Brazil)

    2011-07-01

    A study was conducted to evaluate new and laboratory-aged samples of surge arresters and anchorage polymeric insulators, for 12 and 24 kV networks, which are used by the Rio Grande Energia (RGE). Power utility polymeric compounds were analyzed by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TG), Dynamic-Mechanic Analysis (DMA), Fourier Transformed Infrared Spectroscopy (FTIR) and Scanning Electronic Microscopy (SEM) to verify changes in the insulator properties due to degradation occurred during the experiments. The analyses were carried out before and after 6 months of aging in laboratory devices (weather meter, 120 deg C, salt spray, immersion in water). After the aging experiments, high-voltage electrical tests were also conducted: a radio interference voltage test and, simultaneously, the total and the internal leakage currents were measured to verify the surface degradation of the polymeric material used in the housing. The impulse current test was applied with current values close to 5, 10 and 30 k A, in order to force an internal degradation. Results showed that only surface degradation is detected at the polymer. The main properties of the parts were not affected by the aging. It confirms that polymer insulator and surge arrester are appropriate for use in electricity distribution networks. (author)

  20. A Morphology Study of Nanofiller Networks in Polymer Nanocomposites: Improving Their Electrical Conductivity through Better Doping Strategies

    KAUST Repository

    Mora, Angel

    2018-02-01

    Over the past years, research efforts have focused on adding highly conductive nanoparticles, such as carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs), into polymers to improve their electrical conductivity or to tailor their piezoresistive behavior. Resultant materials are typically described by the weight or volume fractions of their nanoparticles. The weight/volume fraction alone is a very global quantity, making it a poor evaluator of a doping configuration. Knowing which particles actually participate in improving electrical conductivity can optimize the doping strategy. Additionally, conductive particles are only capable of charge transfer over a very short range, thus most of them do not form part of the conduction path. Thus, understanding how these particles are arranged is necessary to increase their efficiency. First, this work focuses on polymers loaded with CNTs. A computational modeling strategy based on a full morphological analysis of the CNT network is presented to systematically analyze conductive networks and show how particles are arranged. A definition of loading efficiency is provided based on the results obtained from this morphology analysis. This study provides useful guidelines for designing these types of materials based on important features, such as representative volume element, nanotube tortuosity and length, tunneling cutoff distance, and efficiency. Second, a computational approach is followed to study the conductive network formed by hybrid particles in polymer nanocomposites. These hybrid particles are synthesized by growing CNTs on the surfaces of GNPs. The objective of this study is to show that the higher electrical conductivity of these composites is due to the hybrids forming a segregated structure. Polymers loaded with hybrid particles have shown a higher electrical conductivity compared with classical carbon fillers: only CNTs, only GNPs or mixed CNTs and GNPs. This is done to understand and compare the doping

  1. Deformation and concentration fluctuations under stretching in a polymer network with free chains. The ''butterfly'' effect

    International Nuclear Information System (INIS)

    Ramzi, A.

    1994-06-01

    Small Angle Neutron Scattering gives access to concentration fluctuations of mobile labeled polymer chains embedded in a polymer network. At rest they appear progressively larger than for random mixing, with increasing ratio. Under uniaxial stretching, they decrease towards ideal mixing along the direction perpendicular to stretching, and can grow strongly along the parallel one, including the zero scattering vector q limit. This gives rise to intensity contours with double-winged patterns, in the shape of the figure '8', or of 'butterfly'. Random crosslinking and end-linking of monodisperse chains have both been studied. The strength of the 'butterfly' effect increases with the molecular weight of the free chains, the crosslinking ratio, the network heterogeneity, and the elongation ratio. Eventually, the signal collapses on an 'asymptotic' function I(q), of increasing correlation length with the elongation ratio. Deformation appears heterogeneous, maximal for soft areas, where the mobile chains localize preferentially. This could be due to spontaneous fluctuations, or linked to frozen fluctuations of the crosslink density. However, disagreement with the corresponding theoretical expressions makes it necessary to account for the spatial correlations of crosslink density, and their progressive unscreening as displayed by the asymptotic behavior. Networks containing pending labeled chains and free labeled stars lead to more precise understanding of the diffusion of free species and the heterogeneity of the deformation. It seems that the latter occurs even without diffusion for heterogeneous enough networks. In extreme cases (of the crosslinking parameters), the spatial correlations display on apparent fractal behavior, of dimensions 2 to 2.5, which is discussed here in terms of random clusters. 200 refs., 95 figs., 21 tabs., 10 appends

  2. Wear of polymers and composites

    CERN Document Server

    Abdelbary, Ahmed

    2015-01-01

    In the field of tribology, the wear behaviour of polymers and composite materials is considered a highly non-linear phenomenon. Wear of Polymers and Composites introduces fundamentals of polymers and composites tribology. The book suggests a new approach to explore the effect of applied load and surface defects on the fatigue wear behaviour of polymers, using a new tribometer and thorough experiments. It discusses effects of surface cracks, under different static and cyclic loading parameters on wear, and presents an intelligent algorithm, in the form of a neural network, to map the relations

  3. Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments

    Directory of Open Access Journals (Sweden)

    A. Lendlein

    2012-01-01

    Full Text Available Thermo-sensitive shape-memory polymers (SMP, which are capable of memorizing two or more different shapes, have generated significant research and technological interest. A triple-shape effect (TSE of SMP can be activated e.g. by increasing the environmental temperature (Tenv, whereby two switching temperatures (Tsw have to be exceeded to enable the subsequent shape changes from shape (A to shape (B and finally the original shape (C. In this work, we explored the thermally and magnetically initiated shape-memory properties of triple-shape nanocomposites with various compositions and particle contents using different shape-memory creation procedures (SMCP. The nanocomposites were prepared by the incorporation of magnetite nanoparticles into a multiphase polymer network matrix with grafted polymer network architecture containing crystallizable poly(ethylene glycol (PEG side chains and poly(ε-caprolactone (PCL crosslinks named CLEGC. Excellent triple-shape properties were achieved for nanocomposites with high PEG weight fraction when two-step programming procedures were applied. In contrast, single-step programming resulted in dual-shape properties for all investigated materials as here the temporary shape (A was predominantly fixed by PCL crystallites.

  4. Unique Chiral Interpenetrating d-f Heterometallic MOFs as Luminescent Sensors.

    Science.gov (United States)

    Wu, Zhi-Lei; Dong, Jie; Ni, Wei-Yan; Zhang, Bo-Wen; Cui, Jian-Zhong; Zhao, Bin

    2015-06-01

    One novel three-dimensional (3D) 3d-4f metal-organic framework (MOF), [TbZn(L)(CO3)2(H2O)]n (1) [HL = 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine], has been successfully synthesized and structurally characterized. Structural analysis shows that compound 1 features a unique chiral interpenetrating 3D framework for the first time. The resulting crystals of 1 are composed of enantiomers 1a (P41) and 1b (P43), as was clearly confirmed by the crystal structure and the corresponding circular dichroism (CD) analyses of eight randomly selected crystals. The investigations on CD spectra based on every single crystal clearly assigned the Cotton effect signals. The powder X-ray diffraction measurement of 1 after being immersed in common solvents reveals that 1 possess excellent solvent stability. Furthermore, luminescent studies imply that 1 displays highly selective luminescent sensing of aldehydes, such as formol, acetaldehyde, and propanal.

  5. Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Burdiak, G.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Bland, S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2015-07-15

    An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the “precursor” plasma near the axis of the array over the period 100–140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form.

  6. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    Science.gov (United States)

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  7. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering.

    Science.gov (United States)

    Hardy, John G; Cornelison, R Chase; Sukhavasi, Rushi C; Saballos, Richard J; Vu, Philip; Kaplan, David L; Schmidt, Christine E

    2015-01-14

    Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea) from a biodegradable polymer-based scaffold (polycaprolactone, PCL). Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances ( i.e ., centimeter scale). The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy) and poly(styrene sulfonate) (PSS) in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF).

  8. Four Novel Zn (II Coordination Polymers Based on 4′-Ferrocenyl-3,2′:6′,3′′-Terpyridine: Engineering a Switch from 1D Helical Polymer Chain to 2D Network by Coordination Anion Modulation

    Directory of Open Access Journals (Sweden)

    Lufei Xiao

    2017-11-01

    Full Text Available Four novel ZnII coordination polymers, [(ZnCl22(L2]n (1, [(ZnBr22(L2]n (2, and [(ZnI22(L2]n (3 and {[Zn(SCN2]1.5(L3}n (4, have been synthesized based on 4′-ferrocenyl-3,2′:6′,3′′-terpyridine with ZnII ions and different coordination anions under similar ambient conditions. Their structures have been confirmed using single crystal X-ray diffraction analysis, showing that complexes 1–3 are one-dimensional (1D double-stranded metal ion helical polymer chains and complex 4 is of a two-dimensional (2D network. The structural transformations of them from a 1D polymer chain to a 2D network under the influence of the coordination anions has been systematic investigated. Furthermore, the optical band gaps have been measured by optical diffuse reflectance spectroscopy, revealing that the ligand and the complexes should have semiconductor properties.

  9. Mathematical and numerical analysis of a multi-velocity multi-fluid model for interpenetration of miscible fluids; Analyse mathematique et numerique d'un modele multifluide multivitesse pour l'interpenetration de fluides miscibles

    Energy Technology Data Exchange (ETDEWEB)

    Enaux, C

    2007-11-15

    The simulation of indirect laser implosion requires an accurate knowledge of the inter-penetration of the laser target materials turned into plasma. This work is devoted to the study of a multi-velocity multi-fluid model recently proposed by Scannapieco and Cheng (SC) to describe the inter-penetration of miscible fluids. In this document, we begin with presenting the SC model in the context of miscible fluids flow modelling. Afterwards, the mathematical analysis of the model is carried out (study of the hyperbolicity, existence of a strictly convex mathematical entropy, asymptotic analysis and diffusion limit). As a conclusion the problem is well set. Then, we focus on the problem of numerical resolution of systems of conservation laws with a relaxation source term, because SC model belongs to this class. The main difficulty of this task is to capture on a coarse grid the asymptotic behaviour of the system when the source term is stiff. The main contribution of this work lies in the proposition of a new technique, allowing us to construct a Lagrangian numerical flux taking into account the presence of the source term. This technique is applied first on the model-problem of a one-dimensional Euler system with friction, and then on the multi-fluid SC model. In both cases, we prove that the new scheme is asymptotic-preserving and entropic under a CFL-like condition. The two-dimensional extension of the scheme is done by using a standard alternate directions method. Some numerical results highlight the contribution of the new flux, compared with a standard Lagrange plus Remap scheme where the source term is processed using an operator splitting. (author)

  10. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Hu, Michael Z. [ORNL

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  11. CFA-7: an interpenetrated metal-organic framework of the MFU-4 family.

    Science.gov (United States)

    Schmieder, Phillip; Grzywa, Maciej; Denysenko, Dmytro; Hambach, Manuel; Volkmer, Dirk

    2015-08-07

    The novel interpenetrated metal-organic framework CFA-7 (Coordination Framework Augsburg University-7), [Zn5Cl4(tqpt)3], has been synthesized containing the organic linker {H2-tqpt = 6,6,14,14-tetramethyl-6,14-dihydroquinoxalino[2,3-b]phenazinebistriazole}. Reaction of H2-tqpt and anhydrous ZnCl2 in N,N-dimethylformamide (DMF) yields CFA-7 as pseudo-cubic crystals. CFA-7 serves as precursor for the synthesis of isostructural frameworks with redox-active metal centers, which is demonstrated by postsynthetic metal exchange of Zn(2+) by different M(2+) (M = Co, Ni, Cu) ions. The novel framework is robust upon solvent removal and has been structurally characterized by single-crystal X-ray diffraction, TGA and IR spectroscopy, as well as gas sorption (Ar, CO2 and H2).

  12. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianrong; Yuan Hongyan [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Feng Yunlong, E-mail: sky37@zjnu.edu.cn [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China)

    2012-07-15

    Five Zn(II) and Cd(II) coordination polymers, [Zn{sub 2}(BOABA)(bpp)(OH)]{center_dot}0.5H{sub 2}O (1), [Cd{sub 3}(BOABA){sub 2}(bpp){sub 2}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O (2), [Cd{sub 3}(BOABA){sub 2}(2,2 Prime -bipy){sub 3}(H{sub 2}O){sub 4}]{center_dot}5.5H{sub 2}O (3), [CdNa(BOABA)(H{sub 2}O)]{sub 2}{center_dot}H{sub 2}O (4) and [Cd{sub 2}(BOABA)(bimb)Cl(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2 Prime -bipy=2,2 Prime -bipyridine, bimb=1,4-bis(imidazol-1 Prime -yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2 Prime -bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {l_brace}Cd{sub 2}Na{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {l_brace}Cd{sub 4}Cl{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d{sup 10} metal(II) coordination polymers based on H{sub 3}BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: Black-Right-Pointing-Pointer Five d{sup 10} metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. Black-Right-Pointing-Pointer The polymers were structurally characterized by single-crystal X-ray diffraction. Black-Right-Pointing-Pointer Polymers 1-5 display different

  13. Responsive gelation of hydrophobized linear polymer

    DEFF Research Database (Denmark)

    Madsen, Claus Greve; Toeth, Joachim; Jørgensen, Lene

    In this study we present the rheological properties of a physically linked polymer network, composed of linear hydrophilic chains, modified with hydrophobic moieties in each end. Solutions of the polymer in ethanol-water mixtures showed Newtonian behaviour up to about 99 % ethanol, with the highest...

  14. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    Science.gov (United States)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  15. Relation between the development of structure and the properties of network polymers

    International Nuclear Information System (INIS)

    Williams, D.R.G.; Allen, P.E.M.; Simon, G.P.

    1989-01-01

    It was shown by various techniques that the development of structure in the early stages of cure determines the final structure and properties of glassy three-dimensional networks. Solid state [ 13 C]-nuclear magnetic resonance (NMR) techniques identified the structure groupings and the extent of heterogeneity soon after the commencement of polymerization through to the glassy state. Observations of the changes in mobility of groups during cure were correlated with the development of bulk properties such as the glass transition and compressive strength. Computer simulation of the kinetics of the polymerization based on a three-dimensional lattice closely followed the trends observed by experiment and provided insight into the formation of clusters of reacted polymer surrounded by pools of unreacted monomer. The difficulty in obtaining full cure was clearly associated with the presence of trapped reactive centres within the cluster. Observation of the behaviour of small probe or tracer molecules by NMR was shown to be a potent technique for investigating the organization of networks. 28 refs., 12 figs

  16. Advanced Polymer Network Structures

    Science.gov (United States)

    2016-02-01

    attractive interaction (n = 2.0) and a neutral interaction (n = 1.0); n is equal to unity for self-interactions among the monomers of first network and...... Network Structures by Robert Lambeth, Joseph Lenhart, and Tim Sirk Weapons and Materials Research Directorate, ARL Yelena Sliozberg TKC Global

  17. Comparison of Polymer Networks Synthesized by Conventional Free Radical and RAFT Copolymerization Processes in Supercritical Carbon Dioxide

    OpenAIRE

    Patricia Pérez-Salinas; Gabriel Jaramillo-Soto; Alberto Rosas-Aburto; Humberto Vázquez-Torres; María Josefa Bernad-Bernad; Ángel Licea-Claverie; Eduardo Vivaldo-Lima

    2017-01-01

    There is a debate in the literature on whether or not polymer networks synthesized by reversible deactivation radical polymerization (RDRP) processes, such as reversible addition-fragmentation radical transfer (RAFT) copolymerization of vinyl/divinyl monomers, are less heterogeneous than those synthesized by conventional free radical copolymerization (FRP). In this contribution, the syntheses by FRP and RAFT of hydrogels based on 2-hydroxyethylene methacrylate (HEMA) and ethylene glycol dimet...

  18. Shape memory and actuation behavior of semicrystalline polymer networks

    Energy Technology Data Exchange (ETDEWEB)

    Bothe, Martin

    2014-07-01

    Shape memory polymers (SMPs) can change their shape on application of a suitable stimulus. To enable such behavior, a 'programming' procedure fixes a deformation, yielding a stable temporary shape. In thermoresponsive SMPs, subsequent heating triggers entropy-elastic recovery of the initial shape. An additional shape change on cooling, i.e. thermoreversible two-way actuation, can be stimulated by a crystallization phenomenon. In this thesis, cyclic thermomechanical measurements systematically determined (1) the shape memory and (2) the actuation behavior under constant load as well as under stress-free conditions. Chemically cross-linked, star-shaped polyhedral oligomeric silsesquioxane polyurethane (SPOSS-PU) hybrid polymer networks and physically cross-linked poly(ester urethane) (PEU) block copolymers were investigated around the melting and crystallization temperatures of their polyester soft segments. (1) The SPOSS-PUs showed excellent shape fixities and recoverabilities of almost 100% at high cross-linking density, while PEUs exhibited pronounced shape memory properties at increased soft segment content. Furthermore, two-fold programmed SPOSS-PU specimens were able to recover their initial shape in two thermally separated events. Even a neck, which formed during deformation of SPOSS-PUs with high soft segment content, was reversed. (2) In PEUs, globally oriented crystallization on cooling drove expansion of the sample, in particular at high soft segment content and after application of a strong deformation. Melting reversed that orientation; the PEU sample contracted and thereby completed the thermoreversible actuation cycle. Under load, multiple polymorphic phase transitions enabled two successive expansion and contraction steps, while under stress-free conditions various geometric shape changes, including the increase and decrease of PEU sample length and thickness as well as twisting and untwisting could be experimentally witnessed. Such

  19. Shape memory and actuation behavior of semicrystalline polymer networks

    International Nuclear Information System (INIS)

    Bothe, Martin

    2014-01-01

    Shape memory polymers (SMPs) can change their shape on application of a suitable stimulus. To enable such behavior, a 'programming' procedure fixes a deformation, yielding a stable temporary shape. In thermoresponsive SMPs, subsequent heating triggers entropy-elastic recovery of the initial shape. An additional shape change on cooling, i.e. thermoreversible two-way actuation, can be stimulated by a crystallization phenomenon. In this thesis, cyclic thermomechanical measurements systematically determined (1) the shape memory and (2) the actuation behavior under constant load as well as under stress-free conditions. Chemically cross-linked, star-shaped polyhedral oligomeric silsesquioxane polyurethane (SPOSS-PU) hybrid polymer networks and physically cross-linked poly(ester urethane) (PEU) block copolymers were investigated around the melting and crystallization temperatures of their polyester soft segments. (1) The SPOSS-PUs showed excellent shape fixities and recoverabilities of almost 100% at high cross-linking density, while PEUs exhibited pronounced shape memory properties at increased soft segment content. Furthermore, two-fold programmed SPOSS-PU specimens were able to recover their initial shape in two thermally separated events. Even a neck, which formed during deformation of SPOSS-PUs with high soft segment content, was reversed. (2) In PEUs, globally oriented crystallization on cooling drove expansion of the sample, in particular at high soft segment content and after application of a strong deformation. Melting reversed that orientation; the PEU sample contracted and thereby completed the thermoreversible actuation cycle. Under load, multiple polymorphic phase transitions enabled two successive expansion and contraction steps, while under stress-free conditions various geometric shape changes, including the increase and decrease of PEU sample length and thickness as well as twisting and untwisting could be experimentally witnessed. Such actuation

  20. Integral equation theory study on the phase separation in star polymer nanocomposite melts.

    Science.gov (United States)

    Zhao, Lei; Li, Yi-Gui; Zhong, Chongli

    2007-10-21

    The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value.

  1. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical and biotechnological applications, and modification of surfaces to achieve a specific functionality and/or to immobilize bioactive materials. This publication contains 10 reports of participants; each of the reports has been indexed separately.

  2. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    International Nuclear Information System (INIS)

    2002-12-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical and biotechnological applications, and modification of surfaces to achieve a specific functionality and/or to immobilize bioactive materials. This publication contains 10 reports of participants; each of the reports has been indexed separately

  3. In silico design of porous polymer networks: high-throughput screening for methane storage materials.

    Science.gov (United States)

    Martin, Richard L; Simon, Cory M; Smit, Berend; Haranczyk, Maciej

    2014-04-02

    Porous polymer networks (PPNs) are a class of advanced porous materials that combine the advantages of cheap and stable polymers with the high surface areas and tunable chemistry of metal-organic frameworks. They are of particular interest for gas separation or storage applications, for instance, as methane adsorbents for a vehicular natural gas tank or other portable applications. PPNs are self-assembled from distinct building units; here, we utilize commercially available chemical fragments and two experimentally known synthetic routes to design in silico a large database of synthetically realistic PPN materials. All structures from our database of 18,000 materials have been relaxed with semiempirical electronic structure methods and characterized with Grand-canonical Monte Carlo simulations for methane uptake and deliverable (working) capacity. A number of novel structure-property relationships that govern methane storage performance were identified. The relationships are translated into experimental guidelines to realize the ideal PPN structure. We found that cooperative methane-methane attractions were present in all of the best-performing materials, highlighting the importance of guest interaction in the design of optimal materials for methane storage.

  4. Mucoadhesive Polymer Hyaluronan as Biodegradable Cationic/Zwitterionic-Drug Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2015-01-01

    Full Text Available Mucoadhesive polymers in pharmaceutical formulations release drugs in mucosal areas. They interact and fix to mucus via molecular interpenetration, etc., which increase drug bioavailability. Polymers physicochemical properties affect formulation mucoadhesion, rheological behaviour and drug absorption. Hyaluronan (HA is selected as a mucoadhesive and biodegradable polymer. Geometric, topological and fractal analyses are carried out with program TOPO. Reference calculations are performed with algorithm GEPOL. Procedure TOPO underestimates molecular volume by 0.7%. Error results 5% in surface area and derived topological indices. Solvent-accessible surface is undercalculated by 3%: from hexamer HA to HA·3Ca and hydrate, the hydrophobic term rises by 42% and decays by 26%, and hydrophilic part drops by 14% and rises by 58% in agreement with the number of H-bonds. Accessibility rises by 9% and decays by 8%. Fractal dimension is underevaluated by 1% and for HA it results 1.566; on going to HA·3Ca and hydrate it rises by 2% and 1%. External-atoms dimension increases by 11%: for HA it results 1.725. When going to HA·3Ca and hydrate, it augments by 4% and 0.3%. On going from HA to HA·3Ca and hydrate, nonburied minus molecular dimension enlarges by 20% and decays by 9%. The hydrate globularity is lower than for water, Ca2+ and averages of O-atoms in HA. Ca2+ rugosity is smaller than for hydrate, averages of O-atoms in HA and water. Ca2+ and water accessibilities are greater than for hydrate. As cations exchange in HA·3Ca requires Ca2+ alteration, rises of drug zwitterionic character and acidic pH increase absorption.

  5. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2015-01-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea from a biodegradable polymer-based scaffold (polycaprolactone, PCL. Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale. The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy and poly(styrene sulfonate (PSS in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF.

  6. Novel photonics polymer and its application in IT

    Science.gov (United States)

    Koike, Yasuhiro

    2003-07-01

    In the field of LANs, transmission systems based on a multimode silica fiber network is heading towards capacities of Gb/s. We have proposed a low-loss, high-bandwidth and large-core graded-index plastic optical fiber (GI POF) in data-com. area. We sill show that GI POF enables to virtually eliminate the "modal noise" problem cased by the medium-core silica fibers. Therefore, stable high-speed data transmission is realized by GI POF rather than silica fibers. Furthermore, advent of perfluorinated (PF) polymer based GI POF network can support higher transmission than silica fibers network because of the small material dispersion of PF polymer compared with silica. In addition, we proposed a "highly scattering optical transmission (HSOT) polymer" and applied it to a light guide plate of a liquid crystal display (LCD) backlight. The advanced HSOT polymer backlight that was proposed using the HSOT designing simulation program demonstrated approximately three times higher luminance than the conventional flat-type HSOT backlight of 14.1-inch diagonal because of the microscopic prism structures at the bottom of the advanced HSOT light guide plate. The HSOT polymer containing the optimized heterogeneous structures produced homogeneous scattered light with forward directivity and sufficient color uniformity.

