WorldWideScience

Sample records for international uranium resources

  1. Speculative resources of uranium. A review of International Uranium Resources Evaluation Project (IUREP) estimates 1982-1983

    International Nuclear Information System (INIS)

    1983-01-01

    On a country by country basis the International Uranium Resources Evaluation Project (IUREP) estimates 1982-1983 are reviewed. Information provided includes exploration work, airborne survey, radiometric survey, gamma-ray spectrometric survey, estimate of speculative resources, uranium occurrences, uranium deposits, uranium mineralization, agreements for uranium exploration, feasibilities studies, geological classification of resources, proposed revised resource range, production estimate of uranium

  2. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Somalia

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Somalia. The Mission suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US$ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat imagery interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas. (author)

  3. Review of international classification systems for uranium resources

    International Nuclear Information System (INIS)

    Wang Wenyou

    2007-01-01

    The two primary classification systems for uranium resources in common use in the whole world are described. These uranium resource classification systems were developed under two distinct philosophies, it implies two very different processes, criteria, terms and definitions from which the systems evolved and were implemented. However, the two primary systems are all based on two considerations: the degree of geological confidence and the degree of economic attractiveness based on cost of producing the resource. The uranium resource classification methods currently used in most major uranium producing countries have all a bearing on the two aforesaid classification systems. The disparity exists only in the way or practice of classifying and estimating the uranium resources for reasons of different political and economical systems in various countries. The harmonization of these resource classification systems for uranium can be realized with the economic integration on a global scale. (authors)

  4. The new UN international framework classification for reserves/resources and its relation to uranium resource classification

    International Nuclear Information System (INIS)

    Barthel, F.H.; Kelter, D.

    2001-01-01

    Resources traditionally are classified according to the degree of geological confidence and economic attractiveness. Various names are in use to describe nationally the different resource categories. Commonly, proven, probable or A+B are terms for the category RESERVES, meaning the recoverable portion of a resource under prevailing economic conditions. Since 1965 uranium resources are classified by the Nuclear Energy Agency of OECD and International Atomic Energy Agency using the terms Reasonably Assured Resources (RAR) and Estimated Additional Resources (EAR) in combination with cost categories. The definitions for RAR and EAR have been refined over the time and cost categories have been adapted according to market developments. For practical purposes a comparison of RAR and EAR with major national classification systems is provided in each of the NEA-IAEA publication on 'Uranium Resources Production and Demand' (Red Book). RAR of uranium are defined as quantities recoverable at given production costs with proven mining and processing technology, commonly RAR of the lowest cost category are referred to as Reserves. In 1992 the Committee on Energy - Working Party on Coal of the UN Economic Commission for Europe (UN/ECE) started to develop a new scheme for resource classification under the coordination of one of the authors (Kelter). The main purpose was to create an instrument permitting the classification of reserves and resources on an internationally consistent and uniform basis using market economic criteria. In April 1997 the UN/ECE approved the new 'United Nations International Framework Classification for Reserves/Resources-Solid Fuels and Mineral Commodities' at its 50th Anniversary Session. The new classification will enable the incorporation of national systems into an unified framework in order to make them compatible and comparable. Assistance will be given to economies in transition in reassessing their deposits according to market economy criteria and

  5. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Uganda

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Uganda. The Mission suggest that the speculative uranium resources of the country could be within the very wide range of 0 to 105 000 tonnes of uranium metal. The Mission finds that most of these speculative resources are related to Proterozoic unconformities and to Cenozoic sandstones of the Western Rift Valley. Some potential is also associated with Post-tectonic granites. The Mission recommends to rehabilitate the Geological Survey of Uganda in order to enable it to conduct and support a uranium exploration programme for unconformity related and for standstone hosted uranium deposits. Recommended exploration methods encompass geological mapping and compilation, an airborne gamma-ray spectrometer survey north of 1 deg. North latitude, stream sediment sampling, and ground scintillometric surveys in favourable areas. Follow up work should include VLF-EM surveys, emanometry and drilling. (author)

  6. Uranium resource assessments

    International Nuclear Information System (INIS)

    1981-01-01

    The objective of this investigation is to examine what is generally known about uranium resources, what is subject to conjecture, how well do the explorers themselves understand the occurrence of uranium, and who are the various participants in the exploration process. From this we hope to reach a better understanding of the quality of uranium resource estimates as well as the nature of the exploration process. The underlying questions will remain unanswered. But given an inability to estimate precisely our uranium resources, how much do we really need to know. To answer this latter question, the various Department of Energy needs for uranium resource estimates are examined. This allows consideration of whether or not given the absence of more complete long-term supply data and the associated problems of uranium deliverability for the electric utility industry, we are now threatened with nuclear power plants eventually standing idle due to an unanticipated lack of fuel for their reactors. Obviously this is of some consequence to the government and energy consuming public. The report is organized into four parts. Section I evaluates the uranium resource data base and the various methodologies of resource assessment. Part II describes the manner in which a private company goes about exploring for uranium and the nature of its internal need for resource information. Part III examines the structure of the industry for the purpose of determining the character of the industry with respect to resource development. Part IV arrives at conclusions about the emerging pattern of industrial behavior with respect to uranium supply and the implications this has for coping with national energy issues

  7. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Madagascar

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been made public which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Madagascar. The IUREP Orientation Phase Mission to Madagascar estimates the Speculative Resources of that country to be within the wide range of 4 000 to 38 000 tonnes uranium. Such resources could lie in areas with known occurrences (uranothorianite, Ft. Dauphin up to 5 000 t U, i.e. 'pegmatoids'; uranocircite, Antsirabe up to 3 000 t U in Neogene sediments; carnotiteautonite, Karoo area up to 30 000 t U in sandstones and in areas with as yet untested environments (e.g. related to unconformities and calcretes). Modifications to existing uranium exploration programmes are suggested and policy alternatives reviewed. No specific budget is proposed. (author)

  8. Uranium resources

    International Nuclear Information System (INIS)

    1976-01-01

    This is a press release issued by the OECD on 9th March 1976. It is stated that the steep increases in demand for uranium foreseen in and beyond the 1980's, with doubling times of the order of six to seven years, will inevitably create formidable problems for the industry. Further substantial efforts will be needed in prospecting for new uranium reserves. Information is given in tabular or graphical form on the following: reasonably assured resources, country by country; uranium production capacities, country by country; world nuclear power growth; world annual uranium requirements; world annual separative requirements; world annual light water reactor fuel reprocessing requirements; distribution of reactor types (LWR, SGHWR, AGR, HWR, HJR, GG, FBR); and world fuel cycle capital requirements. The information is based on the latest report on Uranium Resources Production and Demand, jointly issued by the OECD's Nuclear Energy Agency (NEA) and the International Atomic Energy Agency. (U.K.)

  9. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Cameroon

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Cameroon. The IUREP Orientation Phase Mission to Cameroon estimates the Speculative Resources of that country to be in the order of 10 000 tonnes uranium for syenite-associated U-deposits in southern Cameroon, and in the order of 5 000 tonnes uranium for uranium deposits associated with albitized and desilicified late tectonic Panafrican granites (episyenite) and Paleozoic volcanics in northern Cameroon. No specific tonnage is given for Francevillian equivalents (DJA-Series) and for Mesozoic and Cenozoic sedimentary basins, which are thought to hold limited potential for sandstone hosted uranium. However the Douala basin, consisting of mixed marine and continental sequences merits some attention. No specific budget and programme for uranium exploration are proposed for Cameroon. Instead specific recommendations concerning specific potential environments and general recommendation concerning the methodology of exploration are made. (author)

  10. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Bolivia. Draft

    International Nuclear Information System (INIS)

    Leroy, Jacques; Mueller-Kahle, Eberhard

    1982-08-01

    The uranium exploration done so far in Bolivia has been carried out by COBOEN, partly with IAEA support, and AGIP S.p.A. of Italy, which between 1974 and 1978 explored four areas in various parts of Bolivia under a production sharing contract with COBOEN. The basic objective of the International Uranium Resources Evaluation Project (IUREP) is to 'review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for discovery of additional uranium resources, and to suggest new exploitation efforts which might be carried out in promising areas in collaboration with the country concerned'. Following the initial bibliographic study which formed Phase I of IUREP, it was envisaged that a further assessment in cooperation with, and within, the country concerned would provide a better delineation of areas of high potential and a more reliable estimate as to the degree of favourability for the discovery of additional uranium resources. It was planned that such work would be accomplished through field missions to the country concerned and that these field missions and the resulting report would be known as the Orientation Phase of IUREP. The purpose of the Orientation Phase mission to Bolivia was a) to develop a better understanding of the uranium potential of the country, b) to make an estimate of the Speculative Resources of the country, c) to delineate areas favourable for the discovery of these uranium resources, d) to make recommendations as appropriate on the best methods for evaluating the favourable areas, operating procedures and estimated possible costs, e) to develop the logistical data required to carry out any possible further work, and f) to compile a report which would be immediately available to the Bolivian authorities. The mission reports contains information about a general introduction, non-uranium exploration and mining in Bolivia, manpower in exploration, geological review of Bolivia, past uranium

  11. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Zambia

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Zambia. The IUREP Orientation Phase mission to Zambia estimates that the Speculative Resources of that country fall within the range of 33 000 and 100 000 tonnes uranium. The majority of these resources are believed to exist in the Karoo sediments. Other potentially favourable geological environments are the Precambrian Katanga sediments, as well as intrusive rocks of different chemical compositions and surficial duricrusts. Previous unofficial estimates of Zambia's Reasonably Assured Resources (RAR) and Estimated Additional Resources (EAR) are considered to be still valid: the total RAR amount to 6 000 tonnes uranium, located in Karoo (4 000 tonnes) and Katanga (2 000 tonnes) sediments, while the EAR are believed to total 4 000 tonnes being found only in Karoo sediments. The mission recommends that approximately US$ 40 million be spent on uranium exploration in Zambia over 10 years. The largest part of this expenditure would be for drilling, while the remainder should be spent on airborne and ground surveys, as well as on interpretative work on previous airborne data, Landsat imageries, etc. (author)

  12. Classification of uranium reserves/resources

    International Nuclear Information System (INIS)

    1998-08-01

    Projections of future availability of uranium to meet present and future nuclear power requirements depend on the reliability of uranium resource estimates. Lack of harmony of the definition of the different classes of uranium reserves and resources between countries makes the compilation and analysis of such information difficult. The problem was accentuated in the early 1990s with the entry of uranium producing countries from the former Soviet Union, eastern Europe and China into the world uranium supply market. The need for an internationally acceptable reserve/resource classification system and terminology using market based criteria is therefore obvious. This publication was compiled from participant's contributions and findings of the Consultants Meetings on Harmonization of Uranium Resource Assessment Concepts held in Vienna from 22 to 25 June 1992, and two Consultants Meetings on the Development of a More Meaningful Classification of Uranium Resources held in Kiev, Ukraine on 24-26 April 1995 and 20-23 August 1996. This document includes 11 contributions, summary, list of participants of the Consultants Meetings. Each contribution has been indexed and provided with an abstract

  13. Uranium 2003: resources, production and demand

    International Nuclear Information System (INIS)

    2004-01-01

    The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. This edition, the 20., presents the results of a thorough review of world uranium supplies and demand as of 1 January 2003 based on official information received from 43 countries. Uranium 2003: Resources, Production and Demand paints a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and for the first time, a report for Turkmenistan. Also included are international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020. The long lead times required to bring resources into production underscore the importance of making timely decisions to pursue production capability well in advance of any supply shortfall. (author)

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Australia

    International Nuclear Information System (INIS)

    1977-08-01

    In Australia most exploration for uranium has been conducted by companies and individuals. The geological mapping and airborne radiometric surveying conducted by the BMR is made available to interested persons. Exploration for uranium in Australia can be divided into two periods - 1947 to 1961 and 1966-1977. During the first period the Commonwealth Government introduced measures to encourage uranium exploration including a system of rewards for the discovery of uranium ore. This reward system resulted in extensive activity by prospectors particularly in the known mineral fields. Equipped with a Geiger counter or scintillometer, individuals with little or no experience in prospecting could compete with experienced prospectors and geologists. During this period several relative small uranium deposits were discovered generally by prospectors who found outcropping mineralisation. The second phase of uranium exploration in Australia began in 1966 at which time reserves amounted to only 6,200 tonnes of uranium and by 3 977 reserves had been increased to 289,000 tonnes. Most of the exploration was done by companies with substantial exploration budgets utilising more advanced geological and geophysical techniques. In the field of airborne radiometer the development of multi-channel gamma ray spectrometers with large volume crystal detectors increased the sensitivity of the tool as a uranium detector and resulted in several major discoveries. Expenditure or exploration for uranium increased from 1966 to 1971 but has declines in recent years. After listing the major geological elements of Australia, its uranium production and resources are discussed. During the period 1954-71 the total production of uranium concentrate in Australia amounted to 7,780 tonnes of uranium, and was derived from deposits at Rum Jungle (2,990 tonnes U) and the South Alligator River (610 tonnes U) in the Northern Territory, Mary Kathleen (3,460 tonnes U) in Queensland and Radium Hill (720 tonnes U

  15. Uranium 2003 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2004-01-01

    Uranium 2003: Resources, Production and Demand paints a detailed statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and for the first time, a report for Turkmenistan. Also included are international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020.

  16. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Ghana

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Ghana. The IUREP Orientation Phase Mission to Ghana estimates that the Speculative Resources of that country fall within the range of 15 000 to 40 000 tonnes of uranium. The majority of this potential is expected to be located in the Proterozoic Panafrican Mobile Belt (up to 17 000 tonnes uranium) and the Paleozoic Obosum Beds of the Voltaian basin (up to 15 000 tonnes uranium), the remainder being associated with various other geological environments. The mission recommends that over a period of three (3) years approximately U.S. $5 million) would be spent on exploration in Ghana. A major part of this (U.S $2 million) would be spent on an airborne spectrometer survey over the Voltaian basin (Obosum beds), much of the remainder being spent on ground surveys, trenching and percussion drilling. (author)

  17. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Turkey

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Turkey. The IUREP Orientation Phase mission to Turkey estimates that the Speculative Resources of that country fall within the range of 21 000 to 55 000 tonnes of uranium. This potential is expected to lie in areas of Neogene and possibly other Tertiary sediments, in particular in the areas of the Menderes Massif and Central Anatolia. The mission describes a proposed exploration programme with expenditures over a five year period of between $80 million and $110 million, with nearly half of the amount being spent on drilling. (author)

  18. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Morocco

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published on the findings of the mission to Morocco under the International Uranium Resources Evaluation Project (IUREP) Orientation Phase. The IUREP Orientation Phase Mission estimates that the speculative resources of Morocco range from 70 000 to 180 000 tonnes of uranium, half of which could be expected to occur in the Northern Provinces, which are relatively well explored, and the other half in the little explored Southern Provinces. In the north, speculative resources are fairly evenly distributed among the various types of deposit, in particular vein deposits (intragranitic and contact) linked with Hercynian and Precambrian blocks, the sandstone type deposits linked with Mesozoic strata and the volcanogenic deposits, especially of Precambrian age. The potential for large high-grade deposits, especially for those linked with unconformities and linear albitites, has been little investigated in Morocco and is chiefly thought to lie in the Precambrian in the Anti-Atlas and Southern Provinces. Here, the presence of acid volcanic rock reinforces the uranium potential, and there is also some potential for calcrete-related deposits. Phosphate-related uranium, to be recovered shortly, constitutes by far the largest reserves in Morocco, estimated at about 7 million tonnes of recoverable uranium. Recommendations have been made for further study of known occurrences and identification of new ones, such as unconformity and albitite-related deposits. (author) [fr

  19. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Morocco

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published on the findings of the mission to Morocco under the International Uranium Resources Evaluation Project (IUREP) Orientation Phase. The IUREP Orientation Phase Mission estimates that the speculative resources of Morocco range from 70 000 to 180 000 tonnes of uranium, half of which could be expected to occur in the Northern Provinces, which are relatively well explored, and the other half in the little explored Southern Provinces. In the north, speculative resources are fairly evenly distributed among the various types of deposit, in particular vein deposits (intragranitic and contact) linked with Hercynian and Precambrian blocks, the sandstone type deposits linked with Mesozoic strata and the volcanogenic deposits, especially of Precambrian age. The potential for large high-grade deposits, especially for those linked with unconformities and linear albitites, has been little investigated in Morocco and is chiefly thought to lie in the Precambrian in the Anti-Atlas and Southern Provinces. Here, the presence of acid volcanic rock reinforces the uranium potential, and there is also some potential for calcrete-related deposits. Phosphate-related uranium, to be recovered shortly, constitutes by far the largest reserves in Morocco, estimated at about 7 million tonnes of recoverable uranium. Recommendations have been made for further study of known occurrences and identification of new ones, such as unconformity and albitite-related deposits. (author)

  20. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Burundi

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Burundi. The IUREP Orientation Phase Mission to Burundi estimates that the Speculative Resources of that country fall within the range of 300 to more than 4 100 tonnes of uranium. The potential is rather evenly distributed throughout the Proterozoic of Burundi in various geological environments (unconformity, hydrothermal, fault controlled, etc.). The mission recommends that over a period of five years U.S. $ 3 to 4.5 million be spent on exploration in Burundi, with even spending on the various exploration techniques as e.g. prospecting, drilling trenching, geophysical surveys, analyses, etc. (author)

  1. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Republic of Burundi. Draft

    International Nuclear Information System (INIS)

    Gehrisch, W.; Chaigne, M.

    1983-06-01

    The basic objective of the International Uranium Resources Evaluation project lUREP is to 'Review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for the discovery of additional uranium resources and to suggest new exploration efforts which might be carried out in promising areas in collaboration with the countries concerned'. Therefore, the scope of the IUREP orientation phase Mission to Burundi was to review all data on past exploration in Burundi, to develop a better understanding of the uranium potential of the country, to make an estimate of the speculative resources of the country, to make recommendation as appropriate on the best methods or techniques for evaluating the resources in the favourable areas and for estimating possible costs as well, to compile a report which could be immediately available to the Burundian authorities. This mission gives a general introduction, a geological review of Burundi, information on non-uranium mining in Burundi, the history of uranium exploration, occurrences of uranium IUREP mission field reconnaissance, favourable areas for speculative potential, the uranium resources position and recommendations for future exploration. Conclusions are the following. The IUREP Orientation -phase mission to Burundi believes that the Speculative Resources of that country fall b etween 300 and 4100 tons uranium oxide but a less speculative appraisal is more likely between 0 and 1000 tons. There has been no uranium production and no official estimates of Uranium Resources in Burundi. Past exploration mainly dating from 1969 onwards and led the UNDP Mineral project has indicated a limited number of uranium occurrences and anomalies. The speculative uranium resources are thought to be possibly associated with potential unconformity related vein-like deposits of the Lower Burundian. Other speculative uranium resources could be associated with granitic or peribatholitic

  2. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Colombia

    International Nuclear Information System (INIS)

    1984-01-01

    A full report has been released describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Colombia. The Mission suggests that the speculative uranium resources of the country could be within the very wide range of 20 000 tonnes of 220 000 tonnes of uranium metal. The Mission finds that the area with the highest potential is the Llanos Orientales (Interior Zone), which has the potential of hosting quartz-pebble conglomerate deposits, Proterozoic unconformity-related deposits and sandstone deposits. The Mission recommends that approximately US$80 million should be expended in a phased ten-year exploration programme. It is likely that the majority of the funds will be needed for drilling, followed by ground surveys and airborne radiometry. It is the opinion of the Mission that the considerable funds required for the proposed programme could most suitably be raised by inviting national or foreign commercial organizations to participate under a shared production agreement. (author)

  3. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Bolivia

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Bolivia. The IUREP Orientation Phase mission to Bolivia estimates that the Speculative Uranium Resources of that country fall within the range of 100 to 107 500 tonnes uranium. The majority of this potential is expected to be located in the Precambrian crystalline and sedimentary rocks of the southwestern part of the Central Brazilian Shield. Other potentially favourable geologic environments include Palaeozoic two mica granites and their metasedimentary hosts, Mesozoic granites and granodiorites as well as the intruded formations and finally Tertiary acid to intermediate volcanics. The mission recommends that approximately US$ 13 million be spent on exploration in Bolivia over a five-year period. The majority of this expenditure would be for airborne and surface exploration utilising geologic, magnetometric, radiometric, and geochemical methods and some pitting, trenching, tunneling and drilling to further evaluate the discovered occurrences. (author)

  4. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Thailand

    International Nuclear Information System (INIS)

    1977-08-01

    Thailand is a country with an area of 514?000 square kilometres situated in the centre of continental south-east Asia, The geology of Thailand is very varied with sedimentary formations ranging from Cambrian to Quaternary in age and including sandstones, shales, limestones of many varieties. Among the igneous rocks, granites are very important and rhyolites, tuffs diorites, basalts and ultrabasic rocks also exist. Tin is the most important mineral occurrence. Available information on the geology and mineral resources suggests that the country may contain significant resources of radioactive minerals. Favourable potential host types are; 1) uranium and thorium in monazite in beach sands and tin placer deposits; 2) uranium in sandstones, principally in Jurassic sandstones of the Khorat Plateau; 3) uranium in Tertiary lignite deposits; 4) uranium in veins in granites; 5) uranium related to fluorite deposits; 6) uranium in black shales and phosphates. Uranium mineralization in sedimentary rocks at Phu Wieng was discovered in 1970. The area has been radiometrically grid mapped and limited shallow drilling has shown continuity.of the narrow, carbonaceous, conglomeratic sandstone host bed. No uranium reserves or resources can be stated at the present time, but the favourable geology of the Khorat Plateau, the known uranium occurrence and the very small exploration coverage is possibly indicative of a good future potential. The Speculative Potential is estimated to be between 1000 and 10,000 tonnes uranium. (author)

  5. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Venezuela

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Venezuela. The IUREP Orientation Phase mission to Venezuela estimates that the Speculative Resources of that country fall within the range 2,000 to 42,000 tonnes uranium.- The majority of this potential is expected to be located in the Precambrian crystalline and sedimentary rocks of the Guayana Shield. Other potentially favorable geologic environments include Cretaceous phosphorite beds, continental sandstone and granitic rocks. The mission recommends that approximately US $18 million be spent on exploration in Venezuela over the next five years. The majority of this expenditure would be for surface surveys utilizing geologic studies, radiometric and geochemical surveys and some drilling for geologic information. Additional drilling would be required later to substantiate preliminary findings. (author)

  6. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Syria

    International Nuclear Information System (INIS)

    1977-11-01

    Very little information is available to IAEA on the geology and uranium potential of Syria. In 1975 a contract was awarded to Huntings Geology and Geophysics Ltd by the Ministry of Petroleum and Mineral Resources to carry out a study of the country's mineral resources with particular reference to phosphate uranium, chrome and industrial materials. The results of this survey are not known. Apart from the assumption of some possibility of uranium recovery as a by-product from phosphate production it is assumed that the Speculative Potential is likely to be less than 1000 tonnes uranium. (author)

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: India

    International Nuclear Information System (INIS)

    1977-08-01

    Physiographically India has a total area of 3,268,010 km 2 in three distinct regions. 1. The Peninsular shield in the south with an area of 823,310 km 2 . 2. The Himalayan mountain system with an area of 1,797,200 km 2 . 3. The Indo-Gangetic alluvial plain with an area of 647,500 km 2 . The three presently recognised major uranium provinces in India are: 1. The Singhbhum uranium province; 2. The Rajasthan uranium province, 3. The Madhya Pradesh uranium province. The Atomic Minerals Division of the Department of Atomic Energy has carried out a vigorous exploration programme since 1949 but despite their efforts a great deal of ground has still to be explored. At present, structurally controlled deposits account for most of the uranium resources of India. Uranium occurrences and deposits have been outlined in (1) Vein type deposits (the Singhbhum belt), (2) Conglomerate (Karnataka and Udaipur area, Raiasthan), (3) Sandstones (Madhra Pradesh and Swaliks, Himachal Pradesh, (4) Others such as carbonatites, marine phosphates, etc, (Mussorrie - Sahasradhara In Uttar Pradesh and Chatterpur-Saucur in Madhya Pradesh), (5) By-product Uranium in copper tailings and beach sands. India's total resources are listed as 52,538 tonnes uranium (68,300 short tons U 3 O 8 ) with additional resources from monazite of 12700 tonnes uranium. In view of the wide geological favourability, the many types of occurrences already known and the vast areas of unexplored ground it is estimated that the Speculative Potential may be between 150,000 and 250,000 tonnes uranium which is Category 5. (author)

  8. World uranium: resources, production and demand

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The OECD Nuclear Energy Agency recently announced the publication of a new edition of its report on Uranium resources, production and demand which has been published periodically since 1965, jointly with the International Atomic Energy Agency. In addition to bringing uranium resources and production estimates up-to-date, the new edition offers a more comprehensive treatment of exploration activity and uranium availability, and includes a greater number of countries within the scope of the survey. Information on uranium demand has also been revised, in the light of more recent forecasts of the growth of nuclear power. Finally, a comparison is made between uranium availability and requirements, and the implications of this comparison analysed. The main findings and conclusions of the report are summarized here. (author)

  9. Uranium resources, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The specific character of uranium as energy resources, the history of development of uranium resources, the production and reserve of uranium in the world, the prospect regarding the demand and supply of uranium, Japanese activity of exploring uranium resources in foreign countries and the state of development of uranium resources in various countries are reported. The formation of uranium deposits, the classification of uranium deposits and the reserve quantity of each type are described. As the geological environment of uranium deposits, there are six types, that is, quartz medium gravel conglomerate deposit, the deposit related to the unconformity in Proterozoic era, the dissemination type magma deposit, pegmatite deposit and contact deposit in igneaus rocks and metamorphic rocks, vein deposit, sandstone type deposit and the other types of deposit. The main features of respective types are explained. The most important uranium resources in Japan are those in the Tertiary formations, and most of the found reserve belongs to this type. The geological features, the state of yield and the scale of the deposits in Ningyotoge, Tono and Kanmon Mesozoic formation are reported. Uranium minerals, the promising districts in the world, and the matters related to the exploration and mining of uranium are described. (Kako, I.)

  10. The uranium International trade

    International Nuclear Information System (INIS)

    Gonzalez U, L.A.

    1993-01-01

    The aim of this thesis is the understanding of how the present dynamic of uranium International trade is developed, the variables which fall into, the factors that are affecting and conditioning it, in order to clarify which are going to be the outlook in the future of this important resource in front of the present ecological situation and the energetic panorama of XXI Century. For this purpose, as starting point, the uranium is considered as a strategic material which importance take root in its energetic potential as alternate energy source, and for this reason in Chapter I, the general problem of raw materials, its classification and present situation in the global market is presented. In Chapter II, by means of a historical review, is explain what uranium is, how it was discovered, and how since the end of the past Century and during the last three decades of present, uranium pass of practically unknown element, to the position of a strategic raw material, which by degrees, generate an International market, owing to its utilization as a basic resource in the generation of energy. Chapter III, introduce us in the roll played by uranium, since its warlike applications until its utilization in nuclear reactors for the generation of electricity. Also is explain the reason for this change in the perception at global level. Finally, in Chapter IV we enter upon specifically in the present conditions of the International market of this mineral throughout the trends of supply and demand, the main producers, users, price dynamics, and the correlation among these economical variables and other factors of political, social and ecological nature. All of these with the purpose to found out, if there exist, a meaning of the puzzle that seems to be the uranium International trade

  11. Uranium 2011 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  12. Uranium 2005 Resources, Production and Demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris. Nuclear Energy Agency

    2006-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  13. Uranium 2014 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  14. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Rwanda

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Rwanda. The IUREP Orientation Phase Mission to Rwanda estimates that the Speculative Resources of that country fall within the range of 500 to 5 000 tonnes of uranium. The majority of this potential is expected to be located in the Precambrian Ruzizian, especially in conjunction with tectonized pegmatoidal remobilizations of metamorphic sediments of western Rwanda. Other favourable geological environments include lamprophyric dikes and post tectonic granites of central Rwanda. The Mission recommends that over a period of five years approximately US$4.2 million be spent on exploration in Rwanda. The majority of this would be spent on airborne and ground geophysical surveys ($1.5 million) and exploration drilling ($1 million). Prospecting, trenching and tunneling and analytical work would require the remainder of the $4.2 million ($1.7 million). (author)

  15. Uranium. Resources, production and demand

    International Nuclear Information System (INIS)

    1997-01-01

    The events characterising the world uranium market in the last several years illustrate the persistent uncertainly faced by uranium producers and consumers worldwide. With world nuclear capacity expanding and uranium production satisfying only about 60 per cent of demand, uranium stockpiles continue to be depleted at a high rate. The uncertainty related to the remaining levels of world uranium stockpiles and to the amount of surplus defence material that will be entering the market makes it difficult to determine when a closer balance between uranium supply and demand will be reached. Information in this report provides insights into changes expected in uranium supply and demand until well into the next century. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is the foremost reference on uranium. This world report is based on official information from 59 countries and includes compilations of statistics on resources, exploration, production and demand as of 1 January 1997. It provides substantial new information from all of the major uranium producing centres in Africa, Australia, Eastern Europe, North America and the New Independent States, including the first-ever official reports on uranium production in Estonia, Mongolia, the Russian Federation and Uzbekistan. It also contains an international expert analysis of industry statistics and worldwide projections of nuclear energy growth, uranium requirements and uranium supply

  16. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Somalia

    International Nuclear Information System (INIS)

    Levich, Robert A.; Muller-Kahle, Eberhard

    1983-04-01

    The IUREP Orientation Phase Mission to Somalia suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US $ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat Imagery Interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas

  17. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Taiwan

    International Nuclear Information System (INIS)

    1977-12-01

    Taiwan is an island of 36,000 sq km located 160 km east of mainland China. Geologically, the oldest rocks are Tertiary, and the only igneous rocks on the island are Quaternary andesites and basalts. Copper, gold, and silver are the only known metallic minerals produced. Uranium occurrences and exploration efforts are unknown. The potential uranium resource of Taiwan is considered a category 1 resource. (author)

  18. Uranium 2001: resources, production and demand

    International Nuclear Information System (INIS)

    2002-01-01

    The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. Its contents are based on official information received from 45 countries, supplemented by unofficial information for two others. This edition, the 19., presents the results of a thorough review of world uranium supply and demand as of 1 January 2001 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Eastern Europe and North America and, for the first time, includes a report on Tajikistan. This edition also features international expert analyses and projections of nuclear generating capacity and reactor-related uranium requirements through 2020. (authors)

  19. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Portugal

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Portugal. The IUREP Orientation Phase mission to Portugal estimates that the Speculative Resources of that country fall within the range 20,000 to 80,000 tonnes uranium. The majority of this potential is expected to be located in intergranitic vein deposits and in pre-Ordovician schists, but other favourable geological environments include episyenites and Meso-Cainozoic continental sediments. The mission recommends that approximately US$25 million be spent on exploration in Portugal over the next 10 years. The majority of this ($18 million) would be spent on drilling, with a further $7 million on surface surveys and airborne radiometric surveys. It is the opinion of the IUREP Orientation Phase Mission that the considerable funding required for the outlined programme would most suitably be realized by inviting national or foreign commercial organisations to participate in the exploration effort under a partnership or shared production arrangements. (author)

  20. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Peru

    International Nuclear Information System (INIS)

    1984-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (TUREP) Mission to Peru. The IUREP Orientation Phase Mission to Peru estimates that the Speculative Resources of that country fall within the range of 6 000 to 11 000 tonnes uranium. The majority of this potential is expected to be located in Late Tertiary ignimbrites and associated sediments in the high Andes of southern Peru. Other favourable geological environments include calcretes, developed from Tertiary volcanogenic sources over the Precambrian in the Pacific Coastal desert in southern Peru, and Hercynian subvolcanic granites in the eastern Cordillera of southern Peru. The Mission recommends that over a period of five years approximately U.S. $10 million be spent on exploration in Peru. The majority of this would be spent on drilling ($5 million) and tunnelling ($2 million) with an additional $3 million on surface and airborne radiometric surveys. (author)

  1. Uranium resources and supply - demand to 2030

    International Nuclear Information System (INIS)

    Vance, R.

    2010-01-01

    Recent fluctuations in the market price for uranium have resulted in more activity in this sector over the past few years than in the preceding 20 years. Amidst this background, uranium demand is increasing. Construction of nuclear reactors is proceeding in some countries, ambitious expansion plans have been announced in others and the development of nuclear power programs to meet electricity demand and minimize greenhouse emissions in a cost effective manner is under consideration in many others. This paper reviews projections of nuclear growth and uranium demand and assesses the challenges faced by the uranium mining sector in meeting rising demand. Since the mid-1960 s, an international expert committee (the 'Uranium Group') formed by the OECD Nuclear Energy Agency and the International Atomic Energy Agency has published biennially comprehensive updates on global uranium resources, production and demand (the 'Red Book'). The most recent in this series, based on 2007 data and published in June 2008, includes a supply/demand projection to 2030. However, much has changed since the data were collected for this projection and an assessment of these changes and their impact on uranium production is included in this presentation. It is concluded that world identified uranium resources (5.45 million t U recoverable at costs up to US$130/kg U, or US$50/lb U 3 O 8 ) are adequate to meet projected future high case nuclear power requirements. However, recent financial market turmoil and lower uranium prices, the opaque nature of the uranium market itself, increased regulatory requirements, a scarcity of the required specialized labour and the fluctuating costs of raw materials makes the process of turning uranium resources in the ground into yellowcake in the can increasingly more challenging, particularly for new entrants. Considerable investment and expertise will be required to bring about the substantial increase in mine production required to meet future demand

  2. Uranium market and resources

    International Nuclear Information System (INIS)

    Capus, G.; Arnold, Th.

    2004-01-01

    The controversy about the extend of the uranium resources worldwide is still important, this article sheds some light on this topic. Every 2 years IAEA and NEA (nuclear energy agency) edit an inventory of uranium resources as reported by contributing countries. It appears that about 4.6 millions tons of uranium are available at a recovery cost less than 130 dollars per kg of uranium and a total of 14 millions tons of uranium can be assessed when including all existing or supposed resources. In fact there is enough uranium to sustain a moderate growth of the park of nuclear reactors during next decades and it is highly likely that the volume of uranium resources can allow a more aggressive development of nuclear energy. It is recalled that a broad use of the validated breeder technology can stretch the durability of uranium resources by a factor 50. (A.C.)

  3. Uranium 2011: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2012-01-01

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countries developing production centres for the first time. Projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, are also featured, along with an analysis of long-term uranium supply and demand issues

  4. Evaluation of uranium resources. Problems and constraints

    International Nuclear Information System (INIS)

    Williams, R.M.

    1979-01-01

    Growing awareness that the era of cheap energy is over has led to current efforts by governments and international organizations to examine the question of the adequacy of energy resources on a global scale. Despite the relative success of the NEA and the IAEA efforts in the study of world uranium supply, there is a need for such studies to become still more comprehensive and broader in scope. A basic problem exists with respect to the lack of a universally accepted set of resource terms by which to classify resource estimates once they are made. Often voids exist in international assessments because of insufficient data with respect to known resources and occasionally because of a lack of expertise to make the required estimates. With respect to the assessment of undiscovered uranium resources, major constraints are the relatively embryonic state of methodology for assessment of undiscovered resources and the fact that the inventory of basic geology, geochemical, and geophysical data is either incomplete or non-existent in many parts of the world. Finally, once resource estimates are made, there is often an unclear understanding about when and at what rate the resources can be made available. Hopefully, current efforts will lead to a solution to some of the principal problems and constraints which may be impeding progress toward an expansion and improvement of world uranium resource assessments. (author)

  5. Recovery of uranium resources from sea water

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1980-01-01

    After the oil crisis in 1973, the development of atomic energy has become important as substitute energy, and the stable acquisition of uranium resources is indispensable, in order to promote smoothly the use of atomic energy. The Ministry of International Trade and Industry has engaged actively in the project ''The survey on the technical development of the system for recovering uranium and others from sea water'' since 1974. 80% of the uranium resources in the world is distributed in USA, Canada, South Africa, Australia and Niger, and in near future, the price of uranium ores may be raised. Japan must promote powerfully the development of foreign uranium resources, but also it is very important to get domestic uranium by efficiently recovering the uranium dissolved in sea water, the amount of which was estimated at 4 billion tons, and its practical use is expected in 1990s. The uranium concentration in sea water is about 3 g in 1000 t sea water. The processes of separation and recovery are as follows: (1) adsorption of uranium to titanic acid powder adsorbent by bringing sea water in contact with it, (2) dissolving the collected uranium with ammonium carbonate, the desorption agent, (3) concentration of uranium solution by ion exchange method or ion flotation method to 2800 ppm. The outline of the model plant is explained. (Kako, I.)

  6. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Canada

    International Nuclear Information System (INIS)

    1977-08-01

    Exploration for mineral deposits in Canada resulted in the discovery of large uranium deposits, such as at Great. Bear Lake, Northwest Territories (1930), in the Elliot Lake area, Ontario (1949); Beaverlodge, Wollaston Lake Fold Belt and Carswell Structure in Saskatchewan (1946-1975) and many uranium occurrences in the Canadian Shield, in the Orogenic Belts and in the Platforms. Uranium output in Canada since 1942 until and including 1976 amounted to 112,000 tonnes U. Reasonably Assured uranium resources as of 1976 amounted to 167,000 tonnes U (at a price up to $40/lb. U 3 0 8 ) and 15,000 tonnes U (at a price more than $40 up to $60/lb. U 3 O 8 ). Estimated Additional uranium resources as of 1976 amounted to 392,000 tonnes U (at a price up to $40/lb. U-Og) and 264,000 tonnes U (at a price more than $40 up to $60/lb. U 3 0 8 ). Possible further potential beyond the above mentioned classes is tentatively estimated to be in the 6th category according to NEA/IAEA favourability classification. (author)

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Belgium

    International Nuclear Information System (INIS)

    1977-12-01

    Uranium occurrences and resources - To date the uranium identified in Belgium is limited to a number of occurrences and none of these have as yet proved significant from a reserve or resource viewpoint. The main uranium occurrences ares (1) In the Upper Cambrian graphite schists corresponding to the culm of Sweden small zones are found (30 - 50 cm thick) with an average of 20 ppm uranium. (2) Near Vise at the base of the Carboniferous the Visean formation is discordantly superimposed on the Permian (Frasnian) and overlain by shales and phyllites. Solution pockets at the boundary contain phosphatic lenses that contain uranium values of up to 200 ppm. Autunite and Torbernite are the main uranium minerals associated with a number of complex phosphatic minerals. Within the Chalk (Maestrichtien) of the Mons basin, that is mainly in the Ciply - St. Symphorien and Baudow district. Here is found enrichment of uranium up to 140 ppm over large areas related to phosphatic chalk. The thickness of the zone varies from a few to 20 metres. However, as the P 2 O 5 content is not high enough for the deposits to be exploited at present for phosphate there is little possibility of the uranium being concentrated at high enough levels to be exploited for itself alone. (4) Near to Vielsalm (in the Stavelot Massif) are some thin quartz veins containing small amounts of copper and uranium minerals (Torbornite). Values of up to 70 ppm are recorded. (5) A number of low uranium values are recorded associated with phosphatic nodules and zones in the Lower Pleistocene and Tertiary

  8. Australian uranium resources

    International Nuclear Information System (INIS)

    Battey, G.C.; Miezitis, Y.; McKay, A.D.

    1987-01-01

    Australia's uranium resources amount to 29% of the WOCA countries (world outside centrally-planned-economies areas) low-cost Reasonably Assured Resources and 28% of the WOCA countries low-cost Estimated Additional Resources. As at 1 January 1986, the Bureau of Mineral Resources estimated Australia's uranium resources as: (1) Cost range to US$80/kg U -Reasonably Assured Resources, 465 000 t U; Estimated Additional Resources, 256 000 t U; (2) Cost range US$80-130/kg U -Reasonably Assured Resources, 56 000 t U; Estimated Additional Resources, 127 000 t U. Most resources are contained in Proterozoic unconformity-related deposits in the Alligator Rivers uranium field in the Northern Territory (Jabiluka, Ranger, Koongarra, Nabarlek deposits) and the Proterozoic stratabound deposit at Olympic Dam on the Stuart Shelf in South Australia

  9. Patterns and Features of Global Uranium Resources and Production

    Science.gov (United States)

    Wang, Feifei; Song, Zisheng; Cheng, Xianghu; Huanhuan, MA

    2017-11-01

    With the entry into force of the Paris Agreement, the development of clean and low-carbon energy has become the consensus of the world. Nuclear power is one energy that can be vigorously developed today and in the future. Its sustainable development depends on a sufficient supply of uranium resources. It is of great practical significance to understand the distribution pattern of uranium resources and production. Based on the latest international authoritative reports and data, this paper analysed the distribution of uranium resources, the distribution of resources and production in the world, and the developing tendency in future years. The results show that the distribution of uranium resources is uneven in the world, and the discrepancies between different type deposits is very large. Among them, sandstone-type uranium deposits will become the main type owing to their advantages of wide distribution, minor environmental damage, mature mining technology and high economic benefit.

  10. Uranium 2009: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry - the first critical link in the fuel supply chain for nuclear reactors - is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23. edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres around the world, as well as from countries developing production centres for the first time. Projections of nuclear generating capacity and reactor-related uranium requirements through 2035 are also featured, along with an analysis of long-term uranium supply and demand issues

  11. Uranium 1999. Resources, production and demand

    International Nuclear Information System (INIS)

    2000-01-01

    In recent years, the world uranium market has been characterised by an imbalance between demand and supply and persistently depressed uranium prices. World uranium production currently satisfies between 55 and 60 per cent of the total reactor-related requirements, while the rest of the demand is met by secondary sources including the conversion of excess defence material and stockpiles, primarily from Eastern Europe. Although the future availability of these secondary sources remains unclear, projected low-cost production capability is expected to satisfy a considerable part of demand through to 2015. Information in this report provides insights into changes expected in uranium supply and demand over the next 15 years. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is the foremost world reference on uranium. It is based on official information from 49 countries and includes compilations of statistics on resources, exploration, production and demand as of 1 January 1999. It provides substantial new information from all of the major uranium producing centres in Africa, Australia, Eastern Europe, North America and the New Independent States. It also contains an international expert analysis of industry statistics and world-wide projections of nuclear energy growth, uranium requirements and uranium supply. (authors)

  12. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Ghana. Draft

    International Nuclear Information System (INIS)

    Guelpa, Jean-Paul; Vogel, Wolfram

    1982-12-01

    The Republic of Ghana has no claimed uranium resources in the categories Reasonably Assured and Estimated Additional. The only occurrences known are within pegmatites and are of no economic importance. The IUREP Orientation Phase Mission to Ghana estimates that the Speculative Resources of the country fall between 15,000 and 40,000 tonnes uranium. The IUREP Orientation Phase Mission to Ghana believes that the Panafrican Mobile Belt has the highest uranium potential of all geological units of the country. The Obosum beds are the priority number two target. A three years exploration programme is recommended for a total cost of US $ 5,000,000. The Ghana Atomic Energy Commission and the Ghana Geological Survey provide a basic infrastructure for uranium exploration. Any future uranium development in Ghana should be embedded in a well defined national uranium policy. It is recommended that such a policy be draw, up by the Ghanaian authorities

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Republic of Korea

    International Nuclear Information System (INIS)

    1977-12-01

    The Republic of Korea, occupies the southern end of the Korean peninsula. It has a long history of mining and mineral production, and has an active and fairly well equipped Geological Survey. The country in general is quite highly mineralized with many minerals including uranium although there has been no uranium production from it yet. Uranium occurs in granites, schists, and in black carbonaceous shales. The Korean Geological survey has estimated that one ore body contains 650 tonnes U in 1,600,000 tons of ore at an average grade of 0.047 percent U 3 O 8 . Many recent reports also indicate very large resources of uranium in very low grade ranges. The uranium potential for the Republic of Korea is considered in Category 2 (1,000 - 10,000 tonnes U) in the normal IUREP context. However, a very large resource may exist in the very low grades in black shales of the country. This resource is considered as in category 6 (500,000 to 1,000,000 tonnes U). (author)

  14. Uranium 1990 resources, production and demand

    International Nuclear Information System (INIS)

    1990-01-01

    Periodic assessments of world uranium supply and demand have been conducted by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) since the mid 1960s. Published every two years, the report URANIUM RESOURCES, PRODUCTION AND DEMAND, commonly referred to as the RED BOOK, has become an essential reference document for nuclear planners and policy makers in the international nuclear community. The latest Red Book, published in 1990, was based on data collected mainly in early 1989. Most of the data for 1989 were therefore provisional. The STATISTICAL UPDATE 1990 provides updated 1989 data collected in 1990 and provisional for 1990 [fr

  15. Uranium mining and production: A legal perspective on regulating an important resource

    International Nuclear Information System (INIS)

    Thiele, Lisa

    2013-01-01

    The importance of uranium can be examined from several perspectives. First, natural uranium is a strategic energy resource because it is a key ingredient for the generation of nuclear power and, therefore, it can affect the energy security of a state. Second, natural uranium is also a raw material in relative abundance throughout the world, which can, through certain steps, be transformed into nuclear explosive devices. Thus, there is both an interest in the trade of uranium resources and a need for their regulatory control. The importance of uranium to the worldwide civilian nuclear industry means that its extraction and processing - the so-called 'front end' of the nuclear fuel cycle - is of regulatory interest. Like 'ordinary' metal mining, which is generally regulated within a country, uranium mining must also be considered from the more particular perspective of regulation and control, as part of the international nuclear law regime that is applied to the entire nuclear fuel cycle. The present overview of the regulatory role in overseeing and controlling uranium mining and production will outline the regulation of this resource from an international level, both from early days to the present day. Uranium mining is not regulated internationally; rather, it is a state responsibility. However, developments at the international level have, over time, led to better national regulation. One can note several changes in the approach to the uranium industry since the time that uranium was first mined on a significant scale, so that today the mining and trade of uranium is a well-established and regulated industry much less marked by secrecy and Cold War sentiment. At the same time, it is informed by international standards and conventions, proliferation concerns and a modern regard for environmental protection and the health and safety of workers and the public. (author)

  16. Estimating uranium resources and production. A guide to future supply

    International Nuclear Information System (INIS)

    Taylor, D.M.; Haeussermann, W.

    1983-01-01

    Nuclear power can only continue to grow if sufficient fuel, uranium, is available. Concern has been expressed that, in the not too distant future, the supply of uranium may be inadequate to meet reactor development. This will not be the case. Uranium production capability, actual and planned, is the main indicator of short- and medium-term supply. However, for the longer term, uranium resource estimates and projections of the possible rate of production from the resource base are important. Once an estimate has been made of the resources contained in a deposit, several factors influence the decision to produce the uranium and also the rates at which the uranium can be produced. The effect of these factors, which include uranium market trends and ever increasing lead times from discovery to production, must be taken into account when making projections of future production capability and before comparing these with forecasts of future uranium requirements. The uranium resource base has developed over the last two decades mainly in response to dramatically changing projections of natural uranium requirements. A study of this development and the changes in production, together with the most recent data, shows that in the short- and medium-term, production from already discovered resources should be sufficient to cover any likely reactor requirements. Studies such as those undertaken during the International Uranium Resources Evaluation Project, and others which project future discovery rates and production, are supported by past experience in resource development in showing that uranium supply could continue to meet demand until well into the next century. The uranium supply potential has lessened the need for the early large-scale global introduction of the breeder reactor

  17. Uranium resources potential for Asia and the Pacific

    International Nuclear Information System (INIS)

    Tauchid, M.

    1988-01-01

    Only four countries in Asia, India, Japan, the Republic of Korea and Turkey, reported having uranium resources in response to a Nuclear Energy Agency of the OECD/International Atomic Energy Agency questionnaire circulated before preparation of the report on Uranium: Resources, Production and Demand (the 'Red Book'). The reasonably assured resources (RAR) of these countries, which are recoverable at costs of up to US $130/kg U, amount to 67,690 t U or 3% of the total for the World Outside the Centrally Planned Economies Area (WOCA). It is believed that the largest uranium resources in Asia are in China; however, no official published figures are available to substantiate this fact. Within the framework of the International Uranium Resources Evaluation Project (IUREP) it was estimated that the speculative resources (SR) for Asia and the Far East outside the Centrally Planned Economies Area (CPEA) are of the order of 300,000 t U. This is 4.7% of the total for WOCA. With the exception of Proterozoic unconformity related deposits, all types of uranium deposits and occurrences are known to exist in Asia. Most deposits are of the vein and sandstone hosted types. Several published reports indicate that deposits in China are mainly of the volcanic type and those associated with granitic intrusion. For undiscovered deposits, probably India and China have the best possibility of finding deposits of the Precambrian quartz-pebble conglomerate and Proterozoic unconformity related types. In South-East Asia the deposits most likely to be found are those associated with Mesozoic granites and those in the intramontane basin sediments adjacent to these intrusions. The less known acid volcanic type is also a possibility. Only in China, India and Pakistan does there appear to be the possibility of finding calcrete type deposits. Uranium can still be recovered as a by-product of the phosphate rocks, monazite placer deposits and carbonatite known in many parts of Asia. (author). 21 refs

  18. Unconventional uranium resources in China

    International Nuclear Information System (INIS)

    Qi Fucheng; Zhang Zilong; Li Zhixing; Wang Zhiming; He Zhongbo; Wang Wenquan

    2011-01-01

    Unconventional uranium resources in China mainly include black-rock series, peat, salt lake and evaporitic rocks. Among them, uraniferous black-rock series, uraniferous phosphorite and uranium-polymetallic phosphorite connected with black-rock series are important types for the sustainable support of uranium resources in China. Down-faulting and epocontinental rift in continental margin are the most important and beneficial ore-forming environment for unconventional uranium resources of black-rock series in China and produced a series of geochemistry combinations, such as, U-Cd, U-V-Mo, U-V-Re, U-V-Ni-Mo and U-V-Ni-Mo-Re-Tl. Unconventional uranium resources of black-rock series in China is related to uranium-rich marine black-rock series which are made up of hydrothermal sedimentary siliceous rocks, siliceous phospheorite and carbonaceous-siliceous-pelitic rock and settled in the continental margin down-faulting and epicontinental rift accompanied by submarine backwash and marine volcano eruption. Hydrothermal sedimentation or exhalation sedimentary is the mechanism to form unconventional uranium resources in black-rock series or large scale uranium-polymetallic mineralization in China. (authors)

  19. Maintaining the Uranium Resources Assessment Data System and assessing the 1990 US uranium potential resources

    International Nuclear Information System (INIS)

    McCammon, R.B.; Finch, W.I.; Grundy, W.D.; Pierson, C.T.

