WorldWideScience

Sample records for international x-ray observatory

  1. Silicon pore optics for the international x-ray observatory

    Science.gov (United States)

    Wille, E.; Wallace, K.; Bavdaz, M.; Collon, M. J.; Günther, R.; Ackermann, M.; Beijersbergen, M. W.; Riekerink, M. O.; Blom, M.; Lansdorp, B.; de Vreede, L.

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The International X-ray Observatory (IXO) requires a mirror assembly of 3 m2 effective area (at 1.5 keV) and an angular resolution of 5 arcsec. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the manufacturing process ranging from single mirror plates towards complete focusing mirror modules mounted in flight configuration. The performance of the mirror modules is tested using X-ray pencil beams or full X-ray illumination. In 2009, an angular resolution of 9 arcsec was achieved, demonstrating the improvement of the technology compared to 17 arcsec in 2007. Further development activities of Silicon Pore Optics concentrate on ruggedizing the mounting system and performing environmental tests, integrating baffles into the mirror modules and assessing the mass production.

  2. The Wide Field Imager of the International X-ray Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Stefanescu, A., E-mail: astefan@hll.mpg.d [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Johannes Gutenberg-Universitaet, Inst. f. anorganische und analytische Chemie, 55099 Mainz (Germany); Bautz, M.W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Burrows, D.N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bombelli, L.; Fiorini, C. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano (Italy); INFN Sezione di Milano, Milano (Italy); Fraser, G. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Heinzinger, K. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Herrmann, S. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Kuster, M. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstr. 9, 64289 Darmstadt (Germany); Lauf, T. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Lechner, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Lutz, G. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Majewski, P. [PNSensor GmbH, Roemerstr. 28, 80803 Muenchen (Germany); Meuris, A. [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstr., 85748 Garching (Germany); Murray, S.S. [Harvard/Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2010-12-11

    The International X-ray Observatory (IXO) will be a joint X-ray observatory mission by ESA, NASA and JAXA. It will have a large effective area (3 m{sup 2} at 1.25 keV) grazing incidence mirror system with good angular resolution (5 arcsec at 0.1-10 keV) and will feature a comprehensive suite of scientific instruments: an X-ray Microcalorimeter Spectrometer, a High Time Resolution Spectrometer, an X-ray Polarimeter, an X-ray Grating Spectrometer, a Hard X-ray Imager and a Wide-Field Imager. The Wide Field Imager (WFI) has a field-of-view of 18 ftx18 ft. It will be sensitive between 0.1 and 15 keV, offer the full angular resolution of the mirrors and good energy resolution. The WFI will be implemented as a 6 in. wafer-scale monolithical array of 1024x1024 pixels of 100x100{mu}m{sup 2} size. The DEpleted P-channel Field-Effect Transistors (DEPFET) forming the individual pixels are devices combining the functionalities of both detector and amplifier. Signal electrons are collected in a potential well below the transistor's gate, modulating the transistor current. Even when the device is powered off, the signal charge is collected and kept in the potential well below the gate until it is explicitly cleared. This makes flexible and fast readout modes possible.

  3. Invited Review Article: The Chandra X-ray Observatory

    Science.gov (United States)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  4. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    Science.gov (United States)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  5. The Large Observatory For x-ray Timing

    DEFF Research Database (Denmark)

    Feroci, M.; Herder, J. W. den; Bozzo, E.

    2014-01-01

    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study th...

  6. NASA Names Premier X-Ray Observatory and Schedules Launch

    Science.gov (United States)

    1998-12-01

    NASA's Advanced X-ray Astrophysics Facility has been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel laureate, Subrahmanyan Chandrasekhar. The telescope is scheduled to be launched no earlier than April 8, 1999 aboard the Space Shuttle Columbia mission STS-93, commanded by astronaut Eileen Collins. Chandrasekhar, known to the world as Chandra, which means "moon" or "luminous" in Sanskrit, was a popular entry in a recent NASA contest to name the spacecraft. The contest drew more than six thousand entries from fifty states and sixty-one countries. The co-winners were a tenth grade student in Laclede, Idaho, and a high school teacher in Camarillo, CA. The Chandra X-ray Observatory Center (CXC), operated by the Smithsonian Astrophysical Observatory, will control science and flight operations of the Chandra X-ray Observatory for NASA from Cambridge, Mass. "Chandra is a highly appropriate name," said Harvey Tananbaum, Director of the CXC. "Throughout his life Chandra worked tirelessly and with great precision to further our understanding of the universe. These same qualities characterize the many individuals who have devoted much of their careers to building this premier X-ray observatory." "Chandra probably thought longer and deeper about our universe than anyone since Einstein," said Martin Rees, Great Britain's Astronomer Royal. "Chandrasekhar made fundamental contributions to the theory of black holes and other phenomena that the Chandra X-ray Observatory will study. His life and work exemplify the excellence that we can hope to achieve with this great observatory," said NASA Administrator Dan Goldin. Widely regarded as one of the foremost astrophysicists of the 20th century, Chandrasekhar won the Nobel Prize in 1983 for his theoretical studies of physical processes important to the structure and evolution of stars. He and his wife immigrated from India to the U.S. in 1935. Chandrasekhar served on the faculty of the University of

  7. The Einstein Observatory stellar X-ray database

    International Nuclear Information System (INIS)

    Harnden, F.R. Jr.; Sciortino, S.; Micela, G.; Maggio, A.; Schmitt, J.H.M.M.

    1990-01-01

    We present the motivation for and methodology followed in constructing the Einstein Observatory Stellar X-ray Database from a uniform analysis of nearly 4000 Imaging Proportional Counter fields obtained during the life of this mission. This project has been implemented using the INGRES database system, so that statistical analyses of the properties of detected X-ray sources are relatively easily and flexibly accomplished. Some illustrative examples will furnish a general view both of the kind and amount of the archived information and of the statistical approach used in analyzing the global properties of the data. (author)

  8. The Chandra X-ray Observatory PSF Library

    Science.gov (United States)

    Karovska, M.; Beikman, S. J.; Elvis, M. S.; Flanagan, J. M.; Gaetz, T.; Glotfelty, K. J.; Jerius, D.; McDowell, J. C.; Rots, A. H.

    Pre-flight and on-orbit calibration of the Chandra X-Ray Observatory provided a unique base for developing detailed models of the optics and detectors. Using these models we have produced a set of simulations of the Chandra point spread function (PSF) which is available to the users via PSF library files. We describe here how the PSF models are generated and the design and content of the Chandra PSF library files.

  9. ESA's X-ray space observatory XMM takes first pictures

    Science.gov (United States)

    2000-02-01

    Under the aegis of Prof. Roger Bonnet, ESA Director of Science, the mission's Principal Investigators will be presenting these spectacular first images at a press conference to be held on 9 February at the ESA Vilspa facility at Villafranca/Madrid in Spain, where the XMM Science Operations Centre is located. The event will also be the occasion for several major announcements concerning the XMM mission. In particular Professor Bonnet will launch the third XMM competition "Stargazing" - previously announced in September 1999. This will address European youngsters, 16 to 18 years old, who will be offered the unique opportunity of winning observing time using the X-ray telescope. Commissioning phase starts After a successful launch from Kourou on Ariane 504 on 10 December 1999, XMM was brought to its final operational orbit in the following week. The telescope doors on the X-ray Mirror Modules and on the Optical Monitor telescope were opened on 17/18 December. The Radiation Monitor was activated on 19 December and the spacecraft was put into a quiet mode over the Christmas and New Year period. The mission's scientific data is being received, processed and dispatched to astronomers by the XMM Science Operations Centre in Villafranca. Operations with the spacecraft restarted there on 4 January when, as part of the commissioning phase, all the science payloads were switched on one after the other for initial verifications. By the week of 17 January functional tests had begun on the Optical Monitor, the EPIC pn, the two EPIC MOS and the two RGS instruments. The internal doors of the EPIC cameras were opened whilst keeping the camera filter wheels closed. Astounding first images After a series of engineering exposures, all three EPIC cameras were used in turn, between 19-24 January, to take several views of two different extragalactic regions of the Universe. These views, featuring a variety of extended and X-ray point sources, were chosen to demonstrate the full

  10. High resolution X-ray spectroscopy from the Einstein Observatory

    International Nuclear Information System (INIS)

    Winkler, P.F.; Canizares, C.R.; Clark, G.W.; Markert, T.H.; Berg, C.; Jernigan, J.G.; Schattenberg, M.L.; Massachusetts Inst. of Tech., Cambridge

    1980-01-01

    This paper is devoted to a discussion of some results which we have recently obtained from the fourth of the principal intruments on board the Einstein Observatory: M.I.T.'s Focal Plane Crystal Spectrometer (FPCS). We shall begin whith a few general remarks about X-ray spectroscopy, followed by a brief description of the FPCS instrument. The results we present here deal primarily with supernova remnants (SNRs): Puppis A and Cas A in the Galaxy, and N132D and N63A in the Large Magellanic Cloud. In addition we shall briefly discuss a member of the other class of thermal X-ray source under discussion at present; namely, to report our detection of oxygen emission from the vicinity of M87 in the Virgo Cluster. (orig.)

  11. NASA Unveils First Images From Chandra X-Ray Observatory

    Science.gov (United States)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  12. Studies of dark energy with X-ray observatories.

    Science.gov (United States)

    Vikhlinin, Alexey

    2010-04-20

    I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity.

  13. Adaptive grazing incidence optics for the next generation of x-ray observatories

    Science.gov (United States)

    Lillie, C.; Pearson, D.; Plinta, A.; Metro, B.; Lintz, E.; Shropshire, D.; Danner, R.

    2010-09-01

    Advances in X-ray astronomy require high spatial resolution and large collecting area. Unfortunately, X-ray telescopes with grazing incidence mirrors require hundreds of concentric mirror pairs to obtain the necessary collecting area, and these mirrors must be thin shells packed tightly together... They must also be light enough to be placed in orbit with existing launch vehicles, and able to be fabricated by the thousands for an affordable cost. The current state of the art in X-ray observatories is represented by NASA's Chandra X-ray observatory with 0.5 arc-second resolution, but only 400 cm2 of collecting area, and by ESA's XMM-Newton observatory with 4,300 cm2 of collecting area but only 15 arc-second resolution. The joint NASA/ESA/JAXA International X-ray Observatory (IXO), with {15,000 cm2 of collecting area and 5 arc-second resolution which is currently in the early study phase, is pushing the limits of passive mirror technology. The Generation-X mission is one of the Advanced Strategic Mission Concepts that NASA is considering for development in the post-2020 period. As currently conceived, Gen-X would be a follow-on to IXO with a collecting area >= 50 m2, a 60-m focal length and 0.1 arc-second spatial resolution. Gen-X would be launched in {2030 with a heavy lift Launch Vehicle to an L2 orbit. Active figure control will be necessary to meet the challenging requirements of the Gen-X optics. In this paper we present our adaptive grazing incidence mirror design and the results from laboratory tests of a prototype mirror.

  14. The Chandra X-ray Observatory data processing system

    Science.gov (United States)

    Evans, Ian; Cresitello-Dittmar, Mark; Doe, Stephen; Evans, Janet; Fabbiano, Giuseppina; Germain, Gregg; Glotfelty, Kenny; Plummer, David; Zografou, Panagoula

    2006-06-01

    Raw data from the Chandra X-ray Observatory are processed by a set of standard data processing pipelines to create scientifically useful data products appropriate for further analysis by end users. Fully automated pipelines read the dumped raw telemetry byte stream from the spacecraft and perform the common reductions and calibrations necessary to remove spacecraft and instrumental signatures and convert the data into physically meaningful quantities that can be further analyzed by observers. The resulting data products are subject to automated validation to ensure correct pipeline processing and verify that the spacecraft configuration and scheduling matched the observers request and any constraints. In addition, pipeline processing monitors science and engineering data for anomalous indications and trending, and triggers alerts if appropriate. Data products are ingested and stored in the Chandra Data Archive, where they are made available for downloading by users. In this paper, we describe the architecture of the data processing system, including the scientific algorithms that are applied to the data, and interfaces to other subsystems. We place particular emphasis on the impacts of design choices on system integrity and maintainability. We review areas where algorithmic improvements or changes in instrument characteristics have required significant enhancements, and the mechanisms used to effect these changes while assuring continued scientific integrity and robustness. We discuss major enhancements to the data processing system that are currently being developed to automate production of the Chandra Source Catalog.

  15. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    Science.gov (United States)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  16. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    Science.gov (United States)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray

  17. Role of the Chandra X-Ray Observatory Observations for the Study of Ionized Plasmas

    Science.gov (United States)

    Weisskopf, Martin C.

    2010-01-01

    The Chandra X-Ray Observatory, launched in 1999, is now beginning its 12-th year of operation. Chandra, the X-ray component of NASA s Great Observatory program, continues to operate efficiently, somewhat remarkable considering that the Observatory was designed for three years of operation with a goal of five. The Observatory features X-ray optics with sub-arcsecond angular resolution and a small suite of instruments, including transmission gratings, which allow for high-resolution spectroscopy of point sources. We will detail the capabilities of the Observatory for making such spectroscopic measurements and discuss a number of examples of what has been learned about the astrophysical plasmas capable of producing bright X-ray emission.

  18. 14th International Conference on X-Ray Lasers

    CERN Document Server

    Menoni, Carmen; Marconi, Mario

    2016-01-01

    These proceedings comprise invited and contributed papers presented at the 14th International Conference on X-Ray Lasers (ICXRL 2014). This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress toward practical devices and their applications in numerous fields are reported. Areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation, and other x-ray generation schemes are covered.  The scope of ICXRL 2014 included, but was not limited to: Laser-pumped X-ray lasers Discharge excitation and other X-ray laser pumping methods Injection/seeding of X-ray amplifiers New lasing transitions and novel X-ray laser schemes High Harmonic sources-Free-electron laser generation in the XUV and X-ray range Novel schemes for coherent XUV and X-ray ge...

  19. The Large Observatory for X-ray Timing (LOFT)

    Czech Academy of Sciences Publication Activity Database

    Feroci, M.; Stella, L.; van der Klis, M.; Courvoisier, T. J.-L.; Hernanz, M.; Hudec, René; Bursa, Michal; Dovčiak, Michal; Horák, Jiří; Karas, Vladimír

    2012-01-01

    Roč. 34, č. 2 (2012), s. 415-444 ISSN 0922-6435 Grant - others:ESA(XE) ESA-PECS project No. 98040 Institutional research plan: CEZ:AV0Z10030501 Keywords : X-ray astronomy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.969, year: 2012

  20. LOFT - The large observatory for x-ray timing

    DEFF Research Database (Denmark)

    Feroci, M.; Den Herder, J.W.; Argan, A.

    2012-01-01

    The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral v...

  1. Development Roadmap for an Adjustable X-Ray Optics Observatory

    Science.gov (United States)

    Schwartz, Dan; Brissenden, R.; Bookbinder, J.; Davis, W.; Forman, W.; Freeman, M.; O'Dell, S.; Ramsey, B.; Reid, P.; Romaine, S.; hide

    2011-01-01

    We are developing adjustable X-ray optics to use on a mission such as SMART-X (see posters 38.02, 38.03 and Presentation 30.03). To satisfy the science problems expected to be posed by the next decadal survey, we anticipate requiring effective area greater than 1 square meter and Chandra-like angular resolution: approximately equal to 0.5 inches. To achieve such precise resolution we are developing adjustable mirror technology for X-ray astronomy application. This uses a thin film of piezoelectric material deposited on the back surface of the mirror to correct for figure distortions, including manufacturing errors and deflections due to gravity and thermal effects. We present here a plan to raise this technology from its current Level 2, to Level 6, by 2018.

  2. Modeling Contamination Migration on the Chandra X-Ray Observatory - III

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexy A.; Tennant, Allyn F.; Dahmer, Matthew T.

    2015-01-01

    During its first 16 years of operation, the cold (about -60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. Keywords: X-ray astronomy, CCDs, contamination, modeling and simulation, spacecraft operations

  3. Impacts of Chandra X-ray Observatory Public Communications and Engagement

    Science.gov (United States)

    Arcand, Kimberly K.; Watzke, Megan; Lestition, Kathleen; Edmonds, Peter

    2015-01-01

    The Chandra X-ray Observatory Center runs a multifaceted Public Communications & Engagement program encompassing press relations, public engagement, and education. Our goals include reaching a large and diverse audience of national and international scope, establishing direct connections and working relationships with the scientists whose research forms the basis for all products, creating peer-reviewed materials and activities that evolve from an integrated pipeline design and encourage users toward deeper engagement, and developing materials that target underserved audiences such as women, Spanish speakers, and the sight and hearing impaired. This talk will highlight some of the key features of our program, from the high quality curated digital presence to the cycle of research and evaluation that informs our practice at all points of the program creation. We will also discuss the main impacts of the program, from the tens of millions of participants reached through the establishment and sustainability of a network of science 'volunpeers.'

  4. Tenth International Colloquium on UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas

    Science.gov (United States)

    Silver, Eric H.; Kahn, Steven M.

    UV and X-ray spectroscopy of astrophysical and laboratory plasmas draws interest from many disciplines. Contributions from international specialists are collected together in this book from a timely recent conference. In astrophysics, the Hubble Space Telescope, Astro 1 and ROSAT observatories are now providing UV and X-ray spectra and images of cosmic sources in unprecedented detail, while the Yohkoh mission recently collected superb data on the solar corona. In the laboratory, the development of ion-trap facilities and novel laser experiments are providing vital new data on high temperature plasmas. Recent innovations in the technology of spectroscopic instrumentation are discussed. These papers constitute an excellent up-to-date review of developments in short-wavelength spectroscopy and offer a solid introduction to its theoretical and experimental foundations. These proceedings give an up-to-date review of developments in short-wavelength spectroscopy and offer a solid introduction to its theoretical and experimental foundations. Various speakers presented some of the first results from the high resolution spectrograph on the Hubble Space Telescope, the high sensitivity far ultraviolet and X-ray spectrometers of the ASTRO 1 Observatory, the imaging X-ray spectrometer on the ROSAT Observatory, and the high resolution solar X-ray spectrometer on Yohkoh. The development of ion trap devices had brought about a revolution in laboratory investigations of atomic processes in highly charged atoms. X-ray laser experiments had not only yielded considerable insight into electron ion interactions in hot dense plasmas, but also demonstrated the versatility of laser plasmas as laboratory X-ray sources. Such measurements also motivated and led to refinements in the development of large-scale atomic and molecular codes. On the instrumental side, the design and development of the next series of very powerful short wavelength observatories had generated a large number of

  5. X-ray observations of solar flares with the Einstein Observatory

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Fink, H.; Harnden, F.R. Jr.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1987-01-01

    The first Einstein Observatory Imaging Proportional Counter (IPC) observations of solar flares are presented. These flares were detected in scattered X-ray light when the X-ray telescope was pointed at the sunlit earth. The propagation and scattering of solar X-rays in the earth's atmosphere are discussed in order to be able to deduce the solar X-ray flux incident on top of the atmosphere from scattered X-ray intensity measurements. After this correction, the scattered X-ray data are interpreted as full-disk observations of the sun obtained with the same instrumentation used for observations of flares on other stars. Employing the same data analysis and interpretation techniques, extremely good agreement is found between the physical flare parameters deduced from IPC observations and known properties of compact loop flares. This agreement demonstrates that flare observations with the IPC can reveal physical parameters such as temperature and density quite accurately in the solar case and therefore suggests that the interpretations of stellar X-ray flare observations are on a physically sound basis. 26 references

  6. The Role of Project Science in the Chandra X-Ray Observatory

    Science.gov (United States)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  7. Modeling Contamination Migration on the Chandra X-ray Observatory II

    Science.gov (United States)

    O'Dell, Steve; Swartz, Doug; Tice, Neil; Plucinsky, Paul; Grant, Catherine; Marshall, Herman; Vikhlinin, Alexey

    2013-01-01

    During its first 14 years of operation, the cold (about -60degC) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition may have changed, perhaps partially related to changes in the operating temperature of the ACIS housing. This evolution of the accumulation of the molecular contamination has motivated further analysis of contamination migration on the Chandra X-ray Observatory, particularly within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon monitored temperature data, and an accordingly refined model of the molecular transport.

  8. The LOFT (Large Observatory for X-ray Timing) background simulations

    DEFF Research Database (Denmark)

    Campana, R.; Feroci, M.; Del Monte, E.

    2012-01-01

    The Large Observatory For X-ray Timing (LOFT) is an innovative medium-class mission selected for an assessment phase in the framework of the ESA M3 Cosmic Vision call. LOFT is intended to answer fundamental questions about the behavior of matter in theh very strong gravitational and magnetic fields...

  9. 3rd International Conference on X-ray Technique

    Science.gov (United States)

    Potrakhov, N. N.; Gryaznov, A. Yu; Lisenkov, A. A.; Kostrin, D. K.

    2017-02-01

    In this preface a brief history, modern aspects and future tendencies in development of the X-ray technique as seen from the 3rd International Conference on X-ray Technique that was held on 24-25 November 2016 in Saint Petersburg, Russia are described On 24-25 November 2016 in Saint Petersburg on the basis of Saint Petersburg State Electrotechnical University “LETI” n. a. V. I. Ulyanov (Lenin) was held the 3rd International Conference on X-ray Technique. The tradition to hold a similar conference in our country was laid in Soviet times. The last of them, the All-Union Conference on the Prospects of X-ray Tubes and Equipment was organized and held more than a quarter century ago - on 21-23 November 1999, at the initiative and under the leadership of the chief engineer of the Leningrad association of electronic industry “Svetlana” Borovsky Alexander Ivanovich and the chief of special design bureau of X-ray devices of “Svetlana” Shchukin Gennady Anatolievich. The most active part in the organization and work of the conference played members of the department of X-ray and electron beam instruments of Leningrad Electrotechnical Institute “LETI” (the former name of Saint Petersburg State Electrotechnical University “LETI”), represented by head of the department professor Ivanov Stanislav Alekseevich.

  10. The complete Einstein Observatory X-ray survey of the Orion Nebula region.

    Science.gov (United States)

    Gagne, Marc; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed archival Einstein Observatory images of a roughly 4.5 square degree region centered on the Orion Nebula. In all, 245 distinct X-ray sources have been detected in six High Resolution Imager (HRI) and 17 Imaging Proportional Counter (IPC) observations. An optical database of over 2700 stars has been assembled to search for candidate counterparts to the X-ray sources. Roughly half the X-ray sources are identified with a single Orion Nebula cluster member. The 10 main-sequence O6-B5 cluster stars detected in Orion have X-ray activity levels comparable to field O and B stars. X-ray emission has also been detected in the direction of four main-sequence late-B and early-A type stars. Since the mechanisms producing X-rays in late-type coronae and early-type winds cannot operate in the late-B and early-A type atmospheres, we argue that the observed X-rays, with L(sub X) approximately = 3 x 10(exp 30) ergs/s, are probably produced in the coronae of unseen late-type binary companions. Over 100 X-ray sources have been associated with late-type pre-main sequence stars. The upper envelope of X-ray activity rises sharply from mid-F to late-G, with L(sub x)/L(sub bol) in the range 10(exp -4) to 2 x 10(exp -3) for stars later than approximately G7. We have looked for variability of the late-type cluster members on timescales of a day to a year and find that 1/4 of the stars show significantly variable X-ray emission. A handful of the late-type stars have published rotational periods and spectroscopic rotational velocities; however, we see no correlation between X-ray activity and rotation. Thus, for this sample of pre-main-sequence stars, the large dispersion in X-ray activity does not appear to be caused by the dispersion in rotation, in contrast with results obtained for low-mass main-sequence stars in the Pleiades and pre-main-sequence stars in Taurus-Auriga.

  11. NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions

    Science.gov (United States)

    1998-07-01

    NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe. The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory. "Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task." Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20. During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory - the spacecraft, telescope, and science instruments - were checked out. Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results. Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from

  12. Modeling Contamination Migration on the Chandra X-ray Observatory - II

    Science.gov (United States)

    O'Dell, Stephen L.; Swartz, Douglas A.; Tice, Neil W.; Plucinsky, Paul P.; Grant, Catherine E.; Marshall, Herman L.; Vikhlinin, Alexey A.; Tennant, Allyn F.

    2013-01-01

    During its first 14 years of operation, the cold (about -60C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination that attenuates low-energy x rays. Over the past few years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity. To this end, the current study employs a higher-fidelity geometric model of the ACIS cavity, detailed thermal modeling based upon temperature data, and a refined model of the molecular transport.

  13. X-ray studies of quasars with the Einstein observatory. II

    International Nuclear Information System (INIS)

    Zamorani, G.; Henry, J.P.; Maccacaro, T.; Tananbaum, H.; Soltan, A.; Avni, Y.; Liebert, J.; Stocke, J.; Strittmatter, P.A.; Weymann, R.J.; Smith, M.G.; Condon, J.J.

    1981-01-01

    Using the Einstein Observatory, we have carried out X-ray observations of 107 quasars and have detected 79. From the analysis of this sample of objects we find a correlation between optical emission and X-ray emission. Our data for radio-loud quasars also show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is approx.3 times higher than that of ratio-quiet quasars. In addition, our data suggest that the radio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. Taking into account the differences in X-ray luminosity between radio-loud and radio-quiet quasars, and between low-redshift and high-redshift quasars, we estimate that approx.30% of the observed X-ray background is contributed by quasars brighter than m/sub B/roughly-equal20, while much of the remainder can be contributed by still fainter quasars. Our data also imply that the optical log N--m/sub B/ relation for quasars cannot be extrapolated much beyond m/sub B/roughly-equal20 with the steep slope used to characterize optical source counts at brighter magnitudes. This situation supports the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift. We briefly discuss the observed correlation of X-ray luminosity with radio luminosity in the context of current quasar models

  14. 13th International Conference on X-Ray Lasers

    CERN Document Server

    Gautier, Julien; Ros, David; Zeitoun, Philippe

    2014-01-01

    These proceedings comprise of invited and contributed papers presented at the 13th International Conference on X-Ray Lasers (ICXRL 2012) which was held 11–15 June 2012 in Paris, in the famous Quartier Latin, inside the historical Center of Cordeliers. This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress towards practical devices and their applications are reported in these proceedings, including areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation. Recent achievements related to the increase of the repetition rate up to 100 Hz and shorter wavelength collisional plasma-based soft x-ray lasers down to about 7 nm are presented. Seeding the amplifying plasma with a femtosecond high-order harmonic of infrared laser was fore...

  15. Observations of the Crab Nebula with the Chandra X-Ray Observatory

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  16. 10th International Conference on X-Ray Lasers

    CERN Document Server

    Nickles, P.V; X-Ray Lasers 2006

    2007-01-01

    The search for table-top and repetitive pump schemes during the last decade has been the driving force behind the spectacular advances demonstrated during the 10th International Conference on X-Ray Lasers, organized in 2006 in Berlin. Since 1986, international experts have gathered every two years at this established conference to discuss the progress in theory, experiment and application of plasma-based soft X-ray lasers. Traditionally, the conference sessions devoted to complementary and alternative sources of short wavelength radiation, such as high harmonics, XFEL or incoherent X-rays are organized so as to emphasize the role of X-ray laser research in relation to the other short wavelength sources. Grazing incidence pumping (GRIP) and seeding with high harmonics were the dominant topics of the conference. High repetition rate and portable X-ray lasers were reported to have been applied in metrology and photochemistry for the first time. The proceedings of this series of conferences constitute a comprehen...

  17. Constellation X-Ray Observatory Unlocking the Mysteries of Black Holes, Dark Matter and Life Cycles of Matter in the Universe

    Science.gov (United States)

    Weaver, Kim; Wanjek, Christopher

    2004-01-01

    This document provides an overview of the Contellation X-Ray Observatory and its mission. The observatory consists of four x-ray telescopes borne on a satellite constellation at the Earth-Sun L2 point.

  18. X-ray crystallography facility for the international space station

    International Nuclear Information System (INIS)

    McdDonald, William T.; Lewis, Johanna L.; Smith, Craig D.; DeLucas, Lawrence J.

    1997-01-01

    Directed by NASA's Office of Space Access and Technology (OSAT), the University of Alabama at Birmingham (UAB) Center for Macromolecular Crystallography (CMC) recently completed a Design Feasibility Study for the X-ray Crystallography Facility (XCF) for the International Space Station (ISS). The XCF is a facility for growing macromolecular protein crystals; harvesting, selecting, and mounting sample crystals, and snap-freezing the samples, if necessary; performing x-ray diffraction; and downlinking the diffraction data to the ground. Knowledge of the structure of protein molecules is essential for the development of pharmaceuticals by structure-based drug design techniques. Currently, x-ray diffraction of high quality protein crystals is the only method of determining the structure of these macromolecules. High quality protein crystals have been grown in microgravity onboard the Space Shuttle Orbiter for more than 10 years, but these crystals always have been returned to Earth for x-ray diffraction. The XCF will allow crystal growth, harvesting, mounting, and x-ray diffraction onboard the ISS, maximizing diffraction data quality and timeliness. This paper presents the XCF design concept, describing key feasibility issues for the ISS application and advanced technologies and operational features which resolve those issues. The conclusion is that the XCF design is feasible and can be operational onboard the ISS by early in 2002

  19. XMM-Newton X-ray Observatory Guest Observer program (AO-1) at CASA

    Science.gov (United States)

    Skinner, Stephen L.

    2003-01-01

    In this research program, we obtained and analyzed X-ray observations of the Wolf-Rayet (WR) star WR 110 (HD 165688) using the XMM-Newton space-based observatory. Radio observations were also obtained using the Very Large Array (VLA) radio telescope located in New Mexico and operated by the Natl. Radio Astronomy Observatory (NRAO). This star was targeted for observations primarily because it is believed to be a single WR star without a companion. Single WR stars are thought to emit X-rays from cool plasma in shocks distributed throughout their powerful stellar winds. However, there has been little observational work done to test this idea since single WR stars are relatively weak X-ray sources and have been difficult to detect with previous generation telescopes. The launch of XMM-Newton provides a new telescope that is much more sensitive than its predecessors, allowing single WR stars to be studied in detail for the first time. X-ray emission was clearly detected from WR 110. Analysis of its spectrum yields a surprising result. Its X-ray emitting plasma is distributed over a range of temperatures and is dominated by relatively cool plasma with a characteristic temperature T is approximately 6 million K. Such plasma can be explained by existing theoretical wind shock models. However, the spectrum also shows hotter plasma whose temperature is uncertain but is thought to be in excess of T approximately 30 million K. The origin of this hotter plasma is yet unknown, but possible mechanisms are identified

  20. Monitoring and Detecting X-ray Transients with the Swift Observatory

    Science.gov (United States)

    Markwardt, Craig

    2002-01-01

    Swift is a multi-wavelength observatory specifically designed to detect transients sources in the gamma-ray energy band 15-200 keV. The primary goals of the mission involve gamma ray burst (GRB) astronomy, namely to determine the origin of GRBs and their afterglows, and use bursts to probe the early Universe. However, Swift will also discover new X-ray transient sources, and it will be possible to bring Swift's considerable multi-wavelength capabilities to bear on these sources, and those discovered by other means. The Burst Alert Telescope (BAT) is a coded mask instrument sensitive to 15-200 keV gamma rays, and has a field of view which covers approximately 1/8th of the sky in a single pointing. Over a typical observing day, the almost the entire sky will be observed and monitored for new transient sources. Sources will be detected within several hours of observation. The two narrow field instruments, the X-ray Telescope and Ultra-Violet Optical Telescope, can provide sensitive simultaneous imaging and spectroscopy observations in the optical through soft X-ray bands. The Swift science operations team will entertain requests for targets of opportunity for sources which are astrophysically significant. Swift will be ideally suited for the detection of transients which produce hard X-rays, such as black hole binaries and some neutron star systems.

  1. The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis

    Science.gov (United States)

    Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Wolter, A.; Stocke, J. T.

    1990-01-01

    This paper presents the results of the analysis of the X-ray data and the optical identification for the Einstein Observatory Extended Medium-Sensitivity Survey (EMSS). The survey consists of 835 serendipitous sources detected at or above 4 times the rms level in 1435 imaging proportional counter fields with centers located away from the Galactic plane. Their limiting sensitivities are about (5-300) x 10 to the -14th ergs/sq cm sec in the 0.3-3.5-keV energy band. A total area of 778 square deg of the high-Galactic-latitude sky has been covered. The data have been analyzed using the REV1 processing system, which takes into account the nonuniformities of the detector. The resulting EMSS catalog of X-ray sources is a flux-limited and homogeneous sample of astronomical objects that can be used for statistical studies.

  2. Automated X-ray and Optical Analysis of the Virtual Observatory and Grid Computing

    Science.gov (United States)

    Ptak, A.; Krughoff, S.; Connolly, A.

    2011-01-01

    We are developing a system to combine the Web Enabled Source Identification with X-Matching (WESIX) web service, which emphasizes source detection on optical images,with the XAssist program that automates the analysis of X-ray data. XAssist is continuously processing archival X-ray data in several pipelines. We have established a workflow in which FITS images and/or (in the case of X ray data) an X-ray field can be input to WESIX. Intelligent services return available data (if requested fields have been processed) or submit job requests to a queue to be performed asynchronously. These services will be available via web services (for non-interactive use by Virtual Observatory portals and applications) and through web applications (written in the Django web application framework). We are adding web services for specific XAssist functionality such as determining .the exposure and limiting flux for a given position on the sky and extracting spectra and images for a given region. We are improving the queuing system in XAssist to allow for "watch lists" to be specified by users, and when X-ray fields in a user's watch list become publicly available they will be automatically added to the queue. XAssist is being expanded to be used as a survey planning 1001 when coupled with simulation software, including functionality for NuStar, eRosita, IXO, and the Wide Field Xray Telescope (WFXT), as part of an end to end simulation/analysis system. We are also investigating the possibility of a dedicated iPhone/iPad app for querying pipeline data, requesting processing, and administrative job control.

  3. Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts

    Science.gov (United States)

    2005-08-01

    In August 1999, NASA's Chandra X-ray Observatory opened for business. Six years later, it continues to achieve scientific firsts. "When Chandra opened its sunshade doors for the first time, it opened the possibility of studying the X-ray emission of the universe with unprecedented clarity," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "Already surpassing its goal of a five-year life, Chandra continues to rewrite textbooks with discoveries about our own solar system and images of celestial objects as far as billions of light years away." Based on the observatory's outstanding results, NASA Headquarters in Washington decided in 2001 to extend Chandra s mission from five years to ten. During the observatory s sixth year of operation, auroras from Jupiter, X-rays from Saturn, and the early days of our solar system were the focus of Chandra discoveries close to home -- discoveries with the potential to better understand the dynamics of life on Earth. Jupiter's auroras are the most spectacular and active auroras in the solar system. Extended Chandra observations revealed that Jupiter s auroral X-rays are caused by highly charged particles crashing into the atmosphere above Jupiter's poles. These results gave scientists information needed to compare Jupiter's auroras with those from Earth, and determine if they are triggered by different cosmic and planetary events. Mysterious X-rays from Saturn also received attention, as Chandra completed the first observation of a solar X-ray flare reflected from Saturn's low-latitudes, the region that correlates to Earth's equator and tropics. This observation led scientists to conclude the ringed planet may act as a mirror, reflecting explosive activity from the sun. Solar-storm watchers on Earth might see a surprising benefit. The results imply scientists could use giant planets like Saturn as remote-sensing tools to help monitor X-ray flaring on portions of the sun

  4. Contributions of the "Great" X-Ray Observatories (XMM-Newton and Chandra) to Astronomy and Astrophysics

    Science.gov (United States)

    Weisskopf, Martin

    2011-01-01

    NASA s Chandra X-ray Observatory and ESA s XMM-Newton made their first observations over a decade ago. The unprecedented and complementary capabilities of these observatories to detect, image, and measure the energy of cosmic X-rays, achieved less than 50 years after the first detection of an extra-solar X-ray source, represent an increase in sensitivity comparable in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. In this presentation we highlight some of the many discoveries made using these powerful X-ray observatories that have transformed 21st century astronomy. We briefly discuss future prospects for this truly exciting field.