  7. An effective medium model versus a network model for nano-structured solar cells

    International Nuclear Information System (INIS)

    Minnaert, B.; Grasso, C.; Burgelman, M.

    2006-01-01

    In this paper, two methods are compared to model the I-V curves of nano-structured solar cells. These cells consist of an interpenetrating network of an n-type transparent semiconductor oxide (e.g. TiO 2 ) and a p-type semiconductor absorber (e.g. CdTe, CuInS 2 ), deposited on TCO covered glass. The methods are also applicable when a dye and an electrolyte replace the p-semiconductor, and even to organic bulk heterojunction cells. A network model (NM) with resistors and diodes has been published by us before. Another method which has been proposed in the literature is an effective medium model (EMM). In this model, the whole p-n nano-structure is represented by one single effective semiconductor layer, which then is fed into a standard solar cell device simulator, e.g. SCAPS. In this work, it is shown that the NM and the EMM can describe the same physical structure, when they are set up properly. As an illustration, some problems are described both by EMM and NM, and the results are compared. The EMM in this work confirms the results obtained earlier with a simplified NM (constant R n , R p ): when illuminating the n-side, the structure is tolerant to R n but not to R p ; the interpenetrating geometry is disadvantageous for V oc . (authors)

  8. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    Science.gov (United States)

    Moll, Joseph

    Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work

  9. The synthesis of hydrogels with controlled distribution of polymer brushes in hydrogel network

    Energy Technology Data Exchange (ETDEWEB)

    Sun, YuWei; Zhou, Chao; Zhang, AoKai; Xu, LiQun; Yao, Fang [School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189 (China); Cen, Lian, E-mail: cenlian@hotmail.com [National Tissue Engineering Center of China, No.68, East Jiang Chuan Road, Shanghai, 200241 (China); School of Chemical Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai, 200237 (China); Fu, Guo-Dong, E-mail: fu7352@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189 (China)

    2014-11-30

    Highlights: • Many biological tissues are 3-dimensionally asymmetric in structure and properties, it would be desirable if hydrogels could bear such structural similarity with specialized surface and bulk properties. Moreover, gradual but continuous variation in spatial structural and property is also a common phenomenon in biological tissues, such as interfaces between bone and tendon, or between bone and cartilage. Hence, the development of a method to introduce well-defined functional polymer brushes on PEG hydrogels, especially with precisely controlled spatial structure in 3-dimensions, would impart the hydrogels with special functionalities and wider applications. Poly(ethylene glycol) (PEG) hydrogels with 3-dimensionally controlled well-defined poly(N-isopropylacrylamide) (poly(NIPAAm)) brushes were prepared by combined copper(I)-catalyzed azide-alkyne cycloaddition (“Click Chemistry”) and atom transfer radical polymerization (ATRP). The resulting hydrogels were presented as representatives with their detailed synthesis routes and characterization. H{sub PEG}-S-poly(NIPAAm) is a hydrogel with poly(NIPAAm) brushes mainly grafted on surface, whereas H{sub PEG}-G-poly(NIPAAm) has a gradiently decreased poly(NIPAAm) brushes in their chain length from surface to inside. On the other hand, poly(NIPAAm) brushes in H{sub PEG}-U-poly(NIPAAm) are uniformly dispersed throughout the whole hydrogel network. Successful preparation of H{sub PEG}-S-poly(NIPAAm), H{sub PEG}-G-poly(NIPAAm) and H{sub PEG}-U-poly(NIPAAm) were ascertained by X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. Hence, the flexibility and controllability of the synthetic strategy in varying the distribution of polymer brushes and hydrogel surface properties was demonstrated. Hydrogels with tunable and well-defined 3-dimensional poly(NIPAAm) polymer brushes could be tailor-designed to find potential applications in smart devices or skin dressing, such as for diabetics

  10. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network.

    Science.gov (United States)

    Albero, Alberto; Pascual, Agustín; Camps, Isabel; Grau-Benitez, María

    2015-10-01

    The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness.

  11. Nitrogen-doped graphene interpenetrated 3D Ni-nanocages: efficient and stable water-to-dioxygen electrocatalysts

    Science.gov (United States)

    Dhavale, Vishal M.; Gaikwad, Sachin S.; George, Leena; Devi, R. Nandini; Kurungot, Sreekumar

    2014-10-01

    Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nano-regime has been investigated. Apart from the benefits of the synergistic interactions between Ni, N, and C, the overall integrity of the structure and its intra-molecular connectivity within the framework help in achieving better oxygen evolution characteristics at a significantly reduced overpotential. The engineered Ni-NGr nanocage displays a substantially low overpotential of ~290 mV at a practical current density of 20 mA cm-2 in 0.1 M KOH. In comparison, NGr and Ni-particles as separate entities give overpotentials of ~570 and ~370 mV under similar conditions. Moreover, the long term stability of Ni-NGr was investigated by anodic potential cycling for 500 cycles and an 8.5% increment in the overpotential at 20 mA cm-2 was observed. Additionally, a chronoamperometric test was performed for 15 h at 20 mA cm-2, which highlights the better sustainability of Ni-NGr under the actual operating conditions. Finally, the quantitative estimation of evolved oxygen was monitored by gas chromatography and was found to be 70 mmol h-1 g-1 of oxygen, which is constant in the second cycle as well.Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nano-regime has been investigated. Apart from the benefits of the synergistic interactions between Ni, N

  12. Templating Organosilicate Vitrification Using Unimolecular Self Organizing Polymers: Evolution of Morphology and Nanoporosity Development with Network Formation

    International Nuclear Information System (INIS)

    Kim, H.-C.

    2004-01-01

    Star-shaped polymers with a compatibilizing outer corona were dispersed into a thermosetting organosilicate matrix and used to create a nanoporous material. These environmentally responsive copolymers create nano-sized domains through a matrix-mediated collapse of the interior core of the core-corona polymeric structure. This approach relies on the outer corona of the star to compatibilize the insoluble core with the thermosetting resin and prevent aggregation such that these individual molecules template the crosslinking of the matrix and ultimately generate a single hole. The organic polymer was selectively thermalized leaving behind its latent image in the matrix with a pore size that reflected the size of the polymer molecule, and provided the expected reduction in dielectric constant. The morphology development as a function of arm number, molecular weight and volume fraction in mixtures with organosilicates as a function of cure/network conversion was investigated by SAXS, SANS, DMA, TEM and FE-SEM measurements. Amphiphilic star-shaped polymers of various block lengths and arm number, prepared by tandem controlled ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP) from dendritic initiators, were further tailored to facilitate contrast enhancement for various measurements by the incorporation of either ferrocenyl units or deuterated monomers. The pore sizes achieved by the star and dendrimer-like star macromolecular architectures range from ∼7 to 40nm, depending on the molecular weight and architecture

  13. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)

    Science.gov (United States)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan

    2001-03-01

    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  14. Influence of polymer charge on the shear yield stress of silica aggregated with adsorbed cationic polymers.

    Science.gov (United States)

    Zhou, Ying; Yu, Hai; Wanless, Erica J; Jameson, Graeme J; Franks, George V

    2009-08-15

    Flocs were produced by adding three cationic polymers (10% charge density, 3.0x10(5) g/mol molecular weight; 40% charge density, 1.1x10(5) g/mol molecular weight; and 100% charge density, 1.2x10(5) g/mol molecular weight) to 90 nm diameter silica particles. The shear yield stresses of the consolidated sediment beds from settled and centrifuged flocs were determined via the vane technique. The polymer charge density plays an important role in influencing the shear yield stresses of sediment beds. The shear yield stresses of sediment beds from flocs induced by the 10% charged polymer were observed to increase with an increase in polymer dose, initial solid concentration and background electrolyte concentration at all volume fractions. In comparison, polymer dose has a marginal effect on the shear yield stresses of sediment beds from flocs induced by the 40% and 100% charged polymers. The shear yield stresses of sediments from flocs induced by the 40% charged polymer are independent of salt concentration whereas the addition of salt decreases the shear yield stresses of sediments from flocs induced by the 100% charged polymer. When flocculated at the optimum dose for each polymer (12 mg/g silica for the 10% charged polymer at 0.03 M NaCl, 12 mg/g for 40% and 2 mg/g for 100%), shear yield stress increases as polymer charge increases. The effects observed are related to the flocculation mechanism (bridging, patch attraction or charge neutralisation) and the magnitude of the adhesive force. Comparison of shear and compressive yield stresses show that the network is only slightly weaker in shear than in compression. This is different than many other systems (mainly salt and pH coagulation) which have shear yield stress much less than compressive yield stress. The existing models relating the power law exponent of the volume fraction dependence of the shear yield stress to the network fractal structure are not satisfactory to predict all the experimental behaviour.

  15. Diverse assemblies of the (4,4) grid layers exemplified in Zn(II)/Co(II) coordination polymers with dual linear ligands

    International Nuclear Information System (INIS)

    Liu, Guang-Zhen; Li, Xiao-Dong; Xin, Ling-Yun; Li, Xiao-Ling; Wang, Li-Ya

    2013-01-01

    Diverse (4,4) grid layers are exemplified in five two-dimensional coordination polymers with dual µ 2 -bridged ligands, namely, ([Zn(cbaa)(bpp)]·H 2 O) n (1), [Zn 2 (cbaa) 2 (bpy)] n (2), [Co 2 (cbaa) 2 (bpp) 2 ] n (3), [Co(cbaa)(bpp)] n (4), and [Co(bdaa)(bpp)(H 2 O) 2 ] n (5) (H 2 cbaa=4-carboxybenzeneacetic acid, bpp=1,3-di(4-pyridyl)propane, bpy=4,4′-bipyridyl, and H 2 bdaa=1,4-benzenediacrylic acid). For 1, two (4,4) grid layers with [ZnN 2 O 2 ] tetrahedron as the node are held together by lattice water forming a H-bonding bilayer. Individual (4,4) grid layer in 2 is based on (Zn 2 (OCO) 4 ) paddlewheel unit as the node. Two (4,4) grid layers with (Co 2 O(OCO) 2 ) dimer as the node are covalently interconnected by organic ligands affording a thick bilayer of 3 with new framework topology. The different entanglements between two coincident (4,4) grid layers with [CoN 2 O 4 ] octahedron as the node leads to two 2D→2D interpenetrated structures for 4 and 5. Furthermore, fluorescent properties of 1 and 2 as well as magnetic properties of 3 are investigated. - Graphical abstract: Diverse assemblies of the (4,4) grid layers with different network nodes forms five coordination polymers that are well characterized by IR, TGA, element analysis, fluorescent and magnetic measurement. - Highlights: • Diverse assemblies of the (4,4) grid layers with different structural units as the nodes. • A new topology type with the uninodal 6-connected net of (4 12 .5 2 .6) is found. • Intense fluorescence emissions with a rare blue-shift of 55 nm compared to free carboxylate ligand

  16. Aerogels Handbook

    CERN Document Server

    Aegerter, Michel A; Koebel, Matthias M

    2011-01-01

    Aerogels are the lightest solids known. Up to 1000 times lighter than glass and with a density as low as only four times that of air, they show very high thermal, electrical and acoustic insulation values and hold many entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal and ceramic materials, etc. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recove...

  17. Polymer stabilization of the smectic C-alpha* liquid crystal phase—Over tenfold thermal stabilization by confining networks of photo-polymerized reactive mesogens

    International Nuclear Information System (INIS)

    Labeeb, A.; Gleeson, H. F.; Hegmann, T.

    2015-01-01

    The smectic C*-alpha (SmC α *) phase is one of the sub-phases of ferroelectric liquid crystals that has drawn much interest due to its electro-optical properties and ultrafast switching. Generally observed above the ferroelectric SmC* phase in temperature, the SmC α * commonly shows only very narrow phase temperature range of a few degree Celsius. To broaden the SmC α * phase, polymer stabilization was investigated for thermal phase stabilization. Two different reactive monomers were tested in three mixtures, and all three broadened the temperature range of the SmC α * phase from 3 °C to 39 °C. The current reversal method was used to determine the phase existence versus temperature. Moreover, the texture and network structure was studied by polarized optical microscopy and scanning electron microscopy, with the latter revealing the confinement of the smectic layer structure within the porous polymer network

  18. Mathematical and numerical analysis of a multi-velocity multi-fluid model for interpenetration of miscible fluids

    International Nuclear Information System (INIS)

    Enaux, C.

    2007-11-01

    The simulation of indirect laser implosion requires an accurate knowledge of the inter-penetration of the laser target materials turned into plasma. This work is devoted to the study of a multi-velocity multi-fluid model recently proposed by Scannapieco and Cheng (SC) to describe the inter-penetration of miscible fluids. In this document, we begin with presenting the SC model in the context of miscible fluids flow modelling. Afterwards, the mathematical analysis of the model is carried out (study of the hyperbolicity, existence of a strictly convex mathematical entropy, asymptotic analysis and diffusion limit). As a conclusion the problem is well set. Then, we focus on the problem of numerical resolution of systems of conservation laws with a relaxation source term, because SC model belongs to this class. The main difficulty of this task is to capture on a coarse grid the asymptotic behaviour of the system when the source term is stiff. The main contribution of this work lies in the proposition of a new technique, allowing us to construct a Lagrangian numerical flux taking into account the presence of the source term. This technique is applied first on the model-problem of a one-dimensional Euler system with friction, and then on the multi-fluid SC model. In both cases, we prove that the new scheme is asymptotic-preserving and entropic under a CFL-like condition. The two-dimensional extension of the scheme is done by using a standard alternate directions method. Some numerical results highlight the contribution of the new flux, compared with a standard Lagrange plus Remap scheme where the source term is processed using an operator splitting. (author)

  19. Synthesis and characterization of semi-IPNs based on PVP and PLLA; Sintese e caracterizacao de semi-IPNs envolvendo os homopolimeros PVP e PLLA

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, A.P.R.; Mano, V., E-mail: mano@ufsj.edu.b [Universidade Federal de Sao Joao del Rei (UFSJ), MG (Brazil). Dept. de Ciencias Naturais; Felisberti, M.I. [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2010-07-01

    The specific interest in the synthesis of semi-IPNs based on PLLA and PVP homopolymers due to the fact these are biodegradable and biocompatible, which allows us to infer applications in the medical field as sutures, implants, matrices for controlled release of drugs etc. The objective was to prepare a multicomponent material amphiphile in the form of semi-interpenetrating polymer networks, based on poly (L-lactide), PLLA, hydrophobic homopolymer, and poly (vinylpyrrolidone), PVP, hydrophilic component. The preparation of semi-IPN combined the polymerization and crosslinking of N-vinylpyrrolidone in the presence of poly (L-lactide). The products were characterized by spectroscopic and thermal methods. (author)

  20. Synthesis and characterization of semi-IPNs based on PVP and PLLA

    International Nuclear Information System (INIS)

    Camilo, A.P.R.; Mano, V.; Felisberti, M.I.

    2010-01-01

    The specific interest in the synthesis of semi-IPNs based on PLLA and PVP homopolymers due to the fact these are biodegradable and biocompatible, which allows us to infer applications in the medical field as sutures, implants, matrices for controlled release of drugs etc. The objective was to prepare a multicomponent material amphiphile in the form of semi-interpenetrating polymer networks, based on poly (L-lactide), PLLA, hydrophobic homopolymer, and poly (vinylpyrrolidone), PVP, hydrophilic component. The preparation of semi-IPN combined the polymerization and crosslinking of N-vinylpyrrolidone in the presence of poly (L-lactide). The products were characterized by spectroscopic and thermal methods. (author)

  1. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions

    International Nuclear Information System (INIS)

    Kamerlin, Natasha; Elvingson, Christer

    2016-01-01

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution. (paper)

  2. Interpenetrated Binary Supramolecular Nanofibers for Sensitive Fluorescence Detection of Six Classes of Explosives.

    Science.gov (United States)

    Xiong, Wei; Zhu, Qijian; Gong, Yanjun; Wang, Chen; Che, Yanke; Zhao, Jincai

    2018-04-03

    In this work, we develop a sequential self-assembly approach to fabricate interpenetrated binary supramolecular nanofibers consisting of carbazole oligomer 1-cobalt(II) (1-Co 2+ ) coordination nanofibers and oligomer 2 nanofibers for the sensitive detection of six classes of explosives. When exposed to peroxide explosives (e.g., H 2 O 2 ), Co 2+ in 1-Co 2+ coordination nanofibers can be reduced to Co + that can transfer an electron to the excited 2 nanofibers and thereby quench their fluorescence. On the other hand, when exposed to the other five classes of explosives, the excited 2 nanofibers can transfer an electron to explosives to quench their fluorescence. On the basis of the distinct fluorescence quenching mechanisms, six classes of explosives can be sensitively detected. Herein, we provide a new strategy to design broad-band fluorescence sensors for a rich identification of threats.

  3. Mechanical reinforcement and segmental dynamics of polymer nanocomposites

    Science.gov (United States)

    Gong, Shushan

    The addition of nanofiller into a polymer matrix will dramatically change the physical properties of polymer. The introduction of nanofiller makes the polymer more applicable in many industries, such as automobile tires, coatings, semiconductors, and packaging. The altered properties are not the simple combination of the characters from the two components. The interactions in polymer nanocomposites play an important role in determining the physical properties. This dissertation focuses on the mechanical properties of polymer nanocomposites (silica/poly-2-vinylpyridine) above their glass transition temperature Tg, as a model for automobile tires, which utilize small silica particles in crosslinked rubber far above Tg. We also investigate the impacts of the interaction between particle filler and polymer matrix on the altered mechanical properties. Dielectric relaxation spectroscopy (DRS) is used to study the glassy bound polymer layers formed around the particles. The results show evidence of the existence of immobilized polymer layers at the surface of each nanoparticle. At the same time, the thickness of the immobilized polymer layers is quantified and formed to be around 2 nm. Then we consider particles with glassy bound polymer layers are bridged together (either rubbery bridge or glassy bridge) by polymer chains and form small clusters. Clusters finally percolate to form a particle-polymer network as loading fraction increases. Rheology is used to study the network formation, and to predict the boundary of rubbery bridge and glassy bridge regimes. The distance between particles determines the type of polymer bridging. The particle spacing larger than Kuhn length makes flexible (rubbery) bridge with rheology described by a flexible Rouse model for percolation. When the spacing is shorter than the Kuhn length (~ 1nm), stiffer bridge forms instead, which is called glassy bridge. The mechanical differences between rubbery bridge and glassy bridge, and the effect of

  4. Novel ceria-polymer microcomposites for chemical mechanical polishing

    International Nuclear Information System (INIS)

    Coutinho, Cecil A.; Mudhivarthi, Subrahmanya R.; Kumar, Ashok; Gupta, Vinay K.

    2008-01-01

    Abrasive particles are key components in slurries for chemical mechanical polishing (CMP). Since the particle characteristics determine surface quality of wafers during polishing, in this research, novel abrasive composite particles have been developed. These composite particles contain nanoparticles of ceria dispersed within cross-linked, polymeric microspheres such that the average mass fraction of ceria is approximately 50% in the particles. The microspheres are formed by co-polymerization of N-isopropylacrylamide (NIPAM) with 3-(trimethoxysilyl)propyl methacrylate (MPS) and contain interpenetrating (IP) chains of poly(acrylic acid) (PAAc). Infrared spectroscopy, dynamic light scattering, and transmission electron microscopy are employed to characterize the composite particles. Planarization of silicon dioxide wafers is studied on a bench-top CMP tester and the polished surfaces are characterized by ellipsometry, atomic force and optical microscopy. Slurries formed from the composite ceria-polymer particles lead to lower topographical variations and surface roughness than slurries of only ceria nanoparticles even though both slurries achieve similar removal rates of ∼100 nm/min for similar ceria content. Polishing with the novel composite particles gives surfaces devoid of scratches and particle deposition, which makes these particles suitable for the next generation slurries in CMP

  5. Novel ceria-polymer microcomposites for chemical mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, Cecil A. [Department of Chemical and Biomedical Engineering, University of South Florida (United States); Mudhivarthi, Subrahmanya R.; Kumar, Ashok [Nanomaterials and Nanomanufacturing Research Center, University of South Florida (United States); Department of Mechanical Engineering, University of South Florida (United States); Gupta, Vinay K. [Department of Chemical and Biomedical Engineering, University of South Florida (United States)], E-mail: vkgupta@eng.usf.edu

    2008-12-30

    Abrasive particles are key components in slurries for chemical mechanical polishing (CMP). Since the particle characteristics determine surface quality of wafers during polishing, in this research, novel abrasive composite particles have been developed. These composite particles contain nanoparticles of ceria dispersed within cross-linked, polymeric microspheres such that the average mass fraction of ceria is approximately 50% in the particles. The microspheres are formed by co-polymerization of N-isopropylacrylamide (NIPAM) with 3-(trimethoxysilyl)propyl methacrylate (MPS) and contain interpenetrating (IP) chains of poly(acrylic acid) (PAAc). Infrared spectroscopy, dynamic light scattering, and transmission electron microscopy are employed to characterize the composite particles. Planarization of silicon dioxide wafers is studied on a bench-top CMP tester and the polished surfaces are characterized by ellipsometry, atomic force and optical microscopy. Slurries formed from the composite ceria-polymer particles lead to lower topographical variations and surface roughness than slurries of only ceria nanoparticles even though both slurries achieve similar removal rates of {approx}100 nm/min for similar ceria content. Polishing with the novel composite particles gives surfaces devoid of scratches and particle deposition, which makes these particles suitable for the next generation slurries in CMP.

  6. Composite carbohydrate interpenetrating polyelectrolyte nano-complexes (IPNC) as a controlled oral delivery system of citalopram HCl for pediatric use: in-vitro/in-vivo evaluation and histopathological examination.

    Science.gov (United States)

    Kamel, Rabab; Abbas, Haidy; El-Naa, Mona

    2018-06-01

    Citalopram HCl (CH) is one of the few drugs which can be used safely in childhood psychiatric disorders. This study was focused on the preparation of interpenetrating polyelectrolytes nano-complexes (IPNC) to transform the hydrophilic carbohydrate polymers into an insoluble form. The IPNCs were loaded with CH to sustain its effect. The IPNC2 (composed of chitosan:pectin in a 3:1 ratio) showed the most extended drug release pattern (P < 0.05) and followed a Higuchi-order kinetics model. It was characterized using SEM, X-rays diffractometry, and FTIR. In-vivo studies were performed using immature rats with induced depression, and were based on the investigation of behavioral, biochemical, and histopathological changes at different time intervals up to 24 h. Rats treated with IPNC2 showed a significant more rapid onset of action and more extended effect in the behavioral tests, in addition to a significantly higher serotonin brain level up to 24 h, compared to rats treated with the market product (P < 0.05). The histopathological examination showed a profound amelioration of the cerebral cortex features of the depressed rats after IPNC2 administration. This study proves the higher efficacy and more extended effect of the new polyelectrolytes nano-complexes compared to the market product.

  7. Kinetic instability of electrostatic ion cyclotron waves in inter-penetrating plasmas

    Science.gov (United States)

    Bashir, M. F.; Ilie, R.; Murtaza, G.

    2018-05-01

    The Electrostatic Ion Cyclotron (EIC) instability that includes the effect of wave-particle interaction is studied owing to the free energy source through the flowing velocity of the inter-penetrating plasmas. It is shown that the origin of this current-less instability is different from the classical current driven EIC instability. The threshold conditions applicable to a wide range of plasma parameters and the estimate of the growth rate are determined as a function of the normalized flowing velocity ( u0/vt f e ), the temperature ( Tf/Ts ) and the density ratios ( nf 0/ns 0 ) of flowing component to static one. The EIC instability is driven by either flowing electrons or flowing ions, depending upon the different Doppler shifted frequency domains. It is found that the growth rate for electron-driven instability is higher than the ion-driven one. However, in both cases, the denser (hotter) is the flowing plasma, the lesser (greater) is the growth rate. The possible applications related to the terrestrial solar plasma environment are also discussed.