    1991-01-01

    The Energy Information Administration's (EIA) Uranium Resource Assessment Data System contains information on potential resources (undiscovered) of uranium in the United States. The purpose of this report is: (1) to describe the work carried out to maintain and update the Uranium Resource Assessment Data (URAD) System, (2) to assess the 1990 US uranium potential resources in various cost categories, and (3) to identify problems and to recommend changes that are needed to improve the URAD System. 13 refs., 5 figs., 4 tabs

  20. Uranium 2009 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Nigaragua

    International Nuclear Information System (INIS)

    1977-08-01

    On invitation of the Nicaraguan Government, the U. S. Atomic Energy Commission conducted a reconnaissance for uranium in March, 1953. Operating and abandoned mines, as well as prospects, formations, contacts, dikes and sills enroute to these mines were tested by scintillometer. Reconnaissance included two mineralized areas exposed in windows within the volcanic belt but did not include the schists and granitic intrusions in the north eastern part of the country. No anomalous radioactivity was detected. No uranium occurrences were discovered during the 1953 reconnaissance and no uranium deposits or prospects are indicated on the metallogenetic map of Central America or in the bibliography of Nicaraguan geology. Information is net available on current exploration in Nicaragua. All subsoil mineral resources besides quarry materials belong to the state. In the interest of national defence, uranium, thorium, lithium and their derivatives, along with certain other mineral substances, may be classified as o f temporary strategic interest , and their exploration or exploitation would then be subject to special laws. The Ministry of Economy may establish permanent or temporary national reserves on which mining activities are essentially precluded. Foreign nationals and corporations may acquire mineral concessions although particular regulations may be applicable to such an acquisition. Exploration of any favourable formations has been hindered by volcanic ash cover in western Nicaragua and dense vegetation in the East. Little geologic work has been done on the Paleozoic metamorphic rocks or Todos Santos Formation of the Northern Highlands. These could possibly show some potential for discovery of uranium as might the alaskites near Siuna. The potential resources of Nicaragua are estimated at less than 1,000 tonnes uranium

  2. Uranium 2007: resources, production and demand

    International Nuclear Information System (INIS)

    2008-01-01

    With several countries building nuclear power plants and many more considering the use of nuclear power to produce electricity in order to meet rising demand, the uranium industry has become the focus of considerable attention. In response to rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of under investment. The ''Red Book'', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on official information received from 40 countries. This 22. edition provides a comprehensive review of world uranium supply and demand as of 1. January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. (author)

  3. Uranium 2007: resources, production and demand

    International Nuclear Information System (INIS)

    2008-01-01

    With several countries building nuclear power plants and many more considering the use of nuclear power to produce electricity in order to meet rising demand, the uranium industry has become the focus of considerable attention. In response to rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of under investment. The ''Red Book'', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on official information received from 40 countries. This second edition provides a comprehensive review of world uranium supply and demand as of first January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. (author)

  4. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Guatemala

    International Nuclear Information System (INIS)

    1977-08-01

    Before 1959 a private individual (Mr. Rene Abularach) is reported to have made an airborne radiometric survey of the Sierra de las Minas and Sierra Madre Ranges. Although many anomalies were detected by this survey, none were verified in the ground survey followup, despite apparently adequate flight control. In 1968 a United Nations Special Fund Mineral Survey Project completed over 1,000 km of carborne radiometric survey with geiger counter readings at 500 m intervals. No anomalies were detected, but background radioactivity for several formations and geologic environments was established. In 1969 the Guatemalan government solicited the IAEA for technical assistance In conducting a preliminary uranium favorability study designed to formulate recommendations for a national radioactive ore prospecting program. A carborne radiometric survey was made of environments theoretically favorable for uranium deposition, with spot geological and radiometric examinations being .conducted in the more favorable areas. All Important mining regions of Guatemala except the leterites and the ultrabasics were visited. No evidence of a uranium province was observed 1n these field investigations and the recommendation was made that the government not embark on a more detailed national prospecting program at that time. At the time of completion of the IAEA-Guatemalan government (GOG) reconnaissance program in 1971, no uranium reserves or resources were known. More recent information on uranium occurrences and resources 1n Guatemala does not appear to be available. Information on more recent uranium reconnaissance than that undertaken during 1971 IAEA-GOG study is lacking. However, in more recent years the country's mineral potential has been generally evaluated with the aid of the UN and ICAITI (Central American Research Institute for Industry). Except for quarry materials, the state owns all minerals. The state has priority on purchase of any mineral production needed for the country

  5. Critical analysis of world uranium resources

    Science.gov (United States)

    Hall, Susan; Coleman, Margaret

    2013-01-01

    report’s analysis of 141 mines that are operating or are being actively developed identifies 2.7 million tU of in-situ uranium resources worldwide, approximately 2.1 million tU recoverable after mining and milling losses were deducted. Sixty-four operating mines report a total of 1.4 million tU of in-situ RAR (about 1 million tU recoverable). Seventy-seven developing mines/production centers report 1.3 million tU in-situ Reasonably Assured Resources (RAR) (about 1.1 million tU recoverable), which have a reasonable chance of producing uranium within 5 years. Most of the production is projected to come from conventional underground or open pit mines as opposed to in-situ leach mines. Production capacity in operating mines is about 76,000 tU/yr, and in developing mines is estimated at greater than 52,000 tU/yr. Production capacity in operating mines should be considered a maximum as mines seldom produce up to licensed capacity due to operational difficulties. In 2010, worldwide mines operated at 70 percent of licensed capacity, and production has never exceeded 89 percent of capacity. The capacity in developing mines is not always reported. In this study 35 percent of developing mines did not report a target licensed capacity, so estimates of future capacity may be too low. The Organisation for Economic Co-operation and Development’s Nuclear Energy Agency (NEA) and International Atomic Energy Agency (IAEA) estimate an additional 1.4 million tU economically recoverable resources, beyond that identified in operating or developing mines identified in this report. As well, 0.5 million tU in subeconomic resources, and 2.3 million tU in the geologically less certain inferred category are identified worldwide. These agencies estimate 2.2 million tU in secondary sources such as government and commercial stockpiles and re-enriched uranium tails. They also estimate that unconventional uranium supplies (uraniferous phosphate and black shale deposits) may contain up to 7.6 million t

  6. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Cameroon. Draft

    International Nuclear Information System (INIS)

    Trey, Michel de; Leney, George W.

    1983-05-01

    The purpose of the International Uranium Resource Evaluation Project (IUREP) missions to host nations is to: R eview the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for the discovery of additional resources, and to suggest new exploration efforts which might be carried out in promising areas in collaboration with the countries concerned. Guidance in the achievement of these goals is provided through a check list of desired relevant information on: general background, the potential role of nuclear energy, and organizations involved, information on the mining industry, technical manpower employed or available, available maps, aerial photographs, and publications, national geological survey and organizations involved in uranium, private organizations involved in uranium exploration and mining, results of previous exploration, known uranium occurrences, plans for further work, legal and administrative requirements for exploration and logistical information on facilities available. The economy of CAMEROON is sound and continues to expand with an annual growth rates of 5-6%. Emphasis is placed on private investment with government participation in major development projects. The overall investment climate is good. Minerals exploration is carried out under nonexclusive Prospecting License and exclusive Exploration License that may later be converted to a Mining Lease or Mining Concession. Many of the conditions must be negotiated. Uranium is classified as a strategic mineral, and may be subject to special review. There is no defined policy on uranium development. Two government organizations are concerned with geology and mining. The INSTITUT DE RECHERCHES GEOLOGIQUES ET MINIERES (IRGM) conducts programs of geologic mapping and research, mineralogy, hydrology, and alternate energy sources. The DEPARTMENT OF MINES AND GEOLOGY (DMG) is responsible for all minerals exploration and mining. It includes a

  7. Uranium Resources, production and demand

    International Nuclear Information System (INIS)

    1988-01-01

    Periodic assessments of world uranium supply and demand have been conducted by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) since the mid 1960s. Published every two years, the report URANIUM RESOURCES, PRODUCTION AND DEMAND, commonly referred to as the RED BOOK, has become an essential reference document for nuclear planners and policy makers in the international nuclear community. The latest Red Book, published in 1988, was based on data collected mainly in early 1987. Most of the data for 1987 were therefore provisional. The STATISTICAL UPDATE 1988 provides updated 1987 data collected in 1988 and provisional data for 1988. The publication, which covers OECD Countries and gives Secretariat estimates for the rest of the World Outside Centrally Planned Economies (WOCA), is being issued every second year, between publications of more complete Red Books

  8. Uranium, resources, production and demand

    International Nuclear Information System (INIS)

    1986-01-01

    Periodic assessments of world uranium supply have been conducted by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) since the mid 1960s. Published every two years, the report Uranium resources, production and demand, commonly referred to as the red book, has become an essential reference document for nuclear planners and policy makers in the international nuclear community. The latest red book, published in 1986, was based on data collected mainly in early 1985. Most of the data for 1985 were therefore provisional. The statistical update 1986 provides updated 1985 data collected in 1986 and provisional data for 1986. This is the first time such an annual update of key Red Book statistical data has been prepared. This year it covers only OECD countries with a secretariat estimate for the rest of Woca

  9. Uranium resources, demand and production

    International Nuclear Information System (INIS)

    Stipanicic, P.N.

    1985-05-01

    Estimations of the demand and production of principal uranium resource categories are presented. The estimations based on data analysis made by a joint 'NEA/IAEA Working Party on Uranium Resources' and the corresponding results are published by the OECD (Organization for Economic Co-operation and Development) in the 'Uranium Resources, Production and Demand' Known as 'Red Book'. (M.C.K.) [pt

  10. Australia's Uranium and thorium resources and their global significance

    International Nuclear Information System (INIS)

    Lambert, I.B.; McKay, A.; Miezitis, Y.

    2006-01-01

    Full text: Full text: Australia's world-leading uranium endowment appears to result from the emplacement of uranium enriched felsic igneous rocks in three major periods during the geological evolution of the continent. Australia has over 27% of the world's total reasonably assured uranium resources (RAR) recoverable at < US$80/kgU (which approximates recent uranium spot prices). Olympic Dam is the largest known uranium deposit, containing approximately 19% of global RAR (and over 40% of global inferred resources) recoverable at < US$80/kg U; the uranium is present at low concentrations and the viability of its recovery is underpinned by co-production of copper and gold. Most of Australia's other identified resources are within Ranger, Jabiluka, Koongarra, Kintyre and Yeelirrie, the last four of which are not currently accessible for mining. In 2004, Australia's three operating uranium mines - Ranger, Olympic Dam, and Beverley -produced 22% of global production. Canada was the only country to produce more uranium (29%) and Kazakhstan (9%) ranked third. Considerably increased uranium production has been recently foreshadowed from Australia (through developing a large open pit at Olympic Dam), Canada (mainly through opening of the Cigar Lake mine), and Kazakhstan (developing several new in situ leach mines). These increases should go a long way towards satisfying demand from about 2010. Olympic Dam has sufficient resources to sustain such increased production over many decades. Thorium is expected to be used in some future generations of nuclear reactors. Australia also has major (but incompletely quantified) resources of this commodity, mainly in heavy mineral sands deposits and associated with alkaline igneous rocks. It is inevitable that the international community will be looking increasingly to Australia to sustain its vital role in providing fuels for future nuclear power generation, given its world-leading identified resources, considerable potential for new

  11. Uranium 2016: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2016-01-01

    Uranium is the raw material used to produce fuel for long-lived nuclear power facilities, necessary for the generation of significant amounts of base-load low-carbon electricity for decades to come. Although a valuable commodity, declining market prices for uranium in recent years, driven by uncertainties concerning evolutions in the use of nuclear power, have led to the postponement of mine development plans in a number of countries and to some questions being raised about future uranium supply. This 26. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA), provides analyses and information from 49 producing and consuming countries in order to address these and other questions. The present edition provides the most recent review of world uranium market fundamentals and presents data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, in order to address long-term uranium supply and demand issues. (authors)

  12. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Venezuela. Draft

    International Nuclear Information System (INIS)

    Hetland, Donald L.; Obellianne, Jean-marie

    1981-04-01

    The IUREP Orientation Phase Mission to Venezuela believes that the Speculative Uranium Resources of that country fall between 2,000 and 42,000 tonnes. This assumes that a part of the Speculative Resources would be extracted as by-product uranium from wet-process phosphoric acid production. Past exploration in Venezuela has resulted in the discovery of very few uranium occurrences and radioactive anomalies except for the many airborne anomalies recorded on the Guayana Shield. To date no economic deposits or significant uranium occurrences have been found in Venezuela except for the uraniferous phosphorites in the Cretaceous Navey Formation which are very low grade. The uranium occurrences and radioactive anomalies can be divided according to host rock into: (1) Precambrian crystalline and sedimentary rocks, (2) Cretaceous phosphorite beds, (3) continental sandstone, and (4) granitic rocks. The greatest geological potential for further uranium resources is believed to exist in the crystalline and sedimentary Precambrian rocks of the Guayana Shield, but favorable geological potential also exist in younger continental sandstones. Since the Guayana Shield is the most promising for the discovery of economic uranium deposits most of the proposed exploration effort is directed toward that area. Considerable time, effort and capital will be required however, because of the severe logistical problems of exploration in this vast, rugged and inaccessable area, Meager exploration work done to date has been relatively negative suggesting the area is more of a thorium rather than a uranium province. However because of the possibility of several types of uranium deposits and because so little exploration work has been done, the Mission assigned a relatively small speculative potential to the area, i.e. 0 to 25,000 tonnes uranium. A small speculative potential (0 to 2,000 tonnes) was assigned to the El Baul area in Cojedes State, in the Llanos Province. This potential is postulated

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: El Salvador

    International Nuclear Information System (INIS)

    1977-08-01

    No information is available on past uranium exploration in El Salvador. The foetallogenic map of Central America (ICAITI, 1970) shows no uranium occurrences, and no descriptions of occurrences are available for this study. Information on current uranium exploration in El Salvador is not available. The 1922 mining code, as amended, covers all minerals, with special rules applicable to phosphates, petroleum and other hydrocarbons. The state owns all minerals, including phosphates, except for salt and other common materials. Mineral and surface rights are distinct. Both citizens and aliens may acquire mineral rights. There is a possibility of uranium potential in the clastic sediments containing interbedded volcanics, particularly where the latter are tuffaceous. These rocks occur chiefly in the north western part of the country and are of limited areal extent. The possibility of uranium occurrences associated with acid volcanics cannot be discounted, but it is difficult to evaluate rocks of this type for uranium with the present state of knowledge. Accordingly, potential resources are estimated at between 0 and 1,000 tonnes uranium

  14. Uranium market and resources

    International Nuclear Information System (INIS)

    Capus, G.; Arnold, T.

    2005-01-01

    Under the combined effect of various factors, such as interrogations related to facing the climatic changes, the increasing prices of oil versus announced decrease of its resources, the major geopolitical evolution and the remarkable development of Asia, we live nowadays a revival of nuclear power in the very front of stage. In tis context, the following question is posed: could the nuclear fission be a sustainable source of energy when taking into consideration the availability of uranium resources? The article aims at pinpointing the knowledge we have about the world uranium resources, their limits of uncertainty and the relation between knowledge resources and market evolution. To conclude, some susceptible tracks are proposed to improve the using process of uranium resources particularly in softening the impact of high prices

  15. Maintaining the uranium resources data system and assessing the 1991 US uranium potential resources

    Energy Technology Data Exchange (ETDEWEB)

    McCammon, R.B. (Geological Survey, Reston, VA (United States)); Finch, W.I.; Grundy, W.D.; Pierson, C.T. (Geological Survey, Denver, CO (United States))

    1992-12-31

    The Energy Information Administration's (EIA) Uranium Resource Assessment Data (URAD) System contains information on potential resources (undiscovered) of uranium in the United States. The purpose of this report is: (1) to describe the work carried out to maintain and update the URAD system; (2) to assess the 1991 U.S. uranium potential resources in various cost categories; and (3) to describe the progress that has been made to automate the generation of the assessment reports and their subsequent transmittal by diskette.

  16. Uranium 2014: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2014-01-01

    Uranium is the raw material used to fuel over 400 operational nuclear reactors around the world that produce large amounts of electricity and benefit from life cycle carbon emissions as low as renewable energy sources. Although a valuable commodity, declining market prices for uranium since the Fukushima Daiichi nuclear power plant accident in 2011, driven by uncertainties concerning the future of nuclear power, have led to the postponement of mine development plans in a number of countries and raised questions about continued uranium supply. This 25. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 45 producing and consuming countries in order to address these and other questions. It includes data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, in order to address long-term uranium supply and demand issues. (authors)

  17. Evaluation of uranium resources in Antarctica

    International Nuclear Information System (INIS)

    Zeller, E.J.; Dreschhoff, G.A.M.

    1980-01-01

    The continent of Antarctica comprises roughly nine per cent of the total land surface of the earth and is the only large land area that has been left almost totally unexplored for uranium resources. In 1976 the first systematic uranium resource evaluation, entitled Antarctica International Radiometric Survey, was started as a part of the US Antarctic Research Program. This project was staffed jointly by scientists from the University of Kansas and the Bundesanstalt fuer Geowissenschaften und Rohstoffe of the Federal Republic of Germany. The survey has continued for three antarctic field seasons and an extension of operations for the next four years has been approved. Two areas in the Transantarctic Mountains and one part of Marie Byrd Land have been surveyed by airborne gamma-ray spectrometric methods. The work that has been conducted demonstrates clearly that radiometric surveys can be performed successfully under the rigorous climatic conditions in Antarctica, and that significant and reproducible data can be obtained. So far no substantial concentrations of uranium have been detected but deposits of thorium minerals have been found. (author)

  18. National uranium resource evaluation, preliminary report

    International Nuclear Information System (INIS)

    1976-06-01

    The results of the initial phase of the National Uranium Resource Evaluation (NURE) are reported. NURE is a comprehensive nationwide program to evaluate uranium resources and to identify areas favorable for uranium exploration. Part I presents estimates of uranium ore reserves and potential resources available at costs (not prices) of $10, $15, and $30 per pound U 3 O 8 (uranium oxide). These estimates comprise the national uranium resource position. They are, however, preliminary because limitations of time and available geologic data prevented adequate assessment of some areas that may be favorable for potential resources. Part II presents the potential uranium resources for each of 13 regions, whose boundaries have been drawn chiefly on geologic considerations. The general geology is summarized, and the types of uranium deposits are described. Although limited geologic reconnaissance was done in various parts of the country, the report is based primarily on the compilation and evaluation of data in ERDA files. Mining companies furnished a substantial amount of information on exploration results, development, production, and future plans. Published, manuscript, and open-file reports by government agencies, universities, and research organizations were reviewed. In addition, many individuals affiliated with universities and with state and federal agencies provided supplemental geologic information. This was particularly helpful in the eastern and central states and in Alaska, where information on uranium occurrences is limited

  19. Uranium resource technology, Seminar 3, 1980

    International Nuclear Information System (INIS)

    Morse, J.G.

    1980-01-01

    This conference proceedings contains 20 papers and 1 panel discussion on uranium mining and ore treatment, taking into account the environmental issues surrounding uranium supply. Topics discussed include: the US uranium resource base, the technology and economics of uranium recovery from phosphate resources, trends in preleash materials handling of sandstone uranium ores, groundwater restoration after in-situ uranium leaching, mitigation of the environmental impacts of open pit and underground uranium mining, remedial actions at inactive uranium mill tailings sites, environmental laws governing in-situ solution mining of uranium, and the economics of in-situ solution mining. 16 papers are indexed separately

  20. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Colombia. February - March 1980

    International Nuclear Information System (INIS)

    Cameron, J.; Meunier, A.R.; Tauchid, M.

    1980-01-01

    The basic objective of IUREP is to 'review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for discovery of additional uranium resources, and to suggest new exploration efforts which might be carried out in promising new areas in collaboration with the countries concerned'. Following the initial bibliographic study, which formed Phase I of IUREP, it was envisaged that a further assessment in co-operation with the country in question would lead to a better delineation of areas of high potential and a more reliable estimate as to the degree of favourability for the discovery of additional uranium resources. It was planned that such work would be accomplished through field missions to the country and that these field missions and the resulting report would constitute the IUREP Orientation Phase. The purpose of the Orientation Mission to Colombia was (i) to develop a better understanding of the uranium potential of the country, (ii) to delineate areas favourable for the discovery of speculative uranium resources, (iii) to make recommendations, as appropriate, on the best methods for evaluating the favourable areas, operating procedures and estimated possible costs, (iv) to develop the logistical data required to carry out any possible further work, and (v) to compile a report that would be immediately available to the Colombian authorities. Uranium exploration in Colombia is of very recent date, with the majority of activities getting under way only after 1970. In spite of the limited work that has been done, however, over 1300 radioactive anomalies have been recorded. The total number of uranium mineral occurrences resulting from follow-up work is still very small, and some are unusual in world terms. Topographic and geographic conditions in Colombia make geological and exploration work very difficult and costly, especially in the Cordilleras and the Interior Zone (Llanos Orientales). There are, at

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Iraq

    International Nuclear Information System (INIS)

    1977-11-01

    Iraq consists of a lowland trough lying between asymmetrical and very different upland massifs to the east, north and west and continuing southeastwards to the Persian Gulf. The region is one of crustal weakness and subsidence with relatively young plastic sedimentary rocks engulfed in downwarped, ancient, rigid and highly resistant blocks. Exploration in the 1954-55 period found some minor radioactive anomalies and very low uranium contents in limestones and phosphates. The results of an aerial radiometric survey in 1973-74 are not known to IAEA. Iraq has no reported uranium resources but there are several favourable formations which warrant a detailed survey. In view of the size of the country and the small amount of systematic exploration carried out up to the present time, the Speculative Potential is considered to lie in the 1,000 to 10,000 tonnes uranium category. (author)

  2. Government influence on international trade in uranium

    International Nuclear Information System (INIS)

    1978-01-01

    The subject is dealt with in sections, entitled; introduction (history of uncertainty in the uranium market, opposition to nuclear power); unsatisfactory features of today's trade conditions (including discussion of restrictions in production, exports and imports); desirable principles governing international trade in uranium, apart from the non-proliferation issue (limitation on governmental intervention for economic purposes, reservation of adequate uranium resources in exporting countries, government export price control); desirable principles for achieving balance between security of supply and non-proliferation (need for consensus, reprocessing and fast breeder reactors, principles guiding government controls established for non-proliferation purposes). (U.K.)

  3. Uranium 2014: Resources, Production and Demand

    International Nuclear Information System (INIS)

    Vance, Robert

    2014-01-01

    Since the mid-1960's, with the co-operation of their member countries and states, the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) have jointly prepared periodic updates (currently every two years) on world uranium resources, production and demand. Published by the OECD/NEA in what is commonly known as the 'Red Book', the 25. edition, released in September 2014, contains 45 national reports covering uranium producing and consuming countries and those with plans to do so. The uranium resource figures presented in the 25. edition of the Red Book are a snapshot of the situation as of 1 January 2013. Resource figures are dynamic and related to commodity prices. Despite less favourable market conditions, continued high levels of investment and associated exploration efforts have resulted in the identification of additional resources of economic interest, just as in past periods of intense exploration activity. Total identified resources (reasonably assured and inferred) as of 1 January 2013 amounted to 5 902 900 tonnes of uranium metal (tU) in the 3 O 8 ) category, an increase of 10.8% compared to 1 January 2011. In the highest cost category ( 3 O 8 ) which was reintroduced in 2009, total identified resources amounted to 7 635 200 tU, an increase of 7.6% compared to the total reported in 2011. The majority of the increases are a result of re-evaluations of previously identified resources and additions to known deposits, particularly in Australia, Canada, the People's Republic of China, the Czech Republic, Greenland, Kazakhstan and South Africa. Worldwide exploration and mine development expenditures in 2012 totalled USD 1.92 billion, a 21% increase over updated 2010 figures, despite declining market prices. Production in 2012 increased by 7.4% from 2011 to 58 816 tU and is expected to increase to over 59 500 tU in 2013. This recent growth is principally the result of increased production in Kazakhstan, which remains the world

  4. Uranium supply/demand projections to 2030 in the OECD/NEA-IAEA ''Red Book''. Nuclear growth projections, global uranium exploration, uranium resources, uranium production and production capacity

    International Nuclear Information System (INIS)

    Vance, Robert

    2009-01-01

    World demand for electricity is expected to continue to grow rapidly over the next several decades to meet the needs of an increasing population and economic growth. The recognition by many governments that nuclear power can produce competitively priced, base load electricity that is essentially free of greenhouse gas emissions, combined with the role that nuclear can play in enhancing security of energy supplies, has increased the prospects for growth in nuclear generating capacity. Since the mid-1960s, with the co-operation of their member countries and states, the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) have jointly prepared periodic updates (currently every 2 years) on world uranium resources, production and demand. These updates have been published by the OECD/NEA in what is commonly known as the ''Red Book''. The 2007 edition replaces the 2005 edition and reflects information current as of 1 st January 2007. Uranium 2007: Resources, Production and Demand presents, in addition to updated resource figures, the results of a recent review of world uranium market fundamentals and provides a statistical profile of the world uranium industry. It contains official data provided by 40 countries (and one Country Report prepared by the IAEA Secretariat) on uranium exploration, resources, production and reactor-related requirements. Projections of nuclear generating capacity and reactor-related uranium requirements to 2030 as well as a discussion of long-term uranium supply and demand issues are also presented. (orig.)

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Sweden

    International Nuclear Information System (INIS)

    1977-11-01

    Sweden, covers an area of approx. 450 000 square kilometers. It has a population of 8 millions. With few exceptions in the northern part the access can be regarded as good. A dense network of motorroads and railroad exists. The results obtained by the exploration works combined with other available geo-information permit a separation of two principal uranium provinces in Sweden. The first one is confined to sediments of Upper Cambrian and Lower Ordovician which appears in Southern Sweden and along the border of the Caledonian mountain range in Central Sweden. The uranium occurrence are stratiform, of blackshale type which occurs in the Peltura zone of Upper Cambrian or they are associated to a phosphatite-bearing unit of Lower Ordovician overlying the Cambrian shale formation. The distribution of uranium in Upper Cambrian rocks is in general dependant on their lithology which itself is related to the paleography. This conditions explain relatively higher uranium content of the shale from Billigen.The potential resources of the province are estimated at about 1 million tonnes uranium. The second uranium province, called Arjeplog-Arvidsjaur, situated immediately south of the Arctic circle, comprises one deposit - Pleutajokk - and a group of more than twenty occurrences of similar characteristics and age (1 700 - 1 800 my.). The results of the past exploration have shown that uranium is present in different types of rocks. Because of the presence of uranium in many of the pegmatites the possibility of the formation of large low grade deposits should be tested. Favourable areas are those regions where the geological conditions are similar to the geology of the Grenville province in Canada or the Damara belt of SW-Africa. Special studies are recommended on this subject

  6. Fossile fuel and uranium resources

    International Nuclear Information System (INIS)

    Gorkum, A.A. van.

    1975-01-01

    The world's resources of coal, lignite, oil, natural gas, shale oil and uranium are reviewed. These quantities depend on the prices which make new resources exploitable. Uranium resources are given exclusively for the USSR, Eastern Europe and China. Their value in terms of energy depends heavily on the reactor type used. All figures given are estimated to be conservative

  7. Uranium resources in New Mexico

    International Nuclear Information System (INIS)

    McLemore, V.T.; Chenoweth, W.L.

    1989-01-01

    For nearly three decades (1951-1980), the Grants uranium district in northwestern New Mexico produced more uranium than any other district in the world. The most important host rocks containing economic uranium deposits in New Mexico are sandstones within the Jurassic Morrison Formation. Approximately 334,506,000 lb of U 3 O 8 were produced from this unit from 1948 through 1987, accounting for 38% of the total uranium production from the US. All of the economic reserves and most of the resources in New Mexico occur in the Morrison Formation. Uranium deposits also occur in sandstones of Paleozoic, Triassic, Cretaceous, Tertiary, and Quaternary formations; however, only 468,680 lb of U 3 O 8 or 0.14% of the total production from New Mexico have been produced from these deposits. Some of these deposits may have a high resource potential. In contrast, almost 6.7 million lb of U 3 O 8 have been produced from uranium deposits in the Todilto Limestone of the Wanakah Formation (Jurassic), but potential for finding additional economic uranium deposits in the near future is low. Other uranium deposits in New Mexico include those in other sedimentary rocks, vein-type uranium deposits, and disseminated magmatic, pegmatitic, and contact metasomatic uranium deposits in igneous and metamorphic rocks. Production from these deposits have been insignificant (less than 0.08% of the total production from New Mexico), but there could be potential for medium to high-grade, medium-sized uranium deposits in some areas. Total uranium production from New Mexico from 1948 to 1987 amounts to approximately 341,808,000 lb of U 3 O 8 . New Mexico has significant uranium reserves and resources. Future development of these deposits will depend upon an increase in price for uranium and lowering of production costs, perhaps by in-situ leaching techniques

  8. Maintaining the uranium resources data system and assessing the 1991 US uranium potential resources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McCammon, R.B. [Geological Survey, Reston, VA (United States); Finch, W.I.; Grundy, W.D.; Pierson, C.T. [Geological Survey, Denver, CO (United States)

    1992-12-31

    The Energy Information Administration`s (EIA) Uranium Resource Assessment Data (URAD) System contains information on potential resources (undiscovered) of uranium in the United States. The purpose of this report is: (1) to describe the work carried out to maintain and update the URAD system; (2)to assess the 1991 U.S. uranium potential resources in various cost categories; and (3) to describe the progress that has been made to automate the generation of the assessment reports and their subsequent transmittal by diskette.

  9. URANIUM 1991 resources, production and demand

    International Nuclear Information System (INIS)

    1992-01-01

    The uranium supply aspects of the nuclear fuel cycle have undergone considerable change during the last few years. Nuclear power generating capacity can continue to expand only if there is confidence in the final supply of uranium. This report presents governmental compilations of uranium resource and production data, as established in 1991. It also presents short-term projections of the nuclear industry future natural uranium requirements and reviews the status of uranium exploration, resources and production throughout the world. 10 refs., 14 figs., 15 tabs., 6 appendices

  10. International uranium market

    International Nuclear Information System (INIS)

    Neff, T.L.; Jacoby, H.D.

    1980-12-01

    Discussed in this report are 1) how one might think about uranium demand, resources and supply, 2) how producers and consumers see the market and are likely to behave, including specifics about export and import commitments, and 3) how these actors are brought together in the international market. The general conclusion is that much of current anxiety about future uranium supply results primarily from a brief but difficult period in the mid- to late-1970's; and that current conditions and trends are favorable (at least to consumers) that there is now little basis for concern. Inventories contractual positions and producer commitments--when compared with realistic (or even unrealistic) demand estimates--imply a buyer's market for at least the next decade. The result will be considerable increases in market flexibility and resilience to shock, and real prices that are low relative to those of the past few years. There is a need to reconsider assumptions about desired directions of technological development, for many current programs were planned in an era of pessimism about uranium supply and process. Similar questions must be raided about nonproliferation policies that depend on some level of control of fuel supplies by the industrial nations. With a soft and more diversified uranium market, leverage that may have existed in the past is rapidly being eroded. Finally, as world prices turn soft, there may be significant problems created for U.S. uranium producers, who have relatively high costs in relation to several large-scale foreign suppliers

  11. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Sudan. February-March 1981

    International Nuclear Information System (INIS)

    Kneupper, G.; Scivetti, N.

    1981-01-01

    The IUREP Orientation Phase Mission to the Democratic Republic of the Sudan believes that the Speculative Resources of the country might fall between 20,000 and 40,000 tonnes uranium and more. This indicates that the Speculative Resources of the Sudan could be significantly higher than previously estimated (7,500 tonnes uranium) by the NEA/IAEA Steering Group on the Uranium Resources - IUREP Phase I. The Government is willing to consider valid exploration programmes presented by prospective partners as long as they serve the interests of both parties. Within the general six-year (1977/78-1982/83) plan for development of the country's mineral resources, the Ministry of Energy and Mining has set up certain priorities which it would like to see expeditiously implemented: uranium exploration and production stands high on the list of priorities. On the basis of very limited information on regional geology and on previous exploration which was available to the Mission, it is estimated that the greatest potential for the Speculative Resources of possible economic significance will prove to occur in the following geological environments of the Sudan (Red Sea Hills area is not included): precambrian basement complex, palaeozoic-mesozoic-tertiary sedimentary basins and the tertiary to recent calcretes. The IUREP Orientation Phase Mission believes that some 20 Million US$ (very rough estimate) will be needed to (1) check the validity of the basic geological concepts formulated on the uranium potential of the selected areas, (2) accumulate diagnostic geological, geophysical, geochemical data indicative of a true uranium potential there, (3) study the basement complex rocks and the sedimentary formations at least on a broad structural-stratigraphic reconnaissance basis (a tremendous amount of valuable water drilling data has accumulated over the last years for some of the selected sedimentary basins) and (4) determine the most appropriate investigation techniques to be utilized

  12. The uranium International trade.; El Comercio Internacional del Uranio.

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez U, L A

    1994-12-31

    The aim of this thesis is the understanding of how the present dynamic of uranium International trade is developed, the variables which fall into, the factors that are affecting and conditioning it, in order to clarify which are going to be the outlook in the future of this important resource in front of the present ecological situation and the energetic panorama of XXI Century. For this purpose, as starting point, the uranium is considered as a strategic material which importance take root in its energetic potential as alternate energy source, and for this reason in Chapter I, the general problem of raw materials, its classification and present situation in the global market is presented. In Chapter II, by means of a historical review, is explain what uranium is, how it was discovered, and how since the end of the past Century and during the last three decades of present, uranium pass of practically unknown element, to the position of a strategic raw material, which by degrees, generate an International market, owing to its utilization as a basic resource in the generation of energy. Chapter III, introduce us in the roll played by uranium, since its warlike applications until its utilization in nuclear reactors for the generation of electricity. Also is explain the reason for this change in the perception at global level. Finally, in Chapter IV we enter upon specifically in the present conditions of the International market of this mineral throughout the trends of supply and demand, the main producers, users, price dynamics, and the correlation among these economical variables and other factors of political, social and ecological nature. All of these with the purpose to found out, if there exist, a meaning of the puzzle that seems to be the uranium International trade.

  13. Uranium resources in the United States

    International Nuclear Information System (INIS)

    Grenon, Michel.

    1975-01-01

    The United States are certainly the country which is the most concerned by a better evaluation of uranium resources. This is so because of the importance of the American nuclear program and because of a certain number of doubts in their uranium supply. This is probably why studies concerning American uranium resources have been very frequent in recent months. Although, most of these studies are not yet finished it is perhaps possible to draw a few conclusions in order to better see the framework of this important uranium resources problem. This is what this article attempts, using among other studies, the one carried-out for the National Science Foundation which is among the most complete, especially concerning the complete range of resources [fr

  14. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Uganda. Draft. November 1982 - January 1983

    International Nuclear Information System (INIS)

    Trey, Michel de; Levich, Robert A.

    1983-02-01

    At present, there are no reasonably assured resources of uranium in Uganda in any price category. Speculative resources are restricted to 2,400 metric tons of uranium in an apatite deposit, which in the past has been actively mined for phosphate. The possible recovery of this uranium is dependent upon a number of economic and technological conditions which have never been thoroughly studied. Although the geology of Uganda holds some interesting possibilities for hosting uranium deposits, the studies conducted between 1949 and 1979 were limited to known radioactive occurrences and anomalies in limited areas which had little economic significance. Vast areas, less known and less accessible were completely ignored. Uranium exploration must therefore be started again in a systematic manner using modern methods. The current economic situation in Uganda is so critical that International technical and financial assistance is vitally needed to help rehabilitate the Geological Survey and Mines Department. Uganda currently can offer only very restricted services. The transportation system is quite deficient: the railway does not presently cross the frontier with Kenya, and all equipment and goods must be transported from Mombasa by road. Housing is in very short supply, and many basic commodities are often unobtainable. Any organization or private company which begins an exploration program in Uganda must plan to import essentially all the equipment and supplies it shall require. It shall also have to construct offices and staff housing, and import and stockpile fuel and staple goods, so as not to be at the mercy of the (at times) inadequate local supplies. It shall most probably also have to provide basic local and imported food to its Ugandan staff and should plan to pay much higher local salaries than is customary. Lastly, it will have to provide its own fleet of trucks and organize its own transport system. (author)

  15. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Turkey

    International Nuclear Information System (INIS)

    1977-08-01

    Turkey has an area of 296 185 sq mi or 767 120 square kilometers. The geology is dominated lay Tertiary and post-Tertiary rocks which are very widespread but extensive outcrops of Mesozoic rocks also occur. Paleozoic rocks, mainly gneisses, mica schists and quartzites occur in the ancient massifs, principally the Istranca massif in Thrace, the Merideres massif in western Anatolia and the Karrshir massif in central Anatolia. Prospecting for uranium began in Turkey in 1953 and the Atomic Energy Raw Materials Division of the Maden Tetkikive Arama Enstitusu (M.T.A.) was founded in 1956. By 1962 a total of 78% of the whole country had been covered by serial radiometric reconnaissance prospecting. Uranium was discovered at Kasar in western Anatolia in 1961 and several hundred tons of reserves estimated two years later. Uranium prospecting was largely recessed from 1963 to 1967. IAEA/UNDP assistance was provided in 1962-63 and 1965 and between 1974 and 1977 in a detailed exploration programme in the Kasar area. In the whole country nearly 600 anomalies and occurrences had been identified by 1963. Several occurrences principally in Western Anatolia had been assigned a small reserve. A recent official estimate places the total national reserve at 3150 tonnes uranium in the less than 30% category of reasonably assured resources. A speculative Potential of between 30,000 and 50,000 tonnes uranium is considered to be reasonable. (author)

  16. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Panama

    International Nuclear Information System (INIS)

    1977-08-01

    About 20 percent of Panama has been covered by airborne radiometric surveys, largely in the Azuero-Petaquilia area. Essentially no ground examinations have been made. About one third of the country remains unmapped. Most of the rest has been examined only in rapid reconnaissance largely by the United Nations and oil companies. Detailed mapping has been confined to the Canal Zone. No uranium deposits or prospects of economic interest are known in Panama. There appears to be no information available on present exploration activities for uranium. Panama has no specific legislation relating to nuclear energy. However, all mineral deposits belong to the state, except for salt and similar materials, and are governed by the mineral resources code. There appears to be only one remote possibility for uranium mineralization in Panama, namely, sandstone-type deposits. Marginal marine and fluvial sediments, such as host sandstone-type deposits elsewhere, are most abundant 1n the lower Cenozoic parts of the Azuero and possibly Bocas del Toro basins and are probably absent or poorly developed in the Darien and Central basin. Rocks with even moderate background uranium concentrations to be leached and deposited in such sediments are confined to the silicic and alkaline Intrusive rocks of the La Yeguada Formation 1n western Panama and possibly the Rio Guayabo stock in the Sierra de Maje of eastern Panama. Only the La Yeguada Formation is extensive enough and near enough to a potential sedimentary ore host to be important. Uranium concentrations have not been measured in this unit but its silicic composition, relatively young age (with respect to other volcanic rocks in Panama) and high ash content suggest that it may have relatively high Teachable uranium content. The best areas for exploration for La Yeguada-derived sandstone-type uranium deposits would be in the Pese formation between Santiago and Chitre in the Azuero basin. Possibly favourable sandstone type exploration ground

  17. Uranium resources evaluation model as an exploration tool

    International Nuclear Information System (INIS)

    Ruzicka, V.

    1976-01-01

    Evaluation of uranium resources, as conducted by the Uranium Resources Evaluation Section of the Geological Survey of Canada, comprises operations analogous with those performed during the preparatory stages of uranium exploration. The uranium resources evaluation model, simulating the estimation process, can be divided into four steps. The first step includes definition of major areas and ''unit subdivisions'' for which geological data are gathered, coded, computerized and retrieved. Selection of these areas and ''unit subdivisions'' is based on a preliminary appraisal of their favourability for uranium mineralization. The second step includes analyses of the data, definition of factors controlling uranium minearlization, classification of uranium occurrences into genetic types, and final delineation of favourable areas; this step corresponds to the selection of targets for uranium exploration. The third step includes geological field work; it is equivalent to geological reconnaissance in exploration. The fourth step comprises computation of resources; the preliminary evaluation techniques in the exploration are, as a rule, analogous with the simplest methods employed in the resource evaluation. The uranium resources evaluation model can be conceptually applied for decision-making during exploration or for formulation of exploration strategy using the quantified data as weighting factors. (author)

  18. Uranium resources, production and demand 1993

    International Nuclear Information System (INIS)

    1994-10-01

    This book is the Japanese edition of 'Uranium Resources, Production and Demand, 1993' published by OECD/NEA-IAEA in 1994. It contains data on uranium exploration activities, resources and production for about 50 countries. (K.I.)

  19. Uranium resource processing. Secondary resources

    International Nuclear Information System (INIS)

    Gupta, C.K.; Singh, H.

    2003-01-01

    This book concentrates on the processing of secondary sources for recovering uranium, a field which has gained in importance in recent years as it is environmental-friendly and economically in tune with the philosophy of sustainable development. Special mention is made of rock phosphate, copper and gold tailings, uranium scrap materials (both natural and enriched) and sea water. This volume includes related area of ore mineralogy, resource classification, processing principles involved in solubilization followed by separation and safety aspects

  20. Copper Mountain, Wyoming, intermediate-grade uranium resource assessment project. Final report. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Madson, M.E.; Ludlam, J.R.; Fukui, L.M.

    1982-11-01

    Intermediate-grade uranium resources were delineated and estimated for Eocene and Precambrian host rock environments in the 39.64 mi 2 Copper Mountain, Wyoming, assessment area. Geologic reconnaissance and geochemical, geophysical, petrologic, borehole, and structural data were interpreted and used to develop a genetic model for uranium mineralization in these environments. Development of a structural scoring system and application of computer graphics in a high-confidence control area established the basis for estimations of uranium resources in the total assessment area. 8 figures, 5 tables

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Sikkim

    International Nuclear Information System (INIS)

    1977-11-01

    Sikkim is a country in the eastern Himalayas and is bound on the west by Nepal, on the north by Tibet, on the east by Bhutan and on the south by India. Precambrian Darjeeling gneiss forms the rim of the amphitheatre while schists of Late Precambrian to Lower Paleozoic rocks form tee habital interior. A small outcrop of carboniferous to Permain methomorphic rocks is preserved in the Tista Basin as well in a thin outcrop trust upon fluvitile beds of Sivalik which is mostly of Pliestocene age. Imbricate thrusts have stacked the rocks in a vast heap where reverse metamorphism is common. Ni information is available concerning uranium occurrences and resources as well as past and present explorations. The uranium potential of Sikkim is almost zero

  2. Uranium resources and requirements

    International Nuclear Information System (INIS)

    Silver, J.M.; Wright, W.J.

    1975-08-01

    Australia has about 19% of the reasonably assured resources of uranium in the Western World recoverable at costs of less than $A20 per kilogram, or about 9% of the resources (reasonably assured and estimated additional) recoverable at costs of less than $A30 per kilogram. Australia's potential for further discoveries of uranium is good. Nevertheless, if Australia did not export any of these resources it would probably have only a marginal effect on the development of nuclear power; other resources would be exploited earlier and prices would rise, but not sufficiently to make the costs of nuclear power unattractive. On the other hand, this policy could deny to Australia real benefits in foreign currency earnings, employment and national development. (author)

  3. International Uranium Resources Evaluation Project (IUREP) national favourability studies: The Netherlands

    International Nuclear Information System (INIS)

    1978-01-01

    The Netherlands is part of the lowlands of Western Europe formed by negative crustal movements that have been offset by sedimentation. This specific area stretching from western Belgium into north-western Germany forms part of an epicontinental area that has been relatively stable since the end of the Hercynian orogeny. In Holland the subsidence has generally been small through- out the Mesozonic and Cenozoic though interrupted by short periods of erosion and non-subsidence. Thus the general geology of the Netherlands is dominated by the fact that throughout the Tertiary and Quaternary what now comprises the Netherlands formed part of a subsiding basin. Most of the surface geology of the country is dominated by f luvio-glacial shallow marine and lacoustine deposits. Prospecting for radioactive minerals in the Netherlands has been very limited. Some work has been carried out by the Geological Survey and by private consultants but this was very preliminary. To-date no uranium reserves or resources have been identified in the Netherlands. One small uranium occurrence has been recorded in Zeeland near Walcheren where some small uranium concentrations were found in association with phosphatic nodules. Apart from very limited targets in the Cretaceous and small phosphatic uranium associations there are no apparent uranium exploration targets in the Netherlands. On this basis we would, at this time, place the uranium potential of the Netherlands in Group I of the IUREP classification

  4. World uranium exploration, resources, production and related activities

    International Nuclear Information System (INIS)

    Hanly, A.

    2014-01-01

    A Nuclear Energy Series publication entitled “World Uranium Exploration, Resources, Production and Related Activities” (WUERPRA) will soon be published by the IAEA. The objective of the publication is to provide a comprehensive compilation of historic uranium exploration, resources, production and related activities based primarily on information from the 1966 to 2009 editions of the publication “Uranium Resources, Production and Demand”, a joint publication of the International Atomic Energy Agency and the Nuclear Energy Agency/Organization for Economic Cooperation and Development commonly known as the ‘Red Book’. This has been supplemented by historic information from other reliable sources. The publications also include, where enough information was available, descriptions of the relative potential for discovery of new uranium resources on a per country basis. To recover complete historic information it is frequently necessary to refer to earlier editions of the Red Book, many of which may not be readily available. This publication aims to provide one comprehensive source for much of this type of information which will reduce the effort required to prepare future editions of the Red Book, as well as make the historic Red Book information, together with select related information from other sources, more readily available to all users with an interest in uranium. WUERPRA comprises 6 volumes containing 164 country reports, each organized by region; Volume 1: Africa (53 countries); Volume 2: Central, Eastern and Southeastern Europe (25 countries); Volume 3: Southeastern Asia, Pacific, East Asia (18 countries); Volume 4: Western Europe (22 countries); Volume 5: Middle East, Central and Southern Asia (19 countries), and; Volume 6: North America, Central America and South America (27 countries). The report also contains information on countries that have not reported to the Red Book. The poster will summarize select major highlights from each volume

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Jordan

    International Nuclear Information System (INIS)

    1977-08-01

    Jordanian geology is dominated by the Great Rift Valley System. Most of the country is covered by Cretaceous and Eocene sediments, largely sandstones and limestones. These include phosphorates and bituminous limestones in the Upper Cretaceous, South of the Dead Sea, Mesozoic and Paleozoic rocks overlie exposed granitic Pre Cambrian basement rocks carrying many minor intrusives . Phosphates provide the main mineral export of Jordan. The Natural Resources Authority (Geological Survey and Bureau of Mines) initiated a survey in 1972 of the distribution of uranium on the phosphorite horizon. In 1974 the Survey calculated that the uranium content of the phosphate areas surveyed up to that time was 5 million metric tonnes U 3 O 8 . The average U 3 O 8 content is approximately 0.02% U 3 O 8 . The exploitation of such resources would be as a byproduct of the phosphate industry and dependent on the rate of phosphate production and the capacity of triple super-phosphate plants, none of which exist at the present time. In the southern area in Paleozoic and Pre Cambrian areas there are some hopes of conventional type deposits being found but the potential appears to be small. (author)

  6. Uranium resources, production and demand in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Brynard, H J; Ainslie, L C [Atomic Energy Corporation of South Africa Ltd., Pretoria (South Africa)

    1990-06-01

    This paper provides a review of the historical development of the South African uranium market and the current status of uranium exploration, resources and production. A prognosticated view of possible future demand for uranium in South Africa is attempted, taking cognisance of the finite nature of the country's coal resources and estimated world uranium demand. Although well endowed with uranium resources, South Africa could face a shortage of this commodity in the next century, should the predicted electricity growth materials. (author)

  7. Uranium resources, production and demand in South Africa

    International Nuclear Information System (INIS)

    Brynard, H.J.; Ainslie, L.C.