  5. The Lunar X-ray Observatory (LXO)/Magnetosheath Explorer in X-Rays (MagEX)

    Science.gov (United States)

    Collier, M.R.; Abbey, T.F.; Bannister, N.P.; Carter, J.A.; Choi, M.; Cravens, T.; Evans, M.; Fraser, G.W.; Hills, H.K.; Kuntz, K.; hide

    2009-01-01

    X-ray observations of solar wind charge exchange (SWCX) emission, a nuisance to astrophysicists, will dramatically enhance our ability to determine the structure and variability of the Earth's magnetosheath. Such observations could be made from the lunar surface or an Earth-orbiting spacecraft and will resolve key controversies about magnetopause physics as well as better characterize SWCX emission with the aim of avoiding or removing it from astrophysical observations.

  6. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    Science.gov (United States)

    Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.

  7. The Einstein Observatory catalog of IPC x ray sources. Volume 1E: Documentation

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics, which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  8. Einstein Observatory survey of X-ray emission from solar-type stars - the late F and G dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Maggio, A.; Sciortino, S.; Vaiana, G.S.; Majer, P.; Bookbinder, J.

    1987-04-01

    Results of a volume-limited X-ray survey of stars of luminosity classes IV and V in the spectral range F7-G9 observed with the Einstein Observatory are presented. Using survival analysis techniques, the stellar X-ray luminosity function in the 0.15-4.0 keV energy band for both single and multiple sources. It is shown that the difference in X-ray luminosity between these two classes of sources is consistent with the superposition of individual components in multiple-component systems, whose X-ray properties are similar to those of the single-component sources. The X-ray emission of the stars in our sample is well correlated with their chromospheric CA II H-K line emission and with their projected equatorial rotational velocity. Comparison of the X-ray luminosity function constructed for the sample of the dG stars of the local population with the corresponding functions derived elsewhere for the Hyades, the Pleiades, and the Orion Ic open cluster confirms that the level of X-ray emission decreases with stellar age. 62 references.

  9. Einstein Observatory survey of X-ray emission from solar-type stars - The late F and G dwarf stars

    Science.gov (United States)

    Maggio, A.; Sciortino, S.; Vaiana, G. S.; Majer, P.; Bookbinder, J.

    1987-01-01

    Results of a volume-limited X-ray survey of stars of luminosity classes IV and V in the spectral range F7-G9 observed with the Einstein Observatory are presented. Using survival analysis techniques, the stellar X-ray luminosity function in the 0.15-4.0 keV energy band for both single and multiple sources. It is shown that the difference in X-ray luminosity between these two classes of sources is consistent with the superposition of individual components in multiple-component systems, whose X-ray properties are similar to those of the single-component sources. The X-ray emission of the stars in our sample is well correlated with their chromospheric CA II H-K line emission and with their projected equatorial rotational velocity. Comparison of the X-ray luminosity function constructed for the sample of the dG stars of the local population with the corresponding functions derived elsewhere for the Hyades, the Pleiades, and the Orion Ic open cluster confirms that the level of X-ray emission decreases with stellar age.

  10. Localization of the solar flare SF900610 in X-rays with the WATCH instrument of the GRANAT observatory

    DEFF Research Database (Denmark)

    Terekhov, O.V.; Kuzmin, A.G.; Shevchenko, A.V.

    2002-01-01

    -ray source do not coincide with the coordinates of the Ha-line flare. The X-ray source moved over the solar disk during the flare. This probably implies that, as the X-ray emission was generated, different parts of one loop or a system of magnetic loops dominated at different flare times.......During the solar flare of June 10, 1990, the WATCH instrument of the GRANAT space observatory obtained 110 localizations of the X-ray source in the X-ray range 8-20 keV. Its coordinates were measured with an accuracy of similar to2 arcmin at a 3sigma confidence level. The coordinates of the X...

  11. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    Science.gov (United States)

    O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.

    2012-12-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector

  12. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    Science.gov (United States)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03X-ray-studied samples of normal galaxies and those in the deepest X-ray surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star formation rate correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components, such as hot gas, low-mass X-ray binaries, and/or active galactic nuclei (AGNs). We are able to quantify a few pitfalls in the use of lower resolution, lower signal-to-noise ratio optical spectroscopy to identify X-ray sources (as has necessarily been employed for many X-ray surveys). Notably, we find a few AGNs that likely would have been misidentified as non-AGN sources in higher redshift studies. However, we do not find any X-ray-hard, highly X-ray-luminous galaxies lacking optical spectroscopic diagnostics of AGN activity. Such sources are members of the ``X-ray-bright, optically normal galaxy'' (XBONG) class of AGNs.

  13. Quantum electrodynamics of the internal source x-ray holographies: Bremsstrahlung, fluorescence, and multiple-energy x-ray holography

    International Nuclear Information System (INIS)

    Miller, G.A.; Sorensen, L.B.

    1997-01-01

    Quantum electrodynamics (QED) is used to derive the differential cross sections measured in the three new experimental internal source ensemble x-ray holographies: bremsstrahlung (BXH), fluorescence (XFH), and multiple-energy (MEXH) x-ray holography. The polarization dependence of the BXH cross section is also obtained. For BXH, we study analytically and numerically the possible effects of the virtual photons and electrons which enter QED calculations in summing over the intermediate states. For the low photon and electron energies used in the current experiments, we show that the virtual intermediate states produce only very small effects. This is because the uncertainty principle limits the distance that the virtual particles can propagate to be much shorter than the separation between the regions of high electron density in the adjacent atoms. We also find that using the asymptotic form of the scattering wave function causes about a 5 10% error for near forward scattering. copyright 1997 The American Physical Society

  14. PREFACE: 9th International Conference on X-Ray Microscopy

    Science.gov (United States)

    Quitmann, Christoph; David, Christian; Nolting, Frithjof; Pfeiffer, Franz; Stampanoni, Marco

    2009-09-01

    Conference logo This volume compiles the contributions to the International Conference on X-Ray Microscopy (XRM2008) held on 20-25 July 2008 in Zurich, Switzerland. The conference was the ninth in a series which started in Göttingen in 1984. Over the years the XRM conference series has served as a forum bringing together all relevant players working on the development of methods, building instrumentation, and applying x-ray microscopy to challenging issues in materials science, condensed matter research, environmental science and biology. XRM2008 was attended by about 300 participants who followed 44 oral presentations and presented 220 posters. Conference photograph Figure 1: Participants of the XRM2008 conference gathered in front of the main building of the ETH-Zurich. The conference showed that x-ray microscopy has become a mature field resting on three pillars. The first are workhorse instruments available even to non-specialist users. These exist at synchrotron sources world-wide as well as in laboratories. They allow the application of established microscopy methods to solve scientific projects in areas as diverse as soil science, the investigation of cometary dust particles, magnetic materials, and the analysis of ancient parchments. Examples of all of these projects can be found in this volume. These instruments have become so well understood that now they are also commercially available. The second pillar is the continued development of methods. Methods like stroboscopic imaging, wet cells or high and low temperature environments add versatility to the experiments. Methods like phase retrieval and ptychographic imaging allow the retrieval of information which hitero was thought to be inaccessible. The third pillar is the extension of such instruments and methods to new photon sources. With x-ray free electron lasers on the horizon the XRM community is working to transfer their know-how to these novel sources which will offer unprecedented brightness and

  15. A Comprehensive Spectral Analysis of the X-Ray Pulsar 4U 1907+09 from Two Observations with the Suzaku X-Ray Observatory

    Science.gov (United States)

    Rivers, Elizabeth; Markowitz, Alex; Pottschmidt, Katja; Roth, Stefanie; Barragan, Laura; Furst, Felix; Suchy, Slawomir; Kreykenbohm, Ingo; Wilms, Jorn; Rothschild, Richard

    2009-01-01

    We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory, The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx. 19 keV. Additionally, using the narrow CCD response of Suzaku near 6 ke V allows us to study in detail the Fe K bandpass and to quantify the Fe Kp line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of N(sub H) approx. 2 x 10(exp 22)/sq cm, consistent with a wind accreting geometry, and a high Fe abundance (approx. 3 - 4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind

  16. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    Science.gov (United States)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data

  17. 11th International Conference on X-Ray Lasers

    CERN Document Server

    Lewis, Ciaran L. S; X-Ray Lasers 2008

    2009-01-01

    This book provides a thorough account of the current status of achievements made in the area of soft X-ray laser source development and of the increasingly diverse applications being demonstrated using such radiation sources. There is significant effort worldwide to develop very bright, short duration radiation sources in the X-ray spectral region – driven by the multitude of potential applications in all branches of science. This book contains updates on several different approaches for comparative purposes but concentrates on developments in the area of laser-produced plasmas, whereby transient population inversion and gain between ion states is pumped by optical lasers interacting with pre-formed plasmas. The most significant development here is the demonstrated increasing feasibility to produce useful soft X-ray laser beams with high repetition rates in a typical, small, university-class laboratory – as opposed to the requirement of access to a national facility some 20 years ago. Experimental progres...

  18. Early national and international recommendations for X-ray and radiation protection

    International Nuclear Information System (INIS)

    Tesinska, E.

    2008-01-01

    The first three decades of pioneering work in the field of X-ray and natural radioactivity research and use took its toll all over the world because of lack of knowledge and caution. Coordinated, international cooperation in the field of X-ray and radium protection and standardization of measures was established after the World War I. The First and the Second International Congress of Radiology held in London in 1925 and in Stockholm in 1928 respectively, played a crucial role in it. Based on these congresses' initiatives and resolutions, the International X-ray Unit Committee and the International X-ray and Radium Protection Committee were established in 1828. The early recommendations on the international X-ray unit and on X-ray and radium protection, as passed by the Second International Congress of Radiology in Stockholm in 1928, are presented and compared with two related national initiatives, namely with the Memorandum No. 1 (July 1921) of the British X-ray and Radium Protection Committee, and with a draft of a legal measure regarding the X-ray and radium treatment regulation in Czechoslovakia, which was put together by the Czechoslovak Society of Radiology and the Vereinigung der deutschen Roentgenologen und Radiologen in der Tschechoslowakischen Republik in 1927 at a request of the Chamber of Doctor of Medicine for Bohemia and Moravia and in response to the international initiatives in that field. (author)

  19. Distant Galaxies, Black Holes and Other Celestial Phenomena: NASA's Chandra X-ray Observatory Marks Four Years of Discovery Firsts

    Science.gov (United States)

    2003-09-01

    Launched in 1999, NASA's Chandra X-ray Observatory promised to be one of the world's most powerful tools to better understand the structure and evolution of the universe - and it has lived up to expectations. "In four short years, Chandra has achieved numerous scientific firsts, revealing new details on all categories of astronomical objects including distant galaxies, planets, black holes and stars," said Chandra project scientist Dr. Martin C. Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "In the last year alone, Chandra has generated the most sensitive or 'deepest' X-ray exposure ever made, shed new light on the planet Mars, and made several new discoveries involving supermassive black holes," added Weisskopf, who has dedicated nearly 30 years to the Chandra program. The deepest X-ray exposure, Chandra Deep Field North, captured for 23 days an area of the sky one-fifth the size of the full moon. Even though the faintest sources detected produced only one X-ray photon every four days, Chandra found more than 600 X-ray sources -- most of them supermassive black holes in galaxy centers. If the number of black holes seen in that area of the sky were typical, 300 million supermassive black holes would be detectable over the whole sky. In our own solar system, another Chandra image offered scientists their first look at X-rays from Mars . Not only did Chandra detect X-rays in the sparse upper atmosphere 750 miles above the planet, it also offered evidence for a faint halo of X-rays extending out 4,350 miles above the Martian surface. "In its fourth year of operation, Chandra continues to prove itself an engineering marvel," said Chandra Program Manager Keith Hefner at NASA's Marshall Center. "At its highest point, it travels one-third of the way to the Moon, yet it consistently delivers breathtaking results gleaned from millions, sometimes billions, of light years away." Some of Chandra's most intriguing discoveries involved black holes

  20. Preface: The 5th International Workshop on X-ray Mirror Design, Fabrication, and Metrology

    Energy Technology Data Exchange (ETDEWEB)

    Assoufid, Lahsen [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 (United States); Goldberg, Kenneth; Yashchuk, Valeriy V. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2016-05-15

    Recent developments in synchrotron storage rings and free-electron laser-based x-ray sources with ever-increasing brightness and coherent flux have pushed x-ray optics requirements to new frontiers. This Special Topic gathers a set of articles derived from a subset of the key presentations of the International Workshop on X-ray Mirrors Fabrication (IWXM-2015) and Metrology held at Lawrence Berkley National Laboratory, Berkeley, California, USA, July 14–16, 2015. The workshop objective was to report on recent progress in x-ray synchrotron radiation mirrors fabrication as well as on new developments in related metrology tools and methods.

  1. X-rays from Wolf-Rayet stars observed by the Einstein observatory

    International Nuclear Information System (INIS)

    Sanders, W.T.; Cassinelli, J.P.; Hucht, K.A. van der

    1982-01-01

    Preliminary results of three X-ray surveys are presented. Out of a sample of 20 stars, X-rays were detected from four Wolf-Rayet stars and two O8f + stars. The detected stars have about the same mean value as O stars for the X-ray to total luminosity ratio, Lsub(x)/L = 10 -7 , but exhibit a much larger variation about the mean. The spectral energy distributions are also found to be like that of O stars in that they do not exhibit large attenuation of X-rays softer than 1 keV. This indicates that for both the O stars and WR stars much of the X-ray emission is coming from hot wisps or shocks in the outer regions of the winds and not from a thin source at the base of the wind. The general spectral shape and flux level place severe restrictions on models that attribute the lack of hydrogen emission lines to extremely high temperatures of the gas in the wind. (Auth.)

  2. Comparative Analysis and Variability of the Jovian X-Ray Spectra Detected by the Chandra and XMM-Newton Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Yawei [ORNL; Schultz, David Robert [ORNL; Kharchenko, Vasili A [ORNL; Bhardwaj, Anil [Vikram Sarabhai Space Center, Trivandrum, India; Branduardi-Raymont, Graziella [University College, London; Stancil, Phillip C. [University of Georgia, Athens, GA; Cravens, Thomas E. E. [University of Kansas; Lisse, Carey M. [Johns Hopkins University; Dalgarno, A. [Harvard-Smithsonian Center for Astrophysics

    2010-01-01

    Expanding upon recent work, a more comprehensive spectral model based on charge exchange induced X-ray emission by ions precipitating into the Jovian atmosphere is used to provide new understanding of the polar auroras. In conjunction with the Xspec spectral fitting software, the model is applied to analyze observations from both Chandra and XMM-Newton by systematically varying the initial precipitating ion parameters to obtain the best fit model for the observed spectra. In addition to the oxygen and sulfur ions considered previously, carbon is included to discriminate between solar wind and Jovian magnetospheric ion origins, enabled by the use of extensive databases of both atomic collision cross sections and radiative transitions. On the basis of fits to all the Chandra observations, we find that carbon contributes negligibly to the observed polar X-ray emission suggesting that the highly accelerated precipitating ions are of magnetospheric origin. Most of the XMM-Newton fits also favor this conclusion with one exception that implies a possible carbon contribution. Comparison among all the spectra from these two observatories in light of the inferred initial energies and relative abundances of precipitating ions from the modeling show that they are significantly variable in time (observation date) and space (north and south polar X-ray auroras).

  3. Proceedings of the international conference- hundred years of x-rays and radioactivity

    International Nuclear Information System (INIS)

    Sood, D.D.; Jain, H.C.; Reddy, A.V.R.; Ramakumar, K.L.; Kulkarni, S.G.

    1996-02-01

    The International Conference- Hundred Years of X-rays and Radioactivity was held during Feb 21-24, 1996 at Bhabha Atomic Radiation Centre, Mumbai. The topics covered in the conference included: i) historical aspects, ii) production of x-rays through synchrotron and lasers, iii) application of x-rays in quantum physics, materials science, biology and medicine, iv) nuclear physics and chemistry, v) radiation chemistry, vi) radiation biology, vii) health and safety, viii) applications of radioisotopes in medicine, industry and agriculture and ix) environmental aspects of radioactivity. Papers relevant to INIS are indexed separately

  4. The 16th International Conference on X-ray Absorption Fine Structure (XAFS16)

    Science.gov (United States)

    Grunwaldt, J.-D.; Hagelstein, M.; Rothe, J.

    2016-05-01

    This preface of the proceedings volume of the 16th International Conference on X- ray Absorption Fine Structure (XAFS16) gives a glance on the five days of cutting-edge X-ray science which were held in Karlsruhe, Germany, August 23 - 28, 2015. In addition, several satellite meetings took place in Hamburg, Berlin and Stuttgart, a Sino-German workshop, three data analysis tutorials as well as special symposia on industrial catalysis and XFELs were held at the conference venue.

  5. NASA Chandra X-ray Observatory Selected as Editor's Choice in 2000 Discover Magazine Awards for Technological Innovation

    Science.gov (United States)

    2000-06-01

    The Chandra X-ray Observatory, NASA's newest and most powerful X-ray space telescope, has been selected as the winner of the Editor's Choice category of the 2000 Discover Magazine Awards for Technological Innovation. The team of government, industry, university and research institutions that designed, built and deployed Chandra for NASA's Marshall Space Flight Center, Huntsville, Ala, will be formally recognized June 24 at a gala awards celebration at Epcot at the Walt Disney World Resort in Orlando, Fl. Dr. Harvey Tananbaum, director of the Smithsonian Astrophysical Observatory's Chandra X-ray Science Center, Cambridge, Mass., which conducts the Chandra science mission for NASA, will receive the award on behalf of the team. "Chandra has opened a new window for astronomers into the universe of high-energy cosmic events such as pulsars, supernova remnants and black holes," said Tananbaum. "We're now able to create spectacularly detailed images of celestial phenomena whose mere existence we could only hypothesize before." Among Chandra's most significant discoveries to date, he lists the detection of a giant ring around the heart of the Crab Nebula, details of the shock wave created by an exploding star and resolution of the high-energy X-ray "glow" in the universe into millions of specific light sources. "The successful launch, deployment and on-orbit operations of NASA's Chandra X-ray Observatory is a testament to the solid partnership between TRW, NASA and the science community that has been enabling NASA's most important space science missions for the past 40 years," said Timothy W. Hannemann, executive vice president and general manager, TRW Space & Electronics Group. "The extraordinary images that Chandra is delivering daily speaks loudly not only to the quality of the science instruments on board, but also to the engineering talents and dedication to mission success exhibited by every member of NASA's Chandra mission team." Chandra, named in honor of Nobel

  6. Two strategies of lowering surface deformations of internally cooled X-ray optics

    International Nuclear Information System (INIS)

    Oberta, P.; Áč, V.; Hrdý, J.

    2013-01-01

    Internally cooled X-ray optics, like X-ray monochromators and reflecting X-ray mirrors, play a crucial role in defining a beamlines resolution, degree of coherence and flux. A great effort is invested in the development of these optical components. An important aspect of the functionality of high heat load optics is its cooling and its influence on surface deformation. The authors present a study of two different geometrical cooling approaches. Its influence on beam inhomogeneity due to the strain from the manufacturing process is presented. X-ray topographic images and FWHM measurements are presented. FEA simulations of cooling efficiency and surface deformations were performed. The best achieved results are under an enlargement of 0.4μrad of the measured rocking curve

  7. X-Ray Optics: Past, Present, and Future

    Science.gov (United States)

    Zhang, William W.

    2010-01-01

    X-ray astronomy started with a small collimated proportional counter atop a rocket in the early 1960s. It was immediately recognized that focusing X-ray optics would drastically improve both source location accuracy and source detection sensitivity. In the past 5 decades, X-ray astronomy has made significant strides in achieving better angular resolution, large photon collection area, and better spectral and timing resolutions, culminating in the three currently operating X-ray observatories: Chandra, XMM/Newton, and Suzaku. In this talk I will give a brief history of X-ray optics, concentrating on the characteristics of the optics of these three observatories. Then I will discuss current X-ray mirror technologies being developed in several institutions. I will end with a discussion of the optics for the International X-ray Observatory that I have been developing at Goddard Space Flight Center.

  8. The CfA Einstein Observatory extended deep X-ray survey

    Science.gov (United States)

    Primini, F. A.; Murray, S. S.; Huchra, J.; Schild, R.; Burg, R.

    1991-01-01

    All IPC exposures in the Einstein Extended Deep X-ray Survey program have been reanalyzed. The current survey covers about 2.3 sq deg with a typical limiting sensitivity of about 5 x 10 to the -14th ergs/sq cm/s in the energy range from 0.8-3.5 keV. A total of 25 IPC sources are detected above a threshold of 4.5 sigma. A total of 18 are detected independently in the HRI, leading to the identification of six with stars and 11 with extragalactic objects. The remaining sources are classified as extragalactic. The population of identified extragalactic objects is dominated by QSOs, with one or two possible clusters. The basic conclusions of the original survey remain unchanged.

  9. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  10. X-ray endoscopic techniques for external and internal drainage of bile ducts in mechanical jaundice

    International Nuclear Information System (INIS)

    Kharchenko, V.P.; Sinev, Yu.V.; Solomatin, A.D.

    2000-01-01

    Generalized information is considered on the application of external-internal X-ray endoscopic drainage of stomach, gallbladder, bile ducts in case of mechanical jaundice caused by both neoplasms and other diseases of pancreatobiliary zone. Indications for drainage are presented as well as contraindications, necessary equipment and instruments, recommendations on procedure realization [ru

  11. 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015")

    Science.gov (United States)

    Przybyłowicz, Wojciech Józef; Pineda-Vargas, Carlos

    2015-11-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015") that was held in Somerset West (South Africa) from 25th February to 3rd March 2015.

  12. Two strategies of lowering surface deformations of internally cooled X-ray optics

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Áč, V.; Hrdý, Jaromír

    2013-01-01

    Roč. 729, NOV (2013), s. 302-306 ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional support: RVO:68378271 Keywords : internal cooling * X-ray optics * monochromator Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013

  13. A Spectral Analysis of the X-Ray Pulsar 4U 1907+09 obtained at thePeriastron Passage with the XMM-Newton Observatory

    NARCIS (Netherlands)

    Balman, Solen; Mendez, Mariano; Diaz Trigo, Maria; Inam, Cagdas; Baykal, Altan

    2010-01-01

    We present results from a 20 ksec observation of the wind-accreting X-ray pulsar 4U 1907+09 obtained using the XMM-Newton Observatory at the periastron passage. The XMM-Newton spectrum allows us to study the continuum emission and the emission line at 6.4 keV with the high sensitivity and

  14. Soft x-ray camera for internal shape and current density measurements on a noncircular tokamak

    International Nuclear Information System (INIS)

    Fonck, R.J.; Jaehnig, K.P.; Powell, E.T.; Reusch, M.; Roney, P.; Simon, M.P.

    1988-05-01

    Soft x-ray measurements of the internal plasma flux surface shaped in principle allow a determination of the plasma current density distribution, and provide a necessary monitor of the degree of internal elongation of tokamak plasmas with a noncircular cross section. A two-dimensional, tangentially viewing, soft x-ray pinhole camera has been fabricated to provide internal shape measurements on the PBX-M tokamak. It consists of a scintillator at the focal plane of a foil-filtered pinhole camera, which is, in turn, fiber optically coupled to an intensified framing video camera (/DELTA/t />=/ 3 msec). Automated data acquisition is performed on a stand-alone image-processing system, and data archiving and retrieval takes place on an optical disk video recorder. The entire diagnostic is controlled via a PDP-11/73 microcomputer. The derivation of the polodial emission distribution from the measured image is done by fitting to model profiles. 10 refs., 4 figs

  15. Internal Bremsstrahlung spectrum of 204TI in the X-ray region

    International Nuclear Information System (INIS)

    Raghavendra, M.K.; Ramaswamy, C.R.

    2001-01-01

    The internal Bremsstrahlung spectrum from 204 TI has been measured, using magnetic deflector method, in the X-ray region. The corrected spectral intensity is compared with the Coulomb-corrected KUB theory in the energy region of 10 to 30 keV. The good agreement between experiment and theory in this energy region, suggests that 'detour effects' are negligible in the low energy region. (author)

  16. An X-ray Expansion and Proper Motion Study of the Magellanic Cloud Supernova Remnant J0509-6731 with the Chandra X-ray Observatory

    Science.gov (United States)

    Roper, Quentin; Filipovi, Miroslav; Allen, Glenn E.; Sano, Hidetoshi; Park, Laurence; Pannuti, Thomas G.; Sasaki, Manami; Haberl, Frank; Kavanagh, Patrick J.; Yamane, Yumiko; Yoshiike, Satoshi; Fujii, Kosuke; Fukui, Yasuo; Seitenzahl, Ivo R.

    2018-05-01

    Using archival Chandra data consisting of a total of 78.46 ksec over two epochs seven years apart, we have measured the expansion of the young (˜400 years old) type Ia Large Magellanic Cloud supernova remnant (SNR) J0509-6731. In addition, we use radial brightness profile matching to detect proper-motion expansion of this SNR, and estimate an speed of 7 500±1 700 km s-1. This is one of the only proper motion studies of extragalactic SNRs expansion that is able to derive an expansion velocity, and one of only two such studies of an extragalactic SNR to yield positive results in the X-rays. We find that this expansion velocity is consistent with an optical expansion study on this object. In addition, we examine the medium into which the SNR is expanding by examining the CO and neutral H I gas using radio data obtained from Mopra, the Australia Telescope Compact Array and Parkes radio telescopes. We also briefly compare this result with a recent radio survey, and find that our results predict a radio spectral index α of -0.67±0.07. This value is consistent with high frequency radio observations of MCSNR J0509-6731.

  17. Soft x-ray measurement of internal tearing mode structure in a reversed-field pinch

    International Nuclear Information System (INIS)

    Chartas, G.; Hokin, S.

    1991-01-01

    The structure of internally resonant tearing modes has been studied in the Madison Symmetric Torus reversed-field pinch with a soft x-ray detector system consisting of an imaging array at one toroidal location and several detectors at different toroidal locations. The toroidal mode numbers of m = 1 structures are in the range n = -5, -6, -7. The modes propagate with phase velocity v = 1--6 x 10 6 cm/s, larger than the diamagnetic drift velocity v d ∼ 5 x 10 5 cm/s. Phase locking between modes with different n in manifested as a beating of soft x-ray signals which is found to be strongest near the resonant surfaces of the modes (r/a = 0.1 -- 0.5). 15 refs., 5 figs

  18. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  19. The LOFT perspective on neutron star thermonuclear bursts: White paper in support of the mission concept of the large observatory for X-ray timing

    Energy Technology Data Exchange (ETDEWEB)

    in' t Zand, J. J.M. [SRON Netherlands Institute for Space Research, Utrecht (The Netherlands); Malone, Christopher M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Altamirano, D. [Univ. of Southampton, Southampton (United Kingdom); Ballantyne, D. R. [Georgia Inst. of Technology, Atlanta, GA (United States); Bhattacharyya, S. [Tata Institute of Fundamental Research, Mumbai (India); Brown, E. F. [Michigan State Univ., East Lansing, MI (United States); Cavecchi, Y. [Univ. of Amsterdam, Amsterdam (The Netherlands); Chakrabarty, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Chenevez, J. [Technical Univ. of Denmark, Lyngby (Denmark); Cumming, A. [McGill Univ., Montreal, QC (Canada); Degenaar, N. [Univ. of Cambridge, Cambridge (United Kingdom); Falanga, M. [International Space Science Institute, Bern (Switzerland); Galloway, D. K. [Monash Univ., VIC (Australia); Heger, A. [Monash Univ., VIC (Australia); Jose, J. [Univ. Politecnica de Catalunya, Barcelona (Spain); Institut d' Estudis Espacials de Catalunya, Barcelona (Spain); Keek, L. [Georgia Institute of Technology, Atlanta, GA (United States); Linares, M. [Univ. de La Laguna, Tenerife (Spain); Mahmoodifar, S. [Univ. of Maryland, College Park, MD (United States); Mendez, M. [Univ. of Groningen, Groningen (The Netherlands); Miller, M. C. [Univ. of Maryland, College Park, MD (United States); Paerels, F. B. S. [Columbia Astrophysics Lab., New York, NY (United States); Poutanen, J. [Univ. of Turku, Piikkio (Finland); Rozanska, A. [N. Copernicus Astronomical Center PAS, Warsaw (Poland); Schatz, H. [National Superconducting Cyclotron Laboratory at Michigan State University; Serino, M. [Institute of Physical and Chemical Research (RIKEN); Strohmayer, T. E. [NASA' s Goddard Space Flight Center, Greenbelt, MD (United States); Suleimanov, V. F. [Univ. Tubingen, Tubingen (Germany); Thielemann, F. -K. [Univ. Basel, Basel (Switzerland); Watts, A. L. [Univ. of Amsterdam, Amsterdam (The Netherlands); Weinberg, N. N. [Massachusetts Institute of Technology, Cambridge, MA (United States); Woosley, S. E. [Univ. of California, Santa Cruz, CA (United States); Yu, W. [Chinese Academy of Sciences (CAS), Shanghai (China); Zhang, S. [Institute of High-Energy Physics, Beijing (China); Zingale, M. [Stony Brook Univ., Stony Brook, NY (United States)

    2015-01-14

    The Large Area Detector (LAD) on the Large Observatory For X-ray Timing ( LOFT ), with a 8.5 m 2 photon- collecting area in the 2–30 keV bandpass at CCD-class spectral resolving power (λ/Δλ = 10 – 100), is designed for optimum performance on bright X-ray sources. Thus, it is well-suited to study thermonuclear X-ray bursts from Galactic neutron stars. These bursts will typically yield 2 x 105 photon detections per second in the LAD, which is at least 15 times more than with any other instrument past, current or anticipated. The Wide Field Monitor (WFM) foreseen for LOFT uniquely combines 2–50 keV imaging with large (30%) prompt sky coverage. This will enable the detection of tens of thousands of thermonuclear X-ray bursts during a 3-yr mission, including tens of superbursts. Both numbers are similar or more than the current database gathered in 50 years of X-ray astronomy.

  20. PREFACE: 22nd International Congress on X-Ray Optics and Microanalysis

    Science.gov (United States)

    Falkenberg, Gerald; Schroer, Christian G.

    2014-04-01

    ICXOM22 The 22nd edition of the International Congress on X-ray Optics and Microanalysis (ICXOM 22) was held from 2-6 September 2013, in Hamburg, Germany. The congress was organized by scientists from DESY in collaboration with TU Dresden and Helmholtz-Zentrum Geesthacht, who also formed the scientific advisory board. The congress was hosted in the historical lecture hall building of the University of Hamburg located in the city center. ICXOM22 was attended by about 210 registered participants, including 67 students, and was open for listeners. The attendance was split between 26 countries (Germany 120, rest of Europe 57, America 20, Asia 8, Australia 6). The ICXOM series is a forum for the discussion of new developments in instrumentation, methods and applications in the fields of micro- and nano-analysis by means of X-ray beams. Following the trend of the last 10 years, the conference focusses more and more on synchrotron radiation rather than X-ray laboratory sources. Besides micro-beam X-ray fluorescence and absorption spectroscopy, different methods based on diffraction and full-field imaging were covered. Newly introduced to the ICXOM series was scanning coherent X-ray diffraction imaging, which was shown to evolve into a mature method for the imaging of nanostructures, defects and strain fields. New developments on fast X-ray detectors were discussed (Lambda, Maia) and advances in X-ray optics — like the generation of a sub 5nm point focus by Multilayer Zone plates — were presented. Talks on micro- and nano-analysis applications were distributed in special sessions on bio-imaging, Earth and environmental sciences, and Cultural heritage. The congress featured nine keynote and ten plenary talks, 56 talks in 14 parallel sessions and about 120 posters in three afternoon sessions. Seventeen commercial exhibitors exposed related X-ray instrumentation products, and two luncheon seminars on detector electronics were given. This allowed us to keep the student

  1. X-ray studies of coeval star samples. II. The Pleiades cluster as observed with the Einstein Observatory

    International Nuclear Information System (INIS)

    Micela, G.; Sciortino, S.; Vaiana, G.S.; Harnden, F.R. Jr.; Rosner, R.

    1990-01-01

    Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that of Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars. 77 refs

  2. X-ray studies of coeval star samples. II - The Pleiades cluster as observed with the Einstein Observatory

    Science.gov (United States)

    Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.

    1990-01-01

    Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that of Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars.

  3. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography

    Science.gov (United States)

    Smilowitz, L.; Henson, B. F.; Oschwald, D.; Suvorova, N.; Remelius, D.

    2017-10-01

    We observe internal convective and conductive burn front propagation and solid consumption subsequent to thermal ignition for plastic bonded formulations of the solid organic secondary explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene. This work describes x-ray radiographic diagnostics enabling the study of solid density in a fully encased explosive during internal burning subsequent to ignition. The result of this study is the ability to directly observe and measure rates of energy release during a thermal explosion.

  4. Development of the superconducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena

    Energy Technology Data Exchange (ETDEWEB)

    Gottardi, L., E-mail: l.gottardi@sron.nl [SRON Netherlands Institute for Space Research, Utrecht (Netherlands); Akamatsu, H.; Bruijn, M.P.; Hartog, R. den; Herder, J.-W. den; Jackson, B. [SRON Netherlands Institute for Space Research, Utrecht (Netherlands); Kiviranta, M. [VTT, Espoo (Finland); Kuur, J. van der; Weers, H. van [SRON Netherlands Institute for Space Research, Utrecht (Netherlands)

    2016-07-11

    The Advanced Telescope for High-Energy Astrophysics (Athena) has been selected by ESA as its second large-class mission. The future European X-ray observatory will study the hot and energetic Universe with its launch foreseen in 2028. Microcalorimeters based on superconducting Transition-edge sensor (TES) are the chosen technology for the detectors array of the X-ray Integral Field Unit (X-IFU) on board of Athena. The X-IFU is a 2-D imaging integral-field spectrometer operating in the soft X-ray band (0.3–12 keV). The detector consists of an array of 3840 TESs coupled to X-ray absorbers and read out in the MHz bandwidth using Frequency Domain Multiplexing (FDM) based on Superconducting QUantum Interference Devices (SQUIDs). The proposed design calls for devices with a high filling-factor, high quantum efficiency, relatively high count-rate capability and an energy resolution of 2.5 eV at 5.9 keV. The paper will review the basic principle and the physics of the TES-based microcalorimeters and present the state-of-the art of the FDM read-out.