  8. Inclusion and Functionalization of Polymers with Cyclodextrins: Current Applications and Future Prospects

    Directory of Open Access Journals (Sweden)

    Christian Folch-Cano

    2014-09-01

    Full Text Available The numerous hydroxyl groups available in cyclodextrins are active sites that can form different types of linkages. They can be crosslinked with one another, or they can be derivatized to produce monomers that can form linear or branched networks. Moreover, they can form inclusion complexes with polymers and different substrates, modifying their physicochemical properties. This review shows the different applications using polymers with cyclodextrins, either by forming inclusion complexes, ternary complexes, networks, or molecularly imprinted polymers (MIPs. On one hand, the use of cyclodextrins enhances the properties of each polymer, and on the other the use of polymers decreases the amount of cyclodextrins required in different formulations. Both cyclodextrins and polymers contribute synergistically in several applications such as pharmacological, nutritional, environmental, and other industrial fields. The use of polymers based on cyclodextrins is a low cost easy to use potential tool with great future prospects.

  9. Electro-optics of novel polymer-liquid crystalline composites

    International Nuclear Information System (INIS)

    Ibragimov, T.D.; Bayramov, G.M.; Imamaliyev, A.R.; Bayramov, G.M.

    2014-01-01

    The polymer network liquid crystals based on the liquid crystals H37 and 5CB with PMVP and PEG have been developed. Mesogene substance HOBA is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37+PMVP+HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 percent and 9 percent, correspondingly. The basic electro-optic parameters of the obtained composites are determined at room temperature. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with high polymer concentration on areas with their low concentration

  10. Polymer stabilization of the smectic C-alpha* liquid crystal phase—Over tenfold thermal stabilization by confining networks of photo-polymerized reactive mesogens

    Energy Technology Data Exchange (ETDEWEB)

    Labeeb, A. [Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242 (United States); Microwave Physics and Dielectrics, National Research Center, Dokki 12622 (Egypt); Gleeson, H. F. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Hegmann, T., E-mail: thegmann@kent.edu [Liquid Crystal Institute, Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242 (United States)

    2015-12-07

    The smectic C*-alpha (SmC{sub α}*) phase is one of the sub-phases of ferroelectric liquid crystals that has drawn much interest due to its electro-optical properties and ultrafast switching. Generally observed above the ferroelectric SmC* phase in temperature, the SmC{sub α}* commonly shows only very narrow phase temperature range of a few degree Celsius. To broaden the SmC{sub α}* phase, polymer stabilization was investigated for thermal phase stabilization. Two different reactive monomers were tested in three mixtures, and all three broadened the temperature range of the SmC{sub α}* phase from 3 °C to 39 °C. The current reversal method was used to determine the phase existence versus temperature. Moreover, the texture and network structure was studied by polarized optical microscopy and scanning electron microscopy, with the latter revealing the confinement of the smectic layer structure within the porous polymer network.

  11. Four thiophene-pyridyl-amide-based Zn{sup II}/Cd{sup II} coordination polymers: Assembly, structures, photocatalytic properties and fluorescent recognition for Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng; Li, Qiao-Min; Lin, Hong-Yan; Wang, Xiang

    2017-05-15

    By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation of methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.

  12. Radiation crosslinking of polymers with segregated metallic particles. Final report, June 1, 1971--September 30, 1973

    International Nuclear Information System (INIS)

    Corneliussen, R.D.; Kamel, I.; Kusy, R.P.

    1973-01-01

    Through the past four years of research, a new approach to fabricating conductive polymer/metal composites has been developed. This approach consists of compacting mixtures of polymer and metal powders and then stabilizing the composite through radiation-induced crosslinking. The result is a mechanically strong, conductive materials consisting of two intertwining networks. One is a massive network consisting of fused crosslinked, large (greater than 100 μ) polymer particles while the other is a fine network of small, metallic particles (greater than 10 μ). Nine different systems including crystalline, amorphous, and rubbery polymers were studied. Processing at this time is limited to compression molding in a closed die because of network stability problems. Costs for processing were estimated at about $6.00/lb compared to $50.00 and up for commercial material based on random networks. (U.S.)

  13. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    Science.gov (United States)

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light

  14. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  15. Phase equilibria and phase structures of polymer blends

    International Nuclear Information System (INIS)

    Chalykh, Anatolii E; Gerasimov, Vladimir K

    2004-01-01

    Experimental, methodical and theoretical studies dealing with phase equilibria and phase structures of polymer blends are generalised. The general and specific features of the change in solubility of polymers with changes in the molecular mass and copolymer composition and upon the formation of three-dimensional cross-linked networks are described. The results of the effect of the prehistory on the phase structure and the non-equilibrium state of polymer blends are considered in detail.

  16. Design and construction of diverse structures of coordination polymers: Photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu, E-mail: wuyuhlj@163.com [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Lu, Lu [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Feng, Jianshen [Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Li, Yulong; Sun, Yanchun [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Ma, Aiqing, E-mail: maqandght@126.com [School of Pharmacy, Guangdong Medical University, Dongguan 523808 (China)

    2017-01-15

    The reaction of Cu(NO{sub 3}){sub 2}·3H{sub 2}O/Ni(NO{sub 3}){sub 2}·6H{sub 2}O with 4′-(4-(3,5-dicarboxylphenoxy)phenyl)-4,2′:6′,4′′-terpyridine (H{sub 2}dbp) gave [Cu{sub 0.5}(Hdbp)]{sub n} (1) and [Ni(dbp)(H{sub 2}O)]{sub n} (2), while the reactions of Co(NO{sub 3}){sub 2}·6H{sub 2}O with H{sub 2}dbp in the presence of 4,4′-bipy and 2,2′-bpy generated [Co(dbp)(4,4′-bipy)]{sub n} (3) and ([Co(dbp)(2,2′-bipy)]{sub n}·H{sub 2}O) (4), respectively (4,4′-bipy=4.4′-pyridine and 2,2′-bipy=2,2′-bipyridine). X-Ray single-crystal analyses reveal that 1 contains a 1D double chain. 2 possesses a 3D architecture with (4.6{sup 2}0.8{sup 3}){sub 2} topology that is interpenetrated with each other to form a 2-fold network. In 3, the 2D [Co(dbp)]n sheets are pillared by 4,4′-bpy to form a 3D framework with 1D open channel. Compound 4 consists of a 1D ladder-like chain. The results showed that the structural diversity of the coordination polymers resulted from the different geometries of metal ions and effect of assistant ligands. Furthermore, the photocatalytic properties of 1–4 for degradation of the methyl violet (MV) have been examined. - Graphical abstract: The photocatalytic activity and selectivity of complexes 1–4 prove that they may be good and stable photocatalysts for degradation of organic dyes.

  17. 3D Printed Silicone–Hydrogel Scaffold with Enhanced Physicochemical Properties

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Alm, Martin; Hemmingsen, Mette

    2016-01-01

    is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid...... technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high...... cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN...

  18. Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72- ions

    Science.gov (United States)

    Chen, Zhiwei; Mi, Xiuna; Wang, Suna; Lu, Jing; Li, Yunwu; Li, Dacheng; Dou, Jianmin

    2018-05-01

    Two new coordination polymers (CPs), namely, {[Zn(L)(bpp)]·DMF}n (1) and {[Zn(L)(bpe)]·DMF}n (2) (L = 2,2'-[benzene-1,3-diylbis(methanediylsulfanediyl)]dibenzoic acid, bpp= 1,3-bis(4-pyridyl)propane, bpe = 1,2-Bis(4-pyridyl)ethylene, DMF = N,N-Dimethylformamide), have been solvothermally synthesized and fully characterized. Complex 1 displays a 2D→2D three-fold"false" interpenetrating structure while complex 2 possesses a novel 3-D 4-connected structure with fascinating self-penetrating moieties. The luminescence studies reveal that these complexes exhibited excellent selectivity for Fe3+ and Cr2O72- ions in DMF. The sensing mechanism was investigated through PXRD, XPS , EDS mapping measurements, and discussed in details.

  19. Efficient Supercapacitor Energy Storage Using Conjugated Microporous Polymer Networks Synthesized from Buchwald-Hartwig Coupling.

    Science.gov (United States)

    Liao, Yaozu; Wang, Haige; Zhu, Meifang; Thomas, Arne

    2018-03-01

    Supercapacitors have received increasing interest as energy storage devices due to their rapid charge-discharge rates, high power densities, and high durability. In this work, novel conjugated microporous polymer (CMP) networks are presented for supercapacitor energy storage, namely 3D polyaminoanthraquinone (PAQ) networks synthesized via Buchwald-Hartwig coupling between 2,6-diaminoanthraquinone and aryl bromides. PAQs exhibit surface areas up to 600 m 2 g -1 , good dispersibility in polar solvents, and can be processed to flexible electrodes. The PAQs exhibit a three-electrode specific capacitance of 576 F g -1 in 0.5 m H 2 SO 4 at a current of 1 A g -1 retaining 80-85% capacitances and nearly 100% Coulombic efficiencies (95-98%) upon 6000 cycles at a current density of 2 A g -1 . Asymmetric two-electrode supercapacitors assembled by PAQs show a capacitance of 168 F g -1 of total electrode materials, an energy density of 60 Wh kg -1 at a power density of 1300 W kg -1 , and a wide working potential window (0-1.6 V). The asymmetric supercapacitors show Coulombic efficiencies up to 97% and can retain 95.5% of initial capacitance undergo 2000 cycles. This work thus presents novel promising CMP networks for charge energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  1. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  2. Process optimization in Nd:YAG laser microdrilling of alumina–aluminium interpenetrating phase composite

    Directory of Open Access Journals (Sweden)

    Ranjib Biswas

    2015-07-01

    Full Text Available In laser beam micromachining process, the quality of the drilled hole is of great importance. The quality of the microdrilled hole mainly depends on appropriate selection of process parameters. Predefined diameter of hole with minimum taper is of today's demand. The composite used for microdrilling operation is alumina–aluminium (Al2O3–Al interpenetrating phase composite (IPC, which is widely used in aircraft and space stations. Until date, no experimental study has been done to obtain microdrilled hole of desired diameter. In the present paper three hole qualities such as hole diameter at entry, at exit and hole taper have been optimized individually as well as simultaneously using a central composite design (CCD based on response surface methodology (RSM during pulsed Nd:YAG laser microdrilling operation on alumina–aluminium IPC sheet of 1.14 mm thickness. The analysis of variance (ANOVA test has also been done to identify the process parameters that contributed the most to get desired hole quality.

  3. IPN Polysiloxane-Epoxy Resin for High Temperature Coatings: Structure Effects on Layer Performance after 450 °C Treatment

    Directory of Open Access Journals (Sweden)

    Simone Giaveri

    2017-11-01

    Full Text Available Coatings for high temperatures (HT > 400 °C are obtained from interpenetrating polymer network (IPN binders formed by simultaneous polymerization of silicone and epoxide pre-polymers. A ceramic layer; mainly composed of silica and fillers; remains on the metal surface after a thermal treatment at 450 °C. The layer adhesion and the inorganic filler’s distribution have been investigated by, firstly, exchanging the organic substituents (methyl and phenyl of the silicone chains and, secondly, by adding conductive graphene nanoplatelets with the aim to assure a uniform distribution of heat during the thermal treatment. The results are evidence that different substituent ratios affect the polymer initial layout. The adhesion tests of paint formulations are analysed and were related to instrumental analyses performed using glow discharge optical emission spectroscopy (GDOES; thermal analyses (TG/DTA and DSC; electron microscopy with energy dispersive X-ray analysis (SEM-EDX. A greater resistance to powdering using phenyl groups instead of methyl ones; and an improved distribution of fillers due to graphene nanoplatelet addition; is evidenced.

  4. Gelatin-carboxymethyl tamarind gum biocomposites: In vitro characterization & anti-inflammatory pharmacodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sougata, E-mail: janapharmacy@rediffmail.com; Banerjee, Abhisek; Sen, Kalyan Kumar; Maiti, Sabyasachi

    2016-12-01

    In this study, gelatin and carboxymethyl tamarind gum (CTG) were chemically cross-linked to control the delivery of aceclofenac from their interpenetrating network (IPNs). Infrared spectra, thermal and X-ray data supported that drug and polymer was compatible in the composite hydrogels. Irregularly shaped IPN microstructures were seen under field emission scanning electron microscope (FE-SEM). IPN system was capable of entrapping about 96% of the drug fed. CTG in IPN structures suppressed the drug release rate in HCl solution (pH 1.2); however extended the same in phosphate buffer solution (pH 6.8). The drug release was controlled by polymer chain relaxation/swelling and simple diffusion in vitro. The anti-inflammatory activity of drug-loaded biocomposites lasted over 7 h in albino rats, thus suggesting their potential as an anti-inflammatory therapeutics. - Highlights: • Novel gelatin-carboxymethyl tamarind gum biocomposites was synthesized. • FTIR, thermal and X-ray study ensured compatibility between drug and polymers. • FE-SEM image revealed irregular shape of the IPN microstructures. • In vivo anti-inflammatory pharmacodynamics in rat model was encouraging.

  5. Spectrally efficient polymer optical fiber transmission

    Science.gov (United States)

    Randel, Sebastian; Bunge, Christian-Alexander

    2011-01-01

    The step-index polymer optical fiber (SI-POF) is an attractive transmission medium for high speed communication links in automotive infotainment networks, in industrial automation, and in home networks. Growing demands for quality of service, e.g., for IPTV distribution in homes and for Ethernet based industrial control networks will necessitate Gigabit speeds in the near future. We present an overview on recent advances in the design of spectrally efficient and robust Gigabit-over-SI-POF transmission systems.

  6. Preparation and Properties of a Novel Semi-IPN Slow-Release Fertilizer with the Function of Water Retention.

    Science.gov (United States)

    Xiang, Yang; Ru, Xudong; Shi, Jinguo; Song, Jiang; Zhao, Haidong; Liu, Yaqing; Guo, Dongdong; Lu, Xin

    2017-12-20

    A new semi-interpenetrating polymer network (semi-IPN) slow-release fertilizer (SISRF) with water absorbency, based on the kaolin-g-poly(acrylic acid-co-acrylic amide) (kaolin-g-P(AA-co-AM)) network and linear urea-formaldehyde oligomers (UF), was prepared by solution polymerization. Nutrients phosphorus and potassium were supplied by adding dipotassium hydrogen phosphate during the preparation process. The structure and properties of SISRF were characterized by various characterization methods. SISRF showed excellent water absorbency of 68 g g -1 in tap water. The slow-release behavior of nutrients and water-retention capacity of SISRF were also measured. Meanwhile, the swelling kinetics was well described by a pseudo-second-order kinetics model. Results suggested the formation of SISRF with simultaneously good slow-release and water-retention capacity, which was expected to apply in modern agriculture and horticulture.

  7. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    KAUST Repository

    Bartelt, Jonathan A.

    2014-03-20

    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2-ethylhexyloxy)benzo[1,2-b:4,5-b\\']dithiophene-co- octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene-rich domains, which cause extensive charge-carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene-rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin-casting and this network acts as a template that prevents large-scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene-rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells. The performance of poly(di(2-ethylhexyloxy) benzo[1,2-b:4,5-b\\']dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) bulk heterojunction solar cells strongly depends on the polymer molecular weight, and processing these bulk heterojunctions with a solvent additive preferentially improves the performance of low molecular weight devices. It is demonstrated that polymer aggregation in solution significantly impacts the thin-film bulk heterojunction morphology and is vital for high device performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fabrication of single walled carbon nanotubes/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) layers under enhanced gravity drying

    International Nuclear Information System (INIS)

    Rincón, M.E.; Alvarado-Tenorio, G.; Vargas, M.G.; Ramos, E.; Sánchez-Tizapa, M.

    2015-01-01

    In this contribution, we explore the use of enhanced gravity in order to achieve composite films of single walled carbon nanotubes (SWCNTs)/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) with improved properties. The samples were characterized by atomic force microscopy, scanning electron microscopy, and electrochemical impedance spectroscopy, in order to determine the differences caused by the enhanced gravity. Impedance spectroscopy results show that there is an improvement of the electrical properties of the SWCNT/PEDOT:PSS junction, manifested as lower contact resistance, modified chemical capacitance, and induced p-type doping. A force-induced interpenetration of the polymer into the SWCNT network and the efficient removal of water and PSS are proposed to explain the results. The transparency and electrical properties of these films forecast their application as a buffer layer in organic solar cell heterojunctions, or as hole transporting materials in perovskite-based solar cells. - Highlights: • A technique to fabricate conductive films of SWCNT/PEDOT:PSS is presented. • The technique is based on enhanced gravity drying. • Improved interpenetration of the bilayer SWCNT/PEDOT:PSS system • Enhanced gravity increases the p-type conductivity of the film. • Impedance spectroscopy confirms the improvement on the electrical properties.

  9. Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NARCIS (Netherlands)

    Qin, C.; Hassanizadeh, S.M.; van Oosterhout, L.M.

    2016-01-01

    In the cathode side of a polymer electrolyte fuel cell (PEFC), a micro porous layer (MPL) added between the catalyst layer (CL) and the gas diffusion layer (GDL) plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor

  10. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.; Walton, Jay R.; Gorb, Yuliya

    2009-01-01

    interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation

  11. A series of novel metal–organic coordination polymers constructed from the new 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole spacer and aromatic carboxylates: Synthesis, crystal structures, and luminescence properties

    International Nuclear Information System (INIS)

    Sun, Jiayin; Zhang, Daojun; Wang, Li; Zhang, Renchun; Wang, Junjie; Zeng, Ying; Zhan, Jinling; Xu, Jianing; Fan, Yong

    2013-01-01

    Using bifunctional organic ligand 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (HL) and different aromatic carboxylates as secondary ligands, four novel metal-organic coordination polymers, [Zn(L)(1,4-bdc) 0.5 ] (1), [Zn 1.5 (L)(2,5-pydc)] (2), [Zn(HL)(1,2,4,5-btec) 0.5 ] (3), and [Cd(HL)(1,2,4,5-btec) 0.5 ] (4) (1,4-bdc, 1,4-benzenedicarboxylate; 2,5-pydc, 2,5-pyridinedicarboxylate; 1,2,4,5-btec, 1,2,4,5-benzenetetracarboxylate) have been successfully synthesized and analyzed. Compound 1 features the 2D [Zn(L)] n layers built by μ 3 -L bridging ligands and Zn(II) ions, which are further linked by pillared 1,4-bdc 2− ligands to form a 2-fold interpenetrating dmc framework. The 3D network of compound 2 can be simplified as a rare 2-nodal (3,6)-connected rtl (rutile) topology. Compound 3 possesses a 2D layer structure which is accomplished by connecting ladder-chains to L ligands. Compound 4 exhibits 2D [Cd(1,2,4,5-btec)] layers with infinite Cd–O–Cd rods and the adjacent 2D networks are further pillared by L with terminal bidentate coordination mode to generate the final 3D structure. The solid-state luminescent studies show that compounds 1–4 display intense fluorescent emissions. - Graphical abstract: Using bifunctional organic ligand 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (HL) and different aromatic carboxylates as secondary ligands, four novel metal-organic coordination polymers have been obtained. All compounds show good luminescence properties at room temperature. Display Omitted - Highlights: • Four Zn(II)/Cd(II)-MOCPs have been successfully prepared with the rigid bifunctional ligand 5-(4-imidazol -1-yl-phenyl) -2H-tetrazole and different aromatic carboxylates mixed ligands. • Compound 2 is a 2-nodal rtl (rutile) net and compound 4 is a binodal (5, 6)-connected net with yav topology. • Compounds 1-4 display intense fluorescent emissions at room temperature

  12. Polymer-based platform for microfluidic systems

    Science.gov (United States)

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  13. High quality junctions by interpenetration of vapor liquid solid grown nanostructures for microchip integration

    Energy Technology Data Exchange (ETDEWEB)

    Jebril, Seid; Kuhlmann, Hanna; Adelung, Rainer [Funktionale Nanomaterialien, CAU Kiel (Germany); Mueller, Sven [Nanowires and Thin Films, II. Physikalisches Institut, Goettingen (Germany); Ronning, Carsten [Institute for Solid State Physics, Universitaet Jena (Germany); Kienle, Lorenz [Synthese und Realstruktur, CAU Kiel (Germany); Duppel, Viola [MPI fuer Festkoerperforschung, Stuttgart (Germany)

    2009-07-01

    The usability of nanostructures in electrical devices like gas sensors depends critically on the ability to form high quality contacts and junctions. For the fabrication of various nanostructures, vapor-liquid-solid (VLS) growth is a wide spread and very efficient technique. However, forming contacts with the VLS grown structures to utilize them in a device is still tedious, because either the substrate has to be epitaxial to the VLS material or a manual alignment is necessary. Here we demonstrate the contact formation by simply using the ability of individual crystals to interpenetrate each other during the straight forward VLS growth. This allows growing VLS structures directly on two neighboring gold circuit paths of a microchip; bridges over predefined gaps will be formed. Moreover, TEM investigations confirm the high quality of the crystalline junctions that allow demonstrations as UV and hydrogen-sensor. The VLS devices are compared with conventional produced.

  14. Hybrid Photonic Integration on a Polymer Platform

    Directory of Open Access Journals (Sweden)

    Ziyang Zhang

    2015-09-01

    Full Text Available To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard, which provides flexible optical input/ouptut interfaces (I/Os that allow robust coupling of indium phosphide (InP-based active components, passive insertion of thin-film-based optical elements, and on-chip attachment of optical fibers. This work reviews the recent progress of our polyboard platform. On the fundamental level, multi-core waveguides and polymer/silicon nitride heterogeneous waveguides have been fabricated, broadening device design possibilities and enabling 3D photonic integration. Furthermore, 40-channel optical line terminals and compact, bi-directional optical network units have been developed as highly functional, low-cost devices for the wavelength division multiplexed passive optical network. On a larger scale, thermo-optic elements, thin-film elements and an InP gain chip have been integrated on the polyboard to realize a colorless, dual-polarization optical 90° hybrid as the frontend of a coherent receiver. For high-end applications, a wavelength tunable 100Gbaud transmitter module has been demonstrated, manifesting the joint contribution from the polyboard technology, high speed polymer electro-optic modulator, InP driver electronics and ceramic electronic interconnects.

  15. Coordination Polymer Gels by Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Ha; Cho, Young Je; Jung, Jong Hwa [Gyeongsang National Univ., Jinju (Korea, Republic of)

    2011-07-01

    Hydrogenation of a pyridine derivative possessing tetrazole moieties as end groups, without long alkyl chain groups, results in the formation of a Mg(NO{sub 3}){sub 2} coordination polymer gel. The polymer exhibits a strong fluorescence enhancement upon gel formation. 1 can also be gloated with a variety of magnesium anions such as SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Br{sup -} and I{sup -}, indicating that the coordination polymer gel formation of 1 does not strongly depends on anions. The Seam and ABM images of Mg{sup 2+} coordination polymer gel 1 display a flabbier network with several micrometers long, widths in the range 60-70 nm and thicknesses of about 3 nm. In addition, photophysical studies show that the hydrogel exhibits a typical {pi}-{pi} transition and gives rise to high fluorescence behavior. The coordination polymer hydrogel exhibits viscoelastic behavior as evidenced from the rheological studies.