    1990-01-01

    This paper provides a review of the historical development of the South African uranium market and the current status of uranium exploration, resources and production. A prognosticated view of possible future demand for uranium in South Africa is attempted, taking cognisance of the finite nature of the country's coal resources and estimated world uranium demand. Although well endowed with uranium resources, South Africa could face a shortage of this commodity in the next century, should the predicted electricity growth materials. (author)

  8. Uranium resources, production and demand

    International Nuclear Information System (INIS)

    1988-01-01

    Nuclear power-generating capacity will continue to expand, albeit at a slower pace than during the past fifteen years. This expansion must be matched by an adequately increasing supply of uranium. This report compares uranium supply and demand data in free market countries with the nuclear industry's natural uranium requirements up to the year 2000. It also reviews the status of uranium exploration, resources and production in 46 countries

  9. Uranium 2014: Resources, Production and Demand - Executive Summary

    International Nuclear Information System (INIS)

    2014-01-01

    Uranium is the raw material used to fuel over 400 operational nuclear reactors around the world that produce large amounts of electricity and benefit from life cycle carbon emissions as low as renewable energy sources. Although a valuable commodity, declining market prices for uranium since the Fukushima Daiichi nuclear power plant accident in 2011, driven by uncertainties concerning the future of nuclear power, have led to the postponement of mine development plans in a number of countries and raised questions about continued uranium supply. This 25. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 45 producing and consuming countries in order to address these and other questions. It includes data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, incorporating policy changes following the Fukushima accident, in order to address long-term uranium supply and demand issues. (authors)

  10. The Joint NEA/IAEA Uranium Group -- its role in assessing world uranium resources, production, demand and environmental activities and issues

    International Nuclear Information System (INIS)

    Barthel, F.H.; Vera, I.

    2002-01-01

    In 1965 a 20-page report entitled World Uranium and Thorium Resources was published by the OECD-European Nuclear Energy Agency. Today, 35 years later, the report is jointly prepared by the OECD/Nuclear Energy Agency and the IAEA and published by the OECD. The report: Uranium Resources, Production and Demand also known as the Red Book is in its 18th edition. It is the only official publication on world uranium statistics and provides information from 45 or more countries. One aim of the Red Book is to obtain a uniform, worldwide acceptable classification of uranium resources. The Red Book provides statistics and analyses for resources, exploration, production, demand, secondary sources, surplus defence material and the supply and demand relationship. The sales records indicate that it is used as reference material for various purposes including public and private libraries, energy companies, uranium production companies, national and international organisation, universities and other research and business institutions. In 1996 a study was started which led to the 1999 report: Environmental Activities in Uranium Mining and Milling, a companion to the Red Book. This complementary report provides information on the site characterization, dismantling and decommissioning, waste management, water remediation, long term monitoring policies and regulations for 29 countries. A second report entitled 'Environmental Remediation of Uranium Production Facilities' is being prepared. (author)

  11. Uranium: which resources for tomorrow?

    International Nuclear Information System (INIS)

    Bouisset, P.; Polak, Ch.; Milesi, J.P.

    2009-01-01

    The authors give an overview of the current uranium world mine production and indicate the consumption predictions by 2030 as well as the share of high grade and low grade deposits in the world production. They outline the challenges for future production: production costs of new mines, technological development for the identification of new resources, technological development of new, innovating and cost saving processes, and new exploration processes. They indicate and comment assessments made by the IAEA regarding conventional and non-conventional resources, i.e. reasonably assured resources and resources where uranium is a by-product

  12. International Uranium Resources Evaluation Project (IUREP) national favourability studies: United Kingdom

    International Nuclear Information System (INIS)

    1977-10-01

    Although uranium prospecting was commenced in the United Kingdom (area 244,813 km) at the end of the last century and was resumed just after the Second World War, it does not seem, for various reasons, despite the level of competence of its specialists and the level of instrumentation available, that the country has been adequately prospected for uranium. The small reserves discovered to date, some 7400t U for all the official NEA/lAEA categories, probably do not reflect the true uranium potential of the United Kingdom. However, they do indicate without doubt that the resources remaining to be discovered are so located that detection will be difficult. The most promising areas of investigation in our opinion are the Old Red Sandstones of the Devonian period on the one hand and the districts where the uraniferous black shales of the Cambro-Ordovician and Namurian have suffered perturbations which may have led to immobilization of their uranium content (in particular, granitizations). All the considerations put forward in this analysis lead us to place the United Kingdom in category 4 of the classification adopted for IUREP. (author)

  13. Topical and working papers on uranium resources and availability

    International Nuclear Information System (INIS)

    Basic topics relative to world-wide resources and availability of uranium resources; potential for recovery of uranium from mill tailings in Canada; uranium from seawater; depleted uranium as an energy source; world uranium requirements in perspective

  14. World uranium resources, production and demand

    International Nuclear Information System (INIS)

    Lindholm, I.

    1988-01-01

    Reasonably assured resources of uranium in WOCA (World Outside the Centrally Planned Economies Area) countries recoverable at less than US $80/kg U increased by about 9% between 1983 and 1985 and currently stand at 1.5 million tonnes. Uranium also exists in significant quantities in higher cost resources or in less known resources. However, the annual exploration expenditure is less than 20% that of the 1979 level. Uranium production in WOCA countries was higher than consumption during the period 1965 to 1984 and considerable stocks were accumulated. However, the production figures for 1985 were estimated to be slightly less than those of consumption. Production from centres now on stand-by or new centres will probably be necessary around 1990. Analysis of the longer term production possibilities indicates that uranium supplies will probably not be constrained by an ultimate resource adequacy. Constraints, if any, are more likely to be of political nature. (author). 11 figs, 1 tab

  15. Methods for the estimation and economic evaluation of undiscovered uranium endowment and resources

    International Nuclear Information System (INIS)

    1992-01-01

    The present Instruction Manual was prepared as part of a programme of the International Atomic Energy Agency to supply the international uranium community with standard guides for a number of topics related to uranium resource assessment and supply. The quantitative estimation of undiscovered resources and endowments aims at supplying data on potential mineral resources; these data are needed to compare long term projections with one another and to assess the mineral supplies to be obtained from elsewhere. These objectives have relatively recently been supplemented by the concern of land managers and national policy planners to assess the potential of certain lands before the constitution of national parks and other areas reserved from mineral exploration and development. 88 refs, 28 figs, 33 tabs

  16. Assessment of South African uranium resources: methods and results

    International Nuclear Information System (INIS)

    Camisani-Calzolari, F.A.G.M.; De Klerk, W.J.; Van der Merwe, P.J.

    1985-01-01

    This paper deals primarily with the methods used by the Atomic Energy Corporation of South Africa, in arriving at the assessment of the South African uranium resources. The Resource Evaluation Group is responsible for this task, which is carried out on a continuous basis. The evaluation is done on a property-by-property basis and relies upon data submitted to the Nuclear Development Corporation of South Africa by the various companies involved in uranium mining and prospecting in South Africa. Resources are classified into Reasonably Assured (RAR), Estimated Additional (EAR) and Speculative (SR) categories as defined by the NEA/IAEA Steering Group on Uranium Resources. Each category is divided into three categories, viz, resources exploitable at less than $80/kg uranium, at $80-130/kg uranium and at $130-260/kg uranium. Resources are reported in quantities of uranium metal that could be recovered after mining and metallurgical losses have been taken into consideration. Resources in the RAR and EAR categories exploitable at costs of less than $130/kg uranium are now estimated at 460 000 t uranium which represents some 14 per cent of WOCA's (World Outside the Centrally Planned Economies Area) resources. The evaluation of a uranium venture is carried out in various steps, of which the most important, in order of implementation, are: geological interpretation, assessment of in situ resources using techniques varying from manual contouring of values, geostatistics, feasibility studies and estimation of recoverable resources. Because the choice of an evaluation method is, to some extent, dictated by statistical consderations, frequency distribution curves of the uranium grade variable are illustrated and discussed for characteristic deposits

  17. New developments in uranium exploration, resources, production and demand

    International Nuclear Information System (INIS)

    1992-06-01

    In view of the economic importance, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD have had a long standing interest in uranium exploration, resources, production and demand. It was the objective of this Technical Committee Meeting to bring together specialists in the field and to collect information on new developments, especially from countries which in the past considered uranium a strategic commodity and the related information as confidential or even secret. Separate abstracts were prepared for each of the 29 papers in this volume. Refs, figs, tabs, charts and maps

  18. Exhaustible-resource theory and the uranium market

    International Nuclear Information System (INIS)

    Hsieh, Y.L.

    1982-01-01

    Exhaustible-resource theory has been developed rapidly by economists since the OPEC shocks of 1973-1974 and the theory now provides a framework for analyzing the optimal production pattern for resource commodities. However, applications of the theory to particular markets, such as crude oil, have not provided accurate predictions due no doubt to theoretical problems in explaining exploration and discovery events, market organization changes, and uncertainty. This thesis investigated the uranium market in an effort to determine how well the exhaustible-resource theory explains the past price and quantity time paths of this energy resource, and what might be expected in the future. The exhaustible-resource theory was first developed in a form appropriate to an application to the uranium market. An econometric simulation model that combines the history of uranium price formation and the exhaustible-resource theory was developed to forecast future uranium prices. The model was designed not only to reflect the physical processes of drilling activities, changing reserves, production, and prices of uranium through individual equations, but also to account for the interaction of all these interrelationships at the same time

  19. Internal friction in uranium

    International Nuclear Information System (INIS)

    Selle, J.E.

    1975-01-01

    Results are presented of studies conducted to relate internal friction measurements in U to allotropic transformations. It was found that several internal friction peaks occur in α-uranium whose magnitude changed drastically after annealing in the β phase. All of the allotropic transformations in uranium are diffusional in nature under slow heating and cooling conditions. Creep at regions of high stress concentration appears to be responsible for high temperature internal friction in α-uranium. The activation energy for grain boundary relaxation in α-uranium was found to be 65.1 +- 4 kcal/mole. Impurity atoms interfere with the basic mechanism for grain boundary relaxation resulting in a distribution in activation energies. A considerable distribution in ln tau 0 was also found which is a measure of the distribution in local order and in the Debye frequency around a grain boundary

  20. Undiscovered resource evaluation: Towards applying a systematic approach to uranium

    International Nuclear Information System (INIS)

    Fairclough, M.; Katona, L.

    2014-01-01

    Evaluations of potential mineral resource supply range from spatial to aspatial, and everything in between across a range of scales. They also range from qualitative to quantitative with similar hybrid examples across the spectrum. These can compromise detailed deposit-specific reserve and resource calculations, target generative processes and estimates of potential endowments in a broad geographic or geological area. All are estimates until the ore has been discovered and extracted. Contemporary national or provincial scale evaluations of mineral potential are relatively advanced and some include uranium, such as those for South Australia undertaken by the State Geological Survey. These play an important role in land-use planning as well as attracting exploration investment and range from datato knowledge-driven approaches. Studies have been undertaken for the Mt Painter region, as well as for adjacent basins. The process of estimating large-scale potential mineral endowments is critical for national and international planning purposes but is a relatively recent and less common undertaking. In many cases, except at a general level, the data and knowledge for a relatively immature terrain is lacking, requiring assessment by analogy with other areas. Commencing in the 1980s, the United States Geological Survey, and subsequently the Geological Survey of Canada evaluated a range of commodities ranging from copper to hydrocarbons with a view to security of supply. They developed innovative approaches to, as far as practical, reduce the uncertainty and maximise the reproducibility of the calculations in information-poor regions. Yet the approach to uranium was relatively ad hoc and incomplete (such as the US Department of Energy NURE project). Other historic attempts, such as the IAEA-NEA International Uranium Resource Evaluation Project (IUREP) in the 1970s, were mainly qualitative. While there is still no systematic global evaluation of undiscovered uranium resources

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Mexico

    International Nuclear Information System (INIS)

    1977-07-01

    Reserves of uranium are located in the north eastern part of Mexico, primarily in the states of Tamaulipas and Chihuahua. Most of the remainder of Mexico's reserves are near the Tamaulipas-Neuvo Leon state border in the Tertiary Frio Formation, where they apparently occur in the types of uranium deposits found in Texas, U.S.A. There are two deposits, La Coma and Buenavista, but nothing has been published on dimensions of the ore bodies. Forty-five miles northeast of Hermosillo, in Sonora state is the Los Amoles district where uranium is found associated with gold and other metals in low-grade deposits on the margins of a Cretaceous batholith. Another occurrence is reported in the mining district of Placer de Guadelupe and Puerto del Aire, about 40-50 km northeast of Chihuahua City, in the state of Chihuahua. Reserves of U 3 O 8 which were published in January 1977 by Nuclear Exchange Corporation of Menlo Park, California, are listed. The government of Mexico has not estimated potential resources. It should be noted that much of Mexico appears favourable for uranium, and only 10 percent has been explored. According to NUEXCO (1977), efforts to find uranium are being increased in an attempt to supply Mexico's nuclear reactor requirements through 1990. Activity is reported to be centered in Tamaulipas and Chihuahua states and to a lesser extent in Nueva Leon, Sonora, Coahuila, and Baja California. Major effort will continue to be placed in Chihuahua state to supply the Penna Bianca mill. Correspondence between favorable geological settings for uranium and the geologic regions of Mexico is reported. Mexico is a country with considerable areas that appear promising for discovery of sandstone, vein, and tuff-related deposits. On the other hand, its potential for Precambrian conglomerate and unconformity-related deposits is limited. Considering these geologic factors, as well as the relatively limited amount of exploration done to date, a guesstimate of speculative

  2. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Bolivia

    International Nuclear Information System (INIS)

    1977-08-01

    Bolivia has an area of 1,098,580 square kilometers. Its capital is La Paz. The western part of the country is dominated by two ranges of the Andes Mountains, the Cordillera Occidental on the vest flank of the high plateau (Altiplano) and the Cordillera Real (or Oriental) on the east flank. The northern Andes average 5,486 meters in elevation; the southern Andes are not as lofty. The Altiplano is 3,658 to A,267 meters high and 129 km. in average width; it is the largest basin of inland drainage in South America and contains the renowned Lake Titicaca on the Peruvian-Bolivian border. The eastern tropical lowlands or pampas (Oriente) comprise about two-thirds of the country, with rain forest in the northern portion. An intermediate zone of valleys and basins lies between the eastern Andes and Oriente. Bolivia differs from other Andean countries, like Chile, Peru and Ecuador, in having large areas of Preeambrian schists, gneisses, migmatites and granites. These crop out in the eastern part of the country. Parts of these rocks contain banded iron formations (i.e., in the Muttin region) and are probably early Precambrian in age. Little systematic exploration for uranium was undertaken in Bolivia until the late 1960's. In 1967, 1968 and 1969 technical assistance was requested from, and provided by, the IAEA. This work led to evaluation of radioactive anomalies in veins of northeast Bolivia and in sandstones in the extreme southern part of the country. Although no uranium reserves are now credited to Bolivia, the geologic possibilities for several kinds of uranium deposits coupled with the relatively limited work done to date suggest that uranium orebodies will be discovered. It is estimated that the potential resources of Bolivia are in the range of 10,000 to 100,000 tonnes uranium

  3. The uranium resources and production of Namibia

    International Nuclear Information System (INIS)

    Palfi, A.G.

    1997-01-01

    The promulgation of the Minerals (Prospecting and Mining) Act, 1992, on 1 April 1994 and the simultaneous repeal of restrictive South African legislation on reporting uranium exploration and production results, allowed the Namibian Government for the first time to present information for publication of the report ''Uranium 1995 - Resource, Production and Demand'', by the OECD Nuclear Energy Agency and the IAEA. Namibia, one of the youngest independent nations in Africa, has a large number of uranium occurrences and deposits in several geological environments. The total estimated uranium resource amounts to about 299 thousand tonnes recoverable uranium at a cost of less than US$ 130/kg U, within the known conventional resources category. The most prominent geological type of these is the unique, granite-related uranium occurrences located in the central part of the Namib Desert. Permo-Triassic age Karoo sandstone-hosted uranium deposits were subject to only limited exploration due to the down-turn of uranium prices in the latter part of 1980s, despite they very encouraging exploration results. As only limited Karoo sandstone-covered areas were tested there is still great potential for further discoveries. The planned output of Roessing Uranium Mine at 40,000 tonnes of ore per day which results in an annual production of 4536 tonnes of uranium oxide, was achieved in 1979. In case of improved uranium market conditions, Namibia is in a strong position to increase uranium production and open up new production centres to strengthen the country's position as an important uranium producer in the world. 6 figs, 2 tabs

  4. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Indonesia

    International Nuclear Information System (INIS)

    1977-10-01

    Indonesia is a country of south east Asia comprising a large island group extending east-west for over 3000 miles. The geology of Indonesia is fairly well known but is extremely complicated. Successive mountain movements took place around an ancient crustal area. The oldest, of Permian-Triassic age formed northeast Sumatra, northern Java and western Kalimantan. This was followed by the Sumatra orogenesis and finally in Cretaceous and Tertiary times the southern half of Java and the islands as far as New Guinea were formed. Geological studies tend to indicate that the most favourable uranium areas are likely to be in West Sumatra and West Kalimantan. Exploration by the Directorate of Survey and Geology of the National Atomic Energy Agency has been carried out on a small scale since 1961. Exploration concession have been granted to French, German and Japanese organisations. No uranium reserve or resource figures have ever been stated but small occurrences and radioactive anomalies have been found in West and South Sumatra, West and Central Kalimantan and in West Irian. Although the geology of some areas appears to be favourable, little success has attended exploration efforts to date and thus the Speculative Potential is noted as between 1,000 and 10,000 tonnes uranium. (author)

  5. Uranium resources and supply

    International Nuclear Information System (INIS)

    Cameron, J.

    1973-01-01

    The future supply of uranium has to be considered against a background of forecasts of uranium demand over the next decades which show increases of a spectacular nature. It is not necessary to detail these forecasts, they are well known. A world survey by the Joint NEA/IAEA Working Party on 'Uranium Resources, Production and Demand', completed this summer, indicates that from a present production level of just over 19,000 tonnes uranium per year, the demand will rise to the equivalent of an annual production requirement of 50,000 tonnes uranium by 1980, 100,000 by 1985 and 180,000 by 1990. Few, if any, mineral production industries have been called upon to plan for a near tenfold increase in production in a space of about 15 years as these forecasts imply. This might possibly mean that, perhaps, ten times the present number of uranium mines will have to be planned and engineered by 1990

  6. Uranium 2000 : International symposium on the process metallurgy of uranium

    International Nuclear Information System (INIS)

    Ozberk, E.; Oliver, A.J.

    2000-01-01

    The International Symposium on the Process Metallurgy of Uranium has been organized as the thirtieth annual meeting of the Hydrometallurgy Section of the Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum (CIM). This meeting is jointly organized with the Canadian Mineral Processors Division of CIM. The proceedings are a collection of papers from fifteen countries covering the latest research, development, industrial practices and regulatory issues in uranium processing, providing a concise description of the state of this industry. Topics include: uranium industry overview; current milling operations; in-situ uranium mines and processing plants; uranium recovery and further processing; uranium leaching; uranium operations effluent water treatment; tailings disposal, water treatment and decommissioning; mine decommissioning; and international regulations and decommissioning. (author)

  7. Saskatchewan resources. [including uranium

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The production of chemicals and minerals for the chemical industry in Saskatchewan are featured, with some discussion of resource taxation. The commodities mentioned include potash, fatty amines, uranium, heavy oil, sodium sulfate, chlorine, sodium hydroxide, sodium chlorate and bentonite. Following the successful outcome of the Cluff Lake inquiry, the uranium industry is booming. Some developments and production figures for Gulf Minerals, Amok, Cenex and Eldorado are mentioned.

  8. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Peru. August - October 1981

    International Nuclear Information System (INIS)

    Hetland, Donald L.; Michie, Uisdean McL.

    1981-01-01

    The IUREP Orientation Phase Mission to Peru believes that the Speculative Resources of that country fall between 6,000 and 11,000 tonnes uranium. There has been no uranium production in Peru and there are no official estimates of uranium resources. Past exploration in Peru (dating from about 1952) has indicated a paucity of valid uranium occurrences and radioactive anomalies. Only recently (1980) have anomalous areas been identified, (Macusani-Picotani). The identified Speculative Resources are mainly in Late Tertiary ignimbrites and associated sediments in the high Andes of southern Peru. Geologically, there are direct parallels between these resources and deposits of the Los Frailes areas of neighbouring Bolivia. Other minor Speculative Resources may be present in calcretes developed from Tertiary volcanogenic sources over the Precambrian in the Pacific Coastal desert of southern Peru but no positive indications have been recognised. Hercynian sub-volcanic granites in the eastern cordillera of southern Peru may have some associated Speculative Resources both intra and extra granitic. No Speculative Potential could be identified in Permo-Triassic or Tertiary post tectonic continental sediments anywhere in Peru. Such potential may exist but further reconnaissance of the continental late Tertiary basins, with positive indications would be required before inclusion of potential in this category. Recent discoveries in the volcanogenic environment of southern Peru have been by carborne, helicopter borne and on on-foot reconnaissance of isolated areas. It is recommended that there be a more systematic, integrated study of the entire volcanic district assisted by volcanic petrographic examination. Assessment of the known occurrences requires immediate subsurface study by drilling and exploration audits to assess their continuity, grade variation and thickness. This phase will be significantly more expensive than previous exploration. Non-core drilling should supplement

  9. Present status of uranium resource development in foreign countries, 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The book of the same title as this one was published in 1983. Since then, the situation requiring the correction of the contents, such as the correction of uranium resource policy in various countries accompanying the change of uranium market condition and the change of uranium policy in Australia due to the political situation, has occurred, consequently, the revision has been made adding these new information. The confirmed resources of uranium and the resources of uranium to be added by estimation in the free world are tabulated. About each country, the organization and policy, the policy of exporting uranium and the present status of the export, the quantity of uranium resources, the production of uranium, the state of exploration and development and so on are reported. Japan has taken part in the development of uranium resources in Australia, Canada, Gabon, Zambia, Morocco, Guinea, Mali and so on. (Kako, I.)

  10. Western states uranium resource survey

    International Nuclear Information System (INIS)

    Tinney, J.F.

    1977-01-01

    ERDA's National Uranium Resource Evaluation (NURE) program was established to provide a comprehensive description of uranium resources in the United States. To carry out this task, ERDA has contracted with various facilities, including universities, private companies, and state agencies, to undertake projects such as airborne radiometric surveys, geological and geochemical studies, and the development of advanced geophysical technology. LLL is one of four ERDA laboratories systematically studying uranium distribution in surface water, groundwater, and lake and stream sediments. We are specifically responsible for surveying seven western states. This past year we have designed and installed facilities for delayed-neutron counting and neutron-activation analysis, completed seven orientation surveys, and analyzed several thousand field samples. Full-scale reconnaissance surveys began last fall

  11. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Italy

    International Nuclear Information System (INIS)

    1977-10-01

    The Italian Republic comprises a 1200 - Km - long peninsula ex- tending from southern Europe into the Mediterranean Sea, and a number of adjacent islands, among which the principals are Sicily and Sardinia. The total area is in excess of 300,000 Sq.Km, the islands account for some 50, 000 Sq.Km. From a physiographic and morphologic point of view, Italy mainly consists of the Alpine region and the Po valley to the North and of the Appennine range and small Coastal plains to the Centre and South. Plains occupied only 20% of the total area, hills and mountains, up to 4,810 m of elevation, contribute almost equally to the remaining 80%. The most promising uranium mineralizations have been found in the Bergamasc Alps, near the small town of Novazza. Pitchblende and minor sphalerite (formation temperature, 80 deg. - 100 deg. C) occur disseminated in volcanics of permian age. The host rocks at the Novazza uranium deposit, consist of an acid ignimbrite with cineritic texture. The rocks have been affected by metasomatism which brought abundant neo-formation minerals such as silica, sericite, carbonates and minor adularia, albite and muscovite. The reasonably assured resources of the Novazza deposit have been estimated to be 1,200 ton of U having a grade of 900 p.p.m. U. Estimated additional resources are 1,000 ton U. Production is scheduled to start in 1980

  12. Assessment of uranium resources and supply

    International Nuclear Information System (INIS)

    1991-04-01

    Uranium as nuclear fuel is an important energy resource, which generates about one-sixth of the world's total electricity generated in 1989. The current nuclear electricity generating capacity of 318 GW(e) is expected to grow by over 38% to 440 GW(e) in the year 2005. The world's uranium requirements are expected to increase similarly from about 52,000 t U in 1989 to over 70,000 t U in 2005. Beyond this time the uranium requirements are projected to reach over 80,000 t U in 2030. It was the objective of the Technical Committee Meeting on Assessment of Uranium Resources and Supply, organized by the IAEA and held in Vienna, between 29 August - 1 September 1989, to attract specialists in this field and to provide a forum for the presentation of reports on the methodologies and actual projects carried out in the different countries. Of special interest was the participation of specialists from some countries which did not or only occasionally co-operate with the IAEA in the projects related to the assessment of uranium resources and supply. A separate abstract was prepared for each of the 19 papers. Refs, figs and tabs

  13. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Madagascar. September-October 1981

    International Nuclear Information System (INIS)

    Meyer, John H.; Brinck, Johan W.

    1981-01-01

    This study, resulting from the IUREP Orientation Mission to Madagascar, includes the reported information on infrastructure, mining regulations and conditions made available to the Mission. Within the structure of the centrally planned economic system, uranium exploration and mining is considered the exclusive activity of OMNIS, an organization founded by the State for that purpose (Office Militaire National pour les Industries Strategiques). Madagascar has a long history of prospection and small-scale exploitation of uranium (thorium and radium). Some of this activity dates back to 1909, culminating in significant production of both uranium and thorium (in excess of 5900 tonnes of uranothorianite) by the CEA and private contractors in the Fort Dauphin area from 1955 to 1968. Past exploration and development work in a number of areas, notably by the CEA, OMNIS and the IAEA/UNDP, is reviewed and the uranium resources and mineral indications reported. The areas rated at present as the more important and which continue to be investigated (by OMNIS, in conjunction with IAEA/UNDP projects) in the order of priority are: the Fort Dauphin area, the Karroo formation and the Neogene lacustrine basin at Antsirabe. The Mission estimates that Madagascar has a moderate potential for undiscovered resources; it is estimated that such speculative resources could lie within the range of 4000 - 38000 tonnes U. In addition there are areas with as yet untested environments and with no known occurrences which may be favourable but which will require prospection. Modifications to existing programmes and new programmes are suggested. Policy alternatives are reviewed

  14. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Thailand

    International Nuclear Information System (INIS)

    1985-01-01

    The IURBP Orientation Phase Mission assesses the Speculative Uranium Resources in Thailand to be within the range of 1 500 to 38 500 tonnes U. Geological environments which are considered by the Mission to be favourable for uranium occurrences include the following: sandstones of Jurassic to Triassic age; Tertiary sedimentary basins (northern Thailand); Tertiary sedimentary basins (southern Thailand); associated with fluorite deposits; granitic rocks; black shales and graphitic slates of the Palaeozoic; associated with sedimentary phosphate deposits; and associated with monazite sands. Physical conditions in Thailand, including a wet tropical climate, dense forest growth and rugged terrain in some areas and relative inaccessibility, make exploration difficult and costly. There is currently no ready accessibility to detailed topographic and geological maps and other basic data. This lack of availability is a severe constraint to systematic exploration. The lack of skilled personnel experienced in uranium studies and the low level of technical support is a serious hindrance to exploration in Thailand. (author)

  15. World uranium resources

    International Nuclear Information System (INIS)

    Deffeyes, K.S.; MacGregor, I.D.

    1980-01-01

    To estimate the total resource availability of uranium, the authors' approach has been to ask whether the distribution of uranium in the earth's crust can be reasonably approximated by a bell-shaped log-normal curve. In addition they have asked whether the uranium deposits actually mined appear to be a portion of the high-grade tail, or ascending slope, of the distribution. This approach preserves what they feel are the two most important guiding principles of Hubbert's work, for petroleum, namely recognizing the geological framework that contains the deposits of interest and examining the industry's historical record of discovering those deposits. Their findings, published recently in the form of a book-length report prepared for the US Department of Energy, suggest that for uranium the crustal-distribution model and the mining-history model can be brought together in a consistent picture. In brief, they conclude that both sets of data can be described by a single log-normal curve, the smoothly ascending slope of which indicates approximately a 300-fold increase in the amount of uranium recoverable for each tenfold decrease in ore grade. This conclusion has important implications for the future availability of uranium. They hasten to add, however, that this is only an approximative argument; no rigorous statistical basis exists for expecting a log-normal distribution. They continue, pointing out the enormously complex range of geochemical behavior of uranium - and its wide variety of different binds of economic deposit. Their case study, supported by US mining records, indicates that the supply of uranium will not be a limiting factor in the development of nuclear power

  16. Uranium 2007 resources, production and demand

    CERN Document Server

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  17. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Argentina

    International Nuclear Information System (INIS)

    1977-08-01

    intruded by acidic rocks. The High Cordiilera, an area of 200,000 square kilometers in northwestern Argentina contains sedimentary, metamorphic, and igneous rocks that could be favorable although the difficult topography is a restrictive influence. The distribution of uranium mineralization in various sediments and other rock types over large areas of Argentina is suggestive of widespread favorability for uranium-ore formation. Inasmuch as uranium reserves plus potential are already estimated at close to 80,000 tons U 3 O 8 , and exploration has not been exhaustively conducted, ultimate resource potential might realistically be expected to fall in the 100,000 to 500,000 ton U 3 O 8 range

  18. Feasibility studies on electrochemical separation and recovery of uranium by using domestic low grade uranium resources

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Lee, Kune Woo; Won, Hui Jun; Choi, Wang Kyu; Kim, Gye Nam; Lee, Yu Ri; Lee, Joong Moung

    2005-12-01

    The up-to-date electrochemical uranium separation technology has been developed for uranium sludge waste treatment funded by a long term national nuclear technology development program. The objective of the studies is to examine applicability of the uranium separation technology to making use of the low grade uranium resources in the country. State of the arts of uranium separation and recovery from the low grade national uranium resources. - The amount of the high grade uranium resources(0.1 % U 3 O 8 contents) in the world is 1,750,000MTU and that of the low grade uranium resources(0.04 % U 3 O 8 contents) in the country is 340,000MTU. - The world uranium price will be increase to more than 30$/l0b in 10 years, so that the low grade uranium in the country become worth while to recover. - The conventional uranium recovery technologies are based on both acidic - The ACF electrochemical uranium separation technology is the state of the art technology in the world and the adsorption capability of 690 mgU/g is several ten times higher than that of a conventional zeolite and the uranium stripping efficiency by desorption is more than 99%. So, this technology is expected to replace the existing solvent extraction technology. Feasibility of the ACF electrochemical uranium separation technology as an uranium recovery method. Lab scale demonstration of uranium separation and recovery technologies have been carried out by using an ACF electrochemical method

  19. Uranium resources and the scope for nuclear power

    International Nuclear Information System (INIS)

    Vaughan, R.D.

    1975-01-01

    The subject is discussed under the following headings: uranium resources, forecast on nuclear programme, avenues for reduction in uranium consumption, uranium consumption for fixed programme with various breeders, possible nuclear growth determined by uranium supply. (U.K.)

  20. Canadian uranium policy and resource appraisal

    International Nuclear Information System (INIS)

    Merlin, H.B.

    1976-01-01

    This paper reviews the history of uranium production in Canada, leading up to the turn-around from a buyer's to a seller's market in early 1974. The specific objectives of Canada's new uranium policy, announced in that year, are then spelled out and explained. The paper also describes the producing uranium deposits in Canada, the definition of uranium resources and projected production capacity. Finally, there is a section on the proposed laws governing non-resident ownership provisions in the industry. (author)

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Chile

    International Nuclear Information System (INIS)

    1977-08-01

    CCEN has invited proposals from international mining companies for the recovery of uranium from copper-bearing waters at the large Chuquicamata mine. As of mid-1977, it was reported that one proposal from all. S. company had been received. It has been estimated that production of 85 tonnes U/year might be realized here. Relatively little interest is shown in uranium by domestic (Chilean) companies because of the fear that the discovery of uranium might lead to nationalization of the properties. In spite of the possibilities mentioned above, there has been relatively little uranium discovered to date in Chile. In view of the relatively small size of these known deposits and until reconnaissance has taken a harder look at these possibilities, it would be prudent to place the potential of Chile in the 1,000-10,000 tonnes range

  2. Long-term availability of global uranium resources

    International Nuclear Information System (INIS)

    Monnet, Antoine

    2016-01-01

    From a global perspective, a low-carbon path to development driven by a growth of nuclear power production raises issues about the availability of uranium resources. Future technologies allowing nuclear reactors to overcome the need for natural uranium will take time to fully deploy. To address these issues, we analyze the conditions of availability of uranium in the 21. century. The first two conditions are technical accessibility and economic interest, both related to the cost of production. We study them using a model that estimates the ultimate uranium resources (amounts of both discovered and undiscovered resources) and their costs. This model splits the world into regions and the resource estimate for each region derives from the present knowledge of the deposits and economic filtering. The output is a long-term supply curve that illustrates the quantities of uranium that are technically accessible as a function of their cost of production. We identify the main uncertainties of these estimates and we show that with no regional breakdown, the ultimate resources are underestimated. The other conditions of availability of uranium covered in our study are related to the market dynamics, i.e. they derive from the supply and demand clearing mechanism. To assess their influence, they are introduced as dynamic constraints in a partial equilibrium model. This model of the uranium market is deterministic, and market players are represented by regions. For instance, it takes into account the short-term correlation between price and exploration expenditures, which is the subject of a dedicate econometric study. In the longer term, constraints include anticipation of demand by consumers and a gradual depletion of the cheapest ultimate resources. Through a series of prospective simulations, we demonstrate the strong influence on long-term price trends of both the growth rate of demand during the 21. century and its anticipation. Conversely, the uncertainties related to the

  3. Uranium resources: the Canadian status

    International Nuclear Information System (INIS)

    Runnalls, O.J.C.

    1976-01-01

    The history of the uranium industry in Canada is reviewed beginning with the first discoveries and progressing through the booming years of the 1950's, the doldrums of the 1960's, to the present bouyant seller's market and the promising prospects for new discoveries. The upsurge in demand has led to the establishment of a uranium export policy which is described in detail. Recent estimates of resources, production capacity, and domestic demand are also outlined. Finally, a brief description of the utilization of natural uranium in CANDU power reactors is presented

  4. Present status of development of uranium resources in foreign countries

    International Nuclear Information System (INIS)

    1983-10-01

    The book with the same title as this was published in 1981. Thereafter, the necessity to correct the contents arose, such as the remarkable change in uranium market condition and the change of uranium resource policy in Australia accompanying the change of regime, accordingly, the revision was carried out by adding more new information. As the main sources of the information collected in this book, 25 materials are shown. The confirmed resources of uranium in the free world as of the beginning of 1981 amounted to 2,293,000 t U, and the estimated additional resources were 2,720,000 t U. The political system and uranium policy, the present status of uranium export, the quantity of resources and the estimated amount of deposits, the uranium production and the status of uranium exploration and development of 25 foreign countries are reported. Japan has carried out uranium development activities in Australia, Canada, Niger, Gabon, Zambia and so on. (Kako, I.)

  5. Extraction of uranium from seawater: evaluation of uranium resources and plant siting

    International Nuclear Information System (INIS)

    Rodman, M.R.; Gordon, L.I.; Chen, A.C.T.

    1979-02-01

    This report deals with the evaluation of U.S. coastal waters as a uranium resource and with the selection of a suitable site for construction of a large-scale plant for uranium extraction. Evaluation of the resource revealed that although the concentration of uranium is quite low, about 3.3 ppB in seawater of average oceanic salinity, the amount present in the total volume of the oceans is very great, some 4.5 billion metric tons. Of this, perhaps only that uranium contained in the upper 100 meters or so of the surface well-mixed layer should be considered accessible for recovery, some 160 million tonnes. The study indicated that open ocean seawater acquired for the purpose of uranium extraction would be a more favorable resource than rivers entering the sea, cooling water of power plants, or the feed or effluent streams of existing plants producing other products such as magnesium, bromine, or potable and/or agricultural water from seawater. Various considerations led to the selection of a site for a pumped seawater coastal plant at a coastal location. Puerto Yabucoa, Puerto Rico was selected. Recommendations are given for further studies. 21 figures, 8 tables

  6. Extraction of uranium from seawater: evaluation of uranium resources and plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Rodman, M.R.; Gordon, L.I.; Chen, A.C.T.

    1979-02-01

    This report deals with the evaluation of U.S. coastal waters as a uranium resource and with the selection of a suitable site for construction of a large-scale plant for uranium extraction. Evaluation of the resource revealed that although the concentration of uranium is quite low, about 3.3 ppB in seawater of average oceanic salinity, the amount present in the total volume of the oceans is very great, some 4.5 billion metric tons. Of this, perhaps only that uranium contained in the upper 100 meters or so of the surface well-mixed layer should be considered accessible for recovery, some 160 million tonnes. The study indicated that open ocean seawater acquired for the purpose of uranium extraction would be a more favorable resource than rivers entering the sea, cooling water of power plants, or the feed or effluent streams of existing plants producing other products such as magnesium, bromine, or potable and/or agricultural water from seawater. Various considerations led to the selection of a site for a pumped seawater coastal plant at a coastal location. Puerto Yabucoa, Puerto Rico was selected. Recommendations are given for further studies. 21 figures, 8 tables.

  7. National Uranium Resource Evaluation: intermediate-grade uranium resource assessment project for part of the Maybell District, Sand Wash Basin, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.

    1983-04-01

    Intermediate-grade uranium resources in the Miocene Browns Park Formation were assessed for part of the Maybell district in the Sand Wash Basin, Colorado, as part of the National Uranium Resource Evaluation program conducted by Bendix Field Engineering Corporation for the US Department of Energy. Two sites, each 2 mi 2 (5 km 2 ) in size, in the district were selected to be assessed. Site selection was based on evaluation of geologic, geophysical, and geochemical data that were collected from a larger project area known to contain uranium enrichment. The assessment of the sites was accomplished primarily by drilling 19 holes through the Browns Park Formation and by using the geophysical and geochemical data from those holes and from a larger number of industry-drilled holes. Analytical results of samples from uranium prospects, mainly along faults in the sites, were also used for the assessment. Data from surface samples and from drill-hole samples and logs of the site south of Lay Creek indicate that no intermediate-grade uranium resources are present. However, similar data from the site north of Lay Creek verify that approximately 25 million lb (11.2 million kg) of intermediate-grade uranium resources may be present. This assessment assumes that an average uranium-enriched thickness of 10 ft (3 m) at a grade of 0.017% U 3 O 8 is present in at least two thirds of the northern site. Uranium enrichment in this site occurs mainly in the lower 150 ft (45 m) of the Browns Park Formation in fine- to medium-grained sandstone that contains abundant clay in its matrix. Facies variations within the Browns Park preclude correlation of individual beds or zones of uranium enrichment between closely spaced drill holes

  8. International trade in uranium

    International Nuclear Information System (INIS)

    Two reports are presented; one has been prepared by the Uranium Institute and is submitted by the United Kingdom delegation, the other by the United States delegation. The report of the Uranium Institute deals with the influence of the government on international trade in uranium. This influence becomes apparent predominantly by export and import restrictions, as well as by price controls. The contribution submitted by the United States is a uranium market trend analysis, with pricing methods and contracting modes as well as the effect of government policies being investigated in the light of recent developments

  9. Update on international uranium and enrichment supply

    International Nuclear Information System (INIS)

    Cleveland, J.M.

    1987-01-01

    Commercial nuclear power generation came upon us in the late 1950s and should have been relatively uneventful due to its similarities to fossil-powered electrical generation. Procurement of nuclear fuel appears to have been treated totally different from the procurement of fossil fuel, however, and only recently have these practices started to change. The degree of utility reliance on US-mined uranium and US Dept. of Energy (DOE)-produced enrichment services has changed since the 1970s as federal government uncertainty, international fuel market opportunity, and public service commission scrutiny has increased. Accordingly, the uranium and enrichment market has recognized that it is international just like the fossil fuel market. There is now oversupply-driven competition in the international nuclear fuel market. Competition is increasing daily, as third-world countries develop their own nuclear resources. American utilities are now diversifying their fuel supply arrangements, as they do with their oil, coal, and gas supply. The degree of foreign fuel arrangements depends on each utility's risk posture and commitment to long-term contracts. In an era of rising capital, retrofit, operating, and maintenance costs, economical nuclear fuel supply is even more important. This economic advantage, however, may be nullified by congressional and judicial actions limiting uranium importation and access to foreign enrichment. Such artificial trade barriers will only defeat US nuclear generation and the US nuclear fuel industry in the long term

  10. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Turkey. September to November 1980

    International Nuclear Information System (INIS)

    Ziehr, H.; Komura, A.

    1985-02-01

    The IUREP Orientation Phase Mission to Turkey estimates the Speculative Resources of the country to lie between 21 000 and 55 000 tonnes uranium. Past exploration in Turkey, dating from 1953, has indicated a very high number of uranium occurrences and radioactive anomalies, but ore deposits of significant size and grade have not been found. Present reserves amount to 4 600 tonnes uranium which can be allocated to approximately 15 sandstone type deposits in Neogene continental sediments. Several hundreds of other occurrences and radioactive anomalies exist where ore reserves have not been delineated. The uranium occurrences and radioactive anomalies can be divided according to host rock into (a) crystalline massif and (b) Tertiary continental sediment. The greatest geological potential for further resources is estimated to exist in the above mentioned two geological terrains. The most favourable geological potential exists in Neogene continental sedimentary basins near the crystalline massifs. Because surface exploration in the known favourable areas such as the Koepruebasi Basin has been so systematic, extensive, and successful, it is improbable that additional surface work will have much effect in increasing the number of new radioactive anomalies or uranium occurrences detected at the surface in these areas. Surface survey work in these areas should be mainly designed to assist the understanding of structures at depth. Surface reconnaissance survey work is, however, required in other parts of the above mentioned two geological terrains in this country. Before starting such a reconnaissance survey in new areas, the Mission suggests that a careful and extensive library study be conducted in close co-operation with sedimentologists, petrologists, and remote sensing specialists. The Mission suggests that in the medium term, 8 to 10 years, some 85 - 110 million U.S. Dollars be spent on airborne and ground surveys, including geological, radiometric, geochemical, and

  11. Are world uranium resources sufficient to fuel global growth in nuclear generating capacity?

    International Nuclear Information System (INIS)

    Cameron, R.; Vance, R.E.

    2012-01-01

    Increased uranium prices since 2003 have produced more activity in the sector than the previous 20 years. Nuclear reactor construction is proceeding in some countries, ambitious expansion plans have been announced in others and several, particularly in the developing world, are considering introducing nuclear power as a means of meeting rising electricity demand without increasing greenhouse gas emissions. Others have recently decided to either withdraw from the use of nuclear power or not proceed with development plans following the accident at the Fukushima Dai-ichi nuclear power plant in Japan in March 2011. Since the mid-1960, the OECD Nuclear Energy Agency and the International Atomic Energy Agency have jointly prepared a comprehensive update of global uranium resources, production and demand (commonly known as the 'Red Book'. The Red Book is based on government responses to a questionnaire that requests information on uranium exploration and mine development activity, resources and plans for nuclear development to 2035. This presentation provides an overview of the global situation based on the recently published 2011 edition. It features a compilation of global uranium resources, projected mine development and production capability in all the countries currently producing uranium or with plans to do so in the near future. This is compared to updated, post-Fukushima demand projections, reflecting nuclear phase-out plans announced in some countries and ambitious expansion plans of others. The 2011 Red Book shows that currently defined uranium resources are sufficient to meet high case projections of nuclear power development to 2035. (authors)

  12. Uranium - resources development and availability

    International Nuclear Information System (INIS)

    1983-01-01

    Australia possesses a major portion of the world's low cost uranium and it is confidently expected that further exploration will delineate yet more reserves. The level of such exploration and the rate of development of new production will remain critically dependent on world market developments. For the foreseeable future all development will be dedicated to supplying the export market. Australian government policies for uranium take account of both domestic and international concerns. With Australia, the policies act to protect the interests of the Aboriginal people affected by uranium production. In response to national interests and concerns, foreign investment in uranium production ventures is regulated in a manner which requires Australian control but allows a measure of foreign equity. Environmental concerns are recognized and projects may only be approved after comprehensive environmental protection procedures have been complied with. Without these policies public acceptability, which provides the foundations for long-term stability of the industry, would be prejudiced. On the world scene, Australia's safeguards policy serves to support international nuclear safeguards and, in particular, to honour its obligations under the Nuclear Non-Proliferation Treaty. Export policy requires that reasonable sales contract conditions apply and that fair negotiated market prices are obtained for Australia's uranium. Australia's recent re-emergence as a major producer and exporter of uranium is convincing testimony to the success of these policies. (author)

  13. Human resource development for uranium production cycle

    International Nuclear Information System (INIS)

    Ganguly, C.

    2014-01-01

    Nuclear fission energy is a viable option for meeting the ever increasing demand for electricity and high quality process heat in a safe, secured and sustainable manner with minimum carbon foot print and degradation of the environment. The growth of nuclear power has shifted from North America and Europe to Asia, mostly in China and India. Bangladesh, Vietnam, Indonesia, Malaysia and the United Arab Emirates are also in the process of launching nuclear power program. Natural uranium is the basic raw material for U-235 and Pu-239, the fuels for all operating and upcoming nuclear power reactors. The present generation of nuclear power reactors are mostly light water cooled and moderated reactor (LWR) and to a limited extent pressurized heavy water reactor (PHWR). The LWRs and PHWRs use low enriched uranium (LEU with around 5% U-235) and natural uranium as fuel in the form of high density UO_2 pellets. The uranium production cycle starts with uranium exploration and is followed by mining and milling to produce uranium ore concentrate, commonly known as yellow cake, and ends with mine and mill reclamation and remediation. Natural uranium and its daughter products, radium and radon, are radioactive and health hazardous to varying degrees. Hence, radiological safety is of paramount importance to uranium production cycle and there is a need to review and share best practices in this area. Human Resource Development (HRD) is yet another challenge as most of the experts in this area have retired and have not been replaced by younger generation because of the continuing lull in the uranium market. Besides, uranium geology, exploration, mining and milling do not form a part of the undergraduate or post graduate curriculum in most countries. Hence, the Technical Co-operation activities of the IAEA are required to be augmented and more country specific and regional training and workshop should be conducted at different universities with the involvement of international experts

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Denmark (Greenland)

    International Nuclear Information System (INIS)

    1977-11-01

    The report deals almost exclusively with Greenland. A major omission is any broad description of the geology of the island. One which can be recommended is 'A survey of the economic geology of Greenland' by B.J. Nielsen published by the Geological Survey of Greenland. Nielsen has also published several articles on the uranium occurrences in Greenland, some of which are noted in the references. A review of the geology is necessary in order to determine how the known occurrences fit into the pattern of uranium mineralisation in the North Atlantic regions and Canada, and to suggest further potential by analogy with these regions. Maps are significantly also lacking and three suitable examples are attached. Additions to the general map would be the areas examined and the extent of airborne radiometry. A further major omission is a definition of the meaning of potential resources, especially as 250,000 tonnes are claimed for the lujavrites at present and a future potential of 500,000 tonnes. I presume that this is the contained uranium which can be calculated as being present in the rock units, rather than any estimate of the amount of uranium which could be recovered economically. The figures for RAH and EAR at Kvanefjeld could conveniently be updated (Nov. 77) to RAH 15,750 t U, EAR 10,000 t U, TOTAL 25,750 t U. As these alkalic rocks are confined to the Garder province of the Ketilidian mobile belt some more definite indication of similar uraniferous types could be made from the excellent published maps and lead to more realistic estimates using the NURE formulae

  15. South African uranium resources - 1997 assessment methodology and results

    International Nuclear Information System (INIS)

    Ainslie, L.C.

    2001-01-01

    The first commercial uranium production in South Africa started in 1953 to meet the demand for British/US nuclear weapons. This early production reached its peak in 1959 and began to decline with the reduced demand. The world oil crisis in the 1970s sparked a second resurgence of increased uranium production that peaked in 1980 to over 6,000 tonnes. Poor market condition allied with increasing political isolation resulted in uranium production declining to less than a third of the levels achieved in the early 1980s. South Africa is well endowed with uranium resource. Its uranium resources in the RAR and EAR-I categories, extractable at costs of less than $80/kg U, as of 1 January 1997, are estimated to 284 400 tonnes U. Nearly two thirds of these resources are associated with the gold deposits in the Witwatersrand conglomerates. Most of the remaining resources occur in the Karoo sandstone and coal deposits. (author)

  16. World uranium resources and Japan's status on its procurement

    International Nuclear Information System (INIS)

    Imaizumi, Tsunemasa

    1979-01-01

    The features of uranium are that it is not versatile in use, that its substitutes as nuclear fuel cannot be found, that it cannot be used as fuel unless the processing is made, that it has the nuclear fission property, and that there is some time limit in its value. Therefore uranium lacks charm as the object of resource industries. The market of uranium started as military procurement, and its effects still remain now in some extent. Many mines were closed when the oversupply and the rapid drop of price of uranium occurred once, and such fear is felt even now. The relationship between the suppliers and the consumers of uranium is one to one correspondence, accordingly the mutual cooperation is necessary. One problem is that the intervention by governments into uranium market is unavoidable. In order to bring up the sound and stable market, the obstructing factors must be eliminated. The uranium resources in the free world are about 4.4 million tons. The import of uranium resources is carried out according to the long term procurement contracts. For the consumer countries, there are the risk of embargo, the problems related to the cartel, and the restriction based on nuclear non-proliferation. The trade by establishing the multi-lateral organization, the independent development of foreign mines, and the exploration of resources in Japan are discussed. (Kako, I.)