  5. NASA's Great Observatories Celebrate the International Year of Astronomy

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for larger version In 1609, Galileo improved the newly invented telescope, turned it toward the heavens, and revolutionized our view of the universe. In celebration of the 400th anniversary of this milestone, 2009 has been designated as the International Year of Astronomy. Today, NASA's Great Observatories are continuing Galileo's legacy with stunning images and breakthrough science from the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory. While Galileo observed the sky using visible light seen by the human eye, technology now allows us to observe in many wavelengths, including Spitzer's infrared view and Chandra's view in X-rays. Each wavelength region shows different aspects of celestial objects and often reveals new objects that could not otherwise be studied. This image of the spiral galaxy Messier 101 is a composite of views from Spitzer, Hubble, and Chandra. The red color shows Spitzer's view in infrared light. It highlights the heat emitted by dust lanes in the galaxy where stars can form. The yellow color is Hubble's view in visible light. Most of this light comes from stars, and they trace the same spiral structure as the dust lanes. The blue color shows Chandra's view in X-ray light. Sources of X-rays include million-degree gas, exploded stars, and material colliding around black holes. Such composite images allow astronomers to see how features seen in one wavelength match up with those seen in another wavelength. It's like seeing with a camera, night vision goggles, and X-ray vision all at once. In the four centuries since Galileo, astronomy has changed dramatically. Yet our curiosity and quest for knowledge remain the same. So, too, does our wonder at the splendor of the universe. The International Year of Astronomy Great Observatories Image Unveiling is supported by the NASA Science Mission Directorate Astrophysics Division. The project is a

  6. Einstein Observatory SSS and MPC observations of the complex X-ray spectra of Seyfert galaxies. [Solid State Spectrometer and Monitor Proportional Counter

    Science.gov (United States)

    Turner, T. J.; Weaver, K. A.; Mushotzky, R. F.; Holt, S. S.; Madejski, G. M.

    1991-01-01

    The X-ray spectra of 25 Seyfert galaxies measured with the Solid State Spectrometer on the Einstein Observatory have been investigated. This new investigation utilizes simultaneous data from the Monitor Proportional Counter, and automatic correction for systematic effects in the Solid State Spectrometer which were previously handled subjectively. It is found that the best-fit single-power-law indices generally agree with those previously reported, but that soft excesses of some form are inferred for about 48 percent of the sources. One possible explanation of the soft excess emission is a blend of soft X-ray lines, centered around 0.8 keV. The implications of these results for accretion disk models are discussed.

  7. Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia

    2016-07-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE ( 2000 refereed publications). We describe the results of a study, recently completed by the MSFC Advanced Concepts Office, that demonstrates that such a mission is feasible within a NASA probe-class mission budget.

  8. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    Science.gov (United States)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  9. PREFACE: 11th International Conference on X-ray Microscopy (XRM2012)

    Science.gov (United States)

    Xu, Hongjie; Wu, Ziyu; Tai, Renzhong

    2013-10-01

    The Eleventh International Conference on X-ray Microscopy (XRM2012) was held on 5-10 August 2012 at the Hope hotel in Shanghai. Historically, for the first time the XRM conference took place in China. The conference was jointly hosted by the Shanghai Synchrotron Radiation Facility (SSRF) and the National Synchrotron Radiation Laboratory (NSRL). The series of XRM conferences dates back to 1983 in Göttingen, Germany. Since the Zürich conference, XRM2008, it has been held every two years, showing its increasing popularity among the x-ray microscopy communities around the world. Research in the area of x-ray microscopy is advancing very fast with the development of synchrotron radiation techniques, especially the emergence of third generation light sources with low natural emittance which has significantly pushed forward the development of technologies and applications in this area. This has been fully demonstrated in presentations from this and previous XRM conferences. XRM2012 was attended by 295 people including 21 invited speakers, 53 contributing speakers, 55 students, and 13 industry exhibitors. Over 232 abstracts were submitted for oral or poster presentation and 56 original, peer-reviewed papers are published in these proceedings. The conference was sponsored by the Chinese Academy of Sciences (CAS) and the National Natural Science Foundation of China (11210301016/A0802), and three gold sponsors active in industrial and technological fields related to x-ray microscopy. An exhibition booth was offered free to Australia synchrotron, the host for XRM2014, to promote the next conference which will be held in Melbourne, Australia in 2014. An unforgettable memory for most conference participants might be the charming night cruise along Pujiang river which was part of the welcome reception on the first evening. The Werner Meyer-Ilse Award (WMIA) prize this year was awarded to Irene Zanette (TU-München) and Stephan Werner (HZB-Berlin), the former for her pioneering

  10. Observations of the Crab Nebula with the Chandra X-Ray Observatory During the Gamma-Ray Flare of 2011 April

    Science.gov (United States)

    Weisskopf, Martin C.

    2012-01-01

    Recently, using the AGILE and Fermi satellites, gamma-ray flares have been discovered from the direction of the Crab Nebula (Tavani et al. 2011, Abdo et al. 2011). We have been using the Chandra X-Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma-ray flare. We were fortunate to trigger series of pre-planned target of opportunity observations during the 2011 April flare. We present the results of these observations and address some implications both for now and for the future.

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  12. ISS-Lobster: A Proposed Wide-Field X-Ray Telescope on the International Space Station

    Science.gov (United States)

    Camp, Jordan

    2012-01-01

    The Lobster wide-field imaging telescope combines simultaneous high FOV, high sensitivity and good position resolution. These characteristics can open the field of X-Ray time domain astronomy, which will study many interesting transient sources, including tidal disruptions of stars, supernova shock breakouts, and high redshift gamma-ray bursts. Also important will be its use for the X-ray follow-up of gravitational wave detections. I will describe our present effort to propose the Lobster concept for deployment on the International Space Station through a NASA Mission of Opportunity this fall.

  13. Visualization of the internal structure of Didymosphenia geminata frustules using nano X-ray tomography.

    Science.gov (United States)

    Zgłobicka, Izabela; Li, Qiong; Gluch, Jürgen; Płocińska, Magdalena; Noga, Teresa; Dobosz, Romuald; Szoszkiewicz, Robert; Witkowski, Andrzej; Zschech, Ehrenfried; Kurzydłowski, Krzysztof J

    2017-08-22

    For the first time, the three-dimensional (3D) internal structure of naturally produced Didymosphenia geminata frustules were nondestructively visualized at sub-100 nm resolution. The well-optimized hierarchical structures of these natural organisms provide insight that is needed to design novel, environmentally friendly functional materials. Diatoms, which are widely distributed in freshwater, seawater and wet soils, are well known for their intricate, siliceous cell walls called 'frustules'. Each type of diatom has a specific morphology with various pores, ribs, minute spines, marginal ridges and elevations. In this paper, the visualization is performed using nondestructive nano X-ray computed tomography (nano-XCT). Arbitrary cross-sections through the frustules, which can be extracted from the nano-XCT 3D data set for each direction, are validated via the destructive focused ion beam (FIB) cross-sectioning of regions of interest (ROIs) and subsequent observation by scanning electron microscopy (SEM). These 3D data are essential for understanding the functionality and potential applications of diatom cells.

  14. The Einstein Observatory catalog of IPC x ray sources. Volume 7E: Right ascension range 20h 00m to 23h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  15. The Einstein Observatory catalog of IPC x ray sources. Volume 2E: Right ascension range 00h 00m to 03h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers and data useful for calculating upper limits and fluxes.

  16. The Einstein Observatory catalog of IPC x ray sources. Volume 5E: Right ascension range 12h 00m to 15h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics, which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  17. The Einstein Observatory catalog of IPC x ray sources. Volume 3E: Right ascension range 04h 00m to 07h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers and data useful for calculating upper limits and fluxes.

  18. The Einstein Observatory catalog of IPC x ray sources. Volume 6E: Right ascension range 16h 00m to 19h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2 launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics, which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images. The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentation describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  19. The Einstein Observatory catalog of IPC x ray sources. Volume 4E: Right ascension range 08h 00m to 11h 59m

    Science.gov (United States)

    Harris, D. E.; Forman, W.; Gioia, I. M.; Hale, J. A.; Harnden, F. R., Jr.; Jones, C.; Karakashian, T.; Maccacaro, T.; Mcsweeney, J. D.; Primini, F. A.

    1993-01-01

    The Einstein Observatory (HEAO-2, launched November 13, 1978) achieved radically improved sensitivity over previous x-ray missions through the use of focusing optics which simultaneously afforded greatly reduced background and produced true images. During its 2.5-yr mission, the Einstein X-Ray Telescope was pointed toward some 5,000 celestial targets, most of which were detected, and discovered several thousand additional 'serendipitous' sources in the observed fields. This catalog contains contour diagrams and source data, obtained with the imaging proportional counter in the 0.16 to 3.5 keV energy band, and describes methods for recovering upper limits for any sky position within the observed images, The main catalog consists of six volumes (numbered 2 through 7) of right ascension ordered pages, each containing data for one observation. Along with the primary documentaion describing how the catalog was constructed, volume 1 contains a complete source list, results for merged fields, a reference system to published papers, and data useful for calculating upper limits and fluxes.

  20. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Setti, G.

    1980-01-01

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  1. International workshop on resonant X-ray scattering in electrically-ordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.P.; Pettifer, R.F.; Laundy, D.; Ishida, K.; Kokubun, J.; Giles, C.; Yokaichiya, F.; Song, C.; Lee, K.B.; Ji, S.; Koo, J.; Park, Y.J.; Kim, J.Y.; Park, J.H.; Shin, H.J.; Rhyee, J.S.; Oh, B.H.; Cho, B.K.; Wilkins Stuart, B.; Paixao, J.A.; Caciuffo, R.; Javorsky, P.; Wastin, F.; Rebizant, J.; Detlefs, C.; Bernheoft, N.; Lander, G.H.; Bombardi, A.; Bergevin, F. de; Matteo, S. di; Paolasini, L.; Rodriguez-Carvajal, J.; Carretta, P.; Millet, P.; Caciuffo, R.; Goff, J.P.; Deen, P.P.; Lee, S.; Stunault, A.; Brown, S.; Mannix, D.; McIntyre, G.J.; Ward, R.C.C.; Wells, M.R.; Lorenzo, J.E.; Joly, Y.; Nazarenko, E.; Staub, U.; Srajer, G.; Haskel, D.; Choi, Y.; Lee, D.R.; Lang, J.C.; Meersschaut, J.; Jiang, J.S.; Bader, S.D.; Bouchenoire, L.; Brown, S.D.; Beesley, A.; Herring, A.; Thomas, M.; Thompson, P.; Langridge, S.; Stirling, W.G.; Mirone, A.; Lander, G.; Wilkins, S.; Ward, R.C.C.; Wells, M.R.; Zochowski, S.W.; Garcia, J.; Subias, G.; Blasco, J.; Sanchez, M.C.; Proietti, M.G.; Lovesey, S.W.; Dmitrienko, V.E.; Ovchinnikova, E.N.; Ishida, K.; Kokubun, J.; Kirfel, A.; Collins, S.P.; Laundy, D.; Oreshko, A.P.; Strange, P.; Horne, M.; Arola, E.; Winter, H.; Szotek, Z.; Temmerman, W.M.; Igarashi, J.; Usuda, M.; Takahashi, M.; Matteo, S. di; Bernhoeft, N.; Hill, J.P.; Lang, J.C.; McWhan, D.; Lee, D.R.; Haskel, D.; Srajer, G.; Hatton Peter, D.; Katsumata, K.; Braithwaite, D

    2004-07-01

    The research field of Resonant X-ray Scattering (RXS) has achieved tremendous progress in the last years. Nowadays RXS is rapidly becoming the crucial technique for investigating the subtleties of microscopic magnetism in systems where the ground state properties reflect a delicate balance between several different correlated processes. The aim of this workshop is to discuss present and future possibilities for RXS investigations of electronic order, including studies of charge, magnetic, and multipolar ordered states. The sessions will cover experimental and theoretical aspects of hard and soft X-ray resonant scattering from single crystals and thin films. This document gathers the summaries of the presentations.

  2. International workshop on resonant X-ray scattering in electrically-ordered systems

    International Nuclear Information System (INIS)

    Collins, S.P.; Pettifer, R.F.; Laundy, D.; Ishida, K.; Kokubun, J.; Giles, C.; Yokaichiya, F.; Song, C.; Lee, K.B.; Ji, S.; Koo, J.; Park, Y.J.; Kim, J.Y.; Park, J.H.; Shin, H.J.; Rhyee, J.S.; Oh, B.H.; Cho, B.K.; Wilkins Stuart, B.; Paixao, J.A.; Caciuffo, R.; Javorsky, P.; Wastin, F.; Rebizant, J.; Detlefs, C.; Bernheoft, N.; Lander, G.H.; Bombardi, A.; Bergevin, F. de; Matteo, S. di; Paolasini, L.; Rodriguez-Carvajal, J.; Carretta, P.; Millet, P.; Caciuffo, R.; Goff, J.P.; Deen, P.P.; Lee, S.; Stunault, A.; Brown, S.; Mannix, D.; McIntyre, G.J.; Ward, R.C.C.; Wells, M.R.; Lorenzo, J.E.; Joly, Y.; Nazarenko, E.; Staub, U.; Srajer, G.; Haskel, D.; Choi, Y.; Lee, D.R.; Lang, J.C.; Meersschaut, J.; Jiang, J.S.; Bader, S.D.; Bouchenoire, L.; Brown, S.D.; Beesley, A.; Herring, A.; Thomas, M.; Thompson, P.; Langridge, S.; Stirling, W.G.; Mirone, A.; Lander, G.; Wilkins, S.; Ward, R.C.C.; Wells, M.R.; Zochowski, S.W.; Garcia, J.; Subias, G.; Blasco, J.; Sanchez, M.C.; Proietti, M.G.; Lovesey, S.W.; Dmitrienko, V.E.; Ovchinnikova, E.N.; Ishida, K.; Kokubun, J.; Kirfel, A.; Collins, S.P.; Laundy, D.; Oreshko, A.P.; Strange, P.; Horne, M.; Arola, E.; Winter, H.; Szotek, Z.; Temmerman, W.M.; Igarashi, J.; Usuda, M.; Takahashi, M.; Matteo, S. di; Bernhoeft, N.; Hill, J.P.; Lang, J.C.; McWhan, D.; Lee, D.R.; Haskel, D.; Srajer, G.; Hatton Peter, D.; Katsumata, K.; Braithwaite, D.

    2004-01-01

    The research field of Resonant X-ray Scattering (RXS) has achieved tremendous progress in the last years. Nowadays RXS is rapidly becoming the crucial technique for investigating the subtleties of microscopic magnetism in systems where the ground state properties reflect a delicate balance between several different correlated processes. The aim of this workshop is to discuss present and future possibilities for RXS investigations of electronic order, including studies of charge, magnetic, and multipolar ordered states. The sessions will cover experimental and theoretical aspects of hard and soft X-ray resonant scattering from single crystals and thin films. This document gathers the summaries of the presentations

  3. Development of an international code of practice for dosimetry in X-ray diagnostic radiology

    International Nuclear Information System (INIS)

    Pernicka, F.; Carlsson, G.A.; Dance, D.R.; DeWerd, L.A.; Kramer, H.-M.; Ng, K.-H.

    2001-01-01

    Medical x-ray examinations contribute greatly to the population dose from man-made radiation sources. There is a need to control this dose and therefore to optimise the design and use of x-ray imaging systems. A key stage in this process is the standardisation of the procedures for dose measurement in the clinic. The Dosimetry and Medical Radiation Physics Section of the IAEA has a number of activities to further advance the standards for x-ray diagnostics. One of these activities is the coordination of a working group to develop a code of practice, which will facilitate the IAEA calibration activities, TLD intercomparisons and audits, educational activities, and technical assistance to Member States. The code of practice will aid in the standardisation of various dosimetric techniques in x-ray diagnostic radiology. The CoP working group has had an initial meeting to review the current status of dosimetry for conventional radiology, fluoroscopy, mammography, computed tomography and dental radiology. The CoP will include the establishment of standards and calibrations at the SSDLs, phantom and patient measurements and procedures for dosimetry in the clinic. (author)

  4. Measurements of internal stresses in bond coating using high energy x-rays from synchrotron radiation source

    CERN Document Server

    Suzuki, K; Akiniwa, Y; Nishio, K; Kawamura, M; Okado, H

    2002-01-01

    Thermal barrier coating (TBC) techniques enable high temperature combustion of turbines made of Ni-base alloy. TBC is made of zirconia top coating on NiCoCrAlY bond coating. The internal stresses in the bond coating play essential role in the delamination or fracture of TBC in service. With the X-rays from laboratory equipments, it is impossible to measure nondestructively the internal stress in the bond coating under the top coating. synchrotron radiations with a high energy and high brightness have a large penetration depth as compared with laboratory X-rays. Using the high energy X-rays from the synchrotron radiation, it is possible to measure the internal stress in the bond coating through the top coating. In this study, the furnace, which can heat a specimen to 1473 K, was developed for the stress measurement of the thermal barrier coatings. The internal stresses in the bond coating were measured at the room temperature, 773 K, 1073 K and 1373 K by using the 311 diffraction from Ni sub 3 Al with about 73...

  5. Einstein pictures the x-ray sky

    International Nuclear Information System (INIS)

    Hartline, B.K.

    1979-01-01

    The second High Energy Astronomy Observatory (HEAO-2, Einstein) is revolutionizing x-ray astronomy just as its namesake revolutionized physics. Earlier x-ray observatories, including HEAO-1, were designed to scan the sky for x-ray emitters. With Einstein, the challenge has shifted from discovering x-ray sources to understanding the processes producing the x-rays. But having 500 times the sensitivity of previous detectors, Einstein makes more than its share of discoveries, too. For example, it sees distant quasars and clusters of galaxies that can barely be detected by the largest optical telescopes

  6. NASA's Great Observatories Celebrate International Year of Astronomy

    Science.gov (United States)

    2009-11-01

    A never-before-seen view of the turbulent heart of our Milky Way galaxy is being unveiled by NASA on Nov. 10. This event will commemorate the 400 years since Galileo first turned his telescope to the heavens in 1609. In celebration of this International Year of Astronomy, NASA is releasing images of the galactic center region as seen by its Great Observatories to more than 150 planetariums, museums, nature centers, libraries, and schools across the country. The sites will unveil a giant, 6-foot-by-3-foot print of the bustling hub of our galaxy that combines a near-infrared view from the Hubble Space Telescope, an infrared view from the Spitzer Space Telescope, and an X-ray view from the Chandra X-ray Observatory into one multiwavelength picture. Experts from all three observatories carefully assembled the final image from large mosaic photo surveys taken by each telescope. This composite image provides one of the most detailed views ever of our galaxy's mysterious core. Participating institutions also will display a matched trio of Hubble, Spitzer, and Chandra images of the Milky Way's center on a second large panel measuring 3 feet by 4 feet. Each image shows the telescope's different wavelength view of the galactic center region, illustrating not only the unique science each observatory conducts, but also how far astronomy has come since Galileo. The composite image features the spectacle of stellar evolution: from vibrant regions of star birth, to young hot stars, to old cool stars, to seething remnants of stellar death called black holes. This activity occurs against a fiery backdrop in the crowded, hostile environment of the galaxy's core, the center of which is dominated by a supermassive black hole nearly four million times more massive than our Sun. Permeating the region is a diffuse blue haze of X-ray light from gas that has been heated to millions of degrees by outflows from the supermassive black hole as well as by winds from massive stars and by stellar

  7. Future axion searches with the International Axion Observatory (IAXO)

    CERN Document Server

    Irastorza, I G; Cantatore, G; Carmona, J M; Caspi, S; Cetin, S A; Christensen, F E; Dael, A; Dafni, T; Davenport, M; Derbin, A V; Desch, K; Diago, A; Döbrich, B; Dudarev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Galán, J; García, J A; Garza, J.G; Geralis, T; Gimeno, B; Giomataris, I; Gninenko, S; Gómez, H; Guendelman, E; Hailey, C J; Hiramatsu, T; Hoffmann, D H H; Horns, D; Iguaz, F J; Isern, J; Jakobsen, A C; Jaeckel, J; Jakovčić, K; Kaminski, J; Kawasaki, M; Krčmar, M; Krieger, C; Lakić, B; Lindner, A; Liolios, A; Luzón, G; Ortega, I; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Redondo, J; Ringwald, A; Russenschuck, S; Ruz, J; Saikawa, K; Savvidis, I; Sekiguchi, T; Shilon, I; Sikivie, P; Silva, H; Kate, H ten; Tomas, A; Troitsky, S; Vafeiadis, T; Bibber, K van; Vedrine, P; Villar, J A; Vogel, J K; Walckiers, L; Wester, W; Yildiz, S C; Zioutas, K

    2013-01-01

    The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of gaγ few × 10−12 GeV−1, i.e. 1–1.5 orders of magnitude beyond the one achieved by CAST, currently the most sensitive axion helioscope. The main elements of IAXO are an increased magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics.

  8. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    Science.gov (United States)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  9. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  10. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  11. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  12. Imaging X-ray astronomy

    International Nuclear Information System (INIS)

    Elvis, M.

    1990-01-01

    The launch of the High Energy Astrophysical Observatory, more appealingly called the Einstein Observatory, marked one of the most revolutionary steps taken in astrophysics this century. Its greater sensitivity compared with earlier satellites and its ability to make high spacial and spectral resolution observations transformed X-ray astronomy. This book is based on a Symposium held in Cambridge, Massachusetts, to celebrate a decade of Einstein Observatory's achievements. It discusses the contributions that this satellite has made to each area of modern astrophysics and the diversity of the ongoing work based on Einstein data. There is a guide to each of the main data bases now coming on-line to increase the availability and to preserve this valuable archive for the future. A review of NASA's next big X-ray mission, AXAF, and a visionary program for novel X-ray astronomy satellites by Riccardo Giacconi conclude this wide-ranging volume. (author)

  13. PREFACE: The 15th International Conference on X-ray Absorption Fine Structure (XAFS15)

    Science.gov (United States)

    Wu, Z. Y.

    2013-04-01

    The 15th International Conference on X-ray Absorption Fine Structure (XAFS15) was held on 22-28 July 2012 in Beijing, P. R. China. About 340 scientists from 34 countries attended this important international event. Main hall Figure 1. Main hall of XAFS15. The rapidly increasing application of XAFS to the study of a large variety of materials and the operation of the new SR source led to the first meeting of XAFS users in 1981 in England. Following that a further 14 International Conferences have been held. Comparing a breakdown of attendees according to their national origin, it is clear that participation is spreading to include attendees from more and more countries every year. The strategy of development in China of science and education is increasing quickly thanks to the large investment in scientific and technological research and infrastructure. There are three Synchrotron Radiation facilities in mainland China, Hefei Light Source (HLS) in the National Natural Science Foundation of China (NSRL), Beijing Synchrotron Radiation Facility (BSRF) in the Institute of High Energy Physics, and Shanghai Synchrotron Radiation Facility (SSRF) in the Shanghai Institute of Applied Physics. More than 10000 users and over 5000 proposals run at these facilities. Among them, many teams from the USA, Japan, German, Italy, Russia, and other countries. More than 3000 manuscript were published in SCI journals, including (incomplete) Science (7), Nature (10), Nature Series (7), PNAS (3), JACS (12), Angew. Chem. Int. Ed. (15), Nano Lett. (2), etc. In XAFS15, the participants contributed 18 plenary invited talks, 16 parallel invited talks, 136 oral presentations, 12 special talks, and 219 poster presentations. Wide communication was promoted in the conference halls, the classical banquet restaurant, and the Great Wall. Parallel hallCommunicationPoster room Figure 2. Parallel hallFigure 3. CommunicationFigure 4. Poster room This volume contains 136 invited and contributed papers

  14. Exploring the X-Ray Universe

    Science.gov (United States)

    Seward, Frederick D.; Charles, Philip A.

    1995-11-01

    Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale. This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.

  15. External and internal structure of weevils (Insecta: Coleoptera) investigated with phase-contrast X-ray imaging

    International Nuclear Information System (INIS)

    Hoennicke, M.G.; Cusatis, C.; Rigon, L.; Menk, R.-H.; Arfelli, F.; Foerster, L.A.; Rosado-Neto, G.H.

    2010-01-01

    Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures (Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature.

  16. X-ray imaging for non-destructive testing of internal disorders in fruits

    International Nuclear Information System (INIS)

    Thomas, Paul

    1998-01-01

    A physiological disorder known as spongy tissue involving damage of the mesocarp (flesh) affects 20 to 30 percent of mango fruits, particularly Alphonso, the leading commercial variety of India. Large sized fruits and those more advanced in maturity or harvested when ripe show increased incidence of spongy tissue. The mango processing industry is also facing quality control problems and economic loss as weevil-infested fruits can contaminate the processed pulp as well as the processing machinery with insect, fecal and feed remnants. Studies undertaken in the Food Technology Division, Bhabha Atomic Research Centre (BARC), Mumbai with assistance from Radiation Standards Section, Radiological Unit, BARC Hospital and ECIL, Hyderabad, have shown that both spongy tissue affected and seed weevil infested mango fruits can be detected by x-ray transmittance. The resulting image can be used to detect affected fruits. An automated system for detecting and rejecting mangoes with spongy tissue or seed weevil infestation is under development in collaboration with the Electronic Systems Division, BARC. (author)

  17. X-ray cross-sections and crossroads (The International Radiation Physics Society) - Richard Pratt's contributions to both

    International Nuclear Information System (INIS)

    Hubbell, J.H.

    2000-01-01

    Some examples of the impact of the theoretical contributions by Richard Pratt and his collaborators on photon cross section compilations at NBS/NIST and elsewhere over the past several decades are presented. Both the theoretical and measurement works which combine to provide this data base, and the contact with the varied user groups in medical applications, nuclear engineering, crystallography and X-ray astronomy, have formed a global crossroads of researchers now embodied in the International Radiation Physics Society (IRPS). Since the founding of the IRPS at the 3 rd International Symposium on Radiation Physics (ISRP-3) in Ferrara, Italy, in 1985, the Secretariat for this 'global radiation physics family' (the IRPS) has resided at the University of Pittsburgh under the direction of Richard Pratt. A brief account of the origins and history of the IRPS, beginning with ISRP-1 in Calcutta in 1974, is presented.

  18. Internal electric-field-lines distribution in CdZnTe detectors measured using X-ray mapping

    International Nuclear Information System (INIS)

    Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Yang, G.; Yao, H.W.; James, R.B.

    2009-01-01

    The ideal operation of CdZnTe devices entails having a uniformly distributed internal electric field. Such uniformity especially is critical for thick long-drift-length detectors, such as large-volume CPG and 3-D multi-pixel devices. Using a high-spatial resolution X-ray mapping technique, we investigated the distribution of the electric field in real devices. Our measurements demonstrate that in thin detectors, 1 cm, with a large aspect ratio (thickness-to-width ratio), we observed two effects: the electric field lines bending away from or towards the side surfaces, which we called, respectively, the focusing field-line distribution and the defocusing field-line distribution. In addition to these large-scale variations, the field-line distributions were locally perturbed by the presence of extended defects and residual strains existing inside the crystals. We present our data clearly demonstrating the non-uniformity of the internal electric field

  19. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    Science.gov (United States)

    Smith, Kevin T.; Balouet, Jean Christophe; Shortle, Walter C.; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A.; Burkem, Joel G.

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.

  20. X-ray cross-sections and crossroads (The International Radiation Physics Society) - Richard Pratt's contributions to both

    Science.gov (United States)

    Hubbell, J. H.

    2000-08-01

    Some examples of the impact of the theoretical contributions by Richard Pratt and his collaborators on photon cross section compilations at NBS/NIST and elsewhere over the past several decades are presented. Both the theoretical and measurement works which combine to provide this data base, and the contact with the varied user groups in medical applications, nuclear engineering, crystallography and X-ray astronomy, have formed a global crossroads of researchers now embodied in the International Radiation Physics Society (IRPS). Since the founding of the IRPS at the 3rd International Symposium on Radiation Physics (ISRP-3) in Ferrara, Italy, in 1985, the Secretariat for this ``global radiation physics family'' (the IRPS) has resided at the University of Pittsburgh under the direction of Richard Pratt. A brief account of the origins and history of the IRPS, beginning with ISRP-1 in Calcutta in 1974, is presented.

  1. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  2. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  4. An international network of magnetic observatories

    Science.gov (United States)

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  5. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  6. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  7. Data standards for the international virtual observatory

    Directory of Open Access Journals (Sweden)

    R J Hanisch

    2006-11-01

    Full Text Available A primary goal of the International Virtual Observatory Alliance, which brings together Virtual Observatory Projects from 16 national and international development projects, is to develop, evaluate, test, and agree upon standards for astronomical data formatting, data discovery, and data delivery. In the three years that the IVOA has been in existence, substantial progress has been made on standards for tabular data, imaging data, spectroscopic data, and large-scale databases and on managing the metadata that describe data collections and data access services. In this paper, I describe how the IVOA operates and give my views as to why such a broadly based international collaboration has been able to make such rapid progress.

  8. Use of X - Rays for the evaluation of internal damages provoked by corn seed drying and the effect of those damages upon the seeds quality

    International Nuclear Information System (INIS)

    Obando Flor, Ebert Pepe; Moreira de Carvalho, Maria Laene

    2002-01-01

    The work was conducted in the seed analysis laboratory of the department of agriculture and forest sciences of the Universidade Federal de Lavras (Federal University of Lavras. MG), over the period 1999 - 2000. Aiming to evaluate the efficiency of utilization of X - rays in the identification of the several types of internal damages provoked by corn seed drying to high temperatures as well as the effect of those damages upon the physiological quality of stored seeds, lots of the cultivars AG1143 and BR 106 were submitted to drying at the temperature of 50 degrades Celsius. The lots were divided into two categories according to the presence or not of internal damages visible with the naked eye submitted to the X - ray test (for 45 at 25 Kvp of radiation intensity) afterwards. They were separated into three sub lots. CDVCDRX (with visual damages and detected by X - ray) SDVSDRX (without visual damages and with damages detected by X ray). The sub lots were evaluated in their physiological quality by viability and vigor tests. The results showed the efficiency of X ray in detecting internal damages of drying not observed by visual analysis. The vigor of corn seeds with internal drying damages is affected in several manners, depending on the cultivars, evaluation time and sort of damage internal damages of drying detected by the radiographical analysis in spite of not affecting early viability, when they occurs in the two directions horizontal and vertical (Double damage) decrease the vigor of seeds after storage

  9. PREFACE: International Conference on the Use of X-ray (and related) Techniques in Arts and Cultural Heritage (XTACH 11)

    Science.gov (United States)

    Hamdan, Nasser; El-Khatib, Sami

    2012-07-01

    The International Conference on the Use of X-Ray (and related) Techniques in Arts and Cultural Heritage (XTACH11) was held on 7 and 8 December 2011 at the American University of Sharjah (AUS) in the United Arab Emirates. The conference was organized in collaboration with the International Atomic Energy Agency (IAEA) and the National X-ray Fluorescence Laboratory (NXFL). The conference was inaugurated by Dr Peter Heath, Chancellor of the American University of Shrjah and attended by Mr Kwaku Aning, deputy Director General of the International Atomic Energy and Ambassador Hamad Al-Kaabi, Ambassador of the UAE to the International Atomic Energy university officials, faculty and students. The conference covered a variety of topics including the use of x-ray and micro beam x-ray analysis, synchrotron based techniques, ion beam and neutron based techniques, optical imaging and mass spectroscopy and chromatography techniques as well as best conservation practices. XTACH11 provided an excellent forum for scientists in the region to interact, exchange ideas and to initiate collaborations with each other as well as with the international community. It showcased some of the latest technical developments in the field of non-destructive testing for the diagnosis and conservation of cultural heritage materials. In addition to the presentations by the invited speakers (Rene van Grieken and K Janssens, University of Antwerp, Belgium; Thomas Calligaro, Centre de Recherche et de Restauration des Musees de France; Stefano Ridolfi, Ars Mensurae, Rome, Italy, and Andrzej Markowicz, IAEA, Austria), a total of 25 other research papers were also presented and discussed. Scientists from many countries participated in the conference: Austria, Belgium, Egypt, Italy, India, Iran, Iraq, Jordan, Lebanon, Qatar, Saudi Arabia, Spain, Sri Lanka, Syria, Thailand, the United Arab Emirates and Yemen. The conference concluded with a Discussion Panel. Thomas Calligaro (Centre de Recherché et de

  10. Astronomical Virtual Observatories Through International Collaboration

    Directory of Open Access Journals (Sweden)

    Masatoshi Ohishi

    2010-03-01

    Full Text Available Astronomical Virtual Observatories (VOs are emerging research environment for astronomy, and 16 countries and a region have funded to develop their VOs based on international standard protocols for interoperability. The 16 funded VO projects have established the International Virtual Observatory Alliance (http://www.ivoa.net/ to develop the standard interoperable interfaces such as registry (meta data, data access, query languages, output format (VOTable, data model, application interface, and so on. The IVOA members have constructed each VO environment through the IVOA interfaces. National Astronomical Observatory of Japan (NAOJ started its VO project (Japanese Virtual Observatory - JVO in 2002, and developed its VO system. We have succeeded to interoperate the latest JVO system with other VOs in the USA and Europe since December 2004. Observed data by the Subaru telescope, satellite data taken by the JAXA/ISAS, etc. are connected to the JVO system. Successful interoperation of the JVO system with other VOs means that astronomers in the world will be able to utilize top-level data obtained by these telescopes from anywhere in the world at anytime. System design of the JVO system, experiences during our development including problems of current standard protocols defined in the IVOA, and proposals to resolve these problems in the near future are described.

  11. Active x-ray optics for high resolution space telescopes

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review ...

  13. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    observatories around the world were pointing their instruments at this mysterious source in the sky, named GRB 031203, in the attempt to decipher its nature. Also ESA's X-ray observatory, XMM-Newton, joined the hunt and observed the source in detail, using its on-board European Photon Imaging Camera (EPIC). The fading X-ray emission from GRB 031203 - called the `afterglow' - is clearly seen in XMM-Newton's images. But much more stunning are the two rings, centred on the afterglow, which appear to expand thousand times faster than the speed of light. Dr. Simon Vaughan, of the University of Leicester, United Kingdom, leads an international team of scientists studying GRB 031203. He explains that these rings are what astronomers call an `echo'. They form when the X-rays from the distant gamma-ray burst shine on a layer of dust in our own Galaxy. "The dust scatters some of the X-rays, causing XMM-Newton to observe these rings, much in the same way as fog scatters the light from a car's headlights," said Vaughan. Although the afterglow is the brightest feature seen in XMM-Newton's images, the expanding echo is much more spectacular. "It is like a shout in a cathedral," Vaughan said. "The shout of the gamma-ray burst is louder, but the Galactic reverberation, seen as the rings, is much more beautiful." The rings seem to expand because the X-rays scattered by dust farther from the direction of GRB 031203 take longer to reach us than those hitting the dust closer to the line of sight. However, nothing can move faster than light. "This is precisely what we expect because of the finite speed of light," said Vaughan. "The rate of expansion that we see is just a visual effect." He and his colleagues explain that we see two rings because there are two thin sheets of dust between the source of the gamma-ray burst and Earth, one closer to us creating the wider ring and one further away where the smaller ring is formed. Since they know precisely at what speed the X-ray light travels in space

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  15. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  16. Women and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Dunkley, P A; Stewart, J H

    1976-01-01

    When a woman comes to an X-Ray Department it is usually necessary to know the present stage of her menstrual cycle. X-Rays may have an adverse effect on the embryo, especially in early pregnancy. However, exposure to X-Rays at any stage may be associated with a slightly increased incidence of malignant disease in childhood. The International Commission on Radiological Protection recommends that in women of child-bearing age (in some cases as young as 11 years), non-urgent diagnostic radiography be confined to the preovulatory phase of the menstrual cycle: that is, 14 days following the first day of the last menstrual period.