  16. A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle

    International Nuclear Information System (INIS)

    Wang Zhifeng; Ye Xiongying

    2013-01-01

    Carbon nanotubes (CNTs) filled polymeric composites can be used as a kind of flexible piezoresistive material in potentially many fields. Due to the diversity of CNTs and polymers, the mechanism and features of their piezoresistive behaviour is still not fully understood. This paper reports our investigations into the mechanism and optimization of piezoresistive CNT/polymer composites. Numerical simulation results showed that the junction resistances between CNTs are a major component of the network conductance of the composite as well as the piezoresistive behaviour. Average junction gap variation (AJGV) was introduced as a quantitative description of the conductance variation of a CNT network caused by strain and the conductance variation of the CNT network was found to be dominated by AJGV. Numerical simulation and analytical results indicated that the key parameters affecting AJGV include the orientation and diameter of CNTs, Poisson’s ratio of the polymer, and the concentration of CNTs in the polymer matrix. An optimizing principle was then given for piezoresistive CNT/polymer composites. (paper)

  17. Influence of graphene quantum dots on electrical properties of polymer composites

    Science.gov (United States)

    Arthisree, D.; Joshi, Girish M.

    2017-07-01

    We successfully prepared synthetic nanocomposite (SNC) by dispersing graphene quantum dots (GQD) in cellulose acetate (CA) polymer system. The dispersion and occupied network of GQD were foreseen by microscopic techniques. The variation of plane to crossed linked array network was observed by the polarizing optical microscopic (POM) technique. The scanning electron microscopy (SEM) revealed the leaves like impressions of GQD in host polymer system. The series network of GQD occupied in CA at higher resolution was confirmed by transmission electron microscopy (TEM). The two dimensional (2D) topographic images demonstrated an entangled polymer network to plane morphology. The variation in surface roughness was evaluated from the dimensional (3D) topography. The influence of temperature on AC conductivity with highest value (4  ×  10-5 S cm-1), contributes to the decrease in activation energy. The DC conductivity obeys the percolation criteria co-related to the GQD loading by weight fraction. Furthermore, this synthetic nanocomposite is feasible for the development of sensing and electrical applications.

  18. Integration of molecular machines into supramolecular materials: actuation between equilibrium polymers and crystal-like gels.

    Science.gov (United States)

    Mariani, Giacomo; Goujon, Antoine; Moulin, Emilie; Rawiso, Michel; Giuseppone, Nicolas; Buhler, Eric

    2017-11-30

    In this article, the dynamic structure of complex supramolecular polymers composed of bistable [c2]daisy chain rotaxanes as molecular machines that are linked by ureidopyrimidinones (Upy) as recognition moieties was studied. pH actuation of the integrated mechanically active rotaxanes controls the contraction/extension of the polymer chains as well as their physical reticulation. Small-angle neutron and X-ray scattering were used to study in-depth the nanostructure of the contracted and extended polymer aggregates in toluene solution. The supramolecular polymers comprising contracted nanomachines were found to be equilibrium polymers with a mass that is concentration dependent in dilute and semidilute regimes. Surprisingly, the extended polymers form a gel network with a crystal-like internal structure that is independent of concentration and reminiscent of a pearl-necklace network.

  19. New reactive polymer for protein immobilisation on sensor surfaces.

    Science.gov (United States)

    Kyprianou, Dimitris; Guerreiro, Antonio R; Chianella, Iva; Piletska, Elena V; Fowler, Steven A; Karim, Kal; Whitcombe, Michael J; Turner, Anthony P F; Piletsky, Sergey A

    2009-01-01

    Immobilisation of biorecognition elements on transducer surfaces is a key step in the development of biosensors. The immobilisation needs to be fast, cheap and most importantly should not affect the biorecognition activity of the immobilised receptor. A novel protocol for the covalent immobilisation of biomolecules containing primary amines using an inexpensive and simple polymer is presented. This tri-dimensional (3D) network leads to a random immobilisation of antibodies on the polymer and ensures the availability of a high percentage of antibody binding sites. The reactivity of the polymer is based on the reaction between primary amines and thioacetal groups included in the polymer network. These functional groups (thioacetal) do not need any further activation in order to react with proteins, making it attractive for sensor fabrication. The novel polymer also contains thiol derivative groups (disulphide groups or thioethers) that promote self-assembling on a metal transducer surface. For demonstration purposes the polymer was immobilised on Au Biacore chips. The resulting polymer layer was characterised using contact angle meter, atomic force microscopy (AFM) and ellipsometry. A general protocol suitable for the immobilisation of bovine serum albumin (BSA), enzymes and antibodies such as polyclonal anti-microcystin-LR antibody and monoclonal anti-prostate specific antigen (anti-PSA) antibody was then optimised. The affinity characteristics of developed immunosensors were investigated in reaction with microcystin-LR, and PSA. The calculated detection limit for analytes depended on the properties of antibodies. The detection limit for microcystin-LR was 10 ngmL(-1) and for PSA 0.01 ngmL(-1). The non-specific binding of analytes to synthesised polymers was very low. The polymer-coated chips were stored for up to 2 months without any noticeable deterioration in their ability to react with proteins. These findings make this new polymer very promising for the

  20. Systematic comparison of model polymer nanocomposite mechanics.

    Science.gov (United States)

    Xiao, Senbo; Peter, Christine; Kremer, Kurt

    2016-09-13

    Polymer nanocomposites render a range of outstanding materials from natural products such as silk, sea shells and bones, to synthesized nanoclay or carbon nanotube reinforced polymer systems. In contrast to the fast expanding interest in this type of material, the fundamental mechanisms of their mixing, phase behavior and reinforcement, especially for higher nanoparticle content as relevant for bio-inorganic composites, are still not fully understood. Although polymer nanocomposites exhibit diverse morphologies, qualitatively their mechanical properties are believed to be governed by a few parameters, namely their internal polymer network topology, nanoparticle volume fraction, particle surface properties and so on. Relating material mechanics to such elementary parameters is the purpose of this work. By taking a coarse-grained molecular modeling approach, we study an range of different polymer nanocomposites. We vary polymer nanoparticle connectivity, surface geometry and volume fraction to systematically study rheological/mechanical properties. Our models cover different materials, and reproduce key characteristics of real nanocomposites, such as phase separation, mechanical reinforcement. The results shed light on establishing elementary structure, property and function relationship of polymer nanocomposites.

  1. Competing dynamic phases of active polymer networks

    Science.gov (United States)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  2. Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nguyen, Thao D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, Rui [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate the effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.

  3. Soft matter: rubber and networks

    Science.gov (United States)

    McKenna, Gregory B.

    2018-06-01

    Rubber networks are important and form the basis for materials with properties ranging from rubber tires to super absorbents and contact lenses. The development of the entropy ideas of rubber deformation thermodynamics provides a powerful framework from which to understand and to use these materials. In addition, swelling of the rubber in the presence of small molecule liquids or solvents leads to materials that are very soft and ‘gel’ like in nature. The review covers the thermodynamics of polymer networks and gels from the perspective of the thermodynamics and mechanics of the strain energy density function. Important relationships are presented and experimental results show that the continuum ideas contained in the phenomenological thermodynamics are valid, but that the molecular bases for some of them remain to be fully elucidated. This is particularly so in the case of the entropic gels or swollen networks. The review is concluded with some perspectives on other networks, ranging from entropic polymer networks such as thermoplastic elastomers to physical gels in which cross-link points are formed by glassy or crystalline domains. A discussion is provided for other physical gels in which the network forms a spinodal-like decomposition, both in thermoplastic polymers that form a glassy network upon phase separation and for colloidal gels that seem to have a similar behavior.

  4. Life test of DMFC using poly(ethylene glycol)bis(carboxymethyl)ether plasticized PVA/PAMPS proton-conducting semi-IPNs

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jinli [National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Central 5, Tsukuba, Ibaraki 305-8565 (Japan); New Energy Technology Research Center, Tongji University, Shanghai 201804 (China); Ikesaka, Shinya; Saito, Morihiro; Kuwano, Jun [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826 (Japan); Okada, Tatsuhiro [National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Central 5, Tsukuba, Ibaraki 305-8565 (Japan)

    2007-08-15

    A novel, low-cost proton-conducting semi-IPN (semi-interpenetrating polymer network) has been successfully prepared from PVA/PAMPS (poly(vinyl alcohol) and poly(2-acrylamindo-2-methyl-1-propanesulfonic acid))blends by incorporating poly(ethylene glycol)bis(carboxymethyl)ether (PEGBCME) as a novel plasticizer. Although, the polymer is based on a relatively low content of PAMPS as a component of ion conducting sites, the resulting semi-IPN exhibited high proton conductivity (0.1 S cm{sup -1}) at 25 C, which afforded a higher power density of 51 mW cm{sup -2} at 80 C. A striking feature is that a long-term initial performance is achieved with a 130 h of stable fuel cell operation in DMFC mode due to effectively suppressed methanol crossover. This is a new record for a fully hydrocarbon membrane in DMFC, seeing that the PVA-PAMPS proton-conducting semi-IPNs are made simply of aliphatic skeletons. (author)

  5. Full color camouflage in a printable photonic blue-colored polymer

    NARCIS (Netherlands)

    Moirangthem, M.; Schenning, A.P.H.J.

    2018-01-01

    A blue reflective photonic polymer coating which can be patterned in full color, from blue to red, by printing with an aqueous calcium nitrate solution has been fabricated. Color change in the cholesteric liquid-crystalline polymer network over the entire visible spectrum is obtained by the use of

  6. In-situ gelling polymers for biomedical applications

    CERN Document Server

    2015-01-01

    This book presents the research involving in situ gelling polymers and can be used as a guidebook for academics, industrialists and postgraduates interested in this area. This work summaries the academic contributions from the top authorities in the field and explore the fundamental principles of in situ gelling polymeric networks, along with examples of their major applications. This book aims to provide an up-to-date resource of in situ gelling polymer research.

  7. Normal stresses in semiflexible polymer hydrogels

    Science.gov (United States)

    Vahabi, M.; Vos, Bart E.; de Cagny, Henri C. G.; Bonn, Daniel; Koenderink, Gijsje H.; MacKintosh, F. C.

    2018-03-01

    Biopolymer gels such as fibrin and collagen networks are known to develop tensile axial stress when subject to torsion. This negative normal stress is opposite to the classical Poynting effect observed for most elastic solids including synthetic polymer gels, where torsion provokes a positive normal stress. As shown recently, this anomalous behavior in fibrin gels depends on the open, porous network structure of biopolymer gels, which facilitates interstitial fluid flow during shear and can be described by a phenomenological two-fluid model with viscous coupling between network and solvent. Here we extend this model and develop a microscopic model for the individual diagonal components of the stress tensor that determine the axial response of semiflexible polymer hydrogels. This microscopic model predicts that the magnitude of these stress components depends inversely on the characteristic strain for the onset of nonlinear shear stress, which we confirm experimentally by shear rheometry on fibrin gels. Moreover, our model predicts a transient behavior of the normal stress, which is in excellent agreement with the full time-dependent normal stress we measure.

  8. Nanoporous thermosetting polymers.

    Science.gov (United States)

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  9. Morphological studies of polymer dispersed liquid crystal materials

    International Nuclear Information System (INIS)

    Han, Jin-Woo

    2006-01-01

    In this work, we have studied the morphologies of polymer dispersed liquid crystals (PDLCs) based on E7/NOA61. Scanning electron microscope studies show that the PDLC morphology is strongly affected by the LC concentration and the cure temperature. A typical PDLC morphology with isolated LC droplets dispersed in a polymer matrix is only observed at low LC compositions and at low cure temperatures. Increasing either the LC composition or the cure temperature results in a polymer ball morphology, in which LCs exist in irregularly shaped voids in the polymer network structure. It is shown that the transition between these two morphologies can be qualitatively explained using a pseudo-binary phase diagram.

  10. Rheology of multiphase polymer systems using novel "melt rigidity" evaluation approach

    Science.gov (United States)

    Kracalik, Milan

    2015-04-01

    Multiphase polymer systems like blends, composites and nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of heterogeneous polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about damping behaviour (e.g. Van Gurp-Palmen-plot). On the contrary to evaluation of damping behaviour, "melt rigidity" approach has been introduced for description of physical network of rigid particles in polymer matrix as relation of ∫G'/∫G" over specific frequency range. This approach has been experimentally proved for polymer nanocomposites in order to compare shear flow characteristics with elongational flow field. In this contribution, LDPE-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel "melt rigidity" approach.

  11. Recent Developments in Thiolated Polymeric Hydrogels for Tissue Engineering Applications.

    Science.gov (United States)

    Gajendiran, Mani; Rhee, Jae-Sung; Kim, Kyobum

    2018-02-01

    This review focuses on the recent strategy in the preparation of thiolated polymers and fabrication of their hydrogel matrices. The mechanism involved in the synthesis of thiolated polymers and fabrication of thiolated polymer hydrogels is exemplified with suitable schematic representations reported in the recent literature. The 2-iminothiolane namely "Traut's reagent" has been widely used for effectively thiolating the natural polymers such as collagen and gelatin, which contain free amino group in their backbone. The free carboxylic acid group containing polymers such as hyaluronic acid and heparin have been thiolated by using the bifunctional molecules such as cysteamine and L-cysteine via N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The degree of thiolation in the polymer chain has been widely determined by using Ellman's assay method. The thiolated polymer hydrogels are prepared by disulfide bond formation (or) thiol-ene reaction (or) Michael-type addition reaction. The thiolated polymers such as thiolated gelatin are reacted with polyethylene glycol diacrylate for obtaining interpenetrating polymer network hydrogel scaffolds. Several in vitro cell culture experiments indicate that the developed thiolated polymer hydrogels exhibited biocompatibility and cellular mimicking properties. The developed hydrogel scaffolds efficiently support proliferation and differentiation of various cell types. In the present review article, the thiol-functionalized protein-based biopolymers, carbohydrate-based polymers, and some synthetic polymers have been covered with recently published research articles. In addition, the usage of new thiolated nanomaterials as a crosslinking agent for the preparation of three-dimensional tissue-engineered hydrogels is highlighted.

  12. Printed polymer photonic devices for optical interconnect systems

    Science.gov (United States)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  13. Synthesis and characterization of interpenetrating phase ceramic metal composites

    International Nuclear Information System (INIS)

    Kanwal, T.

    2011-01-01

    Alumina powder was sintered in MW furnace under vacuum, without vacuum and conventional sintering furnace at different temperatures followed by characterization to observe the effect of sintering mode. Zirconia-Nickel and Alumina-Nickel systems were selected to study the effect of metallic phase interconnectivity on the electrical and thermal behavior in interpenetrating phase composites (IPCs). In order to obtain the homogenous mixture of Alumina and Nick powders, a detailed investigation was performed on the de-agglomeration and prop mixing of powders. Sintering parameters were optimized for the homogenization o Alumina with Nickel in planetary ball mill without sticking of powders with jar.- Homogenization of Zirconia-Nickel and Alumina-Nickel powders was perform using planetary ball mill as well as pestle mortar. Compaction of composites was performed uniaxially and sintering was carried in microwave furnace, tubular furnace with Argon environment and in vacuum sintering furnace. Electrical and thermal behavior of microwave as well as conventionally sintered ZrO/sub 2/-Ni and Al/sub 2/O/sub 3/-Ni IPCs was also observed. Electrical behavior of Composites was characterized b determining the impedance of the composites. To find the percolation limit for both Alumina-Nickel and Zirconia-Nickel composite systems the real part of impedance was used. On the basis of electrical characterization, samples were selected for SEM, BET surface area and CTE analysis. SEM of selected samples was performed t observe the connectivity of Nickel in composites. Finally, the effect of percolation limit on thermal behavior of IPCs was investigated with the help of CTE. (author)

  14. Diverse assemblies of the (4,4) grid layers exemplified in Zn(II)/Co(II) coordination polymers with dual linear ligands

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guang-Zhen; Li, Xiao-Dong; Xin, Ling-Yun; Li, Xiao-Ling [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, Henan 473061 (China)

    2013-07-15

    Diverse (4,4) grid layers are exemplified in five two-dimensional coordination polymers with dual µ{sub 2}-bridged ligands, namely, ([Zn(cbaa)(bpp)]·H{sub 2}O){sub n} (1), [Zn{sub 2}(cbaa){sub 2}(bpy)]{sub n} (2), [Co{sub 2}(cbaa){sub 2}(bpp){sub 2}]{sub n} (3), [Co(cbaa)(bpp)]{sub n} (4), and [Co(bdaa)(bpp)(H{sub 2}O){sub 2}]{sub n} (5) (H{sub 2}cbaa=4-carboxybenzeneacetic acid, bpp=1,3-di(4-pyridyl)propane, bpy=4,4′-bipyridyl, and H{sub 2}bdaa=1,4-benzenediacrylic acid). For 1, two (4,4) grid layers with [ZnN{sub 2}O{sub 2}] tetrahedron as the node are held together by lattice water forming a H-bonding bilayer. Individual (4,4) grid layer in 2 is based on (Zn{sub 2}(OCO){sub 4}) paddlewheel unit as the node. Two (4,4) grid layers with (Co{sub 2}O(OCO){sub 2}) dimer as the node are covalently interconnected by organic ligands affording a thick bilayer of 3 with new framework topology. The different entanglements between two coincident (4,4) grid layers with [CoN{sub 2}O{sub 4}] octahedron as the node leads to two 2D→2D interpenetrated structures for 4 and 5. Furthermore, fluorescent properties of 1 and 2 as well as magnetic properties of 3 are investigated. - Graphical abstract: Diverse assemblies of the (4,4) grid layers with different network nodes forms five coordination polymers that are well characterized by IR, TGA, element analysis, fluorescent and magnetic measurement. - Highlights: • Diverse assemblies of the (4,4) grid layers with different structural units as the nodes. • A new topology type with the uninodal 6-connected net of (4{sup 12}.5{sup 2}.6) is found. • Intense fluorescence emissions with a rare blue-shift of 55 nm compared to free carboxylate ligand.

  15. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with Human Gingival Keratinocytes (HGKs).

    Science.gov (United States)

    Grenade, Charlotte; De Pauw-Gillet, Marie-Claire; Pirard, Catherine; Bertrand, Virginie; Charlier, Corinne; Vanheusden, Alain; Mainjot, Amélie

    2017-03-01

    Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials, a new class of CAD-CAM composites, is poorly explored in the literature, in particular, no data are available regarding Human Gingival Keratinocytes (HGK). The first objective of this study was to evaluate the in vitro biocompatibility of PICNs with HGKs in comparison with other materials typically used for implant prostheses. The second objective was to correlate results with PICN monomer release and indirect cytotoxicity. HGK attachment, proliferation and spreading on PICN, grade V titanium (Ti), yttrium zirconia (Zi), lithium disilicate glass-ceramic (eM) and polytetrafluoroethylene (negative control) discs were evaluated using a specific insert-based culture system. For PICN and eM samples, monomer release in the culture medium was quantified by high performance liquid chromatography and indirect cytotoxicity tests were performed. Ti and Zi exhibited the best results regarding HGK viability, number and coverage. eM showed inferior results while PICN showed statistically similar results to eM but also to Ti regarding cell number and to Ti and Zi regarding cell viability. No monomer release from PICN discs was found, nor indirect cytotoxicity, as for eM. The results confirmed the excellent behavior of Ti and Zi with gingival cells. Even if polymer based, PICN materials exhibited intermediate results between Ti-Zi and eM. These promising results could notably be explained by PICN high temperature-high pressure (HT-HP) innovative polymerization mode, as confirmed by the absence of monomer release and indirect cytotoxicity. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. A 1D thermomechanical network transition constitutive model coupled with multiple structural relaxation for shape memory polymers

    Science.gov (United States)

    Zeng, Hao; Xie, Zhimin; Gu, Jianping; Sun, Huiyu

    2018-03-01

    A new thermomechanical network transition constitutive model is proposed in the study to describe the viscoelastic behavior of shape memory polymers (SMPs). Based on the microstructure of semi-crystalline SMPs, a new simplified transformation equation is proposed to describe the transform of transient networks. And the generalized fractional Maxwell model is introduced in the paper to estimate the temperature-dependent storage modulus. In addition, a neo-KAHR theory with multiple discrete relaxation processes is put forward to study the structural relaxation of the nonlinear thermal strain in cooling/heating processes. The evolution equations of the time- and temperature-dependent stress and strain response are developed. In the model, the thermodynamical and mechanical characteristics of SMPs in the typical thermomechanical cycle are described clearly and the irreversible deformation is studied in detail. Finally, the typical thermomechanical cycles are simulated using the present constitutive model, and the simulation results agree well with the experimental results.

  17. Synthesis, structures and properties of a family of four two-dimensional coordination polymers constructed from 5-hydroxyisophthalate

    International Nuclear Information System (INIS)

    Zhang, Kou-Lin; Zhang, Jing-Bo; Jing, Chu-Yue; Zhang, Lei; Walton, Richard I.; Zhu, Peizhi; Ng, Seik Weng

    2014-01-01

    Four 2D coordination polymers (CPs) with different structures containing the multifunctional ligand 5-hydroxyisophthalate (5-OH-BDC 2− ), [Zn(5-OH-BDC)(btb)]·2H 2 O (1), [Cd(5-OH-BDC)(btp)(H 2 O)]·3H 2 O (2), [Cd(5-OH-BDC)(bth) 2 (H 2 O)]·H 2 O (3) and [Pb(5-OH-BDC)]·H 2 O (4) [btp=1, 3-bis(1,2,4-triazol-1-yl)propane, btb=1,4-bis(1,2,4-triazol-1-yl)butane, bth=1, 6-bis(1,2,4-triazol-1-yl)hexane] were obtained. 1–3 were synthesised hydrothermally, while 4 was obtained under ambient condition. The adjacent (2D→2D) polycatenated 2D layers of 1 polythread in a parallel manner to form an unusual 2D→3D polythreaded framework. 2 contains an undulated 2D (4, 4) network and further extends into an “embracing” double-layer structure through the C–H···π and π···π stacking interactions. 3 exhibits a non-interpenetrating 2D (4, 4)-network. 4 exhibits a 2D double-layered binodal (4, 4)-net containing oblong nanochannels with symbol (4 3 6 3 ) 2 . Reversible dehydration–rehydration is observed in 1, 2 and 4, which fall within the category of “recoverable collapsing” and “guest-induced re-formation” frameworks, while 3 exhibits irreversible dehydration–rehydration behaviour. The solid state fluorescent properties of 1–4 have been investigated. -- Graphical abstract: Among four 2D CPs reported, 1 is an unusual 2D→3D polythreaded framework. 4 exhibits 2D double-layered binodal (4, 4)-net containing nanochannels. Reversible dehydration–rehydration is observed in 1, 2 and 4. Highlights: • Four 2D CPs based on 5-hydroxyisophthalate with d 10 and Pb(II) ions were reported. • 1 is an unusual 2D→3D polythreaded framework. • 4 shows a binodal (4, 4)-connected 2D double-layer network with nanochannels. • The materials 1, 2 and 4 show reversible dehydration–rehydration behaviours. • Solid state fluorescent properties were investigated

  18. Synthesis, structures and properties of a family of four two-dimensional coordination polymers constructed from 5-hydroxyisophthalate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kou-Lin, E-mail: klzhang@yzu.edu.cn [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zhang, Jing-Bo; Jing, Chu-Yue; Zhang, Lei [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Walton, Richard I. [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Zhu, Peizhi, E-mail: pzzhu@yzu.edu.cn [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Ng, Seik Weng [Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-15

    Four 2D coordination polymers (CPs) with different structures containing the multifunctional ligand 5-hydroxyisophthalate (5-OH-BDC{sup 2−}), [Zn(5-OH-BDC)(btb)]·2H{sub 2}O (1), [Cd(5-OH-BDC)(btp)(H{sub 2}O)]·3H{sub 2}O (2), [Cd(5-OH-BDC)(bth){sub 2}(H{sub 2}O)]·H{sub 2}O (3) and [Pb(5-OH-BDC)]·H{sub 2}O (4) [btp=1, 3-bis(1,2,4-triazol-1-yl)propane, btb=1,4-bis(1,2,4-triazol-1-yl)butane, bth=1, 6-bis(1,2,4-triazol-1-yl)hexane] were obtained. 1–3 were synthesised hydrothermally, while 4 was obtained under ambient condition. The adjacent (2D→2D) polycatenated 2D layers of 1 polythread in a parallel manner to form an unusual 2D→3D polythreaded framework. 2 contains an undulated 2D (4, 4) network and further extends into an “embracing” double-layer structure through the C–H···π and π···π stacking interactions. 3 exhibits a non-interpenetrating 2D (4, 4)-network. 4 exhibits a 2D double-layered binodal (4, 4)-net containing oblong nanochannels with symbol (4{sup 3}6{sup 3}){sub 2}. Reversible dehydration–rehydration is observed in 1, 2 and 4, which fall within the category of “recoverable collapsing” and “guest-induced re-formation” frameworks, while 3 exhibits irreversible dehydration–rehydration behaviour. The solid state fluorescent properties of 1–4 have been investigated. -- Graphical abstract: Among four 2D CPs reported, 1 is an unusual 2D→3D polythreaded framework. 4 exhibits 2D double-layered binodal (4, 4)-net containing nanochannels. Reversible dehydration–rehydration is observed in 1, 2 and 4. Highlights: • Four 2D CPs based on 5-hydroxyisophthalate with d{sup 10} and Pb(II) ions were reported. • 1 is an unusual 2D→3D polythreaded framework. • 4 shows a binodal (4, 4)-connected 2D double-layer network with nanochannels. • The materials 1, 2 and 4 show reversible dehydration–rehydration behaviours. • Solid state fluorescent properties were investigated.