  17. Human Resource Development for Uranium Production Cycle

    International Nuclear Information System (INIS)

    Ganguly, C.

    2014-01-01

    Concluding Remarks & Suggestions: • HRD will be one of the major challenges in the expanding nuclear power program in countries like China and India. • China and India get uranium raw material from domestic mines and international market. In addition, China has overseas uranium property. India is also exploring the possibility of overseas Joint Venture and uranium properties. For uranium production cycle there is a need for trained geologist, mining engineers, chemical and mechanical engineers. • There is a need for introducing specialization course on “uranium production cycle” at post graduate levels in government and private universities. Overseas Utilities and private firms in India engaged in nuclear power and fuel cycle activities may like to sponsor MTech students with assurance of employment after the successful completion of the course. • The IAEA may consider to extend Technical Assistance to universities in HRD in nuclear power and fuel cycle in general and uranium production cycle in particular - IAEA workshops, with participation of international experts, on uranium geology, mining, milling and safety and best practices in uranium production cycle will be of great help. • The IAEA – UPSAT could play an important role in HRD in uranium production cycle

  18. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Israel

    International Nuclear Information System (INIS)

    1977-12-01

    The geology of Israel is relatively simple. Most of the country is underlain by sedimentary rocks of Secondary and Tertiary age. As far as the IAEA is aware no systematic exploration has been done for conventional type uranium deposits. Israel has no uranium deposits, and no high or low-grade uranium ores. However, there are uranium 'sources' which are mainly phosphate rock.Proven phosphate reserves in Israel are estimated at about 220 million tons in five different locations. The average uranium concentration is between 100 and 170 ppm. This makes the uranium content in the proven phosphate reserves of Israel to be about 25,000 tons. Together with the possibility of additional discoveries and on the assumption that the economic conditions for the production of both phosphate and uranium become favourable the Speculative Potential is placed in the 10,000 to 50,000 tonnes uranium category. (author)

  19. Uranium in South Africa: 1983 assessment of resources and production

    International Nuclear Information System (INIS)

    1984-06-01

    NUCOR assesses South Africa's uranium resource and production capabilities on an ongoing basis. Assessments are carried out in close co-operation with the mining companies and the Government Mining Engineer. In carrying out this evaluation, the classification recommended by the NEA/IAEA Working Party on Uranium Resources is followed. In order to preserve company confidentiality, the details of the findings are released in summary form only. Within South Africa, uranium occurrences are found in Precambrian quartz-pebble conglomerates, Precambrian alkaline complexes, Cambrian to Precambrian granite gneisses, Permo-Triassic sandstones and coal, and Recent to Tertiary surficial formations. South Africa's uranium resources were reassessed during 1983 and the total recoverable resources in the Reasonably Assured and Estimated Additional Resource categories recoverable at less than $130/kg U were estimated to be 460 000 t U. This represents a decrease of 13,4% when compared with the 1981 assessment. South Africa's uranium production for 1983 amounted to 6 060 t U, a 4,21 % increase over the 1982 production of 5 816 t U. Ninety-seven percent of the production is derived from the Witwatersrand quartz-pebble conglomerates, the rest being produced as a by-product of copper mining at Palabora. South Africa maintained its position as a major low-cost uranium producer, holding 14% of the WOCA uranium resources, and during 1982 it produced 14% of WOCA's uranium. In making future production capability projections it may be safely concluded that South Africa would be able to produce uranium at substantial levels well into the next century

  20. Global Uranium And Thorium Resources: Are They Adequate To Satisfy Demand Over The Next Half Century?

    Science.gov (United States)

    Lambert, I. B.

    2012-04-01

    This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and

  1. United States uranium resources: an analysis of historical data

    International Nuclear Information System (INIS)

    Lieberman, M.A.

    1976-01-01

    Using historical data, a study of U.S. uranium resources was performed with emphasis on discovery and drilling rates for the time interval from 1948 until the present. The ultimate recoverable resource up to a forward cost category of $30 or less per pound is estimated to be 1,134,000 short tons--about one third the estimate offered by ERDA. A serious shortfall in uranium supply is predicted for the late 1980's if nuclear power proceeds as planned; and courses of action are recommended for uranium resource management

  2. Current status and future prospects of uranium resources

    International Nuclear Information System (INIS)

    Kuronuma, Chosuke

    1997-01-01

    Uranium is contained in various things in natural world, for example, 3 ppm in granite and 3x10 -3 ppm in seawater. Uranium exists in the state of tetra, penta and hexa-valence in nature, and in oxidizing environment, it exists as uranyl radical of hexa-valence, forms soluble complexes, and easily moves with water. In reducing environment, it becomes insoluble state of tetra-valence and precipitates. This property of uranium is deeply related to the way of forming the deposit, and it is explained. The uranium resources of the recovery cost being 80 dollars per kg U or less are 2,120,000 t, and 60% of the total exists in Australia, Kazakstan and Canada. The cumulative production of uranium in the world from 1945 to 1995 was 1,810,000 t. Of the total production, 875,000 t was used for civil purpose, and 750,000 t was used for military purpose. The uranium deposits in Canada are very high quality, and produce 1/3 of the world uranium production. There are the inventories of 150,000-200,000 t U. The diversion of military high enriched uranium to civil purpose is reported. The state of uranium market, the prospect of demand and supply of uranium, and the exploration and development of uranium resources are described. (K.I.)

  3. Standard classification of uranium resources-an illustrative example

    International Nuclear Information System (INIS)

    Krishna, P.M.; Babitzke, H.R.; Curry, D.; Masters, C.D.; McCammon, R.B.; Noble, R.B.; Rodriguez, J.A.; Schanz, J.J.; Schreiber, H.W.

    1983-01-01

    An example illustrates the use of ASTM Standard E901-82, Classification System for Uranium Resources. The example demonstrates the dynamic nature of the process of classification and attests to the necessity of addressing both the aggregate needs of broad-scale resource planning and the specific needs of individual property evaluation. Problems that remain in fixing the classification of a given uranium resource include the uncertainty in estimating the quantity of undiscovered resources and resolving the differences that may exist in deciding when the drill-hole spacing is adequate to determine the tonnage and grade of discovered resources

  4. Optimum utilisation of the uranium resource

    International Nuclear Information System (INIS)

    Ion, S. E.; Wilson, P.D.

    1998-01-01

    The nuclear industry faces many challenges, notably to maximise safety, secure an adequate energy supply, manage wastes satisfactorily and achieve political acceptability. One way forward is to optimise together the various interdependent stages of the fuel cycle - the now familiar 'holistic approach'. Many of the issues will demand large R and D expenditure, most effectively met through international collaboration. Sustainable development requires optimum utilisation of energy potential, to which the most accessible key is recycling uranium and the plutonium bred from it. Realising anything like this full potential requires fast-neutron reactors, and therefore BNFL continues to sustain the UK involvement in their international development. Meanwhile, current R and D programmes must aim to make the nuclear option more competitive against fossil resources, while maintaining and developing the necessary skills for more advanced technologies The paper outlines the strategies being pursued and highlights BNFL 's programmes. (author)

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: France

    International Nuclear Information System (INIS)

    1977-09-01

    France, with an area of 550,000 km 2 , has been prospecting its territory for uranium for more than 30 years. The proven uranium reserves in all the ore categories defined by the NEA/lAEA are estimated at around 120,000 tU, of which 25,000 tU have already been mined. About 70% of these reserves are associated with granites, while the bulk of the remainder is located in Permian sediments and the last in Paleogene sediments. The prospecting effort has not been distributed equally over French territory. More than half of it - recent orogens and large basins - have been little or very little prospected. On the other hand, the Hercynian massifs and their Upper Paleozoic mantle have been systematically prospected. Nevertheless, even within the latter there is still room for further exploration: extensions of already known mineralizations both laterally and vertically, conventional mineralizations deep down or under a mantle, types of mineralizations not investigated previously (those associated with acid or intermediate vulcanism, peribatholithic shales, alkaline complexes etc.). Of course, in the areas that have not been so well explored, because they appear less favourable, there are still some possibilities, namely, in the areas of recent orogens, mineralizations associated with antemesozoic cores (same types as above) or directly associated with orogenesis (slightly to moderately metamorphic sandstone-phyllitic formations, certain sedimentary formations etc.). As for the large basins, they are capable of containing mineralizations associated with some of their formations (Paleogene of the Basin of Aquitaine etc), but they may also cover workable uranium deposits. It is possible that, in the not to distant future access may be gained to such ores in particular cases. On this basis it does not seem unreasonable to reckon with the discovering of new resources of an order of magnitude between half and the same as those already found. (author)

  6. Australia's uranium resources and production in the world context

    International Nuclear Information System (INIS)

    McKay, A.; Lambert, I.; Miezitis, Y.

    2001-01-01

    Australia has 654 000 tonnes uranium (U) in Reasonably Assured Resources (RAR) recoverable at ≤US$40/kg U, which is the largest of all national resource estimates reported in this category. Australia also has the world's largest resources in RAR recoverable at ≤US$80/kg U, with 29% of world resources in this category. Other countries that have large resources in this category include Kazakhstan (19%), Canada (14%), South Africa (10%), Brazil (7%), Namibia (6%), Russian Federation (6%), and United States (5%). In 2000, the main developments in Australia's uranium mining industry were that production reached a record level of 8937 t U 3 O 8 (7579 t U), and commercial operations commenced at the new in situ leach operation at Beverley during November. Australia's total production for 2000 was 27% higher than for 1999. Uranium oxide was produced at the Olympic Dam (4500 t U 3 O 8 ), Ranger (4437 t U 3 O 8 ) and Beverley operations, although production from Beverley for the year was not reported. Australia's share of the world's annual uranium production has increased steadily from about 10.8% (3,712 tonnes U) in 1995 to 21.9% in 2000. Throughout this period Australia has maintained its position as the world's second-largest producer of uranium, behind Canada

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Oman

    International Nuclear Information System (INIS)

    1977-11-01

    The geology of Oman is unlikely to lie favourable for uranium occurrence being mainly of marine sedimentary origin. No exploration for uranium has been reported or is planned. The Speculative Potential is placed in the category of less than 1000 tonnes uranium. (author)

  8. Yellowcake: the international uranium cartel

    International Nuclear Information System (INIS)

    Taylor, J.H.; Yokell, M.D.

    1979-01-01

    The dramatic events that occurred in the uranium market between 1972 and 1976, and their repercussions is discussed. In particular, the book concentrates on the international uranium cartel's attempt to fix yellowcake prices. The background of the yellowcake industry is discussed in Part I of the book, and the demand for uranium and the nuclear fuel cycle isdiscussed, along with a brief anecdotal history of the uranium industry. Part II describes the political conflicts in Australia which led to the public exposure of the uranium cartel and the situation in the world uranium market that led to the cartel's formation. The legal repercussions of the cartel's exposure are discussed in Part III, and in Part IV, the authors reflect on the ramifications of the events described in the book and some of the issues they raise

  9. Uranium, resources, production and demand

    International Nuclear Information System (INIS)

    1990-01-01

    The thirteenth edition of the report looks at recent developments and their impact on the short term (i.e. to the year 2005) and presents a longer term (to 2030) analysis of supply possibilities in the context of a range of requirement scenarios. It presents results of a 1989 review of uranium supply and demand in the World Outside Centrally Planned Economies Areas. It contains updated information on uranium exploration activities, resources and production for over 40 countries including a few CPEs, covering the period 1987 and 1988

  10. Present state and problems of the measures for securing stable supply of uranium resources

    International Nuclear Information System (INIS)

    Yoneda, Fumishige

    1982-01-01

    The long-term stable supply of uranium resources must be secured in order to accelerate the development and utilization of nuclear power in Japan. All uranium required in Japan is imported from foreign countries, and depends on small number of suppliers. On the use of uranium, various restrictions have been imposed by bilateral agreements from the viewpoint of nuclear non-proliferation policy. At present, the demand-supply relation in uranium market is not stringent, but in the latter half of 1980s, it is feared that it will be stringent. The prospect of the demand and supply of uranium resources, the state of securing uranium resources, the present policy on uranium resources, the necessity of establishing the new policy, and the active promotion of uranium resource measures are described. The measures to be taken are the promotion of exploration and development of mines, the participation in the management of such foreign projects, the promotion of diversifying the supply sources, the establishment of the structure to accept uranium resources, the promotion of the storage of uranium, and the rearrangement of general coordination and promotion functions for uranium resource procurement. (Kako, I.)

  11. New information on world uranium resource, production, supply and demand

    International Nuclear Information System (INIS)

    Zhang Jianguo; Meng Jin

    2006-01-01

    New information on world uranium resource, production, supply and demand is introduced. Up to now, explored uranium resources at production cost < USD 40/kg U has 2523257 t uranium; production cost < USD 80/kg U has 5911514 t uranium; production cost < USD130/kg U has 11280488 t uranium; and cost range unassigned has 3102000 t uranium. At moment, the demand uranium of each year is about 67000 t U. After 2020, world uranium demand will rise well above 100000 t per annum with sharp revival of nuclear power plants. With three kinds of economic growth the cumulative requirement of the uranium in low demand case, middle demand case and high demand case from 2000 to 2050 is 3390000, 5394100 and 7577300 t respectively. In the world market uranium price rises from 20 years lowest 18.2 USD/kg U to 75.4 USD/kg U. In 2003, global uranium product is about 35385 t U, and 2004, global uranium product is about 40475 t U. In 2004's world uranium production underground mining, open pit, in situ, by product, and combination account for 39%, 27%, 19%, 11% and 4% respectively. (authors)

  12. How much uranium

    International Nuclear Information System (INIS)

    Kenward, M.

    1976-01-01

    Comment is made on the latest of a series of reports on world uranium resources from the OECD's Nuclear Energy Agency and the UN's International Atomic Energy Agency (Uranium resources, production and demand (including other nuclear fuel cycle data), published by the Organisation for Economic Cooperation and Development, Paris). The report categories uranium reserves by their recovery cost and looks at power demand and the whole of the nuclear fuel cycle, including uranium enrichment and spent fuel reprocessing. The effect that fluctuations in uranium prices have had on exploration for new uranium resources is considered. It is stated that increased exploration is essential considering the long lead times involved but that thanks to today's higher prices there are distinct signs that prospecting activities are increasing again. (U.K.)

  13. Uranium as an energy source: resources, production and reserves from the point of view of technological development

    International Nuclear Information System (INIS)

    Lersow, M.

    2008-01-01

    A reliable evaluation of the uranium resources available in the future and associated strategic reserves must take into account trends in prospecting, degree of technological development of the different stages of the nuclear fuel cycle (starting with the mining industry and preparation), but in particular also the specific raw material and energy yield of future generations of fuel and reactor technology. Uranium deposits are categorised with regard to ore content and probable production costs. The intensified prospecting following the increase in the uranium price will lead to discovery of further reserves and thus continue to follow the historical trend. Uranium production is subject to increasingly stringent legal boundary conditions - mining and preparation are approved according to strict international standards to minimise the environmental effects during operation and to restore and recultivate the sites after closure. New or extended/modernised uranium production sites are based on modern semi- or fully automated technologies. Exposure to radiation and environmental effects are minimised by avoidance of tailings (in situ leaching), by relocation of preparation partial processes underground or by storage of the residues from conventional plants according to international standards. In addition to a rough prediction based on currently available data trends in resource development, uranium production, fuel production and the energy yield from uranium including the option of utilisation of transuranic elements for energy production in order to minimise the radioactive waste are discussed and applied qualitatively to estimation of the reserves. (orig.)

  14. International symposium on uranium production and raw materials for the nuclear fuel cycle - Supply and demand, economics, the environment and energy security. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The IAEA periodically organizes nical meetings and international symposia on all areas of the uranium production cycle. This publication contains 160 extended synopses related to the 2005 international symposium on 'Uranium Production and Raw Materials for the Nuclear Fuel Cycle - Supply and Demand, Economics, the Environment and Energy Security'. They cover all areas of natural uranium resources and production cycle including uranium supply and demand; uranium geology and deposit; uranium exploration; uranium mining and milling; waste management; and environment and regulation. Each synopsis was indexed individually.

  15. Australian uranium resources and production in a world context

    International Nuclear Information System (INIS)

    Cleary, B.

    2003-01-01

    The aim of the paper is to discuss Australian uranium resources and production from the perspective of ERA, the world's third-largest uranium producer, and one of only three producing uranium mining companies in Australia. ERA is a long-term supplier of uranium concentrates for the nuclear power generation industry overseas, a key part of clean global energy supply. ERA's Ranger plant was designed to produce 3,000t U 3 Og/yr, with expansion of the plant hi the early 90s to a 5,700t U 3 O 8 /yr capacity. Australia continues to have the worlds' largest reserves of uranium recoverable at costs of US$40 kg or less, but lags behind Canada in primary production of uranium. This paper discusses some of the reasons for the gap between resources and production, with examples from the company's own experience. Political, social and environmental factors have played a big role in the development of the uranium industry - ERA has been in the forefront of these issues as it pursues sustainable development practices

  16. Internal friction in uranium dioxide

    International Nuclear Information System (INIS)

    Paulin Filho, Pedro Iris

    1979-01-01

    The uranium dioxide inelastic properties were studied measuring internal friction at low frequencies (of the order of 1 Hz). The work was developed in the 160 to 400 deg C temperature range. The effect of stoichiometry variation was studied oxidizing the sample with consequent change of the defect structure originally present in the non-stoichiometric uranium dioxide. The presence of a wide and irregular peak due to oxidation was observed at low temperatures. Activation energy calculations indicated the occurrence of various relaxation processes and assuming the existence of a peak between - 80 and - 70 deg C , the absolute value obtained for the activation energy (0,54 eV) is consistent with the observed values determined at medium and high frequencies for the stress induced reorientation of defects. The microstructure effect on the inelastic properties was studied for stoichiometric uranium dioxide, by varying grain size and porosity. These parameters have influence on the high temperature measurements of internal friction. The internal friction variation for temperatures higher than 340 deg C is thought to be due to grain boundary relaxation phenomena. (author)

  17. Uranium exploration (2004-2014): New discoveries, new resources

    International Nuclear Information System (INIS)

    Polack, C.

    2014-01-01

    The last decade has demonstrated the dynamic of the mining industry to respond of the need of the market to explore and discover new deposits. For the first time in the uranium industry, the effort was conducted not only by the majors but by numerous junior mining companies, more than 800 companies where involved. Junior miners introduced new methodologies, innovations and fresh approach. Working mainly on former prospects of the 70’s and 80’s they discovered new deposits, transformed historical resources into compliant resources and reserves and developed new large resources in Africa, North America and Australia. In Australia, the Four Mile, Mt Gee, Samphire (SA), Mount Isa (Qld), Mulga Rock, Wiluna-Lake Maitland, Carley Bore-Yanrey-Manyingee (WA) projects were all advanced to compliant resources or reserves by junior mining companies. In Canada, activity was mainly focused on Athabasca basin, Newfoundland and Québec, the results are quite amazing. In the Athabasca 2 new deposits were identified, Roughrider and Patterson South Lake, Whilst in Québec the Matouch project and in New Foundland the Michelin project are showing good potential. In Namibia, alaskite and surficial deposits, extended the model of the Dalmaradian Central belt with the extension of rich alaskite of Z20, Husab, Omahola and large deposits of Etango and Norasa. A new mine commenced production Langer Heinrich and two are well advanced on way to production: Trekkopje and Husab. The ISL model continues its success in Central Asia with large discoveries in Mongolia and China. Europe has been revisited by some juniors with an increase of resources in Spain (Salamanca) and Slovakia (Kuriskova). Some countries entered into the uranium club with maiden resources namely Mali (Falea), Mauritania and Peru (Macusani caldeira). The Karoo formation revitalised interest for exploration within Paraguay, South Africa (Rieskuil), Botswana (Lethlakane), Zambia (Mutanga, Chirundu) and the exploitation

  18. Medical effects of internal contamination with uranium.

    Science.gov (United States)

    Duraković, A

    1999-03-01

    The purpose of this work is to present an outline of the metabolic pathways of uranium isotopes and compounds, medical consequences of uranium poisoning, and an evaluation of the therapeutic alternatives in uranium internal contamination. The chemical toxicity of uranium has been recognized for more than two centuries. Animal experiments and human studies are conclusive about metabolic adverse affects and nephro- toxicity of uranium compounds. Radiation toxicity of uranium isotopes has been recognized since the beginning of the nuclear era, with well documented evidence of reproductive and developmental toxicity, as well as mutagenic and carcinogenic consequences of uranium internal contamination. Natural uranium (238U), an alpha emitter with a half-life of 4.5x10(9) years, is one of the primordial substances of the universe. It is found in the earth's crust, combined with 235U and 234U, alpha, beta, and gamma emitters with respective half-lives of 7.1x10(8) and 2.5x10(5) years. A special emphasis of this paper concerns depleted uranium. The legacy of radioactive waste, environmental and health hazards in the nuclear industry, and, more recently, the military use of depleted uranium in the tactical battlefield necessitates further insight into the toxicology of depleted uranium. The present controversy over the radiological and chemical toxicity of depleted uranium used in the Gulf War warrants further experimental and clinical investigations of its effects on the biosphere and human organisms.

  19. Recent International R&D Activities in the Extraction of Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Linfeng

    2010-03-15

    A literature survey has been conducted to collect information on the International R&D activities in the extraction of uranium from seawater for the period from the 1960s till the year of 2010. The reported activities, on both the laboratory scale bench experiments and the large scale marine experiments, were summarized by country/region in this report. Among all countries where such activities have been reported, Japan has carried out the most advanced large scale marine experiments with the amidoxime-based system, and achieved the collection efficiency (1.5 g-U/kg-adsorbent for 30 days soaking in the ocean) that could justify the development of industrial scale marine systems to produce uranium from seawater at the price competitive with those from conventional uranium resources. R&D opportunities are discussed for improving the system performance (selectivity for uranium, loading capacity, chemical stability and mechanical durability in the sorption-elution cycle, and sorption kinetics) and making the collection of uranium from seawater more economically competitive.

  20. Statistical model of global uranium resources and long-term availability

    International Nuclear Information System (INIS)

    Monnet, A.; Gabriel, S.; Percebois, J.

    2016-01-01

    Most recent studies on the long-term supply of uranium make simplistic assumptions on the available resources and their production costs. Some consider the whole uranium quantities in the Earth's crust and then estimate the production costs based on the ore grade only, disregarding the size of ore bodies and the mining techniques. Other studies consider the resources reported by countries for a given cost category, disregarding undiscovered or unreported quantities. In both cases, the resource estimations are sorted following a cost merit order. In this paper, we describe a methodology based on 'geological environments'. It provides a more detailed resource estimation and it is more flexible regarding cost modelling. The global uranium resource estimation introduced in this paper results from the sum of independent resource estimations from different geological environments. A geological environment is defined by its own geographical boundaries, resource dispersion (average grade and size of ore bodies and their variance), and cost function. With this definition, uranium resources are considered within ore bodies. The deposit breakdown of resources is modelled using a bivariate statistical approach where size and grade are the two random variables. This makes resource estimates possible for individual projects. Adding up all geological environments provides a distribution of all Earth's crust resources in which ore bodies are sorted by size and grade. This subset-based estimation is convenient to model specific cost structures. (authors)

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Afghanistan

    International Nuclear Information System (INIS)

    1976-12-01

    Although Afghanistan has an extent of some 650,065 square kilometres, only a very small proportion of it has been surveyed for uranium, and that only at the preliminary reconnaissance stage. Earlier work by bi-lateral teams identified a number of small uranium anomalies and occurrences and more recently (1974-75) an IAEA geologist discovered evidence of uranium mineralisation in the Neogene - Lower Pleistocene continental sediments of the Jalalabad Basin to the east of Kabul. The I.A.E.A. expert outlined three areas totalling 20,000 km where systematic uranium exploration would be justified. Up to the present no positive programme has been agreed. On very tenuous evidence a Speculative Potential of 2000 tonnes U 3 O 8 is suggested for Afghanistan. (author)

  2. Long term adequacy of uranium resources

    International Nuclear Information System (INIS)

    Steyn, J.

    1990-01-01

    This paper examines the adequacy of world economic uranium resources to meet requirements in the very long term, that is until at least 2025 and beyond. It does so by analysing current requirements forecasts, existing and potential production centre supply capability schedules and national resource estimates. It takes into account lead times from resource discovery to production and production rate limitations. The institutional and political issues surrounding the question of adequacy are reviewed. (author)

  3. Uranium Exploration, Resources and Production in South Africa 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ainslie, L.C., E-mail: lee.ainslie@necsa.co.za [South African Nuclear Energy Agency (Necsa), Pretoria (South Africa)

    2014-05-15

    The paper gives a brief history of uranium mining in South Africa. The types of uranium deposits in South Africa are described and their distribution given. The majority of uranium is hosted as a by-product in the quartz-pebble conglomerates of the Witwatersrand Basin with lesser amounts in tabular sandstone and coal hosted deposits. The exploration activities of companies operating in South Africa are discussed and the reserves and resources identified are presented. A substantial increase in reserves has been recorded over the last two years because of intensive investigation of known deposits. Only a marginal increase in total resources was reported because of a lack of “greenfield” exploration. Production is far down from the levels achieved in the 1970s and 1980s. The surge in the uranium market resulted in a number of companies investigating their production options. The recent decline in the market has slowed down some of these activities and forced the closure of an operating mine. However a new mine has come into production and feasibility studies are being carried out on other deposits. The recently promulgated Nuclear Energy Policy for the Republic of South Africa defines Necsa’s role in nuclear fuel cycle and the uranium mining industry emphasizing security of supply. South African uranium resources will be able to supply all local needs for the foreseeable future. (author)

  4. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Honduras

    International Nuclear Information System (INIS)

    1977-08-01

    In 1953, the U.S. Atomic Energy Commission, on invitation of the government of Honduras, conducted uranium reconnaissance in parts of the country. The survey consisted of scintillometric examination of all formations, veins, dikes, sills and contacts along more than 1,500 km of road. Additionally, 17 mines and prospects were examined, but in no location were uranium occurrences found. The largest and most consistently radioactive deposit noted was a body of volcanic ash at Santa Rosa de Copan, a sample of which assayed 15 ppm U 3 O 8 . A uranium prospect has been described from the Yatnala area in northwest Honduras. Uraninite and oxidation products occur in association with copper and mercury minerals in veinlets as well as disseminations in a Lower Cretaceous limestone conglomerate, the llama Formation. The llama Formation is the conglomeratic facies of the Atima (limestone) Formation, both of which are in the Yojoa Group. At the time of the U. N. development program survey in May, 1970, no uranium deposits were known in Honduras. Information is not available on current exploration in Honduras. The state owns most mineral deposits but may grant rights for exploration and exploitation of the subsoil. Mineral and surface titles are separate. Deposits of uranium and its salts, thorium and similar atomic energy substances are reserved to the state. Foreign citizens and companies, with some exceptions, may acquire mineral rights. Several groups of sediments might be of interest for uranium exploration. The Todos Santos redbeds and the El Plan Formation are both shallow marine and hence may contain marginal marine facies favorable for uranium. In the southern and central Cordillera, the Valle de Angeles sediments, particularly the sandstones, may be of interest. The contacts between Permian granites and schists (Paleozoic) may also warrant attention. Lacking further information on which to base a more optimistic outlook, it is estimated that the uranium potential of

  5. National Uranium Resource Evaluation, Tonopah quadrangle, Nevada

    International Nuclear Information System (INIS)

    Hurley, B.W.; Parker, D.P.

    1982-04-01

    The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas

  6. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Bahrain

    International Nuclear Information System (INIS)

    1977-11-01

    Bahrain consists of limestone, sandstone and marl of Cretaceous and Tertiary ages. The potential for discoveries of uranium is very limited and thus the Speculative potential is placed in the category of less than 1000 tonnes uranium. (author)

  7. National uranium resource evaluation, Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Ludlam, J.R.

    1981-06-01

    The Montrose Quadrangle in west-central Colorado was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits according to National Uranium Resource Evaluation program criteria. General surface reconnaissance and geochemical sampling were conducted in all geologic environments in the quadrangle. Preliminary data from aerial radiometric and hydrogeochemical and stream-sediment reconnaissance were analyzed and brief followup studies were performed. Twelve favorable areas were delineated in the quadrangle. Five favorable areas contain environments for magmatic-hydrothermal uranium deposits along fault zones in the Colorado mineral belt. Five areas in parts of the Harding and Entrada Sandstones and Wasatch and Ohio Creek Formations are favorable environments for sandstone-type uranium deposits. The area of late-stage rhyolite bodies related to the Lake City caldera is a favorable environment for hydroauthigenic uranium deposits. One small area is favorable for uranium deposits of uncertain genesis. All near-surface Phanerozoic sedimentary rocks are unfavorable for uranium deposits, except parts of four formations. All near-surface plutonic igneous rocks are unfavorable for uranium deposits, except five areas of vein-type deposits along Tertiary fault zones. All near-surface volcanic rocks, except one area of rhyolite bodies and several unevaluated areas, are unfavorable for uranium. All near-surface Precambrian metamorphic rocks are unfavorable for uranium deposits. Parts of two wilderness areas, two primitive areas, and most of the subsurface environment are unevaluated

  8. Uranium resources in fine-grained carbonaceous rocks of the Great Divide Basin, south-central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Burger, J.A.; Roe, L.M. II; Hacke, C.M.; Mosher, M.M.

    1982-11-01

    The uranium resources of the fine-grained carbonaceous rocks of the Great Divide Basin in southern Wyoming were assessed. The assessment was based primarily on data from some 600 boreholes. The data included information from geophysical logs, lithologic logs and cores, and drill cuttings. The cores and cuttings were analyzed for chemical U 3 O 8 , radiometric U, Th and trace elements. Selected samples were examined by thin section, sieve analysis, x-ray, SEM, ion probe, and alpha track methods. The uranium is associated with fine-grained carbonaceous shales, siltstones, mudstones, and coals in radioactive zones 5 to 50 ft thick that are continuous over broad areas. These rocks have a limited stratigraphic range between the Red Desert tongue of the Wasatch Formation and the lower part of the Tipton tongue of the Green River Formation. Most of this uranium is syngenetic in origin, in part from the chelation of the uranium by organic material in lake-side swamps and in part as uranium in very fine detrital heavy minerals. The uraniferous fine-grained carbonaceous rocks that exceed a cutoff grade of 100 ppM eU 3 O 8 extend over an area of 542 mi 2 and locally to a depth of approximately 2000 ft. The uraniferous area is roughly ellipical and embraces the zone of change between the piedmont and alluvial-fan facies and the lacustrine facies of the intertonguing Battle Spring, Wasatch, and Green River Formations. About 1.05 x 10 6 tons U 3 O 8 , based on gross-gamma logs not corrected for thorium, are assigned to the area in the first 500 ft; an estimated 3.49 x 10 6 tons are assigned to a depth of 1000 ft. These units also contain a substantial thorium resource that is also associated with fine-grained rocks. The thorium-to-uranium ratio generally ranges between 1 and 4. A thorium resource of 3.43 x 10 6 tons to a depth of 500 ft is estimated for the assessment area. 5 figures, 3 tables

  9. Depending on scientific and technological progress to prospect for superlarge uranium deposits. Across-century target for uranium resources exploration work in China

    International Nuclear Information System (INIS)

    Shen Feng

    1995-01-01

    After over 30 years' development, uranium resources exploration work in China has resulted in the discovery of more than 10 economic types of uranium deposits in 23 provinces (regions) of the whole country and large quantities of uranium reserves have been submitted which guarantee the development of nuclear industry in China. However, characteristics such as smaller size of deposits and ore bodies, and lower ore grade of discovered China's uranium deposits have brought about a series of problems on how to economically exploit and utilize these uranium resources. To prospect for superlarge uranium deposits is a guarantee of making uranium resources essentially meet the demand for the long-term development of nuclear industry in China, and is an important way of improving economic benefits in mining China's uranium resources. It is an important mark for uranium geological exploration work to go up a new step as well. China exhibits the geological environment in which various types of superlarge uranium deposits can be formed. Having the financial support from the state to uranium resources exploration work, having professional uranium exploration teams well-experienced in ore prospecting, having modernized uranium exploration techniques and equipment and also having foreign experience in prospecting for superlarge uranium deposits as reference, it is entirely possible to find out superlarge uranium deposits in China at the end of this century and at the beginning of next century. In order to realize the objective, the most important prerequisite is that research work on metallogenetic geological theory and exploration techniques and prospecting methodology for superlarge uranium deposits must be strengthened, and technical quality of the geological teams must be improved. Within this century, prospect targets should be selected and located accurately to carry out the emphatic breakthrough in exploration strategy

  10. Recent International R and D Activities in the Extraction of Uranium from Seawater

    International Nuclear Information System (INIS)

    Rao, Linfeng

    2010-01-01

    A literature survey has been conducted to collect information on the International R and D activities in the extraction of uranium from seawater for the period from the 1960s till the year of 2010. The reported activities, on both the laboratory scale bench experiments and the large scale marine experiments, were summarized by country/region in this report. Among all countries where such activities have been reported, Japan has carried out the most advanced large scale marine experiments with the amidoxime-based system, and achieved the collection efficiency (1.5 g-U/kg-adsorbent for 30 days soaking in the ocean) that could justify the development of industrial scale marine systems to produce uranium from seawater at the price competitive with those from conventional uranium resources. R and D opportunities are discussed for improving the system performance (selectivity for uranium, loading capacity, chemical stability and mechanical durability in the sorption-elution cycle, and sorption kinetics) and making the collection of uranium from seawater more economically competitive.

  11. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Laos

    International Nuclear Information System (INIS)

    1977-11-01

    Laos is a land locked country containing about 3.5 million people living primarily at a subsistence level. Geologically, the country contains a few places that may be marginally favourable for uranium deposits. A uranium potential in the upper half of Category 1 is assigned. (author)

  12. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.; Reinhart, W.R.; Gardner, H.A.

    1981-06-01

    The Durango Quadrangle (2 0 ), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions of the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Bangladesh

    International Nuclear Information System (INIS)

    1978-01-01

    With the exception of the exploration activities in relation with the Beach Sand Project along the eastern Bay of Bengal, no systematic exploration for uranium had been done before December 1976, when a radiometric survey was implemented by the IAEA. As a result of this survey high radioactivity up to 450 cps was detected in placer Tipam deposits, The background of the terrain made up by Tertiary sediments is 160 - 170 cps. An anomaly was found in Kalipur Chara area which coincides with concentration of heavy minerals derived from Tipam Sandstones. Another anomaly was found within a horizon of Tipam sandstone crossing Hari River. An isolated outcrop in the riverbed showed a count rate up to 4 times background. During the follow up work it was found that this steeply dipping mineralized band stretches (with interruptions) over a distance of at least 3km along a strike. Samples collected from three different spils showed concentration of uranium 50, 60 and 140 ppm. The mineralized bed varies in thickness from a few cm to 2 m. It consists of alternating altered and unaltered sandstone. Bangladesh and Australian experts have separated monazite, zircon, ilmenite, rutile and magnetite from local sands at Cox's Bazar, 96 km southeast of Dacca. Radioactive mineral content is around 3,1% and exploitation may be feasible. Concerning the present status of exploration the technical assistance mission of the IAEA in the field of uranium exploration in Bangladesh is continuing with the objective to evaluate uranium potential in Chittongong and Sylhet district. Concerning areas favourable for uranium first priority should be given to areas of Hari River and Kalipur Chara where radioactive anomalies were detected. In general the area covered by Tipam Sandstone appears to be favourable for uranium mineralization. The potential for new discoveries in Bangladesh appears to be not too bad. Speculative potential could be in the order of 1-10,000 tons uranium

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Spain

    International Nuclear Information System (INIS)

    1977-10-01

    Spain, with an area of 504 748 km''2, occupies a large part of the Iberian Peninsula. At present the country appears to have about 6300 t of reasonably assured uranium reserves and 8500 t of additional estimated reserves (all at less than $30/lb of U 3 O 8 ). Spain has devoted some $33 million to prospecting for uranium since the beginning of such work. Most of the reasonably assured reserves are located in ores impregnating Cambrian schists intersected by Hercynian granites (of so-called 'Iberian type'); a small amount, however, is found in veins in Hercynian granites of the Spanish Meseta. The additional estimated reserves are situated in the peripheral post-Hercynian continental basins of the Meseta. Apart from these classical ores, sub-ores have been identified in Silurian quartzites with low concentrations of uranium associated with refractory minerals, totalling more than 200,000 t of U (at concentrations of a few hundred ppm); there are likewise uranium-bearing Oligocene lignites in the Ebro Basin with some 140,000 t of U. These facts, and also the very wide distribution of uranium in space and time (from the Cambrian to the Miocene!) and the country's favourable geological characteristics, suggest that Spain ought in fact to have large reserves of uranium, a conclusion unfortunately belied by the paucity of the economic reserves identified so far. Two things must be borne in mind, however; firstly, Spain's financial outlay for uranium prospecting up till now represents only a quarter of what has been invested in France, for example, and, secondly, the nature of the mineralised bodies in Spain makes exploration difficult. In conclusion it seems that prospecting both of the Iberian-type deposits in the Meseta region and of the deposits associated with detrital sediments in the peripheral continental basins - especially blind mineralized bodies - should hold out excellent prospects for Spain. Consequently we propose that Spain should be placed at least in

  15. Uranium. Resources, production, and market - 2009 Red Book

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The ''Red Book'' has been compiled since the mid-1960s as a joint OECD/NEA and IAEA publication. The analysis presents an overview of present uranium supply and demand with perspectives reaching as far as 2035. Data from 35 countries were accumulated about exploration, resources, production, and prices. The 23 rd edition contains the most recent basic evaluations of the world uranium market, providing a profile of nuclear fuel supply. Forecasts of nuclear generating capacity and uranium requirement for reactor use up until 2035 are presented along with a discussion of uranium supplies and aspects of demand beyond that time frame. Worldwide expenditures for the exploration of uranium resources in 2008 totaled more than US $1.6 billion, which is a 133% increase over expenses in 2006. Most of the important producer countries reported rising expenses for exploration as well as for commissioning new production centers. The total ''identified'' (=reasonably assured and inferred) reserves as of January 1, 2009 in the 3 O 8 ) category decreased slightly to 5,404,000 t U while a clear increase to 6,306,300 t U was seen in the re-introduced ''high cost'' category ( 3 O 8 ). Uranium production in 2008 amounted to 43,880 t U, which is an increase of 6% over 2007 (41,244 t U), and of 11% over 2006 (39,617 t U). In 2008, worldwide uranium production (43,880 t U) covered roughly 74% of the worldwide requirement for use in reactors (59,065 t U). The balance was met out of secondary sources. (orig.)

  16. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    International Nuclear Information System (INIS)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria

  17. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria.

  18. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Thailand. February-March 1981

    International Nuclear Information System (INIS)

    Inazumi, Satoru; Meyer, John H.

    1981-01-01

    The I.U.R.E.P. Orientation Phase Mission assesses the Speculative Uranium Resources in Thailand to be within the range of 1,500 to 38,500 tonnes U. This range is higher than the previous assessment in Phase I because the Mission recognizes additional favourable geological environments. At the same time, the untested and therefore the unknown degree of mineralization in some of these environments is acknowledged. Past exploration, dating from 1977, has been mainly confined to ground surveys of a small mineralized area and to airborne gamma-ray surveys of two small test areas. Ground reconnaissance work and prospecting has recognized some mineralization in several different host rocks and environments. Geological environments considered by the Mission to be favourable for uranium occurrences include sandstone of Jurassic to Triassic age, tertiary sedimentary basins (northern Thailand), tertiary sedimentary basins (southern Thailand), associated with fluorite deposits, granitic rocks, black shales and graphitic slates of the Paleozoic, associated with sedimentary phosphate deposits and associated with monazite sands. It is recommended that exploration for uranium resources in Thailand should continue. Planners of future exploration programmes should take the following activities into consideration. Rapid extension of carborne surveys to cover, without excessive overburdening, all areas having sufficient road density. Airborne gamma-ray surveys should be carried out in certain selected areas. In the selection of such areas, the considerable higher cost factor attendant on this method of surveying dictates that airborne surveys should only be carried out where carborne surveys prove ineffective (lack of adequate road network.) and where the topography is sufficiently even to assure a low but safe clearance and meaningful results. In certain areas, including the Khorat Plateau and the Tertiary Basins in northern and southern Thailand, there is a need for widely spaced

  19. The ways of harmonization of uranium resources accounting systems on a global scale

    International Nuclear Information System (INIS)

    Naumov, S.S.; Shumilin, M.V.

    1998-01-01

    Resource classification systems used today in different countries make reference to the same principals: geological variability, commercial importance and level of preparedness for production. However, some countries with mining industries and established traditions use different classifications that are difficult to harmonize. To assist in developing a common international classification four issues are proposed for discussion: 1) existence of production facilities for producing resources; 2) need for low production cost categories compatible with current market prices; 3) specifying the degree of accuracy for various categories of resources and 4) in situ versus recoverable resource estimates. Based on these concepts revisions are proposed to the IAEA uranium classification system. Examples are also given of resource classifications for the Streltzovskoe deposit, Krasnokamensk. (author)

  20. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Vietnam

    International Nuclear Information System (INIS)

    1977-11-01

    The Chaine Annamatique represents the last of the three orogenic episodes that shook Indochina and forms most of Vietnam's boundary with Laos, In south Vietnam the mountains which have a north-south trend are formed of granites, gneisses and mica schists and are inseparable from the anti-hercynian formations. Iron ore, gold, lead, copper, tin, wolfraun, bismuth and molybdenium minerals are found. Plans had been made in 1960 to prospect for uranium but no information is available on whether that work was ever done. The only evidence of occurrences of nuclear raw materials is that titaniferous sands occur in several coastal regions and that uranium was once listed as having been produced in Forth Vietnam. Although the geology of Vietnam is not very conducive to the formation and preservation of uranium deposits it is possible that because of the granite terrain and presence of other metalliferous minerals, the Speculative Potential should be stated as in category 2 i.e. from 1,000 to 10,000 tonnes uranium. (author)

  1. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Brunei

    International Nuclear Information System (INIS)

    1978-02-01

    Brunei is a very small country consisting of only 5,800 sq km, and with only 150,000 people. Its main mineral products are crude oil and natural gas. It is hot and humid throughout the year being located only 4 degrees north of the equator on the island of Borneo. The sultanate of Brunei contains very thick sediments, some of which probably have the characteristics of a good uranium host rock for sandstone type deposits, but tacking a classic source, the uranium potential is minimal. Potential for other types of uranium deposits is likewise considered minimal. Therefore Brunei is assigned a potential in category 1 (less than 1000 tonnes U). (author)

  2. National uranium resource evaluation Prescott Quadrangle Arizona

    International Nuclear Information System (INIS)

    May, R.T.; White, D.L.; Nystrom, R.J.

    1982-01-01

    The Prescott Quadrangle was evaluated for uranium favorability by means of a literature search, examination of uranium occurrences, regional geochemical sampling of Precambrian rocks, limited rubidium-strontium studies, scintillometer traverses, measurement of stratigraphic sections, subsurface studies, and an aerial radiometric survey. A limited well-water sampling program for Cenozoic basins was also conducted. Favorability criteria used were those developed for the National Uranium Resource Evaluation. Five geologic environments are favorable for uranium. Three are in Tertiary rocks of the Date Creek-Artillery Basin, Big Sandy Valley, and Walnut Grove Basin. Two are in Precambrian rocks in the Bagdad and Wickenburg areas. Unfavorable areas include the southwestern crystalline terrane, the Paleozoic and Mesozoic beds, and metamorphic and plutonic Precambrian rocks of the Bradshaw and Weaver Mountains. Unevaluated areas are the basalt-covered mesas, alluvium-mantled Cenozoic basins, the Hualapai Mountains, and the Kellwebb Mine

  3. Energy analysis applied to uranium resource estimation

    International Nuclear Information System (INIS)

    Mortimer, N.D.

    1980-01-01

    It is pointed out that fuel prices and ore costs are interdependent, and that in estimating ore costs (involving the cost of fuels used to mine and process the uranium) it is necessary to take into account the total use of energy by the entire fuel system, through the technique of energy analysis. The subject is discussed, and illustrated with diagrams, under the following heads: estimate of how total workable resources would depend on production costs; sensitivity of nuclear electricity prices to ore costs; variation of net energy requirement with ore grade for a typical PWR reactor design; variation of average fundamental cost of nuclear electricity with ore grade; variation of cumulative uranium resources with current maximum ore costs. (U.K.)

  4. International uranium production. A South African perspective

    International Nuclear Information System (INIS)

    Sinclair-Smith, D.

    1984-01-01

    Between 1981 and 1983 South Africa experienced a decline in its uranium resources of 23% in the less than $80/kg U category and 12% in the less than $130/kg U category. In 1983 only $5 million was spent on exploration, with activities being concentrated in the Witwatersrand Basin as a byproduct of gold exploration. South Africa has maintained a production level of around 6000 mt U in 1981, 1982 and 1983. One unusual feature of the South African uranium scene is the ability to selectively dump relatively high grade uranium tailings after the extraction of gold and to rework this material as well as material dumped prior to the emergence of the uranium industry. Uranium from this source amounted to some 28% of total production in 1983. (L.L.) (2 tabs., 6 figs.)

  5. Investigation on uranium resources of Qinling region

    International Nuclear Information System (INIS)

    Peng Daming

    1999-01-01

    The Qinling Mountains straddle China from the west to the east with the length of more than 1300 km covering Anhui, Hubai, Hunan, Shanxi, Guansu, Qinghai and Sichuan provinces. Up to now, 20 uranium deposits have been discovered in the region and all discovered deposits can be classified into 3 type (granite type, sedimentation-reworking type and hydrothermal alteration type) and 9 subtypes including 15 uranium deposits discovered in Qinling geosyncline area. Main uranium deposits are concentrated in Danfeng and Shangnan counties, southern Shanxi, lantian county, central Shanxi and Lixian County, Southern Gansu. Of the above listed uranium deposits, the granite-hosted deposits are most important, and characterized by large resources, high grade of ore and easiness in hydrometallurgy. Sedimentation-reworking type deposits are less important. The main U-metallogenic epoch is the Caledonian and the Yanshanian is the second. A prognosis for uranium deposits in Qinling region is made in the paper which proposes that the belt from Dangchuan in the west, via Jiamusi, Gepai and Fenshuling to Longquanping in the east is a most favorable area for location granite type uranium deposits

  6. National Uranium Resource Evaluation, Llano Quadrangle, Texas

    International Nuclear Information System (INIS)

    Droddy, M.J.; Hovorka, S.D.

    1982-04-01

    The Llano 2 0 quadrangle was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The areas were delineated according to criteria established for the National Uranium Resource Evaluation program. Surface studies included investigations of uranium occurrences described in the literature, location of aerial radiometric anomalies, carborne scintillometer surveys, outcrop investigations, and followup of hydrogeochemical and stream-sediment reconnaissance data. A radon emanometry survey and investigations of electric and gamma-ray well logs, drillers' logs, and well core samples were performed to evaluate the subsurface potential of the Llano Quadrangle. An environment favorable for pegmatitic deposits is identified in the Town Mountain Granite

  7. South African uranium resource and production capability estimates

    International Nuclear Information System (INIS)

    Camisani-Calzolari, F.A.G.M.; Toens, P.D.

    1980-09-01

    South Africa, along with Canada and the United States, submitted forecasts of uranium capacities and capabilites to the year 2025 for the 1979 'Red Book' edition. This report deals with the methodologies used in arriving at the South African forecasts. As the future production trends of the South African uranium producers cannot be confidently defined, chiefly because uranium is extracted as a by-product of the gold mining industry and is thus highly sensitive to market fluctuations for both uranium and gold, the Evaluation Group of the Atomic Energy Board has carried out numerous forecast exercises using current and historical norms and assuming various degrees of 'adverse', 'normal' and 'most favourable' conditions. The two exercises, which were submitted for the 'Red Book', are shown in the Appendices. This paper has been prepared for presentation to the Working Group on Methodologies for Forecasting Uranium Availability of the NEA/IAEA Steering Group on Uranium Resources [af

  8. National Uranium Resource Evaluation, Tularosa Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    Berry, V.P.; Nagy, P.A.; Spreng, W.C.; Barnes, C.W.; Smouse, D.