  17. The Superconducting Toroid for the New International AXion Observatory (IAXO)

    CERN Document Server

    Shilon, I.; Silva, H.; Wagner, U.; ten Kate, H.H.J.

    2013-01-01

    IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5....

  18. Research of the X-ray spectrum in the digital image acquisition and processing for internal disturbs detection in mangoes (Mangifera indica l.)

    International Nuclear Information System (INIS)

    Ferreira, Rubemar S.; Freire Junior, Murillo; Botrel, Neide; Jesus, Edgar de

    2002-01-01

    In this work, digital image processing was associated to X-ray beam relevant to watching internal injuries, such as breakdown, soft nose and other physiological disturbs in mangoes CV Tommy Atkins. The X-ray source was a high frequency generator operating to a high tension between 14 to 35 kV on a molybdenum target tube, which generate X-ray characteristic near from 18,5 keV and 20 keV (k an l shell) plus a continuous spectrum, thought to be proper to get radiological images from mangoes in different maturation stages. Different filtrations and pseudo-colors technique were used to process the digital images produced. Results, from a group of comparative images, show the feasibility to detect several classes of internal disorders as well as others produced in packing houses and transport of mangoes. (author)

  19. Using X-ray microbeam diffraction to study the long-range internal stresses in aluminum processed by ECAP

    International Nuclear Information System (INIS)

    Lee, I-Fang; Phan, Thien Q.; Levine, Lyle E.; Tischler, Jonathan Z.; Geantil, Peter T.; Huang, Yi; Langdon, Terence G.; Kassner, Michael E.

    2013-01-01

    Aluminum alloy 1050 was processed by equal-channel angular pressing (ECAP) using a single pass (equivalent uniaxial strain of about 0.88). Long-range internal stresses (LRISs) were assessed in the grain/subgrain interiors using X-ray microbeam diffraction to measure the spacing of {5 3 1} planes, with normals oriented approximately +27.3°, +4.9° and −17.5° off the pressing (axial) direction. The results are consistent with mechanical analysis that suggests the maximum tensile plastic-strain after one pass is expected for +22.5°, roughly zero along the pressing axis, and maximum compressive strain for the −67.5° direction. The magnitude of the measured maximum compressive long-range internal stress is about 0.13σ a (applied stress) in low-dislocation regions within the grain/subgrain interiors. This work is placed in the context of earlier work where convergent beam electron diffraction was used to analyze LRISs in close proximity to the deformation-induced boundaries. The results are complementary and the measured stresses are consistent with a composite model for long-range internal stresses

  20. The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO)

    DEFF Research Database (Denmark)

    Vogel, J.K.; Armengaud, E.; Avignone, F.T.

    2015-01-01

    The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 – 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-ph...... low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12hours each day. This contribution is a summary of our papers [1–3] and we refer to these for further details....

  1. Application of x-ray method for measuring internal stress in the gear teeth surface layer

    International Nuclear Information System (INIS)

    Zaborowski, T.

    1996-01-01

    This paper presents the methodics of the internal stress measurements concerning cylindrical gear teeth of involute profile. There are the method selected, relation between stress and strain presented and conditions of investigation discussed in the study, including preparation of samples for investigation and conditions of the strain measurement. Exemplifying results of stress measurements for teeth of gears made of 4OH steel are shown. Suitability of the developed investigation method is indicated

  2. Visualization of the internal structure of Didymosphenia geminata frustules using nano X-ray tomography

    OpenAIRE

    Zglobicka, Izabela; Li, Qiong; Gluch, Jürgen; Płocińska, Magdalena; Noga, Teresa; Dobosz, Romuald; Szoszkiewicz, Robert; Witkowski, Andrzej; Zschech, Ehrenfried; Kurzydłowski, Krzysztof J.

    2017-01-01

    For the first time, the three-dimensional (3D) internal structure of naturally produced Didymosphenia geminata frustules were nondestructively visualized at sub-100 nm resolution. The well-optimized hierarchical structures of these natural organisms provide insight that is needed to design novel, environmentally friendly functional materials. Diatoms, which are widely distributed in freshwater, seawater and wet soils, are well known for their intricate, siliceous cell walls called ?frustules?...

  3. NASA's Great Observatories Celebrate the International Year of Astronomy With a National Unveiling of Spectacular Images

    Science.gov (United States)

    2009-02-01

    In 1609, Galileo first turned his telescope to the heavens and gave birth to modern astronomy. To commemorate four hundred years of exploring the universe, 2009 is designated the International Year of Astronomy. NASA's Great Observatories - the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory - are marking the occasion with the release of a suite of images at over 100 planetariums, museums, nature centers, and schools across the country in conjunction with Galileo's birthday on February 15. The selected sites will unveil a large 9-square-foot print of the spiral galaxy Messier 101 that combines the optical view of Hubble, the infrared view of Spitzer, and the X-ray view of Chandra into one multi-wavelength picture. "It's like using your eyes, night vision goggles, and X-ray vision all at the same time," says Dr. Hashima Hasan, lead scientist for the International Year of Astronomy at NASA Headquarters in Washington. Cas A animation Chandra X-ray Image of M101 Participating institutions also will display a matched trio of Hubble, Spitzer, and Chandra images of Messier 101. Each image shows a different wavelength view of the galaxy that illustrates not only the different science uncovered by each observatory, but also just how far astronomy has come since Galileo. Messier 101 is a face-on spiral galaxy about 22 million light-years away in the constellation Ursa Major. It is in many ways similar to, but larger than, our own Milky Way galaxy. Hubble's visible light view shows off the swirls of bright stars and glowing gas that give the galaxy its nickname the Pinwheel Galaxy. In contrast, Spitzer's infrared-light image sees into the spiral arms and reveals the glow of dust lanes where dense clouds can collapse to form new stars. Chandra's X-ray picture uncovers the high-energy features in the galaxy, such as remnants of exploded stars or matter zooming around black holes. The juxtaposition of observations from these three telescopes

  4. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    International Nuclear Information System (INIS)

    Raguvarun, K.; Balasubramaniam, Krishnan; Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Kapoor, Ajay; Hoye, Nicholas; Curiri, Dominic

    2015-01-01

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength

  5. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raguvarun, K., E-mail: prajagopal@iitm.ac.in; Balasubramaniam, Krishnan, E-mail: prajagopal@iitm.ac.in; Rajagopal, Prabhu, E-mail: prajagopal@iitm.ac.in [Centre for NDE, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu (India); Palanisamy, Suresh [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia); Nagarajah, Romesh; Kapoor, Ajay [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 (Australia); Hoye, Nicholas; Curiri, Dominic [University of Wollongong, Faculty of Engineering, New South Wales 2522, Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia)

    2015-03-31

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  6. The internal strain parameter of gallium arsenide measured by energy-dispersive X-ray diffraction

    International Nuclear Information System (INIS)

    Cousins, C.S.G.; Sheldon, B.J.; Webster, G.E.; Gerward, L.; Selsmark, B.; Staun Olsen, J.

    1989-01-01

    The internal strain parameter of GaAs has been measured by observing the stress-dependence of the integrated intensity of the weak 006 reflection, with the compressive stress along the [1anti 10] axis. An energy-dispersive technique was employed so that the reflection could be obtained at a photon energy close to the minimum in the structure factor, thereby approaching closely the strictly-forbidden condition that applies at any energy in the diamond structure. A value anti A=-0.138±0.005, equivalent to a bond-bending parameter ζ=0.55=0.02, has been found. This is in good agreement with recent theoretical calculations and indirect determinations related to the bandstructure of GaAs. (orig.)

  7. Phase contrast X-ray synchrotron imaging for assessing external and internal morphology of Rhodnius prolixus

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Andre P. de, E-mail: apalmeid@gmail.com [Physics Institute, State University of Rio de Janeiro (Brazil); Nuclear Engineering Program, COPPE, Federal University of Rio de Janeiro (Brazil); Soares, Jose [Physics Institute, State University of Rio de Janeiro (Brazil); Meneses, Anderson A.M. [Radiological Sciences Laboratory, State University of Rio de Janeiro (Brazil); Federal University of Western Para (Brazil); Cardoso, Simone C. [Physics Institute, Federal University of Rio de Janeiro (Brazil); Braz, Delson [Nuclear Engineering Program, COPPE, Federal University of Rio de Janeiro (Brazil); Garcia, Eloi S. [Laboratory of Biochemistry and Physiology of Insects, Oswaldo Cruz Institute, FIOCRUZ (Brazil); Gonzalez, Marcelo S. [Department of General Biology, Federal University Fluminense (Brazil); Azambuja, Patricia [Laboratory of Biochemistry and Physiology of Insects, Oswaldo Cruz Institute, FIOCRUZ (Brazil); Barroso, Regina C. [Physics Institute, State University of Rio de Janeiro (Brazil)

    2012-07-15

    PhC-SR-{mu}CT is a nondestructive technique that allows the microanatomical investigations and 3D images reconstructions. This technique is performed in blood sucker, Rhodnius prolixus-one of the most important insect vectors of Trypanosoma cruzi, ethiologic agent of Chagas' disease in Latin America-was able to provide excellent information about the microanatomy of the thorax and head allowing a new tool for further studies of development and physiology of triatomine by a non-invasive method of observation. - Highlights: Black-Right-Pointing-Pointer In this work we used SR-PhC-{mu}CT to study the microanatomy of R. prolixus. Black-Right-Pointing-Pointer We investigate SR-PhC-{mu}CT to the 3D reconstruction of internal structures. Black-Right-Pointing-Pointer We get information about the tissues responsible for the development of the insect.

  8. Internal structure of a vermicular ironstone as determined by X-ray computed tomography scanning

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, Yuri Lopes, E-mail: ylzinn@dcs.ufla.br [Universidade Federal de Lavras (UFLA), Lavras, MG (Brazil). Departamento de Ciencia do Solo; Carducci, Carla Eloize [Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil). Departamento de Agronomia; Araujo, Marla Alessandra [Universidade Federal de Lavras (UFLA), Lavras, MG (Brazil). Programa de Pos-graduacao em Ciencia do Solo

    2015-03-15

    Ironstones or petroplinthites are common materials in soils under humid tropical climate, generally defined as the result of Fe oxide accumulation in areas where the water table oscillates, and may exhibit considerable morphological variability. The aim of this study was to examine the internal structure and porosity of an ironstone fragment from a Petroferric Acrudox in Minas Gerais, Brazil, by computed tomography (CT) and conventional techniques. The sample analyzed had total porosity of 59.5 %, with large macropores in the form of tubular channels and irregular vughs, the latter with variable degrees of infilling by material released from the ironstone walls or the soil matrix. The CT scan also showed that the ironstone has wide variation in the density of the solid phase, most likely due to higher concentrations or thick intergrowths of hematite and magnetite/maghemite, especially in its outer rims. The implications of these results for water retention and soil formation in ironstone environments are briefly discussed. (author)

  9. Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management

    Science.gov (United States)

    Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony; hide

    2018-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.

  10. Lifting the veil on the X-ray universe

    Science.gov (United States)

    1999-11-01

    detected during rocket-borne experiments. Satellites have since conducted more extensive surveys. The first satellite dedicated to X-ray astronomy was Uhuru. Launched in 1970 it mapped the sky identifying 339 sources. Several others were to follow, including Einstein which carried grazing incidence mirrors and detectors capable of recording images of cosmic X-ray sources. Einstein studied more than ten thousand sources. EXOSAT (1983-1986) was the European Space Agency's first X-ray observatory mission. Placed on a highly eccentric orbit reaching out 191 700 km from Earth, it allowed very long observations above the radiation belts and greatly enlarged our understanding of many classes of X-ray sources. The German/US/UK ROSAT launched in 1990 was another big step forwards. Until its recent switch off it carried out a complete sky survey identifying 100 000 X-ray sources. XMM will be opening up a golden age of X-ray astronomy alongside two other major missions. Launched in July 1999, Chandra is the third of NASA's Great Observatories. It is exploring X-rays from space with images 25 times sharper than previously obtained. ASTRO-E is Japan's fifth X-ray astronomy mission and is due to be launched early in 2000. Europe has already begun studying a next generation X-ray astrophysics facility, XEUS. By making use of the International Space Station and by ensuring significant potential for growth and evolution, XEUS will offer vastly expanded capabilities allowing the study of the very first black holes created when the Universe was just a few percent of its present age.

  11. INTERNAL STRUCTURE OF A VERMICULAR IRONSTONE AS DETERMINED BY X-RAY COMPUTED TOMOGRAPHY SCANNING

    Directory of Open Access Journals (Sweden)

    Yuri Lopes Zinn

    2015-04-01

    Full Text Available Ironstones or petroplinthites are common materials in soils under humid tropical climate, generally defined as the result of Fe oxide accumulation in areas where the water table oscillates, and may exhibit considerable morphological variability. The aim of this study was to examine the internal structure and porosity of an ironstone fragment from a Petroferric Acrudox in Minas Gerais, Brazil, by computed tomography (CT and conventional techniques. The sample analyzed had total porosity of 59.5 %, with large macropores in the form of tubular channels and irregular vughs, the latter with variable degrees of infilling by material released from the ironstone walls or the soil matrix. The CT scan also showed that the ironstone has wide variation in the density of the solid phase, most likely due to higher concentrations or thick intergrowths of hematite and magnetite/maghemite, especially in its outer rims. The implications of these results for water retention and soil formation in ironstone environments are briefly discussed.

  12. Proton irradiation experiment for x-ray charge-coupled devices of the monitor of all-sky x-ray image mission onboard the international space station. 2. Degradation of dark current and identification of electron trap level

    CERN Document Server

    Miyata, E; Kamiyama, D

    2003-01-01

    We have investigated the radiation damage effects on a charge-coupled device (CCD) to be used for the Japanese X-ray mission, the monitor of all-sky X-ray image (MAXI), onboard the international space station (ISS). A temperature dependence of the dark current as a function of incremental dose is studied. We found that the protons having energy of >292 keV seriously increased the dark current of the devices. In order to improve the radiation tolerance of the devices, we have developed various device architectures to minimize the radiation damage in orbit. Among them, nitride oxide enables us to reduce the dark current significantly and therefore we adopted nitride oxide for the flight devices. We also compared the dark current of a device in operation and that out of operation during the proton irradiation. The dark current of the device in operation became twofold that out of operation, and we thus determined that devices would be turned off during the passage of the radiation belt. The temperature dependenc...

  13. International lunar observatory / power station: from Hawaii to the Moon

    Science.gov (United States)

    Durst, S.

    Astronomy's great advantages from the Moon are well known - stable surface, diffuse atmosphere, long cool nights (14 days), low gravity, far side radio frequency silence. A large variety of astronomical instruments and observations are possible - radio, optical and infrared telescopes and interferometers; interferometry for ultra- violet to sub -millimeter wavelengths and for very long baselines, including Earth- Moon VLBI; X-ray, gamma-ray, cosmic ray and neutrino detection; very low frequency radio observation; and more. Unparalleled advantages of lunar observatories for SETI, as well as for local surveillance, Earth observation, and detection of Earth approaching objects add significant utility to lunar astronomy's superlatives. At least nine major conferences in the USA since 1984 and many elsewhere, as well as ILEWG, IAF, IAA, LEDA and other organizations' astronomy-from-the-Moon research indicate a lunar observatory / power station, robotic at first, will be one of the first mission elements for a permanent lunar base. An international lunar observatory will be a transcending enterprise, highly principled, indispensable, soundly and broadly based, and far- seeing. Via Astra - From Hawaii to the Moon: The astronomy and scie nce communities, national space agencies and aerospace consortia, commercial travel and tourist enterprises and those aspiring to advance humanity's best qualities, such as Aloha, will recognize Hawaii in the 21st century as a new major support area and pan- Pacific port of embarkation to space, the Moon and beyond. Astronomical conditions and facilities on Hawaii's Mauna Kea provide experience for construction and operation of observatories on the Moon. Remote and centrally isolated, with diffuse atmosphere, sub-zero temperature and limited working mobility, the Mauna Kea complex atop the 4,206 meter summit of the largest mountain on the planet hosts the greatest collection of large astronomical telescopes on Earth. Lunar, extraterrestrial

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a ... posted: How to Obtain and Share ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, a radiologist ... about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  16. X-ray apparatus

    International Nuclear Information System (INIS)

    Sell, L.J.

    1981-01-01

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  17. X-ray - skeleton

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this ... Degenerative bone conditions Osteomyelitis Risks There is low radiation exposure. X-rays machines are set to provide the smallest ...

  18. PIXE in 1980: Summary of the second international conference on particle induced x-ray emission and its analytical applications

    International Nuclear Information System (INIS)

    Akselsson, K.R.

    1981-01-01

    The Second International Conference on Particle Induced X-ray Emission (PIXE) and its analytical applications was held in Lund, Sweden, June 9-12, 1980. About a hundred papers were presented, including seven invited talks (PIXE and particle scattering, microbeam analysis, applications to aerosols and biological samples). The main impression left by the conference was that both the PIXE method and its applications are in a phase of fast development. Considerable effort has successfully been devoted to optimizing the basic PIXE technique. Also the great advantage of simultaneously getting information about lighter elements and sample mass was reported to have been successfully employed in routine analyses. PIXE, which was initially considered to be a method mainly for thin samples, has also been shown to be competitive for a variety of thick samples. Data from aerosol studies was presented. With the PIXE-method, it is feasible to perform series of measurements over a long period of time, many samples in parallel and/or samples from sites of poor accessibility. However, the advantages of PIXE may be further exploited in aerosol investigations and some promising lines of sampler development were reported. Sample preparation techniques are crucial for applications to biological samples and several laboratories are engaged in such developmental work. However, it was also evident that PIXE is already giving significant contributions to research in biology and medicine

  19. Morphological evolution and internal strain mapping of pomelo peel using X-ray computed tomography and digital volume correlation

    KAUST Repository

    Wang, B.

    2017-10-15

    Cellular microstructures within natural materials enlighten and promote the development of novel materials and structures in the industrial and engineering fields. Characterization of the microstructures and mechanical properties of these natural materials can help to understand the morphology-related mechanical properties and guide the structural optimization in industrial design. Among these natural cellular materials, pomelo peels, having a foam-like hierarchical microstructure, represent an ideal model for developing materials with high energy absorption efficiency. In this work, by combining X-ray tomographic imaging technique and digital volume correlation (DVC), in-situ stepwise uniaxial compression tests were performed to quantify the internal morphological evolution and kinematic responses of pomelo peel samples during compression. Via these experiments, the varying microstructure features and thus diverse resistance to compression from endocarp to exocarp are examined, and the evolution of both bundles bending and large strain domain from endocarp to mesocarp are explored. Based on the experimental results, the microstructure-related mechanical properties of pomelo peels in response to compressive loading that demonstrates nearly linear morphology-mechanics relationship were revealed.

  20. A feasibility study of dynamic stress analysis inside a running internal combustion engine using synchrotron X-ray beams.

    Science.gov (United States)

    Baimpas, Nikolaos; Drakopoulos, Michael; Connolley, Thomas; Song, Xu; Pandazaras, Costas; Korsunsky, Alexander M

    2013-03-01

    The present investigation establishes the feasibility of using synchrotron-generated X-ray beams for time-resolved in situ imaging and diffraction of the interior components of an internal combustion engine during its operation. The demonstration experiment was carried out on beamline I12 (JEEP) at Diamond Light Source, UK. The external hutch of the JEEP instrument is a large-scale engineering test bed for complex in situ processing and simulation experiments. The hutch incorporates a large capacity translation and rotation table and a selection of detectors for monochromatic and white-beam diffraction and imaging. These capabilities were used to record X-ray movies of a motorcycle internal combustion engine running at 1850 r.p.m. and to measure strain inside the connecting rod via stroboscopic X-ray diffraction measurement. The high penetrating ability and high flux of the X-ray beam at JEEP allowed the observation of inlet and outlet valve motion, as well as that of the piston, connecting rod and the timing chain within the engine. Finally, the dynamic internal strain within the moving connecting rod was evaluated with an accuracy of ~50 × 10(-6).

  1. Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles

    International Nuclear Information System (INIS)

    Bacon, D.H.; Edwards, L.; Moffatt, J.E.; Fitzpatrick, M.E.

    2011-01-01

    Highlights: → Synchrotron X-ray diffraction was used to measure internal stresses in Fe-TiB 2 MMCs. → Samples of the MMCs were loaded to failure in situ in the X-ray beam. → The results show good elastic load transfer from the matrix to the reinforcement. → There is good agreement with the predicted elastic stresses from Eshelby modeling. → During plastic deformation there is increasing load transfer to the reinforcement. - Abstract: High-energy synchrotron X-ray diffraction was used to measure the internal strain evolution in the matrix and reinforcement of steel-based metal matrix composites reinforced with particulate titanium diboride (TiB 2 ). Two systems were studied: a 316L matrix with 25% TiB 2 by volume and a W1.4418 matrix with 10% reinforcement. In situ loading experiments were performed, where the materials were loaded uniaxially in the X-ray beam. The results show the strain partitioning between the phases in the elastic regime, and the evolution of the strain partitioning once plasticity occurs. The results are compared with results from Eshelby modelling, and very good agreement is seen between the measured and modelled response for elastic loading of the material. Heat treatment of the 316-based material did not affect the elastic internal strain response.

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  4. Optics Developments for X-Ray Astronomy

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  5. A soft X-ray image of the Moon

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Predehl, P.; Truemper, J.; Snowden, S.L.; Wisconsin Univ., Madison, WI

    1991-01-01

    A soft X-ray image of the Moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the Moon's X-ray luminosity arises from backscattering of solar X-rays. The Moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one per cent that of the bright side; this emission very probably results from energetic solar-wind electrons striking the Moon's surface. (author)

  6. The hard x-ray imager onboard IXO

    Science.gov (United States)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Limousin, Olivier; Kokubun, Motohide; Watanabe, Shin; Laurent, Philippe; Arnaud, Monique; Tajima, Hiroyasu

    2010-07-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard International X-ray Observatory (IXO), to be launched into orbit in 2020s. It covers the energy band of 10-40 keV, providing imaging-spectroscopy with a field of view of 8 x 8 arcmin2. The HXI is attached beneath the Wide Field Imager (WFI) covering 0.1-15 keV. Combined with the super-mirror coating on the mirror assembly, this configuration provides observation of X-ray source in wide energy band (0.1-40.0 keV) simultaneously, which is especially important for varying sources. The HXI sensor part consists of the semiconductor imaging spectrometer, using Si in the medium energy detector and CdTe in the high energy detector as its material, and an active shield covering its back to reduce background in orbit. The HXI technology is based on those of the Japanese-lead new generation X-ray observatory ASTRO-H, and partly from those developed for Simbol-X. Therefore, the technological development is in good progress. In the IXO mission, HXI will provide a major assets to identify the nature of the object by penetrating into thick absorbing materials and determined the inherent spectral shape in the energy band well above the structure around Fe-K lines and edges.

  7. Internal Morphologies of Cycled Li-Metal Electrodes Investigated by Nano-Scale Resolution X-ray Computed Tomography.

    Science.gov (United States)

    Frisco, Sarah; Liu, Danny X; Kumar, Arjun; Whitacre, Jay F; Love, Corey T; Swider-Lyons, Karen E; Litster, Shawn

    2017-06-07

    While some commercially available primary batteries have lithium metal anodes, there has yet to be a commercially viable secondary battery with this type of electrode. Research prototypes of these cells typically exhibit a limited cycle life before dendrites form and cause internal cell shorting, an occurrence that is more pronounced during high-rate cycling. To better understand the effects of high-rate cycling that can lead to cell failure, we use ex situ nanoscale-resolution X-ray computed tomography (nano-CT) with the aid of Zernike phase contrast to image the internal morphologies of lithium metal electrodes on copper wire current collectors that have been cycled at low and high current densities. The Li that is deposited on a Cu wire and then stripped and deposited at low current density appears uniform in morphology. Those cycled at high current density undergo short voltage transients to >3 V during Li-stripping from the electrode, during which electrolyte oxidation and Cu dissolution from the current collector may occur. The effect of temperature is also explored with separate cycling experiments performed at 5 and 33 °C. The resulting morphologies are nonuniform films filled with voids that are semispherical in shape with diameters ranging from hundreds of nanometers to tens of micrometers, where the void size distributions are temperature-dependent. Low-temperature cycling elicits a high proportion of submicrometer voids, while the higher-temperature sample morphology is dominated by voids larger than 2 μm. In evaluating these morphologies, we consider the importance of nonidealities during extreme charging, such as electrolyte decomposition. We conclude that nano-CT is an effective tool for resolving features and aggressive cycling-induced anomalies in Li films in the range of 100 nm to 100 μm.

  8. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  9. Some observational aspects of compact galactic X-ray sources

    International Nuclear Information System (INIS)

    Heise, J.

    1982-01-01

    This thesis contains the following observations of compact galactic X-ray sources: i) the X-ray experiments onboard the Astronomical Netherlands Satellite ANS, ii) a rocket-borne ultra soft X-ray experiment and iii) the Objective Grating Spectrometer onboard the EINSTEIN observatory. In Chapter I the various types of compact galactic X-ray sources are reviewed and put into the perspective of earlier and following observations. In Chapter II the author presents some of the observations of high luminosity X-ray sources, made with ANS, including the detection of soft X-rays from the compact X-ray binary Hercules X-1 and the ''return to the high state'' of the black hole candidate Cygnus X-1. Chapter III deals with transient X-ray phenomena. Results on low luminosity galactic X-ray sources are collected in Chapter IV. (Auth.)

  10. X-ray Optics Development at MSFC

    Science.gov (United States)

    Sharma, Dharma P.

    2017-01-01

    Development of high resolution focusing telescopes has led to a tremendous leap in sensitivity, revolutionizing observational X-ray astronomy. High sensitivity and high spatial resolution X-ray observations have been possible due to use of grazing incidence optics (paraboloid/hyperboloid) coupled with high spatial resolution and high efficiency detectors/imagers. The best X-ray telescope flown so far is mounted onboard Chandra observatory launched on July 23,1999. The telescope has a spatial resolution of 0.5 arc seconds with compatible imaging instruments in the energy range of 0.1 to 10 keV. The Chandra observatory has been responsible for a large number of discoveries and has provided X-ray insights on a large number of celestial objects including stars, supernova remnants, pulsars, magnetars, black holes, active galactic nuclei, galaxies, clusters and our own solar system.

  11. The X-ray imager on AXO

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Westergaard, Niels Jørgen Stenfeldt

    2001-01-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated....... Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X-ray...... Observatory (AXO), which is a mission proposed to the Danish Small Satellite Program and is dedicated to observations of X-ray generating processes in the Earth's atmosphere. Of special interest will be simultaneous optical and X-ray observations of sprites that are flashes appearing directly above an active...

  12. THE PLERIONIC SUPERNOVA REMNANT G21.5-0.9 POWERED BY PSR J1833-1034: NEW SPECTROSCOPIC AND IMAGING RESULTS REVEALED WITH THE CHANDRA X-RAY OBSERVATORY

    International Nuclear Information System (INIS)

    Matheson, Heather; Safi-Harb, Samar

    2010-01-01

    In 1999, the Chandra X-ray Observatory revealed a 150'' radius halo surrounding the 40'' radius pulsar wind nebula (PWN) G21.5-0.9. A 2005 imaging study of G21.5-0.9 showed that the halo is limb-brightened and suggested that this feature is a candidate for the long-sought supernova remnant (SNR) shell. We present a spectral analysis of SNR G21.5-0.9, using the longest effective observation to date (578.6 ks with the Advanced CCD Imaging Spectrometer (ACIS) and 278.4 ks with the High-Resolution Camera (HRC)) to study unresolved questions about the spectral nature of remnant features, such as the limb brightening of the X-ray halo and the bright knot in the northern part of the halo. The Chandra analysis favors the non-thermal interpretation of the limb. Its spectrum is fit well with a power-law model with a photon index Γ = 2.13 (1.94-2.33) and a luminosity of L x (0.5-8 keV) = (2.3 ± 0.6) x 10 33 erg s -1 (at an assumed distance of 5.0 kpc). An srcut model was also used to fit the spectrum between the radio and X-ray energies. While the absence of a shell in the radio still prohibits constraining the spectrum at radio wavelengths, we assume a range of spectral indices to infer the 1 GHz flux density and the rolloff frequency of the synchrotron spectrum in X-rays and find that the maximum energy to which electrons are accelerated at the shock ranges from ∼60 to 130 TeV (B/10 μG) -1/2 , where B is the magnetic field in units of μG. For the northern knot, we constrain previous models and find that a two-component power-law (or srcut) + pshock model provides an adequate fit, with the pshock model requiring a very low ionization timescale and solar abundances for Mg and Si. Our spectroscopic study of PSR J1833-1034, the highly energetic pulsar powering G21.5-0.9, shows that its spectrum is dominated by hard non-thermal X-ray emission with some evidence of a thermal component that represents ∼9% of the observed non-thermal emission and that suggests non

  13. Investigation of the internal electric field distribution under in situ x-ray irradiation and under low temperature conditions by the means of the Pockels effect

    International Nuclear Information System (INIS)

    Prekas, G; Sellin, P J; Veeramani, P; Davies, A W; Lohstroh, A; Oezsan, M E; Veale, M C

    2010-01-01

    The internal electric field distribution in cadmium zinc telluride (CdZnTe) x-ray and γ-ray detectors strongly affects their performance in terms of charge transport and charge collection properties. In CdZnTe detectors the electric field distribution is sensitively dependent on not only the nature of the metal contacts but also on the working conditions of the devices such as the temperature and the rate of external irradiation. Here we present direct measurements of the electric field profiles in CdZnTe detectors obtained using the Pockels electo-optic effect whilst under in situ x-ray irradiation. These data are also compared with alpha particle induced current pulses obtained by the transient current technique, and we discuss the influence of both low temperature and x-ray irradiation on the electric field evolution. Results from these studies reveal strong distortion of the electric field consistent with the build-up of space charge at temperatures below 250 K, even in the absence of external irradiation. Also, in the presence of x-ray irradiation levels a significant distortion in the electric field is observed even at room temperature which matches well the predicted theoretical model.

  14. Optimization of the x-ray monitoring angle for creating a correlation model between internal and external respiratory signals

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Mami; Nakamura, Mitsuhiro; Mukumoto, Nobutaka; Yamada, Masahiro; Ueki, Nami; Matsuo, Yukinori; Sawada, Akira; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan and Department of Radiological Technology, Faculty of Medical Science, Kyoto College of Medical Science, Nantan, Kyoto 622-0041 (Japan); Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe, Hyogo 650-0047, Japan and Division of Radiation Oncology, Institute of Biomedical Research and Innovation, Kobe, Hyogo 650-0047 (Japan); Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan)

    2012-10-15

    Purpose: To perform dynamic tumor tracking irradiation with the Vero4DRT (MHI-TM2000), a correlation model [four dimensional (4D) model] between the displacement of infrared markers on the abdominal wall and the three-dimensional position of a tumor indicated by a minimum of three implanted gold markers is required. However, the gold markers cannot be detected successfully on fluoroscopic images under the following situations: (1) overlapping of the gold markers; and (2) a low intensity ratio of the gold marker to its surroundings. In the present study, the authors proposed a method to readily determine the optimal x-ray monitoring angle for creating a 4D model utilizing computed tomography (CT) images. Methods: The Vero4DRT mounting two orthogonal kV x-ray imaging subsystems can separately rotate the gantry along an O-shaped guide-lane and the O-ring along its vertical axis. The optimal x-ray monitoring angle was determined on CT images by minimizing the root-sum-square of water equivalent path lengths (WEPLs) on the orthogonal lines passing all of the gold markers while rotating the O-ring and the gantry. The x-ray monitoring angles at which the distances between the gold markers were within 5 mm at the isocenter level were excluded to prevent false detection of the gold markers in consideration of respiratory motions. First, the relationship between the WEPLs (unit: mm) and the intensity ratios of the gold markers was examined to assess the validity of our proposed method. Second, our proposed method was applied to the 4D-CT images at the end-expiration phase for 11 lung cancer patients who had four to five gold markers. To prove the necessity of the x-ray monitoring angle optimization, the intensity ratios of the least visible markers (minimum intensity ratios) that were estimated from the WEPLs were compared under the following conditions: the optimal x-ray monitoring angle and the angles used for setup verification. Additionally, the intra- and

  15. X-ray and the Gamma spectrometer GRIS on the Russian segment of the International space station

    International Nuclear Information System (INIS)

    Kotov, Yu.D.; Yurov, V.N.; Glyanenko, A.S.

    2012-01-01

    Planned experiment on research X-ray and gamma radiation and neutrons of solar flares is described in the paper. Descriptions of scientific equipment of GRIS, a condition of carrying out experiment and results of calculation of characteristics of its detector are provided [ru

  16. A general methodology for full-field plastic strain measurements using X-ray absorption tomography and internal markers

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Nielsen, Søren Fæster; Wert, John A.

    2008-01-01

    on a homogenous distribution of marker particles throughout the bulk of a sample, markers which are detected through the application of synchrotron X-ray tomography. Making use of the morphology of individual markers, motion of individual markers is tracked during deformation allowing the local displacement field...

  17. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    Science.gov (United States)

    Kevin T. Smith; Jean Christophe Balouet; Walter C. Shortle; Michel Chalot; François Beaujard; Hakan Grudd; Don A. Vroblesky; Joel G. Burken

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to...

  18. Trace elements in airborne particles in internal industrial environments: spectrometric analysis of x-ray fluorescence (XRF)

    International Nuclear Information System (INIS)

    Salazar Matarrita, Alfonso

    2001-01-01

    Fluorescence spectroscopy x-ray, is a technique of non-destructive analysis, that allows quantitative determination of the absolute concentration of chemical elements that make up a given matrix. The detected elements depend on atomic number and energy of the secondary target used for irradiation of samples. X-rays are detected and counted in a spectroscopy system based on a multichannel analyzer, that discriminates by energy and form a spectrum of independent photopeaks, whose energy identifies the element and its intensity is proportional to its concentration. The quantification requires the irradiation and counting of a set of pattern comparators, of the same elements identified in the samples. The x-ray emission shows only during the time that the selected sample is subjected to irradiation by x-ray tube. This irradiation does not change the structure nor the chemical composition of the matrix, so the sample remains unchanged, after irradiation. This condition non-destructive characterizes the fluorescence x-ray. The trace elements present in airborne particles, are determined and collected on a Nuclepore filter. The collection sites selected are: Taller de Mecanica de Precision de la Escuela de Fisica, Universidad de Costa Rica; Taller J. V. G. Precision, San Antonio de Coronado; Taller de Muflas, MUFLASA, Alto de Guadalupe; Industria Silvania S. A., Pavas. In addition, it is attached the service rendered to the enterprise Sellos Generales S. A. The working conditions and physical conditions of facilities were considered. An aerosol sampler with a temporal variation was used. Irradiation of samples and an evaluation of the concentrations have been made. (author) [es

  19. X-ray holography

    International Nuclear Information System (INIS)

    Faigel, G.; Tegze, M.; Belakhovsky, M.; Marchesini, S.; Bortel, G.