  19. Strain-dependent characterization of electrode and polymer network of electrically activated polymer actuators

    Science.gov (United States)

    Töpper, Tino; Osmani, Bekim; Weiss, Florian M.; Winterhalter, Carla; Wohlfender, Fabian; Leung, Vanessa; Müller, Bert

    2015-04-01

    Fecal incontinence describes the involuntary loss of bowel content and affects about 45 % of retirement home residents and overall more than 12 % of the adult population. Artificial sphincter implants for treating incontinence are currently based on mechanical systems with failure rates resulting in revision after three to five years. To overcome this drawback, artificial muscle sphincters based on bio-mimetic electro-active polymer (EAP) actuators are under development. Such implants require polymer films that are nanometer-thin, allowing actuation below 24 V, and electrodes that are stretchable, remaining conductive at strains of about 10 %. Strain-dependent resistivity measurements reveal an enhanced conductivity of 10 nm compared to 30 nm sputtered Au on silicone for strains higher than 5 %. Thus, strain-dependent morphology characterization with optical microscopy and atomic force microscopy could demonstrate these phenomena. Cantilever bending measurements are utilized to determine elastic/viscoelastic properties of the EAP films as well as their long-term actuation behavior. Controlling these properties enables the adjustment of growth parameters of nanometer-thin EAP actuators.

  20. Atomic Origins of the Self-Healing Function in Cement–Polymer Composites

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Manh Thuong; Wang, Zheming; Rod, Kenton A.; Childers, Matthew I.; Fernandez, Carlos A.; Koech, Phillip K.; Bennett, Wendy D.; Rousseau, Roger J.; Glezakou, Vassiliki-Alexandra

    2018-01-09

    Motivated by recent advances in self-healing cement and epoxy polymer composites, we present a combined ab initio molecular dynamics and sum frequency generation (SFG) spectroscopy study of a calcium-silicate-hydrate/polymer interface. On stable, low-defect surfaces, the polymer only weakly adheres through coordination and hydrogen bonding interactions and can be easily mobilized towards defected surfaces. Conversely, on fractured surfaces, the polymer strongly anchors through ionic Ca-O bonds resulting from the deprotonation of polymer hydroxyl groups. In addition, polymer S-S groups are turned away from the cement/polymer interface, allowing for the self-healing function within the polymer. The overall elasticity and healing properties of these composites stem from a flexible hydrogen bonding network that can readily adapt to surface morphology. The theoretical vibrational signals associated with the proposed cement-polymer interfacial chemistry were confirmed experimentally by SFG spectroscopy.

  1. Systematic and structural studies of homogeneous and polymeric extractants for the separation and recovery of metal ion: Triennial performance report, August 1, 1983-July 31, 1986

    International Nuclear Information System (INIS)

    Alexandratos, S.D.

    1986-04-01

    Novel polymeric extractants have been synthesized and applied to the recovery of metal ions from dilute aqueous solutions. The new category of dual mechanism bifunctional polymers is introduced as a series of resins which permit highly selective extractions through the use of a reaction additional to ion exchange in the recovery process. The bifunctional phosphinic acid ion exchange/redox resins form the first class of resins within this category. Their synthesis and the recovery of metallic mercury, silver, gold, and copper from their ionic solutions is detailed. Under equilibrium conditions, these resins operate entirely by the redox mechanism until all of the primary phosphinic acid sites are oxidized, followed then by purely ion exchange. Kinetic studies show that the cation's reduction potential determines whether a redox reaction will occur while, at a given reduction potential, the oxidation state determines how rapidly. The significant coordinative ability of the phosphoryl oxygen is also important, though, and is responsible for extracting greater amounts of actinide ions than the sulfonic resins. For those processes where membranes would most appropriately be applied, the modification of polypropylene with interpenetrating polymer network extractants yields a recovery system with almost infinite lifetime. Such networks have been formed from polymers of di(undecenyl) phosphoric acid and found to display significantly enhanced retention within polystyrene bead supports. 10 refs

  2. Reversible thermal gelation in soft spheres

    DEFF Research Database (Denmark)

    Kapnistos, M.; Vlassopoulos, D.; Fytas, G.

    2000-01-01

    Upon heating, concentrated solutions of star polymers and block copolymer micelles in a good solvent, representing soft spheres, undergo a reversible gelation. This phenomenon is attributed to the formation of clusters causing a partial dynamic arrest of the swollen interpenetrating spheres at hi...

  3. Carbon nanotube network thin-film transistors on flexible/stretchable substrates

    Science.gov (United States)

    Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali

    2016-03-29

    This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.

  4. Constrained swelling of polymer networks: characterization of vapor-deposited cross-linked polymer thin films

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Choukourov, A.; Dušková-Smrčková, Miroslava; Biederman, H.

    2014-01-01

    Roč. 47, č. 13 (2014), s. 4417-4427 ISSN 0024-9297 R&D Projects: GA ČR GAP101/12/1306 Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer * elasticity Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.800, year: 2014

  5. Series of chiral interpenetrating 3d-4f heterometallic MOFs: Luminescent sensors and magnetic properties

    Science.gov (United States)

    Zhang, Xiaolei; Chen, Chen; Liu, Xiaoli; Gao, Peng; Hu, Ming

    2017-09-01

    Series of chiral 3d-4f heterometallic MOFs based on a multidentate terpyridyl carboxylic acid ligand have been synthesized under the solvothermal conditions, namely, [LnZnL(CO3)2(H2O)]n (Ln = Eu (1), Gd (2), Dy (3), Ho (4), Er (5), Tm (6), Yb (7), Lu (8)) (HL = 4‧-(4-carboxyphenyl)-2,2‧:6‧,2″-terpyridine). Compounds 1-8 were structurally characterized by the elemental analyses, infrared spectra, and single crystal X-ray diffractions. Compounds 1-8 exhibit the chiral interpenetrating 3D frameworks. Interestingly, 1 can serve as the luminescent sensor to detect nitrobenzene molecules with high sensitivity. The investigations on CD spectra of single crystals clearly assigned the Cotton effect, indicating that there exist two chiral enantiomers of 1-8 in the course of crystallization. The magnetic properties of 2 and 7 were exploited, respectively.

  6. Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode

    International Nuclear Information System (INIS)

    Cui, Min; Xu, Bing; Hu, Chuangang; Shao, Hui Bo; Qu, Liangti

    2013-01-01

    Direct electrochemistry of glucose oxidase (GOD) on three-dimensional (3D) interpenetrating porous graphene electrodes has been reported, which have been fabricated by one-step electrochemical reduction of graphene oxide (GO) from its aqueous suspension. The electrochemically reduced GO (ERGO) modified electrodes exhibited excellent electron transfer properties for GOD and enhanced the enzyme activity and stability by the assistance of chitosan. The immobilized GOD shows a fast electron transfer with the rate constant (k s ) of 6.05 s −1 . It is worth mentioning that in the air-saturated phosphate buffer solution without any mediator, the resultant modified electrodes exhibited low detection limit of 1.7 μM with wide linear range of 0.02–3.2 mM and high sensitivity and high selectivity for measuring glucose. It would also be extended to various enzymes and bioactive molecules to develop the biosensor or other bio-electrochemical devices

  7. Rheological Properties of Associative Star Polymers in Aqueous Solutions: Effect of Hydrophobe Length and Polymer Topology

    DEFF Research Database (Denmark)

    Hietala, Sami; Strandman, Satu; Jarvi, Paula

    2009-01-01

    triblock copolymer. These polymers, synthesized by atom transfer radical polymerization (ATRP), were found to form hydrogels due to intermolecular association originating from the PS blocks. The increasing length of the PS block was observed to lead to more elastic networks due to increased hydrophobic...

  8. The effect of branching in a semiconducting polymer on the efficiency of organic photovoltaic cells

    NARCIS (Netherlands)

    Heintges, G.H.L.; van Franeker, J.J.; Wienk, M.M.; Janssen, R.A.J.

    2016-01-01

    The impact of branching in a diketopyrrolopyrrole polymer on the performance of polymer–fullerene photovoltaic cells is investigated. Compared to the linear polymer, the branched polymer affords a more finely dispersed fibrillar network in the photoactive layer and as a result a large enhancement of

  9. Novel scalable silicone elastomer and poly(2-hydroxyethyl methacrylate) (PHEMA) composite materials for tissue engineering and drug delivery applications

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Hemmingsen, Mette; Wojcik, Magdalena

    2013-01-01

    material with increased hydrophilicity in regard to virgin silicone elastomer, making it suitable as a scaffold for tissue engineering and with the concomitant possibility for delivering drug from the scaffold to the tissue. Interpenetrating polymer networks (IPNs) of silicone elastomer and PHEMA......In recent years hydrogels have received increasing attention as potential materials for applications in regenerative medicine. They can be used for scaffold materials providing structural integrity to tissue constructs, for controlled delivery of drugs and proteins to cell and tissues......, and for support materials in tissue growth. However, the real challenge is to obtain sufficiently good mechanical properties of the hydrogel. The present study shows the combination of two normally non-compatible materials, silicone elastomer and poly(2-hydroxyethyl methacrylate) (PHEMA), into a novel composite...

  10. Nanofluids and chemical highly retentive hydrogels for controlled and selective removal of overpaintings and undesired graffiti from street art.

    Science.gov (United States)

    Giorgi, Rodorico; Baglioni, Michele; Baglioni, Piero

    2017-06-01

    One of the main problems connected to the conservation of street art is the selective removal of overlying undesired graffiti, i.e., drawings and tags. Unfortunately, selective and controlled removal of graffiti and overpaintings from street art is almost unachievable using traditional methodologies. Recently, the use of nanofluids confined in highly retentive pHEMA/PVP semi-interpenetrated polymer networks was proposed. Here, we report on the selective removal of acrylic overpaintings from a layer of acrylic paint on mortar mockups in laboratory tests. The results of the cleaning tests were characterized by visual and photographic observation, optical microscopy, and FT-IR microreflectance investigation. It was shown that this methodology represents a major advancement with respect to the use of nonconfined neat solvents.

  11. Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer-Fullerene Mixing and Packing and on the Fullerene-Fullerene Connecting Network

    KAUST Repository

    Wang, Tonghui

    2018-01-25

    The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron-donating polymer and an electron-accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long-range corrected density functional theory calculations is used to elucidate the molecular-scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD); (ii) poly[(2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PBT4T-2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′-bithiophene)-alt-(4,7-bis((2-decyltetradecyl)thiophen-2-yl)-5,6-difluoro-2-propyl-2H-benzo[d][1,2,3]triazole)] (PT2-FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with nitrogen atoms carrying a linear C3H7 side-chain; these polymers are mixed with the phenyl-C71-butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge-transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge-recombination process, and the electron-transfer features between neighboring PC71BM molecules.

  12. Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer-Fullerene Mixing and Packing and on the Fullerene-Fullerene Connecting Network

    KAUST Repository

    Wang, Tonghui; Chen, Xiankai; Ashokan, Ajith; Zheng, Zilong; Ravva, Mahesh Kumar; Bré das, Jean-Luc

    2018-01-01

    The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron-donating polymer and an electron-accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long-range corrected density functional theory calculations is used to elucidate the molecular-scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD); (ii) poly[(2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PBT4T-2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′-bithiophene)-alt-(4,7-bis((2-decyltetradecyl)thiophen-2-yl)-5,6-difluoro-2-propyl-2H-benzo[d][1,2,3]triazole)] (PT2-FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with nitrogen atoms carrying a linear C3H7 side-chain; these polymers are mixed with the phenyl-C71-butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge-transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge-recombination process, and the electron-transfer features between neighboring PC71BM molecules.

  13. Comparative Study of Structure-Property Relationships in Polymer Networks Based on Bis-GMA, TEGDMA and Various Urethane-Dimethacrylates

    Directory of Open Access Journals (Sweden)

    Izabela Barszczewska-Rybarek

    2015-03-01

    Full Text Available The effect of various dimethacrylates on the structure and properties of homo- and copolymer networks was studied. The 2,2-bis-[4-(2-hydroxy-3- methacryloyloxypropoxyphenyl]-propane (Bis-GMA, triethylene glycol dimethacrylate (TEGDMA and 1,6-bis-(methacryloyloxy-2-ethoxycarbonylamino-2,4,4-trimethylhexane (HEMA/TMDI, all popular in dentistry, as well as five urethane-dimethacrylate (UDMA alternatives of HEMA/TMDI were used as monomers. UDMAs were obtained from mono-, di- and tri(ethylene glycol monomethacrylates and various commercial diisocyanates. The chemical structure, degree of conversion (DC and scanning electron microscopy (SEM fracture morphology were related to the mechanical properties of the polymers: flexural strength and modulus, hardness, as well as impact strength. Impact resistance was widely discussed, being lower than expected in the case of poly(UDMAs. It was caused by the heterogeneous morphology of these polymers and only moderate strength of hydrogen bonds between urethane groups, which was not high enough to withstand high impact energy. Bis-GMA, despite having the highest polymer morphological heterogeneity, ensured fair impact resistance, due to having the strongest hydrogen bonds between hydroxyl groups. The TEGDMA homopolymer, despite being heterogeneous, produced the smoothest morphology, which resulted in the lowest brittleness. The UDMA monomer, having diethylene glycol monomethacrylate wings and the isophorone core, could be the most suitable HEMA/TMDI alternative. Its copolymer with Bis-GMA and TEGDMA had improved DC as well as all the mechanical properties.

  14. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  15. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with Human Gingival Fibroblasts (HGFs).

    Science.gov (United States)

    Grenade, Charlotte; De Pauw-Gillet, Marie-Claire; Gailly, Patrick; Vanheusden, Alain; Mainjot, Amélie

    2016-09-01

    Polymer-infiltrated-ceramic-network (PICN) materials constitute an innovative class of CAD-CAM materials offering promising perspectives in prosthodontics, but no data are available in the literature regarding their biological properties. The objective of the present study was to evaluate the in vitro biocompatibility of PICNs with human gingival fibroblasts (HGFs) in comparison with materials typically used for implant prostheses and abutments. HGF attachment, proliferation and spreading on discs made of PICN, grade V titanium (Ti), yttrium zirconia (Zi), lithium disilicate glass-ceramic (eM) and polytetrafluoroethylene (negative control), were evaluated using a specific insert-based culture system (IBS-R). Sample surface properties were characterized by XPS, contact angle measurement, profilometry and SEM. Ti and Zi gave the best results regarding HGF viability, morphology, number and coverage increase with time in comparison with the negative control, while PICN and eM gave intermediate results, cell spreading being comparable for PICN, Ti, Zi and eM. Despite the presence of polymers and their related hydrophobicity, PICN exhibited comparable results to glass-ceramic materials, which could be explained by the mode of polymerization of the monomers. The results of the present study confirm that the currently employed materials, i.e. Ti and Zi, can be considered to be the gold standard of materials in terms of HGF behavior, while PICN gave intermediate results comparable to eM. The impact of the present in vitro results needs to be further investigated clinically, particularly in the view of the utilization of PICNs for prostheses on bone-level implants. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Effect of aging and alkali activator on the porous structure of a geo-polymer

    International Nuclear Information System (INIS)

    Steins, Prune; Poulesquen, Arnaud; Frizon, Fabien; Lambertin, David; Jestin, Jacques; Rossignol, Sylvie

    2014-01-01

    Nitrogen sorption and small- and wide-angle X-ray and neutron scattering techniques were used to study the porous structure of geo-polymers, inorganic polymers synthesized by reaction of a strongly alkaline solution and an aluminosilicate source (metakaolin). The effects of aging and the use of alkali activators (Na"+, K"+) of different sizes were investigated at room temperature. The influence of aging time on the microstructure of both geo-polymer matrixes was verified in terms of pore volume and specific surface area. The results suggested a refinement of the porosity and therefore a reduction in the pore volume over time. Regardless of the age considered, some characteristics of the porous network such as pore size, shape and distribution depend on the alkali activator used. Whatever the technique considered, the potassium geo-polymer has a greater specific surface area than the sodium geo-polymer. According to the scattering results, the refinement of the porosity can be associated with, first, a densification of the solid network and, secondly, a partial closure of the porosity at the nanometer scale. The kinetics are much slower for the sodium geo-polymer than for the potassium geo-polymer in the six months of observation. (authors)

  17. Multi-functionalized side-chain supramolecular polymers: A methodology towards tunable functional materials

    Science.gov (United States)

    Nair, Kamlesh Prabhakaran

    Even as we see a significant growth in the field of supramolecular polymers in the last ten years, multi-functionalized systems have been scarcely studied. Noncovalent multi-functionalization provides unique advantages such as rapid materials optimization via reversible functionalization as well as for the tuning of materials properties by exploiting the differences in the nature of these reversible interactions. This thesis involves the design principles, synthesis & methodology of supramolecular side-chain multi-functionalized polymers. The combination of a functionally tolerant & controlled polymerization technique such as ROMP with multiple noncovalent interactions such as hydrogen bonding, metal coordination and ionic interactions has been successfully used to synthesize these polymers. Furthermore, the orthogonality between the above interactions in block/random copolymers has been studied in detail. It has been found that the studied interactions were orthogonal to each other. To validate the viability of this methodology using multiple orthogonal interactions towards materials design noncovalent crosslinking of polymers has been used as a potential application. Three classes of networks have been studied: complementary multiple hydrogen bonded networks, metal crosslinked networks, & multi-functionalized hydrogen bonded and metal coordinated networks. The first room temperature decrosslinking by exclusive complementary hydrogen bonded interactions has been successfully achieved. Furthermore network properties have been successfully tuned by varying the network micro-structure which in turn was tuned by the hydrogen bonding motifs used for inter-chain crosslinking. By combining two different noncovalent interactions used for inter-chain crosslinking, it was possible to make multi-functionalized materials whose properties could be controlled by varying the crosslinking strategy. Hence by employing multi-functionalization methodology, important materials

  18. Polymer hydrogels as optimized delivery systems

    International Nuclear Information System (INIS)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B.

    2013-01-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  19. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  20. Polymers in cell encapsulation from an enveloped cell perspective.

    Science.gov (United States)

    de Vos, Paul; Lazarjani, Hamideh Aghajani; Poncelet, Denis; Faas, Marijke M

    2014-04-01

    In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone), polypropylene, sodium polystyrene sulfate, and polyacrylate poly(acrylonitrile-sodium methallylsulfonate). The biocompatibility of these polymers is discussed in terms of tissue responses in both the host and matrix to accommodate the functional survival of the cells. Cells should grow and function in the polymer network as adequately as in their natural environment. This is critical when therapeutic cells from scarce cadaveric donors are considered, such as pancreatic islets. Additionally, the cell mass in capsules is discussed from the perspective of emerging new insights into the release of so-called danger-associated molecular pattern molecules by clumps of necrotic therapeutic cells. We conclude that despite two decades of intensive research, drawing conclusions about which polymer is most adequate for clinical application is still difficult. This is because of the lack of documentation on critical information, such as the composition of the polymer, the presence or absence of confounding factors that induce immune responses, toxicity to enveloped cells, and the permeability of the polymer network. Only alginate has been studied extensively and currently qualifies for application. This review also discusses critical issues that are not directly related to polymers and are not discussed in the other reviews in this issue, such as the functional performance of encapsulated cells in vivo. Physiological endocrine responses may indeed not be expected because of the many barriers that the metabolites encounter when traveling from the blood stream to the enveloped cells and back to circulation. However, despite these diffusion barriers, many studies have shown optimal

  1. Syntheses, crystal structures, and properties of four coordination polymers based on mixed multi-N donor and polycarboxylate ligands

    Science.gov (United States)

    Chen, Shui-Sheng; Guo, Xing-Zhe; Zhao, Yue; Li, Wei-Dong

    2018-02-01

    Four new coordination polymers [Ni2(HL1)2(L1)3(BTC)2]·6H2O (1), [Ni2(L1)3(HBTC)2]·4H2O (2), [Cd2(L2)(BTC)(H2O)3]·2H2O (3) and [Cd2(HL2)(BTCA)] (4) were synthesized by reactions of nickel(II)/ cadmium(II) salts with rigid ligands of 1,4-di(1H-imidazol-4-yl)benzene (L1), 1,3-di(1-imidazolyl)-5-(4H-tetrazol-5-yl)benzene (HL2) and polycarboxylic acids of 1,3,5-benzenetricarboxylic acid (H3BTC), 1,2,4,5-benzenetetracarboxylic acid (H4BTCA), respectively. The structures of the complexes were determined by single crystal X-ray diffraction analysis. The complex 1 is one-dimensional (1D) chain while 2 is a (4, 4)-connected two-dimensional (2D) layered structure with 2D → 2D parallel interpenetration. Complex 3 is a rare tetranodal (3,4)-connected three-dimensional (3D) CrVTiSc architecture with Point (Schläfli) symbol of (4·82)(4·84·10)(42·82·102)(83), and compound 4 has the 2D network with (4,4) topology based on the [Cd2(COO)4] SBUs. The weak interactions such as hydrogen bonds and π···π stacking contribute to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. The UV-vis absorption spectra of 1 - 4 are discussed. Moreover, the photo luminescent properties of 3 and 4 and gas sorption property of 2 have been investigated.

  2. Radiation processing of polymer insulators as a method of improving their properties and performance

    International Nuclear Information System (INIS)

    Ivanov, V.S.; Migunova, L.I.; Kalinina, N.A.; Aleksandrov, G.N.

    1995-01-01

    Polymer insulators for electric apparatus and high-voltage overhead lines are promising for replacing porcelain and glass insulators. The possibility of application of radiation-chemical technology was showed by manufacture of rod-shaped polymer insulators. In this work, an ethylene and vinyl acetate copolymer was used as the polymer basis of the composition for insulators. By forming a three-dimensional network in polymer bulk radiation processing improves service properties of polymer insulators: shape and heat stability > 200 degree C and stability to tracking erosion > 200 h

  3. Tuning different kinds of entangled metal-organic frameworks by modifying the spacer group of aliphatic dicarboxylate ligands and the reactant ratio.