    1981-12-01

    Uranium favorability of the Tularosa Quadrangle, New Mexico, was evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Uranium occurrences reported in the literature were located, sampled, and described in detail. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, and geochemical anomalies, interpreted from hydrogeochemical and stream-sediment reconnaissance, were also investigated. Additionally, several hundred rock samples were studied in thin section, and supplemental geochemical analyses of rock and water samples were completed. Fluorometric analyses were completed for samples from the Black Range Primitive Area to augment previously available geochemical data. Subsurface favorability was evaluated using gamma-ray logs and descriptive logs of sample cuttings. One area of uranium favorability was delineated, based on the data made available from this study. This area is the Nogal Canyon cauldron margin zone. Within the zone, characterized by concentric and radial fractures, resurgent doming, ring-dike volcanism, and intracauldron sedimentation, uranium conentration is confined to magmatic-hydrothermal and volcanogenic uranium deposits

  9. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Malaysia

    International Nuclear Information System (INIS)

    1977-12-01

    Malaysia is a country of 330,000 square kilometers and a population of 11.9 million. The country is divided into two parts 640 kilometers apart. West Malaysia consists of the Malay Peninsula, and East Malaysia of the provinces of Sarawak and Sabah, formerly North Borneo. The country is the world's leading producer of tin and rubber. Geologic descriptions in detail are difficult to find although maps are available. Uranium exploration, chiefly by the Malaysian Geological Survey, has been carried out without discovery of commercial quantities. Based on possible recovery of uranium from deeply weathered granites on the Malay Peninsula, and possible discoveries in East Malaysia, a uranium potential of 1,000 to 10,000 tonnes U (category 2) is assigned. (author)

  10. Uranium industry seminar: proceedings

    International Nuclear Information System (INIS)

    1981-01-01

    The eleventh annual Uranium Industry Seminar, sponsored by the Grand Junction Area Office of the US Department of Energy (DOE), was held in Grand Junction, Colorado, on October 21 and 22, 1981. There were 491 registered attendees as compared to 700 attending the previous year. The attendees were largely from uranium and other energy resource companies, electric utility firms, energy consultants and service companies, and governmental agencies. In addition, there were representatives present from Indian tribes, universities, the media, DOE laboratories, and foreign countries and organizations. Papers presented at the seminar dealt with uranium policies, exploration, resources, supply, enrichment, and market conditions. There also were papers on the National Uranium Resource Evaluation Program and international activities. Thirteen papers included in this report have been abstracted and indexed

  11. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Yemen Arab Republic

    International Nuclear Information System (INIS)

    1977-11-01

    The Yemen Arab Republic occupies a part of the southern Arabian Shield and has been subject to considerable faulting and movement. As far as is known no uranium exploration has ever been undertaken or is presently contemplated in the country. Uranium could occur in the Shield rocks and conditions are right for calcrete type uranium deposits. The Speculative Potential may be in category 2, i.e. between 1000 and 10,000 tonnes uranium. (author)

  12. International Uranium Resources Evaluation Project (IUREP) national favourability studies: People's Republic of China

    International Nuclear Information System (INIS)

    1977-10-01

    China with an area close to 10,000,000 sq km and a fifth of the world's population, has a history of mining and, in fact is quite self sufficient in most of it's needs for the more basic mineral products.However, there is a dearth of knowledge of its resources of uranium. One can however, make the assumption that geologically, there are probably several areas that contain the combination of favourable host rocks and source. The speculative potential of China is estimated to be in Category 5, 100,000 to 500,000 tonnes U. (author)

  13. Forty years of uranium resources, production and demand in perspective

    International Nuclear Information System (INIS)

    Price, R.; Barthel, F.; Blaise, J.R.; McMurray, J.

    2006-01-01

    The NEA has been collecting and analysing data on uranium for forty years. The data and experience provide a number of answers to the questions being asked today, as many countries begin to look at nuclear energy with renewed interest. In terms of uranium resources, the lessons of the past give confidence that uranium supply will remain adequate to meet demand. (authors)

  14. Uranium resources, scenarios, nuclear and energy dynamics - 5200

    International Nuclear Information System (INIS)

    Bidaud, A.; Mima, S.; Criqui, P.; Gabriel, S.; Monnet, A.; Mathonniere, G.; Cuney, M.; Bruneton, P.

    2015-01-01

    In this paper we present a new model of the impact of uranium scarcity on the development of nuclear reactors. A dynamic simulation of coupled supply and demand of energy, resources and nuclear reactors is done with the global model Prospective Outlook for Long Term Energy Supply (POLES) over this century. In this model, both electricity demand and uranium supply are not independent of the cost of all base load electricity suppliers. Only two nuclear reactor types are modeled in POLES. Globally one has the characteristics of a Thermal Neutron Reactor (TR) and the other one has the ones of Fast Breeder Reactors (FBR). The results show that If both generations of nuclear reactors can be competitive with other sources, we see that in many countries their development would probably be limited by the availability of natural and recycled materials. Depending on the locally available alternative (hydro, coal) and local regulatory framework (safety and waste management for nuclear reactors but also environmental constraints such as CO 2 targets), both nuclear technologies could be developed. The advantage of the new model is that it avoids the difficult question of defining 'ultimate resources'. The drawback is that it needs a description of the volume of uranium resources but also of the link between the cost and the potential production capacities of these resources

  15. Geological 3-D modelling and resources estimation of the Budenovskoye uranium deposit (Kazakhstan)

    International Nuclear Information System (INIS)

    Boytsov, A.; Heyns, M.; Seredkin, M.

    2014-01-01

    The Budenovskoye deposit is the biggest sandstone-hosted, roll front type uranium deposit in Kazakhstan and in the world. Uranium mineralization occurs in the unconsolidated lacustrine-alluvial sediments of Late Cretaceous Mynkuduk and Inkuduk horizons. The Budenovskoye deposit was split into four areas for development with the present Karatau ISL Mine operating No. 2 area and Akbastau ISL Mine Nos. 1, 3 and 4 areas. Mines are owned by Kazatomprom and Uranium One in equal shares. CSA Global was retained by Uranium One to update in accordance with NI 43-101 the Mineral Resource estimates for the Karatau and Akbastau Mines. The modelling Reports shows a significant increase in total uranium resources tonnage at both mines when compared to the March 2012 NI 43-101 resource estimate: at Karartau measured and indicated resources increased by 586% while at Akbastau by 286%. It has also added a 55,766 tonnes U to the Karatau Inferred Mineral Resource category.The new estimates result from the application of 3-D modelling techniques to the extensive database of drilling information, new exploration activities.

  16. National Uranium Resource Evaluation: Lamar quadrangle, Colorado and Kansas

    International Nuclear Information System (INIS)

    Maarouf, A.M.; Johnson, V.C.

    1982-01-01

    Uranium resources of the Lamar Quadrangle, Colorado and Kansas, were evaluated using National Uranium Resource Evaluation criteria. The environment favorable for uranium is the Lower Cretaceous Dakota Sandstone in the area east of John Martin Reservoir for south Texas roll-type sandstone deposits. Carbonaceous trash and sulfides are abundant in the Dakota Sandstone. The unit underlies a thick Upper Cretaceous section that contains bentonitic beds and uraniferous marine black shale. Water samples from the Dakota Sandstone aquifer contain as much as 122 ppB U 3 O 8 . Geologic units considered unfavorable include most of the Paleozoic rocks, except in the Brandon Fault area; the Upper Cretaceous rocks; and the Ogallala Formation. The Dockum Group, Morrison Formation, and Lytle Member of the Purgatoire Formation are unevaluated because of lack of data

  17. Uranium in Canada

    International Nuclear Information System (INIS)

    1987-09-01

    Canadian uranium exploration and development efforts in 1985 and 1986 resulted in a significant increase in estimates of measured uranium resources. New discoveries have more than made up for production during 1985 and 1986, and for the elimination of some resources from the overall estimates, due to the sustained upward pressure on production costs and the stagnation of uranium prices in real terms. Canada possesses a large portion of the world's uranium resources that are of current economic interest and remains the major focus of inter-national uranium exploration activity. Expenditures for uranium exploration in Canada in 1985 and 1986 were $32 million and $33 million, respectively. Although much lower than the $130 million total reported for 1979, expenditures for 1987 are forecast to increase. Exploration and surface development drilling in 1985 and 1986 were reported to be 183 000 m and 165σ2 000 m, respectively, 85 per cent of which was in Saskatchewan. Canada has maintained its position as the world's leading producer and exporter of uranium. By the year 2000, Canada's annual uranium requirements will be about 2 100 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are either in operation now or expected to be in service by the late 1990s. A substantial portion of Canada's identified uranium resources is thus surplus to Canadian needs and available for export. Annual sales currently approach $1 billion, of which exports account for 85 per cent. Forward domestic and export contract commitments totalled 73 000 tU and 62 000 tU, respectively, as of early 1987

  18. National uranium resource evaluation: Nogales Quadrangle, Arizona

    International Nuclear Information System (INIS)

    Luning, R.H.; Brouillard, L.A.

    1982-04-01

    Literature research, surface geologic investigations, rock sampling, and radiometric surveys were conducted in the Nogales Quadrangle, Arizona, to identify environments and to delineate areas favorable for uranium deposits according to criteria formulated during the National Uranium Resource Evaluation program. The studies were augmented by aerial radiometric and hydrogeochemical and stream-sediment surveys. No favorable environments were identified. Environments that do display favorable characteristics include magmatic-hydrothermal and authigenic environments in Precambrian and Jurassic intrusives, as well as in certain Mesozoic and Cenozoic igneous and sedimentary rocks

  19. Enriching services and uranium markets from an international supplier's perspective

    International Nuclear Information System (INIS)

    Guais, J.C.; Peterson, C.H.

    1987-01-01

    In the past 10 yr, the international market for nuclear fuel cycle products and services, mainly yellowcake and separative work units (SWUs), has been characterized by shifting patterns in global demand and resource allocation. For suppliers as well as buyers, the analysis of the supply and demand pattern over the next 10 yr can be a useful exercise, especially if it highlights geopolitical realities and the influence of new technologies. This paper will attempt to answer two questions related to the marketing of natural uranium and enrichment services: (1) on a global basis (i.e., for the Western World), are uranium and enrichment capacities now on line sufficient to meet long-term demand. (2) On a regional basis (the US, Europe, and Far East), what is the short-to-medium term pattern of the supply-and-demand balance

  20. National uranium resource evaluation, Rapid City Quadrangle, South Dakota

    International Nuclear Information System (INIS)

    Nanna, R.F.; Milton, E.J.

    1982-04-01

    The Rapid City (1 0 x 2 0 ) Quadrangle, South Dakota, was evaluated for environments favorble for uranium deposits to a depth of 1500 m. Criteria used were those of the National Uranium Resource Evaluation. Field reconnaissance involved the use of hand-held scintillometers to investigate uranium occurrences reported in the literature and anomalies in aerial radiometric surveys, and geochemical samples of stream sediments and well waters. Gamma-ray logs were used to define the favorable environments in the subsurface. Environments favorable for sandstone-type uranium deposits occur in the Inyan Kara Group, the Fox Hills Sandstone, and the Hell Creek Formation. Environments considered unfavorable for uranium deposits include all Precambrian, Paleozoic, Mesozoic, and Tertiary rocks other than those identified as favorable

  1. Application of physical separation techniques in uranium resources processing

    International Nuclear Information System (INIS)

    Padmanabhan, N.P.H.; Sreenivas, T.

    2008-01-01

    The planned economic growth of our country and energy security considerations call for increasing the overall electricity generating capabilities with substantial increase in the zero-carbon and clean nuclear power component. Although India is endowed with vast resources of thorium, its utilization can commence only after the successful completion of the first two stages of nuclear power programme, which use natural uranium in the first stage and natural uranium plus plutonium in the second stage. For the successful operation of first stage, exploration and exploitation activities for uranium should be vigorously followed. This paper reviews the current status of physical beneficiation in processing of uranium ores and discusses its applicability to recover uranium from low grade and below-cut-off grade ores in Indian context. (author)

  2. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

  3. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates

  4. The current situation of uranium resources exploration in East China: Problems, thought and countermeasure

    International Nuclear Information System (INIS)

    He Xiaomei; Mao Mengcai

    2014-01-01

    Based on analyzing the current situation of uranium resources and exploration effort in East China, the main existing problems, technical thought and countermeasure for the future exploration in East China are discussed in this paper. The degree of both uranium exploration and study in East China is relatively high, philosophy of scientific mineral-prospecting should be established in the new round of mineral prospecting. Under guidance of metallogenic theory of large mineralization cluster area and uranium metallogenic theory of multi-sources, previous data and research achievement should be analyzed and summarized. With the help of metallogenic model, useful methods and means should be applied to set up exploration model in order to realize news phase of model exploration, comprehensive exploration, 3D exploration and quantitative exploration. Efficiency of exploration of uranium resources should be strugglingly increased. High profitable uranium resources will be actively found with rich, shallow, near and easy features. The prospecting targets and strategy reserves of uranium resources will be increased in East China. (authors)

  5. Report from the Uranium Supply Committee

    International Nuclear Information System (INIS)

    1980-12-01

    Based on studies of world uranium supply made by NEA, IAEA and other national and international bodies the Danish Uranium Supply Committee has examined the uranium supply situation. The Committee concludes that there will be no lack of natural uranium in a period until year 2025 provided that more advanced and uranium economic reactors will be effiective from the beginning of the 21th century. However it will be necessary to discover new resources and to use low-grade uranium resources. Through long term contracts with the users the uranium producers should be urged to continue their production. The Committee recommends that uranium prospecting in Greenland continues in order to get a through knowledge of Greenlandic resources. The establishment of further reprocessing capacity should be speeded up, whereas the Committee do not foresee any shortages with regard to enrichment, conversion, and fuel element production. (BP)

  6. Critical review of uranium resources and production capability to 2020

    International Nuclear Information System (INIS)

    1998-08-01

    This report was prepared to assess the changing uranium supply and demand situation as well as the adequacy of uranium resources and the production capability to supply uranium concentrate to meet reactor demand through 2020. Uranium production has been meeting only 50 to 60 percent of the world requirements with the balance met from sale of excess inventory offered on the market at low prices. It is generally agreed by most specialists that the end of the excess inventory is approaching. With inventory no longer able to meet the production shortfall it is necessary to significantly expand uranium production to fill an increasing share of demand. Non-production supplies of uranium, such as the blending of highly enriched uranium (HEU) warheads to produce low enriched reactor fuel and reprocessing of spent fuel, are also expected to grow in importance as a fuel source. This analysis addresses three major concerns as follows: adequacy of resources to meet projected demand; adequacy of production capability to produce the uranium; and market prices to sustain production to fill demand. This analysis indicates uranium mine production to be the primary supply providing about 76 to 78 percent of cumulative needs through 2020. Alternative sources supplying the balance, in order of relative importance are: (1) low enriched uranium (LEU) blended from 500 tonnes of highly enriched uranium (HEU) Russian weapons, plus initial US Department of Energy (US DOE) stockpile sales (11 to 13%); (2) reprocessing of spent nuclear fuel (6%) and; (3) utility and Russian stockpiles. Further this report gives uranium production profiles by countries: CIS producers (Kazakhstan, Russian Federation, Ukraine, Uzbekistan) and other producers (Australia, Canada, China, Gabon, Mongolia, Namibia, Niger, South Africa, United States of America)

  7. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Burma

    International Nuclear Information System (INIS)

    1977-10-01

    There is no information on production of nuclear raw materials in Burma, although there are some uranium occurrences. Hunting Geophysics Ltd has done some aerial prospecting work in the area of Victoria Point in Southern Burma. All the data collected has been plotted on several maps and issued to various Burmese organizations, with a complete report. The follow-up ground exploration was done by a prospecting party headed by Dr Gjelsvik. The Hunting Geophysics' and Dr Gjelsvik reports are not available in the IAEA. The Raw Materials Division in the Union of Burma Atomic Energy Center commenced operations in 1955. The area of Mogok was selected by U Soo Win, the head of the Division, as most favourable for uranium exploration. The region is mountainous, with heavy forest cover. A ground gamma-ray survey was carried out in Mogok Mineral Belt by two geologists accompanied by two assistants, at a spacing of one km. This work showed monazite in all streams over an area of about 150 sq km and has given a detailed studies led to the discovery of some uraninite and pitchblende in the overburden of an old lode. Based, on these first discoveries the Government of Burma requested assistance from the IAEA and an expert was sent there for a period of one year. His field work was mainly limited in the Mogok Mineral Belt, however some reconnaissance field trips were made in other parts of the country. Dr D L Searle concluded that the Mogok area represents a zone of high temperature mineralization but a lower temperature form of uranium mineralization may have developed along the outer edges of the principal high grade zone. He recommended that the area between the Mogok scarp and the Shweli River be systematically traversed. Uranium bearing minerals in Burma are the following: monazite bearing beach sands near Amherst, Tenasserim; monazite placers from near Momeik, Northern Shan States; uraninte crystals from the gem-gravels around Mogok; a radioactive anomaly in syenite at

  8. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Burma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-10-15

    There is no information on production of nuclear raw materials in Burma, although there are some uranium occurrences. Hunting Geophysics Ltd has done some aerial prospecting work in the area of Victoria Point in Southern Burma. All the data collected has been plotted on several maps and issued to various Burmese organizations, with a complete report. The follow-up ground exploration was done by a prospecting party headed by Dr Gjelsvik. The Hunting Geophysics' and Dr Gjelsvik reports are not available in the IAEA. The Raw Materials Division in the Union of Burma Atomic Energy Center commenced operations in 1955. The area of Mogok was selected by U Soo Win, the head of the Division, as most favourable for uranium exploration. The region is mountainous, with heavy forest cover. A ground gamma-ray survey was carried out in Mogok Mineral Belt by two geologists accompanied by two assistants, at a spacing of one km. This work showed monazite in all streams over an area of about 150 sq km and has given a detailed studies led to the discovery of some uraninite and pitchblende in the overburden of an old lode. Based, on these first discoveries the Government of Burma requested assistance from the IAEA and an expert was sent there for a period of one year. His field work was mainly limited in the Mogok Mineral Belt, however some reconnaissance field trips were made in other parts of the country. Dr D L Searle concluded that the Mogok area represents a zone of high temperature mineralization but a lower temperature form of uranium mineralization may have developed along the outer edges of the principal high grade zone. He recommended that the area between the Mogok scarp and the Shweli River be systematically traversed. Uranium bearing minerals in Burma are the following: monazite bearing beach sands near Amherst, Tenasserim; monazite placers from near Momeik, Northern Shan States; uraninte crystals from the gem-gravels around Mogok; a radioactive anomaly in syenite at

  9. Uranium resource evaluation project quality assurance evaluation

    International Nuclear Information System (INIS)

    Grimes, J.G.

    1981-01-01

    This evaluation was conducted over an eight-month period from February 4 through October 1, 1980. During this time, field sampling was suspended for an indefinite time period while the National Uranium Resource Evaluation (NURE) Program underwent restructuring. In addition, the Uranium Resource Evaluation (URE) Project archives are being restructured. Since it is difficult to evaluate quality assurance needs of a program that is undergoing drastic change and because sections of the evaluation were well along before these changes were announced, this evaluation reflects the situation as it was during February 1980. The following quality assurance related programs are continuing to date: (1) periodic checks of field sampling procedures by the Supervising Field Geologist and the Director of Field Operations; (2) verification of field form information and laboratory analytical data verification for all geochemical surveys; (3) URE Project laboratory quality control program (all elements routinely analyzed); and (4) Ames interlaboratory quality control program (uranium only). UCC-ND was given the responsibility of conducting a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) survey in the Central United States (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Nebraska, North Dakota, Oklahoma, Texas, South Dakota, and Wisconsin). During 1979 and 1980, 13 detailed surveys were conducted by the URE Project in the Central and Western United States to characterize the hydrogeochemistry, stream sediment geochemistry, and/or radiometric patterns of known or potential uranium occurrences. Beginning in 1980, the HSSR surveys were modified to the Regional Hydrogeochemical and Stream Sediment (RHSS) surveys

  10. National uranium resource evaluation, Dickinson quadrangle, North Dakota

    International Nuclear Information System (INIS)

    Lee, C.H.; Pack, D.D.; Galipeau, J.M.; Lawton, D.E.

    1982-05-01

    The Dickinson Quadrangle, North Dakota, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for uranium deposits. Criteria used in the evaluation were developed for the National Uranium Resource Evaluation program. The evaluation primarily consisted of a surface study, subsurface investigation, and an in-house ground-water geochemical study. These studies were augumented by aerial radiometric and hydrogeochemical and stream-sediment studies. The evaluation results indicate that the Sentinel Butte and Tongue River Members of the Fort Union Formation have environments favorable for uraniferous lignite deposits. The Sentinel Butte, Tongue River, and Ludlow Members of the Fort Union Formation are favorable for sandstone uranium deposits. Environments unfavorable for uranium deposits are the remaining Cenozoic rocks and all the rocks of the Cretaceous

  11. Uranium supply and demand. Proceedings of an international symposium held by the Uranium Institute in London, June 15-17, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Spriggs, M J [ed.

    1976-01-01

    The symposium received and discussed papers on uranium production in South Africa, Australia, North America and other countries (excluding USSR, Eastern Europe and China) with substantial uranium resources, and on uranium demand. All aspects of the subject were covered, including the historical development of the uranium mining and production industry in the different countries, resources, forecasts of supply and demand, costs, prices, economics, and government policies in relation both to the control of production and to the development of nuclear power program.

  12. Estimation of potential uranium resources

    International Nuclear Information System (INIS)

    Curry, D.L.

    1977-09-01

    Potential estimates, like reserves, are limited by the information on hand at the time and are not intended to indicate the ultimate resources. Potential estimates are based on geologic judgement, so their reliability is dependent on the quality and extent of geologic knowledge. Reliability differs for each of the three potential resource classes. It is greatest for probable potential resources because of the greater knowledge base resulting from the advanced stage of exploration and development in established producing districts where most of the resources in this class are located. Reliability is least for speculative potential resources because no significant deposits are known, and favorability is inferred from limited geologic data. Estimates of potential resources are revised as new geologic concepts are postulated, as new types of uranium ore bodies are discovered, and as improved geophysical and geochemical techniques are developed and applied. Advances in technology that permit the exploitation of deep or low-grade deposits, or the processing of ores of previously uneconomic metallurgical types, also will affect the estimates

  13. Recent developments in uranium resources and production with emphasis on in situ leach mining. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-06-01

    An important role of the International Atomic Energy Agency is establishing contacts between Member States in order to foster the exchange of scientific and technical information on uranium production technologies. In situ leach (ISL) mining is defined as, the extraction of uranium from the host sandstone by chemical solutions and the recovery of uranium at the surface. ISL extraction is conducted by injecting a suitable leach solution into the ore zone below the water table; oxidizing, complexing, and mobilizing the uranium; recovering the pregnant solutions through production wells; and, finally, pumping the uranium bearing solution to the surface for further processing. As compared with conventional mining, in situ leach is recognized as having economic and environmental advantages when properly employed by knowledgeable specialists to extract uranium from suitable sandstone type deposits. Despite its limited applicability to specific types of uranium deposits, in recent years ISL uranium mining has been producing 15 to 21 per cent of world output. In 2002, ISL production was achieved in Australia, China, Kazakhstan, the United States of America and Uzbekistan. Its importance is expected to increase with new projects in Australia, China, Kazakhstan and the Russian Federation. The Technical Meeting on Recent Development in Uranium Resources and Production with Special Emphasis on In Situ Leach Mining, was held in Beijing from 18 to 20 September 2002, followed by the visit of the Yili ISL mine, Xinjiang Autonomous Region, China, from 21 to 23 September 2002. The meeting, held in cooperation with the Bureau of Geology, China National Nuclear Cooperation, was successful in bringing together 59 specialists representing 18 member states and one international organization (OECD/Nuclear Energy Agency). The papers describe a wide variety of activities related to the theme of the meeting. Subjects such as geology, resources evaluation, licensing, and mine restoration were

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Cook Islands

    International Nuclear Information System (INIS)

    1977-11-01

    The Cook Islands total only 320 square kilometers in area are located in the central South Pacific, and are made up of either volcanic material or coral. Since neither rock type is considered a good host or source of uranium, the uranium potential of the Cook Islands is considered nil. (author)

  15. Uranium resources production and demand: a forty years evaluation 'Red book retrospective'

    International Nuclear Information System (INIS)

    2007-01-01

    Uranium Resources, Production and Demand, also familiarly known as the ''Red Book'' is a biennial publication produced jointly by the NEA and the IAEA under the auspices of the joint NEA/IAEA Uranium Group. The first edition was published in 1965. The red book retrospective was undertaken to collect, analyse and publish all of the key information collected in the 20 editions of the Red Book published between 1965 and 2004. The red book gives a full historical profile of the world uranium industry in the areas of exploration, resources, reactor-related requirements, inventories and price. It provides in depth information relating to the histories of the major uranium producing countries. Thus for the first time a comprehensive look at annual and cumulative production and demand of uranium since the inception of the atomic age is possible. Expert analysis provide fresh insights into important aspects of the industry including the cost of discovery, resources to production ratios and the time to reach production after discovery. (A.L.B.)

  16. Will Australia's low cost uranium be internationally competitive

    International Nuclear Information System (INIS)

    Harris, S.

    1978-01-01

    Australian uranium deposits are of a high grade, and direct mining costs should be low. However, other factors may play the determining role in the price of Australia's uranium. Some are peculiarly Australian such as the geographical isolation of the deposits, aboriginals' land rights, and the final marketing arrangements. Other factors stem from the position of uranium in the international marketplace, and are both political and economic in nature. (author)

  17. National uranium resource evaluation, NURE 1979: annual activity report

    International Nuclear Information System (INIS)

    1980-03-01

    NURE is a DOE-directed program with the major goal of establishing reliable and timely comprehensive estimates of the uranium resources of the nation. To develop and compile geologic, geophysical, and other information which will contribute to assessing the distribution and magnitude of uranium resources and to determine areas favorable for the occurrence of uranium in the United States, NURE has been organized into the following elements: (1) quadrangle evaluation; (2) aerial radiometric reconnaissance; (3) subsurface investigations; (4) hydrogeochemical and stream-sediment reconnaissance; (5) geologic studies; (6) technology applications; and (7) information dissemination. The extensive effort now under way on each of these NURE program elements will result in a systematic collection and compilation of data which will be culminating in a comprehensive report covering certain priority areas of the United States. This report summarizes the technical activities undertaken during 1979 to support this program

  18. Investigation of uranium resources out of Japan. Summary on investigation techniques

    International Nuclear Information System (INIS)

    2001-03-01

    Investigation of uranium resources in Japan was begun on 1954 by inland survey of the Geological Survey Bureau in the Agency of Industrial Science and Technology, Ministry of Industrial Trade and Industry, and then it was inherited to the Atomic Fuel Corporation and the Power Reactor and Nuclear Fuel Development Corporation (PNC). Since 1960s, under expectation of rapid growth of nuclear power generation and increase of uranium demand, as it was elucidated to be impossible to fill to its inland demand in quality and quantity, investigation of uranium resources out of Japan by private companies and its basic survey out of Japan by government were promoted. However, in accompanying with revise of PNC to be Japan Nuclear Cycle Development Institute, withdraw of the ore mining business was determined. According to the determination, as a result of investigation on inheritance of right of mining out of Japan to inland companies, rights in Canada were finished to inherit on November, 2000. Here were described on outlines on investigation, investigative method, and investigative business on uranium resources. (G.K.)

  19. The main advance and achievements in the potential evaluation of uranium resource in China

    International Nuclear Information System (INIS)

    Zhang Jindai; Guo Qingyin; Li Youliang; Li Ziying; Cai Yuqi; Han Changqing

    2012-01-01

    The national uranium resources potential evaluation is one of the important national census in China. The evaluation is based on the data and results accomplished by nuclear geological industry in last decades and wholly performed on GIS platform by absorbing related technology and geological achievement in home and broad, and has figured out 329 uranium predicted mineralization areas and estimated more than 2000000 tones resource on a national scale. Innovative achievements has been made in the classification of uranium deposit type and mineralization belt, integration of geological-geophysical-geochemical-remote sensing information and research of uranium mineralization pattern. For the first time, the potential evaluation has been performed totally by digitalisation and information, the evaluation will provide important evidence for developing middle-long term planning of uranium exploration and laid good foundation to future dynamic and regular evaluation of uranium resource in China. (authors)

  20. National uranium resource evaluation: Williams quadrangle, Arizona

    International Nuclear Information System (INIS)

    O'Neill, A.J.; Nystrom, R.J.; Thiede, D.S.

    1981-03-01

    Geologic environments of the Williams Quadrangle, Arizona, were evaluated for uranium favorability by means of literature research, uranium-occurrence investigation and other surface studies, subsurface studies, aerial radiometric data, hydrogeochemical data, and rock-sample analytic data. Favorability criteria are those of the National Uranium Resource Evaluation program. Three geologic environments are favorable for uranium: the Tertiary fluvial rocks of the Colorado Plateau where they unconformably overlie impermeable bed rock (for channel-controlled peneconcordant deposits); collapse breccia pipes in Paleozoic strata of the Colorado Plateau (for vein-type deposits in sedimentary rocks); and Precambrian crystalline rocks of the Hualapai, Peacock, and Aquarius Mountains, and Cottonwood and Grand Wash Cliffs (for magmatic-hydrothermal deposits). Unfavorable geologic environments are: Tertiary and Quaternary volcanic rocks, Tertiary and Quaternary sedimentary rocks of the Colorado Plateau, nearly all Paleozoic and Mesozoic sedimentary rocks, and the Precambrian-Cambrian unconformity of the Grand Wash Cliffs area. Tertiary rocks in Cenozoic basins and Precambrian crystalline rocks in the Grand Canyon region and in parts of the Aquarius Mountains and Cottonwood and Grand Wash Cliffs are unevaluated

  1. National Uranium Resource Evaluation: Manhattan Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were conducted in the Manhattan Quadrangle, Kansas, to evaluate uranium favorability using National Uranium Resource Evaluation criteria. These studies were designed in part to follow up airborne radiometric and hydrogeochemical and stream-sediment surveys. More than 600 well records were examined in the subsurface phase of the study. Results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone uranium deposits in Cretaceous rocks and for Wyoming roll-type deposits in Pennsylvanian sandstones. The Cretaceous sandstone environments exhibit such favorable characteristics as a bottom unconformity, high bed load, braided fluvial channels, large-scale cross-bedding, and one anomalous outcrop. The Pennsylvanian sandstone environments exhibit such favorable characteristics as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated because not enough data were available include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  2. Principles of economic evaluation of uranium resources in Canada

    International Nuclear Information System (INIS)

    Ruzicka, V.

    1998-01-01

    The uranium resources of Canada occur in deposits associated with unconformities in Proterozoic basins and adjacent areas. Classification of the resources is based on the confidence in the estimates and on their economic viability. The system is fully compatible with IAEA/NEA classified systems. The methods of estimating and classifying the Canadian resources is described. (author)

  3. Uranium internal exposure evaluation based on urine assay data

    International Nuclear Information System (INIS)

    Lawrence, J.N.P.

    1984-09-01

    The difficulties in assessing internal exposures to uranium from urine assay data are described. A simplified application of the ICRP-30 and ICRP Lung Model concepts to the estimation of uranium intake is presented. A discussion follows on the development of a computer code utilizing the ICRP-30-based uranium elimination model with the existing urine assay information. The calculated uranium exposures from 1949 through 1983 are discussed. 13 references, 1 table

  4. INTURGEO: The international uranium geology information system

    International Nuclear Information System (INIS)

    1988-09-01

    The International Uranium Geology Information System (INTURGEO) is an international compilation of data on uranium deposits and occurrences. The purpose of INTURGEO is to provide a clearinghouse for uranium geological information that can serve for the better understanding of the worldwide distribution of uranium occurrences and deposits. The INTURGEO system is by no means complete for all regions of the world. Data have been available principally from the WOCA countries. INTURGEO currently covers 6,089 occurrences and deposits in 96 countries of which 4,596 occurrences in 92 countries are presented here. The information presented in this publication is a very brief, one line synopsis of deposits and occurrences, and has been collected from literature and through questionnaires sent directly to IAEA Member States. None of the information contained in the INTURGEO database was derived from confidential sources although there are many entries which come from the internal files of Member States and are not directly available in the general literature. The uniformity of the INTURGEO data presented in this report has depended heavily on the data provided by Member States. Basic information includes the deposit or occurrence name, the mining district, the tectonic setting, the geological type, status, size, host-rock type, age of mineralization and bibliographic references. The data contained in the maps of the atlas include all reported occurrences of uranium above the anomaly level. The categories of occurrence and deposit status includes: Anomaly; occurrences of unknown status; occurrences; prospects; developed prospects; subeconomic deposits; economic deposits; mines; inactive mines; depleted mines. A microcomputer version of INTURGEO on 21 Megabyte Bernoulli disks is available. 5 tabs, 102 maps

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Iran

    International Nuclear Information System (INIS)

    1977-12-01

    Iran is on the southern flank of the Alpine-Himalayan mountain system and has within its extensive boundaries rocks ranging from crystalline metamorphics and igneous rocks of Precambrian age to sediments of Tertiary - Pleistocene age, some of which could be considered as potentially favourable for uranium deposits. The search for uranium started about 1959 and in the following years some 40 radioactive anomalies and a small number of uranium occurrences were identified. In 1977 the Atomic Energy Organization of Iran greatly expanded its exploration activities and contracted for 895,000 line kilometres to be flown by three contractors in an aerial spectrometric survey designed to cover almost the two fifths of the whole country. The follow-up of this survey will continue for several years. Purely on the basis of its size (1,648,004 km 2 ), its several favourable host rock areas, its location on the flank of the Alpine-Himalayan system and the relatively small amount of systematic exploration coverage completed to date the Speculative Potential could be placed in the 50,000 - 100,000 tonnes category. (author)

  6. Ranger uranium environmental enquiry

    International Nuclear Information System (INIS)

    1976-07-01

    The submission is divided into three sections. Section A considers the international implications of the development of uranium resources including economic and resource aspects and environmental and social aspects. Section B outlines the government's position on export controls over uranium and its effect on the introduction of nuclear power in Australia. Section C describes the licensing and regulatory functions that would be needed to monitor the environmental and health aspects of the Ranger project. (R.L.)

  7. National Uranium Resource Evaluation: Lawton Quadrangle, Oklahoma and Texas

    International Nuclear Information System (INIS)

    Al-Shaieb, Z.; Thomas, R.G.; Stewart, G.F.

    1982-04-01

    Uranium resources of the Lawton Quadrangle, Oklahoma and Texas, were evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Five areas of uranium favorability were delineated. Diagenetically altered, quartzose and sublithic, eolian and marginal-marine sandstones of the Permian Rush Springs Formation overlying the Cement Anticline are favorable for joint-controlled deposits in sandstone, non-channel-controlled peneconcordant deposits, and Texas roll-front deposits. Three areas contain lithologies favorable for channel-controlled peneconcordant deposits: arkosic sandstones and granule conglomerates of the Permian Post Oak Conglomerate south of the Wichita Mountains; subarkosic and sublithic Lower Permian fluvio-deltaic and coastal-plain sandstones of the eastern Red River Valley; and subsurface arkosic, subarkosic, and sublithic alluvial-fan and fan-delta sandstones of the Upper Pennsylvanian-Lower Permian sequence in the eastern Hollis Basin. The coarse-grained facies of the Cambrian Quanah Granite and genetically related aplite and pegmatite dikes in the Wichita Mountains are favorable for orthomagmatic and autometasomatic deposits, respectively

  8. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Lebanon

    International Nuclear Information System (INIS)

    1977-10-01

    Geologically speaking, Lebanon is a young country since the oldest rocks are of Upper Jurassic age. Two volcanic periods are included in the more recent rocks. The country is intersected by numerous faults mainly striking NNE but also including numerous small transverse faults. No prospecting for nuclear raw materials has been recorded and there is no known activity at the present time. Lebanon has no national geological organization to support uranium prospecting. From the geological standpoint, possibilities of occurrences of nuclear minerals in Lebanon are poor and the Speculative Potential is placed in the less than 1000 tonnes uranium category. (author)

  9. One hundred prime references on hydrogeochemical and stream sediment surveying for uranium as internationally practiced, including 60 annotated references

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Bolivar, S.L.

    1981-04-01

    The United States Department of Energy (DOE), formerly the US ERDA, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). This program is part of the US National Uranium Resource Evaluation, designed to provide an improved estimate for the availability and economics of nuclear fuel resources and make available to industry information for use in exploration and development of uranium resources. The Los Alamos National Laboratory is responsible for completing the HSSR in Rocky Mountain states of New Mexico, Colorado, Wyoming, and Montana and in the state of Alaska. This report contains a compilation of 100 prime references on uranium hydrogeochemical and stream sediment reconnaissance as internationally practiced prior to 1977. The major emphasis in selection of these references was directed toward constructing a HSSR program with the purpose of identifying uranium in the Los Alamos National Laboratory area of responsibility. The context of the annotated abstracts are the authors' concept of what the respective article contains relative to uranium geochemistry and hydrogeochemical and stream sediment surveying. Consequently, in many cases, significant portions of the original articles are not discussed. The text consists of two parts. Part I contains 100 prime references, alphabetically arranged. Part II contains 60 select annotated abstracts, listed in chronological order

  10. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    International Nuclear Information System (INIS)

    Myers, Astasia

    2011-01-01

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  11. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Costa Rica

    International Nuclear Information System (INIS)

    1977-08-01

    Most parts of Costa Rica, except for the Quaternary volcanic belt, have neither been studied or mapped in detail. Concerning past exploration limited uranium exploration took place in the late 1960's but details are lacking. No additional information is available. A bibliography of Costa Rican geology (Dengo, 19t>2a) and the metallogenic map of Central America (1CAITI, 1970) do not report any uranium occurrences. Data on current exploration activities for uranium are lacking. Mining is essentially regulated by a 1953 code and a 1964 supplement, but the production and use of radioactive materials are controlled by the Costa Rican Atomic Energy Commission. New raining and petroleum laws reportedly are being considered. Mining rights are available with few restrictions to foreign nationals and corporations. Costa Rica contains no rocks older than Cretaceous. The Mesozoic continental clastic sequences of Honduras and northern Nicaragua do not extend this far south. The massive intrusions of acidic granites and syenites in the Talamanca ranges are probably older than the oldest formations now seen adjacent to them and could not have contributed to their mineralization except through weathering. There may be a faint possibility for uranium deposition in lodes and fracture zones within the granitic rocks, but no such deposits have been reported. Insofar as the sediments are concerned, only the shallow water faces of the marine sediments of the Caribbean coastal region offer the remotest possibilities. The uranium potential of Costa Rica is estimated, at less than 1,000 tonnes

  12. Estimation of intermediate grade uranium resources. Final report

    International Nuclear Information System (INIS)

    Lambie, F.W.; Kendall, G.R.; Klahn, L.J.; Davis, J.C.; Harbaugh, J.W.

    1980-12-01

    The purpose of this project is to analyze the technique currently used by DOE to estimate intermediate grade uranium (0.01 to 0.05% U 3 O 8 ) and, if possible, suggest alternatives to improve the accuracy and precision of the estimate. There are three principal conclusions resulting from this study. They relate to the quantity, distribution and sampling of intermediate grade uranium. While the results of this study must be validated further, they indicate that DOE may be underestimating intermediate level reserves by 20 to 30%. Plots of grade of U 3 O 8 versus tonnage of ore and tonnage U 3 O 8 indicate grade-tonnage relationships that are essentially log-linear, at least down to 0.01% U 3 O 8 . Though this is not an unexpected finding, it may provide a technique for reducing the uncertainty of intermediate grade endowment. The results of this study indicate that a much lower drill hole density is necessary for DOE to estimate uranium resources than for a mining company to calculate ore resources. Though errors in local estimates will occur, they will tend to cancel over the entire deposit

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Philippines

    International Nuclear Information System (INIS)

    1976-12-01

    Comparison between the geology of the Philippines and favourable geological environments for uranium in other parts of the world suggests that the Philippine geology is not likely to be favourable for the discovery of uranium. Previous work has been mainly of a reconnaissance type and orientated mainly to checking the existing mining areas for radioactivity. The only occurrence known at the present time is at Larap Mine in the Paracale District of Camarines Norte in Luzon. A magnetite iron ore body operated by Philippines Iron Mines Inc contained certain distinct beds, which, in addition to magnetite also contain copper, molybdenum and iron sulphides and uraninite. It is estimated that 200 short tons U 3 O 8 is contained in 500,000 tons ore grading 0.04% U 3 O 8 at Larap. A number of other largely untested but similar occurrences have also been identified in the Paracale District. A few small occurrences of uranium have recently been identified on the island of Samar. It is suggested that the Speculative Potential of the Philippines may be of the order of 1000 tonnes U 3 O 8 . (author)

  14. Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.

    Science.gov (United States)

    Mudd, Gavin M; Diesendorf, Mark

    2008-04-01

    The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain.

  15. Are uranium resources sufficient to face the expected revival of nuclear electricity production in the world?

    International Nuclear Information System (INIS)

    Seyve, C.

    2007-11-01

    This article proposes a table containing assessments of uranium resources in 2005 in different countries, and comments the evolution of uranium prices between 1968 and 2008. It discusses whether it would be possible to cope with a dramatic increase of uranium prices, whether it would be already possible to save uranium with the same level of electricity production, whether there is still some uranium resources to be discovered, whether we could rely on non conventional uranium sources (phosphates, sea water), and the role of future reactors

  16. National Uranium Resource Evaluation: Spartanburg Quadrangle, South Carolina and North Carolina

    International Nuclear Information System (INIS)

    Schot, E.H.; Galipeau, J.M.

    1980-11-01

    The Spartanburg Quadrangle, South Carolina and North Carolina, was evaluated for uranium favorability using National Uranium Resource Evaluation criteria. The evaluation included the study and analysis of published and collected geologic, geophysical, and geochemical data from subsurface, surface, and aerial studies. Five environments are favorable for uranium deposits. The Triassic Wadesboro Basin has ground waters with anomalously high uranium concentrations and uranium-to-conductivity ratios. The Upper Cretaceous Tuscaloosa-Middendorf Formation is near a uranium source and has sediments favorable for uranium deposition. The contact-metamorphic aureoles associated with the Liberty Hill-Kershaw and Winnsboro-Rion plutonic complexes are close to uranium sources and contain the reductants (sulfides, graphite) necessary for precipitation. The East Fork area in the Charlotte Belt has ground waters with uranium concentrations 4 to 132 times the mean concentration reported for the surrounding Piedmont area. Unfavorable environments include the Catawba Granite, the area west of the Winnsboro-Rion complex, gold-quartz veins, the vermiculite district, and the Western Monazite Belt

  17. Uranium evaluation and mining techniques

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA/NEA/IANEC international symposium, Buenos Aires, Argentina, 1-5 October 1979. The symposium was attended by 162 participants from 35 countries and five international organizations, with 35 observers also registered. Twenty-nine papers and two informal discussions were presented in seven sessions. Planning nuclear power programmes is fraught with a very wide range of uncertainties, some of which are the uncertainties associated with rising costs and ever-lengthening lead times, the uncertainties of the rate of growth of nuclear energy, the uncertainties caused by anti-nuclear activities, and the uncertainties of uranium resources and availability of uranium supplies. Present known resources, not all of which may actually become uranium supply before the year 2025, are slightly less than 5 million tonnes uranium. Even if all these resources could be produced, production rates from them would drop seriously in the mid-1990s. It is, therefore, most important that the uncertainty of uranium resources and availability of supply be dealt with promptly. In this respect many countries of the world have begun national programmes either to determine their uranium potential, or to explore for uranium deposits. The symposium held in Buenos Aires at the invitation of the Government of Argentina sought to provide these countries with a state-of-the-art report on the various methods of uranium resource evaluation. Developments and improvements in both new and old techniques of mineral assessment proliferate. Notable among the 'newer' methods are geostatistical estimation of ore reserves, a sophisticated method which, although still under development, has gained wide recognition. In the domain of objective measurements and sample-based estimation procedures, the older classical methods also yield acceptable estimates when properly used. But uranium ore reserves are always inadequate for long-range planning, seldom exceeding a few years' demand. An

  18. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Portugal

    International Nuclear Information System (INIS)

    1977-10-01

    Portugal is situated on the western edge of the Iberian Meseta. At present, its reasonably assured reserves are about 7800 t of U (including 1000 t of U at more than 830/lb U 3 O 8 ) and 850 t of U in estimated additional reserves. This potential is divided between vein deposits and deposits located in the peribatholithic schists or enclaved in granite. Two main districts share these reserves - Beira at the centre of the country and Alto Alentejo in the east, approximately at the same latitude as Lisbon. In spite of the considerable prospecting activities authorized by Portugal in the Meseta area, the subject cannot yet be regarded as exhausted. Additional resources may still be located in the horizontal and vertical extensions of the vein mineralizations or schists from the already known deposits or outside the districts containing such deposits. Moreover, certain post-Palaeozoic sedimentary basins exhibit features favourable for the presence of uranium-bearing deposits and therefore deserve to be taken into consideration. However, there are as yet no examples of economic mineralization in such locations in Portugal. All things considered, we considered it reasonable to place Portugal in category No. 3 of the classiffication adopted by BJREP. (author)

  19. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Luxembourg

    International Nuclear Information System (INIS)

    1977-12-01

    The Grand Duchy of Luxembourg is a tiny, roughly triangular, sovereign state situated in Western Europe and bordered by Belgium, the Federal Republic of Germany and Prance. Its total surface area is 998 sq. miles (2,586 sq. kilometres). Its situation in Europe has made it a natural crossroads, with its language, economic interests and ways of life reflecting its close association with its neighbours. It has, however, remained a separate, if not always autonomous, political unit since the tenth century. It is one of the nine member states of the European Economic Community. The country is made up of an elevated northern tableland and a southern lower plateau. The northern section comprises part of the Ardennes mountains which continue in south-east Belgium and form a plateau generally ranging between 1,000 and 2,000 feet. Iron ore mines are located near the French border. The southern section has an elevation of below 15,000 feet and comprises mainly heavily wooded good agricultural land. There has been virtually no work done; no uranium occurrences of significance are recorded. No specific exploration for uranium in Luxembourg is apparent at the present. There are no specific regulations relating to uranium exploration,which is covered by the rules relating to mineral exploration in general

  20. IAEA Activities on Uranium Resources and Production, and Databases for the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, C.; Slezak, J. [Divison of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Vienna (Austria)

    2014-05-15

    In recent years rising expectation for nuclear power has led to a significant increase in the demand for uranium and in turn dramatic increases in uranium exploration, mining and ore processing activities worldwide. Several new countries, often with limited experience, have also embarked on these activities. The ultimate goal of the uranium raw material industry is to provide an adequate supply of uranium that can be delivered to the market place at a competitive price by environmentally sound, mining and milling practices. The IAEA’s programme on uranium raw material encompass all aspects of uranium geology and deposits, exploration, resources, supply and demand, uranium mining and ore processing, environmental issues in the uranium production cycle and databases for the uranium fuel cycle. Radiological safety and environmental protection are major challenges in uranium mines and mills and their remediation. The IAEA has revived its programme for the Uranium Production Site Appraisal Team (UPSAT) to assist Member States to improve operational and safety performances at uranium mines and mill sites. The present paper summarizes the ongoing activities of IAEA on uranium raw material, highlighting the status of global uranium resources, their supply and demand, the IAEA database on world uranium deposit (UDEPO) and nuclear fuel cycle information system (NFCIS), recent IAEA Technical Meetings (TM) and related ongoing Technical Cooperation (TC) projects. (author)

  1. National uranium resource evaluation: Lemmon quadrangle, South Dakota and North Dakota

    International Nuclear Information System (INIS)

    Sewell, J.M.; Pickering, L.A.

    1982-06-01

    The Lemmon Quadrangle was evaluated to identify and delineate geologic environments favorable for the occurrence of uranium deposits using criteria developed for the National Uranium Resource Evaluation program. Surface studies included investigation of uranium occurrences, general surface reconnaissance, and detailed rock sampling in selected areas. In addition, followup studies were conducted on carborne spectrometric, aerial radiometric, and hydrogeochemical and stream-sediment surveys. Subsurface investigations included examination of geophysical well logs and ground-water geochemical data. These investigations indicate environments favorable for sandstone-type uranium deposits in the Upper Cretaceous strata and lignite-type deposits in the Paleocene strata. Environments unfavorable for uranium deposits include Tertiary sandstones and Jurassic and Cretaceous strata, exclusive of the Upper Cretaceous sandstones

  2. International Uranium Resources Evaluation Project (IUREP) national favourability studies: New Hebrides

    International Nuclear Information System (INIS)

    1977-12-01

    The New Hebrides consists of about 70 islands in the Southwest Pacific Ocean. The 12 largest, and main islands are volcanic cones with a few marine sediments. A manganese mining industry is presently producing but there has been no known activity in uranium exploration or mining. The area of the New Hebrides is nearly 15,000 square kilometers, and the principal industries are centered around agriculture and fishing. The uranium potential is estimated in category 1 (less than 1,000 tonnes U) (author)

  3. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    International Nuclear Information System (INIS)

    White, D.L.; Foster, M.

    1982-05-01

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint

  4. National Uranium Resource Evaluation: Crystal City Quadrangle, Texas

    International Nuclear Information System (INIS)

    Greimel, T.C.