    2003-01-01

    In the last decade holographic methods using hard X-rays were developed. They are able to resolve atomic distances, and can give the 3D arrangement of atoms around a selected element. Therefore, hard X-ray holography has potential applications in chemistry, biology and physics. In this article we give a general description of these methods and discuss the developments in the experimental technique. The capabilities of hard X-ray holography are demonstrated by examples

  20. X-ray scattering by interstellar dust

    International Nuclear Information System (INIS)

    Rolf, D.

    1980-10-01

    This thesis reports work carried out to make a first observation of x-rays scattered by interstellar dust grains. Data about the dust, obtained at wavelengths ranging from the infrared to ultra-violet spectral regions, are discussed in order to establish a useful description of the grains themselves. This is then used to estimate the magnitude and form of the expected x-ray scattering effect which is shown to manifest itself as a diffuse halo accompanying the image of a celestial x-ray source. Two x-ray imaging experiments are then discussed. The first, specifically proposed to look for this effect surrounding a point x-ray source, was the Skylark 1611 project, and comprised an imaging proportional counter coupled to an x-ray mirror. This is described up to its final calibration when the basis for a concise model of its point response function was established. The experiment was not carried out but its objective and the experience gained during its testing were transferred to the second of the x-ray imaging experiments, the Einstein Observatory. The new instrumental characteristics are described and a model for its point response function is developed. Using this, image data for the point x-ray source GX339-4 is shown to exhibit the sought after scattering phenomenon. (author)

  1. Proceedings of the eighth international colloquium on ultraviolet and x-ray spectroscopy of astrophysical and laboratory plasmas (IAU colloquium 86)

    International Nuclear Information System (INIS)

    1984-01-01

    This volume represents the Proceedings of the Eighth International Colloquium on Ultraviolet and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas. The aim of this series of colloquia has been to bring together workers in the fields of astrophysical spectroscopy, laboratory spectroscopy and atomic physics in order to exchange ideas and results on problems which are common to these different disciplines. In addition to the presented papers there was a poster paper session

  2. Proceedings of the eighth international colloquium on ultraviolet and x-ray spectroscopy of astrophysical and laboratory plasmas (IAU colloquium 86)

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This volume represents the Proceedings of the Eighth International Colloquium on Ultraviolet and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas. The aim of this series of colloquia has been to bring together workers in the fields of astrophysical spectroscopy, laboratory spectroscopy and atomic physics in order to exchange ideas and results on problems which are common to these different disciplines. In addition to the presented papers there was a poster paper session. (WRF)

  3. X-ray microbeam measurements of long-range internal stresses in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing

    International Nuclear Information System (INIS)

    Phan, Thien Q.; Lee, I-Fang; Levine, Lyle E.; Tischler, Jonathan Z.; Huang, Yi; Fox, Alan G.; Langdon, Terence G.; Kassner, Michael E.

    2014-01-01

    X-ray microbeam diffraction was used to measure long-range internal stresses (LRISs) in the grain/subgrain interiors of commercial-purity aluminum processed by equal-channel angular pressing for up to eight passes. The LRIS values at +4.9° off the axial (pressing) direction show only a slight increase with increasing numbers of passes. The normalized stress remains approximately constant at ∼0.10 of the flow stress

  4. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  5. Multi-spacecraft observations of solar hard X-ray bursts

    International Nuclear Information System (INIS)

    Kane, S.R.

    1981-01-01

    The role of multi-spacecraft observations in solar flare research is examined from the point of view of solar hard X-ray bursts and their implications with respect to models of the impulsive phase. Multi-spacecraft measurements provide a stereoscopic view of the flare region, and hence represent the only direct method of measuring directivity of X-rays. In absence of hard X-ray imaging instruments with high spatial and temporal resolution, multi-spacecraft measurements provide the only means of determining the radial (vertical) structure of the hard X-ray source. This potential of the multi-spacecraft observations is illustrated with an analysis of the presently available observations of solar hard X-ray bursts made simultaneously by two or more of the following spacecraft: International Sun Earth Explorer-3 (ISEE-3), Pioneer Venus Orbiter (PVO), Helios-B and High Energy Astrophysical Observatory-A (HEAO-A). In particular, some conclusions have been drawn about the spatial structure and directivity of 50-100 keV X-rays from impulsive flares. Desirable features of future multi-spacecraft missions are briefly discussed followed by a short description of the hard X-ray experiment on the International Solar Polar Mission which has been planned specifically for multi-spacecraft observations of the Sun. (orig.)

  6. X-ray binaries, part 1

    International Nuclear Information System (INIS)

    Hammerschlag-Hensberge, G.C.M.J.

    1977-01-01

    Optical observations of X-ray binaries and their interpretation are described. A number of early-type stars which are identified as companions of X-ray sources are photometrically and spectroscopically observed. The spectra were obtained with the coude spectrograph attached to the 1.5 m telescope of the European Southern Observatory, La Silla, Chile. Registrations of the spectra were made with the Faul-Coradi microphotometer of the Observatory at Utrecht. To study radial velocity variations, the positions of the spectral lines were measured with the Grant comparator of the University of Groningen

  7. Analyses of the internal structure of the oscillating vibro-packed fuels by the micro focus X-rays CT method

    International Nuclear Information System (INIS)

    Mizuta, Yasutoshi

    2003-02-01

    The purpose of this study is to support the development of vibro-packed fuel technology at Japan Nuclear Cycle Development Institute. 3-dimensional (3-D) data was built from the multi-cross sectional images obtained by the micro focus X-rays CT method in the vibro-packed fuel models. The structural analyses were carried out about the obtained 3-D CT images. The packing-rate distribution and the density distribution were measured as well as the number distribution of particles, etc. Consequently, it is obtained that vibrate conditions and a vibrating state have strong correlation, and it is also shown that the 3-D analyses of the internal structure by the micro focus X-rays CT method are effective in performance evaluation of vibro-packed fuels. (author)

  8. The multi-messenger approach to particle acceleration by massive stars: a science case for optical, radio and X-ray observatories

    Science.gov (United States)

    De Becker, Michaël

    2018-04-01

    Massive stars are extreme stellar objects whose properties allow for the study of some interesting physical processes, including particle acceleration up to relativistic velocities. In particular, the collisions of massive star winds in binary systems lead notably to acceleration of electrons involved in synchrotron emission, hence their identification as non-thermal radio emitters. This has been demonstrated for about 40 objects so far. The relativistic electrons are also expected to produce non-thermal high-energy radiation through inverse Compton scattering. This class of objects permits thus to investigate non-thermal physics through observations in the radio and high energy spectral domains. However, the binary nature of these sources introduces some stringent requirements to adequately interpret their behavior and model non-thermal processes. In particular, these objects are well-established variable stellar sources on the orbital time-scale. The stellar and orbital parameters need to be determined, and this is notably achieved through studies in the optical domain. The combination of observations in the visible domain (including e.g. 3.6-m DOT) with radio measurements using notably GMRT and X-ray observations constitutes thus a promising strategy to investigate particle-accelerating colliding-wind binaries in the forthcoming decade.

  9. X-ray interferometers

    International Nuclear Information System (INIS)

    Franks, A.

    1980-01-01

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  10. Extremity x-ray

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003461.htm Extremity x-ray To use the sharing features on this page, ... in the body Risks There is low-level radiation exposure. X-rays are monitored and regulated to provide the ...

  11. X-rays utilization

    International Nuclear Information System (INIS)

    Rebigan, F.

    1979-03-01

    The modality of X-ray utilization in different activities and economy is given. One presents firstly quantities and units used in radiation dosimetry and other fields. One gives the generation of X-rays, their properties as well as the elements of radiation protection. The utilization characteristics of these radiations in different fields are finally given. (author)

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  13. Characterization of the external and internal flow structure of an aerated-liquid injector using X-ray radiography and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Peltier, Scott J.; Lin, Kuo-Cheng; Carter, Campbell D.; Kastengren, Alan L.

    2017-08-02

    In the present study, the internal flowfield of aerated-liquid fuel injectors is examined through x-ray radiography and x-ray fluorescence. An inside-out injector, consisting of a perforated aerating tube within an annular liquid stream, sprays into a quiescent environment at a fixed mass flow rate of water and nitrogen gas. The liquid is doped with bromine (in the form of NaBr) to create an x-ray fluorescence signal. This allows for reasonable absorption and fluorescence signals, and one or both diagnostics can be used to track the liquid distribution. The injector housing is fabricated from beryllium (Be), which allows the internal flowfield to be examined (as Be has relatively low x-ray attenuation coefficient). Two injector geometries are compared, illustrating the effects of aerating orifice size and location on the flow evolution. Time-averaged equivalent pathlength (EPL) and line-of-sight averaged density ρ(y) reveal the formation of the two-phase mixture, showing that the liquid film thickness along the injector walls is a function of the aerating tube geometry, though only upstream of the nozzle. These differences in gas and liquid distribution (between injectors with different aerating tube designs) are suppressed as the mixture traverses the nozzle contraction. The averaged liquid velocity (computed from the density and liquid mass flow rate) reveal a similar trend. This suggests that at least for the current configurations, the plume width, liquid mass distribution, and averaged liquid velocity for the time-averaged external spray are insensitive to the aerating tube geometry.

  14. Characterization of the external and internal flow structure of an aerated-liquid injector using X-ray radiography and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Peltier, Scott J. [Aerospace Systems Directorate, Air Force Research Laboratory, Arnold AFB, TN (United States); Lin, Kuo-Cheng [Taitech, Inc., Beavercreek, OH (United States); Carter, Campbell D. [Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH (United States); Kastengren, Alan L. [Argonne National Laboratory, X-Ray Science Division, Advanced Photon Source, Argonne, IL (United States)

    2017-09-15

    In the present study, the internal flowfield of aerated-liquid fuel injectors is examined through X-ray radiography and X-ray fluorescence. An inside-out injector, consisting of a perforated aerating tube within an annular liquid stream, sprays into a quiescent environment at a fixed mass flow rate of water and nitrogen gas. The liquid is doped with bromine (in the form of NaBr) to create an X-ray fluorescence signal. This allows for reasonable absorption and fluorescence signals, and one or both diagnostics can be used to track the liquid distribution. The injector housing is fabricated from beryllium (Be), which allows the internal flowfield to be examined (as Be has relatively low X-ray attenuation coefficient). Two injector geometries are compared, illustrating the effects of aerating orifice size and location on the flow evolution. Time-averaged equivalent pathlength and line-of-sight averaged density ρ(y) reveal the formation of the two-phase mixture, showing that the liquid film thickness along the injector walls is a function of the aerating tube geometry, though only upstream of the nozzle. These differences in gas and liquid distribution (between injectors with different aerating tube designs) are suppressed as the mixture traverses the nozzle contraction. The averaged liquid velocity (computed from the density and liquid mass flow rate) reveals a similar trend. This suggests that at least for the current configurations, the plume width, liquid mass distribution, and averaged liquid velocity for the time-averaged external spray are insensitive to the aerating tube geometry. (orig.)

  15. The X-ray Astronomy Recovery Mission

    Science.gov (United States)

    Tashiro, M.; Kelley, R.

    2017-10-01

    On 25 March 2016, the Japanese 6th X-ray astronomical satellite ASTRO-H (Hitomi), launched on February 17, lost communication after a series of mishap in its attitude control system. In response to the mishap the X-ray astronomy community and JAXA analyzed the direct and root cause of the mishap and investigated possibility of a recovery mission with the international collaborator NASA and ESA. Thanks to great effort of scientists, agencies, and governments, the X-ray Astronomy Recovery Mission (XARM) are proposed. The recovery mission is planned to resume high resolution X-ray spectroscopy with imaging realized by Hitomi under the international collaboration in the shortest time possible, simply by focusing one of the main science goals of Hitomi Resolving astrophysical problems by precise high-resolution X-ray spectroscopy'. XARM will carry a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and wider field of view, but no hard X-ray or soft gamma-ray instruments are onboard. In this paper, we introduce the science objectives, mission concept, and schedule of XARM.

  16. Toward Adaptive X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  17. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  18. Soft x-ray streak cameras

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1988-01-01

    This paper is a discussion of the development and of the current state of the art in picosecond soft x-ray streak camera technology. Accomplishments from a number of institutions are discussed. X-ray streak cameras vary from standard visible streak camera designs in the use of an x-ray transmitting window and an x-ray sensitive photocathode. The spectral sensitivity range of these instruments includes portions of the near UV and extends from the subkilovolt x- ray region to several tens of kilovolts. Attendant challenges encountered in the design and use of x-ray streak cameras include the accommodation of high-voltage and vacuum requirements, as well as manipulation of a photocathode structure which is often fragile. The x-ray transmitting window is generally too fragile to withstand atmospheric pressure, necessitating active vacuum pumping and a vacuum line of sight to the x-ray signal source. Because of the difficulty of manipulating x-ray beams with conventional optics, as is done with visible light, the size of the photocathode sensing area, access to the front of the tube, the ability to insert the streak tube into a vacuum chamber and the capability to trigger the sweep with very short internal delay times are issues uniquely relevant to x-ray streak camera use. The physics of electron imaging may place more stringent limitations on the temporal and spatial resolution obtainable with x-ray photocathodes than with the visible counterpart. Other issues which are common to the entire streak camera community also concern the x-ray streak camera users and manufacturers

  19. Phase-contrast X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [Hitachi Ltd., Saitama (Japan). Advanced Research Laboratory; Takeda, Tohoru; Itai, Yuji

    1995-12-01

    Phase-contrast X-ray computed tomography (CT) enabling the observation of biological soft tissues without contrast enhancement has been developed. The X-ray phase shift caused by an object is measured and input to a standard CT reconstruction algorithm. A thousand times increase in the image sensitivity to soft tissues is achieved compared with the conventional CT using absorption contrast. This is because the X-ray phase shift cross section of light elements is about a thousand times larger than the absorption cross section. The phase shift is detected using an X-ray interferometer and computer analyses of interference patterns. Experiments were performed using a synchrotron X-ray source. Excellent image sensitivity is demonstrated in the observation of cancerous rabbit liver. The CT images distinguish cancer lesion from normal liver tissue and, moreover, visualize the pathological condition in the lesion. Although the X-ray energy employed and the present observation area size are not suitable for medical applications as they are, phase-contrast X-ray CT is promising for investigating the internal structure of soft tissue which is almost transparent for X-rays. The high sensitivity also provides the advantage of reducing X-ray doses. (author).

  20. Control of a 45-cm long x-ray deformable mirror with either external or internal metrology

    Science.gov (United States)

    Poyneer, Lisa A.; Pardini, Tommaso; McCarville, Thomas; Palmer, David; Brooks, Audrey

    2014-09-01

    Our 45-cm long x-ray deformable mirror has 45 actuators along the tangential axis, along with one strain gauge per actuator and eight temperature sensors. We discuss the detailed calibration of the mirror's figure response to voltage (fourth-order) and the strain gauges' response to figure changes (linear). The mirror's cylinder shape changes with temperature, which can be tracked with the temperature sensors. We present initial results of measuring figure change with the strain gauges, which works very well for large changes (> 10 nm peak-to- valley), but is noisy with a single strain reading for small changes (5 nm peak-to-valley).

  1. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    DEFF Research Database (Denmark)

    Pantleon, Karen; Montgomery, Melanie

    Steamside oxides formed on plant exposed superheated tubes were investigated using X-ray diffraction. Phase identification and stress analysis revealed that on ferritic X20CrMoV12-1 pure Hematite and pure Magnetite formed and both phases are under tensile stress. IN contrast, on austenitic TP347H...... Mn-, Cr- and/or Ni-containing oxides are observed, instead of pure Magnetite, underneath a pure Hematite surface layer. Oxides on the austenitic steel are under compressive stress or even stress-free....

  2. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  3. X-ray apparatus

    International Nuclear Information System (INIS)

    Bernstein, S.; Stagg, L.; Lambert, T.W.; Griswa, P.J.

    1976-01-01

    A patient support system for X-ray equipment in arteriographic studies of the heart is described in detail. The support system has been designed to overcome many of the practical problems encountered in using previous types of arteriographic X-ray equipment. The support system is capable of horizontal movement and, by a series of shafts attached to the main support system, the X-ray source and image intensifier or detector may be rotated through the same angle. The system is highly flexible and details are given of several possible operational modes. (U.K.)

  4. X-ray detector

    International Nuclear Information System (INIS)

    Whetten, N.R.; Houston, J.M.

    1977-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of x-ray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes. 8 figures

  5. X-ray apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1985-01-01

    X-ray apparatus is described which has a shutter between the X-ray source and the patient. The shutter controls the level of radiation to which the patient is exposed instead of merely discontinuing the electric power supplied to the source. When the shutter is opened a radiation sensor senses the level of X-radiation. When a preset quantity of X-radiation has been measured an exposure control closes the shutter. Instead of using the radiation sensor, the integrated power supplied to the anode of the X-ray source may be measured. (author)

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  8. X-ray examination apparatus

    NARCIS (Netherlands)

    2000-01-01

    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  10. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  12. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  13. X-ray optics developments at ESA

    DEFF Research Database (Denmark)

    Bavdaz, M.; Wille, E.; Wallace, K.

    2013-01-01

    Future high energy astrophysics missions will require high performance novel X-ray optics to explore the Universe beyond the limits of the currently operating Chandra and Newton observatories. Innovative optics technologies are therefore being developed and matured by the European Space Agency (ESA......) in collaboration with research institutions and industry, enabling leading-edge future science missions. Silicon Pore Optics (SPO) [1 to 21] and Slumped Glass Optics (SGO) [22 to 29] are lightweight high performance X-ray optics technologies being developed in Europe, driven by applications in observatory class...... reflective coatings [30 to 35]. In addition, the progress with the X-ray test facilities and associated beam-lines is discussed [36]. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... also be useful to help diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  16. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray ... posted: How to Obtain and Share Your Medical Images Movement Disorders Video: The Basketball Game: An MRI ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. ...

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... June is Men's Health Month Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  4. X-ray sources

    International Nuclear Information System (INIS)

    Masswig, I.

    1986-01-01

    The tkb market survey comparatively evaluates the X-ray sources and replacement tubes for stationary equipment currently available on the German market. It lists the equipment parameters of 235 commercially available X-ray sources and their replacement tubes and gives the criteria for purchase decisions. The survey has been completed with December 1985, and offers good information concerning medical and technical aspects as well as those of safety and maintenance. (orig.) [de

  5. Astronomy from the Moon and International Lunar Observatory Missions

    Science.gov (United States)

    Durst, S.; Takahashi, Y. D.

    2018-04-01

    Astronomy from the Moon provides a promising new frontier for 21st century astrophysics and related science activity. International Lunar Observatory Association is an enterprise advancing missions to the Moon for observation and communication.

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray ( ... leg (shin), ankle or foot. top of page What are some common uses of the procedure? A ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  12. Trace element analysis of water using radioisotope induced X-ray fluorescence (Cd-109) and a preconcentration-internal standard method

    International Nuclear Information System (INIS)

    Alvarez, M.; Cano, W.

    1986-10-01

    Radioisotope induced X-ray fluorescence using Cd-109 was used for the determination of iron, nickel, copper, zinc, lead and mercury in water. These metals were concentrated by precipitation with the chelating agent APDC. The precipitated formed was filtered using a membrane filter. Cobalt was added as an internal standard. Minimum detection limit, sensitivities and calibration curves linearities have been obtained to find the limits of the method. The usefulness of the method is illustrated analysing synthetic standard solutions. As an application analytical results are given for water of a highly polluted river area. (Author)

  13. Dynamic light scattering and X-ray photoelectron spectroscopy characterization of PEGylated polymer nanocarriers: internal structure and surface properties.

    Science.gov (United States)

    Celasco, Edvige; Valente, Ilaria; Marchisio, Daniele L; Barresi, Antonello A

    2014-07-22

    In this work, nanospheres and nanocapsules are precipitated in confined impinging jet mixers through solvent displacement and characterized. Acetone and water are used as the solvent and antisolvent, respectively, together with polymethoxypolyethylene glycol cyanoacrylate-co-hexadecylcyanoacrylate and Miglyol as the copolymer and oil, respectively. Characterization is performed with dynamic light scattering, with electrophoretic measurements, and for the first time with X-ray photoelectron spectroscopy. Results show that the presence of polyethylene glycol chains seems to be more pronounced on the surface of nanospheres than on that of nanocapsules. The thickness of the copolymer layer in nanocapsules ranges from 1 to 10 nm, depending on the value of the oil:copolymer mass ratio. Fast dilution is confirmed to have a positive effect in suppressing aggregation but can induce further copolymer precipitation.

  14. New method to analyse internal disruptions with five-camera soft x-ray tomography on RTP

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, C.P. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands); Blank, H.J. de [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    The five-camera soft x-ray diagnostic on the Rijnhuizen Tokamak Project (RTP) offers a wealth of information on sawteeth. Using four or five cameras, tomographic images with 7 poloidal harmonics have been obtained throughout sawtooth crashes and precursor oscillations. The purpose of this paper is to determine whether the precursors are ideal MHD modes or can be attributed to the resistive growth of a magnetic island. In practice, the detection of the topology of magnetic surfaces from the reconstructed tomographic images is complicated by the fact that (except during the final phase of the collapse) the time dependence is dominated by rotation of the m = 1 displacement. A novel method allows to define quantities, e.g. the plasma volume where the emissivity is within a certain range, whose change is only determined by cross-field transport or reconnection, and is not affected by m = 1 convection and by rotation. (author) 6 refs., 2 figs.

  15. New method to analyse internal disruptions with five-camera soft x-ray tomography on RTP

    International Nuclear Information System (INIS)

    Tanzi, C.P.; Blank, H.J. de

    1994-01-01

    The five-camera soft x-ray diagnostic on the Rijnhuizen Tokamak Project (RTP) offers a wealth of information on sawteeth. Using four or five cameras, tomographic images with 7 poloidal harmonics have been obtained throughout sawtooth crashes and precursor oscillations. The purpose of this paper is to determine whether the precursors are ideal MHD modes or can be attributed to the resistive growth of a magnetic island. In practice, the detection of the topology of magnetic surfaces from the reconstructed tomographic images is complicated by the fact that (except during the final phase of the collapse) the time dependence is dominated by rotation of the m = 1 displacement. A novel method allows to define quantities, e.g. the plasma volume where the emissivity is within a certain range, whose change is only determined by cross-field transport or reconnection, and is not affected by m = 1 convection and by rotation. (author) 6 refs., 2 figs

  16. Internal structure and stability of an interstellar cloud heated by an external flux of soft X-rays

    International Nuclear Information System (INIS)

    Sabano, Yutaka; Tosa, Makoto

    1975-01-01

    We study the properties of an interstellar gas cloud which is heated by an external flux of soft X-rays and has a uniform pressure distribution. The heating flux is significantly attenuated inside the cloud even for a rather small cloud, and the central region of the cloud is much cooler and denser than that heated uniformly, hence the cloud can be compressed easier. The stability of such a gas cloud and its implications for the process of star formation are discussed on the basis of the two-phase model of the interstellar medium. The large scale galactic shock seems important as a triggering mechanism for the formation of a dense cloud and for the gravitational collapse leading to star formation. (author)

  17. The International Solid Earth Research Virtual Observatory

    Science.gov (United States)

    Fox, G.; Pierce, M.; Rundle, J.; Donnellan, A.; Parker, J.; Granat, R.; Lyzenga, G.; McLeod, D.; Grant, L.

    2004-12-01

    We describe the architecture and initial implementation of the International Solid Earth Research Virtual Observatory (iSERVO). This has been prototyped within the USA as SERVOGrid and expansion is planned to Australia, China, Japan and other countries. We base our design on a globally scalable distributed "cyber-infrastructure" or Grid built around a Web Services-based approach consistent with the extended Web Service Interoperability approach. The Solid Earth Science Working Group of NASA has identified several challenges for Earth Science research. In order to investigate these, we need to couple numerical simulation codes and data mining tools to observational data sets. This observational data are now available on-line in internet-accessible forms, and the quantity of this data is expected to grow explosively over the next decade. We architect iSERVO as a loosely federated Grid of Grids with each country involved supporting a national Solid Earth Research Grid. The national Grid Operations, possibly with dedicated control centers, are linked together to support iSERVO where an International Grid control center may eventually be necessary. We address the difficult multi-administrative domain security and ownership issues by exposing capabilities as services for which the risk of abuse is minimized. We support large scale simulations within a single domain using service-hosted tools (mesh generation, data repository and sensor access, GIS, visualization). Simulations typically involve sequential or parallel machines in a single domain supported by cross-continent services. We use Web Services implement Service Oriented Architecture (SOA) using WSDL for service description and SOAP for message formats. These are augmented by UDDI, WS-Security, WS-Notification/Eventing and WS-ReliableMessaging in the WS-I+ approach. Support for the latter two capabilities will be available over the next 6 months from the NaradaBrokering messaging system. We augment these

  18. X-ray metrology for ULSI structures

    International Nuclear Information System (INIS)

    Bowen, D. K.; Matney, K. M.; Wormington, M.

    1998-01-01

    Non-destructive X-ray metrological methods are discussed for application to both process development and process control of ULSI structures. X-ray methods can (a) detect the unacceptable levels of internal defects generated by RTA processes in large wafers, (b) accurately measure the thickness and roughness of layers between 1 and 1000 nm thick and (c) can monitor parameters such as crystallographic texture and the roughness of buried interfaces. In this paper we review transmission X-ray topography, thin film texture measurement, grazing-incidence X-ray reflectivity and high-resolution X-ray diffraction. We discuss in particular their suitability as on-line sensors for process control

  19. Effects of Contamination Upon the Performance of X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen L.; Elsner, Ronald F.; Oosterbroek, Tim

    2010-01-01

    Particulate and molecular contamination can each impact the performance of x-ray telescope systems. Furthermore, any changes in the level of contamination between on-ground calibration and in-space operation can compromise the validity of the calibration. Thus, it is important to understand the sensitivity of telescope performance, especially the net effective area and the wings of the point spread function to contamination. Here, we quantify this sensitivity and discuss the flow-down of science requirements to contamination-control requirements. As an example, we apply this methodology to the International X-ray Observatory (IXO), currently under joint study by ESA, JAXA, and NASA.

  20. Solar and Stellar X-ray Cycles

    Science.gov (United States)

    Martens, P. C. H.; SADE Team

    2004-05-01

    Stern et al. have shown that Yohkoh-SXT full disk X-ray irradiance shows an 11 year cycle with an max/min amplitude ratio of a factor 30. Similar cyclic X-ray variation in Sun-like stars observed by ROSAT and its predecessors is observed in only a few cases and limited to a factor two or three. We will show, by means of detailed bandpass comparisons, that this discrepancy cannot be ascribed to the differences in energy response between SXT and the stellar soft X-ray detectors. Is the Sun exceptional? After centuries of geocentric and heliocentric worldviews we find this a difficult proposition to entertain. But perhaps the Sun is a member of a small class of late-type stars with large amplitudes in their X-ray cycles. The stellar X-ray observations listed in the HEASARC catalog are too sparse to verify this hypothesis. To resolve these and related questions we have proposed a small low-cost stellar X-ray spectroscopic imager originally called SADE to obtain regular time series from late and early-type stars and accretion disks. This instrument is complimentary to the much more advanced Chandra and XMM-Newton observatories, and allows them to focus on those sources that require their full spatial and spectral resolution. We will describe the basic design and spectroscopic capability of SADE and show it meets the mission requirements.

  1. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  2. X-ray observations of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1981-11-01

    Observations of 19 symbiotic stars made with the image proportional counter of the Einstein Observatory are reported. Three were detected as soft X-ray sources. All three have shown slow-nova eruptions in the past 40 years. The data are interpreted as support for a model for slow novae involving thermonuclear events on white dwarfs which accrete from M giant companions. Symbiotic stars in their steady state, not being detected X-ray sources, are presumed to be powered by the accretion process alone.

  3. X-ray observations of symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1981-01-01

    Observations of 19 symbiotic stars made with the image proportional counter of the Einstein Observatory are reported. Three were detected as soft X-ray sources. All three have shown slow-nova eruptions in the past 40 years. The data are interpreted as support for a model for slow novae involving thermonuclear events on white dwarfs which accrete from M giant companions. Symbiotic stars in their steady state, not being detected X-ray sources, are presumed to be powered by the accretion process alone. (author)

  4. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  5. Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance

    Science.gov (United States)

    Saha, Timo T.; Rohrbach, Scott; Zhang, William W.

    2011-01-01

    Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.

  6. Flash x-ray

    International Nuclear Information System (INIS)

    Johnson, Q.; Pellinen, D.

    1976-01-01

    The complementary techniques of flash x-ray radiography (FXR) and flash x-ray diffraction (FXD) provide access to a unique domain in nondestructive materials testing. FXR is useful in studies of macroscopic properties during extremely short time intervals, and FXD, the newer technique, is used in studies of microscopic properties. Although these techniques are similar in many respects, there are some substantial differences. FXD generally requires low-voltage, line-radiation sources and extremely accurate timing; FXR is usually less demanding. Phenomena which can be profitably studied by FXR often can also be studied by FXD to permit a complete materials characterization

  7. X-ray astronomy

    International Nuclear Information System (INIS)

    Narayanan, M.S.

    1976-01-01

    The deployment of detectors outside the deleterious effects of the atmosphere by sending them in space vehicles, has been explained. This has thrown open the entire spectrum of the electromagnetic and particle radiation to direct observations, thus enlarging the vistas of the field of astronomy and astrophysics. The discovery of strong emitters of X-rays such as SCO X-1, NorX-2, transient sources such as Cen X-2, Cen X-4, Cen X-1, Supernova remnants Tan X-1, etc., are reported. The background of the X-ray spectrum as measured during two rocket flights over Thumba, India is presented. (K.B.)

  8. X-ray masks

    International Nuclear Information System (INIS)

    Greenwood, J.C.; Satchell, D.W.

    1984-01-01

    In semiconductor manufacture, where X-ray irradiation is used, a thin silicon membrane can be used as an X-ray mask. This membrane has areas on which are patterns to define the regions to be irradiated. These regions are of antireflection material. With the thin, in the order of 3 microns, membranes used, fragility is a problem. Hence a number of ribs of silicon are formed integral with the membrane, and which are relatively thick, 5 to 10 microns. The ribs may be formed by localised deeper boron deposition followed by a selective etch. (author)

  9. X-ray detector

    International Nuclear Information System (INIS)

    Houston, J.M.; Whetten, N.R.

    1981-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of xray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes

  10. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  11. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: ... Ray Exam: Hip Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  12. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  13. X-Ray Exam: Foot

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  14. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  15. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  16. X-Ray Exam: Finger

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  17. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  18. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  19. X-ray beam generator

    International Nuclear Information System (INIS)

    Koller, T.J.; Randmer, J.A.

    1977-01-01

    A method of minimizing the preferential angular absorption of the divergent beam from an X-ray generator is described. The generator consists of an X-ray shielded housing with an X-ray transmissive window symmetrically placed in radial alignment with a focal spot area on a sloped target surface of an X-ray tube in the housing. The X-ray tube may be of the stationary anode type or of the rotating anode type. (U.K.)

  20. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, Karen; Montgomery, Melanie [Technical Univ. of Denmark, Lyngby (Denmark). Inst. of Manufacturing Engineering and Management

    2005-05-01

    For superheater tubes, the adherence of the inner steamside oxide is especially important as spallation of this oxide results in a) blockage of loops which cause insufficient steam flow through the superheaters and subsequently overheating and tube failure and b) spalled oxide can cause erosion of turbine blades. Oxide spallation is a serious problem for austenitic steels where the significant differences of the thermal expansion coefficients of steel and oxide cause relatively high thermal stresses. Usually, various oxides layered within the scale are suggested from microscopical observations of the morphology and/or topography of the oxide scale accompanied by the analysis of chemical elements present. Reports about the application of X-ray diffraction on the study of steamside oxide formation are very scarce in literature. If applied at all, XRD-studies are restricted to ideally flat samples oxidized under laboratory conditions, but relation to real operating conditions and the effect of the real sample geometry is missing. Within the frame of the project, steamside oxides on plant exposed components of ferritic/ martensitic X20CrMoV12-1 as well as fine- and coarse-grained austenitic TP347H were studied by means of X-ray diffraction. Depth dependent phase analysis on sample segments cut from the tubes was carried out by means of grazing incidence diffraction and, in order to obtain information from a larger depth, conventional XRD was combination with stepwise mechanical removal of the steamside oxides. After each removal step phase analysis was performed both on the segments and on the removed powders. Phase specific stress analysis was carried out on rings cut from the tube. Results show that steamside oxides on X20CrMoV12-1 consist of pure Hematite at the surface followed by a relatively thick layer of pure Magnetite. Both phases are under relatively high tensile stresses. While the phase composition of the Hematite layer appears to be the same for all

  1. Chest X-Ray

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  2. X-ray sources

    International Nuclear Information System (INIS)

    Bonse, U.

    1979-11-01

    The author describes several possibilities for the production of X-radiation. Especially he discusses the use of bremsstrahlung at electron impact on solid targets and the synchrotron radiation. He presents some equations for the calculation of X-ray intensities. Especially the X-radiation from the DORIS storage ring is discussed. (HSI)

  3. Medical x-ray

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli; Gui Ah Auu; Husaini Salleh; Idris Besar; Mohd Ashhar Khalid; Muhammad Jamal Md Isa; Shaharuddin Mohd; Siti Najila Mohd Janib; Mohamed Ali Abdul Khader; Mahalatchimi Dave; Mohd Fazly Abdul Rahim; Ng Chee Moon; Ram Piari; Teoh Hoon Heng; Lee Peter

    2004-01-01

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  4. Chest X-Ray

    Medline Plus

    Full Text Available ... change into a gown. You may have some concerns about chest x-rays. However, it’s important to ... You Sponsored by About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  5. Scintillating ribbon x-ray detector

    International Nuclear Information System (INIS)

    Kinchen, B.E.; Rogers, A.