    Science.gov (United States)

    Yang, Jin-Xia; Zhai, Ji-Quan; Zhang, Xin; Qin, Ye-Yan; Yao, Yuan-Gen

    2016-01-14

    Taking advantage of the conformational flexibility of the bpp ligand and aliphatic dicarboxylic acids, six interesting entangled coordination polymers, {[Cd(fum)(bpp)(H2O)]·(H2O)}n (), {[Cd(fum)(bpp)2]·(H2O)5}n (), {[Cd2(suc)1.5(bpp)2(NO3)(H2O)2]·6H2O}n (), {[Cd(suc)(bpp)2]·(H2O)1.5}n (), {[Cd2(glu)2(bpp)3]·10H2O}n (), and {Cd(adp)(bpp)(H2O)}n () have been prepared and structurally characterized (bpp = 1,3-bi(4-pyridyl)propane, fum = fumaric, suc = succinate, glu = glutaric, adp = adipic). Compounds and are comprised of undulated 2D 4(4)-sql networks. In the structure of compound , two identical undulated layers are parallelly interpenetrated with each other to give a 2D → 2D interpenetrating framework. For , the dangling arms projected from 2D layers are intercalated into the neighboring sheets, producing a 2D → 3D polythreading framework. Compound shows a rare example of a 2D self-penetrating framework with a (3,4)-connected (4(2)·6(3)·8)(4(2)·6) topology. Compound presents an unusual 2D self-threading network with a novel 4-connected {4(2)·6(3)·8} topology. Compound displays a 3D self-penetrating system based on a 2D → 3D parallel polycatenation array. Compound exhibits an unprecedented 3D self-penetrating structure having both 1D + 1D → 1D polycatenation and 3D + 3D → 3D interpenetration characteristics. A comparison of these six compounds demonstrates that both the different spacer lengths of the aliphatic dicarboxylates and reactant ratios appear to play a significant role in the assembly of entangled frameworks. In addition, thermal stabilities and photoluminescence properties of have been examined in the solid state at room temperature.

  4. Rational Organization of Lanthanide-Based SMM Dimers into Three-Dimensional Networks.

    Science.gov (United States)

    Yi, Xiaohui; Calvez, Guillaume; Daiguebonne, Carole; Guillou, Olivier; Bernot, Kevin

    2015-06-01

    Optimization of the reaction of [Ln(hfac)3]·2H2O and pyridine-N-oxide (PyNO), which is known to afford double-bridged dimers, leads to triple-bridged dimers of formula [(Ln(hfac)3)2(PyNO)3] (Ln = Gd (1), Dy (2)) from which the Dy derivative (2) behaves as a single-molecule magnet (SMM). The pseudo threefold axis symmetry of this zero-dimensional building block makes possible its extension into a tridimensional network. By changing PyNO for 4,4'-bipyridine N,N'-dioxide (4,4'BipyNO) a tridimensional compound of formula {[Ln(hfac)3]2(4,4'BipyNO)2]} (Ln = Eu (3), Gd (4), and Dy (5)) is then rationally obtained. This covalent three-dimensional (3D) network has a remarkably high cell volume (V = 24 419 A(3)) and is an arrangement of interpenetrated 3D subnetworks whose triple-bridged dimers still behave as SMMs.

  5. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    Science.gov (United States)

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  6. Dynamics of associating networks

    Science.gov (United States)

    Tang, Shengchang; Habicht, Axel; Wang, Muzhou; Li, Shuaili; Seiffert, Sebastian; Olsen, Bradley

    Associating polymers offer important technological solutions to renewable and self-healing materials, conducting electrolytes for energy storage and transport, and vehicles for cell and protein deliveries. The interplay between polymer topologies and association chemistries warrants new interesting physics from associating networks, yet poses significant challenges to study these systems over a wide range of time and length scales. In a series of studies, we explored self-diffusion mechanisms of associating polymers above the percolation threshold, by combining experimental measurements using forced Rayleigh scattering and analytical insights from a two-state model. Despite the differences in molecular structures, a universal super-diffusion phenomenon is observed when diffusion of molecular species is hindered by dissociation kinetics. The molecular dissociation rate can be used to renormalize shear rheology data, which yields an unprecedented time-temperature-concentration superposition. The obtained shear rheology master curves provide experimental evidence of the relaxation hierarchy in associating networks.

  7. Low-cost fused taper polymer optical fiber (LFT-POF) splitters for environmental and home-networking solution

    Science.gov (United States)

    Supian, L. S.; Ab-Rahman, Mohammad Syuhaimi; Harun, Mohd Hazwan; Gunab, Hadi; Sulaiman, Malik; Naim, Nani Fadzlina

    2017-08-01

    In visible optical communication over the multimode PMMA fibers, the overall cost of optical network can be reduced by deploying economical splitters for distributing the optical data signals from a point to multipoint in transmission network. The low-cost splitters shall have two main characteristics; good uniformity and high power efficiency. The most cost-effective and environmental friendly optical splitter having those characteristics have been developed. The device material is 100% purely based on the multimode step-index PMMA Polymer Optical Fiber (POF). The region which all fibers merged as single fiber is called as fused-taper POF. This ensures that all fibers are melted and fused properly. The results for uniformity and power efficiency of all splitters have been revealed by injecting red LED transmitter with 650 nm wavelength into input port while each end of output fibers measured by optical power meter. Final analysis shows our fused-taper splitter has low excess loss 0.53 dB and each of the output port has low insertion loss, which the average value is below 7 dB. In addition, the splitter has good uniformity that is 32:37:31% in which it is suitably used for demultiplexer fabrication.

  8. Computer simulation of randomly cross-linked polymer networks

    International Nuclear Information System (INIS)

    Williams, Timothy Philip

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneities were observed in the swollen model networks and were analysed by considering constituent substructures of varying size. The network connectivity determined the length scales at which the majority of the substructure unfolding process occurred. Simulated stress-strain curves and diffraction patterns for uniaxially deformed swollen networks, were found to be consistent with experimental findings. Analysis of the relaxation dynamics of various network components revealed a dramatic slowdown due to the network connectivity. The cross-link junction spatial fluctuations for networks close to the sol-gel threshold, were observed to be at least comparable with the phantom network prediction. The dangling chain ends were found to display the largest characteristic relaxation time. (author)

  9. A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.

    Science.gov (United States)

    Li, Xingjian; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-03-01

    Fabricating a single polymer network with no need to design complex structures to achieve an ideal combination of tunable high-strain multiple-shape memory effects and highly recoverable shape memory property is a great challenge for the real applications of advanced shape memory devices. Here, a facile and general approach to recoverable high-strain multishape shape memory polymers is presented via a random copolymerization of acrylate monomers and a chain-extended multiblock copolymer crosslinker. As-prepared shape memory networks show a large width at the half-peak height of the glass transition, far wider than current classical multishape shape memory polymers. A combination of tunable high-strain multishape memory effect and as high as 1000% recoverable strain in a single chemical-crosslinking network can be obtained. To the best of our knowledge, this is the first thermosetting material with a combination of highly recoverable strain and tunable high-strain multiple-shape memory effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    Girolamo, J. de

    2007-11-01

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  11. The Role of Nanofillers in Polymer Nanocomposites

    Science.gov (United States)

    Xu, Di

    Polymer nanocomposites have been widely used in many fields. By introducing nanoparticles as fillers, researchers are able to get reinforced materials and new materials with novel properties, such as stronger mechanics, enhanced optical properties and improved conductivity. Though experimental techniques have rapidly advanced to enable better control of materials at atomic level, there is still a lack of a fundamental understanding of the dynamics and structure-properties relations in polymer nanocomposites. In this thesis, we use computer simulations to study the molecular structure and connections between microstate to macro properties of a variety of nanocomposites. Our goal is to understand the role of nanofillers in complex nanocomposite systems and to assist nanocomposite design. Nanoplatelet fillers, such as clays, have shown superior effects on the properties of polymer gels. We used molecular dynamic simulation to study nanoplatelet-filled composite gel system, in which short-range attraction exists between the polymer and nanoplatelet fillers. We show that the polymers and nanoplatelet fillers formed organic-inorganic networks with nanoplatelets acting as crosslink junctions, and the network eventually percolates the system as fillers reached a critical concentration. Stress auto-correlation and step-strain test were applied to investigate the mechanical properties; the results show the simulated composites changed from fluid-like to solid-like. The mechanical changes were consistent with the percolation transition, and gelation mechanism was therefore believed to be similar to those pure polymer physical gels. It was observed platelets aggregated into a local intercalation structure, which significantly differs from typical spherical fillers. This unique intercalation structure was examined by radial distribution function and ordering parameters. We discussed how intercalation would affect the properties of the platelet composites by comparing them with

  12. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    Science.gov (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  13. Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol Nanocomposite

    Directory of Open Access Journals (Sweden)

    Miguel Gama

    2013-05-01

    Full Text Available Bacterial cellulose (BC is characterized for its high water holding capacity, high crystallinity, an ultrafine fiber network and high tensile strength. This work demonstrates the production of a new interpenetrated polymer network nanocomposite obtained through the incorporation of poly(vinyl alcohol (PVA on the BC matrix and evaluates the effect of oven drying on the morphological, mechanical and mass transfer properties of the composite membranes. Both the addition of PVA and oven drying induce the appearance of larger pores (circa 1–3 µm in average diameter in dried BC/PVA membranes. Both types of treatments also affect the permeability of the composite, as assessed by the diffusion coefficients of polyethylene glycol (PEG molecules (900, 8,000, 35,000 and 100,000 Da across the membranes. Finally, the Young’s modulus of dry pristine BC decreases following PVA incorporation, resulting in a change from 3.5 GPa to 1 GPa and a five-fold loss in tensile strength.

  14. Microwave-assisted synthesis of sucrose polyurethanes and their semi-interpenetrating polymer networks with polycaprolactane and soybean oil

    Science.gov (United States)

    Because of the current interest in sustainability, environmental stewardship, and green chemistry, there has been a lot of interest in using agrobased raw materials for the design of polymeric materials. One of the promising biorenewable materials is sucrose, which is inexpensive and widely availabl...

  15. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events...... in a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...

  16. Physical Removal of Anions from Aqueous Media by Means of a Macrocycle-Containing Polymeric Network

    KAUST Repository

    Ji, Xiaofan

    2018-02-13

    Reported here is a hydrogel-forming polymer network that contains a water-soluble tetracationic macrocycle. Upon immersion of this polymer network in aqueous solutions containing various inorganic and organic salts, changes in the physical properties are observed that are consistent with absorption of the constituent anions into the polymer network. This absorption is ascribed to host-guest interactions involving the tetracationic macrocyclic receptor. Removal of the anions may then be achieved by lifting the resulting hydrogels out of the aqueous phase. Treating the anion-containing hydrogels with dilute HCl leads to the protonation-induced release of the bound anions. This allows the hydrogels to be recycled for reuse. The present polymer network thus provides a potentially attractive approach to removing undesired anions from aqueous environments.

  17. Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites

    Science.gov (United States)

    Kamkar, Milad; Aliabadian, Ehsan; Shayesteh Zeraati, Ali; Sundararaj, Uttandaraman

    2018-02-01

    Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs' network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs' network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.

  18. Mechanics of biological polymer composites

    Science.gov (United States)

    Lomakin, Joseph

    2009-12-01

    displayed a darker coloration and significantly increased n of 0.0470.004, suggesting both cuticles to be less cross-linked, a finding consistent with reduced beta-alanine metabolism. Suppression of the tanning enzyme laccase2 (TcLac2) resulted in a pale cuticle with an n of 0.043+/-0.005, implicating laccases in the formation of both pigments and cross-links during sclerotization. Cuticular cross-linking was increased and n decreased with decreased expression of structural proteins, CP10 and CP20. This work establishes n as an important novel parameter for confirming metabolic pathways within load bearing tissues and for understanding structure function relationships within biological polymer composites. Additionally, Tribolium castaneum elytral indentation modulus (800+/-200 MPa) was determined by nanoindentation and a 4nm regular hexagonal pattern on the dorsal side of elytra investigated via scanning, transmission and atomic microscopy. Based on studied biological materials, the combination of rigid macromolecules immersed in a ductile matrix was found to be significant in achieving exceptional mechanical performance. Inspired by this biological design principle, the synthesis, properties and structure of Poly(ethylene glycol) diacrylate/agarose semi-interpenetrating network hydrogels were explored. The resulting novel composite materials were 9x stiffer than agarose and 5x tougher than PEGDA alone and showed good biocompatibility, suggesting promise as a scaffold material for tissue engineering constructs for cartilage regeneration.

  19. Construction, Structural Diversity and Properties of Five Coordination Polymers Based on 5-Nitroisophthalate and Bis(imidazole) Linkers

    Science.gov (United States)

    Arıcı, Mürsel

    2018-06-01

    Five coordination polymers, namely, [Cd(μ3-5-nip)(μ-obix)]n (1), [Co(μ3-5-nip)(μ-obix)]n (2), [Zn(μ-5-nip)(μ-obix)]n (3 and 4) and [Cd(μ-5-nip)(μ-bisobix)]n (5) (5-nip: 5-nitroisophthalate, obix: 1,2-bis(imidazol-1ylmethyl)benzene, bisobix: 1,2-bis(2-isopropylimidazol-1ylmethyl)benzene) were hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). X-ray results showed that the complexes displayed structural diversity depending on metal ions and conformations of bis(imidazole) linkers. Complexes 1 and 2 were 1D structures and obix ligand displayed cis-conformation. Complexes 3 and 4 exhibited 2D and 3D structures with same components depending on obix conformation. In complex 5, 3D+3D→3D interpenetrated structure was obtained with dia topology when bisobix having sterically hindered groups on imidazole rings was used. Moreover, thermal, photoluminescence and optical properties of the complexes were also investigated.

  20. A symmetric, triply interlaced 3-D anionic MOF that exhibits both magnetic order and SMM behaviour.

    Science.gov (United States)

    Campo, J; Falvello, L R; Forcén-Vázquez, E; Sáenz de Pipaón, C; Palacio, F; Tomás, M

    2016-11-14

    A newly prepared 3-D polymer of cobalt citrate cubanes bridged by high-spin Co(ii) centres displays both single-molecule magnet (SMM) behaviour and magnetic ordering. Triple interpenetration of the 3-D diamondoid polymers yields a crystalline solid with channels that host cations and free water molecules, with the SMM behaviour of the Co 4 O 4 cores preserved. The octahedrally coordinated Co(ii) bridges are implicated in the onset of magnetic order at an experimentally accessible temperature.

  1. Fabrication of 2-3 YBa2Cu3O7-x/polymer composite with Tc above liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Wilson, C.M.; Safari, A.

    1990-01-01

    This paper reports on high T c superconducting oxide woven networks fabricated and used to form YBa 2 Cu 3 O 7-x /polymer composites showing a superconducting resistive transition above liquid nitrogen temperature. The ceramic network was produced by soaking biaxially woven carbon fabric in a solution containing the stoichiometric proportions of Y, Ba, and Cu. Decomposition of the infiltrated carbon fabric and reaction of the remaining oxides resulted in a ceramic replica of the original fabric. The fired networks had a strand diameter ∼100 μm and were embedded in a polymer matrix to produce 2--3 superconducting/polymer composites with a superconducting transition of ∼89 K. Linear shrinkage of the networks was constrained during firing, although the radial shrinkage of the superconducting strands occurred freely. XRD of the networks indicated the presence of BaCO 3 , CuO, and BaCuO 2 as impurity phases

  2. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    Science.gov (United States)

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  3. Self-constructed tree-shape high thermal conductivity nanosilver networks in epoxy.

    Science.gov (United States)

    Pashayi, Kamyar; Fard, Hafez Raeisi; Lai, Fengyuan; Iruvanti, Sushumna; Plawsky, Joel; Borca-Tasciuc, Theodorian

    2014-04-21

    We report the formation of high aspect ratio nanoscale tree-shape silver networks in epoxy, at low temperatures (thermal conductivity (κ) of the nanocomposite compared to the polymer matrix. The networks form through a three-step process comprising of self-assembly by diffusion limited aggregation of polyvinylpyrrolidone (PVP) coated nanoparticles, removal of PVP coating from the surface, and sintering of silver nanoparticles in high aspect ratio networked structures. Controlling self-assembly and sintering by carefully designed multistep temperature and time processing leads to κ of our silver nanocomposites that are up to 300% of the present state of the art polymer nanocomposites at similar volume fractions. Our investigation of the κ enhancements enabled by tree-shaped network nanocomposites provides a basis for the development of new polymer nanocomposites for thermal transport and storage applications.

  4. IPN's of N-isopropylacrylamide and N-acryloxysuccinimide, Synthesis and Characterization

    International Nuclear Information System (INIS)

    Ortega, A.

    2006-01-01

    Hydrogels based on N-isopropylacrylamide (NIPAAm) and one activated monomer are of interest as vesicle immobilizing devices. In this paper we chose NIPAAm because its thermal sensitivity and its lower critical solution temperature (LCST) around 33degree used in immunoassays, bioseparations, controlled release systems and enzyme reactor. The NIPAAm hydrogels retain the thermosensitivity and this property is useful to control the release from vesicles immobilized on the gel. We chose N-acryloxysuccinimide (NAS) to provide a functional group which is readily displaced by the amino groups of lysine, and polylysine as the anchoring element of vesicles, and also as a crosslinking agent of NAS. Sequential interpenetrating networks IPN's made of poly(N-isopropylacrylamide) (PNIPAAm) and NAS were synthesized by gamma irradiation NIPAAm solutions, with and without the crosslinking agent N,N'-methylenebisacrylamide (BIS), at a dose rate of 3.05 kGy/h and then DMF solution of NAS polymers were crosslinked inside of the PNIPAAm hydrogels with polylysine. Poly (NAS) were obtained by irradiation of the monomer NAS (synthesized by Pollak method), and their molecular weight determined by GPC. IPN's were characterized in their thermosensitivity properties (limited swelling time, LCST and water retention), chemical composition (FTIR and elemental analysis), thermal properties (DSC and TGA) and morphology (SEM). LCST of NIPAAm hydrogel was found at 31degree and 29degree on interpenetrating networks of PNIPAm and PNAS crosslinked by polylysine. SEM of NIPAAm hydrogels irradiated at 60 kGy, present homogeneous structure and well defined pores; IPN's presents small cells within large, more or less well defined homogeneous cells

  5. Reversible polymer networks containing covalent and hydrogen bonding interactions

    NARCIS (Netherlands)

    Araya-Hermosilla, R.; Broekhuis, A.A.; Picchioni, F.

    Thermally reversible polymers with relatively high glass transition temperatures (T-g) are difficult to prepare but very interesting from an application point of view. In this work we present a novel reversible thermoset with tunable T-g based on chemical modification of aliphatic polyketones (PM)

  6. WOOD HEMICELLULOSE/CHITOSAN-BASED SEMI-INTERPENETRATING NETWORK HYDROGELS: MECHANICAL, SWELLING AND CONTROLLED DRUG RELEASE PROPERTIES

    Directory of Open Access Journals (Sweden)

    Muzaffer Ahmet Karaaslan

    2010-04-01

    Full Text Available The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose, and glucose. The effects of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study, and the ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid.

  7. Coherent states field theory in supramolecular polymer physics

    Science.gov (United States)

    Fredrickson, Glenn H.; Delaney, Kris T.

    2018-05-01

    In 1970, Edwards and Freed presented an elegant representation of interacting branched polymers that resembles the coherent states (CS) formulation of second-quantized field theory. This CS polymer field theory has been largely overlooked during the intervening period in favor of more conventional "auxiliary field" (AF) interacting polymer representations that form the basis of modern self-consistent field theory (SCFT) and field-theoretic simulation approaches. Here we argue that the CS representation provides a simpler and computationally more efficient framework than the AF approach for broad classes of reversibly bonding polymers encountered in supramolecular polymer science. The CS formalism is reviewed, initially for a simple homopolymer solution, and then extended to supramolecular polymers capable of forming reversible linkages and networks. In the context of the Edwards model of a non-reacting homopolymer solution and one and two-component models of telechelic reacting polymers, we discuss the structure of CS mean-field theory, including the equivalence to SCFT, and show how weak-amplitude expansions (random phase approximations) can be readily developed without explicit enumeration of all reaction products in a mixture. We further illustrate how to analyze CS field theories beyond SCFT at the level of Gaussian field fluctuations and provide a perspective on direct numerical simulations using a recently developed complex Langevin technique.

  8. Amino acid-incorporated polymer network by thiol-ene polymerization

    Directory of Open Access Journals (Sweden)

    R. Yokose

    2015-08-01

    Full Text Available Triallyl L-alanine (A3A and triallyl L-phenylalanine (A3F were synthesized by reactions of L-alanine and L-phenylalanine with allyl bromide in the presence of sodium hydroxide, respectively. Thiol-ene thermal polymerization of A3A or A3F with pentaerythritol-based primary tetrathiol (pS4P or pentaerythritol-based secondary tetrathiol (S4P at allyl/SH 1/1 in the presence of 2,2'-azobis(isobutyronitrile produced an amino acid-incorporated polymer network (A3ApS4P, A3A-S4P or A3F-S4P. Although the thermally cured resins were homogeneous and flat films, the corresponding thiol-ene photopolymerization did not give a successful result. Degree of swelling for each thermally cured film in N,Ndimethylformamide was much higher than that in water. The glass transition and 5% weight loss temperatures (Tg and T5 of A3F-pS4P and A3F-S4P were higher than those of A3A-pS4P and A3A-S4P, respectively. Also, A3F-pS4P and A3F-S4P exhibited much higher tensile strengths and moduli than A3A-pS4P and A3A-S4P did, respectively. Consequently, A3FpS4P displayed the highest Tg (38.7°C, T5 (282.0°C, tensile strength (9.5 MPa and modulus (406 MPa among all the thermally cured resins.

  9. Effect of Silane Coupling Agent on the Creep Behavior and Mechanical Properties of Carbon Fibers/Acrylonitrile Butadiene Rubber Composites.

    Science.gov (United States)

    Choi, Woong-Ki; Park, Gil-Young; Kim, Byoung-Shuk; Seo, Min-Kang

    2018-09-01

    In this study, we investigated the effect of the silane coupling agent on the relationship between the surface free energy of carbon fibers (CFs) and the mechanical strength of CFs/acrylonitrile butadiene rubber (NBR) composites. Moreover, the creep behavior of the CF/NBR composites at surface energetic point of view were studied. The specific component of the surface free energy of the carbon fibers was found to increase upon grafting of the silane coupling agent, resulting in an increase in the tensile strength of the CF/NBR composites. On the other hand, the compressive creep strength was found to follow a slightly different trend. These results indicate the possible formation of a complex interpenetrating polymer network depending on the molecular size of the organic functional groups of the silane coupling agent.

  10. Molecular dynamics simulation of AFM studies of a single polymer chain

    International Nuclear Information System (INIS)

    Wang Wenhai; Kistler, Kurt A.; Sadeghipour, Keya; Baran, George

    2008-01-01

    Single polymer chain force-extension behavior measured by Atomic Force Microscopy (AFM) was interpreted by molecular dynamics (MD) simulation performed by applying a bead-spring (coarse-graining) model in which the bond potential function between adjacent beads is described by a worm-like chain (WLC) model. Simulation results indicate that caution should be applied when interpreting experimental AFM data, because the data vary depending on the point of AFM tip-polymer chain attachment. This approach offers an effective way for eventual analysis of the mechanical behavior of complex polymer networks

  11. Molecular dynamics simulation of AFM studies of a single polymer chain

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenhai [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States); Kistler, Kurt A. [Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122 (United States); Sadeghipour, Keya [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States); Baran, George [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States)], E-mail: grbaran@temple.edu

    2008-11-24

    Single polymer chain force-extension behavior measured by Atomic Force Microscopy (AFM) was interpreted by molecular dynamics (MD) simulation performed by applying a bead-spring (coarse-graining) model in which the bond potential function between adjacent beads is described by a worm-like chain (WLC) model. Simulation results indicate that caution should be applied when interpreting experimental AFM data, because the data vary depending on the point of AFM tip-polymer chain attachment. This approach offers an effective way for eventual analysis of the mechanical behavior of complex polymer networks.

  12. Physical Removal of Anions from Aqueous Media by Means of a Macrocycle-Containing Polymeric Network

    KAUST Repository

    Ji, Xiaofan; Wu, Ren-Tsung; Long, Lingliang; Guo, Chenxing; Khashab, Niveen M.; Huang, Feihe; Sessler, Jonathan L.

    2018-01-01

    Reported here is a hydrogel-forming polymer network that contains a water-soluble tetracationic macrocycle. Upon immersion of this polymer network in aqueous solutions containing various inorganic and organic salts, changes in the physical

  13. Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres.