    1982-08-01

    The uranium resources of the Crystal City Quadrangle, Texas, were evaluated to a depth of 1500 m using surface and subsurface geologic information. Uranium occurrences reported in the literature, in reports of the US Atomic Energy Commission and the US Geological Survey Computerized Resources Information Bank, were located, described, and sampled. Geochemical anomalies interpreted from hydrogeochemical and stream-sediment reconnaissance were also investigated and sampled in detail. Areas of uranium favorability in the subsurface were located through interpretation of lithofacies patterns and structure derived from electric-log data. Gamma-ray well logs and results of geochemical sample analyses were used as supportive data in locating these areas. Fifteen surface and subsurface favorable areas were delineated in the quadrangle. Eight are in fluvial and genetically associated facies of the Pliocene Goliad Sandstone, Miocene Oakville Sandstone, Miocene Catahoula Tuff, and Oligocene Frio Clay. One area encompasses strand plain-barrier bar, fluvial-deltaic, and lagoonal-margin facies of the Eocene Jackson Group. Two areas are in strand plain-barrier bar and probable fluvial facies of the Eocene Yegua Formation. Four areas are in fluvial-deltaic, barrier-bar, and lagoonal-margin facies of the Eocene Queen City Formation and stratigraphically equivalent units. Seventeen geologic units are considered unfavorable, and seven are unevaluated due to lack of data

  5. National Uranium Resource Evaluation: Baker Quadrangle, Oregon and Idaho

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Robins, J.W.

    1982-05-01

    The Baker Quadrangle, Oregon, and Idaho, was evaluated to identify areas containing geologic environments favorable for uranium deposits. The criteria used was developed for the National Uranium Resource Evaluation program. Stream-sediment reconnaissance and detailed surface studies were augmented by subsurface-data interpretion and an aerial radiometric survey. Results indicate that lower Pliocene sedimentary rocks in the Lower Powder River Valley-Virtue Flat basin are favorable characteristics, they remain unevaluated because of lack of subsurface data. Tertiary sandstones, possibly present at depth in the Long and Cascade Valleys, also remain unevaluated due to lack of subsurface data. All remaining environments in the Baker Quadrangle are unfavorable for all classes of uranium deposits

  6. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    International Nuclear Information System (INIS)

    Henry, C.D.; Duex, T.W.; Wilbert, W.P.

    1982-09-01

    The uranium favorability of the Marfa 1 0 by 2 0 Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiary Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable

  7. Australia modifies resource rent, uranium mining policies

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Current Australian government business and economic policies as they affect the mining industry are discussed. The distribution of constitutional and taxing powers in Australia between state and commonwealth governments and possible inappropriate taxes and other policies can have an adverse effect on resource development. The effects of these policies on both coal and uranium mining are discussed

  8. Exhaustible resources and economic growth: the case of uranium mining in Saskatchewan

    International Nuclear Information System (INIS)

    Campbell, H.F.

    1984-09-01

    This study examines the effect of a booming natural resource sector on regional economic growth, with particular attention to the impact of regional government policy on mineral rent taxation and the allocation of resource revenues. The author's approach is first to document the relevant theory and then to apply it to the case of the uranium industry in Saskatchewan. Governments often hold the view that a significant portion of resource rents flowing from the boom should be appropriated by the public sector. The usual arguments of efficiency and equity are explained, as is their applicability to uranium in Saskatchewan. The model is extended to include provincial tax and expenditure policies. Chapter 2 concentrates on mineral taxes and examines their various effects on the behaviour of firms with respect to exploration and extraction. The theory about the effects of mineral taxes on exploration and extraction is reviewed and is subsequently used to anticipate the effect of taxes on uranium mining. The Saskatchewan Uranium Royalty is explicitly considered in a quantitative model to analyse the effect on the rate of extraction on the Key Lake Mine. It is agreed that taxes collected by the Saskatchewan government are corrective in nature in that they lower the rate of extraction and make up for certain market failures and improve efficiency of resource use. It is not accepted, however, that the allocation of these taxes contributes to economic efficiency. Plentiful low cost uranium reserves are predicted but government policy is likely to limit rapid expansion. Weighing these factors and the world uranium market, uranium production forecasts are derived and an estimate is made of the impact of the industry on economic growth in Saskatchewan. The contribution to Gross Domestic Provincial Product in 2000 could be as high as 10% of the 1980 GDPP level and the contribution to employment as high as 9% of 1980 nonagricultural employment. The reader is cautioned that the

  9. Uranium favourability and evaluation in Mongolia (phase II), recent events in uranium resources and production in Mongolia

    International Nuclear Information System (INIS)

    Batbold, T.

    2001-01-01

    Uranium exploration in Mongolia covered a period of over 5 decades. The main results of these activities were the discoveries of 6 uranium deposits and about 100 occurrences as well as numerous favourable indications. Sizable resources are found mainly in deposits of the sandstone, volcanic and alkaline intrusive types. Of these, the first two are considered to be of economic importance. Uranium production in Mongolia started in 1989 with the exploitation of volcanic type uranium deposits of the Mongol-Priargun metallogenic province, known as the Dornot Mine. Due to political and economic changes in the country and neighbouring areas of the Russian Federation, this uranium production was terminated in 1995. A new plan to restart production at the Mardai-gol deposits as a joint venture between Mongolia, the Russian Federation and a US company is being considered. (author)

  10. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Sri Lanka

    International Nuclear Information System (INIS)

    1977-10-01

    Sri Lanka is essentially a detached portion of the Deccan Plateau of south India and like it, is underlain almost everywhere by hard old Precambrian rocks. Prior to 1940 there was no systematic organised geological survey work on the island. Between 1957 and 1962 a partial aerial survey and field traverses were conducted in a search for radio- active minerals. Since then a modest programme has continued. Thorianite was first discovered in placer deposits in 1903 and prospecting has found many other refractory radioactive minerals probably derived from the weathering of pegmatites. Monazite is found as an important constituent of beach placer deposits and it is estimated to have an average content of 8-10%ThO 2 and 0.3 - 0.5% U 3 O 8 . Up to 1000 tons monazite per year could be produced from the beach sand industry. Sri Lanka has had very little systematic exploration for uranium and as it is largely composed of Precambrian rocks it deserves closer attention. On the other hand it is part of a thorium rich province and there is a body of technical opinion that believes that thorium rich provinces are unlikely to contain significant uranium deposits. For these reasons it is estimated that the Speculative Potential may be within the range of 1000 to 10,000 tonnes uranium. In addition it maybe possible to produce up to 5 tonnes uranium and 100 tonnes thorium from the beach sand industry on an annual basis. (author)

  11. Uranium production - needs and 'in the ground' resources, situation in 2007 and perspectives

    International Nuclear Information System (INIS)

    Capus, G.

    2007-01-01

    Under the combined effect of energies price increase and of the worldwide growing fear of global warming effects, nuclear power is again entering a favorable era. The questions of how much and how long it might bring a significant contribution to global power supplies must be addressed. In particular, it is worth considering uranium production capability and its long term perspective, in accordance to the currently available knowledge about uranium resources. Also, the issue of world resources geographic distribution should be analyzed from a security of supply viewpoint. The careful analysis of all available information leads us to the following conclusive remarks. The current tension on uranium market prices is by no mean a signal of 'in the ground' resources depletion. It is just the temporary consequence of a too long depressed market. There are enough identified and foreseen uranium resources to quietly start a huge power plant fleet increase (a doubling or tripling the current installed capacity by 2030). Ultimately, several types within the generation 4 reactors allow us to envisage a very far extended use of currently available fissile and fertile nuclear material, along with a significant expansion of fission based nuclear power. (author)

  12. Uranium industry seminar

    International Nuclear Information System (INIS)

    1980-01-01

    The tenth annual Uranium Industry Seminar, sponsored by the US Department of Energy's (DOE) Grand Junction Office, was held in Grand Junction, Colorado, on October 22 and 23, 1980. There were 700 registered attendees as compared to 833 attending the previous year. The attendees were drawn largely from uranium and other energy resource companies, electric utility firms, energy consultants and service companies, and governmental agencies. In addition, there were representatives present from Indian tribes, universities, the media, DOE laboratories, and foreign countries and organizations. There were 14 papers presented at the seminar by speakers from the Department of Energy, US Geological Survey, and Bendix Field Engineering Corporation which is the on-site prime contractor for DOE's Grand Junction Office. The topics the papers dealt with were uranium policies, exploration, respources, supply, enrichment, and market conditions. There also were papers describing the National Uranium Resource Evaluation program and international activities. All 14 papers in this Proceedings have been abstracted and indexed

  13. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Burger, J.A.

    1982-10-01

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1 0 x 2 0 quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed

  14. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Finland

    International Nuclear Information System (INIS)

    1977-11-01

    Finland covers an area of 337,000 skm. One third of the country lies north of the northern polar circle. 31,613 skm are covered by lakes. 71% of the landscape are covered by coniferous -wood. Climatlcal conditions are continental. The topography of the country is gently rolling with highest elevations of 300 m in the northern part. The most interesting geological units for uranium are Karelian, marginal meta-sediments, mainly quarzites and conglomerates but also schists. These schists are intruded by orogenlc plutonic rocks which are 1800-My-old. Potassium granites are common adjacent to the contact of the Pre-karelian basement (2500 My). In addition to these geological environment uranium and thorium minerals have been found in a large carbonatite in northern Finland, which is explored now

  15. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  16. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Democratic Kampuchea (Cambodia)

    International Nuclear Information System (INIS)

    1977-10-01

    The potential for uranium deposits appears to be poor in Cambodia. It is largely alluvium. Uranium may occur in discordant deposits in metamorphics and intrusives in the Cardamon and Elephant Hills in the south, and in placers of U/TH minerals in the delta or banks of the Mekong River. The potential is in category 1 (less than 1000 tonnes U ). (author)

  17. International Uranium Resources Evaluation Project (IUREP) national favourability studies: United Arab Emirates

    International Nuclear Information System (INIS)

    1977-11-01

    While most of the rocks in the United Arab Emirates are of sedimentary marine origin there are also some granites and metamorphic rock areas. It is understood that Hunting Geology and Geophysics Ltd were contracted in 1975 to carry out a mineral survey over 11,500 square kilometres utilising, among others, gamma-ray spectrometry. The results of this survey are not known. A report in 1974 of a large occurrence of uranium in Fujairah was later discredited but at least two radioactive anomalies are known in the country. The existence of granitic rocks and the appropriate conditions for calcareous duricrust formations may indicate some slight potential for uranium. The Speculative Potential may be in the 1000 to 10,000 tonnes uranium category. (author)

  18. Uranium: properties and biological effects after internal contamination

    International Nuclear Information System (INIS)

    Souidi, M.; Tissandie, E.; Racine, R.; Ben Soussan, H.; Rouas, C.; Grignard, E.; Dublineau, I.; Gourmelon, P.; Lestaevel, P.; Gueguen, Y.

    2009-01-01

    Uranium is a radionuclide present in the environment since the origin of the Earth. In addition to natural uranium, recent deposits from industrial or military activities are acknowledged. Uranium's toxicity is due to a combination of its chemical (heavy metal) and radiological properties (emission of ionizing radiations). Acute toxicity induces an important weight loss and signs of renal and cerebral impairment. Alterations of bone growth, modifications of the reproductive system and carcinogenic effects are also often seen. On the contrary, the biological effects of a chronic exposure to low doses are unwell known. However, results from different recent studies suggest that a chronic contamination with low levels of uranium induces subtle but significant levels. Indeed, an internal contamination of rats for several weeks leads to detection of uranium in many cerebral structures, in association with an alteration of short-term memory and an increase of anxiety level. Biological effects of uranium on the metabolisms of xenobiotics, steroid hormones and vitamin D were described in the liver, testis and kidneys. These recent scientific data suggest that uranium could participate to increase of health risks linked to environmental pollution. (authors)

  19. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Belize (Former British Honduras)

    International Nuclear Information System (INIS)

    1977-08-01

    Belize is a well-forested area of 22,960 square kilometers. Its capital is Belmopan. The country is generally flat north of the capital city. The flat, swampy Caribbean Coast of Belize gradually ascends to the low peaks of the Maya and Cockscomb Mountains (elevation to 1,120 meters). The area south of the Maya Mountains is much more rugged than the area to the north. The country is drained by seventeen rivers, the chief ones being the Belize, Hondo, New, Sibun, Monkey and Moho. There is 'hurricane danger in the July-October period. Belize has reportedly been surveyed by Gamma Ray Spectrometer for phosphates which probably would have contained sufficient uranium to be detectable. The survey traversed about 1,000 line kms along major north-south and east-west roads as well as many secondary roads and trails. The uranium readings ranged from 0. to 9.9 ppm with a uranium content of 1-2 ppm in the limestone areas and 2-7 ppm in the alluvium-covered areas. The U/Th ratio varied from 0.11 to 1.65. A recent traverse across the Mountain Pine Ridge batholith gave one reading as high as 36 ppm but the average was about 9-10 ppm. The upper 1000-3000 feet of core and cuttings from nine deep oil wells were checked for phosphates and uranium. Most of the core and cuttings were almost pure limestones. The P 2 0 3 content was less than 0.05 percent and no uranium was detected. It is very doubtful that any significant uranium occurrences will be found in the sediments surrounding the Maya Mountain uplift. However, there is a slight chance that uranium might occur in the granites and pegmatites in the Maya Mountains. The potential of Belize is estimated to be in the less than 1.000 tonnes uranium range, considering the restricted range, of geologic environments encountered there

  20. Production from new uranium mines a Cogema resources Saskatchewan perspective

    International Nuclear Information System (INIS)

    Pollock, B.

    2001-01-01

    The province of Saskatchewan is best known for the large flat tracts of land in the south that are primarily used for agricultural purposes. Less well known is the fact that the northern part of the province hosts the richest uranium mines in the world. In fact, to use a petroleum analogy, Saskatchewan has been referred to as the 'Saudi Arabia' of the uranium producing countries. The mining industry in Saskatchewan is a flourishing, high technology industry and supplies approximately one-third of the annual world primary production of uranium. The purpose of this paper is to examine the uranium mining industry in Saskatchewan and why this province stands alone as the dominant uranium producer in the world and will maintain that position into the foreseeable future. As well, an overview of the significant role played by COGEMA Resources in developing the Saskatchewan uranium industry will be undertaken. This company whose roots date back almost 40 years in the province, now holds significant interests in all four of the mines currently producing uranium. With investments of over one billion dollars (U.S.) in this province, COGEMA has established itself as a long-term player in the Saskatchewan Uranium Industry. (author)

  1. National Uranium Resource Evaluation: Wichita Falls Quadrangle, Texas and Oklahoma

    International Nuclear Information System (INIS)

    Edwards, M.B.; Andersen, R.L.

    1982-08-01

    The uranium favorability of the Wichita Falls Quadrangle, Texas and Oklahoma, was determined by using National Uranium Resource Evaluation criteria; by subsurface studies of structure, facies distribution, and gamma-ray anomalies in well logs to a depth of 1500 m; and by surface studies involving extensive field sampling and radiometric surveying. These were supplemented by both aerial radiometric and hydrogeochemical and stream-sediment reconnaissance studies. Favorable environments were identified in fluviodeltaic to fan-delta sandstones in the upper Strawn, Canyon, and Cisco Groups (Pennsylvania to Lower Permian), which occur exclusively in the subsurface. Evaluation was based on the presence of a good uranium source, abundant feldspar, good hydrogeologic characteristics, association with carbonaceous shales, presence of coal and oil fields, and anomalies in gamma logs. Additional favorable environments include deltaic to alluvial sandstones in the Wichita-Albany Group (Lower Permian), which crops out widely and occurs in the shallow subsurface. Evaluation was based on high uranium values in stream-sediment samples, a small uranium occurrence located during the field survey, anomalous gamma logs, good uranium source, and hydrogeologic characteristics. Unfavorable environments include Cambrian to Permian limestones and shales. Pennsylvanian to Permian fluviodeltaic systems that have poor uranium sources, and Permian, Cretaceous, and Pleistocene formations that lack features characteristic of known uranium occurrences

  2. Natural uranium toxicology - evaluation of internal contamination in man

    International Nuclear Information System (INIS)

    Chalabreysse, J.

    1968-01-01

    After reminding the physical and chemical properties of natural uranium which might affect its toxicology, a comprehensive investigation upon natural uranium metabolism and toxicity and after applying occupational exposure standards to this particular poison, it has been determined, from accident reports and human experience reported in the related literature, a series of formulae obtained by theoretical mathematical development giving principles for internal contamination monitoring and disclosure by determining uranium in the urine of occupationally exposed individuals. An assay is performed to determine individual internal contamination according to the various contamination cases. The outlined purposes, mainly practical, required some options and extrapolations. The proposed formula allows a preliminary approach and also to determine shortly a contamination extent or to discuss the systematical urinalysis results as compared with individual radio-toxicology monitoring professional standards. (author) [fr

  3. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Morocco. Draft

    International Nuclear Information System (INIS)

    Aniel, Mlle B.; Hetland, Donald L.; Glassom, Pierre J.

    1983-07-01

    The results of the study carried out during the IUREP Orientation Phase in Morocco permit to think that the possible reserves of uranium in this country range between 33,500 t and 89,500 t U 3 O 8 for what concerns the known traces and the already prospected zones in the Northern provinces. If we consider the favourability criteria of certain geological contexts that have not been researched yet in the same provinces and the speculative potential of the Southern provinces that have not been prospected at all, we can reasonably estimate reserves to double. In this case, the potential in uranium for the whole Morocco could range between 70,000 and 180,000 tons. The uranium phosphate constitutes by far the most important reserves of Morocco and the Moroccan government has decided to recuperate this uranium as sub-product from phosphoric acid. The consultants of the IUREP mission have estimated that the 'geological reserves' were ranging at about 12,3 million tons of U 3 O 8 and that the recoverable reserves could be between 7 and 10 million tons of U 3 O 8

  4. Uranium deposit types and resources of Argentina

    International Nuclear Information System (INIS)

    Lopez, L.; Cuney, M.

    2014-01-01

    The uranium-related activities in Argentina begun in the 1950s and, as a result of the systematic exploration, several types of deposits have been discovered since then: volcanic and caldera-related, sandstone-hosted, vein spatially related to granite (intragranitic and perigranitic) and surficial. The deposits that have been the focus of the most important uranium exploitations are the ones that belong to the volcaniclastic type. These are localized in Permian formations associated with synsedimentary acid volcanism in the Sierra Pintada district (Mendoza province). The volcanic and caldera related type is also present in the Laguna Colorada deposit (Chubut province) located in the San Jorge basin (Cretaceous). Several important uranium mineralisations have been identified in Cretaceous fluvial sandstones and conglomerates, among which the most relevant is the Cerro Solo deposit (Chubut province) that corresponds to the paleochannel structure subtype. Other subtypes of sandstone model have been studied. For instance, the Don Otto deposit (Salta province), located in the Salta Group Basin (Cretaceous - Tertiary), belongs to the tabular U-V subtype. The roll front subtype can be also found in the Los Mogotes Colorados deposit (La Rioja province) which is hosted by Carboniferous continental sandstones. The uranium mineralisations in veins and disseminated episyenites within peraluminous leucogranites of the Sierras Pampeanas (Cordoba and San Luis provinces) represent other types of existing deposits. These granites are Devonian – Carboniferous and the related deposits are comparable to those from the Middle European Variscan. There are also other vein-type uranium deposits located in metamorphic basement in the periphery of high potassium calcalkaline granites (Sierras Pampeanas of Catamarca and La Rioja provinces), where the mineralisation control is mainly structural. The current uranium identified resources of the country are approximately 24,000 tU in the

  5. Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel

    International Nuclear Information System (INIS)

    Hore-Lacy, Ian

    2016-01-01

    Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel discusses the nuclear industry and its dependence on a steady supply of competitively priced uranium as a key factor in its long-term sustainability. A better understanding of uranium ore geology and advances in exploration and mining methods will facilitate the discovery and exploitation of new uranium deposits. The practice of efficient, safe, environmentally-benign exploration, mining and milling technologies, and effective site decommissioning and remediation are also fundamental to the public image of nuclear power. This book provides a comprehensive review of developments in these areas: • Provides researchers in academia and industry with an authoritative overview of the front end of the nuclear fuel cycle • Presents a comprehensive and systematic coverage of geology, mining, and conversion to fuel, alternative fuel sources, and the environmental and social aspects • Written by leading experts in the field of nuclear power, uranium mining, milling, and geological exploration who highlight the best practices needed to ensure environmental safety

  6. National Uranium Resource Evaluation: Athens Quadrangle, Georgia and South Carolina

    International Nuclear Information System (INIS)

    Lee, C.H.

    1979-09-01

    Reconnaissance and detailed geologic and radiometric investigations were conducted throughout the Athens Quadrangle, Georgia and South Carolina, to evaluate the uranium favorability using National Uranium Resource Evaluation criteria. Surface and subsurface studies were augmented by aerial radiometric surveys, emanometry studies and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate environments favorable for allogenic deposits in metamorphic rocks adjacent to granite plutons, and Texas roll-type sandstone deposits in the Coastal Plain Province. Environments considered unfavorable for uranium deposits are the placers of the Monazite Belt, pegmatites, and base- and precious-metal veins associated with faults and shear zones in metamorphic rocks

  7. The latest figures on uranium

    International Nuclear Information System (INIS)

    Vance, R.

    2010-01-01

    According to the latest figures on uranium, soon to be published by the NEA, uranium resources, production and demand are all on the rise. Exploration efforts have increased recently in line with the expected expansion of nuclear energy in the coming years. Total identified resources have grown and are now sufficient to cover 100 years of supply at 2008 rates of consumption. Costs of production have, however, also increased. This article is based on the latest edition of the 'Red Book', Uranium 2009: Resources, Production and Demand, which presents the results of the most recent biennial review of world uranium market fundamentals and a statistical profile of the world uranium industry as of 1 January 2009. It contains official data provided by OECD Nuclear Energy Agency (NEA) and International Atomic Energy Agency (IAEA) member countries on uranium exploration, resources, production and reactor-related requirements. Projections of nuclear generating capacity and reactor-related uranium requirements through 2035 are also provided as well as a discussion of long-term uranium supply and demand issues. Despite recent declines stemming from the global financial crisis, world demand for electricity is expected to continue to grow significantly over the next several decades to meet the needs of an increasing population and economic growth. The recognition by an increasing number of governments that nuclear power can produce competitively priced, base-load electricity that is essentially free of greenhouse gas emissions, coupled with the role that nuclear can play in enhancing security of energy supply, increases the prospects for growth in nuclear generating capacity, although the magnitude of that growth remains to be determined. Regardless of the role that nuclear energy ultimately plays in meeting rising electricity demand, the uranium resource base is more than adequate to meet projected requirements. Meeting even high-case requirements to 2035 would consume less

  8. What do we know of world uranium resources?

    International Nuclear Information System (INIS)

    Capus, G.

    2007-01-01

    The current trend, of a return to nuclear energy around the world, already appears to have had the effect of pushing up uranium prices. What are the facts, on the other hand, as to the physical resources for this raw material? Will identified resources, and those yet to be discovered, allow the demand to be met? This survey shows the energy potential from fission nuclear power, provided due planning is made for the required capital investment, remains considerable indeed. (author)

  9. Data analysis and management for the Uranium Resource Evaluation Project

    International Nuclear Information System (INIS)

    Kane, V.E.

    1980-01-01

    The Department of Energy has funded a large data collection effort with the purpose of determining the US uranium resources. This Uranium Resource Evaluation (URE) Project required a large data management effort which involved collection, retrieval, processing, display, and analysis of large volumes of data. Many of the characteristics of this data processing system are relevant to other applications, particularly where routine processing involves analyses for input into numerous technical reports. The URE Project computing system has a modular program structure which has enabled a straightforward interface with both special and general graphics and analysis packages such as SAS, BMDP, and SURFACE II. Other topics include cost-effective computing, data quality, report quality computer output, and test versus production program development

  10. Developments in uranium resources, production, demand and the environment. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2005-01-01

    Globalization has led to growing importance of the uranium production industries of the world's developing countries. Uranium supply from these countries could be increasingly important in satisfying worldwide reactor requirements over time. Along with the increasing contribution to worldwide uranium supply, the environmental impact of uranium production in developing countries has come under increasing scrutiny from the nuclear power industry, the end-users of this supply, and from communities impacted by uranium mining and processing. The papers presented at the meeting on 'Developments in Uranium Resources, Production, Demand and the Environment' provide an important overview of uranium production operations and of their environmental consequences in developing countries, as well as offering insight into future production plans and potential. Along with their increasing contribution to worldwide uranium supply, the environmental impact of uranium production in developing countries has come under increasing scrutiny from the nuclear power industry, the end users of this supply, and by communities impacted by uranium mining and processing. Therefore, the environmental consequences of uranium production were included in the meeting agenda as noted in the meeting title, 'Developments in uranium resources, production, demand and the environment'. Accordingly, the papers presented at this meeting are about evenly divided between discussions of known and potential uranium resources and uranium production technology and the environmental impact of uranium mining and processing, its related remediation technology and its costs. Though emphasis is placed on uranium programmes in developing countries, an overview of COGEMA's worldwide activities is also presented. This presentation provides insight into the strategies of arguably the Western world's most integrated and diversified uranium company, including the geographic diversity of its exploration and production

  11. Selected bibliography for the extraction of uranium from seawater: evaluation of uranium resources and plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A.C.T.; Gordon, L.I.; Rodman, M.R.; Binney, S.E.

    1979-02-06

    This bibliography contains 471 references pertaining to the evaluation of U.S. territorial ocean waters as a potential uranium resource and to the selection of a site for a plant designed for the large scale extraction of uranium from seawater. This bibliography was prepared using machine literature retrieval, bibliographic, and work processing systems at Oregon State University. The literature cited is listed by author with indices to the author's countries, geographic areas of study, and to a set of keywords to the subject matter.

  12. Selected bibliography for the extraction of uranium from seawater: evaluation of uranium resources and plant siting

    International Nuclear Information System (INIS)

    Chen, A.C.T.; Gordon, L.I.; Rodman, M.R.; Binney, S.E.

    1979-01-01

    This bibliography contains 471 references pertaining to the evaluation of U.S. territorial ocean waters as a potential uranium resource and to the selection of a site for a plant designed for the large scale extraction of uranium from seawater. This bibliography was prepared using machine literature retrieval, bibliographic, and work processing systems at Oregon State University. The literature cited is listed by author with indices to the author's countries, geographic areas of study, and to a set of keywords to the subject matter

  13. Uranium prospecting program: memorandum of request United Nations Assistance Rotatory Fund for Naturals resources in Uranium Prospecting

    International Nuclear Information System (INIS)

    1976-01-01

    The Uruguayan government required assistance to Unit Nations funds with the aim of studies the Natural resources in Uranium prospecting, their antecedent, actual and projected works, equipment and end considerations

  14. National Uranium Resource Evaluation: Hutchinson Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.; Gundersen, J.N.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were done within the Hutchinson Quadrangle, Kansas, to evaluate uranium favorability in accordance with National Uranium Resource Evaluation criteria. These studies were designed in part to follow up prior airborne radiometric, hydrogeochemical, and stream-sediment surveys. Over 4305 well records were examined in the subsurface phase of this study. The results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone deposits in rocks of Cretaceous age and for Wyoming and Texas roll-type deposits in sandstones of Pennsylvanian age. The Cretaceous sandstone environments exhibit favorable characteristics such as a bottom unconformity; high bedload; braided, fluvial channels; large-scale cross-bedding; and an anomalous outcrop. The Pennsylvanian sandstone environments exhibit favorable characteristics such as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated due to insufficient data include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  15. United States Geological Survey: uranium and thorium resource assessment and exploration research program, fiscal year 1979

    International Nuclear Information System (INIS)

    Offield, T.W.

    1978-01-01

    Objectives and current plans are given for the following projects: uranium geochemistry and mineralogy; uranium in sedimentary environments; uranium in igneous and metamorphic environments; geophysical techniques in uranium and thorium exploration; and thorium investigations and resource assessment. Selected noteworthy results of FY 1978 research are given

  16. Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2009). Proceedings of an International Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-05-15

    This IAEA symposium is a third in a series which began in 2000 to discuss issues related to uranium raw materials. The symposia covered all areas of the uranium production cycle — including uranium geology, exploration, mining; milling and refining of uranium concentrates; and safety, environmental, social, training and regulatory issues — and reported on uranium supply and demand, and market scenarios. The first symposium was held in October 2000 — a time of extremely depressed market prices for uranium and of mines being closed — and primarily addressed environmental and safety issues in the uranium production cycle. By the time the second symposium was held in June 2005, the uranium market had started to improve after nearly two decades of depressed activity because of increased demand due to rising expectations for nuclear power expansion. Since then, there has been a dramatic rise in the uranium spot price, which in turn has promoted a significant increase in uranium exploration activities all over the world. The international symposium on Uranium Raw Material for the Nuclear Fuel Cycle (URAM-2009) was held at the IAEA, Vienna, 22–26 June 2009, at a time when nuclear energy was emerging as a viable alternative to meet the ever increasing demand of electricity in a sustainable manner, without degrading the environment. However, the global recession and credit crunch could impact the growth of the uranium industry. Since 2000, the identified uranium resource base has grown by more than 75%, exploration efforts have continued to increase in greenfield as well as brownfield sites, annual uranium production has risen, and the issue of social licensing and uranium stewardship has become increasingly important for public acceptance of the uranium industry. Some 210 delegates from 33 States and four international organizations participated in the symposium. In total, 120 technical papers were presented in the oral and poster sessions, and an exhibition on

  17. Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2009). Proceedings of an International Symposium

    International Nuclear Information System (INIS)

    2014-05-01

    This IAEA symposium is a third in a series which began in 2000 to discuss issues related to uranium raw materials. The symposia covered all areas of the uranium production cycle — including uranium geology, exploration, mining; milling and refining of uranium concentrates; and safety, environmental, social, training and regulatory issues — and reported on uranium supply and demand, and market scenarios. The first symposium was held in October 2000 — a time of extremely depressed market prices for uranium and of mines being closed — and primarily addressed environmental and safety issues in the uranium production cycle. By the time the second symposium was held in June 2005, the uranium market had started to improve after nearly two decades of depressed activity because of increased demand due to rising expectations for nuclear power expansion. Since then, there has been a dramatic rise in the uranium spot price, which in turn has promoted a significant increase in uranium exploration activities all over the world. The international symposium on Uranium Raw Material for the Nuclear Fuel Cycle (URAM-2009) was held at the IAEA, Vienna, 22–26 June 2009, at a time when nuclear energy was emerging as a viable alternative to meet the ever increasing demand of electricity in a sustainable manner, without degrading the environment. However, the global recession and credit crunch could impact the growth of the uranium industry. Since 2000, the identified uranium resource base has grown by more than 75%, exploration efforts have continued to increase in greenfield as well as brownfield sites, annual uranium production has risen, and the issue of social licensing and uranium stewardship has become increasingly important for public acceptance of the uranium industry. Some 210 delegates from 33 States and four international organizations participated in the symposium. In total, 120 technical papers were presented in the oral and poster sessions, and an exhibition on

  18. Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2009). Proceedings of an International Symposium

    International Nuclear Information System (INIS)

    2014-06-01

    This IAEA symposium is a third in a series which began in 2000 to discuss issues related to uranium raw materials. The symposia covered all areas of the uranium production cycle — including uranium geology, exploration, mining; milling and refining of uranium concentrates; and safety, environmental, social, training and regulatory issues — and reported on uranium supply and demand, and market scenarios. The first symposium was held in October 2000 — a time of extremely depressed market prices for uranium and of mines being closed — and primarily addressed environmental and safety issues in the uranium production cycle. By the time the second symposium was held in June 2005, the uranium market had started to improve after nearly two decades of depressed activity because of increased demand due to rising expectations for nuclear power expansion. Since then, there has been a dramatic rise in the uranium spot price, which in turn has promoted a significant increase in uranium exploration activities all over the world. The international symposium on Uranium Raw Material for the Nuclear Fuel Cycle (URAM-2009) was held at the IAEA, Vienna, 22–26 June 2009, at a time when nuclear energy was emerging as a viable alternative to meet the ever increasing demand of electricity in a sustainable manner, without degrading the environment. However, the global recession and credit crunch could impact the growth of the uranium industry. Since 2000, the identified uranium resource base has grown by more than 75%, exploration efforts have continued to increase in greenfield as well as brownfield sites, annual uranium production has risen, and the issue of social licensing and uranium stewardship has become increasingly important for public acceptance of the uranium industry. Some 210 delegates from 33 States and four international organizations participated in the symposium. In total, 120 technical papers were presented in the oral and poster sessions, and an exhibition on

  19. Possible uranium sources of Streltsovsky uranium ore field

    International Nuclear Information System (INIS)

    Zhang Lisheng

    2005-01-01

    The uranium deposit of the Late Jurassic Streltsovaky caldera in Transbaikalia of Russia is the largest uranium field associated with volcanics in the world, its uranium reserves are 280 000 t U, and it is the largest uranium resources in Russia. About one third of the caldera stratigraphic pile consists of strongly-altered rhyolites. Uranium resources of the Streltsovsky caldera are much larger than any other volcanic-related uranium districts in the world. Besides, the efficiency of hydrothermal alteration, uranium resources appear to result from the juxtaposition of two major uranium sources; highly fractionated peralkaline rhyolites of Jurassic age in the caldera, and U-rich subalkaline granites of Variscan age in the basement in which the major uranium-bearing accessory minerals were metamict at the time of the hydrothermal ore formation. (authors)

  20. Internal hydrogen embrittlement of gamma-stabilized uranium alloys

    International Nuclear Information System (INIS)

    Powell, G.L.; Koger, J.W.; Bennett, R.K.; Williamson, A.L.; Hemperly, V.C.

    1976-01-01

    Relationships between the tensile ductility and fracture characteristics of as-quenched, gamma-stabilized uranium alloys (uranium--10 wt percent molybdenum, uranium--8.5 wt percent niobium, uranium--10 wt percent niobium, and uranium--7.5 wt percent niobium--2.5 wt percent zirconium), the hydrogen content of the tensile specimens, and the hydrogen gas pressure during the annealing at 850 0 C of the tensile test blanks prior to quenching were established. For these alloys, the tensile ductility decreases only slightly with increasing hydrogen content up to a critical hydrogen concentration above which the tensile ductility drops to nearly zero. The only alloy not displaying this sharp drop in tensile ductility was U--7.5 Nb--2.5 Zr, probably because sufficiently high hydrogen contents could not be achieved under our experimental arrangements. The critical hydrogen content for ductility loss increased with increasing hydrogen solubility in the alloy. Fracture surfaces produced by internal hydrogen embrittlement do not resemble those produced by stress corrosion cracking (SCC) in aqueous environments containing chloride ions. 8 figs

  1. Natural uranium toxicology - evaluation of internal contamination in man; Toxicologie de l'uranium naturel - essai d'evaluation de la contamination interne chez l'homme

    Energy Technology Data Exchange (ETDEWEB)

    Chalabreysse, J [Commissariat a l' Energie Atomique, Pierrelatte (France). Centre d' Etudes Nucleaires

    1968-07-01

    After reminding the physical and chemical properties of natural uranium which might affect its toxicology, a comprehensive investigation upon natural uranium metabolism and toxicity and after applying occupational exposure standards to this particular poison, it has been determined, from accident reports and human experience reported in the related literature, a series of formulae obtained by theoretical mathematical development giving principles for internal contamination monitoring and disclosure by determining uranium in the urine of occupationally exposed individuals. An assay is performed to determine individual internal contamination according to the various contamination cases. The outlined purposes, mainly practical, required some options and extrapolations. The proposed formula allows a preliminary approach and also to determine shortly a contamination extent or to discuss the systematical urinalysis results as compared with individual radio-toxicology monitoring professional standards. (author) [French] Apres le rappel des caracteristiques physiques et des proprietes chimiques de l'uranium naturel pouvant avoir une influence sur sa toxicologie, l'etude detaillee de son metabolisme et de sa toxicite, puis l'application des normes professionnelles d'exposition au cas particulier de ce toxique, il est etabli, a partir des comptes rendus d'accidents et de l'experimentation humaine rapportes dans la litterature, une serie de formules obtenues par developpement mathematique theorique qui posent les principes de la surveillance et de la mise en evidence de la contamination interne par la recherche et le dosage de l'uranium dans les urines d'individus professionnellement exposes. Un essai d'evaluation de la contamination interne individuelle suivant les differents cas de contamination est effectue. Le formulaire propose permet de faire une premiere approximation et d'apprecier rapidement l'importance d'une contamination ou bien d'interpreter les resultats d

  2. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Papua New Guinea

    International Nuclear Information System (INIS)

    1977-08-01

    No uranium mineralisation has been identified in Papua New Guinea; there has, however, been virtually no exploitation specifically for uranium. The extensive Mesozoic platform sediments overlying Palaeozoic metamorphic and Permian or Triassic granite basement appear to be the most prospective units for uranium. During the Triassic, fluviatile and marginal marine arkose, feldspathic and volcanic sandstone, and minor reffal limestone were deposited in downfaulted interior and marginal basins of the platform. Locally these sediments are underlain by dacitic volcanics. A new and more widespread phase of shallow marine, deltaic, and fluciatile sedimentation occurred during the Middle and at places also during the Early Jurassic. Arkose and feldspathic and quartzose sandstone are interbedded with a grade laterally into carbonaceous and pyritic shale, and siltstone. By the Late Jurassic the shales had transgressed over the coarse clastics, and marginal marine sandstone, siltstone, and mudstone with some coal beds had been deposited over the larger part of the platform. From Late Jurassic to Late Cretaceous, shales remain the dominant rock type but are intercalated with quartz-feldspar sandstone associated with marine regressions. The Jurassic and Cretaceous shales are source rocks for petroleum. During the Late Cretaceous the northeast part of the platform was uplifted and the Mesozoic cover partly eroded. Sedimentation of fine elastics continued over the edge of the platform and on the continental slope. The Mesozoic sandstones are potential host rocks to uranium mineralisation, particularly where they are interbedded with carbonaceous and pyritic shale. Their potential is enhanced where they are situated near petroleum reservoirs which could have provided hydrogen sulphide or hydrocarbons capable of precipitating uranium from circulating solutions by reduction. Triassic and Jurassic coarse clastics, which are restricted to a few areas, are considered to be the most

  3. National Uranium Resource Evaluation: Lovelock Quadrangle, Nevada and California

    International Nuclear Information System (INIS)

    Berry, V.P.; Bradley, M.T.; Nagy, P.A.

    1982-08-01

    Uranium resources of the Lovelock Quadrangle, Nevada and California, were evaluated to a depth of 1500 m using available surface and subsurface geological information. Uranium occurrences reported in the literature and in reports of the Atomic Energy Commission were located, sampled, and described in detail. Areas of anomalous radioactivity, as interpreted from the aerial radiometric reconnaissance survey and from the hydrochemical and stream-sediment reconnaissance survey reports, were also investigated. A general reconnaissance of the geologic environments exposed in surface outcrops was carried out; and over 400 rock, sediment, and water geochemical analyses were made from the samples taken. Additionally, 119 rock samples were petrographically studied. A total of 21 occurrences were located, sampled, and described in detail. Six uranium occurrences, previously unreported in the literature, were located during hydrogeochemical and stream-sediment reconnaissance, aerial radiometric reconnaissance survey followup, or general outcrop reconnaissance. Nine areas of uranium favorability were delineated within the Lovelock Quadrangle. One area, which contains the basal units of the Hartford Hill Rhyolite, is favorable for hydroallogenic uranium deposits. Eight areas are favorable for uranium deposits in playa sediments. These playas are considered favorable for nonmarine carbonaceous sediment deposits and evaporative deposits. The total volume of rock in favorable areas of the Lovelock Quadrangle is estimated to be 190 km 3 . The remaining geologic units are considered to be unfavorable for uranium deposits. These include upper Paleozoic and Mesozoic volcanic, plutonic, sedimentary, and metamorphic rocks. Also unfavorable are Tertiary and Quaternary volcanic flows and intrusive phases, tuffs, and sediments

  4. Relationships between US and international uranium markets. Final report. International energy studies program

    International Nuclear Information System (INIS)

    Neff, T.L.

    1982-03-01

    Explored are the relationships between domestic and international uranium markets. Market issues rather than political aspects are discussed. The near term problem is that uranium production capacity has expanded well beyond what is necessary to provide fuel for existing or even planned reactors. In the long term, when inventories are down and utilities are ready to look for new supplies, the question is whether these new procurements will be increasingly with foreign producers

  5. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Niue

    International Nuclear Information System (INIS)

    1977-12-01

    Niue is described as a coral island containing 259 square kilometers, located between Tonga and the Southern Cook Islands in the Central Pacific. Geologically, little is known, or can be deduced from available information, therefore reported occurrences of uranium are the basis for a potential in category 1 (less than 1,000 tonnes U) . (author)

  6. A new approach for geochemical surveys of large areas for uranium resource potential

    International Nuclear Information System (INIS)

    Arendt, J.W.; Butz, T.R.; Cagle, G.W.; Kane, V.E.; Nichols, C.E.

    1977-01-01

    The Grand Junction, Colorado office of the United States Energy Research and Development Administration (ERDA) is conducting the National Uranium Resource Evaluation Program to evaluate the uranium resources in the United States and Alaska. The program is designed to identify favorable areas for uranium exploration, to assess the supply of domestic resources, and to improve exploration technology. The Nuclear Division of the Union Carbide Corporation has been assigned the responsibility of conducting a hydrogeochemical and stream sediment survey of the mid-continental states in the United States. This survey covers approximately 2,500,000 km 2 (1,000,000 mi 2 ) and includes the states of Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, Wisconsin, Michigan, Indiana, Illinois, and Iowa. The uranium potential of sandstones, Precambrian conglomerates, veins, granites, and phosphorites is being assessed utliizing a three-part program consisting of pilot surveys in each geological province and two phases of reconnaissance sampling of drainage basins. Samples of stream sediment, stream water, groundwater, algae, and vegetation are analyzed for uranium and some 20 additional elements. Data resulting from this program is released to private industry by ERDA as it becomes available. Analysis of results from a typical three-part survey are given. For distinctive geological regions, the pilot survey will: (1) define characteristic concentration background levels of the elements of interest, (2) identify potential uranium pathfinder elements, (3) determine relationship between stream, stream sediment and botanical samples, (4) identify any necessary modification to field sampling techniques, and (5) determine necessary sensitivities required for chemical analysis. The first reconnaissance phase average sample spacing of one station per 250 km 2 (100 mi 2 ) drainage basin is shown to delineate general boundaries of uranium provinces, and the second

  7. Internal dosimetric evaluation due to uranium aerosols

    International Nuclear Information System (INIS)

    Garcia Aguilar Juan; Delgado Avila Gustavo

    1991-01-01

    The present work has like object to carry out the internal dosimetric evaluation to the occupationally exposed personnel, due to the inhalation of aerosols of natural uranium and enriched in the pilot plant of nuclear fuel production of the National Institute of Nuclear Research

  8. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    International Nuclear Information System (INIS)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.; Wolverson, N.; Antrim, D.; Berg, J.; Witzel, F.

    1982-08-01

    The Wells 2 0 Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins are unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin

  9. Uranium from Coal Ash: Resource Assessment and Outlook on Production Capacities

    International Nuclear Information System (INIS)

    Monnet, Antoine

    2014-01-01

    Conclusion: Uranium production from coal-ash is technically feasible: in some situations, it could reach commercial development, in such case, fast lead time will be a plus. Technically accessible resources are significant (1.1 to 4.5 MtU). Yet most of those are low grade. Potential reserves don’t exceed 200 ktU (cut-off grade = 200 ppm). • By-product uranium production => constrained production capacities; • Realistic production potential < 700 tU/year; • ~ 1% of current needs. → Coal ash will not be a significant source of uranium for the 21st century – even if production constrains are released (increase in coal consumption

  10. Market stresses and readjustment: politics and pragmatism in the international uranium market

    International Nuclear Information System (INIS)

    Neff, T.L.

    1983-01-01

    Historically, the United States uranium market was isolated from international markets; therefore, United States consumers had little incentive to look abroad. Later, the government imposed an embargo on imports of uranium for domestic use. The phase-out of the embargo and recent discovery of high-grade deposits in Australia and Western Canada, as well as large intermediate-cost deposits in Africa, assure that the United States market will be affected by international developments more than in the past. Projected uranium-consumer supply arrangements are compared with enrichment commitments to reactor requirements for several key countries. For all areas, both uranium supply and enrichment commitments exceed reactor needs until at least 1985. Inventory buildup will depend upon what adjustments are made. Uranium prices have never been set by market forces alone and governmental policies and political struggles may have a significant impact on price. 8 figures

  11. International symposium on uranium raw material for the nuclear fuel cycle: Exploration, mining, production, supply and demand, economics and environmental issues (URAM-2009). Book of abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    The International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2009) addressed all aspects of the uranium fuel cycle, from the availability of raw materials to the long-term sustainability of nuclear power. The revival of the uranium industry in recent years has caused a dramatic increase in uranium exploration and mining activities in several countries. URAM-2009 was intended to bring together scientists, exploration and mining geologists, engineers, operators, regulators and fuel cycle specialists to exchange information and discuss updated research and current issues in uranium geology and deposits, exploration, mining and processing, production economics, and environmental and legal issues. Contributed papers covered uranium markets and economics (including supply and demand); social licensing in the uranium production cycle; uranium exploration (including uranium geology and deposits); uranium mining and processing; environmental and regulatory issues; human resources development. There was a poster session throughout the symposium, as well as an exhibition of topical photographs. A workshop on recent developments in Technical Cooperation Projects relevant to the Uranium Production Cycle area was also organized. On the last day of the symposium, there was an experts' Panel Discussion. The presentations and discussions at URAM-2009 (a) led to a better understanding of the adequacy of uranium sources (both primary and secondary) to meet future demand, (b) provided information on new exploration concepts, knowledge and technologies that will potentially lead to the discovery and development of new uranium resources, (c) described new production technology having the potential to more efficiently and economically exploit new uranium resources; (d) documented the environmental compatibility of uranium production and the overall effectiveness of the final

  12. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Federal Republic of Germany

    International Nuclear Information System (INIS)

    1977-10-01

    The Federal Republic of Germany is situated in Central Europe. It covers an area of 250,000 square kilometres and has a population of 60 millions. The Federal Republic consists of 10 individual states. The capital of the country is Bonn. The northern and northwestern parts of the country are formed of flat lowlands, the Norddeutsche Tiefebene. Towards the south follow hilly and mountainous regions with elevations not exceeding 1000 m. In the southwestern and southeastern regions the elevations may reach 1500m in the Black Forest and Bayerischer Wald. The foreland of the Alps and the northern part of the Alps itself with elevations close to 3000 m make up the southern part of the Federal Republic. The main rivers - Rhine, Weser and Elbe - are directed towards northwest and drain the country to the North Sea. Only the southern part is drained by the southeast running river Danube. The climate is moderate, generally with frequent snow during the winter season and warm periods during the summer. The precipitation is distributed uniformly throughout the year. Due to the high industrialization a dense network of railroads, highways and motorroads exists.According to what is geologically known about the country, the chances for the discovery of large quantities of low-coast uranium resources must be considered to be limited. The potential for new discoveries of those deposits can be estimated to be around 10 000 t U. The potential for very low-grade uranium ore, such as granites, low-grade sedimentary rocks (sandstones, shales) can be estimated to range between 10,000 - 50,000 t U or possibly more taking into account very low-grade concentrations in shales. This material is not mineable under present conditions. Environmental considerations may prevent mining in the future

  13. Uranium development in Nigeria

    International Nuclear Information System (INIS)

    Karniliyus, J.; Egieya, J.

    2014-01-01

    Nigeria uranium exploration started in 1973. Uranium was found in seven states of the country; Cross River, Adamawa, Taraba, Plateau, Bauchi, Kogi and Kano. Three government agencies were involved. At the end of the various exploration campaigns in 2001, the uranium reserve was estimated at about 200 t U. The Grade ranges from 0.63% - 0-9% at a vertical depth between 130 – 200 m. Currently, the Nigeria Atomic Energy Commission activated in 2006 is charged with the responsibility among others to prospect for and mine radioactive minerals. The main aim of this poster presentation is to review the development of uranium in Nigeria with a view to encourage local and international investors to develop and exploit these deposits. Nigeria is located on latitude 100 N and longitude 80 E surrounded in the north by Niger and Chad, in the east by Cameroun and in the west by the Benin Republic. Available data indicated the viability of mineral investment in the Nigerian uranium resources. With the current economic reforms and investment incentives in Nigeria, interested investors are highly welcome to take advantage of developing these mineral resources. (author)

  14. Uranium Resources Modeling And Estimation In Lembah Hitam Sector, Kalan, West Kalimantan

    International Nuclear Information System (INIS)

    Adi Gunawan Muhammad; Bambang Soetopo

    2016-01-01

    Lembah Hitam Sector is part of Schwaner Mountains and Kalan Basin upper part stratigraphy. Uranium (U) mineralization layer is associated with metasiltstone and metapelites schistose heading to N 265° E/60° S. Evaluation drilling carried out with a distance of 50 m from an existing point (FKL 14 and FKL 13) to determine the model and the amount of U resources in measured category. To achieve these objectives some activities including reviewing the previous studies, geological and U mineralization data collecting, grades quantitative estimation using log gross-count gamma ray, database and modeling creation and resource estimation of U carried out. Based on modeling on ten drilling data and completed with drilled core observation, the average grade of U mineralization in Lembah Hitam Sector obtained. The average grade is ranging from 0.0076 - 0.95 % eU_3O_8, with a thickness of mineralization ranging from 0.1 - 4.5 m. Uranium mineralization present as fracture filling (veins) or groups of veins and as matrix filling in tectonic breccia, associated with pyrite, pyrrhotite, magnetite, molybdenite, tourmaline and quartz in metasiltstone and metapelites schistose. Calculation of U resources to 26 ores body using 25 m searching radius resulted in 655.65 tons ores. By using 0.01 % cut-off grade resulted in 546.72 tons ores with an average grade 0.101 % eU_3O_8. Uranium resource categorized as low-grade measured resources. (author)

  15. Recycling of wastes from uranium mining and metallurgy and recovery of useful resources in China

    International Nuclear Information System (INIS)

    Pan Yingjie; Xue Jianxin; Chen Zhongqiu

    2012-01-01

    Recycling of wastes from uranium mining and metallurgy in China and recovery of useful resources are summarized from the aspects such as recovery of uranium from mine water, reusing of waste water, decontaminating and recycling of radioactivity contaminated metal, backfill of gangues and tailings, and comprehensive recovery and utilization of associated uranium deposits. (authors)

  16. Uranium supply analysis: Evolution of concepts

    International Nuclear Information System (INIS)

    Williams, R.M.