    1995-01-01

    A patent in the early 1970's by Aerojet Corporation in Sacramento, CA put forth the idea of using an array of scintillating fibers for x-ray detection and imaging. In about 1975, Pratt and Whitney Aircraft in East Hartford, CT designed and manufactured an imaging system based on the patent. The device was 1.75 in thick in the direction of the x-ray beam and about 4 in. by 4 in. square. The device was used with a 8 MeV x-ray source to image and measure internal clearances within operating aircraft, gas turbines engines. There are significant advantages of fiber optic detectors in x-ray detection. However, the advantages are often outweighed by the disadvantages. Two of the advantages of scintillating fiber optic x-ray detectors are: (1) high limiting spatial frequency -- between 20 and 25 lp/mm; and (2) excellent x-ray stopping power -- they can be made thick and retain spatial resolution. In traditional fiber optic detectors the x-rays are oriented parallel to the long axis of the fiber. For the scintillating ribbon x-ray sensor, the x-rays are oriented normal to the fiber long axis. This ribbon sensor technique has a number of advantages over the two current radiographic techniques digital x-radiography and x-ray film: The main advantage the ribbon has is size and shape. It can be as thin as 0.05 in., virtually any width or length, and flexible. Once positioned in a given location, 20 to 100 square inches of the object being inspected can be imaged with a single x-ray beam sweep. It is clear that conventional digital cameras do not lend themselves to placement between walls of aircraft structures or similar items requiring x-ray inspections. A prototype scintillating ribbon x-ray sensor has been fabricated and tested by Synergistic Detector Designs. Images were acquired on corrosion test panels of aluminum fabricated by Iowa State University

  6. Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w

  7. Adjustable Grazing-Incidence X-Ray Optics

    Science.gov (United States)

    O'Dell, Stephen L.; Reid, Paul B.

    2015-01-01

    With its unique subarcsecond imaging performance, NASA's Chandra X-ray Observatory illustrates the importance of fine angular resolution for x-ray astronomy. Indeed, the future of x-ray astronomy relies upon x-ray telescopes with comparable angular resolution but larger aperture areas. Combined with the special requirements of nested grazing-incidence optics, mass, and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. The goal of this technology research is to enable the cost-effective fabrication of large-area, lightweight grazing-incidence x-ray optics with subarcsecond resolution. Toward this end, the project is developing active x-ray optics using slumped-glass mirrors with thin-film piezoelectric arrays for correction of intrinsic or mount-induced distortions.

  8. The NASA X-Ray Mission Concepts Study

    Science.gov (United States)

    Petre, Robert; Ptak, A.; Bookbinder, J.; Garcia, M.; Smith, R.; Bautz, M.; Bregman, J.; Burrows, D.; Cash, W.; Jones-Forman, C.; hide

    2012-01-01

    The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO's high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from $300M to $2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final X-ray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report.

  9. Comparative feasibility of gamma, electron beam and x-rays facilities at the Kuala Lumpur International airport (KLIA), Sepang, Malaysia

    International Nuclear Information System (INIS)

    Muhamad Lebai Juri; Sidek Othman; Wan Mashol Wan Zain; Ridzuan Ismail

    1997-01-01

    Malaysia is one of the world's leading producers of rubber, palm oil and cocoa beans. There is a great concern within the commodity industries of the possible outbreak of plant diseases yet to be detected in the country but endemic in the South American tropics and Africa. The risk of transferring the diseases to Malaysia are high because of increasing contacts between Malaysia and the South American countries and Africa through trades, tourism and the South-South cooperation. Diseases of particular importance are the South American leaf blight (SALB) of rubber, vascular wilts of oil palm and witches'broom of cocoa caused by Microcyclus ulei, Fusarium oxysporum f sp. elaeidies and Crinipellis pemiciosa (Stahel) Singer respectively. Recent estimates by the Agriculture Department of Malaysia indicated in the event of large scale attack by SALB on rubber would result in revenue loss of a staggering RM 3-3.5 billion per annum, an equivalent of 70% loss in rubber acreage. This excludes massive unemployment in the rubber industry and cost of cleaning up activities to eradicate and free plantations of SALB. Recurring attacks of the diseases cannot be discounted given the fact that spores of fungi can remain dormant for years but still viable. Stringent control and quarantine steps are presently being exercised by the authorities to intercept at airports and hence prevent entry of infectious plant diseases in Malaysia. Many of the measures using chemicals, ultra violet light (UV), steam sterilization, air blowers etc. are not sufficiently effective in killing fungi especially when spores are carried in the personal belongings of air-passengers. There was suggestion that ionizing radiation offers alternative to the present methods for intercepting pathogens at the port of entry. This paper will firstly, discuss results on the investigations carried out to compare the effectiveness of various ionizing radiation sources, i.e., gamma, electron beam and x-rays; chemicals and UV

  10. Roles of Thin Film Stress in Making Extremely Lightweight X-Ray Optics

    Science.gov (United States)

    Zhang, William W.

    2010-01-01

    X-ray optics typically must be coated with one of the noble metals, gold, platinum, or iridium, to enhance their photon collection area. In general, iridium is preferred to the other two because it generates the highest X-ray reflectivity in the I to 10 keV band. Unfortunately, iridium films typically have also the highest stress that can severely degrade the optical figure of the mirror substrate, resulting in a poorer image quality. In this paper we will report our work in understanding this stress and our method to counterbalance it. In particular we will also report on potential ways of using this stress to improve the substrate's optical figure, turning a bug into a desirable feature. This work is done in the context of developing an enabling technology for the International X-ray Observatory which is a collaborative mission of NASA, ESA, and JAXA, and expected to be launched into an L2 orbit in 2021.

  11. X ray Production. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Nowotny, R. [Medical University of Vienna, Vienna (Austria)

    2014-09-15

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4.

  12. X-ray filter for x-ray powder diffraction

    Science.gov (United States)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  13. X-ray refractometer

    International Nuclear Information System (INIS)

    Tur'yanskij, A.G.; Pirshin, I.V.

    2001-01-01

    Paper introduces a new circuit of X-ray refractometer to study angular and spectral features of refracted radiation within hard X-ray range. Refractometer incorporates two goniometers, two crystal-analyzers and three radiation detectors. The maximum distance between radiation source focal point and a receiving slit of the second goniometer is equal to 1.4 m. For the first time one obtained refraction patterns of fine-film specimens including C/Si stressed structure. Paper describes a new technique of refractometry via specimen oscillation at fixed position of a detecting device. Paper presents the measurement results of oscillation refraction patterns for specimens of melted quartz and ZnSe single crystal [ru

  14. X-ray radiotherapy

    International Nuclear Information System (INIS)

    Tronc, D.

    1995-01-01

    Full text: The most common form of radio therapy is X-ray therapy, where a beam of photons or their parent electrons break down hydrogen bonds within the body's cells and remove certain DNA information necessary for cell multiplication. This process can eradicate malignant cells leading to complete recovery, to the remission of some cancers, or at least to a degree of pain relief. The radiotherapy instrument is usually an electron linac, and the electrons are used either directly in 'electrotherapy' for some 10% of patients, or the electrons bombard a conversion target creating a broad beam of high energy photons or 'penetration X-rays'. The simplest machine consists of several accelerating sections at around 3 GHz, accelerating electrons to 6 MeV; a cooled tungsten target is used to produce a 4 Gray/min X-ray field which can be collimated into a rectangular shape at the patient position. This tiny linac is mounted inside a rotating isocentric gantry above the patient who must remain perfectly still. Several convergent beams can also be used to increase the delivered dose. More sophisticated accelerators operate at up to 18 MeV to increase penetration depths and decrease skin exposure. Alternatively, electrotherapy can be used with different energies for lower and variable penetration depths - approximately 0.5 cm per MeV. In this way surface tissue may be treated without affecting deeper and more critical anatomical regions. This type of linac, 1 to 2 metres long, is mounted parallel to the patient with a bending magnet to direct the beam to the radiotherapy system, which includes the target, thick movable collimator jaws, a beam field equalizer, dose rate and optical field simulation and energy controls. There are over 2000 acceleratorbased X-ray treatment units worldwide. Western countries have up to two units per million population, whereas in developing countries such as Bangladesh, the density is only one per 100 million. Several

  15. X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Zucarias, A; Shepherd, J W

    1982-09-08

    An X-ray tube has a tubular envelope with a cathode for directing an electron beam onto a focal spot area of a spaced anode target to generate X-rays. The target is mounted for axial rotation on one end of a rotor disposed in an end portion of the envelope and encircled by a stator of an alternating current induction motor. An annular shield of high permeability magnetic material extends transversely between the electron beam and the stator of the induction motor for shunting stray or fringe electromagnetic fields established by the stator away from the electron beam to avoid consequent lateral deflections of the electron and corresponding lateral movements of the focal spot area.

  16. X-ray microtomography

    International Nuclear Information System (INIS)

    Dunsmuir, J.H.; Ferguson, S.R.; D'Amico, K.L.; Stokes, J.P.

    1991-01-01

    In this paper the authors describe the application of a new high-resolution X-ray tomographic microscope to the study of porous media. The microscope was designed to exploit the properties of a synchrotron X-ray source to perform three dimensional tomography on millimeter sized objects with micron resolution and has been used in materials science studies with both synchrotron and conventional and synchrotron sources will be compared. In this work the authors have applied the microscope to measure the three dimensional structure of fused bead packs and berea sandstones with micron resolution and have performed preliminary studies of flow in these media with the microscope operated in a digital subtraction radiography mode. Computer graphics techniques have been applied to the data to visually display the structure of the pore body system. Tomographic imaging after flow experiments should detect the structure of the oil-water interface in the pore network and this work is ongoing

  17. X-ray diffraction

    International Nuclear Information System (INIS)

    Einstein, J.R.; Wei, C.H.

    1982-01-01

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  18. X-ray apparatus

    International Nuclear Information System (INIS)

    Tomita, Chuji.

    1980-01-01

    A principal object of the present invention is to provide an X-ray apparatus which is such that the distance between the surface of the patient's table and the floor on which the apparatus is installed is sufficiently small in the horizontal position of the patient's table of the roentgenographical pedestal and that the rotation of the pedestal from the horizontal position to a tilted position and further to the vertical position of the table can be carried out smoothly. (auth)

  19. X-ray Ordinance

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1983-01-01

    This commentary, presented as volume 2 of the Deutsches Strahlenschutzrecht (German legislation on radiation protection) deals with the legal provisions of the ordinance on the protection against harmful effects of X-radiation (X-ray Ordinance - RoeV), of March 1, 1973 (announced in BGBl.I, page 173), as amended by the ordinance on the protection against harmful effects of ionizing radiation, of October 13, 1976 (announced in BGBl. I, page 2905). Thus volume 2 completes the task started with volume 1, namely to present a comprehensive view and account of the body of laws governing radiation protection, a task which was thought useful as developments in the FRG led to regulations being split up into the X-ray Ordinance, and the Radiation Protection Ordinance. In order to present a well-balanced commentary on the X-ray Ordinance, it was necessary to discuss the provisions both from the legal and the medical point of view. This edition takes into account the Fourth Public Notice of the BMA (Fed. Min. of Labour and Social Affairs) concerning the implementation of the X-ray Ordinance of January 4, 1982, as well as court decisions and literature published in this field, until September 1982. In addition, the judgment of the Federal Constitutional Court, dated October 19, 1982, concerning the voidness of the law on government liability, and two decisions by the Federal High Court, dated November 23, 1982, concerning the right to have insight into medical reports - of great significance in practice - have been considered. This commentary therefore is up to date with current developments. (orig.) [de

  20. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  1. Producing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.

    1977-01-01

    A method of producing x-rays by directing radiant energy from a laser onto a target is described. Conversion efficiency of at least about 3 percent is obtained by providing the radiant energy in a low-power precursor pulse of approximately uniform effective intensity focused onto the surface of the target for about 1 to 30 nanoseconds so as to generate an expanding unconfined coronal plasma having less than normal solid density throughout and comprising a low-density (underdense) region wherein the plasma frequency is less than the laser radiation frequency and a higher-density (overdense) region wherein the plasma frequency is greater than the laser radiation frequency and, about 1 to 30 nanoseconds after the precursor pulse strikes the target, a higher-power main pulse focused onto the plasma for about 10 -3 to 30 nanoseconds and having such power density and total energy that the radiant energy is absorbed in the underdense region and conducted into the overdense region to heat it and thus to produce x-rays therefrom with the plasma remaining substantially below normal solid density and thus facilitating the substantial emission of x-rays in the form of spectral lines arising from nonequilibrium ionization states

  2. Conceptual design of the International Axion Observatory (IAXO)

    DEFF Research Database (Denmark)

    Armengaud, E.; Avignone, F. T.; Betz, M.

    2014-01-01

    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO wi...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the body. X-rays are the oldest and most frequently used form of medical imaging. A bone ... bones. top of page How should I prepare? Most bone x-rays require no special preparation. You ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... can be taken to the patient in a hospital bed or the emergency room. The x-ray ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  6. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... changes seen in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... up in shades of gray and air appears black. Until recently, x-ray images were maintained on ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... conditions. Imaging with x-rays involves exposing a part of the body to a small dose of ... body. Once it is carefully aimed at the part of the body being examined, an x-ray ...

  14. SLAC/DESY International Workshop on Interactions of Intense Sub-Picosecond X-Rays with Matter, Stanford, CA, January 23-24, 1997

    International Nuclear Information System (INIS)

    Tatchyn, Roman

    1998-01-01

    This is the proceedings volume of the 1997 SLAC/DESY International Workshop on Interactions of Intense Sub-picosecond X-Ray Pulses with Matter. The workshop theme evolved out of design and R and D studies, undertaken at SLAC, DESY, and elsewhere [1,2], of the new class of linac-driven X-Ray Free Electron Lasers (XRFELs) operating with photocathode-based, low-emittance electron beams in the Self-Amplified Spontaneous Emission (SASE) regime [3]. It can be noted that, following the conclusion of the workshop, funded design study reports on R and D facilities based on these novel sources have been completed and published by both laboratories [4,5]. Topical significance was imparted to the workshop agenda by a series of prior workshops organized to explore scientific and technological applications of linac driven XRFELs [6,7,8,9]. These served to highlight underlying concerns regarding the potential loading effects of the highly intense radiation pulses from this new class of light source on the instrumentation, samples, and experimental phenomena being considered. The primary objectives of the workshop were: (a) to provide tutorial overviews of existing theoretical, numerical, and experimental techniques in the study of interactions of intense, ultra-short radiation pulses with matter, and of their applicability to the parameter regimes of the SLAC and DESY XRFELs; (b) to discuss practical optics and instrumentation issues related to peak and average power density loading; (c) to identify and explore novel concepts and design approaches, with an emphasis on optical instrumentation and experimental physics; (d) to formulate independent or collaborative R and D programs and activities in the areas of theory, numerical simulation, and experimental physics relevant to the linac-driven XRFEL parameter regime

  15. International observatory on mental health systems: structure and operation

    Directory of Open Access Journals (Sweden)

    Minas Harry

    2009-04-01

    Full Text Available Abstract Introduction Sustained cooperative action is required to improve the mental health of populations, particularly in low and middle-income countries where meagre mental health investment and insufficient human and other resources result in poorly performing mental health systems. The Observatory The International Observatory on Mental Health Systems is a mental health systems research, education and development network that will contribute to the development of high quality mental health systems in low and middle-income countries. The work of the Observatory will be done by mental health systems research, education and development groups that are located in and managed by collaborating organisations. These groups will be supported by the IOMHS Secretariat, the International IOMHS Steering Group and a Technical Reference Group. Summary The International Observatory on Mental Health Systems is: 1 the mental health systems research, education and development groups; 2 the IOMHS Steering Group; 3 the IOMHS Technical Reference Group; and 4 the IOMHS Secretariat. The work of the Observatory will depend on free and open collaboration, sharing of knowledge and skills, and governance arrangements that are inclusive and that put the needs and interests of people with mental illness and their families at the centre of decision-making. We welcome contact from individuals and institutions that wish to contribute to achieving the goals of the Observatory. Now is the time to make it happen where it matters, by turning scientific knowledge into effective action for people's health. (J.W. Lee, in his acceptance speech on his appointment as the Director-General of the World Health Organization 1.

  16. X-Ray Exam: Hip

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What It Is Why ... You Have Questions Print What It Is A hip X-ray is a safe and painless test ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... X-rays are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  20. X-Ray Exam: Ankle

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What It Is Why ... You Have Questions Print What It Is An ankle X-ray is a safe and painless test ...

  1. SMM x ray polychromator

    Science.gov (United States)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  2. Obstetric X-rays

    International Nuclear Information System (INIS)

    Mwachi, M.K.

    2006-01-01

    Radiography of the pelvis should never be taken to diagnose early pregnancy, because of potential hazards of radiation damage to the growing foetus. the only indication occurs in the last week of pregnancy (37 weeks). Obstetric X-ray will help you answer like confirmation of malposition,multiple pregnancies; fetal abnormalities e.g. hydrocephalus, foetal disposition. The choice of radiographic projection will help give foetal presentation, disposition as well as foetal maturity. The search pattern helps you determine maternal and spine deformity, foetal spine and head , foetal presentation and any other anomalies

  3. X-ray film

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.; Wonacott, A.J.

    1977-01-01

    The performance of film as an X-ray detector is discussed and its behaviour is compared with that of a perfect Poissonian detector. The efficiency of microdensitometry as a method of extracting the information recorded on the film is discussed. More emphasis is placed in the precision of microdensitometric measurements than on the more obvious characteristic of film speed. The effects of chemical fog and background on the precision of the measurements is considered and it is concluded that the final limit to precision is set by the chemical fog. (B.D.)

  4. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  5. Application of phase-contrast X-ray microtomography to study the internal structures of Rhodium prolixus

    International Nuclear Information System (INIS)

    Almeida, Andre P. de; Soares, Jose; Barroso, Regina C.; Braz, Delson; Cardoso, Simone C.; Garcia, Eloi S.; Azambuja, Patricia; Gonzalez, Marcelo S.

    2011-01-01

    The PhC-SR-μCT is a nondestructive technique that allows the microanatomical investigations and 3D images reconstructions within a short time. This technique performed in blood sucker, Rhodnius prolixus - one of the most important primary vectors of of Trypanosoma cruzi, ethiologic agent of Chagas' disease in Latin America and also the most well-know studied insect in terms of both physiology and vector-parasite interactions. However, little is known about the development and structure of its internal organs. The aim of this work is to provide a non-invasive option for studying the internal structures of the main vector of Chagas' disease, which should help to answer important questions concerning anatomy, development, structure and plasticity of insect in general. Three-dimensional rendering images can provide a detailed knowledge of the interior of the insect, which is crucial for a better understanding of its function and evolution. (author)

  6. Application of phase-contrast X-ray microtomography to study the internal structures of Rhodium prolixus

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Andre P. de; Soares, Jose; Barroso, Regina C. [State University of Rio de Janeiro (UERJ), RJ (Brazil). Physics Institute; Braz, Delson, E-mail: delson@lin.ufrj.b [Federal University of Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Program; Cardoso, Simone C., E-mail: simone@if.ufrj.b [Federal University of Rio de Janeiro (IF/UFRJ), RJ (Brazil). Physics Institute; Garcia, Eloi S.; Azambuja, Patricia [Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, RJ (Brazil). Lab. of Biochemistry and Physiology of Insects; Gonzalez, Marcelo S. [Federal University Fluminense (UFF), Niteroi, RJ (Brazil). Dept. of General Biology

    2011-07-01

    The PhC-SR-{mu}CT is a nondestructive technique that allows the microanatomical investigations and 3D images reconstructions within a short time. This technique performed in blood sucker, Rhodnius prolixus - one of the most important primary vectors of of Trypanosoma cruzi, ethiologic agent of Chagas' disease in Latin America and also the most well-know studied insect in terms of both physiology and vector-parasite interactions. However, little is known about the development and structure of its internal organs. The aim of this work is to provide a non-invasive option for studying the internal structures of the main vector of Chagas' disease, which should help to answer important questions concerning anatomy, development, structure and plasticity of insect in general. Three-dimensional rendering images can provide a detailed knowledge of the interior of the insect, which is crucial for a better understanding of its function and evolution. (author)

  7. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  8. X-ray spectrometry

    International Nuclear Information System (INIS)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-01-01

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references

  9. Cellular internalization and morphological analysis after intravenous injection of a highly hydrophilic octahedral rhenium cluster complex - a new promising X-ray contrast agent.

    Science.gov (United States)

    Krasilnikova, Anna A; Solovieva, Anastasiya O; Trifonova, Kristina E; Brylev, Konstantin A; Ivanov, Anton A; Kim, Sung-Jin; Shestopalov, Michael A; Fufaeva, Maria S; Shestopalov, Alexander M; Mironov, Yuri V; Poveshchenko, Alexander F; Shestopalova, Lidia V

    2016-11-01

    The octahedral cluster compound Na 2 H 8 [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] has been shown to be highly radio dense, thus becoming a promising X-ray contrast agent. It was also shown that this compound had low cytotoxic effect in vitro, low acute toxicity in vivo and was eliminated rapidly from the body through the urinary tract. The present contribution describes a more detailed cellular internalization assay and morphological analysis after intravenous injection of this hexarhenium cluster compound at different doses. The median lethal dose (LD 50 ) of intravenously administrated compound was calculated (4.67 ± 0.69 g/kg). Results of the study clearly indicated that the cluster complex H n [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] n-10 was not internalized into cells in vitro and induced only moderate morphological alterations of kidneys at high doses without any changes in morphology of liver, spleen, duodenum, or heart of mice. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Bremsstrahlung X rays from Jovian auroral electrons

    International Nuclear Information System (INIS)

    Barbosa, D.D.

    1990-01-01

    The spectrum of X rays from the planet Jupiter is calculated according to an auroral electron beam model. The electrons are assumed to be accelerated by a field-aligned potential drop and penetrate into the atmosphere as a Maxwellian beam of primaries which are scattered, degraded in energy, and merged with a population of ionization secondaries having a power law energy distribution. The soft X rays observed by the Einstein Observatory satelltie are due to bremsstrahlung from the sedondary electrons in the H 2 atmosphere. A good match to the X ray data is obtained if the power law spectral index of the secondary electrons, γ e , is ≅ 2, yielding a power law slope for the photon flux γ X = γ e + 1 ≅ 3. The X ray intensity is best reconciled with a beam of primaries having a characteristic energy 30-100 keV and penetrating the homopause with an auroral energy flux typically of 10-20 ergs cm -2 s -1 but no greater than 50 ergs cm -2 s -1

  11. Small Pixel Hybrid CMOS X-ray Detectors

    Science.gov (United States)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  12. Conference proceedings on X84 International Conference on X-ray and Inner-Shell Processes in Atoms, Molecules and Solids

    International Nuclear Information System (INIS)

    Meisel, A.; Finster, J.

    1984-01-01

    The proceedings contain 46 lectures and contributions presented at the 1984 conference. Topics of the conference were ion-atom collisions, inner-shell ionization phenomena, X-ray spectroscopy and electron spectroscopy

  13. X-ray table

    International Nuclear Information System (INIS)

    Craig, J.R.; Otto, G.W.

    1980-01-01

    An X-ray radiographic or fluoroscopic table is described which includes a film holder with a frame attached to a cable running over end pulleys for positioning the holder longitudinally as desired under the table top. The holder has a front opening to receive a cassette-supporting tray which can be slid out on tracks to change the cassette. A reed switch on the frame is opened by a permanent magnet on the tray only when the tray is half-way out. When the switch is closed, an electromagnet locks the pulley and the holder in place. The holder is thus automatically locked in place not only during exposure (tray in) but when the tray is out for changing the cassette. To re-position the holder, the operator pulls the tray half-out and, using the tray itself, pushes the holder along the table, the holder being counterbalanced by a weight. (author)

  14. X-ray equipment

    International Nuclear Information System (INIS)

    Redmayne, I.G.B.

    1988-01-01

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.)

  15. X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, I.G.B.

    1988-01-06

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.).

  16. X-ray instrumentation in astronomy

    International Nuclear Information System (INIS)

    Cuhlane, J.L.

    1985-01-01

    This book presents the proceedings of a conference devoted to x-ray instrumentation in astronomy. Special sections are: AXAF X-Ray Optical Systems; Specialized X-Ray Systems; X-Ray Optical Systems I; X-Ray Optical Systems II; Gas Filled X-Ray Detectors II; The NASA Advanced X-Ray Astrophysics Facility; X-Ray and EUV Spectrometers; Microchannel Plates; and Solid State Detectors

  17. Topological X-Rays Revisited

    Science.gov (United States)

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  18. X-ray pore optic developments

    Science.gov (United States)

    Wallace, Kotska; Bavdaz, Marcos; Collon, Maximilien; Beijersbergen, Marco; Kraft, Stefan; Fairbend, Ray; Séguy, Julien; Blanquer, Pascal; Graue, Roland; Kampf, Dirk

    2017-11-01

    In support of future x-ray telescopes ESA is developing new optics for the x-ray regime. To date, mass and volume have made x-ray imaging technology prohibitive to planetary remote sensing imaging missions. And although highly successful, the mirror technology used on ESA's XMM-Newton is not sufficient for future, large, x-ray observatories, since physical limits on the mirror packing density mean that aperture size becomes prohibitive. To reduce telescope mass and volume the packing density of mirror shells must be reduced, whilst maintaining alignment and rigidity. Structures can also benefit from a modular optic arrangement. Pore optics are shown to meet these requirements. This paper will discuss two pore optic technologies under development, with examples of results from measurement campaigns on samples. One activity has centred on the use of coated, silicon wafers, patterned with ribs, that are integrated onto a mandrel whose form has been polished to the required shape. The wafers follow the shape precisely, forming pore sizes in the sub-mm region. Individual stacks of mirrors can be manufactured without risk to, or dependency on, each other and aligned in a structure from which they can also be removed without hazard. A breadboard is currently being built to demonstrate this technology. A second activity centres on glass pore optics. However an adaptation of micro channel plate technology to form square pores has resulted in a monolithic material that can be slumped into an optic form. Alignment and coating of two such plates produces an x-ray focusing optic. A breadboard 20cm aperture optic is currently being built.

  19. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  20. X-ray filtration apparatus

    International Nuclear Information System (INIS)

    Thompson, G.

    1992-01-01

    This invention relates to an X-ray shielding support device. In spite of considerable development in X-ray taking techniques, a need still exists for effective shielding, inter alia, to compensate for variations in the thickness, density and the absorption properties of the object being studied. By appropriate shielding, the X-ray image produced is of sufficient detail, contrast and intensity over its entire area to constitute a useful diagnostic aid. It is also desirable to subject the patient to the smallest possible X-ray dosage. 4 figs

  1. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  2. X-rays, radiometers and skin unit dose. The development of measuring methods and measuring units for X radiation in medical physics from the beginning until the international standardization

    International Nuclear Information System (INIS)

    Glessmer-Junike, Simone

    2015-01-01

    X-rays, a special form of ionizing radiation, have been utilized in medicine and technology ever since their discovery at the end of 1895. However, the usage of X-rays made the development of measuring techniques necessary. Newly-developed measuring devices were at first called radiometers', but later the term dosimeter' has gained universal acceptance. The development of numerous dosimeters used in radiotherapy was accompanied by new units of measurement, each corresponding to its individual newly constructed dosimeter or method of measurement. While at first conversions between old and new units were performed, it later became clear that both within Germany and Europe units with similar names were used with different meanings, which was both incompatible and confusing. The first serious attempts of a standardization of units in Germany were made after the First World War, when the when the ionizing properties of X-rays was focused on for both measurements and unit definitions. Efforts towards an international standardization of units became successful in the mid-1920s when the Roentgen was defined as the universal unit. From the development described above, four stages of the evolution of radiation measurement and units in radiotherapy could be identified by means of comprehensive systematic research in printed publications. The first stage was the period of diagnostic application of X-rays, when tools for the determination of X-ray quality were designed. This stage progressed into that of therapeutic administration of X-rays shortly after, when instruments and units for the measurement of X-ray quantities (dose') were implemented. Due to the variety and diversity of measurement apparatus and units a third stage emerged, closely interconnected with the second. During the third stage, a nation-wide standardization was attempted in Germany. With the conclusion of this stage - the resolution of a unit for dose measurement in Germany - the stage of

  3. X-raying with low dose irradiation

    International Nuclear Information System (INIS)

    Malevich, E.E.; Kisel, E.M.; Shpita, I.D.; Lazovsky, A.S.

    2001-01-01

    with higher frequency of a pulsation the share of unproductive radiation is higher. At x-raying controlled by the grid pulses are generated by the x-ray tube with the grid control. The grid, located between the cathode and the anode, passes the electron cloud without the expenses of time for dispersal and attenuation. It gives sharply outlined, rectangular x-ray pulses with homogeneous quality of radiation. Function GC F -x-raying controlled by the grid - enables to receive precisely outlined contours of moving objects: a heart, a gullet, - and also to carry out examination of the children without information loss during simultaneous dose decrease. Besides the image remains precise even during the movement of the electron-optical converter. Owing to radiation parameters adjustment during the examination the effect of the lighted image is eliminated. X-raying devices Easy Diagnose and Diagnose-76 'Philips' are equipped with the system of digital x-ray image processing besides they are completed with the x-ray tube with Grid Controlled Fluoroscopy that allows to carry out pulse x-raying with number of pulses 2, 3, 6 and 12 per a second. So, with 12 pulses per second the irradiation dose in comparison with continuous radiation decreases on 40%. The examinations of a chest, gullet, stomach and thick gut were carried out at the frequency of 12 and 6 pulses per second. In the hospital of the Ministry of Internal Affairs where device Easy Diagnose is established, at examinations of a gastro enteric path (stomach x-raying, irrigoscopy) usually pulse x-raying is used with frequency 12 pulses per second. It allows significantly reduce the beam load on a patient. The calculation of beam loads on a patient was carried out on the basis of exposition dose level at the beam input in the body of a patient (entrance dose). The way is applied for especially exact calculations, as definitions of effective doses on separate organs and all body are difficult. The irradiation dose is in

  4. VPD residue search by monitoring scattered x-rays

    International Nuclear Information System (INIS)

    Mori, Y.; Yamagami, M.; Yamada, T.

    2000-01-01

    Recently, VPD-TXRF has come into wide use for semiconductor analysis. In VPD-TXRF technique, adjusting the mechanical measuring point to the center of dried residue is of importance for accurate determination. Until now, the following searching methods have been used: monitoring light scattering under bright illumination, using laser scattering particle mapper, applying internal standard as a marker. However, each method has individual disadvantage. For example, interference of Kβ line (ex. Sc-Kβ to Ti-Kα) occurs in the internal standard method. We propose a new searching method 'scattered x-ray search' which utilizes x-ray scattering form the dried residue as a marker. Since the line profile of x-ray scattering agrees with that of fluorescent x-rays, scattered x-ray can be used as an alternative marker instead of internal standard. According to our experimental results, this search method shows the same accuracy as internal standard method. The merits are as follows: 1) no need to add internal standard, 2) rapid search because of high intensity of scattered x-rays, 3) searching software for internal standard can be applied without any modification. In this method, diffraction of incident x-rays by substrate causes irregular change over the detected scattering x-rays. Therefore, this method works better under x-y controlled stage than r-Θ one. (author)

  5. Kharkov X-ray Generator Based On Compton Scattering

    International Nuclear Information System (INIS)

    Shcherbakov, A.; Zelinsky, A.; Mytsykov, A.; Gladkikh, P.; Karnaukhov, I.; Lapshin, V.; Telegin, Y.; Androsov, V.; Bulyak, E.; Botman, J.I.M.; Tatchyn, R.; Lebedev, A.

    2004-01-01

    Nowadays X-ray sources based on storage rings with low beam energy and Compton scattering of intense laser beams are under development in several laboratories. An international cooperative project of an advanced X-ray source of this type at the Kharkov Institute of Physics and Technology (KIPT) is described. The status of the project is reviewed. The design lattice of the storage ring and calculated X-ray beam parameters are presented. The results of numerical simulation carried out for proposed facility show a peak spectral X-ray intensity of about 1014 can be produced

  6. Characterization of Beryllium Windows for Coherent X-ray Optics

    International Nuclear Information System (INIS)

    Goto, Shunji; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya

    2007-01-01

    Beryllium foils fabricated by several processes were characterized using spatially coherent x rays at 1-km beamline of SPring-8. By thickness dependence of bright x-ray spot density due to Fresnel diffraction from several-micron deficiencies, we found that speckles (bright x-ray spots) were due to voids with densities 103-104 mm-3 in powder foils and ingot foils. Compared with powder and ingot foils, a polished physical-vapor-deposited (PVD) beryllium foil gave highly uniform beams with no speckles. The PVD process eliminates the internal voids in principle and the PVD foil is the best for coherent x-ray applications

  7. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  8. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and easiest ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of Bone X-ray (Radiography)? ...

  11. Traditional x-ray imaging

    International Nuclear Information System (INIS)

    Hay, G.A.

    1982-01-01

    Methods of imaging x-rays, with particular reference to medicine, are reviewed. The history and nature of x-rays, their production and spectra, contrast, shapes and fine structure, image transducers, including fluorescent screens, radiography, fluoroscopy, and image intensifiers, image detection, perception and enhancement and clinical applications are considered. (U.K.)

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... lowest radiation dose possible while producing the best images for ... organizations continually review and update the technique standards used ...

  17. X-ray pencil beam facility for optics characterization

    Science.gov (United States)

    Krumrey, Michael; Cibik, Levent; Müller, Peter; Bavdaz, Marcos; Wille, Eric; Ackermann, Marcelo; Collon, Maximilien J.

    2010-07-01

    The Physikalisch-Technische Bundesanstalt (PTB) has used synchrotron radiation for the characterization of optics and detectors for astrophysical X-ray telescopes for more than 20 years. At a dedicated beamline at BESSY II, a monochromatic pencil beam is used by ESA and cosine Research since the end of 2005 for the characterization of novel silicon pore optics, currently under development for the International X-ray Observatory (IXO). At this beamline, a photon energy of 2.8 keV is selected by a Si channel-cut monochromator. Two apertures at distances of 12.2 m and 30.5 m from the dipole source form a pencil beam with a typical diameter of 100 μm and a divergence below 1". The optics to be investigated is placed in a vacuum chamber on a hexapod, the angular positioning is controlled by means of autocollimators to below 1". The reflected beam is registered at 5 m distance from the optics with a CCD-based camera system. This contribution presents design and performance of the upgrade of this beamline to cope with the updated design for IXO. The distance between optics and detector can now be 20 m. For double reflection from an X-ray Optical Unit (XOU) and incidence angles up to 1.4°, this corresponds to a vertical translation of the camera by 2 m. To achieve high reflectance at this angle even with uncoated silicon, a lower photon energy of 1 keV is available from a pair of W/B4C multilayers. For coated optics, a high energy option can provide a pencil beam of 7.6 keV radiation.

  18. Planetary Protection: X-ray Super-Flares Aid Formation of "Solar Systems"

    Science.gov (United States)

    2005-05-01

    New results from NASA's Chandra X-ray Observatory imply that X-ray super-flares torched the young Solar System. Such flares likely affected the planet-forming disk around the early Sun, and may have enhanced the survival chances of Earth. By focusing on the Orion Nebula almost continuously for 13 days, a team of scientists used Chandra to obtain the deepest X-ray observation ever taken of this or any star cluster. The Orion Nebula is the nearest rich stellar nursery, located just 1,500 light years away. These data provide an unparalleled view of 1400 young stars, 30 of which are prototypes of the early Sun. The scientists discovered that these young suns erupt in enormous flares that dwarf - in energy, size, and frequency -- anything seen from the Sun today. Illustration of Large Flares Illustration of Large Flares "We don't have a time machine to see how the young Sun behaved, but the next best thing is to observe Sun-like stars in Orion," said Scott Wolk of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "We are getting a unique look at stars between one and 10 million years old - a time when planets form." A key result is that the more violent stars produce flares that are a hundred times as energetic as the more docile ones. This difference may specifically affect the fate of planets that are relatively small and rocky, like the Earth. "Big X-ray flares could lead to planetary systems like ours where Earth is a safe distance from the Sun," said Eric Feigelson of Penn State University in University Park, and principal investigator for the international Chandra Orion Ultradeep Project. "Stars with smaller flares, on the other hand, might end up with Earth-like planets plummeting into the star." Animation of X-ray Flares from a Young Sun Animation of X-ray Flares from a "Young Sun" According to recent theoretical work, X-ray flares can create turbulence when they strike planet-forming disks, and this affects the position of rocky planets as they

  19. X-ray diagnostics for TFTR

    International Nuclear Information System (INIS)

    von Goeler, S.; Hill, K.W.; Bitter, M.