    Science.gov (United States)

    Bhattacharya, Shiv Sankar; Mazahir, Farhan; Banerjee, Subham; Verma, Anurag; Ghosh, Amitava

    2013-10-15

    Interpenetrating polymer network (IPN) hydrogel microspheres of xanthan gum (XG) based superabsorbent polymer (SAP) and poly(vinyl alcohol) (PVA) were prepared by water-in-oil (w/o) emulsion crosslinking method for sustained release of ciprofloxacin hydrochloride (CIPRO). The microspheres were prepared with various ratios of hydrolyzed SAP to PVA and extent of crosslinking density. The prepared microspheres with loose and rigid surfaces were evidenced by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the IPN formation. Differential scanning calorimetry (DSC) study was performed to understand the dispersion nature of drug after encapsulation. The in vitro drug release study was extensively evaluated depending on the process variables in both acidic and alkaline media. All the formulations exhibited satisfactory physicochemical and in vitro release characteristics. Release data indicated a non-Fickian trend of drug release from the formulations. Based on the results, this study suggest that CIPRO loaded IPN microspheres were suitable for sustained release application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing.

    Science.gov (United States)

    Kuang, Xiao; Chen, Kaijuan; Dunn, Conner K; Wu, Jiangtao; Li, Vincent C F; Qi, H Jerry

    2018-02-28

    The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D printing, soft robotics, and biomedical devices.

  15. Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks.

    Science.gov (United States)

    Wu, Jinrong; Cai, Li-Heng; Weitz, David A

    2017-10-01

    Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid "dry" elastomer that is very tough with fracture energy 13500 Jm -2 comparable to that of natural rubber. Moreover, the elastomer can self-heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self-healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self-healing polymers of practical usage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Interlaminar Toughening of Fiber Reinforced Polymers

    Science.gov (United States)

    Bian, Dakai

    Modification in the resin-rich region between plies, also known as the interlaminar region, was investigated to increase the toughness of laminate composites structures. To achieve suitable modifications, the complexities of the physical and chemical processes during the resin curing procedure must be studied. This includes analyses of the interactions among the co-dependent microstructure, process parameters, and material responses. This dissertation seeks to investigate these interactions via a series of experimental and numerical analyses of the geometric- and temperature-based effects on locally interleaving toughening methods and further interlaminar synergistic toughening without interleaf. Two major weaknesses in composite materials are the brittle resin-rich interlaminar region which forms between the fiber plies after resin infusion, and the ply dropoff region which introduces stress concentration under loads. To address these weaknesses and increase the delamination resistance of the composite specimens, a dual bonding process was explored to alleviate the dropoff effect and toughen the interlaminar region. Hot melt bonding was investigated by applying clamping pressure to ductile thermoplastic interleaf and fiber fabric at an elevated temperature, while diffusion bonding between thermoplastic interleaf and thermoset resin is performed during the resin infusion. This method increased the fracture energy level and thus delamination resistance in the interlaminar region because of deep interleaf penetration into fiber bundles which helped confining crack propagation in the toughened area. The diffusion and precipitation between thermosets and thermoplastics also improved the delamination resistance by forming a semi-interpenetration networks. This phenomenon was investigated in concoctions of low-concentration polystyrene additive modified epoxy system, which facilitates diffusion and precipitation without increasing the viscosity of the system

  17. On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics

    Directory of Open Access Journals (Sweden)

    Sabyasachi Sen

    2015-03-01

    Full Text Available The intermediate-range packing of SiNxC4−x (0 ≤ x ≤ 4 tetrahedra in polysilycarbodiimide and polysilazane-derived amorphous SiCN ceramics is investigated using 29Si spin-lattice relaxation nuclear magnetic resonance (SLR NMR spectroscopy. The SiCN network in the polysilylcarbodiimide-derived ceramic consists predominantly of SiN4 tetrahedra that are characterized by a 3-dimensional spatial distribution signifying compact packing of such units to form amorphous Si3N4 clusters. On the other hand, the SiCN network of the polysilazane-derived ceramic is characterized by mixed bonded SiNxC4−x tetrahedra that are inefficiently packed with a mass fractal dimension of Df ~2.5 that is significantly lower than the embedding Euclidean dimension (D = 3. This result unequivocally confirms the hypothesis that the presence of dissimilar atoms, namely, 4-coordinated C and 3-coordinated N, in the nearest neighbor environment of Si along with some exclusion in connectivity between SiCxN4−x tetrahedra with widely different N:C ratios and the absence of bonding between C and N result in steric hindrance to an efficient packing of these structural units. It is noted that similar inefficiencies in packing are observed in polymer-derived amorphous SiOC ceramics as well as in proteins and binary hard sphere systems.

  18. On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics.

    Science.gov (United States)

    Sen, Sabyasachi; Widgeon, Scarlett

    2015-03-17

    The intermediate-range packing of SiN x C 4- x (0 ≤ x ≤ 4) tetrahedra in polysilycarbodiimide and polysilazane-derived amorphous SiCN ceramics is investigated using 29 Si spin-lattice relaxation nuclear magnetic resonance (SLR NMR) spectroscopy. The SiCN network in the polysilylcarbodiimide-derived ceramic consists predominantly of SiN₄ tetrahedra that are characterized by a 3-dimensional spatial distribution signifying compact packing of such units to form amorphous Si₃N₄ clusters. On the other hand, the SiCN network of the polysilazane-derived ceramic is characterized by mixed bonded SiN x C 4- x tetrahedra that are inefficiently packed with a mass fractal dimension of D f ~2.5 that is significantly lower than the embedding Euclidean dimension ( D = 3). This result unequivocally confirms the hypothesis that the presence of dissimilar atoms, namely, 4-coordinated C and 3-coordinated N, in the nearest neighbor environment of Si along with some exclusion in connectivity between SiC x N 4- x tetrahedra with widely different N:C ratios and the absence of bonding between C and N result in steric hindrance to an efficient packing of these structural units. It is noted that similar inefficiencies in packing are observed in polymer-derived amorphous SiOC ceramics as well as in proteins and binary hard sphere systems.

  19. Effect of pH and temperature upon self-assembling process between poly(aspartic acid) and Pluronic F127.

    Science.gov (United States)

    Nita, Loredana E; Chiriac, Aurica P; Bercea, Maria

    2014-07-01

    The present investigation was made in order to evaluate the capability of self-assembling of the two water soluble polymers, respectively, poly(aspartic acid) and Pluronic F127 into well interpenetrated mixture, and to evidence the connection effects intervened during polymer complex formation to exhibit good stability once formed, as well to understand and correlate the binding strength and the interval between better association domains. The effect of pH and temperature on the interpolymeric complex formation between poly(aspartic acid) and Pluronic F127 was studied by combining rheology with light scattering technique. The solution mixtures between poly(aspartic acid) and Pluronic F127 are Newtonian fluids for all ratios among them. Depending on the polymeric mixture composition and experimental temperature, positive or negative deviations of the experimental values from the additive dependence appear. An interesting behavior was registered around 1/1 wt. ratio between the two polymers, when the hydrodynamic diameter of the interpenetrated polymeric particles decreased suddenly. This allows us to conclude the formation of core-shell micelle structure with poly(aspartic acid) core and Pluronic F127 as shell, performed through strong interactions between polymers. This behavior was sustained by the increase of absolute value of zeta potential owing to the decrease of functional groups number at the surface of micelles. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Blue Shifting Tuning of the Selective Reflection of Polymer Stabilized Cholesteric Liquid Crystals (Postprint)

    Science.gov (United States)

    2017-08-08

    crystal (MLC-2079, Merck). The polymer stabi- lizing network was formed within the samples by photoinitiated polymerization with 50–700 mW cm2 of 365...AFRL-RX-WP-JA-2017-0347 BLUE-SHIFTING TUNING OF THE SELECTIVE REFLECTION OF POLYMER STABILIZED CHOLESTERIC LIQUID CRYSTALS (POSTPRINT...BLUE-SHIFTING TUNING OF THE SELECTIVE REFLECTION OF POLYMER STABILIZED CHOLESTERIC LIQUID CRYSTALS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-16-F

  1. Synthesis and characterisation of star polymer/silicon carbide nanocomposites

    International Nuclear Information System (INIS)

    Majewski, Peter; Choudhury, Namita Roy; Spori, Doris; Wohlfahrt, Ellen; Wohlschloegel, Markus

    2006-01-01

    A new type of composite material's preparation and property are reported in this paper. The composite was formed by solution blending a styrene ethylene butylenes (SEBS) star polymer with silicon carbide at various compositions. The composites were characterised using spectroscopic, microscopic and thermal techniques. Photo-acoustic Fourier transform infrared spectroscopy (PA-FT-IR) and transmission electron microscopy (TEM) results show that the SiC resides uniformly in the organic network. Thermogravimetric analysis (TGA) of the hybrid shows that the thermal stability of the composite is higher than that of the star polymer. The maximum decomposition temperature increases by 73 deg. C. Dynamic mechanical analysis (DMA) of the hybrid shows that the storage modulus of the star polymer increases after the composite formation, indicating the existence of thermodynamically stable SiC nanoparticles mostly in the micro-phase separated multiarm structure of the polymer

  2. ENHANCEMENT OF THE SENSITIVITY AND SELECTIVITY OF THE VOLTAMMETRIC SENSOR FOR URIC ACID USING MOLECULARLY IMPRINTED POLYMER

    Directory of Open Access Journals (Sweden)

    Miratul Khasanah

    2010-12-01

    Full Text Available The sensitivity and selectivity of voltammetric sensor for uric acid can be improved by modifying the working electrode using a polymer with a molecular template (molecularly imprinted polymer, MIP. Polymer and MIP was synthesized from methacrylic acid (MAA as monomer, ethylene glycol dimethacrylic acid (EGDMA as cross-linker, uric acid (UA as template and the results were characterized by various methods. The poly-MAA formation was identified by a decrease in the intensity of infrared (IR spectra at ~1540 cm-1 (C=C and an increase at ~1700 cm-1 (C=O compared to the IR spectra of the MAA and EGDMA. The SEM analysis showed that the cavity of polymer is small enough (~ 0.1 µm and homogeneous. Establishment of MIP was carried out by extracting of the uric acid from the polymer network. The IR spectra of MIP exhibited the decrease in intensity at ~1700 cm-1 (C=O compared to the non imprinted polymer (NIP. The data of BET analysis showed that polymer pore size increase slightly from 37.71 Å to 38.02 Å after the extraction process of uric acid from the polymer network. Its may be due to incomplete extraction of uric acid from the polymer network. Modifications of hanging mercury drop electrode using MIP made from MAA, EGDMA, and UA with a mole ratio of 1:3:1 produced a sensitive and selective voltammetric sensor for uric acid. The sensitivity obtained was 16.405 nA L/µg. The presence of ascorbic acid in equal concentration with uric acid decreased the current response of only 0.08%. Compared to HMDE electrode, the sensitivity and selectivity of the HMDE-MIP sensor enhanced about 100 and 700 times, respectively. The detection limit was found to be 5.94 x10-10 M.

  3. Prediction of properties of polymer concrete composite with tire rubber using neural networks

    International Nuclear Information System (INIS)

    Diaconescu, Rodica-Mariana; Barbuta, Marinela; Harja, Maria

    2013-01-01

    Highlights: ► Using waste a new composite material was obtained with specific characteristics. ► The objective was to maximize tire powder content with the minimum resin content. ► By direct modeling, the maximum compressive strength was obtained for 30% tire powder. ► Inverse neural modeling was used for obtaining maximum values of strengths. -- Abstract: The neural network method was used to investigate the influence of filler and resin content on the mechanical properties of polymer concrete with powdered tire waste. The mechanical strengths of 10 experimentally determined combinations using mixed epoxy resin, aggregates and tire powder as filler were optimized using direct neural modeling and inverse neural modeling, by imposing a minimum cost (content in resin). Direct neural modeling gave the optimum composition for obtaining maximum values for compressive strength, flexural strength and split tensile strength. Inverse neural modeling analyzed the possibility of obtaining maximum values of mechanical properties by variations in the dosages of the epoxy resin and tire powder. Neural network modeling generated the mixes with the lowest cost and maximum strength. The modeling method has shown that two mechanical properties can be simultaneously optimized in the investigation domain. From direct modeling, the maximum compressive strength was obtained for a composition with 0.215 (fraction weight) epoxy resin and 0.3 (fraction weight) tire powder. Maximum flexural strength was obtained for experimental values of 0.23 epoxy resin and 0.17 tire powder with a severe reduction noted for smaller resin dosages. The maximum split tensile strength was obtained for a resin dosage of 0.24 and tire powder dosage of 0.17

  4. How mechanical behavior of glassy polymers enables us to characterize melt deformation: elastic yielding in glassy state after melt stretching?

    Science.gov (United States)

    Wang, Shi-Qing; Zhao, Zhichen; Tsige, Mesfin; Zheng, Yexin

    Fast melt deformation well above the glass transition temperature Tg is known to produce elastic stress in an entangled polymer due to the chain entropy loss at the length scale of the network mesh size. Here chains of high molecular weight are assumed to form an entanglement network so that such a polymer behaves transiently like vulcanized rubber capable of affine deformation. We consider quenching a melt-deformed glassy polymer to well below Tg to preserve the elastic stress. Upon heating such a sample to Tg, the sample can return to the shape it took before melt deformation. This is the basic principle behind the design of all polymer-based shape-memory materials. This work presents intriguing evidence based on both experiment and computer simulation that the chain network, deformed well above Tg, can drive the glassy polymer to undergo elastic yielding. Our experimental systems include polystyrene, poly(methyl methacrylate) and polycarbonate; the molecular dynamics simulation is based on Kremer-Grest bead-spring model. National Science Foundation (DMR-1444859 and DMR-1609977).

  5. Hybrid inorganic-organic polymer electrolytes: synthesis, FT-Raman studies and conductivity of {l_brace}Zr[(CH{sub 2}CH{sub 2}O){sub 8.7}]{sub {rho}}/(LiClO{sub 4}){sub z}{r_brace}{sub n} network complexes

    Energy Technology Data Exchange (ETDEWEB)

    Di Noto, Vito; Zago, Vanni; Biscazzo, Simone; Vittadello, Michele

    2003-01-15

    This paper describes the synthesis and characterization of three-dimensional hybrid inorganic-organic networks prepared by a polycondensation reaction between Zr(O(CH{sub 2}){sub 3}CH{sub 3}){sub 4} and polyethylene glycol 400 (PEG400). Eleven hybrid networks doped with varying concentrations of LiClO{sub 4} salt were prepared. On the basis of analytical data and FT-Raman studies it was concluded that these polymer electrolytes consist of inorganic-organic networks with zirconium atoms bonded together by PEG400 bridges. These polymers are transparent with a solid rubber consistency and are very stable under inert atmosphere. Scanning electron microscopy revealed a smooth glassy surface. X-ray fluorescence microanalysis with energy dispersive spectroscopy demonstrated that all the constituent elements are homogeneously distributed in the materials. Thermogravimetric measurements revealed that these materials are thermally stable up to 262 deg. C. Differential Scanning Calorimetry measurements indicated that the glass transition temperature T{sub g} of these inorganic-organic hybrids varies from -43 to -15 deg. C with increasing LiClO{sub 4} concentration. FT-Raman investigations revealed the TGT (T=trans, G=gauche) conformation of polyether chains and allowed characterization of the types of ion-ion and ion-polymer host interactions in the bulk materials. The conductivity of the materials at different temperatures was determined by impedance spectroscopy over the 20 Hz-1 MHz frequency range. Results indicated that the materials conduct ionically and that their ionic conductivity is strongly influenced by the segmental motion of the polymer network and the type of ionic species distributed in the bulk material. Finally, it is to be highlighted that the hybrid network with a n{sub Li}/n{sub O} molar ratio of 0.0223 shows a conductivity of ca. 1x10{sup -5} S cm{sup -1} at 40 deg. C.

  6. Microstructural Origins of Nonlinear Response in Associating Polymers under Oscillatory Shear

    Directory of Open Access Journals (Sweden)

    Mark A. Wilson

    2017-10-01

    Full Text Available The response of associating polymers with oscillatory shear is studied through large-scale simulations. A hybrid molecular dynamics (MD, Monte Carlo (MC algorithm is employed. Polymer chains are modeled as a coarse-grained bead-spring system. Functionalized end groups, at both ends of the polymer chains, can form reversible bonds according to MC rules. Stress-strain curves show nonlinearities indicated by a non-ellipsoidal shape. We consider two types of nonlinearities. Type I occurs at a strain amplitude much larger than one, type II at a frequency at which the elastic storage modulus dominates the viscous loss modulus. In this last case, the network topology resembles that of the system at rest. The reversible bonds are broken and chains stretch when the system moves away from the zero-strain position. For type I, the chains relax and the number of reversible bonds peaks when the system is near an extreme of the motion. During the movement to the other extreme of the cycle, first a stress overshoot occurs, then a yield accompanied by shear-banding. Finally, the network restructures. Interestingly, the system periodically restores bonds between the same associating groups. Even though major restructuring occurs, the system remembers previous network topologies.

  7. Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Pérez, Manuel; Maroto-Centeno, José Alberto [Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén (Spain); Adroher-Benítez, Irene [Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)

    2014-05-28

    In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated.

  8. Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Quesada-Pérez, Manuel; Maroto-Centeno, José Alberto; Adroher-Benítez, Irene

    2014-01-01

    In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated

  9. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-11-01

    Full Text Available Composite polymer electrolytes (CPEs can significantly improve the performance in electrochemical devices such as lithium-ion batteries. This review summarizes property/performance relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim of this review to provide a knowledge network that elucidates the role of nano-additives in the CPEs. Central to the discussion is the impact on the CPE performance of properties such as crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant (ε determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions. Certain properties can be improved simultaneously by nanoparticle addition in order to optimize the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion battery applications.

  10. Aliphatic amine cured PDMS–epoxy interpenetrating network ...

    Indian Academy of Sciences (India)

    Unknown

    Tg, heat-distortion temperature and reduced the percentage weight loss with ... The siliconized epoxy IPN, with better impact and thermal resistance, ... However, these materials also deteriorate ... the method of compounding remains the state of the art. ... geneity and to ascertain any chemical change during storage.

  11. Abnormal viscoelastic behavior of side-chain liquid-crystal polymers

    Science.gov (United States)

    Gallani, J. L.; Hilliou, L.; Martinoty, P.; Keller, P.

    1994-03-01

    We show that, contrary to what is commonly believed, the isotropic phase of side-chain liquid-crystal polymers has viscoelastic properties which are totally different from those of ordinary flexible melt polymers. The results can be explained by the existence of a transient network created by the dynamic association of mesogenic groups belonging to different chains. The extremely high sensitivity of the compound to the state of the surfaces with which it is in contact offers us an unexpected method of studying surface states.

  12. Characterisation of irradiation effect on geo-polymers

    International Nuclear Information System (INIS)

    Chupin, Frederic

    2015-01-01

    This study aims to improve knowledge about the radiation effect on geo-polymer behavior in terms of dihydrogen release and general strength in order to consider them as an alternative to usual nuclear waste cementitious coating matrices. Using various characterization techniques (nitrogen adsorption, low temperature DSC, FTIR and 1 H NMR spectroscopy) and by means of simulation irradiations (gamma, heavy ions), it has been shown that all the water present in the geo-polymer could be radiolyzed and that there was a confinement effect on the water radiolysis under low LET irradiation, probably due to efficient energy transfers from the solid matrix to the interstitial solution. Three dihydrogen production rates have been identified with the absorbed dose, depending on the concentration of dissolved dioxygen and the dihydrogen accumulation in the geo-polymer matrix. The good mechanical strength of the geo-polymer has been shown up to 9 MGy under gamma irradiation and is due to its high stability under irradiation. This could be explained by the fast recombination of the defects observed by EPR spectroscopy. However, phase crystallization was revealed during irradiation with heavy ions, which may induce some weakening of the geo-polymer network under alpha irradiation. The overall results helped to understand the phenomenology in a waste package under storage conditions. (author) [fr

  13. High-performance polymer waveguide devices via low-cost direct photolithography process

    Science.gov (United States)

    Wang, Jianguo; Shustack, Paul J.; Garner, Sean M.

    2002-09-01

    All-optical networks provide unique opportunities for polymer waveguide devices because of their excellent mechanical, thermo-optic, and electro-optic properties. Polymer materials and components have been viewed as a viable solution for metropolitan and local area networks where high volume and low cost components are needed. In this paper, we present our recent progress on the design and development of photoresist-like highly fluorinated maleimide copolymers including waveguide fabrication and optical testing. We have developed and synthesized a series of thermally stable, (Tg>150 oC, Td>300 oC) highly fluorinated (>50%) maleimide copolymers by radical co-polymerization of halogenated maleimides with various halogenated co-monomers. A theoretical correlation between optical loss and different co-polymer structures has been quantitatively established from C-H overtone analysis. We studied this correlation through design and manipulation of the copolymer structure by changing the primary properties such as molecular weight, copolymer composition, copolymer sequence distribution, and variations of the side chain including photochemically functional side units. Detailed analysis has been obtained using various characterization methods such as (H, C13, F19) NMR, UV-NIR, FTIR, GPC and so forth. The co-polymers exhibit excellent solubility in ketone solvents and high quality thin films can be prepared by spin coating. The polymer films were found to have a refractive index range of 1.42-1.67 and optical loss in the range of 0.2 to 0.4 dB/cm at 1550nm depending on the composition as extrapolated from UV-NIR spectra. When glycidyl methacrylate is incorporated into the polymer backbone, the material behaves like a negative photoresist with the addition of cationic photoinitiator. The final crosslinked waveguides show excellent optical and thermal properties. The photolithographic processing of the highly fluorinated copolymer material was examined in detail using in

  14. Mechanical response of biopolymer double networks

    Science.gov (United States)

    Carroll, Joshua; Das, Moumita

    We investigate a double network model of articular cartilage (AC) and characterize its equilibrium mechanical response. AC has very few cells and the extracellular matrix mainly determines its mechanical response. This matrix can be thought of as a double polymer network made of collagen and aggrecan. The collagen fibers are stiff and resist tension and compression forces, while aggrecans are flexible and control swelling and hydration. We construct a microscopic model made of two interconnected disordered polymer networks, with fiber elasticity chosen to qualitatively mimic the experimental system. We study the collective mechanical response of this double network as a function of the concentration and stiffness of the individual components as well as the strength of the connection between them using rigidity percolation theory. Our results may provide a better understanding of mechanisms underlying the mechanical resilience of AC, and more broadly may also lead to new perspectives on the mechanical response of multicomponent soft materials. This work was partially supported by a Cottrell College Science Award.

  15. A three-dimensional transient mixed hybrid finite element model for superabsorbent polymers with strain-dependent permeability

    NARCIS (Netherlands)

    Yu, Cong; Malakpoor, Kamyar; Huyghe, Jacques M.