    1998-01-01

    Considerable effort has been expended during the last 15 years to develop improved methods of analysing current and future mineral supply, with the objectives of providing illustrations of mineral supply possibilities that are more meaningful and easily understood. Significant contributions toward these objectives have been made in the course of studies on world uranium supply, which took place in the 1970s prompted by concern about the future availability of mineral fuels. The Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation and Development (OECD), and the International Atomic Energy Agency (IAEA) have played a key role in these efforts, through their biennial assessments of world uranium supply. There has been a pronounced shift in emphasis in the NEA/IAEA assessments away from resource estimates by themselves as a measure of supply, because of a growing awareness that, in isolation, resource estimates cannot provide a truly meaningful illustration of uranium availability. Indeed, resource estimates taken out of context can lead to false conclusions about resource adequacy. Successive NEA/IAEA studies have made increasing use of projections of production capability that show the possible availability of uranium from different categories of resources and production centres over specified time-frames. It is believed that such supply scenarios provide a much more meaningful illustration of uranium availability for both short and long-term planning purposes. As part of the effort to introduce such an approach to NEA/IAEA uranium supply analyses, the IAEA has prepared a manual which provides general guidelines for preparing projections of production capability. It is hoped that these efforts will contribute to a better understanding of the constraints on uranium supply and to the wider acceptance of projections of production capability as measures of resource adequacy. (author)

  17. Epidemiological study of workers at risk of internal exposure to uranium

    International Nuclear Information System (INIS)

    Guseva Canu, I.

    2008-09-01

    This work is a pilot-study among nuclear fuel cycle workers potentially exposed to alpha radiation. Internal exposure from inhalation of uranium compounds during uranium conversion and enrichment operations was estimated at the AREVA NC Pierrelatte plant. A plant specific semi-quantitative job exposure matrix (JEM) was elaborated for 2709 workers employed at this plant between 1960 and 2006. The JEM has permitted to estimate the exposure to uranium and 16 other categories of pollutants and to calculate individual cumulative exposure score. Numerous correlations were detected between uranium compounds exposure and exposure to other pollutants, such as asbestos, ceramic refractive fibers, TCE and so on. 1968-2005 mortality follow-up showed an increasing risk of mortality from pleural cancer, rectal cancer and lymphoma on the basis of national mortality rates. Analyses of association between cancer mortality and uranium exposure suggested an increase in mortality due to lung cancer among workers exposed to slowly soluble uranium compounds derived from natural and reprocessed uranium. However these results are not statistically significant and based on a small number of observed deaths. These results are concordant with previously reported results from other cohorts of workers potentially exposed to uranium. Experimental studies of biokinetic and action mechanism of slowly soluble uranium oxides bear the biological plausibility of the observed results. Influence of bias was reduced by taking into account of possible confounding including co-exposure to other carcinogenic pollutants and tobacco consumption in the study. Nevertheless, at this stage statistical power of analyses is too limited to obtain more conclusive results. This pilot study shows the interest and feasibility of an epidemiological investigation among workers at risk of internal exposure to uranium and other alpha emitters at the national level. It demonstrates the importance of exposure assessment for

  18. National Uranium Resource Evaluation: Providence Quadrangle, Connecticut, Rhode Island, and Massachusetts

    International Nuclear Information System (INIS)

    Zollinger, R.C.; Blauvelt, R.P.; Chew, R.T. III.

    1982-09-01

    The Providence Quadrangle, Connecticut, Rhode Island, and Massachusetts, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for uranium deposits. Criteria for this evaluation were developed by the National Uranium Resource Evaluation program. Environments were recognized after literature research, surface and subsurface geologic reconnaissance, and examination of known uranium occurrences and aeroradioactivity anomalies. Environments favorable for authigenic uranium deposits were found in the Quincy and Cowesett Granites. An environment favorable for contact-metasomatic deposits is in and around the borders of the Narragansett Pier Granite where it intrudes the Pennsylvanian sediments of the Narragansett Basin. An environment favorable for authigenic deposits in metamorphic rocks is in a migmatite on the eastern edge of the Scituate Granite Gneiss batholith. Environments favorable for contact-metasomatic deposits occur at the contacts between many of the granitic rocks and metamorphic rocks of the Blackstone Series. Results of this study also indicate environments favorable for sandstone-type uranium deposits are present in the rocks of the Narragansett Basin. Environments unfavorable for uranium deposits in the quadrangle include all granites not classified as favorable and the metamorphic rocks of eastern Connecticut. Glacial deposits and Cretaceous-Tertiary sediments remain unevaluated

  19. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Austria

    International Nuclear Information System (INIS)

    1977-10-01

    The Federal Republic of Austria is situated in the southeastern part of Central Europe. The country covers a total area of 83.350 square kilometers, the population amounts to 7.5 million inhabitants. The geographical features of Austria are dominated by the E-W-trending chain of the Alps (approximately 60% of the country). The northeastern part of the country is formed by the nonalpine mountains and hills of the Bohemian Massif. There are a large depression, the basin of Vienna, as well as parts of the Pannonian basin in the eastern part. The main hydrographic features are characterized by the river Danube and its tributaries. With the exception of a small part in the west of the country, the drainage system of which is directed to the river Rhine, all other rivers are drained by the Danube. The elevations in the Alps reach heights of up to 3 800 m. Many of the E-W striking mountain chains are higher than 2000 to 2500 m. Several major N-S trending passes over the mountains are favourable for the transportation systems (railroads, motorroads) - The kind of land use in Austria is mainly determined by the character of the landscape which is made up of mountains and valleys as well as of depressions in the eastern part of the country. In the lowlands, good farmland is available. At lower and at medium elevations, forests and grassland predominate in the Alps. At higher elevations, the Alps are covered with grasslands; a great part of the rocks has no soil cover, another part is covered by perennial snow and ice.The presence of many uranium occurrences in the Permo-Triassic sediments justifies a detailed survey of these strata. Special studies on the lithology and the formation of uranium in these rocks have been made during the last few years. They should be evaluated to point out new favourable prospective areas. The potential of Uranium which is assumed to be found in Austria is 10,000 - 50,000 t U

  20. Uranium geochemistry, mineralogy, geology, exploration and resources

    International Nuclear Information System (INIS)

    De Vivo, B.

    1984-01-01

    This book comprises papers on the following topics: history of radioactivity; uranium in mantle processes; transport and deposition of uranium in hydrothermal systems at temperatures up to 300 0 C: Geological implications; geochemical behaviour of uranium in the supergene environment; uranium exploration techniques; uranium mineralogy; time, crustal evolution and generation of uranium deposits; uranium exploration; geochemistry of uranium in the hydrographic network; uranium deposits of the world, excluding Europe; uranium deposits in Europe; uranium in the economics of energy; role of high heat production granites in uranium province formation; and uranium deposits

  1. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Field, M T; Truesdell, D B

    1982-09-01

    The Albany 1/sup 0/ x 2/sup 0/ Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks.

  2. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    International Nuclear Information System (INIS)

    Field, M.T.; Truesdell, D.B.

    1982-09-01

    The Albany 1 0 x 2 0 Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks

  3. Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

    Science.gov (United States)

    Nash, J. Thomas

    2010-01-01

    Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures

  4. Principles of modern uranium exploration

    International Nuclear Information System (INIS)

    King, J.W.

    1974-01-01

    The Athens Symposium followed the recommendations of a panel meeting in April 1970 on uranium exploration geology. It was attended by 220 participants representing 40 countries and two international organizations; 43 papers were presented. An overview of the supply challenge of uranium was given by Mr. Robert D. Nininger, of the USAEC, who acted as chairman of the Symposium. He outlined the major topics and problems to be discussed during the conference, with the aim of meeting this challenge: 'Uranium deposits in sandstone and quartz pebble conglomerates presently represent the preponderance of uranium resources. Yet there is a question whether geologic limitations on the occurrence of such deposits may preclude their discovery in numbers sufficient to meet the eventual resource needs. New types of deposits, low in grade but larger in size, representing the equivalent of the porphyry copper deposits, may supply the bulk of future resource additions. Further investigation is needed on the characteristics of such deposits and the means of their identification. Similarly, additional investigation is needed to determine whether limits on the more conventional deposits do, in fact, exist, and, if not, what advanced approaches to rapid identification of additional such deposits may be employed'

  5. International training course on uranium exploration

    International Nuclear Information System (INIS)

    Barretto, P.M.C.

    1978-01-01

    Full text: As part of its Technical Assistance Programme for developing countries, the IAEA has conducted a series of training courses in prospecting for nuclear raw materials for example, in 1974 a regional course on uranium and thorium prospecting was held in India, and an interregional training course on uranium geochemical prospecting methods was held in Austria in 1975. In September 1977, another interregional training course on uranium geochemical prospecting methods was held at Skofja Loka, Slovenia, Yugoslavia. Twenty-four delegates from Afghanistan, Algeria, Argentina, Bolivia, Chile, Colombia, Czechoslovakia, India, Indonesia, Malaysia, Philippines, Portugal, Sri Lanka, Turkey, Venezuela and Yugoslavia participated in the four-week training course. The Federal Republic of Yugoslavia acted as host for the course. The Skofja Loka area was selected because it contains sedimentary rocks with known uranium mineralization, and presented ideal conditions (soil, drainage and topography) for Uranium geochemical surveys. In addition, the participants could benefit from a technical visit to a very interesting type of uranium mineralization near the town of Gorenje Vaz. Several well-known geologists, such as Dr. A. Grimbert (France) and Prof. Ian Nichol (Canada) were present as guest lecturers. In the first week the lectures dealt with the basic concepts of geochemical exploration for uranium, as well as preparing the participants for the field work. In addition to specific topics on geochemistry and uranium behaviour in the natural environment, the lectures also covered other topics of interest, such as world uranium resources and demand, types of uranium deposits and technical advances in exploration equipment. A visit to the Zirovski Vrh uranium mine was made, where the participants saw different techniques for mining ore bodies with complex structure and rapid change in grade concentration. At the end of the mine tour, there was a lengthy discussion of

  6. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Saudi Arabia

    International Nuclear Information System (INIS)

    1977-09-01

    Saudi Arabia occupies most of the Arabian Peninsula and has an area of 872,722 sq miles, or 2,260,350 sq km. The ancient Arabian Shield of igneous and metamorphic rocks comprises most of the western third of the country. The shield contains many extinct volcanoes surrounded by lava beds. Sloping eastwards are the newer sedimentary areas in which rich oil fields are found. In Saudi Arabia oil is paramount and less effort has been put into searching for mineral deposits than in other countries of similar size and geology. Pour aerial radiometric surveys have been undertaken and some of the anomalies discovered in the earlier ones were ground checked by an IAEA expert in 1963-64. Two anomalies warranted more detailed work, these were the Jabal Said anomaly in the Central Shield area and the Al Ghrayyat in Wadi Sawawin about 70 miles from the Jordan border. The Jabal Said anomaly consists of a zone of altered rocks consisting largely of pegmatite and pegmatite granite= Allanite, pyrochlore, cyrtolite, xenotime and monazite are the ore minerals,, The deposit was estimated to have 2.2 million tons of ore grading 0.2 - 0.3 percent Nb 2 O 5 and 0.03 - 0,05% U 3 O 8 . The other occurrence at Al Ghrayyat is similar but with much lower grade uranium content. In view of the huge size of Saudi Arabia, the existence of many geologically favourable rock types and the poor coverage by sophisticated uranium exploration techniques, the Speculative Potential is placed between 10,000 and 50,000 Tonnes uranium. (author)

  7. Uranium mining impacts on water resources in Brazil

    International Nuclear Information System (INIS)

    Simoes Filho, Francisco Fernando Lamego; Lauria, Dejanira C.; Vasconcellos, Luisa M.H.; Fernandes, Horst M.; Clain, Almir F.; Silva, Liliane F.

    2009-01-01

    Uranium mining and milling activities started operations in Brazil during the 80's. The first production Center was deployed in Pocos de Caldas (CIPC) State of Minas Gerais. The mine was exhausted in 1997, after has produced only 1200 t of U 3 O 8 . The second uranium plant began the operations in Caetite (URA), Bahia State, since 1999 and keeps operations until now with an annual U 3 O 8 production of up to 400 t. The company plans to double this mark in Caetite production center with the exploration of another uranium deposits and initiate underground operations of current open-pit mine. Simultaneously, they are seeking a license for a third plant in the State of Ceara that could produce the double of foreseen capacity in URA. This scenery drives to some issues related to the impact of uranium production on water resources of the respective watersheds. The CIPC plant is a closing mine site, which requires permanent treatment of the company due to the fact their sources of pollutants are subject to the occurrence of Acid Mine Drainage. The URA plant is located in a semi-arid region of Brazil. The extraction of uranium from the ore is achieved by means of a Heap-Leach process, which has low water demand supplied by a network of wells and from a dam, but can contribute to change the groundwater quality and in some cases the extinguishing of wells was observed. An overall assessment of these impacts in national level could produce some lessons that we must take advantage for the ongoing project of Santa Quiteria or even in future sites. (author)

  8. National Uranium Resource Evaluation: Okanogan Quadrangle, Washington

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Powell, L.K.; Wicklund, M.A.

    1982-06-01

    The Okanogan Quadrangle, Washington, was evaluated to identify and delineate areas containing environments favorable for the occurrence of uranium deposits using criteria developed for the National Uranium Resource Evaluation program. Reconnaissance and detailed surface studies were augmented by aerial radiometric surveys and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate six environments favorable for uranium deposits. They are unclassified, anatectic, allogenic, and contact-metasomatic deposits in Late Precambrian and (or) Early Paleozoic mantling metamorphic core-complex rocks of the Kettle gneiss dome; magmatic-hydrothermal deposits in the Gold Creek pluton, the Magee Creek pluton, the Wellington Peak pluton, and the Midnite Mine pluton, all located in the southeast quadrant of the quadrangle; magmatic-hydrothermal allogenic deposits in Late Paleozoic and (or) Early Mesozoic black shales in the Castle Mountain area; allogenic deposits in Early Paleozoic metasedimentary rocks in the Harvey Creek area and in Late Precambrian metasedimentary rocks in the Blue Mountain area; and sandstone deposits in Eocene sedimentary rocks possibly present in the Enterprise Valley. Seven geologic units are considered unfavorable for uranium deposits. They are all the remaining metamorphic core-complex rocks, Precambrian metasedimentary rocks,Tertiary sedimentary and volcanic rocks, and all Pleistocene and Recent deposits; and, excluding those rocks in the unevaluated areas, include all the remaining plutonic rocks, Paleozoic miogeoclinical rocks, and Upper Paleozoic and Mesozoic eugeosynclinal rocks. Three areas, the Cobey Creek-Frosty Creek area, the Oregon City Ridge-Wilmont Creek area, and the area underlain by the Middle Cambrian Metaline Formation and its stratigraphic equivalents may possibly be favorable but are unevaluated due to lack of data

  9. National/international R and D programs on uranium mill tailings

    International Nuclear Information System (INIS)

    Hamel, P.E.

    1981-05-01

    The mining and milling of uranium ores results in the production of large quantities of wastes containing low concentrations of radionuclides such as uranium, thorium, radium, radon and their daughter products. The current concern of the regulatory authorities is with the extent of the problems and the disposal methods that must be required now to ensure that an acceptable level of protection is maintained in the long term. This concern is the subject of a number of R and D programs. In Canada, the Technical Planning Group on Uranium Tailings was established to review ongoing activities and to plan a research program on the management of wastes after the mine and mill have shut down. The Group has completed its review and a report containing its conclusions and recommendations for a proposed national R and D program has been prepared. Included is a proposal for a centralized organizational structure for the coordination and managment of the total program which is to be supported jointly by the federal government, two (Ontario, Saskatchewan) provincial governments, and uranium producers. At the international level, the Nuclear Energy Agency originated, in 1979, a program to study the extent of the long-term problems of uranium mill tailings, and to develop an internationally acceptable methodology for making rational decisions regarding their long-term management taking into account the ICRP principles and system of dose limitation

  10. Aeromagnetic data processing and application in the evaluation of uranium resource potential in China

    International Nuclear Information System (INIS)

    Wang Yuanzhi; Zhang Junwei; Feng Chunyuan

    2012-01-01

    The article introduces the main methods to deduce geological structures with aeromagnetic data, and summarizes the prediction elements of aeromagnetic characteristics for granite, volcanic, carbonaceous-siliceous-argillaceous rock and sandstone type uranium deposits. By analysing the relationship of aeromagnetic deduced geological structures and uranium mineralization, the prediction model of combined factors was summarized for each type uranium deposit. A case study in Taoshan-Zhuguang mineralization belt shows that the fault, plutons and volcanic structures deduced from areomagnetic information can judge the favorable mineralization environment and ore control structure. Therefore, the process and application of aeromagnetic data can play an important role in the evaluation of uranium resource potential and uranium exploration. (authors)

  11. Uranium kernel formation via internal gelation

    International Nuclear Information System (INIS)

    Hunt, R.D.; Collins, J.L.

    2004-01-01

    In the 1970s and 1980s, U.S. Department of Energy (DOE) conducted numerous studies on the fabrication of nuclear fuel particles using the internal gelation process. These amorphous kernels were prone to flaking or breaking when gases tried to escape from the kernels during calcination and sintering. These earlier kernels would not meet today's proposed specifications for reactor fuel. In the interim, the internal gelation process has been used to create hydrous metal oxide microspheres for the treatment of nuclear waste. With the renewed interest in advanced nuclear fuel by the DOE, the lessons learned from the nuclear waste studies were recently applied to the fabrication of uranium kernels, which will become tri-isotropic (TRISO) fuel particles. These process improvements included equipment modifications, small changes to the feed formulations, and a new temperature profile for the calcination and sintering. The modifications to the laboratory-scale equipment and its operation as well as small changes to the feed composition increased the product yield from 60% to 80%-99%. The new kernels were substantially less glassy, and no evidence of flaking was found. Finally, key process parameters were identified, and their effects on the uranium microspheres and kernels are discussed. (orig.)

  12. The IAEA activities supporting implementation of best practice in uranium production cycle

    International Nuclear Information System (INIS)

    Slezak, J.

    2010-01-01

    'Full text:' Since the International Atomic Energy Agency's foundation in 1957, the Agency has had an increasing interest in uranium production cycle (UPC) developments. Recent activities cover tasks on uranium geology & deposits, exploration, mining & processing including environmental issues. The two projects titles are (1) Updating uranium resources, supply and demand and nuclear fuel cycle databases and (2) Supporting good practices in the UPC in particular for new countries. Based o the recent experience, one of the new activities is focused at human resources development to improve application of best practice called Uranium Production Cycle Network (UPNet). (author)

  13. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Singapore

    International Nuclear Information System (INIS)

    1977-12-01

    Singapore's fairly small size belies its wealth which comes not from production and use of its own raw materials including mineral products, but from importing raw materials and using them in manufacturing and refining. The state has a granite core exposed in the center of the island covered on the west by quartzites and shales, and on the east by recent detritus. There is no mining industry and no uranium potential is assigned to Singapore. (author)

  14. Natural uranium toxicology - evaluation of internal contamination in man; Toxicologie de l'uranium naturel - essai d'evaluation de la contamination interne chez l'homme

    Energy Technology Data Exchange (ETDEWEB)

    Chalabreysse, J. [Commissariat a l' Energie Atomique, Pierrelatte (France). Centre d' Etudes Nucleaires

    1968-07-01

    After reminding the physical and chemical properties of natural uranium which might affect its toxicology, a comprehensive investigation upon natural uranium metabolism and toxicity and after applying occupational exposure standards to this particular poison, it has been determined, from accident reports and human experience reported in the related literature, a series of formulae obtained by theoretical mathematical development giving principles for internal contamination monitoring and disclosure by determining uranium in the urine of occupationally exposed individuals. An assay is performed to determine individual internal contamination according to the various contamination cases. The outlined purposes, mainly practical, required some options and extrapolations. The proposed formula allows a preliminary approach and also to determine shortly a contamination extent or to discuss the systematical urinalysis results as compared with individual radio-toxicology monitoring professional standards. (author) [French] Apres le rappel des caracteristiques physiques et des proprietes chimiques de l'uranium naturel pouvant avoir une influence sur sa toxicologie, l'etude detaillee de son metabolisme et de sa toxicite, puis l'application des normes professionnelles d'exposition au cas particulier de ce toxique, il est etabli, a partir des comptes rendus d'accidents et de l'experimentation humaine rapportes dans la litterature, une serie de formules obtenues par developpement mathematique theorique qui posent les principes de la surveillance et de la mise en evidence de la contamination interne par la recherche et le dosage de l'uranium dans les urines d'individus professionnellement exposes. Un essai d'evaluation de la contamination interne individuelle suivant les differents cas de contamination est effectue. Le formulaire propose permet de faire une premiere approximation et d'apprecier rapidement l'importance d

  15. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  16. Uranium resources inventory on systematic prospection stage at Jumbang II Sector West Kalimantan

    International Nuclear Information System (INIS)

    Subiantoro, Lilik; Paimin; Suripto; Widito, P.; Marzuki, Anang

    2002-01-01

    Some uranium occurrences have been discovered as mineralized outcrops and soils at Jumbang II sector. The aim of this investigation is to find the mineralization characteristic, geometric and distribution and resources estimation. The investigation method is systematic topographic, geologic, and radiometric mapping and identification of uranium on the geological aspect. At Jumbang II have been identified four mineralization zones within total area 8.56 hectare. The mineralization zones consist of quartzite rock associations. The quartzite is characterized by the existence of some mineralized veins. The veins contain uraninite and secondary uranium mineral autunite and gummite, and it also contains monazite, tourmaline, biotite, feldspar, quartz, zircon, and some ore minerals. The ore minerals consist of molybdenite, pyrrhotite, magnetite, pyrite, hematite, chalcopyrite, galena, sphalerite and arsenopyrite. Uranium content of quartzite is about 28 ppm to 18,500 ppm U (A zone), 1,125.9 ppm U (B zone) and 515 ppm U (C and D zone). The lateral and vertical ore distributions are locally. The mineralization is veins type and is controlled by intersection WNW-ESE, NNE-EEW structure direction, which was vertical to sub vertical fractures. Resources potential within 80-m depth is 3,106.893 tons U metal

  17. Uranium, resources, production and demand including other nuclear fuel cycle data

    International Nuclear Information System (INIS)

    1975-12-01

    The uranium reserves exploitable at a cost below 15 dollars/lb U 3 O 8 , are 210,000 tonnes. While present uranium production capacities amount to 26,000 tonnes uranium per year, plans have been announced which would increase this capacity to 44,000 tonnes by 1978. Given an appropriate economic climate, annual capacities of 60,000 tonnes and 87,000 tonnes could be attained by 1980 and 1985, respectively, based on presently known reserves. However, in order to maintain or increase such a capacity beyond 1985, substantial additional resources would have to be identified. Present annual demand for natural uranium amounts to 18,000 tonnes and is expected to establish itself at 50,000 tonnes by 1980 and double this figure by 1985. Influences to increase this demand in the medium term could come from shortages in other fuel cycle capacities, i.e. enrichment (higher tails assays) and reprocessing (no uranium and plutonium recycle). However, the analysis of the near term uranium supply and demand situation does not necessarily indicate a prolongation of the current tight uranium market. Concerning the longer term, the experts believe that the steep increase in uranium demand foreseen in the eighties, according to present reactor programmes, with doubling times of the order of 6 to 7 years, will pose formidable problems for the uranium industry. For example, in order to provide reserves sufficient to support the required production rates, annual additions to reserves must almost triple within the next 15 years. Efforts to expand world-wide exploration levels to meet this challenge would be facilitated if a co-ordinated approach were adopted by the nuclear industry as a whole

  18. Uranium ores

    International Nuclear Information System (INIS)

    Poty, B.; Roux, J.

    1998-01-01

    The processing of uranium ores for uranium extraction and concentration is not much different than the processing of other metallic ores. However, thanks to its radioactive property, the prospecting of uranium ores can be performed using geophysical methods. Surface and sub-surface detection methods are a combination of radioactive measurement methods (radium, radon etc..) and classical mining and petroleum prospecting methods. Worldwide uranium prospecting has been more or less active during the last 50 years, but the rise of raw material and energy prices between 1970 and 1980 has incited several countries to develop their nuclear industry in order to diversify their resources and improve their energy independence. The result is a considerable increase of nuclear fuels demand between 1980 and 1990. This paper describes successively: the uranium prospecting methods (direct, indirect and methodology), the uranium deposits (economical definition, uranium ores, and deposits), the exploitation of uranium ores (use of radioactivity, radioprotection, effluents), the worldwide uranium resources (definition of the different categories and present day state of worldwide resources). (J.S.)

  19. National uranium resource evaluation. Raton Quadrangle New Mexico and Colorado. Final report

    International Nuclear Information System (INIS)

    Reid, B.E.; Griswold, G.B.; Jacobsen, L.C.; Lessard, R.H.

    1980-12-01

    Using National Uranium Resource Evaluation criteria, the Raton Quadrangle (New Mexico and Colorado) contains one environment favorable for uranium deposits, the permeable arkosic sandstone members of the Pennsylvanian-Permian Sangre de Cristo Formation for either peneconcordant or roll-type deposits. The favorable parts of the Sangre de Cristo lie mostly in the subsurface in the Raton and Las Vegas Basins in the eastern part of the quadrangle. An area in the Costilla Peak Massif was investigated for uranium by determining geochemical anomalies in stream sediments and spring waters. Further work will be required to determine plutonic environment type. Environments unfavorable for uranium deposits include the Ogallala, Raton, and Vermejo Formations, the Trinidad Sandstone, the Pierre Shale, the Colorado Group, the Dakota Sandstone, the Morrison Formation, the Entrada and Glorieta Sandstones, Mississippian and Pennsylvanian rocks, quartz-pebble conglomerates, pegmatities, and Tertiary granitic stocks

  20. Political economy of African uranium and its role in international markets. Final report. International energy studies program

    International Nuclear Information System (INIS)

    Lynch, M.C.; Neff, T.L.

    1982-03-01

    The history of uranium development in Africa is briefly summarized. Today there are 4 major uranium producing countries in Africa: Gabon, Niger, Namibia, and South Africa. These nations have the possibility of political instability. In addition, the uranium market has undergone a series of radical changes over the past decade. How these African nations have responded to this changing market, and how their roles in the international market relate to domestic political and economic factors are the topics of this report

  1. NDA technology for uranium resource evaluation. Progress report, January 1-June 30, 1980

    International Nuclear Information System (INIS)

    Evans, M.L.

    1981-08-01

    This report describes work performed during the time period from January 1, 1980, to June 30, 1980, on the contract for Nondestructive Nuclear Analysis Technology for Uranium Resource Evaluation in the Safeguards Technology, International Safeguards, and Training Group, Q-1, at Los Alamos National Laboratory. The calculational effort was concentrated on the development of a generalized computer model to simulate the emission, transport, and detection of natural gamma radiation from various logging environments. The model yields accurate high-resolution gamma-ray pulse-height spectra that can be used to correct both gross gamma-ray and spectral gamma-ray logs. The experimental effort focused on the analytical chemistry assay of a series of crushed concrete samples ten from the Department of Energy (DOE) Grand Junction calibration models used to calibrate logging tools employing active neutron interrogation techniques. The results establish the levels of neutron poisons in the test pits. In addition, the outfitting of a Bendix Field Engineering Corporation/DOE logging truck for the field testing of the photoneutron probe is described, as is a sodium iodide passive gamma-ray probe used to verify the absence of obstructions in a borehole and to locate uranium-bearing ore zones

  2. International symposium concluded that uranium supply for nuclear power is secure

    International Nuclear Information System (INIS)

    2000-01-01

    The document informs that stable uranium supply to fuel nuclear power plants will continue to be available according to the conclusion reached at the International Symposium on the Uranium Production Cycle and the Environment held from 2 to 6 October 2000 at the IAEA in Vienna. The meeting included specialists from about 40 countries, in addition to the Arab Atomic Energy Agency, European Commission, OECD/Nuclear Energy Agency (NEA), Office of Supervising Scientist (OSS)/Environment Australia, United Nations, Uranium Institute, World Bank, the World Energy Council and the Nuclear Energy Institute (NEI)

  3. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Fiji Islands

    International Nuclear Information System (INIS)

    1977-12-01

    The Fiji Islands, comprising over 300 islands, with a total area of 18,700 square kilometers are basically either volcanic or coral. A small mining industry exists, however, and on the basis of that fact, and without geologic support of any kind a Category 1 (0 to 1,000 tonnes U) uranium potential has been assigned. (author)

  4. Use of gamma camera for measurement of the internal contamination with depleted uranium

    International Nuclear Information System (INIS)

    Spaic, R.; Markovic, S.; Pavlovic, S.; Pavlovic, R.; Ajdinovic, B.; Baskot, B.; Djurovic, B.

    2000-01-01

    Depleted uranium from radioactive wastes is used for manufacturing bullets used in Iraq, Republic of Serbia and Yugoslavia. These bullets are extremely dense and capable of penetrating heavily armored vehicles. Their medical importance lies in the fact that the bullets contain seventy percent depleted uranium which creates aerosolized particles less than five microns in diameter, small enough to be inhaled, after spontaneous bullet burn at impact. Nuclear medicine scientists must be aware of this and be prepared to measure internal contamination of persons exposed to this radioactive material. Whole body counters (WBC) represent appropriate equipment for this purpose but their availability in developing countries is not sufficient. Gamma camera is an alternative. The minimum detectable activity (MDA) of depleted uranium, iodine and technetium for gamma cameras was measured in this paper. Low energy X-ray 100 KeV with 20% windows are used for the depleted uranium detection. About 40% gamma emissions from depleted uranium fall within these limits. The activities measured (50-100 Bq) are about ten times higher then on WBC (5 Bq). This does not limit the use of gamma cameras for measurement of lung or whole body internal contamination with depleted uranium. (author)

  5. Uranium Production Safety Assessment Team. UPSAT. An international peer review service for uranium production facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The IAEA Uranium Production Safety Assessment Team (UPSAT) programme is designed to assist Member States to improve the safe operation of uranium production facilities. This programme facilitates the exchange of knowledge and experience between team members and industry personnel. An UPSAT mission is an international expert review, conducted outside of any regulatory framework. The programme is implemented in the spirit of voluntary co-operation to contribute to the enhancement of operational safety and practices where it is most effective, at the facility itself. An UPSAT review supplements other facility and regulatory efforts which may have the same objective

  6. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Western Samoa

    International Nuclear Information System (INIS)

    1977-12-01

    Western Samoa consists principally of two large islands with seven other smaller ones, five of which are uninhabited. No concrete geologic description could be found, but on the basis of a volcanic origin for some of the islands a category 1 uranium potential is assigned. There is no mining industry, and no government agency appears to have a geologic department. (author)

  7. Uranium: a foreign resource N.L

    International Nuclear Information System (INIS)

    Venturini, V.G.

    1983-01-01

    The issue of the mining and export of Australian uranium is examined. Particular reference is made to the existence of a uranium cartel between 1970 and 1975 and the associated U.S. Westinghouse Antitrust suite. Problems associated with nuclear power and benefits to Australia associated with the mining of uranium are questioned. Changing government policy on the issue is discussed. Recommendations of the Ranger uranium environmental enquiry are noted

  8. Issues in uranium availability

    International Nuclear Information System (INIS)

    Schanz, J.J. Jr.; Adams, S.S.; Gordon, R.L.

    1982-01-01

    The purpose of this publication is to show the process by which information about uranium reserves and resources is developed, evaluated and used. The following three papers in this volume have been abstracted and indexed for the Energy Data Base: (1) uranium reserve and resource assessment; (2) exploration for uranium in the United States; (3) nuclear power, the uranium industry, and resource development

  9. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Maldives

    International Nuclear Information System (INIS)

    1977-11-01

    Maldives, an archipelago consisting of between 1,000 and 2,000 islands and atolls in the Indian Ocean contain only 300 square kilometers and is populated by around 130,000 people who are engaged in raising of copra, fruits, taro, and other agricultural products, and in fishing. There is not now and never has been a mining industry except for quarrying of coral road metal. Geologically the coral islands, based on present geological thinking is not a favourable host or source of uranium, and is therefore assigned a zero potential. (author)

  10. Gravity data processing and research in potential evaluation of uranium resource in China

    International Nuclear Information System (INIS)

    Liu Hu; Zhao Dan; Ke Dan; Li Bihong; Han Shaoyang

    2012-01-01

    Through data processing, anomaly extraction, geologic structure deduction from gravity in 39 uranium metallogenic zones and 29 prediction areas, the predicting factors such as tectonic units, faults, scope and depth of rocks, scope of basins and strata structure were provided for the evaluation of uranium resources potential. Gravity field features of uranium metallogenic environment were summarized for hydrothermal type uranium deposits (granite, volcanic and carbonate-siliceous-argillaceous type) as regional gravity transition from high to the low field or the region near the low field, and the key metallogenic factors as granite rocks and volcanic basins in the low gravity field. It was found that Large-scale sandstone type uranium mineralization basins are located in the high regional gravity field, provenance areas are in the low field, and the edge and inner uplift areas usually located in the high field of the residual gravity. Faults related to different type uranium mineralization occur as the gradient zones, boundaries, a string of bead anomalies and striped gravity anomalies in the gravity field. (authors)

  11. Methodology for uranium resource estimates and reliability

    International Nuclear Information System (INIS)

    Blanchfield, D.M.

    1980-01-01

    The NURE uranium assessment method has evolved from a small group of geologists estimating resources on a few lease blocks, to a national survey involving an interdisciplinary system consisting of the following: (1) geology and geologic analogs; (2) engineering and cost modeling; (3) mathematics and probability theory, psychology and elicitation of subjective judgments; and (4) computerized calculations, computer graphics, and data base management. The evolution has been spurred primarily by two objectives; (1) quantification of uncertainty, and (2) elimination of simplifying assumptions. This has resulted in a tremendous data-gathering effort and the involvement of hundreds of technical experts, many in uranium geology, but many from other fields as well. The rationality of the methods is still largely based on the concept of an analog and the observation that the results are reasonable. The reliability, or repeatability, of the assessments is reasonably guaranteed by the series of peer and superior technical reviews which has been formalized under the current methodology. The optimism or pessimism of individual geologists who make the initial assessments is tempered by the review process, resulting in a series of assessments which are a consistent, unbiased reflection of the facts. Despite the many improvements over past methods, several objectives for future development remain, primarily to reduce subjectively in utilizing factual information in the estimation of endowment, and to improve the recognition of cost uncertainties in the assessment of economic potential. The 1980 NURE assessment methodology will undoubtly be improved, but the reader is reminded that resource estimates are and always will be a forecast for the future

  12. Australia's uranium export potential

    International Nuclear Information System (INIS)

    Mosher, D.V.

    1981-01-01

    During the period 1954-71 in Australia approximately 9000 MT of U 3 O 8 was produced from five separate localities. Of this, 7000 MT was exported to the United Kingdom and United States and the balance stockpiled by the Australian Atomic Energy Commission (AAEC). Australia's uranium ore reserves occur in eight deposits in three states and the Northern Territory. However, 83% of Australia's reserves are contained in four deposits in lower Proterozoic rocks in the East Alligator River region of the Northern Territory. The AAEC has calculated Australia's recoverable uranium reserves by eliminating estimated losses during the mining and milling of the ores. AAEC has estimated reasonably assured resources of 289,000 MT of uranium at a recovery cost of less than US$80 per kilogram uranium. The companies have collectively announced a larger ore reserve than the Australian Atomic Energy Commission. This difference is a result of the companies adopting different ore reserve categories. On August 25, 1977, the federal government announced that Australia would develop its uranium resources subject to stringent environmental controls, recognition of Aboriginal Land Rights, and international safeguards. Australian uranium production should gradually increase from 1981 onward, growing to 10,000 to 15,000 MT by 1985-86. Further increases in capacity may emerge during the second half of the 1980s when expansion plans are implemented. Exploration for uranium has not been intensive due to delays in developing the existing deposits. It is likely that present reserves can be substantially upgraded if more exploration is carried out. 6 figures, 3 tables

  13. Uranium mining and rehabilitation: International aspects and examples from Germany

    International Nuclear Information System (INIS)

    Barthel, F.H.; Mager, D.

    1997-01-01

    In the period from 1945 to 1994 about 1.87 million t U have been produced worldwide. The maximum of production reached about 70,000 t U in 1981, now the production has fell to about 32,000 t U. Due to the decrease of the annual output, employment in uranium production has decreased, however the productivity has been increased in most countries. As any mining, uranium mining has an impact on the environment. Especially the radioactivity of the ores and waste material may create radiological hazards to the population when protection measures are not observed carefully. The impact of uranium production to the environmental is illustrated by various examples. The costs which are necessary to decommission and rehabilitate uranium production facilities can reach high levels depending on the specifics of the recultivation activities. International examples are given. The production of uranium in Eastern Germany is described briefly, and the reclamation activities of the former Wismut mining and milling facilities is illustrated by selected examples. (author). 5 tabs

  14. Analysis on uranium resource situations and metallogenic potential of Heyuan mineralization belt of Guangdong province

    International Nuclear Information System (INIS)

    Chen Zhuhai; Zheng Mingliang; Song Shizhu; Liang Yewu; Zhao Wei

    2008-01-01

    Heyuan mineralization belt is a structure-magmatic activities belt which is charcterized by strong plastic deformation and shearing. The squeeze (overthrust) structure is formed early. Later stretch produced slide shovel-shaped normal fault which control the red basin and uranium mineralization. Comprehensive study shows that this area is of favorable uranium metallogenic condition due to the rich uranium source and higher degree of geology work, it is a target for the new round resources exploration. (authors)

  15. Data release on the Salton Sea Quadrangle, California and Arizona. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Chew, R.T. III; Antrim, D.R.

    1982-10-01

    The purpose of the National Uranium Resource Evaluation (NURE) was to delineate and evaluate all geologic environments favorable for the occurrence of uranium deposits. A favorable environment was defined as having the potential to contain an occurrence of at least 100 tons of U 3 O 8 at an average grade of not less than 0.01% U 3 O 8 . In the Salton Sea Quadrangle, reported uranium occurrences were evaluated, and geologic environments thought to be favorable were examined. This report includes the field data collected during that work and a summary of the quadrangle geology and uranium favorability. This is the final report to be prepared on this quadrangle under the NURE program

  16. Prospects for the uranium market

    International Nuclear Information System (INIS)

    Murray, J.

    1989-01-01

    The Uranium Institute tries to find reasonably meaningful figures to identify the market for uranium. Reactor requirements are expected to rise by about 12000 tonnes by the year 2000. Actual uranium production has been lower than reactor requirements since the mid-1980s, but a high level of inventory was built up during years of excess production. United States buyers are less concerned about the future security of supplies of uranium than their European and Far Eastern counterparts. The absence of uranium resources results in inevitable dependence on the international market and higher concern with supply security. The higher the level of dependence on nuclear power, the greater becomes the penalty of failing to assure security of supply. The US utility regulatory system has discouraged long term coverage. US buyers are confident that production will respond in a timely fashion when demand calls for it

  17. Status of mineral resources evaluation and forecast

    International Nuclear Information System (INIS)

    Ma Hanfeng; Li Ziying; Luo Yi; Li Shengxiang; Sun Wenpeng

    2007-01-01

    The work of resources evaluation and forecast is a focus to the governments of every country in the world, it is related to the establishment of strategic policy on the national mineral resources. In order to quantitatively evaluate the general potential of uranium resources in China and better forecast uranium deposits, this paper briefly introduces the method of evaluating total amount of mineral resources, especially 6 usual prospective methods which are recommended in international geology comparison programs, as well as principle of usual mineral resources quantitative prediction and its steps. The work history of mineral resources evaluation and forecast is reviewed concisely. Advantages and disadvantages of each method, their application field and condition are also explained briefly. At last, the history of uranium resources evaluation and forecast in China and its status are concisely outlined. (authors)

  18. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    International Nuclear Information System (INIS)

    Santos, E.S.; Robinson, K.; Geer, K.A.; Blattspieler, J.G.

    1982-09-01

    Uranium resources of the Newcastle 1 0 x2 0 Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group

  19. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  20. Nuclear fuel cycle: international market, international constraints and international cooperation

    International Nuclear Information System (INIS)

    Imai, R.

    1977-01-01

    Some of the constraints on the nuclear fuel cycle are ones arising from economic and financial reasons, those caused by uranium resources and their distribution, those arising from technical reasons, issues of public acceptance, and those quite independent of normal industrial considerations, but caused by elements of international politics. The nuclear fuel cycle and the international market, matters of nuclear non-proliferation, and international cooperation are discussed

  1. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    International Nuclear Information System (INIS)

    Samet, J.; Gilliland, F.D.

    1998-01-01

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors

  2. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Samet, J.; Gilliland, F.D.

    1998-08-13

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors.

  3. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    International Nuclear Information System (INIS)

    Damp, J.N.; Jennings, M.D.

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated

  4. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    Energy Technology Data Exchange (ETDEWEB)

    Damp, J N; Jennings, M D

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

  5. Uranium in Canada

    International Nuclear Information System (INIS)

    1985-09-01

    In 1974 the Minister of Energy, Mines and Resources (EMR) established a Uranium Resource Appraisal Group (URAG) within EMR to audit annually Canada's uranium resources for the purpose of implementing the federal government's uranium export policy. A major objective of this policy was to ensure that Canadian uranium supplies would be sufficient to meet the needs of Canada's nuclear power program. As projections of installed nuclear power growth in Canada over the long term have been successively revised downwards (the concern about domestic security of supply is less relevant now than it was 10 years ago) and as Canadian uranium supply capabilities have expanded significantly. Canada has maintained its status as the western world's leading exporter of uranium and has become the world's leading producer. Domestic uranium resource estimates have increased to 551 000 tonnes U recoverable from mineable ore since URAG completed its last formal assessment (1982). In 1984, Canada's five primary uranium producers employed some 5800 people at their mining and milling operations, and produced concentrates containing some 11 170 tU. It is evident from URAG's 1984 assessment that Canada's known uranium resources, recoverable at uranium prices of $150/kg U or less, are more than sufficient to meet the 30-year fuelling requirements of those reactors that are either in opertaion now or committed or expected to be in-service by 1995. A substantial portion of Canada's identified uranium resources, recoverable within the same price range, is thus surplus to Canadian needs and available for export. Sales worth close to $1 billion annually are assured. Uranium exploration expenditures in Canada in 1983 and 1984 were an estimated $41 million and $35 million, respectively, down markedly from the $128 million reported for 1980. Exploration drilling and surface development drilling in 1983 and 1984 were reported to be 153 000 m and 197 000 m, respectively, some 85% of which was in

  6. Formation and types of uranium deposits, uranium resources

    International Nuclear Information System (INIS)

    Dahlkamp, F.J.

    1975-01-01

    To begin with, the formation and origin of uranium deposits is described, and uranium deposits are classified into four basic categories. Of these, those that are of economic interest are described in detail with regard to their characteristic geological features, and their geographic distribution in the western world is outlined. The major facts and data regarding the geological and geochronological classification of these deposits and their size are given in tables and easy-to-interpret diagrams. (RB) [de

  7. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  8. National uranium resource evaluation, Hot Springs Quadrangle, South Dakota and Nebraska

    International Nuclear Information System (INIS)

    Truesdell, D.B.; Daddazio, P.L.; Martin, T.S.

    1982-06-01

    The Hot Springs Quadrangle, South Dakota and Nebraska, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The evaluation used criteria developed by the National Uranium Resource Evaluation program. Surface reconnaissance was conducted using a portable scintillometer and a gamma spectrometer. Geochemical sampling was carried out in all geologic environments accessible within the quadrangle. Additional investigations included the followup of aerial radiometric and hydrogeochemical anomalies and a subsurface study. Environments favorable for sandstone-type deposits occur in the Inyan Kara Group and Chadron Member of the White River Group. Environments favorable for marine black-shale deposits occur in the Hayden Member of the Minnelusa Formation. A small area of the Harney Peak Granite is favorable for authigenic deposits. Environments considered unfavorable for uranium deposits are the Precambrian granitic and metasedimentary rocks and Paleozoic, Mesozoic, and Tertiary sedimentary rocks other than those previously mentioned

  9. National uranium resource evaluation, Las Vegas Quadrangle, Nevada, Arizona, and California

    International Nuclear Information System (INIS)

    Johnson, C.; Glynn, J.

    1982-03-01

    The Las Vegas 1 0 x 2 0 quadrangle, Nevada, Arizona, and California, contains rocks and structures from Precambrian through Holocene in age. It lies within the Basin and Range physiographic province adjacent to the westernmost portion of the Colorado Plateau. Miocene nonmarine sedimentary rocks of the Horse Spring Formation contain in excess of 100 tons U 3 O 8 in deposits at a grade of 0.01% or greater, and therefore meet National Uranium Resource Evaluation base criteria for uranium favorability. One favorable area lies in the South Virgin Mountains at the type locality of the Horse Spring Formation, although the favorable environment extends into the unevaluated Lake Mead National Recreation Area and Desert National Wildlife Range. Environments within the Las Vegas Quadrangle considered unfavorable for uranium include the Shinarump Conglomerate member of the Triassic Chinle Formation, Mesozoic sediments of the Glen Canyon Group, Precambrian pegmatites, Pliocene and Quaternary calcrete, Laramide thrust faults, and a late Precambrian unconformity

  10. Producer-consumer collaboration only way to stable future uranium market

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P

    1976-07-01

    Points from speakers at the Uranium Institute's Symposium on supply and demand in London are presented. The main theme of the conference was that of international co-operation particularly between producers and consumers. Several delegates commented on possible constraints on production by growing governmental regulations. Among the many other topics referred to was the reliability of forecasts of uranium resources.

  11. Glances on uranium. From uranium in the earth to electric power

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1995-01-01

    This book is a technical, scientific and historical analysis of the nuclear fuel cycle from the origin of uranium in the earth and the exploitation of uranium ores to the ultimate storage of radioactive wastes. It comprises 6 chapters dealing with: 1) the different steps of uranium history (discovery, history of uranium chemistry, the radium era, the physicists and the structure of matter, the military uses, the nuclear power, the uranium industry and economics), 2) the uranium in nature (nuclear structure, physical-chemical properties, radioactivity, ores, resources, cycle, deposits), 3) the sidelights on uranium history (mining, prospecting, experience, ore processing, resources, reserves, costs), 4) the uranium in the fuel cycle, energy source and industrial product (fuel cycle, fission, refining, enrichment, fuel processing and reprocessing, nuclear reactors, wastes management), 5) the other energies in competition and the uranium market (other uranium uses, fossil fuels and renewable energies, uranium market), and 6) the future of uranium (forecasting, ecology, economics). (J.S.)

  12. Selected nondestructive assay instrumentation for an international safeguards system at uranium enrichment plants

    International Nuclear Information System (INIS)

    Tape, J.W.; Baker, M.P.; Strittmatter, R.; Jain, M.; Evans, M.L.

    1979-01-01

    A selected set of nondestructive assay instruments for an international safeguards system at uranium enrichment plants is currently under development. These instruments are of three types: in-line enrichment meters for feed, product, and tails streams; area radiation monitors for direct detection of high-enriched uranium production, and an enrichment meter for spent alumina trap material. The current status of the development of each of these instruments is discussed, with supporting data, as well as the role each would play in a total international safeguards system. 5 figures

  13. Estimating long-term uranium resource availability and discovery requirements. A Canadian case study

    International Nuclear Information System (INIS)

    Martin, H.L.; Azis, A.; Williams, R.M.