    1982-12-01

    A short description of the x-ray diagnostic preparation for the TFTR tokamak is given. The x-ray equipment consists of the limiter x-ray monitoring system, the soft x-ray pulse-height-analysis-system, the soft x-ray imaging system and the x-ray crystal spectrometer. Particular attention is given to the radiation protection of the x-ray systems from the neutron environment

  20. X-ray filter for chest X-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    A description is given of an X-ray filter comprised of a sheet of radiation absorbing material with an opening corresponding to the spine and central portion of the heart. The upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter. This filter will permit an acceptable density level of x-ray exposure for the lungs while allowing a higher level of x-ray exposure for the mediastinum areas of the body. (author)

  1. X-ray filter for chest x-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    Filter for use in medical x-ray apparatus to permit higher intensity x-ray exposure in the heart and mediastinum area while maintaining a normal level of x-ray exposure in other areas of the body, particlarly in the lung area. The filter comprises a sheet of radiation absorbing material having an opening therein, said opening corresponding to the spine and central portion of the heart. Accordingly, the upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter

  2. An Overview of X-Ray Polarimetry of Astronomical Sources

    Directory of Open Access Journals (Sweden)

    Martin C. Weisskopf

    2018-03-01

    Full Text Available We review the history of astronomical X-ray polarimetry based on the author’s perspective, beginning with early sounding-rocket experiments by Robert Novick at Columbia University and his team, of which the author was a member. After describing various early techniques for measuring X-ray polarization, we discuss the polarimeter aboard the Orbiting Solar Observatory 8 (OSO-8 and its scientific results. Next, we describe the X-ray polarimeter to have flown aboard the ill-fated original Spectrum-X mission, which provided important lessons on polarimeter design, systematic effects, and the programmatics of a shared focal plane. We conclude with a description of the Imaging X-ray Polarimetry Explorer (IXPE and its prospective scientific return. IXPE, a partnership between NASA and ASI, has been selected as a NASA Astrophysics Small Explorers Mission and is currently scheduled to launch in April of 2021.

  3. Monolithic CMOS imaging x-ray spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  4. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  5. X-Ray and optical study of low core density globular clusters NGC6144 and E3

    NARCIS (Netherlands)

    Lan, S.-H.; Kong, A.K.H.; Verbunt, F.W.M.; Lewin, W.H.G.; Bassa, C.G.; Anderson, S.F.; Pooley, D.

    2010-01-01

    We report on the Chandra X-ray Observatory and Hubble Space Telescope (HST) observations of two low coredensity globular clusters, NGC6144 and E3. By comparing the number of X-ray sources inside the half-mass radius to those outside, we found six X-ray sources within the half-mass radius of NGC6144,

  6. Chandra and RXTE studies of the X-ray/gamma-ray millisecond pulsar PSR J0218+4232

    NARCIS (Netherlands)

    Kuiper, L.; Hermsen, W.; Stappers, B.W.

    2004-01-01

    We report on high-resolution spatial and timing observations of the millisecond pulsar PSR J0218+4232 performed with the Chandra X-ray Observatory (CXO) and the Rossi X-ray Timing Explorer (RXTE). With these observations we were able to study: (a) the possible spatial extent at X-ray energies of the

  7. X-ray film calibration

    International Nuclear Information System (INIS)

    Stone, G.F.; Dittmore, C.H.; Henke, B.L.

    1986-01-01

    This paper discusses the use of silver halide x-ray films for imaging and spectroscopy which is limited by the range of intensities that can be recorded and densitometered. Using the manufacturers processing techniques can result in 10 2-3 range in intensity recorded over 0-5 density range. By modifying the chemistry and processing times, ranges of 10 5-6 can be recorded in the same density range. The authors report on x-ray film calibration work and dynamic range improvements. Changes to the processing chemistry and the resulting changes in dynamic range and x-ray sensitivity are discussed

  8. Pixel detectors for x-ray imaging spectroscopy in space

    International Nuclear Information System (INIS)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L

    2009-01-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  9. Pixel detectors for x-ray imaging spectroscopy in space

    Science.gov (United States)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  10. Pixel detectors for x-ray imaging spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, D-81739 Munich (Germany)], E-mail: jft@hll.mpg.de

    2009-03-15

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  11. Upsurge of X-ray astronomy 230-

    International Nuclear Information System (INIS)

    Hudec, D.R.

    1978-01-01

    Instruments are described used for X-ray astronomy, namely X-ray detectors and X-ray telescopes. Unlike telescopes, the detectors do not comprise X-ray optics. A survey is given of the results obtained in solar and stellar X-ray astronomy and hypotheses are submitted on the origin of X radiation in the interstellar space. (J.B.)

  12. Lightweight and High-Resolution Single Crystal Silicon Optics for X-ray Astronomy

    Science.gov (United States)

    Zhang, William W.; Biskach, Michael P.; Chan, Kai-Wing; Mazzarella, James R.; McClelland, Ryan S.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2016-01-01

    We describe an approach to building mirror assemblies for next generation X-ray telescopes. It incorporates knowledge and lessons learned from building existing telescopes, including Chandra, XMM-Newton, Suzaku, and NuSTAR, as well as from our direct experience of the last 15 years developing mirror technology for the Constellation-X and International X-ray Observatory mission concepts. This approach combines single crystal silicon and precision polishing, thus has the potential of achieving the highest possible angular resolution with the least possible mass. Moreover, it is simple, consisting of several technical elements that can be developed independently in parallel. Lastly, it is highly amenable to mass production, therefore enabling the making of telescopes of very large photon collecting areas.

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is taken ... and/or your insurance provider to get a better understanding of the possible charges you will incur. ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is repeated. Two or three images (from different angles) will typically be taken. An x-ray may ... RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions or for ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... no special preparation. Tell your doctor and the technologist if there is any possibility you are pregnant. ... should always inform their physician and x-ray technologist if there is any possibility that they are ...

  16. X-ray guided biopsy

    International Nuclear Information System (INIS)

    Casanova, R.; Lezana, A.H.; Pedrosa, C.S.

    1980-01-01

    Fine needle aspiration biopsy (FNAB) is now a routine procedure in many X-ray Departments. This paper presents the authors' experience with this technique in chest, abdominal and skeletal lesions. (Auth.)

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Radiography) - Bone Bone x-ray uses a very small dose of ionizing radiation to produce pictures of ... exposing a part of the body to a small dose of ionizing radiation to produce pictures of ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  19. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic dental radiography is described in detail. It comprises an electron gun having an elongated tubular target carrier extending into the patient's mouth. The carrier supports an inclined target for direction of an X-ray pattern towards a film positioned externally of the patient's mouth. Image definition is improved by a focusing anode which focuses the electron beam into a sharp spot (0.05 to 0.10 mm diameter) on the target. The potential on the focusing anode is adjustable to vary the size of the spot. An X-ray transmitting ceramic (oxides of Be, Al and Si) window is positioned adjacent to the front face of the target. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  1. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... technologist, an individual specially trained to perform radiology examinations, positions the patient on the x-ray table ... bone is forming), for comparison purposes. When the examination is complete, you may be asked to wait ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... in a known abnormality can be monitored over time. Follow-up examinations are sometimes the best way ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays ... information you were looking for? Yes No Please type your comment or suggestion into the following text ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. top of page What does ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects in soft ... frequently compared to current x-ray images for diagnosis and disease management. top of page How is ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg ( ... Image Gallery Radiological technologist preparing to take an arm x-ray on a ... Images related ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ... radiation oncology provider in your community, you can search the ACR-accredited facilities database . This website does ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in varying degrees. Dense ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray machine is a compact apparatus that can be taken to the patient in a hospital ... so that any change in a known abnormality can be monitored over time. Follow-up examinations are ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? A bone x-ray examination itself ... available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... will analyze the images and send a signed report to your primary care or referring physician , who ... Medicine Radiation Safety How to Read Your Radiology Report Images related to X-ray (Radiography) - Bone Sponsored ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones ... x-rays involves exposing a part of the body to a small dose of ionizing radiation to ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to X-ray (Radiography) - Bone Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in metabolic ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... imaged. When necessary, sandbags, pillows or other positioning devices will be used to help you maintain the ... here Images × Image Gallery Radiological technologist preparing to take an arm x-ray on a patient. View ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  3. Flash x-ray cinematography

    International Nuclear Information System (INIS)

    Stein, W.E.

    1976-01-01

    Experiments intended to provide an overview of the potential capabilities and limitations of flash x-ray cinematography as a diagnostic technique for a Fast Reactor Safety Test Facility are described. The results provide estimates of the x-ray pulse intensity required to obtain adequate radiographs of an array of fuel pins in a typical reactor configuration. An estimate of the upper limit on the pulse duration imposed by the reactor background radiation was also determined. X-ray cinematography has been demonstrated at a repetition rate limited only by the recording equipment on hand at the time of these measurements. These preliminary results indicate that flash x-ray cinematography of the motion of fuel in a Fast Reactor Test Facility is technically feasible

  4. X-ray screening materials

    International Nuclear Information System (INIS)

    Wardley, R.B.

    1981-01-01

    This invention relates to x-ray screening materials and especially to materials in sheet form for use in the production of, for example, protective clothing such as aprons and lower back shields, curtains, mobile screens and suspended shields. The invention is based on the observation that x-ray screening materials in sheet form having greater flexiblity than the hitherto known x-ray screening materials of the same x-ray absorber content can be produced if, instead of using a single sheet of filled sheet material of increased thickness, one uses a plurality of sheets of lesser thickness together forming a laminar material of the desired thickness and one bonds the individual sheets together at their edges and, optionally, at other spaced apart points away from the edges thereby allowing one sheet to move relative to another. (U.K.)

  5. X-ray luminescent glasses

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    X-ray luminescent glasses comprising a divalent cation such as an alkaline earth metal or other divalent cations such as pb, cd, or zn, and certain rare earth metaphosphates are suitable as vitreous, x-ray phosphors or x-ray luminescent glass fibers in an x-ray intensifying screen. The glasses have the composition n(Mo X p2o5)((1-y)tb2o3 X yce2o3 X 3p2o5) wherein N is greater than zero but less than or equal to 16, M is an alkaline earth metal or other divalent cation such as pb, cd, or zn, and Y is greater than or equal to zero but less than one

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray uses a very small dose of ionizing radiation to produce pictures of any bone in the ... of the body to a small dose of ionizing radiation to produce pictures of the inside of the ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... examination may also be necessary so that any change in a known abnormality can be monitored over ...

  8. Miniature x-ray source

    Science.gov (United States)

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  9. Duodenal X-ray diagnostics

    International Nuclear Information System (INIS)

    Scheppach, W.

    1982-01-01

    The publication provides an overview of duodenal X-ray diagnostics with the aid of barium meals in 1362 patients. The introducing paragraphs deal with the topographic anatomy of the region and the methodics of X-ray investigation. The chapter entitled ''processes at the duodenum itself'' describes mainly ulcers, diverticula, congenital anomalies, tumors and inflammations. The neighbourhood processes comprise in the first place diseases having their origin at the pancreas and bile ducts. As a conclusion, endoscopic rectograde cholangio-pancreaticography and percutaneous transhepatic cholangiography are pointed out as advanced X-ray investigation methods. In the annex of X-ray images some of the described phenomena are shown in exemplary manner. (orig./MG) [de

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ... in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the oldest and most frequently used form of medical imaging. A bone x-ray makes images of any ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... carefully aimed at the part of the body being examined, an x-ray machine produces a small ... the table in the area of the body being imaged. When necessary, sandbags, pillows or other positioning ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. ... appliances, eye glasses and any metal objects or clothing that might interfere with the x-ray images. ...

  17. Magnetic x-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Paul G [Computer-Aided Engineering Center, University of Wisconsin, Madison, WI 53706 (United States); Isaacs, Eric D [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2006-08-07

    Magnetic x-ray microdiffraction uses the structural specificity of x-ray diffraction to probe complex magnetic structures at the length scales relevant to physical phenomena including domain dynamics and phase transitions. Conventional magnetic crystallography techniques such as neutron or x-ray diffraction lack this spatial resolution. The combination of both reciprocal space and real space resolution with a rich magnetic cross section allows new microscopy techniques to be developed and applied to magnetism at the scale of single domains. Potential applications include a wide range of magnetic problems in nanomagnetism, the interaction of strain, polarization and magnetization in complex oxides and spatially resolved studies of magnetic phase transitions. We present the physical basis for x-ray microdiffraction and magnetic scattering processes, review microdiffraction domain imaging techniques in antiferromagnetic and ferromagnetic materials and discuss potential directions for studies. (topical review)

  18. Electromechanical x-ray generator

    Science.gov (United States)

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  19. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  20. X-ray tube target

    International Nuclear Information System (INIS)

    Weber, R.G.

    1980-01-01

    A target with an improved heat emissive surface for use in a rotating anode type x-ray tube is described. The target consists of a body having a first surface portion made of x-ray emissive material and a second surface portion made of a heat emissive material comprising at least one of hafnium boride, hafnium oxide, hafnium nitride, hafnium silicide, and hafnium aluminide. (U.K.)

  1. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  2. X-ray data processing

    OpenAIRE

    Powell, Harold R.

    2017-01-01

    The method of molecular structure determination by X-ray crystallography is a little over a century old. The history is described briefly, along with developments in X-ray sources and detectors. The fundamental processes involved in measuring diffraction patterns on area detectors, i.e. autoindexing, refining crystal and detector parameters, integrating the reflections themselves and putting the resultant measurements on to a common scale are discussed, with particular reference to the most c...

  3. Low energy (soft) x rays

    International Nuclear Information System (INIS)

    Hoshi, Masaharu; Antoku, Shigetoshi; Russell, W.J.; Miller, R.C.; Nakamura, Nori; Mizuno, Masayoshi; Nishio, Shoji.

    1987-05-01

    Dosimetry of low-energy (soft) X rays produced by the SOFTEX Model CMBW-2 was performed using Nuclear Associates Type 30 - 330 PTW, Exradin Type A2, and Shonka-Wyckoff ionization chambers with a Keithley Model 602 electrometer. Thermoluminescent (BeO chip) dosimeters were used with a Harshaw Detector 2000-A and Picoammeter-B readout system. Beam quality measurements were made using aluminum absorbers; exposure rates were assessed by the current of the X-ray tube and by exposure times. Dose distributions were established, and the average factors for non-uniformity were calculated. The means of obtaining accurate absorbed and exposed doses using these methods are discussed. Survival of V79 cells was assessed by irradiating them with soft X rays, 200 kVp X rays, and 60 Co gamma rays. The relative biological effectiveness (RBE) values for soft X rays with 0, 0.2, 0.7 mm added thicknesses of aluminum were 1.6, which were compared to 60 Co. The RBE of 200 kVp X rays relative to 60 Co was 1.3. Results of this study are available for reference in future RERF studies of cell survival. (author)

  4. Time estimate (topening + tclosing) of shutter of an X-ray equipment using a digital chronometer

    International Nuclear Information System (INIS)

    Quaresma, D.S.; Oliveira, P.H.T.M.; Gallo, V.F.M.; Jordao, B.O.; Carvalho, R.J.; Cardoso, R.S.; Peixoto, J.G.P.

    2014-01-01

    In this work the measurement of time t opening + t closing opening and closing the shutter of Pantak HF160 X-ray equipment was performed. It is understood by the shutter device responsible for allowing or not the flow of X-rays that are produced by the X-ray tube through the orifice of a shield. To estimate the running time for a digital chronometer calibrated in the Time Service Division (DSHO) National Observatory (ON) was used. (author)

  5. Medical X-Rays

    Science.gov (United States)

    ... do as Parent? and Frequently Asked Questions pages Health Physics Society — Radiation Safety Information for the Public International ... and Risks in Decision Making [proceedings published in Health Physics , 101(5), 497–629 (2011)], communicating about risks ...

  6. Center for X-Ray Optics, 1992

    International Nuclear Information System (INIS)

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors

  7. Assembly of NASA's Most Powerful X-Ray Telescope Completed

    Science.gov (United States)

    1998-03-01

    Assembly of the world's most powerful X-ray telescope, NASA's Advanced X-ray Astrophysics Facility, was completed last week with the installation of its power-generating twin solar panels. The observatory is scheduled for launch aboard Space Shuttle mission STS-93, in December 1998. The last major components of the observatory were bolted and pinned into place March 4 at TRW Space & Electronics Group in Redondo Beach, Calif., and pre-launch testing of the fully assembled observatory began March 7. "Completion of the observatory's assembly process is a big step forward toward launch scheduled for the end of this year," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "With all the major components in place, we are now concentrating on a thorough pre-launch checkout of the observatory." "We're delighted to reach this major milestone for the program," said Craig Staresinich, TRW's Advanced X-ray Astrophysics Facility program manager. "The entire observatory team has worked hard to get to this point and will continue an exhaustive test program to ensure mission success. We're looking forward to delivering a truly magnificent new space capability to NASA later this summer." The first pre-launch test of the Advanced X-ray Astrophysics Facility was an acoustic test, which simulated the sound pressure environment inside the Space Shuttle cargo bay during launch. A thorough electrical checkout before and after the acoustic test verifies that the observatory and its science instruments can withstand the extreme sound levels and vibrations that accompany launch. "With 10 times the resolution and 50-100 times the sensitivity of any previous X-ray telescope, this observatory will provide us with a new perspective of our universe," said the project's chief scientist, Dr. Martin Weisskopf of Marshall Center. "We'll be able to study sources of X-rays throughout the universe, like colliding galaxies and black

  8. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula

    Science.gov (United States)

    Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.

    2000-01-01

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  9. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula.

    Science.gov (United States)

    Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell

    2000-06-20

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  10. A Micromegas-based low-background x-ray detector coupled to a slumped-glass telescope for axion research

    DEFF Research Database (Denmark)

    Aznar, F.; Castel, J.; Christensen, F. E.

    2015-01-01

    We report on the design, construction and operation of a low background x-ray detection line composed of a shielded Micromegas detector of the microbulk technology. The detector is made from radiopure materials and is placed at the focal point of a ~ 5 cm diameter, 1.5 m focal-length, cone......-approximation Wolter I x-ray telescope (XRT) assembled from thermally-formed (or "slumped") glass substrates deposited with multilayer coatings. The system has been conceived as a technological pathfinder for the future International Axion Observatory (IAXO), as it combines two of the techniques (optic and detector...

  11. A survey on coordinate metrology using dimensional X-ray CT

    International Nuclear Information System (INIS)

    Matsuzaki, Kazuya

    2016-01-01

    X-ray computed tomography (X-ray CT) has been occupying indispensable position in geometrical and dimensional measurements in industry, which is capable of measuring both external and internal dimensions of industrial products. Since dimensional X-ray CT has problems about ensuring traceability and estimating uncertainty, requirement of developing measurement standard for dimensional X-ray CT is increasing. Some of national metrology institutes (NMIs) including NMIJ have been working on developing measurement standard. In this report, the background of coordinate metrology using dimensional X-ray CT is reviewed. Then, measurement error sources are discussed. Finally, the plan to develop high accuracy dimensional X-ray CT is presented. (author)

  12. A hard X-ray nanoprobe beamline for nanoscale microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Winarski, Robert P., E-mail: winarski@anl.gov; Holt, Martin V. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Rose, Volker [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Maser, Jörg [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States)

    2012-11-01

    The Hard X-ray Nanoprobe Beamline is a precision platform for scanning probe and full-field microscopy with 3–30 keV X-rays. A combination of high-stability X-ray optics and precision motion sensing and control enables detailed studies of the internal features of samples with resolutions approaching 30 nm. The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.

  13. Results of the first simultaneous X-ray, optical, and radio campaign on the blazar PKS 1622-297

    NARCIS (Netherlands)

    Meyer, Angela Osterman; Miller, H. Richard; Marshall, Kevin; Ryle, Wesley T.; Aller, Hugh; Aller, Margo; McFarland, John P.; Pollock, Joseph T.; Reichart, Daniel E.; Crain, J. Adam; Ivarsen, Kevin M.; LaCluyze, Aaron P.; Nysewander, Melissa C.

    Coordinated X-ray, optical, and radio observations of the blazar PKS 1622-297 were obtained during a three-week campaign in 2006 using the Rossi X-Ray Timing Explorer (RXTE), the University of Michigan Radio Astronomy Observatory, and optical telescopes at Cerro Tololo Inter-American Observatory.

  14. X-ray Computed Tomography of Ultralightweight Metals

    National Research Council Canada - National Science Library

    Winter, John

    2001-01-01

    .... To date, the imaging capabilities of x-ray computed tomography have not been generally employed to nondestructively examine the internal structure of the products formed by these various processes...

  15. International Virtual Observatory System for Water Resources Information

    Science.gov (United States)

    Leinenweber, Lewis; Bermudez, Luis

    2013-04-01

    Sharing, accessing, and integrating hydrologic and climatic data have been identified as a critical need for some time. The current state of data portals, standards, technologies, activities, and expertise can be leverage to develop an initial operational capability for a virtual observatory system. This system will allow to link observations data with stream networks and models, and to solve semantic inconsistencies among communities. Prototyping a virtual observatory system is an inter-disciplinary, inter-agency and international endeavor. The Open Geospatial Consortium (OGC) within the OGC Interoperability Program provides the process and expertise to run such collaborative effort. The OGC serves as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The project coordinated by OGC that is advancing an international virtual observatory system for water resources information is called Climatology-Hydrology Information Sharing Pilot, Phase 1 (CHISP-1). It includes observations and forecasts in the U.S. and Canada levering current networks and capabilities. It is designed to support the following use cases: 1) Hydrologic modeling for historical and near-future stream flow and groundwater conditions. Requires the integration of trans-boundary stream flow and groundwater well data, as well as national river networks (US NHD and Canada NHN) from multiple agencies. Emphasis will be on time series data and real-time flood monitoring. 2) Modeling and assessment of nutrient load into the lakes. Requires accessing water-quality data from multiple agencies and integrating with stream flow information for calculating loads. Emphasis on discrete sampled water quality observations, linking those to specific NHD stream reaches and catchments, and additional metadata for sampled data. The key objectives of these use cases are: 1) To link

  16. Future axion searches with the International Axion Observatory (IAXO)

    DEFF Research Database (Denmark)

    Irastorza, I G; Avignone, F T; Cantatore, G

    2013-01-01

    are an increased magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to explain the white dwarf cooling, relic axions......, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics....

  17. Efficiency of the scattered primary radiation as an internal standard in the determination of uranium and thorium in geological materials by X-ray spectrometry

    International Nuclear Information System (INIS)

    Diaz-Guerra, J.P.; Bayon, A.

    1980-01-01

    The efficiency of the scattered primary coherent and incoherent X-radiation of various wavelengths has been studied as a matrix correction in the determination of uranium and thorium in geological materials by X-ray spectrometry. The excitation has been performed with molybdenum and tungsten targets. Results illustrate that the incoherently-scattered Mok βsub(1,3) and Mok βsub(1,2) radiation are, respectively, the optimum reference lines. The particle size influence and the critical thickness of the sample are also considered.(auth.)

  18. Most powerful X-ray telescope marks third anniversary

    Science.gov (United States)

    2002-08-01

    A black hole gobbles up matter in our own Milky Way Galaxy. A hot spot of X-rays pulsates from near Jupiter's poles. An intergalactic web of hot gas, hidden from view since the time galaxies formed, is finally revealed. These scenarios sound like science fiction - but to those familiar with the latest developments in X-ray astronomy, they are just a few of the real-life discoveries made by NASA's Chandra X-ray Observatory during its third year of operation. "Within the last year, Chandra has revealed another series of never-before-seen phenomena in our galaxy and beyond," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "When you combine recent discoveries with the secrets revealed during the observatory's first two years in orbit, it's amazing how much Chandra has told us about the universe in a relatively short period of time." One such discovery was an unprecedented view of a supermassive black hole devouring material in the Milky Way Galaxy - a spectacle witnessed for the first time when Chandra observed a rapid X-ray flare emitted from the direction of the black hole residing at our galaxy's center. In a just few minutes, Sagittarius A, a source of radio emission believed to be associated with the black hole, became 45 times brighter in X-rays, before declining to pre-flare levels a few hours later, offering astronomers a never-before-seen view of the energetic processes surrounding this supermassive black hole. "When we launched the Chandra Observatory, we attempted to explain its amazing capabilities in Earthly terms, such as the fact it can 'see' so well, it's like someone reading the letters of a stop sign 12 miles away," said Chandra Program Manager Tony Lavoie of the Marshall Center. "But now that the observatory has been in orbit for three years, we have unearthly proof of the technological marvel Chandra really is. Not only has it continued to operate smoothly and efficiently, it has

  19. Observational studies of X-ray binary systems

    International Nuclear Information System (INIS)

    Klis, M. van der.

    1983-01-01

    The subject of Chapter 1 is theoretical. The other chapters, Ch. 2 to 6, contain original observational data and efforts towards their interpretation. Of these, Ch. 3, 4 and 5 deal with massive X-ray binaries, Ch. 6 with low-mass systems and Ch. 2 with Cygnus X-3, which we have not yet been able to assign to any of these two classes. The X-ray observations described were made with the COS-B satellite. Work based on UV and optical observations is described in Ch. 5. The UV observations were made with the IUE satellite, the optical observations at several ground-based observatories. (Auth.)

  20. Einstein x-ray observations of cataclysmic variables

    International Nuclear Information System (INIS)

    Mason, K.O.; Cordova, F.A.

    1982-01-01

    Observations with the imaging x-ray detectors on the Einstein Observatory have led to a large increase in the number of low luminosity x-ray sources known to be associated with cataclysmic variable stars (CVs). The high sensitivity of the Einstein instrumentation has permitted study of their short timescale variability and spectra. The data are adding significantly to our knowledge of the accretion process in cataclysmic variables and forcing some revision in our ideas concerning the origin of the optical variability in these stars

  1. Transmission X-ray mirror

    International Nuclear Information System (INIS)

    Lairson, B.M.; Bilderback, D.H.

    1982-01-01

    Transmission X-ray mirrors have been made from 400 A to 10 000 A thick soap films and have been shown to have novel properties. Using grazing angles of incidence, low energy X-rays were reflected from the front surface while more energetic X-rays were transmitted through the mirror largely unattenuated. A wide bandpass monochromator was made from a silicon carbide mirror followed by a soap film transmission mirror and operated in the white beam at the cornell High Energy Synchrotron Source (CHESS). Bandpasses of ΔE/E=12% to 18% were achieved at 13 keV with peak efficiencies estimated to be between 55% and 75%, respectively. Several wide angle scattering photographs of stretched polyethylene and a phospholipid were obtained in 10 s using an 18% bandpass. (orig.)

  2. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral X-ray apparatus which reduces the number of exposures necessary to obtain panoramic dental radiographs is described in detail. It comprises an electron gun, a tubular target carrier projecting from the gun along the beam axis and carrying at its distal end a target surrounded by a shield of X-ray opaque material. This shield extends forward and laterally of the target and has surfaces which define a wedge or cone-shaped radiation pattern delimited vertically by the root tips of the patient's teeth. A film holder is located externally of the patient's mouth. A disposable member can fit on the target carrier to depress the patient's tongue out of the radiation pattern and to further shield the roof of the mouth. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  3. Exponential x-ray transform

    International Nuclear Information System (INIS)

    Hazou, I.A.

    1986-01-01

    In emission computed tomography one wants to determine the location and intensity of radiation emitted by sources in the presence of an attenuating medium. If the attenuation is known everywhere and equals a constant α in a convex neighborhood of the support of f, then the problem reduces to that of inverting the exponential x-ray transform P/sub α/. The exponential x-ray transform P/sub μ/ with the attenuation μ variable, is of interest mathematically. For the exponential x-ray transform in two dimensions, it is shown that for a large class of approximate δ functions E, convolution kernels K exist for use in the convolution backprojection algorithm. For the case where the attenuation is constant, exact formulas are derived for calculating the convolution kernels from radial point spread functions. From these an exact inversion formula for the constantly attenuated transform is obtained

  4. X-ray of osteopathies

    International Nuclear Information System (INIS)

    Freyschmidt, J.

    1980-01-01

    Osteoporosis, osteomalcia, fibro-osteoclasia and osteosclerosis are essential reactions to pathologicometabolic processes of the bone. The X-ray film shows precisely which changes have taken place in the bone structure, thus supplying the means for an analysis based on anatomic pathology. These phenomena are discussed in detail, special attention being paid to structural modifications. Attention is also focused on the problems connected with X-ray technology. The value of direct and indirect magnification of the skeleton of the hand for the identification and classification of esteopathies is explained. Phenomena observed in X-ray films, such as enosteal erosion, intracortical longitudinal stripes or tunnelisation, as well as subperiostal absorption, can be of pathognomonic importance for certain osteopathies. (orig.) [de

  5. Solar X-ray bursts

    International Nuclear Information System (INIS)

    Urnov, A.M.

    1980-01-01

    In the popular form the consideration is given to the modern state tasks and results of X-ray spectrometry of solar bursts. The operation of X-ray spectroheliograph is described. Results of spectral and polarization measurings of X-ray radiation of one powerful solar burst are presented. The conclusion has been drawn that in the process of burst development three characteristic stages may be distingwished: 1) the initial phase; just in this period processes which lead to observed consequences-electromagnetic and corpuscular radiation are born; 2) the impulse phase, or the phase of maximum, is characterised by sharp increase of radiation flux. During this phase the main energy content emanates and some volumes of plasma warm up to high temperatures; 3) the phase of burst damping, during which plasma cools and reverts to the initial condition

  6. X-ray fluorescence holography.

    Science.gov (United States)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-07

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy.

  7. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu Wen; Matsushita, Tomohiro

    2012-01-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. (topical review)

  8. Biometric identification using knee X-rays.

    Science.gov (United States)

    Shamir, Lior; Ling, Shari; Rahimi, Salim; Ferrucci, Luigi; Goldberg, Ilya G

    2009-01-01

    Identification of people often makes use of unique features of the face, fingerprints and retina. Beyond this, a similar identifying process can be applied to internal parts of the body that are not visible to the unaided eye. Here we show that knee X-rays can be used for the identification of individual persons. The image analysis method is based on the wnd-charm algorithm, which has been found effective for the diagnosis of clinical conditions of knee joints. Experimental results show that the rank-10 identification accuracy using a dataset of 425 individuals is ~56%, and the rank-1 accuracy is ~34%. The dataset contained knee X-rays taken several years apart from each other, showing that the identifiable features correspond to specific persons, rather than the present clinical condition of the joint.

  9. Overutilization of x-rays

    International Nuclear Information System (INIS)

    Abrams, H.L.

    1979-01-01

    In this article on the overutilization of x-rays the author defines the term overutilization as excessive irradiation per unit of diagnostic information, therapeutic impact, or health outcome. Three main factors are described which lead to overutilization of x-rays: excessive radiation per film; excessive films per examination; and excessive examinations per patient. Topics discussed which influence the excessive examinations per patient are: the physician's lack of knowledge; undue dependence; lack of screening by radiologists; the physician's need for action and certainty; patient demand; reimbursement policies; institutional requirements; preventive medicine; defensive medicine; and the practice of radiology by nonradiologists

  10. Multichannel X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Khabakhpashev, A

    1980-10-01

    A typical design is discussed of multiwire proportional counters and their characteristic feature is explained, ie., the possibility of showing one or two coordinates of the X-ray quantum absorption site. The advantages of such instruments are listed, such as increased sensitivity of determination, the possibility of recording radiations of a different intensity, the possibility of on-line data processing and of the digital display of results. The fields of application include X-ray structural analysis in solid state physics, crystallography, molecular biology, astronomy, materials testing, and medicine.

  11. Semiconductor X-ray spectrometers

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1978-02-01

    An outline is given of recent developments in particle and photon induced x-ray fluorescence (XRF) analysis. Following a brief description of the basic mechanism of semiconductor detector operation a comparison is made between semiconductor detectors, scintillators and gas filled proportional devices. Detector fabrication and cryostat design are described in more detail and the effects of various device parameters on system performance, such as energy resolution, count rate capability, efficiency, microphony, etc. are discussed. The main applications of these detectors in x-ray fluorescence analysis, electron microprobe analysis, medical and pollution studies are reviewed

  12. Portable X-Ray Device

    Science.gov (United States)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  13. X-ray tube targets

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    In rotary targets for X-ray tubes warping is a problem which causes X-ray deficiency. A rotary target is described in which warping is reduced by using alloys of molybdenum with 0.05 to 10% iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide or mixture thereof. Suitable mixtures are 0.5 to 10% of tantalum, niobium or hafnium with from 0.5 to 5% yttrium oxide, or 0.05 to 0.3% of cobalt or silicon. Optionally 0.1 to 5% by weight of additional material may be alloyed with the molybdenum, such as tantalum or hafnium carbides. (author)

  14. X-ray data processing.

    Science.gov (United States)

    Powell, Harold R

    2017-10-31

    The method of molecular structure determination by X-ray crystallography is a little over a century old. The history is described briefly, along with developments in X-ray sources and detectors. The fundamental processes involved in measuring diffraction patterns on area detectors, i.e. autoindexing, refining crystal and detector parameters, integrating the reflections themselves and putting the resultant measurements on to a common scale are discussed, with particular reference to the most commonly used software in the field. © 2017 The Author(s).

  15. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Solar flares; X-ray detectors; X-ray line emission and continuum; break energy; microflares. Abstract. Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in ...

  16. Chest X-Ray (Chest Radiography)

    Science.gov (United States)

    ... Resources Professions Site Index A-Z X-ray (Radiography) - Chest Chest x-ray uses a very small dose ... Radiography? What is a Chest X-ray (Chest Radiography)? The chest x-ray is the most commonly performed diagnostic ...

  17. X-Ray Exam: Cervical Spine

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Cervical Spine KidsHealth / For Parents / X-Ray ... MRI): Lumbar Spine Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  18. X-Ray Exam: Neck (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Neck KidsHealth / For Parents / X-Ray Exam: ... Neck Enlarged Adenoids Croup Sinusitis Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  19. Illumination system for X-ray lithography

    International Nuclear Information System (INIS)

    Buckley, W.D.

    1989-01-01

    An X-ray lithography system is described, comprising: a point source of X-Ray radiation; a wafer plane disposed in spaced relation to the point source of X-Ray radiation; a mask disposed between the point source of X-Ray radiation and the wafer plane whereby X-Ray radiation from the point source of X-ray radiation passes through the mask to the water plane; and X-Ray absorbent means mounted between the point source of X-Ray radiation and the wafer plane, the X-Ray absorbent means being of quadratically absorption from maximum absorption at the center to minimum absorption at the edge so as to have a radial absorption gradient profile to compensate for radial flux variation of the X-Ray radiation

  20. X-ray emission from stars: a sharper and deeper view of our galaxy

    International Nuclear Information System (INIS)

    Vaiana, G.S.