    2018-01-01

    A hydrogel is a cross-linked polymer network with water as solvent. Industrially widely used superabsorbent polymers (SAP) are partially neutralized sodium polyacrylate hydrogels. The extremely large degree of swelling is one of the most distinctive characteristics of such hydrogels, as the volume

  16. Positron annihilation lifetime study of extended defects in semiconductor glasses and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Boyko, Olha [Department of Pediatric Dentistry, Danylo Halytsky Lviv National Medical University, Pekarska str. 69, 79010 Lviv (Ukraine); Shpotyuk, Yaroslav [Department of Optoelectronics and Information Technologies, Ivan Franko National University of Lviv, Dragomanova str. 50, 79005 Lviv (Ukraine); Lviv Scientific Research Institute of Materials, Scientific Research Company ' ' Carat' ' , Stryjska str. 202, 79031 Lviv (Ukraine); Filipecki, Jacek [Institute of Physics, Jan Dlugosz University in Czestochowa, Armii Krajowej al. 13/15, 42200 Czestochowa (Poland)

    2013-01-15

    The processes of atomic shrinkage in network-forming solids initiated by external influences are tested using technique of positron annihilation lifetime spectroscopy at the example of chalcogenide vitreous semiconductors of arsenic sulphide type and acrylic polymers for dental application. Two state positron trapping is shown to be responsible for atomic shrinkage in chalcogenide glasses, while mixed trapping and ortho-positronium decaying is character for volumetric densification and stress propagation in acrylic dental polymers. At the basis of the obtained results it is concluded that correct analysis of externally-induced shrinkage in polymer networks under consideration can be developed by using original positron lifetime data treatment algorithms to compensate defect-free bulk annihilation channel within two-state positron trapping model and account for an interbalance between simultaneously co-existing positron trapping and orth-positronium related decaying channels within mixed three-state positron annihilation model (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Positron annihilation lifetime study of extended defects in semiconductor glasses and polymers

    International Nuclear Information System (INIS)

    Boyko, Olha; Shpotyuk, Yaroslav; Filipecki, Jacek

    2013-01-01

    The processes of atomic shrinkage in network-forming solids initiated by external influences are tested using technique of positron annihilation lifetime spectroscopy at the example of chalcogenide vitreous semiconductors of arsenic sulphide type and acrylic polymers for dental application. Two state positron trapping is shown to be responsible for atomic shrinkage in chalcogenide glasses, while mixed trapping and ortho-positronium decaying is character for volumetric densification and stress propagation in acrylic dental polymers. At the basis of the obtained results it is concluded that correct analysis of externally-induced shrinkage in polymer networks under consideration can be developed by using original positron lifetime data treatment algorithms to compensate defect-free bulk annihilation channel within two-state positron trapping model and account for an interbalance between simultaneously co-existing positron trapping and orth-positronium related decaying channels within mixed three-state positron annihilation model (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Aspects récents de la thermodynamique des solutions de polymères Recent Aspects of the Thermodynamics of Polymer Solutions

    Directory of Open Access Journals (Sweden)

    Dayantis J.

    2006-11-01

    Full Text Available On examine dans cet article différentes approches de la thermodynamique des solutions de polymères placées dans leur contexte historique. On rappelle d'abord le modèle du réseau de Flory-Huggins et on en souligne les déficiences. On traite ensuite brièvement de la mécanique statistique des solutions de polymères introduite par Prigogine en 1957 et on montre qu'elle constitue un progrès qualitatif par rapport à la théorie du réseau, mais qu'elle ne prévoit cependant pas de manière quantitative les propriétés de ces solutions. On montre ensuite que le concept de volume libre, qui permet un traitement simplifié de certaines quantités, permet également d'expliquer tout naturellement l'existence d'une deuxième température de séparation en phase lorsque l'on élève la température, propriété qui différencie les solutions de polymères des mélanges de liquidés simples. Enfin, dans une dernière partie, on mentionne brièvement les travaux récents de l'École de Paris, qui traite les solutions de polymères par analogie avec les transitions magnétiques. This article examines différent approaches ta the thermodynamics of polymer solutions set in their historical context. First of all, the Flory-Huggins network model is described and ifs deficiencies are pointed out. Then attention is briefly drawn to the statistical mechanics of polymer solutions as introduced by Prigogine in 1957, and this mechanics is shown to be a qualitative advance compared with the network theory, but it nonetheless does not quantitatively predict the properties of such solutions. It is then shown that the concept of free volume, enabling some quantifies to be treated in a simplified way, also serves to provide a quite natural explanation for the existence of a second phase separation temperature when the temperature is raised, i. e. a property that differentiates polymer solutions from simple liquid mixtures. In the final part, brief mention is made

  19. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  20. Towards room-temperature performance for lithium-polymer batteries

    International Nuclear Information System (INIS)

    Kerr, J.B.; Liu, Gao; Curtiss, L.A.; Redfern, Paul C.

    2003-01-01

    Recent work on molecular simulations of the mechanisms of lithium ion conductance has pointed towards two types of limiting process. One has involved the commonly cited segmental motion while the other is related to energy barriers in the solvation shell of polymeric ether oxygens around the lithium ions. Calculations of the barriers to lithium ion migration have provided important indicators as to the best design of the polymer. The theoretical work has coincided with and guided some recent developments on polymer synthesis for lithium batteries. Structural change of the polymer solvation shell has been pursued by the introduction of trimethylene oxide (TMO) units into the polymer. The conductivity measurements on polymers containing TMO unit are encouraging. The architecture of the polymer networks has been varied upon which the solvating groups are attached and significant improvements in sub-ambient performance are observed as a result. However, the above-ambient temperature performance appears controlled by an Arrhenius process that is not completely consistent with the theoretical calculations described here and may indicate the operation of a different mechanism. The new polymers possess significantly lower T g values in the presence of lithium salts, which indicates weaker binding of the lithium ions by the polymers. These properties provide considerable improvement in the transport properties close to the electrode surfaces resulting in decreased impedances at the surfaces both at lithium metal and in composite electrodes. The greater flexibility of the solvation groups combined with appropriate architecture not only has applications in lithium metal-polymer batteries but also in lithium ion liquid and gel systems as well as in fuel cell electrodes

  1. Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation

    International Nuclear Information System (INIS)

    Auth, Thorsten; Safran, S A; Gov, Nir S

    2007-01-01

    Several cell types, among them red blood cells, have a cortical, two-dimensional (2D) network of filaments sparsely attached to their lipid bilayer. In many mammalian cells, this 2D polymer network is connected to an underlying 3D, more rigid cytoskeleton. In this paper, we consider the pressure exerted by the thermally fluctuating, cortical network of filaments on the bilayer and predict the bilayer deformations that are induced by this pressure. We treat the filaments as flexible polymers and calculate the pressure that a network of such linear chains exerts on the bilayer; we then minimize the bilayer shape in order to predict the resulting local deformations. We compare our predictions with membrane deformations observed in electron micrographs of red blood cells. The polymer pressure along with the resulting membrane deformation can lead to compartmentalization, regulate in-plane diffusion and may influence protein sorting as well as transmit signals to the polymerization of the underlying 3D cytoskeleton

  2. Guest Induced Strong Cooperative One- and Two-Step Spin Transitions in Highly Porous Iron(II) Hofmann-Type Metal-Organic Frameworks.

    Science.gov (United States)

    Piñeiro-López, Lucı A; Valverde-Muñoz, Francisco Javier; Seredyuk, Maksym; Muñoz, M Carmen; Haukka, Matti; Real, José Antonio

    2017-06-19

    The synthesis, crystal structure, magnetic, calorimetric, and Mössbauer studies of a series of new Hofmann-type spin crossover (SCO) metal-organic frameworks (MOFs) is reported. The new SCO-MOFs arise from self-assembly of Fe II , bis(4-pyridyl)butadiyne (bpb), and [Ag(CN) 2 ] - or [M II (CN) 4 ] 2- (M II = Ni, Pd). Interpenetration of four identical 3D networks with α-Po topology are obtained for {Fe(bpb)[Ag I (CN) 2 ] 2 } due to the length of the rod-like bismonodentate bpb and [Ag(CN) 2 ] - ligands. The four networks are tightly packed and organized in two subsets orthogonally interpenetrated, while the networks in each subset display parallel interpenetration. This nonporous material undergoes a very incomplete SCO, which is rationalized from its intricate structure. In contrast, the single network Hofmann-type MOFs {Fe(bpb)[M II (CN) 4 ]}·nGuest (M II = Ni, Pd) feature enhanced porosity and display complete one-step or two-step cooperative SCO behaviors when the pores are filled with two molecules of nitrobenzene or naphthalene that interact strongly with the pyridyl and cyano moieties of the bpb ligands via π-π stacking. The lack of these guest molecules favors stabilization of the high-spin state in the whole range of temperatures. However, application of hydrostatic pressure induces one- and two-step SCO.

  3. Multiple dynamical time-scales in networks with hierarchically ...

    Indian Academy of Sciences (India)

    cists from resistor networks to polymer contact structure to spin interactions in disordered ... the intracellular signalling system to neuronal networks to ecological food ... tion of the key players can be used to develop drugs targeted specifically ...

  4. Bimodal Networks as Candidates for Electroactive Polymers

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Bejenariu, Anca Gabriela

    An alternative network formulation method was adopted in order to obtain a different type of silicone based elastomeric systems - the so-called bimodal networks - using two vinyl-terminated polydimethyl siloxanes (PDMS) of different molecular weight, a labelled crosslinker (3 or 4-functional), an...... themselves between the long chains and show how this leads to unexpectedly good properties for DEAP purposes due both to the low extensibility of the short chains that attach strongly the long chains and to the extensibility of the last ones that retards the rupture process....

  5. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    Science.gov (United States)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  6. Branched-linear and agglomerate protein polymers as vaccine platforms.

    Science.gov (United States)

    Wang, Leyi; Xia, Ming; Huang, Pengwei; Fang, Hao; Cao, Dianjun; Meng, Xiang-Jin; McNeal, Monica; Jiang, Xi; Tan, Ming

    2014-09-01

    Many viral structural proteins and their truncated domains share a common feature of homotypic interaction forming dimers, trimers, and/or oligomers with various valences. We reported previously a simple strategy for construction of linear and network polymers through the dimerization feature of viral proteins for vaccine development. In this study, technologies were developed to produce more sophisticated polyvalent complexes through both the dimerization and oligomerization natures of viral antigens. As proof of concept, branched-linear and agglomerate polymers were made via fusions of the dimeric glutathione-s-transferase (GST) with either a tetrameric hepatitis E virus (HEV) protruding protein or a 24-meric norovirus (NoV) protruding protein. Furthermore, a monomeric antigen, either the M2e epitope of influenza A virus or the VP8* antigen of rotavirus, was inserted and displayed by the polymer platform. All resulting polymers were easily produced in Escherichia coli at high yields. Immunization of mice showed that the polymer vaccines induced significantly higher specific humoral and T cell responses than those induced by the dimeric antigens. Additional evidence in supporting use of polymer vaccines included the significantly higher neutralization activity and protective immunity of the polymer vaccines against the corresponding viruses than those of the dimer vaccines. Thus, our technology for production of polymers containing different viral antigens offers a strategy for vaccine development against infectious pathogens and their associated diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Orientational cross correlations between entangled branch polymers in primitive chain network simulations

    Science.gov (United States)

    Masubuchi, Yuichi; Pandey, Ankita; Amamoto, Yoshifumi; Uneyama, Takashi

    2017-11-01

    Although it has not been frequently discussed, contributions of the orientational cross-correlation (OCC) between entangled polymers are not negligible in the relaxation modulus. In the present study, OCC contributions were investigated for 4- and 6-arm star-branched and H-branched polymers by means of multi-chain slip-link simulations. Owing to the molecular-level description of the simulation, the segment orientation was traced separately for each molecule as well as each subchain composing the molecules. Then, the OCC was calculated between different molecules and different subchains. The results revealed that the amount of OCC between different molecules is virtually identical to that of linear polymers regardless of the branching structure. The OCC between constituent subchains of the same molecule is significantly smaller than the OCC between different molecules, although its intensity and time-dependent behavior depend on the branching structure as well as the molecular weight. These results lend support to the single-chain models given that the OCC effects are embedded into the stress-optical coefficient, which is independent of the branching structure.

  8. Effect of molecular properties on the performance of polymer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Marta M.D.; Almeida, A.M.; Correia, Helena M.G.; Ribeiro, R. Mendes; Stoneham, A.M

    2004-11-15

    The performance of a single layer polymer light-emitting diode depends on several interdependent factors, although recombination between electrons and holes within the polymer layer is believed to play an important role. Our aim is to carry out computer experiments in which bipolar charge carriers are injected in polymer networks made of poly(p-phenylene vinylene) chains randomly oriented. In these simulations, we follow the charge evolution in time from some initial state to the steady state. The intra-molecular properties of the polymer molecules obtained from self-consistent quantum molecular dynamics calculations are used in the mesoscopic model. The purpose of the present work is to clarify the effects of intra-molecular charge mobility and energy disorder on recombination efficiency. In particular, we find that charge mobility along the polymer chains has a serious influence on recombination within the polymer layer. Our results also show that energy disorder due to differences in ionization potential and electron affinity of neighbouring molecules affects mainly recombinations that occur near the electrodes at polymer chains parallel to them.

  9. Effect of molecular properties on the performance of polymer light-emitting diodes

    International Nuclear Information System (INIS)

    Ramos, Marta M.D.; Almeida, A.M.; Correia, Helena M.G.; Ribeiro, R. Mendes; Stoneham, A.M.

    2004-01-01

    The performance of a single layer polymer light-emitting diode depends on several interdependent factors, although recombination between electrons and holes within the polymer layer is believed to play an important role. Our aim is to carry out computer experiments in which bipolar charge carriers are injected in polymer networks made of poly(p-phenylene vinylene) chains randomly oriented. In these simulations, we follow the charge evolution in time from some initial state to the steady state. The intra-molecular properties of the polymer molecules obtained from self-consistent quantum molecular dynamics calculations are used in the mesoscopic model. The purpose of the present work is to clarify the effects of intra-molecular charge mobility and energy disorder on recombination efficiency. In particular, we find that charge mobility along the polymer chains has a serious influence on recombination within the polymer layer. Our results also show that energy disorder due to differences in ionization potential and electron affinity of neighbouring molecules affects mainly recombinations that occur near the electrodes at polymer chains parallel to them

  10. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction.

    Science.gov (United States)

    Kundu, Banani; Kundu, Subhas C

    2012-10-01

    In situ forming tissue sealants are advantageous due to ease in application, complete coverage of defect site and assured comfort levels to patients. The interconnected three-dimensional hydrophilic networks perfectly manage typical dermal wounds by suitably scaffolding skin fibroblast, diffusing the nutrients, therapeutics and exudates while still maintaining an adequately moist environment. We evaluate the cell homing ability of semi-interpenetrating non-mulberry tropical tasar silk sericin/polyacrylamide hydrophilic network with a keen understanding of its network characteristics and correlation of protein concentration with the performance as cell scaffold. Interconnectivity of porous networks observed through scanning electron micrograph revealed pore sizes ranging from 23 to 52 μm. The enhanced β-sheet content with the increasing sericin concentration in far red spectroscopy study supported their corresponding improved compressive strength. These semi-interpenetrating networks were found to possess a maximum fluid uptake of 112% of its weight, hence preventing the accumulation of exudates at the wound area. The present systems appear to possess characteristics like rapid gelation (~5min) at 37 °C, 98% porosity enabling the migration of fibroblasts during healing (observed through confocal and scanning electron micrographs), cell adhesion together with the absence of any cyto-toxic effect suggesting its potential as in situ tissue sealants. The compressive strength up to 61 kPa ensured ease in handling even when wet. The results prove the suitability to use non-mulberry tasar cocoon silk sericin/polyacrylamide semi-interpenetrating network as a reconstructive dermal sealant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Semi-Degradable Poly(β-amino ester) Networks with Temporally-Controlled Enhancement of Mechanical Properties

    Science.gov (United States)

    Safranski, David L.; Weiss, Daiana; Clark, J. Brian; Taylor, W.R.; Gall, Ken

    2014-01-01

    Biodegradable polymers are clinically used in numerous biomedical applications, and classically show a loss in mechanical properties within weeks of implantation. This work demonstrates a new class of semi-degradable polymers that show an increase in mechanical properties through degradation via a controlled shift in a thermal transition. Semi-degradable polymer networks, poly(β-amino ester)-co-methyl methacrylate, were formed from a low glass transition temperature crosslinker, poly(β-amino ester), and high glass transition temperature monomer, methyl methacrylate, which degraded in a manner dependent upon the crosslinker chemical structure. In vitro and in vivo degradation revealed changes in mechanical behavior due to the degradation of the crosslinker from the polymer network. This novel polymer system demonstrates a strategy to temporally control the mechanical behavior of polymers and to enhance the initial performance of smart biomedical devices. PMID:24769113

  12. Full Color Camouflage in a Printable Photonic Blue-Colored Polymer

    OpenAIRE

    Moirangthem, Monali; Schenning, Albertus P. H. J.

    2018-01-01

    A blue reflective photonic polymer coating which can be patterned in full color, from blue to red, by printing with an aqueous calcium nitrate solution has been fabricated. Color change in the cholesteric liquid-crystalline polymer network over the entire visible spectrum is obtained by the use of nonreactive mesogen. The pattern in the coating is hidden in the blue color dry state and appears upon exposure to water or by exhaling breath onto it due to different degrees of swelling of the pol...

  13. Electrical properties of a new sulfur-containing polymer for optoelectronic application

    Science.gov (United States)

    ElAkemi, ElMehdi; Jaballah, Nejmeddine; Ouada, Hafedh Ben; Majdoub, Mustapha

    2015-06-01

    An original polythiophene derivative was characterized to develop the optoelectronic properties of sulfur-containing π-conjugated polymer. The optical properties of the polymer were investigated by UV-visible absorption spectroscopy and atomic force microscopy. Investigations of the electrical characteristics of polymer diodes are reported. We present current-voltage characteristics and impedance spectroscopy measurements performed on partially sulfur-containing thin films in sandwich structure ITO/sulfur-containing polymer/Al. The conduction mechanisms in these layers are identified to be a space-charge-limited current. The AC electrical transport of the sulfur-containing polymer is studied as a function of frequency (100 Hz-10 MHz) and temperature in impedance spectroscopy analyses. We interpreted Cole-Cole plots in terms of the equivalent circuit model as a single parallel resistance and a capacitance network in series with a relatively small resistance. The evolution of the electrical parameters deduced from fitting of the experimental data is discussed.

  14. Incorporating Embedded Microporous Layers into Topologically Equivalent Pore Network Models for Oxygen Diffusivity Calculations in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    International Nuclear Information System (INIS)

    Fazeli, Mohammadreza; Hinebaugh, James; Bazylak, Aimy

    2016-01-01

    Highlights: • Pore network model for modeling PEMFC MPL-coated GDL effective diffusivity. • Bilayered GDL (substrate and MPL) is modeled with a hybrid network of block MPL elements combined with discrete substrate pores. • Diffusivities of MPL-coated GDLs agree with analytical solutions. - Abstract: In this work, a voxel-based methodology is introduced for the hybridization of a pore network with interspersed nano-porous material elements allowing pore network based oxygen diffusivity calculations in a 3D image of a polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) with an embedded microporous layer (MPL). The composite GDL is modeled by combining a hybrid network of block MPL elements with prescribed bulk material properties and a topologically equivalent network of larger discrete pores and throats that are directly derived from the 3D image of the GDL substrate. This hybrid network was incorporated into a pore network model, and effective diffusivity predictions of GDL materials with MPL coatings were obtained. Stochastically generated numerical models of carbon paper substrates with and without MPLs were used, and the pore space was directly extracted from this realistic geometry as the input for the pore network model. The effective diffusion coefficient of MPL-coated GDL materials was predicted from 3D images in a pore network modeling environment without resolving the nano-scale structure of the MPL. This method is particularly useful due to the disparate length scales that are involved when attempting to capture pore-scale transport in the GDL. Validation was performed by comparing our predicted diffusivity values to analytical predictions, and excellent agreement was observed. Upon conducting a mesh sensitivity study, it was determined that an MPL element size of 7 μm provided sufficiently high resolution for accurately describing the MPL nano-structure.

  15. Elucidating and tuning the strain-induced non-linear behavior of polymer nanocomposites: a detailed molecular dynamics simulation study.

    Science.gov (United States)

    Shen, Jianxiang; Liu, Jun; Gao, Yangyang; Li, Xiaolin; Zhang, Liqun

    2014-07-28

    By setting up a coarse-grained model of polymer nanocomposites, we monitored the change in the elastic modulus as a function of the strain, derived from the stress-strain behavior by determining uniaxial tension and simple shear of two typical spatial distribution states (aggregation and dispersion) of nanoparticles (NPs). In both these cases, we observed that the elastic modulus decreases non-linearly with the increase of strain and reaches a low plateau at larger strains. This phenomenon is similar to the so-called "Payne effect" for elastomer nanocomposites. Particularly, the modulus of the aggregation case is more sensitive to the imposed strain. By examining the structural parameters, such as the number of neighboring NPs, coordination number of NPs, root-mean-squared average force exerted on the NPs, local strain, chain conformations (bridge, dangle, loop, interface bead and connection bead), and the total interaction energy of NP-polymer and NP-NP, we inferred that the underlying mechanism of the aggregation case is the disintegration of the NP network or clusters formed through direct contact; however, for the dispersion case, the non-linear behavior is attributed to the destruction of the NP network or clusters formed through the bridging of adsorbed polymer segments among the NPs. The former physical network is influenced by NP-NP interaction and NP volume fraction, while the latter is influenced by NP-polymer interaction and NP volume fraction. Lastly, we found that for the dispersion case, further increasing the inter-particle distance or grafting NPs with polymer chains can effectively reduce the non-linear behavior due to the decrease of the physical network density. In general, this simulation work, for the first time, establishes the correlation between the micro-structural evolution and the strain-induced non-linear behavior of polymer nanocomposites, and sheds some light on how to reduce the "Payne effect".

  16. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses

    Science.gov (United States)

    Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao

    2014-09-01

    This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value fcp during tensile extension; (b) the limiting value of fcp, extrapolated to far below the glass transition temperature Tg, is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room temperature

  17. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses.

    Science.gov (United States)

    Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao

    2014-09-07

    This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value f(cp) during tensile extension; (b) the limiting value of f(cp), extrapolated to far below the glass transition temperature T(g), is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room

  18. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels.

    Science.gov (United States)

    Bajpai, S K; Kumari, Mamta

    2015-09-01

    In this work, gum acacia (GA)/poly(sodium acrylate) semi-interpenetrating polymer networks (Semi-IPN) have been fabricated via free radical initiated aqueous polymerization of monomer sodium acrylate (SA) in the presence of dissolved Gum acacia (GA), using N,N'-methylenebisacrylamide (MB) as cross-linker and potassium persulphate (KPS) as initiator. The semi-IPNs, synthesized, were characterized by various techniques such as X-ray diffraction (XRD), thermo gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The dynamic water uptake behavior of semi-IPNs was investigated and the data were interpreted by various kinetic models. The equilibrium swelling data were used to evaluate various network parameters. The semi-IPNs were used as template for the in situ preparation of silver nanoparticles using extract of Syzygium aromaticum (clove). The formation of silver nanoparticles was confirmed by surface plasmon resonance (SPR), XRD and transmission electron microscopy (TEM). Finally, the antibacterial activity of GA/poly(SA)/silver nanocomposites was tested against E. coli. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Geometry in Biomimetic Network: Double Gyroid to Pseudo-Single Gyroid in Nanohybrid Materials

    Science.gov (United States)

    Hsueh, Han-Yu; Ho, Rong-Ming; Hung, Yu-Chueh; Ling, Yi-Chun; Hasegawa, Hirokazu

    2013-03-01

    Biological systems have developed delicately arranged micro- and architectures to produce striking optical effects since millions of years ago. Inspired by the textures of butterfly wings with single gyroid (SG) structure, herein, we aim to fabricate biocompatible and robust materials with SG-like structure in nanometer size so as to give new materials with unprecedented optical properties for applications. Biommicking from the biological photonic structures of butterfly wings, a double gyroid (DG) structure in nanometer size is obtained from the self-assembly of polystyrene-b-poly(L-lactide) (PS-PLLA). To acquire robust backbone networks, inorganic networks in polymer matrix are fabricated by using the hydrolyzed PS-PLLA with DG structure as a template for sol-gel reaction. Owing to the soft polymer matrix, two co-continuous inorganic networks embedded in the polymer matrix can be rearranged by thermal annealing at temperature above the glass transition of the polymer. Consequently, the rearrangement of these inorganic networks leads the formation of SG-like structure possessing unique nanohybrids with ordered texture. This unique nanomaterials with SG-like structure is referred as a pseudo-SG (p-SG) nanohybrids.