    1990-01-01

    This article focusses on an aspect of the Einstein Observatory x-ray stellar results which will become more completely addressed as we enter the second decade of the Einstein data reduction, as new observations finally become available, and as new satellites are being planned for the future, namely x-ray stars as a subclass of all galactic and extragalactic x-ray sources. The aim is to produce a reference stellar x-ray list. Much has been learnt about the totality of the data set and the stellar data in particular. (author)

  1. X-ray hot plasma diagnostics

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1984-11-01

    X-ray plasma emission study is powerful diagnostic tool of hot plasmas. In this review article the main techniques of X-ray plasma emission measurement are shortly presented: X-ray spectrometry using absorbent filters, crystal and grating spectrometers, imaging techniques using pinhole cameras, X-ray microscopes and Fresnel zone plate cameras, X-ray plasma emission calorimetry. Advances in these techniques with examples for different hot plasma devices are also presentes. (author)

  2. X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of Literature on x-ray fluorescence spectrometry starts with a list of conference proceedings on the subject, organised by the Philips organisation at regular intervals in various European countries. It is followed by a list of bulletins. The bibliography is subdivided according to spectra, equipment, applications and absorption analysis

  3. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ...

  5. X-ray Sensitive Material

    Science.gov (United States)

    2015-12-01

    TM 8772 5 Literature reports on BiI3/nylon composites used X-ray sources with a Mo target (Reference 18) or magnesium target (Reference 19). However...1981. Pp. D-155 to D-160. 22. G. Pretzsch, B. Dorschel, and T. Schonmuth. IEEE Transactions on Electrical Insulation, Vol. EI -21, No.3, June 1986

  6. X-ray system analysis

    International Nuclear Information System (INIS)

    Shapiro, J.S.

    1985-01-01

    An X-ray system tester for measuring anode voltage, cathode voltage, anode current, filament current and line voltage in an X-ray system has a selector which couples one of these analog signals or one of a plurality of processing control signals entered by an operator from a control panel to a digitizing section selectively in accordance with control signals provided to the selector by a computing section. The digitizing section converts the selected signal into a train of pulses having a frequency proportional to the value of the selected signal. These pulses are counted, the counts being used by the computing section to determine the value of the selected signal. This computed value is stored in a computing memory section of the computing section. The computing section is adapted to store a plurality of the sets of signals produced during a corresponding sequence of operational intervals of the X-ray system and determines a measure of the deviation of any selected one of the stored electrical signals over the sequence of operating intervals. Each signal produced during the sequential operational intervals can be recalled to aid analysis of the operation of the X-ray system. (author)

  7. X-ray image coding

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at decreasing the effect of stray radiation in X-ray images. This is achieved by putting a plate between source and object with parallel zones of alternating high and low absorption coefficients for X-radiation. The image is scanned with the help of electronic circuits which decode the signal space coded by the plate, thus removing the stray radiation

  8. X-ray simulation development

    International Nuclear Information System (INIS)

    Posey, L.D.; Tollefsrud, P.B.; Woodall, H.W.; McDaniel, D.H.; Allred, R.E.

    1975-01-01

    Design modifications are discussed for an electron beam accelerator used as a Bremsstrahlung x-ray source. The primary goal of the program, to obtain a reliable 5 cal/gm exposure capability, can be accomplished with beam compression by an external magnetic guide field. Initial operating characteristics and performance improvements are presented

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit of an accurate ...

  10. X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ray, N.B.

    1977-01-01

    The principle, instrument and procedure of X-ray fluorescence spectrometry are described. It is a rapid, simple and sensitive method for the trace analysis of elements from sodium to uranium in powder, liquid or metal samples. (M.G.B.)

  11. X-rays from stars

    Science.gov (United States)

    Güdel, Manuel

    2004-07-01

    Spectroscopic studies available from Chandra and XMM-Newton play a pivotal part in the understanding of the physical processes in stellar (magnetic and non-magnetic) atmospheres. It is now routinely possible to derive densities and to study the influence of ultraviolet radiation fields, both of which can be used to infer the geometry of the radiating sources. Line profiles provide important information on bulk mass motions and attenuation by neutral matter, e.g. in stellar winds. The increased sensitivity has revealed new types of X-ray sources in systems that were thought to be unlikely places for X-rays: flaring brown dwarfs, including rather old, non-accreting objects, and terminal shocks in jets of young stars are important examples. New clues concerning the role of stellar high-energy processes in the modification of the stellar environment (ionization, spallation, etc.) contribute significantly to our understanding of the "astro-ecology" in forming planetary systems. Technological limitations are evident. The spectral resolution has not reached the level where bulk mass motions in cool stars become easily measurable. Higher resolution would also be important to perform X-ray "Doppler imaging" in order to reconstruct the 3-D distribution of the X-ray sources around a rotating star. Higher sensitivity will be required to perform high-resolution spectroscopy of weak sources such as brown dwarfs or embedded pre-main-sequence sources. A new generation of satellites such as Constellation-X or XEUS should pursue these goals.

  12. Chandra's X-ray Vision

    Indian Academy of Sciences (India)

    1999-07-23

    Jul 23, 1999 ... CXO is 13.8 metres long and its solar arrays have a wingspan of. 19.5 metres as shown in ... the Universe (for example, coronae of stars, matter ejected from .... The telescope system and the scientific instruments were put through ..... solve the puzzle about the origin of cosmic X-ray background- one of the ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... An x-ray (radiograph) is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  14. Stellar X-ray sources

    International Nuclear Information System (INIS)

    Katz, J.I.; Washington Univ., St. Louis, MO

    1988-01-01

    I Review some of the salient accomplishments of X-rap studies of compact objects. Progress in this field has closely followed the improvement of observational methods, particularly in angular resolution and duration of exposure. Luminous compact X-ray sources are accreting neutron stars or black holes. Accreting neutron stars may have characteristic temporal signatures, but the only way to establish that an X-ray source is a black hole is to measure its mass. A rough phenomenological theory is succesful, but the transport of angular momentum in accretion flows is not onderstood. A number of interesting complications have been observed, including precessing accretion discs, X-ray bursts, and the acceleration of jets in SS433. Many puzzles remain unsolved, including the excitation of disc precession, the nature of the enigmatic A- and gamma-ray source Cyg X-3, the mechanism by which slowly spinning accreting neutron stars lose angular momentum, and the superabundance of X-ray sources in globular clusters. 41 refs.; 5 figs

  15. X-rays and magnetism

    International Nuclear Information System (INIS)

    Fischer, Peter; Ohldag, Hendrik

    2015-01-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques. (report on progress)

  16. X-ray examination apparatus

    International Nuclear Information System (INIS)

    Bernstein, S.; Griswa, P.J.; Halter, P. Jr.; Kidd, H.J.

    1980-01-01

    Apparatus for x-ray cardiovascular examination and which can also be used for general purpose examination is described. An advantage of the system is that there is no mechanical connection between the image intensifier and source to interfere with the medical examiner or emergency procedures. (U.K.)

  17. X-ray tube transformer

    International Nuclear Information System (INIS)

    1980-01-01

    An X-ray generator is described which comprises a transmission line transformer including an electrical conductor with a cavity and a second electrical conductor including helical windings disposed along a longitudinal axis within the cavity of the first conductor. The windings have a pitch which varies per unit length along the axis. There is dielectric material in the cavity for insulation and to couple electromagnetically the two conductors in response to an electric current flowing through the conductors, which have an impedance between them; this varies with distance along the axis of the helix of the second conductor. An X-ray tube is disposed along the longitudinal axis within the cavity, for radiating X-rays. The invention increases the voltage of applied voltage pulses at the remote tube-head with a transformer formed by using a spiral delay line geometry to give a tapered-impedance coaxial high voltage multiplier for pulse voltage operation. This transformer is smaller and lighter than previous designs for the same high peak voltage and power ratings. This is important because the penetration capabilities of Flash X-ray equipment increase with voltage, particularly in heavy materials such as steel. (U.K.)

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of bone cancer . locate foreign objects in soft tissues around or in bones. top of page How should I prepare? Most ... absorb the x-rays in varying degrees. Dense bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... the equipment look like? How does the procedure work? How is the procedure ... diagnose and treat medical conditions. Imaging with x-rays involves exposing a part ...

  20. Proton exciting X ray analysis

    International Nuclear Information System (INIS)

    Ma Xinpei

    1986-04-01

    The analyzing capability of proton exciting X ray analysis for different elements in organisms was discussed, and dealing with examples of trace element analysis in the human body and animal organisms, such as blood serum, urine, and hair. The sensitivity, accuracy, and capability of multielement analysis were discussed. Its strong points for the trace element analysis in biomedicine were explained

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and easiest ... cancer from excessive exposure to radiation. However, the benefit of an accurate diagnosis far outweighs the risk. ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray ( ...

  3. X-ray absorption holography

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Lausi, A.; Bussetto, E.; Kub, Jiří; Savoia, A.

    2002-01-01

    Roč. 88, č. 18 (2002), s. 185503-1 - 185503-3 ISSN 0031-9007 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010921 Keywords : x-ray holography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.323, year: 2002

  4. Conceptual Design of the International Axion Observatory (IAXO)

    CERN Document Server

    Armengaud, E; Betz, M; Brax, P; Brun, P; Cantatore, G; Carmona, J M; Carosi, G P; Caspers, F; Caspi, S; Cetin, S A; Chelouche, D; Christensen, F E; Dael, A; Dafni, T; Davenport, M; Derbin, A V; Desch, K; Diago, A; Döbrich, B; Dratchnev, I; Dudarev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Galán, J; García, J A; Garza, J G; Geralis, T; Gimeno, B; Giomataris, I; Gninenko, S; Gómez, H; González-Díaz, D; Guendelman, E; Hailey, C J; Hiramatsu, T; Hoffmann, D H H; Horns, D; Iguaz, F J; Irastorza, I G; Isern, J; Imai, K; Jakobsen, A C; Jaeckel, J; Jakovčić, K; Kaminski, J; Kawasaki, M; Karuza, M; Krčmar, M; Kousouris, K; Krieger, C; Lakić, B; Limousin, O; Lindner, A; Liolios, A; Luzón, G; Matsuki, S; Muratova, V N; Nones, C; Ortega, I; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Redondo, J; Ringwald, A; Russenschuck, S; Ruz, J; Saikawa, K; Savvidis, I; Sekiguchi, T; Semertzidis, Y K; Shilon, I; Sikivie, P; Silva, H; Kate, H ten; Tomas, A; Troitsky, S; Vafeiadis, T; Bibber, K van; Vedrine, P; Villar, J A; Vogel, J K; Walckiers, L; Weltman, A; Wester, W; Yildiz, S C; Zioutas, K

    2014-01-01

    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{ae}$ with sensitivity $-$for the first time$-$ to values of $g_{ae}$ not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, w...

  5. Forming mandrels for making lightweight x-ray mirrors

    Science.gov (United States)

    Blake, Peter N.; Saha, Timo; Zhang, William W.; O'Dell, Stephen; Kester, Thomas; Jones, William

    2011-09-01

    Future x-ray astronomical missions, similar to the proposed International X-ray Observatory (IXO), will utilize replicated mirrors to reduce both mass and production costs. Accurately figured and measured molds (called mandrels) - on which the mirror substrates are thermally formed, replicating the surface of the mandrels - are essential to enable these missions. The Optics Branches of the Goddard Space Flight Center (GSFC) and Marshall Space Flight Center (MSFC) have developed fabrication processes along with metrologies that yield high-precision mandrels; and through the SBIR program, they encourage small businesses to attack parts of the remaining problems. The Goddard full-aperture mandrel polisher (the MPM-500) has been developed to a level where mandrel surfaces match the 1.5 arcsec HPD level allocation in a 5 arcsec telescope program. This paper reviews this current technology and describes a pilot program to design a suite of machine tools and process parameters capable of producing many hundreds of these precision objects. A major challenge is to keep mid-spatial frequency errors below 2 nm rms - a severe specification; but we must also note the factors which work to our advantage: e.g., how the figure departs from a pure cone by only one micron, and how the demanding figure specifications which apply in the axial direction are relaxed by an order of magnitude in the azimuthal. Careful study of other large optical fabrication programs in the light of these challenges and advantages has yielded a realistic plan for the economical production of mandrels that meet program requirements in both surface and quantity.

  6. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  7. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    Science.gov (United States)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  8. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    International Nuclear Information System (INIS)

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-01

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-μm-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation

  9. X-Ray-Scattering Measurements Of Strain In PEEK

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn E.; Chung, Shirley Y.; Yavrouian, Andre H.; Gupta, Amitava

    1988-01-01

    Internal stress relieved by heating above glass-transition temperature. Report describes wide-angle x-ray scattering and differential scanning calorimetry of specimens of poly(etheretherketone) having undergone various thermal treatments. Wide-angle x-ray scattering particularly useful in determining distances between atoms, crystallinity, and related microstructurally generated phenomena, as thermal expansion and strain. Calorimetric measurements aid interpretation of scattering measurements by enabling correlation with thermal effects.

  10. X-Ray semiotics of cranial involvement in endocrine diseases

    International Nuclear Information System (INIS)

    Spuzyak, M.I.; Kramnoj, I.E.; Belaya, L.M.; Tyazhelova, O.V.; Litvinenko, V.M.

    1992-01-01

    The incidence and type of X-ray semeiotics of the skull involvement were studied in 703 patients with endocrine diseases. Craniorgam analysis involved study of the thickness and structure of the vault bones, shape and size of the skull, status of the sutures, internal plate relief, changes of the base of the skull, of the sella turcica first of all, and facial bone. The characteristic X-ray symprom complexes of the involvement of the skull in some endocrine diseases were distinguished

  11. Comparison of VLBI radio core and X-ray flux densities of extragalactic radio sources

    International Nuclear Information System (INIS)

    Bloom, S.D.; Marscher, A.P.

    1990-01-01

    The Einstein Observatory revealed that most quasars, selected in a variety of ways, are strong x-ray emitters. Radio bright quasars are statistically more luminous in the x-ray than their radio-quiet counterparts. It was also found that the 90 GHz to soft x-ray spectral index has a very small dispersion for sources selected by their strong millimeter emission. This implies a close relationship between compact radio flux density and x-ray emission. Strong correlations have been found between the arcsecond scale flux densities and soft x-ray fluxes. It is suggested that the correlation can be explained if the soft x-rays were produced by the synchrotron self-Compton (SSC) process within the compact radio emitting region. (author)

  12. DynamiX, numerical tool for design of next-generation x-ray telescopes.

    Science.gov (United States)

    Chauvin, Maxime; Roques, Jean-Pierre

    2010-07-20

    We present a new code aimed at the simulation of grazing-incidence x-ray telescopes subject to deformations and demonstrate its ability with two test cases: the Simbol-X and the International X-ray Observatory (IXO) missions. The code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, accounting for the x-ray interactions and for the telescope motion and deformation. The simulation produces images and spectra for any telescope configuration using Wolter I mirrors and semiconductor detectors. This numerical tool allows us to study the telescope performance in terms of angular resolution, effective area, and detector efficiency, accounting for the telescope behavior. We have implemented an image reconstruction method based on the measurement of the detector drifts by an optical sensor metrology. Using an accurate metrology, this method allows us to recover the loss of angular resolution induced by the telescope instability. In the framework of the Simbol-X mission, this code was used to study the impacts of the parameters on the telescope performance. In this paper we present detailed performance analysis of Simbol-X, taking into account the satellite motions and the image reconstruction. To illustrate the versatility of the code, we present an additional performance analysis with a particular configuration of IXO.

  13. DynamiX, numerical tool for design of next-generation x-ray telescopes

    International Nuclear Information System (INIS)

    Chauvin, Maxime; Roques, Jean-Pierre

    2010-01-01

    We present a new code aimed at the simulation of grazing-incidence x-ray telescopes subject to deformations and demonstrate its ability with two test cases: the Simbol-X and the International X-ray Observatory (IXO) missions. The code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, accounting for the x-ray interactions and for the telescope motion and deformation. The simulation produces images and spectra for any telescope configuration using Wolter I mirrors and semiconductor detectors. This numerical tool allows us to study the telescope performance in terms of angular resolution, effective area, and detector efficiency, accounting for the telescope behavior. We have implemented an image reconstruction method based on the measurement of the detector drifts by an optical sensor metrology. Using an accurate metrology, this method allows us to recover the loss of angular resolution induced by the telescope instability. In the framework of the Simbol-X mission, this code was used to study the impacts of the parameters on the telescope performance. In this paper we present detailed performance analysis of Simbol-X, taking into account the satellite motions and the image reconstruction. To illustrate the versatility of the code, we present an additional performance analysis with a particular configuration of IXO.

  14. DynamiX, numerical tool for design of next-generation x-ray telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, Maxime; Roques, Jean-Pierre

    2010-07-20

    We present a new code aimed at the simulation of grazing-incidence x-ray telescopes subject to deformations and demonstrate its ability with two test cases: the Simbol-X and the International X-ray Observatory (IXO) missions. The code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, accounting for the x-ray interactions and for the telescope motion and deformation. The simulation produces images and spectra for any telescope configuration using Wolter I mirrors and semiconductor detectors. This numerical tool allows us to study the telescope performance in terms of angular resolution, effective area, and detector efficiency, accounting for the telescope behavior. We have implemented an image reconstruction method based on the measurement of the detector drifts by an optical sensor metrology. Using an accurate metrology, this method allows us to recover the loss of angular resolution induced by the telescope instability. In the framework of the Simbol-X mission, this code was used to study the impacts of the parameters on the telescope performance. In this paper we present detailed performance analysis of Simbol-X, taking into account the satellite motions and the image reconstruction. To illustrate the versatility of the code, we present an additional performance analysis with a particular configuration of IXO.

  15. X-rays from spiral and starburst galaxies

    International Nuclear Information System (INIS)

    Fabbiano, G.

    1990-01-01

    The study of the X-ray properties of normal galaxies as a class was made possible by the launch of the Einstein Observatory in November 1978. The Einstein X-ray observations of well over 100 galaxies have been reported in the literature to date, and data on a similar number can still be found in the Einstein data bank. To mention some of the unexpected results, these observations have led to the discovery of plumes of hot gas ejected by starburst nuclei, and to the study of small active nuclei. Hot X-ray halos have been discovered in early-type galaxies, and provide a potentially very powerful means for measuring their mass. The implications of these results range from new insights on the composition and evolution of X-ray emitting sources in spiral galaxies, and their relationship with star formation activity and cosmic ray production, to the formation of the intracluster medium and the origin of the X-ray background. This paper concentrates on the results of the Einstein observations of spiral and starburst galaxies. (author)

  16. pyXSIM: Synthetic X-ray observations generator

    Science.gov (United States)

    ZuHone, John A.; Hallman, Eric. J.

    2016-08-01

    pyXSIM simulates X-ray observations from astrophysical sources. X-rays probe the high-energy universe, from hot galaxy clusters to compact objects such as neutron stars and black holes and many interesting sources in between. pyXSIM generates synthetic X-ray observations of these sources from a wide variety of models, whether from grid-based simulation codes such as FLASH (ascl:1010.082), Enzo (ascl:1010.072), and Athena (ascl:1010.014), to particle-based codes such as Gadget (ascl:0003.001) and AREPO, and even from datasets that have been created “by hand”, such as from NumPy arrays. pyXSIM can also manipulate the synthetic observations it produces in various ways and export the simulated X-ray events to other software packages to simulate the end products of specific X-ray observatories. pyXSIM is an implementation of the PHOX (ascl:1112.004) algorithm and was initially the photon_simulator analysis module in yt (ascl:1011.022); it is dependent on yt.

  17. Center for X-Ray Optics, 1986

    International Nuclear Information System (INIS)

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers

  18. X-ray diagnostic in gas discharge

    International Nuclear Information System (INIS)

    Chen Suhe; Wang Dalun; Cui Gaoxian; Wang Mei; Fu Yibei; Zhang Xinwei; Zhang Wushou

    1995-01-01

    X rays were observed when the anomalous phenomenon in the metal loaded with deuterium studied by the gas-discharge method. Therefore the X-ray energy spectra were measured by the absorption method, the specific X-ray approach and the NaI scintillation counter, while X-ray intensity was estimated by using 7 Li thermoluminescent foils. The X-ray average energy measured by the absorption method is 27.6 +- 2.1 keV, which is fitted within the error extent to 26.0 +-2.4 keV monoenergetic X rays measured by the NaI scintillation counter

  19. X-ray cardiovascular examination apparatus

    International Nuclear Information System (INIS)

    1977-01-01

    An X-ray source is mounted in an enclosure for angulating longitudinally about a horizontal axis. An X-ray-permeable, patient-supporting table is mounted on the top of the enclosure for executing lateral and longitudinal movements. An X-ray image-receiving device such as an X-ray image intensifier is mounted above the table on a vertically movable arm which is on a longitudinally movable carriage. Electric control means are provided for angulating the X-ray source and image intensifier synchronously as the image intensifier system is shifted longitudinally or vertically such that the central ray from the X-ray source is kept intensifier

  20. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution

    Directory of Open Access Journals (Sweden)

    E. I. Howard

    2016-03-01

    Full Text Available Crystal diffraction data of heart fatty acid binding protein (H-FABP in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively. These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H...H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.

  1. X-ray tube arrangements

    International Nuclear Information System (INIS)

    Gillard, R.G.

    1980-01-01

    A technique for ensuring the rapid correction of both amplitude and offset errors in the deflectional movement of an electron beam along an X-ray emissive target is described. The movement is monitored at at least two positions during a sweep and differences, between the two movements and a desired movement, at these positions are combined in different proportions to produce a corrective servo signal. Such arrangements find application, for example, in computerised tomographic scanners. (author)

  2. Smart X-ray optics

    International Nuclear Information System (INIS)

    Michette, A G; Pfauntsch, S J; Sahraei, S; Shand, M; Morrison, G R; Hart, D; Vojnovic, B; Stevenson, T; Parkes, W; Dunare, C; Willingale, R; Feldman, C; Button, T; Zhang, D; Rodriguez-Sanmartin, D; Wang, H

    2009-01-01

    This paper describes reflective adaptive/active optics for applications including studies of biological radiation damage. The optics work on the polycapillary principle, but use arrays of channels in thin silicon. For optimum performance the x-rays should reflect once off a channel wall in each of two successive arrays. This reduces aberrations since then the Abbe sine condition is approximately satisfied. Adaptivity is achieved by flexing the arrays via piezo actuation, providing further aberration reduction and controllable focal length.

  3. Improvements in or relating to pulsed X-ray units

    International Nuclear Information System (INIS)

    Bichenkov, E.I.; Klypin, V.V.; Palchikov, E.I.

    1983-01-01

    A pulsed X-ray unit comprises a pulsed X-ray tube connected to a discharge capacitor. The discharge capacitor comprises two coaxially arranged cylinders. One cylinder of the discharge capacitor is connected to the X-ray tube and to the high-voltage end of the secondary winding of the pulsed transformer which is shaped as a truncated cone, and is arranged internally of this winding coaxially therewith. The other cylinder of the discharge capacitor is also connected to the X-ray tube and to the low-voltage end of the secondary winding of the pulsed transformer, and is arranged intermediate this winding and the primary winding of the pulsed transformer which is shaped as a hollow cylinder, and connected to the charging device. The cylinders of the discharge capacitor have ports made therein for the passage therethrough of the magnetic flux produced by the windings of the pulsed transformer. (author)

  4. X-ray visualization of a mosquito's head

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Mochizuki, Osamu

    2007-01-01

    A technology to visualize an internal anatomy of living animals has developed for a medical diagnostics and biology by using Synchrotron x-ray produced in a Photon Factory. A dynamic motion of organ, muscles and respiratory of small insects is difficult to observe by using conventional x-ray imaging because of luck of special and temporal resolution. We visualized motions of pumps located in a mosquito's head through a Phase-contrast X-ray imaging technique by using a synchrotron X-ray. Isovue370 was fed with a 10% dilute glucose solution to visualize a flow. We found that the phase difference between the motions of an oral cavity pump and pharynx pump was 180 degrees. (author)

  5. Effects of soft x-ray irradiation on cell ultrastructure

    International Nuclear Information System (INIS)

    Ford, T.W.; Page, A.M.; Stead, A.D.; Foster, G.F.

    1993-01-01

    The future of X-ray microscopy lies mainly in its potential for imaging fresh, hydrated biological material at a resolution superior to that of light microscopy. For the image to be accepted as representing the cellular organization of the living cell, it is essential that artifacts are not introduced as a result of the image collection system. One possible source of artifacts is cellular damage resulting from the irradiation of the material with soft X-rays. Cells of the unicellular alga Chlorella have been examined by transmission electron microscopy (TEM) following exposure to different doses of monochromatic (380eV) soft X-rays. Extreme ultrastructural damage has been detected following doses of 10 3 -10 4 Gy, in particular loss of cellular membranes such as the internal thylakoid membranes of the chloroplast. This is discussed in relation to dosage commonly used for imaging by soft X-ray microscopy

  6. Long X-ray burst monitoring with INTEGRAL

    DEFF Research Database (Denmark)

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binary systems. In the frame of the INTEGRAL observational Key Programme over the Galactic Center a good number of the known X-ray bursters are frequently being monitored. An international...... collaboration lead by the JEM-X team at the Danish National Space Center has proposed to exploit the improved sensitivity of the INTEGRAL instruments to investigate the observational properties and physics up to high energies of exceptional burst events lasting between a few tens of minutes and several hours....... Of special interest are low luminosity bursting sources that exhibit X-ray bursts of very different durations allowing to study the transition from a hydrogen-rich bursting regime to a pure helium regime and from helium burning to carbon burning. I will present results obtained from INTEGRAL archive data...

  7. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  8. X-ray area monitor

    International Nuclear Information System (INIS)

    Nintrakit, N.

    1983-01-01

    The X-ray area monitor is a nuclear electronic device that is essential in radiation protection in high radiation laboratories, e.g. in medical diagnosis using X-rays and in industrial X-radiography. Accidentally the level of X-radiator may arise above the safe permissible level and in such a case the alarm system of the area monitor will work and disconnect the ac power supply form the X-ray unit. Principally the device is a radiation counter using G.M.tube as radiation detector with high voltage supply variable form 200 to 2,000 volts. The maximum count rate of the scaler is 1.5 MHz and the total count is displayed on 4 digit LED's. A time base is used to control the counting time, the frequency multiplier, radiation safety limit, comparator and the radiation hazard warning signal. The reliability of the instrument is further enhanced through the addition of the random correction circuit, and it is applicable both in X- and γ -radiation

  9. Linear polarization observations of some X-ray sources

    International Nuclear Information System (INIS)

    Shakhovskoy, N.M.; Efimov, Yu.S.

    1975-01-01

    Multicolour linear polarization of optical radiation of the X-ray sources Sco X-1, Cyg X-2, Cyg X-1 and Her X-1 was measured at the Crimean Astrophysical Observatory in 1970-1973. These observations indicate that polarization of Sco X-1 in the ultraviolet, blue and red spectral regions appears to be variable. No statistically significant variations of polarization were found for the other three sources observed. (Auth.)

  10. Elements of modern X-ray physics

    CERN Document Server

    Als-Nielsen, Jens

    2011-01-01

    Eagerly awaited, this second edition of a best-selling text comprehensively describes from a modern perspective the basics of x-ray physics as well as the completely new opportunities offered by synchrotron radiation. Written by internationally acclaimed authors, the style of the book is to develop the basic physical principles without obscuring them with excessive mathematics. The second edition differs substantially from the first edition, with over 30% new material, including: A new chapter on non-crystalline diffraction - designed to appeal to the large community wh

  11. Is X-ray emissivity constant on magnetic flux surfaces?

    International Nuclear Information System (INIS)

    Granetz, R.S.; Borras, M.C.

    1997-01-01

    Knowledge of the elongations and shifts of internal magnetic flux surfaces can be used to determine the q profile in elongated tokamak plasmas. X-ray tomography is thought to be a reasonable technique for independently measuring internal flux surface shapes, because it is widely believed that X-ray emissivity should be constant on a magnetic flux surface. In the Alcator C-Mod tokamak, the X-ray tomography diagnostic system consists of four arrays of 38 chords each. A comparison of reconstructed X-ray contours with magnetic flux surfaces shows a small but consistent discrepancy in the radial profile of elongation. Numerous computational tests have been performed to verify these findings, including tests of the sensitivity to calibration and viewing geometry errors, the accuracy of the tomography reconstruction algorithms, and other subtler effects. We conclude that the discrepancy between the X-ray contours and the magnetic flux surfaces is real, leading to the conclusion that X-ray emissivity is not exactly constant on a flux surface. (orig.)

  12. Full-field mapping of internal strain distribution in red sandstone specimen under compression using digital volumetric speckle photography and X-ray computed tomography

    Directory of Open Access Journals (Sweden)

    Lingtao Mao

    2015-04-01

    Full Text Available It is always desirable to know the interior deformation pattern when a rock is subjected to mechanical load. Few experimental techniques exist that can represent full-field three-dimensional (3D strain distribution inside a rock specimen. And yet it is crucial that this information is available for fully understanding the failure mechanism of rocks or other geomaterials. In this study, by using the newly developed digital volumetric speckle photography (DVSP technique in conjunction with X-ray computed tomography (CT and taking advantage of natural 3D speckles formed inside the rock due to material impurities and voids, we can probe the interior of a rock to map its deformation pattern under load and shed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimen under increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fields are obtained in the specimen as a function of the load, from which both the volumetric and the deviatoric strain fields are calculated. Strain localization zones which lead to the eventual failure of the rock are identified. The results indicate that both shear and tension are contributing factors to the failure mechanism.

  13. Insights into post-annealing and silver doping effects on the internal microstructure of ZnO nanoparticles through X-ray diffraction probe

    Science.gov (United States)

    Obeydavi, Ali; Dastafkan, Kamran; Rahimi, Mohammad; Ghadam Dezfouli, Mohammad Amin

    2017-07-01

    ZnO nanoparticles were synthesized via Pechini method at various post-annealing temperatures (400°, 500°, and 600 °C) and silver doping concentrations (Zn:Ag molar ratios of 30, 20, and 10). Multifarious microstructural features including crystallite size, size-strain based broadening, residual stress, preferential orientation, crystallinity degree, lattice parameters, unit cell variation, and stacking fault probability were surveyed through phase analysis, Williamson-Hall plot, texture coefficient and unit cell calculations. X-ray probing verified good crystallinity with a hexagonal close pack Wurtzite morphology. Williamson-Hall analysis exhibited distributions of crystallite size and microstrain as well as their contributions on the line broadening of the host ZnO and guest Ag phases upon annealing-doping treatments. Textural analysis revealed the alteration in anisotropic crystallinity of the host phase and transformation of the preferred directions, (100) and (101), as function of annealing-doping processes. Besides, while guest Ag phase was shown to be polycrystalline with randomly orientated crystals at moderate concentration with respect to thermal treatment, preferential orientation went through a major change, (220) to (111), with increment in Ag loadings. Under identical synthetic conditions, the distinction in the lattice constants and unit cell variation between pure and doped ZnO nanoparticles was enforced and results verified major impressionability via annealing and doping factors.

  14. Achromatic X-ray lenses

    International Nuclear Information System (INIS)

    Umbach, Marion

    2009-01-01

    This thesis presents first results on the development of achromatic refractive X-ray lenses which can be used for scientific experiments at synchrotron sources. First of all the different requirements for achromatic X-ray lenses have been worked out. There are different types of lenses, one type can be used for monochromatized sources when the energy is scanned while the spot size should be constant. The other type can be used at beamlines providing a broad energy band. By a combination of focusing and defocusing elements we have developed a lens system that strongly reduces the chromatic aberration of a refractive lens in a given energy range. The great challenge in the X-ray case - in contrast to the visible range - the complex refractive index, which is very similar for the possible materials in the X-ray spectrum. For precise studies a numerical code has been developed, which calculates the different rays on their way through the lenses to the detector plane via raytracing. In this numerical code the intensity distribution in the detector plane has been analyzed for a chromatic and the corresponding achromatic system. By optimization routines for the two different fields of applications specific parameter combinations were found. For the experimental verification an achromatic system has been developed, consisting of biconcave SU-8 lenses and biconvex Nickel Fresnel lenses. Their fabrication was based on the LIGA-process, including a further innovative development, namely the fabrication of two different materials on one wafer. In the experiment at the synchrotron source ANKA the energy was varied in a specific energy range in steps of 0.1 keV. The intensity distribution for the different energies was detected at a certain focal length. For the achromatic system a reduction of the chromatic aberration could be clearly shown. Achromatic refractive X-ray lenses, especially for the use at synchrotron sources, have not been developed so far. As a consequence of the

  15. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  16. Dependence of the K x-ray energy on the mode of excitation

    International Nuclear Information System (INIS)

    Wang, K.C.; Boehm, F.; Hahn, A.A.; Vogel, P.

    1977-01-01

    The energy shifts in the Ta K x rays resulting from the K-capture of 181 W, fluorescence of Ta, and β - decay of 181 Hf followed by internal conversion in 181 Ta are reported. Both W metal and WO 3 on one hand, and Ta metal and Ta 2 O 5 on the other hand, were used. Comparison of the K x-ray energies of the K-capture sources 153 Gd (Eu x rays) and 175 Hf (Lu x rays) and the corresponding fluorescence sources was also made. Various effects which may influence the K x-ray energies are discussed. 9 references

  17. Two-energy twin image removal in atomic-resolution x-ray holography

    International Nuclear Information System (INIS)

    Nishino, Y.; Ishikawa, T.; Hayashi, K.; Takahashi, Y.; Matsubara, E.

    2002-01-01

    We propose a two-energy twin image removal algorithm for atomic-resolution x-ray holography. The validity of the algorithm is shown in a theoretical simulation and in an experiment of internal detector x-ray holography using a ZnSe single crystal. The algorithm, compared to the widely used multiple-energy algorithm, allows efficient measurement of holograms, and is especially important when the available x-ray energies are fixed. It enables twin image free holography using characteristic x rays from laboratory generators and x-ray pulses of free-electron lasers

  18. X-ray electromagnetic application technology

    International Nuclear Information System (INIS)

    2011-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, particularly for X-ray electromagnetic application technology from January 2006 to December 2008. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and free-electron laser, Saga Synchrotron Project, X-ray waveguides and waveguide-based lens-less hard-X-ray imaging, X-ray nanofocusing for capillaries and zone plates, dispersion characteristics in photonics crystal consisting of periodic atoms for nanometer waveguides, electromagnetic characteristics of grid structures for scattering fields of nano-meter electromagnetic waves and X-rays, FDTD parallel computing of fundamental scattering and attenuation characteristics of X-ray for medical imaging diagnosis, orthogonal relations of electromagnetic fields including evanescent field in dispersive medium. (author)

  19. Aspergillosis - chest x-ray (image)

    Science.gov (United States)

    ... usually occurs in immunocompromised individuals. Here, a chest x-ray shows that the fungus has invaded the lung ... are usually seen as black areas on an x-ray. The cloudiness on the left side of this ...

  20. Soft x-ray Planetary Imager

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...