    1979-01-01

    Well-founded estimates of the rate at which a country's resources might be made available are a prime requisite for energy planners and policy makers at the national level. To meet this need, a method is discussed that can aid in the analysis of future supply patterns of uranium and other metals. Known sources are first appraised, on a mine-by-mine basis, in relation to projected domestic needs and expectable export levels. The gap between (a) production from current and anticipated mines, and (b) production levels needed to meet both domestic needs and export opportunities, would have to be met by new sources. Using as measuring sticks the resources and production capabilities of typical uranium deposits, a measure can be obtained of the required timing and magnitude of discovery needs. The new discoveries, when developed into mines, would need to be sufficient to meet not only any shortfalls in production capability, but also any special reserve requirements as stipulated, for example, under Canada's uranium export guidelines. Since the method can be followed simply and quickly, it can serve as a valuable tool for long-term supply assessments of any mineral commodity from a nation's mines. (author)

  14. Assessment of uranium deposit types and resources - A worldwide perspective. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    The Technical Committee Meeting on Recent Development in Uranium Resources, Production and Demand was held in Vienna from 10 to 13 June 1997. The meeting, held in co-operation with the OECD Nuclear Energy Agency, was successful in bringing together 41 specialists representing 22 Member States and one non-governmental organization (Uranium Institute). A total of 23 papers were presented that report historical reviews and recent developments in the uranium related activities in their respective countries. Each of the papers was indexed separately.

  15. Assessment of uranium deposit types and resources - A worldwide perspective. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-12-01

    The Technical Committee Meeting on Recent Development in Uranium Resources, Production and Demand was held in Vienna from 10 to 13 June 1997. The meeting, held in co-operation with the OECD Nuclear Energy Agency, was successful in bringing together 41 specialists representing 22 Member States and one non-governmental organization (Uranium Institute). A total of 23 papers were presented that report historical reviews and recent developments in the uranium related activities in their respective countries. Each of the papers was indexed separately

  16. 76 FR 58049 - Atomic Safety and Licensing Board; Honeywell International, Inc.; Metropolis Works Uranium...

    Science.gov (United States)

    2011-09-19

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 40-3392-MLA; ASLBP No. 11-910-01-MLA-BD01] Atomic Safety and Licensing Board; Honeywell International, Inc.; Metropolis Works Uranium Conversion Facility... assurance for its Metropolis Works uranium conversion facility in Metropolis, Illinois. \\1\\ LBP-11-19, 74...

  17. International Uranium Resources Evaluation Project (IUREP) national favourability studies: French Polynesia

    International Nuclear Information System (INIS)

    1977-12-01

    French Polynesia comprises several district groups of islands in the South Pacific having a total population of 134,000 and an area of 5000 square kilometers. The high islands are commonly volcanic in origin while the lower islands are generally coral. They lie in the Tropic zone and are generally warm. Rainfall ranges from a few centimeters per year to as much as 1000. Because of their volcanic or coral origins, the islands of French Polynesia are not considered to have a uranium potential. (author)

  18. Activities in support of R and D work for safeguarding uranium supplies

    International Nuclear Information System (INIS)

    1988-01-01

    The activities of the Bundesanstalt fuer Geowissenschaften und Rohstoffe on behalf of the BMFT covered different tasks on the international level, as e.g. cooperative work in the uranium group of NEA, Paris, and of IAEA, Vienna, for publication of the world-wide survey of uranium resources, uranium production, and demand (Red Book). Cooperation with organisations abroad in the period under review included activities with the Australian Bureau for Mineral Resources and the BATAN authority of Indonesia. Contracts with other foreign organisations or boards were maintained and developed for cooperation in the field of uranium exploration, e.g. with the French CEA, the US Geological Survey, the Canadian Geological Survey, and the PNC of Japan. On the national level, work performed by the Bundesanstalt continued the survey of world-wide uranium exploration activities and trends in uranium prices; the records on uranium deposits in the world were updated, and supplementary data were delivered on current uranium reserves and stocks, as well as on the market situation. (orig./UA) [de

  19. Documentation of the Uranium Market Model (UMM)

    International Nuclear Information System (INIS)

    1989-01-01

    The Uranium Market Model is used to make projections of activity in the US uranium mining and milling industry. The primary data sources were EIA, the Nuclear Assurance Corporation, and, to a lesser extent, Nuexco and Nuclear Resources International. The Uranium Market Model is a microeconomic simulation model in which uranium supplied by the mining and milling industry is provided to meet the demand for uranium by electric utilities with nuclear power plants. Uranium is measured on a U 3 O 8 (uranium oxide) equivalent basis. The model considers every major production center and utility on a worldwide basis (with Centrally Planned Economies considered in a limited way), and makes annual projections for each major uranium production and consumption region in the world. Typically, nine regions are used: the United States, Canada, Australia, South Africa, Other Africa, Europe, Latin America, the Far East, and Other. Production centers and utilities are identified as being in one of these regions. In general, the model can accommodate any user-provided set of regional definitions and data

  20. National Uranium Resource Evaluation: Lewistown Quadrangle, Montana

    International Nuclear Information System (INIS)

    Culver, J.C.

    1982-09-01

    Uranium resources in the Lewistown Quadrangle, Montana, were evaluated to a depth of 1500 m (5000 ft). All existing geologic data were considered, including geologic surveys, literature, theses, radiometric surveys, oil- and water-well logs. Additional data were generated during the course of two field seasons, including the collection of more than 350 water, rock, crude oil and panned concentrate samples for analyses, sedimentary facies maps, structural geology and isopach maps, and field examination of reported areas of anomalous radioactivity. Three environments with potential for the occurrence of a minimum of 100 t of 0.01% U 3 O 8 were delineated. The most favorable environment is located in the southeastern portion of the quadrangle; here, Tertiary felsic dikes intrude four potential sandstone host rocks in the Kootenai Formation and the Colorado Shale. Structural-chemical traps for allogenic uranium are provided by the juxtaposition of oil-bearing domes. A second potential environment is located in the Eagle Sandstone in the northwestern and western portions of the quadrangle; here, anomalous water samples were obtained downtip from oxidized outcrops that are structurally related to Tertiary intrusive rocks of the Bearpaw and Highwood Mountains. Lignitic lenses and carbonaceous sandstones deposited in a near-shore lagoonal and deltaic environment provide potential reductants for hexavalent uranium in this environment. A third environment, in the Judith River Formation, was selected as favorable on the basis of water-well and gamma-ray log anomalies and their structural relationship with the Bearpaw Mountains. Organic materials are present in the Judith River Formation as potential reductants. They were deposited in a near-shore fluvial and lagoonal system similar to the depositional environment of the Jackson Group of the Texas Gulf Coast

  1. Internationally Standardized Reporting (Checklist) on the Sustainable Development Performance of Uranium Mining and Processing Sites

    International Nuclear Information System (INIS)

    Harris, Frank

    2014-01-01

    The Internationally Standardized Reporting Checklist on the Sustainable Development Performance of Uranium Mining and Processing Sites: • A mutual and beneficial work between a core group of uranium miners and nuclear utilities; • An approach based on an long term experience, international policies and sustainable development principles; • A process to optimize the reporting mechanism, tools and efforts; • 11 sections focused on the main sustainable development subject matters known at an operational and headquarter level. The WNA will make available the sustainable development checklist for member utilities and uranium suppliers. Utilities and suppliers are encouraged to use the checklist for sustainable development verification.

  2. Australia's uranium - greenhouse friendly fuel for an energy hungry world: a case study into the strategic importance of Australia's uranium resources for the inquiry into developing Australia's non-fossil fuel energy industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-15

    The terms of reference for the case study were to inquire into and report on the strategic importance of Australia's uranium resources. The Committee was asked to give particular attention to the: global demand for Australia's uranium resources and associated supply issues; potential implications for global greenhouse emission reductions from the further development and export of Australia's uranium resources; and the current regulatory environment of the uranium mining sector. The Committee indicated in its letters inviting submissions that it would also welcome comments in relation to six additional issues, relating to: whole of life cycle waste management; adequacy of social impact assessment, consultation and approval processes with traditional owners; health risks to workers and to the public from exposure to radiation; adequacy of regulation of uranium mining by the Commonwealth; the extent of federal subsidies and other mechanisms to facilitate uranium mining; and the effectiveness of safeguards regimes in addressing proliferation. These matters are addressed in the Committee's report, which consists of 12 chapters. The contents, findings and recommendations of each chapter are summarised as follows. The Committee's conclusions and recommendations are also summarised in a key messages section at the beginning of each chapter and in the conclusions section at the end of each chapter.

  3. Australia's uranium - greenhouse friendly fuel for an energy hungry world: a case study into the strategic importance of Australia's uranium resources for the inquiry into developing Australia's non-fossil fuel energy industry

    International Nuclear Information System (INIS)

    2006-11-01

    The terms of reference for the case study were to inquire into and report on the strategic importance of Australia's uranium resources. The Committee was asked to give particular attention to the: global demand for Australia's uranium resources and associated supply issues; potential implications for global greenhouse emission reductions from the further development and export of Australia's uranium resources; and the current regulatory environment of the uranium mining sector. The Committee indicated in its letters inviting submissions that it would also welcome comments in relation to six additional issues, relating to: whole of life cycle waste management; adequacy of social impact assessment, consultation and approval processes with traditional owners; health risks to workers and to the public from exposure to radiation; adequacy of regulation of uranium mining by the Commonwealth; the extent of federal subsidies and other mechanisms to facilitate uranium mining; and the effectiveness of safeguards regimes in addressing proliferation. These matters are addressed in the Committee's report, which consists of 12 chapters. The contents, findings and recommendations of each chapter are summarised as follows. The Committee's conclusions and recommendations are also summarised in a key messages section at the beginning of each chapter and in the conclusions section at the end of each chapter

  4. Uranium in Niger; L'uranium au Niger

    Energy Technology Data Exchange (ETDEWEB)

    Gabelmann, E

    1978-03-15

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities. [French] Le document presente la politique de l'Etat dans le cadre de la mise en valeur des ressources d'uranium, les societes minieres existantes et leurs productions, les projets d'exploitation d'uranium et les retombees economiques liees aux activites uraniferes et connexes.

  5. Descriptive models of major uranium deposits in China - Some results of the Workshop on Uranium Resource Assessment sponsored by the International Atomic Energy Agency, Vienna, Austria, in cooperation with China National Nuclear Corporation, Beijing, and the U.S. Geological Survey, Denver, Colorado, and Reston, Virginia

    Science.gov (United States)

    Finch, W.I.; Feng, S.; Zuyi, C.; McCammon, R.B.

    1993-01-01

    Four major types of uranium deposits occur in China: granite, volcanic, sandstone, and carbonaceous-siliceous-pelitic rock. These types are major sources of uranium in many parts of the world and account for about 95 percent of Chinese production. Descriptive models for each of these types record the diagnostic regional and local geologic features of the deposits that are important to genetic studies, exploration, and resource assessment. A fifth type of uranium deposit, metasomatite, is also modeled because of its high potential for production. These five types of uranium deposits occur irregularly in five tectonic provinces distributed from the northwest through central to southern China. ?? 1993 Oxford University Press.

  6. Extraction of uranium from seawater

    International Nuclear Information System (INIS)

    Kanno, M.

    1977-01-01

    The nuclear power generation is thought to be very important in Japan. However, known domestic uranium resources in Japan are very rare. So, extraction of uranium from sea water have been carried out since 1962 at Japan Tobacco and Salt Public Corporation. There are a number of results obtained also by Kyoto University, Shikoku Govenment Industrial Research Institute, Tokyo University and others. In order to investigate the technical and economical feasibility of extraction of uranium and other resources from sea water, a research program was started in fiscal 1975, sponsored by the Ministry of International Trade and Industry with the budget of about $440,000. In this program, the conceptional design of two types of model plants, the ''column type'' and the ''tidal type'' was drawn on the design bases set up with available information. It was found that there has been several problems waiting solution, but there were no technically fatal problems. Adsorption tests were carried out with adsorbents of more than eleven types, including titanium hydroxide, and it was found that titanium hydroxide made by titanyl surphate and urea had the largest adsorption capacity of uranium among them. Elution experiments were performed only with ammonium carbonate and the efficiency at the temperature of 60 0 C showed three times higher than that of 20 0 C. A few long term column operation was conducted, mainly with the adsorbent of granulated titanium hydroxide for 15-60 days. The maximum yield of uranium throughout the adsorption and elution operation was over 20% and macimum concentration of uranium in eluate was 7 ppm

  7. National Uranium Resource Evaluation, Scranton Quadrangle, Pennsylvania, New York, and New Jersey

    International Nuclear Information System (INIS)

    Baillieul, T.A.; Indelicato, G.J.; Penley, H.M.

    1980-11-01

    Reconnaissance and detailed geologic and radiometric investigations were conducted throughout the Scranton Quadrangle, Pennsylvania, New York, and New Jersey, to evaluate uranium favorability using National Uranium Resource Evaluation criteria. Surface and subsurface studies were augmented by aerial radiometric, hydrogeochemical and stream sediment reconnaissance, and emanometry surveys. Results of the investigations indicate four environments favorable for uranium deposits: In the Precambrian metamorphic terrain of the Reading Prong, magmatic-hydrothermal and anatectic deposits may occur in the northwestern massif; contact metasomatic deposits may occur in a portion of the southeastern massif. The alluvial-fan environment at the base of the Upper Devonian Catskill Formation appears favorable for deposits in peneconcordant channel controlled sandstones. Seven environments are considered unfavorable for uranium deposits: the southeastern massif of the Reading Prong, exclusive of that portion denoted as a favorable contact metasomatic environment; the lower Paleozoic sedimentary units; the Beemerville nepheline syenite complex; the Upper Devonian Catskill Formation, exclusive of the favorable basal alluvial-fan facies; Mississippian and Pennsylvanian units; and peat bogs. Two environments were not evaluated: the Spechty Kopf Formation, because of paucity of exposure and lack of sufficient data; and the Newark Basin, because of cultural density and inadequate subsurface information

  8. International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues. Presentations

    International Nuclear Information System (INIS)

    2014-01-01

    The long term sustainability of nuclear power will depend on, among several factors, an adequate supply of uranium resources that can be delivered to the marketplace at competitive prices. New exploration technologies and a better understanding of the genesis of uranium ores will be required to discover often deep-seated and increasingly hard to find uranium deposits. Exploration, mining and milling technologies should be environmentally benign, and site decommissioning plans should meet the requirements of increasingly stringent environmental regulations and societal expectations. The purpose of this symposium is to analyse uranium supply–demand scenarios and to present and discuss new developments in uranium geology, exploration, mining and processing, as well as in environmental requirements for uranium operations and site decommissioning. The presentations and discussions at URAM-2014 will: - Lead to a better understanding of the adequacy of uranium sources (both primary and secondary) to meet future demand; - Provide information on geological models, new exploration concepts, knowledge and technologies that will potentially lead to the discovery and development of new uranium resources; - Describe new production technologies that have the potential to more efficiently and sustainably develop new uranium resources; and - Document the environmental compatibility of uranium production and the overall effectiveness of progressive final decommissioning and, where required, remediation of production facilities.

  9. Research on interactive genetic-geological models to evaluate favourability for undiscovered uranium resources

    International Nuclear Information System (INIS)

    Finch, W.I.; Granger, H.C.; Lupe, R.; McCammon, R.B.

    1980-01-01

    Current methods of evaluating favourability for undiscovered uranium resources are unduly subjective, quite possibly inconsistent and, as a consequence, of questionable reliability. This research is aimed at reducing the subjectivity and increasing the reliability by designing an improved method that depends largely on geological data and their statistical frequency of occurrence. This progress report outlines a genetic approach to modelling the geological factors that controlled uranium mineralization in order to evaluate the favourability for the occurrence of undiscovered uranium deposits of the type modelled. A genetic model is constructed from all the factors that describe the processes, in chronological sequence, that formed uranium deposits thought to have a common origin. The field and laboratory evidence for the processes constitute a geologic-occurrence base that parallels the chronological sequence of events. The genetic model and the geologic-occurrence base are portrayed as two columns of an interactive matrix called the ''genetic-geologic model''. For each column, eight chronological stages are used to describe the overall formation of the uranium deposits. These stages consist of (1) precursor processes; (2) host-rock formation; (3) preparation of host-rock; (4) uranium-source development; (5) transport of uranium; (6) primary uranium deposition; (7) post-deposition modification; and (8) preservation. To apply the genetic-geological model to evaluate favourability, a question is posed that determines the presence or absence of each attribute listed under the geologic-occurrence base. By building a logic circuit of the attributes according to either their essential or non-essential nature, the resultant match between a well-documented control area and the test area may be determined. The degree of match is a measure of favourability for uranium occurrence as hypothesized in the genetic model

  10. International standardisation for the reporting of resources and reserves

    International Nuclear Information System (INIS)

    Farmer, K.

    2014-01-01

    The mining industry is a vital contributor to national and global economies and yet it is very different from other industries. It is based on depleting finite mineral resources, the knowledge of which is imperfect prior to the commencement of mining or extraction. It is an industry with a colourful history of success and failure, entrepreneurs and opportunists, visionaries and short sightedness. These aspect or traits were both positive, it fostered innovation, and negative for the industry. Negative in that the merit of certain projects or results was difficult to assess, it created a credibility issue and consequently investment in the industry was impacted. In 1989 the first JORC code was released (Joint Ore Reserves Committee) in Australia. It was incorporated into the Australian Stock Exchange (ASX) listing rules thereby becoming binding on companies listed on the ASX it was also adopted by the Australian Institute of Mining and Metallurgy (AusIMM) and became binding on its members. Essentially JORC was the pre-cursor or model for an international standard for the reporting of exploration results, mineral resources and ore reserves. A trend towards tighter corporate governance and regulation demanded an international standard to “good practice” in mineral reserve management as well as high standards of public reporting by responsible, experienced persons. In 2006 CRIRSCO (Committee for Mineral Reserves International Reporting Standards)released an International Reporting Template (the Template), the purpose of which is to assist with the dissemination and promotion of effective, well-tried, good practice for public reporting of Exploration Results, Mineral Resources and Ore Reserves already widely adopted through national reporting codes and standards. CRIRSCO’s members are National Reporting Organisations (NROs) that are responsible for developing mineral reporting codes, standards and guidelines in Australasia (JORC), Chile (National Committee

  11. Uranium in phosphate rocks and future nuclear power fleets

    International Nuclear Information System (INIS)

    Gabriel, S.; Baschwitz, A.; Mathonniere, G.

    2014-01-01

    According to almost all forward-looking studies, the world’s energy consumption will increase in the future decades, mostly because of the growing world population and the long-term development of emerging countries. The effort to contain global warming makes it hard to exclude nuclear energy from the global energy mix. Current light water reactors (LWR) burn fissile uranium (a natural, finite resource), whereas some future Generation IV reactors, as Sodium fast reactors (SFR), starting with an initial fissile load, will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in LWR. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. This paper discusses the correspondence between the resources and the nuclear power demand as estimated by various international organisations. Uranium is currently produced from conventional sources. The estimated quantities of uranium evolve over time in relation to their rate of extraction and the discovery of new deposits. Contrary to conventional resources, unconventional resources – because they are hardly used – also exist. These resources are more uncertain both in terms of their quantities and the feasibility of recovering them. Recovering uranium from seawater would guarantee a virtually infinite resource of nuclear fuel, but its technical and economic feasibility has yet to be demonstrated, and huge advances need to be achieved in this direction. According to different publications on phosphate reserves, the potential amount of uranium recoverable from phosphates can be estimated at around 4 MtU. Furthermore, the production of uranium as a by-product of phosphate is determined by the world production of

  12. Approaches to mastering the uranium potential of Cameroon

    International Nuclear Information System (INIS)

    Chakam Tagheu, P.; Simo, A.

    2014-01-01

    Uranium deposits are spread over the five continents. According to the International Atomic Energy Agency (IAEA) estimation in 2009, the global reserves of economically recoverable uranium are estimated at 4.5 million tonnes. In 2012, the world production of uranium was about 54,610 tonnes and the main producers were Kazakhstan (36%), Canada (15%) and Australia (12%). Brazil, Russia, China, India productions accounted for 9.4% of the overall world production. Significant deposits also exist in Africa including Cameroon; those currently in mining stage are in Namibia, Malawi, and Niger. Cameroon has significant mineral deposits such as gold, alluvial diamonds, iron, bauxite and uranium. All of them are still in the exploration stage. Although Cameroon has not launched a nuclear power programme, the mining of its uranium resources is considered as an important component of the national economy. Many uranium occurrences have so far been discovered in Cameroon. They include Kitongo, Salaki, Mayo Nielse and Teubang in the Northern region and Ngombas near Lolodorf in the Southern region. The Cameroon Government is engaged in (i) the assessment of the U-ore resource through drilling, and (ii) the airborne geophysical survey of mining potentials areas. The result of these studies may lead to a better estimation of the national uranium potential. This paper aims at pointing out constraints to assess the uranium potential of Cameroon and proposes measures that could improve on the leveraging of exploitation of this mineral. (author)

  13. NDA technology for uranium resource evaluation. Progress report July 1-December 31, 1979

    International Nuclear Information System (INIS)

    Evans, M.L.

    1980-08-01

    This report describes work performed during the time period from July 1, 1979 to December 31, 1979, on the contract for Nondestructive Nuclear Analysis (NDA) Technology for Uranium Resource Evaluation in Group Q-1. Calculational effort was focused on improving the accuracy with which detector response function maps can be generated for subsequent enfolding with ONETRAN angular flux data. Experimental effort was highlighted by a field test of the prototype photoneutron logging probe at the Grand Junction DOE calibration facility. The probe demonstrated adequate durability in the field and sufficient sensitivity to uranium to function at competitive logging speeds

  14. National Uranium Resource Evaluation: Harrisburg Quadrangle, Pennsylvania

    International Nuclear Information System (INIS)

    Popper, G.H.P.

    1982-08-01

    The Harrisburg Quadrangle, Pennsylvania, was evaluated to identify geologic environments and delineate areas favorable for uranium deposits. The evaluation, based primarily on surface reconnaissance, was carried out for all geologic environments within the quadrangle. Aerial radiometric and hydrogeochemical and stream-sediment reconnaissance surveys provided the supplementary data used in field-work followup studies. Results of the investigation indicate that environments favorable for peneconcordant sandstone uranium deposits exist in the Devonian Catskill Formation. Near the western border of the quadrangle, this environment is characterized by channel-controlled uranium occurrences in basal Catskill strata of the Broad Top syncline. In the east-central portion of the quadrangle, the favorable environment contains non-channel-controlled uranium occurrences adjacent to the Clarks Ferry-Duncannon Members contact. All other geologic environments are considered unfavorable for uranium deposits

  15. Energy crisis and uranium energy resources

    International Nuclear Information System (INIS)

    Koryakin, Yu.I.

    1975-01-01

    Problems of ensuring a supply of nuclear power with fuel are reviewed. It is probable that by the year 2000 fuel requirements for nuclear power will be determined by the heat variant of its development since the fraction of fast breeders will then be very insignificant. In connection with the energy process, in western countries there has arisen the economic possibility of using more expensive uranium (more than $22 per kg U 3 O 8 ). Now there is the point of view that, in the new post-crisis conditions, nuclear power plants with light-water reactors will be competitive. It is expected that the energy crisis will give additional impetus to development of nuclear power. In some countries work is being done on extraction of uranium from sea water. In this case, in order for uranium supplies to meet nuclear energy needs for 8, 10, or 12 years, new supplies of uranium must be sought every year. For each kilogram of U 3 O 8 , supplies of uranium will cost $11-17.6 more. Annual inflation will move the recovery costs into the higher cost category. There is good reason to consider that a significant increase in the cost of nuclear power plants and a sharp rise in credit will lead to a more concrete prediction of the total nuclear power in 2000 A.D. of 2700-3200 million kW. With exhaustion of cheap supplies, uranium will be classified by politico-economic considerations. In this case the presentation concerning the competitiveness of nuclear power and conventional energy sources may change

  16. Latest data shows long-term security of uranium supply

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: According to Uranium 2009: Resources, Production and Demand just published by the OECD Nuclear En ergy Agency (NEA) and the International Atomic Energy Agency (IAEA), uranium resources, production and demand are all on the rise. Exploration efforts have increased recently in line with the expected expansion of nuclear energy in the coming years. Total identified resources have grown but so too have costs of production. Worldwide exploration and mine development expenditures have more than doubled since the publication of the previous edition, Uranium 2007: Resources, Production and Demand. These expenditures have increased despite declining uranium market prices since mid- 2007. The uranium resources presented in this edition, reflecting the situation as of 1 January 2009, show that total identified resources amounted to 6 306 300 tU, an increase of about 15% compared to 2007, including those reported in the high-cost category (< USD 260/kgU or < USD 100/lbU O), reintroduced for the first time since the 1980s. This high-cost 3 8 category was used in the 2009 edition in response to the generally increased market prices for uranium in recent years, despite the decline since mid-2007, expectations of increasing demand as new nuclear power plants are being planned and built, and increased mining costs. Although total identified resources have increased overall, there has been a significant reduction in lower-cost resources owing to increased mining costs. At 2008 rates of consumption, total identified resources are sufficient for over 100 years of supply. The recognition by an increasing number of governments that nuclear power can produce competitively priced, baseload electricity that is essentially free of greenhouse gas emissions, coupled with the role that nuclear can play in enhancing security of energy supply, increases the prospects for growth in nuclear generating capacity, although the magnitude of that growth remains to be determined. According to

  17. Global Uranium Supply Ensured for Long Term, New Report Shows

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: Uranium resources and production are on the rise with the security of uranium supply ensured for the long term, according to a new report by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA). Uranium 2011: Resources, Production and Demand, commonly referred to as the ''Red Book'', shows that total identified uranium resources have grown 12.5% since 2008. However, the costs of production have also increased, leading to reductions in lower cost category resources. These figures, which reflect the situation as of 1 January 2011, mean that total identified resources are sufficient for over 100 years of supply based on current requirements. Global uranium mine production increased by over 25% between 2008 and 2010 because of significantly increased production in Kazakhstan, currently the world's leading producer. The increased resource base has been achieved thanks to a 22% increase in uranium exploration and mine development expenditures between 2008 and 2010, which in 2010 totalled over $2 billion. Demand for uranium is expected to continue to rise for the foreseeable future. Although the Fukushima Daiichi nuclear accident has affected nuclear power projects and policies in some countries, nuclear power remains a key part of the global energy mix. Several governments have plans for new nuclear power plant construction, with the strongest expansion expected in China, India, the Republic of Korea and the Russian Federation. The speed and magnitude of growth in generating capacity elsewhere is still to be determined. By the year 2035, according to the joint NEA-IAEA Secretariat, world nuclear electricity generating capacity is projected to grow from 375 GWe net (at the end of 2010) to between 540 GWe net in the low demand case and 746 GWe net in the high demand case, increases of 44% and 99% respectively. Accordingly, world annual reactor-related uranium requirements are projected to rise from 63 875 tonnes of uranium metal

  18. International Uranium Resources Evaluation Project (IUREP) national favourability studies: United States of America

    International Nuclear Information System (INIS)

    1977-08-01

    In the first years of the uranium program, starting in 1948, drilling was primarily undertaken by the government. The AEC and the U.S. Geological Survey continued a modest program until the mid-1950's. The government drilled about 5-6 million feet (1.7 million meters), and a number of significant ore deposits were defined, primarily in the Uravan Mineral Belt, Colorado. Except for the early years, private drilling exceeded the government program. Drilling reached a peak of 2.8 million meters in 1957, but dropped back to 0.6 million meters in 1965 when the government purchase program had been phased out. Later, with resurgence of uranium demand it rose again to nearly 9.1 million meters in 1969. After a decline in the early 1970's, activity rose dramatically to 10.3 million meters in 1976. Total drilling through 1976 has been about 88.3 million meters. Exploration costs from 1966 through 1976 are estimated to be $679 million. During 1976, 32 percent of the drilling or 3.3 million meters was in the Wyoming Basins, with 4.5 million meters or 43 percent in the Colorado Plateau, and 0.9 million meters or 8 percent in the Gulf Coastal Plain. Total 1976 drilling was 0.9 million meters and average depth of hole 155 meters; this contrasts with 1.7 million meters and 53 meters average depth in 1960. Reserves of uranium are located in the western portion of the country with over 85 percent in the Colorado Plateau and Wyoming Basins. The Basin and Range province of Oregon, California, Nevada, Arizona, New Mexico, and Texas is receiving considerable exploration emphasis. Other areas of increasing activity include sedimentary rocks of the Great Plains and the crystalline rocks of the Rocky Mountains, Appalachian Mountains, and the Precambrian shield of Michigan and Wisconsin. Work in the new areas emphasizes geologic and geophysical assessment, so relatively little drilling has been done. When programs have matured, it is assumed that drilling effort will be accelerated

  19. Depleted uranium hexafluoride: Waste or resource?

    International Nuclear Information System (INIS)

    Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S.; Bradley, C.; Murray, A.

    1995-07-01

    The US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF 6 ). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO 2 for use as mixed oxide duel, (2) conversion to UO 2 to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U 3 O 8 as an option for long-term storage is discussed

  20. Uranium, depleted uranium, biological effects; Uranium, uranium appauvri, effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  1. Uranium producers foresee new boom

    International Nuclear Information System (INIS)

    McIntyre, H.

    1979-01-01

    The status of uranium production in Canada is reviewed. Uranium resources in Saskatchewan and Ontario are described and the role of the Cluff Lake inquiry in securing a government decision in favour of further uranium development is mentioned. There have been other uranium strikes near Kelowna, British Columbia and in the Northwest Territories. Increasing uranium demand and favourable prices are making the development of northern resources economically attractive. In fact, all uranium currently produced has been committed to domestic and export contracts so that there is considerable room for expanding the production of uranium in Canada. (T.I.)

  2. Uranium exploration in Egypt past, current and future activities

    International Nuclear Information System (INIS)

    Farag, N.

    2014-01-01

    The Egyptian Nuclear Materials Authority (NMA), is the government body responsible for exploration of the nuclear raw materials in the country. The early NMA U-exploration activities has included training of exploration teams, conduction of airborne, ground follow up and preliminary geological mapping as well as execution of limited exploration drilling. A number of TC projects and expert missions were mainly executed in collaboration with the IAEA for this purpose. These efforts have resulted in the discovery of seven U-potential prospects. NMA has also exercised limited heap leaching on experimental scale and obtained small amounts of U-concentrates, utilized for R & D purposes. However, the exploration activities remained in the preliminary phases and did not succeed to reach either reliable evaluation of the discovered uranium resources or running productive U-exploitation. By the end of the last decade, Egypt has declared the intention to adopt a peaceful program for electric power generation; this implied NMA to implement a twofold plan as described hereafter. Regarding the conventional U-resources, occurring in the Eastern Desert, NMA focus the exploration activities on the younger granites of Pan African type, and the associated inter-mountain basins. The activities will be restricted to the evaluation of U-reserves in at least three of the most promising uranium prospects that still require extensive exploration drilling programs. NMA is now implementing an international bid announcement seeking for partnership of an experienced international firm, to assess the uranium resources in these sites, in addition to receiving relevant IAEA/TC programs. Regarding non-conventional resources, the black sand project is mainly a resource of a titanium and zirconium minerals; however, NMA is now trying to process monazite to obtain mainly Th and minor U by-products. NMA has successfully completed an exploration study and. the Government of Egypt has recently

  3. International safeguards at the feed and withdrawal area of a gas centrifuge uranium enrichment plant

    International Nuclear Information System (INIS)

    Gordon, D.M.; Sanborn, J.B.

    1980-01-01

    This paper discusses the application of International Atomic Energy Agency (IAEA) safeguards at a model gas centrifuge uranium enrichment plant designed for the production of low-enriched uranium; particular emphasis is placed upon the verification by the IAEA of the facility material balance accounting. 13 refs

  4. Sustainability of Water Cooled Reactors - Energy Balance for Low Grade Uranium Resources

    International Nuclear Information System (INIS)

    Strupczewski, A.

    2011-01-01

    The opponents of nuclear power claim that as uranium resources get exhausted the energy needed to mine low grade uranium ore will be larger than the energy that can be obtained from fission in a nuclear power plant. This would result in loss of sustainability of nuclear power, with the negative energy balance expected within the next 40-60 years. Since the opponents state clearly that the ore containing less than 0.013% U 3 O 8 cannot yield positive energy balance, the study of the Institute of Atomic Energy in Poland referenced three mines of decreasing ore grade: Ranger 0.234% U 3 O 8 , Rossing 0.028% U 3 O 8 and Trekkopje 0.00126% U 3 O 8 , that is with ore grade below the postulated cut off value. The study considered total energy needs for uranium mining, including not only electricity needed for mining and milling, for water treatment and delivery, but also fuel for transportation and ore crushing, explosives for rock blasting, chemicals for uranium leaching and the energy needed for mine reclamation after completed exploitation. It has been shown that the energy estimates of nuclear opponents are wrong for Ranger mine and go off much further for the mines with lower uranium ore grades. The reasons for erroneous reasoning of nuclear opponents have been found. Their errors arise from treating the uranium ore deposits as if their layout and properties were the same as those of uranium ore mined in the US in the 70-ies. This results in an oversimplified formula, which yields large errors when the thickness of the overlayer is less than it was in the US. In addition the energy needs claimed for mine reclamation are much too high. The study showed that the energy needed for very low grade uranium ore mining and milling increases but the overall energy balance of the nuclear fuel cycle remains strongly positive. (author)

  5. Internal contamination by natural uranium: monitoring by analysis of urine of individuals exposed by occupational inhalation

    International Nuclear Information System (INIS)

    Ramalho, A.T.

    1982-01-01

    Urine samples from men working at Usina Santo Amaro (USAM - State of Sao Paulo), a monazite refinery, were analysed for uranium concentration, using fluorometric analysis and alpha spectrometry. All samples analysed presented uranium concentration below the lower limit of detection. Theoretical values were calculated for uranium concentration in urine samples from workers at the annual limit of intake (ALI) for inhalation of natural uranium, recommended in Publication 30 of the International Commission on Radiological Protection (ICRP, 1979). The two different methods used for analysis of natural uranium concentration in the urine samples were compared: fluorimetry and alpha spectrometry. (author)

  6. Uranium supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Spriggs, M J

    1976-01-01

    Papers were presented on the pattern of uranium production in South Africa; Australian uranium--will it ever become available; North American uranium resources, policies, prospects, and pricing; economic and political environment of the uranium mining industry; alternative sources of uranium supply; whither North American demand for uranium; and uranium demand and security of supply--a consumer's point of view. (LK)

  7. Depleted uranium hexafluoride: Waste or resource?

    Energy Technology Data Exchange (ETDEWEB)

    Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

    1995-07-01

    the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

  8. Planning for a major expansion of the olympic dam copper/uranium resource in South Australia

    International Nuclear Information System (INIS)

    Higgins, R. J.

    2006-01-01

    Full text: Full text: The polymetallic Olympic Dam deposit in northern South Australia contains the world's largest known economic uranium resource. The current resource estimate is 3,970 million tones at 0.4 kg/t U308. Uranium is a co-product of an existing operation that also produces copper, gold and silver. Production began in 1998. Ore mined in 2006 is expected to be close to 10 million tones to produce 4,500 tonnes of uranium oxide and 220,000 tonnes of copper cathode. BHP Billiton is undertaking a pre-feasibility study into expanding annual production capacity to about 15,000 tonnes of uranium and 500,000 tonnes copper. Subject to successful completion of the pre-feasibility study and a final feasibility study, construction of the expansion could begin by early 2009, with the expanded production capacity being commissioned in 2013. The resource estimate has been significantly increased by drilling of the so-far undeveloped southern section of the orebody. Current planning indicates that this section could be mined by open pit. Ore is at depth and extends from 350 metres to about 1000 metres below surface. The existing operations facilities at Olympic Dam comprise an underground mine, and a mineral processing plant and associated infrastructure which would be expanded to support expanded mining. Major items of infrastructure could include a new powerline, water pipeline and associated coastal desalination plant, a rail link to Olympic Dam from the existing national network and further development of the Roxby Downs township (current population 4,000). The operation is regulated by an Indenture Agreement with the South Australian Government. To enable the expansion to proceed, the Indenture Agreement will be renegotiated. The operation is also regulated by the Federal Government. An Environmental Impact Statement is being developed to secure the necessary State and Federal approvals. A land access agreement is being negotiated with indigenous groups. Plans for

  9. Engineering assessment and feasibility study of Chattanooga Shale as a future source of uranium. [Preliminary mining; data on soils, meteorology, water resources, and biological resources

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    This volume contains five appendixes: Chattanooga Shale preliminary mining study, soils data, meteorologic data, water resources data, and biological resource data. The area around DeKalb County in Tennessee is the most likely site for commercial development for recovery of uranium. (DLC)

  10. Research needs related to internal dosimetry. Joint panel on occupational and environmental research for uranium production in Canada (JP-1)

    Energy Technology Data Exchange (ETDEWEB)

    Duport, P; Pomroy, C [Atomic Energy Control Board, Ottawa, ON (Canada); Brown, D [Saskatchewan Human Resources, Labour and Employment, Regina (Canada)

    1990-12-31

    There are several important techniques of internal dosimetry for use with uranium mine and mill workers: personal radon daughter dosimetry, uranium content of urine, whole body counter to evaluate the uranium in lung burden, and assay of uranium in biopsy or autopsy tissue samples. There are problems with each of these techniques and further research is required in internal dosimetry (as well as the alternative of monitoring exposure levels). This research should be aimed at improved or supplementary dosimetry techniques, enhanced theoretical interpretation of dosimetry results and fundamental research not directly related to the techniques mentioned above. Proposals for research as presented by the working group in this report should be considered by funding organizations concerned with internal dosimetry as it relates to the uranium mining industry, and, since this report was first presented. AECB has proceeded with related projects. (author).

  11. Research needs related to internal dosimetry. Joint panel on occupational and environmental research for uranium production in Canada (JP-1)

    International Nuclear Information System (INIS)

    Duport, P.; Pomroy, C.; Brown, D.

    1989-01-01

    There are several important techniques of internal dosimetry for use with uranium mine and mill workers: personal radon daughter dosimetry, uranium content of urine, whole body counter to evaluate the uranium in lung burden, and assay of uranium in biopsy or autopsy tissue samples. There are problems with each of these techniques and further research is required in internal dosimetry (as well as the alternative of monitoring exposure levels). This research should be aimed at improved or supplementary dosimetry techniques, enhanced theoretical interpretation of dosimetry results and fundamental research not directly related to the techniques mentioned above. Proposals for research as presented by the working group in this report should be considered by funding organizations concerned with internal dosimetry as it relates to the uranium mining industry, and, since this report was first presented. AECB has proceeded with related projects. (author)

  12. Antecedents of historical evolution of the uranium resources in the Cuyo region, between 1951 and 1968

    International Nuclear Information System (INIS)

    Vergara Bai, A.A.

    1992-01-01

    The present article pretends to summarize the initial stage of the development of national uranium resources - focusing the labor done by the Escuela Superior de Ingenieria en Combustible of the Universidad Nacional de Cuyo - between the years 1951 and 1955 - feeling that it is necessary to describe the situations that were originated during the development of the uranium's mineral investigation. This was started by the Escuela Superior de Ingenieria en Combustible of U.N. de Cuyo, which facilitated the connection with CNEA, that had been created in 1950. This leaded to the economical help from CNEA until 1955, for the realization and execution of the programmed works. The national antecedents are described, taking into account the existence of deposits in this country. The historical evolution of the exloration of uranium in Cuyo is divided in three periods, which are described in detail in this work. First and foremost, the period that goes from 1951 to 1955 (U.N. de Cuyo and CNEA); then, the period that goes from 1956 to 1961 (CNEA) where the achievements obtained determined the new modern structures done by the CNEA in order to continue with the development of the uranium resources of the country. After this, the period that goes from 1961 to 1968 (activities and successes of the West Delegation) is pointed out. Finally, the evolution of the factories of uranium mineral treatment, i n the period between 1952 and 1990, is also described in this article. (Author) [es

  13. Bioremediation/Biorecovery of uranium from aquatic resource/waste: the Cyano-Deino story

    International Nuclear Information System (INIS)

    Apte, Shree Kumar

    2015-01-01

    Terrestrial sources of uranium are getting depleted fast and may be exhausted in the next few decades. This has triggered a search for alternate or secondary resources for this precious metal. Nearly 4.5 billion tons of uranium on our planet resides in seawater, albeit at very low concentrations of 3 ppb. Recovering uranium from such low concentrations is a major challenge. Two marine cyanobacteria, the unicellular Synechococcus elongatus and the filamentous Anabaena torulosa, were found to be capable of rapidly sequestering uranyl carbonate (the predominant uranyl species at the sea-water pH of 7.8) from aqueous solutions, including simulated sea-water. While Synechococcus strain adsorbed the metal as carbonato complexes on cell surface ligands, A. torulosa trapped it in novel surface-associated polyphosphate bodies. The uranium binding potential of cyanobacterial biomass was comparable to, if not better than, the currently in use polyamidoxime resin. The bound uranium could be desorbed easily and the biomass reused a few times. The method has eminently higher application potential in uranium-contaminated terrestrial waters, where the metal concentration is several times higher. Low concentrations (<1 to few mM) of uranium are also found in acidic/alkaline nuclear waste and arise from metal extraction or during reprocessing of fuel. Removal of uranium from such solutions is very desirable for safer disposal of such waste. Biological agents to be employed in such situations also need to be tolerant to and stable in high radiation environments, unless dead cells can be used. To address such bioremediation, the extremely radio-resistant microbe Deinococcus radiodurans was genetically engineered to express either a non-specific acid phosphatase PhoN or a highly active novel alkaline phosphatase PhoK. Apart from the need for high expression of desired protein, such engineering is also fraught with problems of stability, localization and activity of the expressed

  14. The uranium production cycle and the environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    Within the international community it is widely recognized that the responsibility for management of uranium production and all related activities should be independent of the organizations providing for the oversight and regulatory function. An important role of the IAEA is establishing international safety standards for protection of health and environment against exposure to ionizing radiation. Once legally binding laws, regulations and standards are established,either through national and international programmes, it becomes the responsibility of the management and operators of uranium production projects for carrying our all activities to meet these requirements. The major emphasis of the IAEA's Project on Raw Materials for Reactor Fuels is to improve and strengthen the practice of preventive measures by establishing guidelines for environmental impact assessment and mitigation and the recognition and promotion of good practice and modern technology. The Waste Technology programme provides advice on the cleanup and remediation of old production sites and wastes. One important mechanism for recognizing and promoting best practice in environmental management of uranium production is fostering information exchange among specialists. The IAEA exercises this mechanism, for examples though publications, electronic information exchange and, particularly, through large gatherings of specialists and decision makers at international conferences, symposia and seminars. The topics covered at the symposium were: Energy needs and challenges for the 21{sup st} Century; uranium supply for the short and long term; sustainable development, energy resources and nuclear energy's role in greenhouse gas abatement; economic impact of world mining; impacts of mining on developed and developing countries; environmental and social impacts of uranium mining in several countries; examples of positive and negative impacts of uranium mining projects on local communities; environmental

  15. The uranium production cycle and the environment. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    Within the international community it is widely recognized that the responsibility for management of uranium production and all related activities should be independent of the organizations providing for the oversight and regulatory function. An important role of the IAEA is establishing international safety standards for protection of health and environment against exposure to ionizing radiation. Once legally binding laws, regulations and standards are established,either through national and international programmes, it becomes the responsibility of the management and operators of uranium production projects for carrying our all activities to meet these requirements. The major emphasis of the IAEA's Project on Raw Materials for Reactor Fuels is to improve and strengthen the practice of preventive measures by establishing guidelines for environmental impact assessment and mitigation and the recognition and promotion of good practice and modern technology. The Waste Technology programme provides advice on the cleanup and remediation of old production sites and wastes. One important mechanism for recognizing and promoting best practice in environmental management of uranium production is fostering information exchange among specialists. The IAEA exercises this mechanism, for examples though publications, electronic information exchange and, particularly, through large gatherings of specialists and decision makers at international conferences, symposia and seminars. The topics covered at the symposium were: Energy needs and challenges for the 21 st Century; uranium supply for the short and long term; sustainable development, energy resources and nuclear energy's role in greenhouse gas abatement; economic impact of world mining; impacts of mining on developed and developing countries; environmental and social impacts of uranium mining in several countries; examples of positive and negative impacts of uranium mining projects on local communities; environmental issues

  16. Demonstrations of video processing of image data for uranium resource assessments

    International Nuclear Information System (INIS)

    Marrs, R.W.; King, J.K.

    1978-01-01

    Video processing of LANDSAT imagery was performed for nine areas in the western United States to demonstrate the applicability of such analyses for regional uranium resource assessment. The results of these tests, in areas of diverse geology, topography, and vegetation, were mixed. The best success was achieved in arid areas because vegetation cover is extremely limiting in any analysis dealing primarily with rocks and soils. Surface alteration patterns of large areal extent, involving transformation or redistribution of iron oxides, and reflectance contrasts were the only type of alteration consistently detected by video processing of LANDSAT imagery. Alteration often provided the only direct indication of mineralization. Other exploration guides, such as lithologic changes, can often be detected, even in heavily vegetated regions. Structural interpretation of the imagery proved far more successful than spectral analyses as an indicator of regions of possible uranium enrichment

  17. Ablation - breakthrough technology to reduce uranium mining cost and increase resources

    International Nuclear Information System (INIS)

    Scriven, D.

    2014-01-01

    Ablation Technologies, LLC has developed and patented a revolutionary mining technology termed “ablation”. Ablation is a process using only mechanical forces to upgrade sandstone uranium ores. Uranium bearing sandstone orebodies are formed from a uranium enriched solution flowing through an aquifer until it reached some type of a “red/ox” zone forcing the uranium and other heavy metals to come out of solution. The precipitate forms a thin coating on the sand grains and fills the interstitial space between the sand grains but does no penetrate the sand grains. The ablation process knocks the precipitate off the sand grains using the forces of abrasion, elastic compression and rebounding, much like a mud coated tennis ball will sheds the mud when bounced off the ground, and to some extent, sonic waves. This produces a product which collectively is exactly the same as the ore going in but with all the individual components separated. This allows for disgressionary separation, the most important of which is screening. The uranium and heavy metals report to the finer fractions of the material, typically less than 250 mesh. The larger fractions contain less than five percent of the uranium but 90 to 95 percent of the mass. The advantages of making an enriched ore are numerous: • Reduce haulage costs from 90 to 95 percent. • Reduce milling costs by reducing material handling costs, acid consumption and tailings disposal costs. • In addition to reducing overall mining and milling costs, the overall recovery of the recourse is increased because the ablation process is so inexpensive, if the material has to be mined it will be ablated and screened. This basically means ore control is significantly reduced, cutoff grade goes to practically zero and overall resource recovery is significantly increased. • Environmentally, the two major advantages are reduced tailings requirements at the mill site and cleaner waste dumps at the mine site. This paper will show

  18. Overview of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-01-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnaissance program is conducted by four Department of Energy laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most areas are sampled at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multielement analytical data that can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  19. Overview of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1980-07-01

    A Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) for uranium is currently being conducted throughout the conterminous United States and Alaska. The HSSR is part of the National Uranium Resource Evaluation sponsored by the US Department of Energy. This ambitious geochemical reconnasissance program is conducted by four Department of Energy Laboratories: Los Alamos Scientific Laboratory, Lawrence Livermore Laboratory, Oak Ridge Gaseous Diffusion Plant, and Savannah River Laboratory. Each laboratory was assigned a geographic region of the United States. The program is based on an extensive review of world literature, reconnaissance work done in other countries, and pilot studies conducted by each laboratory. Sample-collection methods and sample density are determined to optimize the probability of detecting potential uranium mineralization. To achieve this aim, each laboratory has developed independent standardized field collection procedures that are designed for its section of the country. Field parameters such as pH, conductivity, climate, geography, and geology are recorded at each site. Most areas are sampled at densities of one sample site per 10 to 23 km 2 . The HSSR program has helped to improve existing hydrogeochemical reconnaissance exploration techniques. In addition to providing industry with data that may help to identify potential uranium districts and to extend known uranium provinces, the HSSR also provides multielement analytical data that can be used in water quality, soil, sediment, environmental, and base-metal exploration studies

  20. Canadian resources of uranium and thorium

    International Nuclear Information System (INIS)

    Griffith, J.W.; Roscoe, S.M.

    1964-01-01

    Canada has been one of the world's leading producers of uranium since the metal became important as a raw material in the development and production of atomic energy. One of the largest known deposits in the world is in Canada where present reserves represent about 37 per cent of the total among those countries that have published reserve statistics. The production of uranium has been characterized by features which are unique in Canadian mining, because the industry was created by the government at a time of emergency and, unlike other minerals, the sale of its product is controlled by the state. The rapid growth of the uranium-mining industry since World War II has been a remarkable achievement. In 1958, Canada was the world's leading producer of uranium and the value of U 3 O 8 produced in both 1958 and 1959 exceeded the value of any other Canadian-produced metal. As an export commodity, uranium ranked fourth in value in 1959 following newsprint, wheat, and lumber. Production from 25 mines in that year was 14 462 tonnes of U 3 O 8 valued at $345 million (all monetary values are in U.S. dollars). Since 1959, however, the decline in production, resulting from declining export markets, has been almost as rapid as the spectacular rise from 1953 to 1959. At the end of 1963 only seven mines were in production and by the end of 1965 only two mines are expected to remain in operation. (author)

  1. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    concentration in peat bogs, deposits combined with marine phosphates, with coal and lignite, with black shales, with carbonate rocks, deposits in Precambrian quartz pebble conglomerates, basal-type deposits, deposits in sandstones (tabular, roll-type and tectono-lithologic deposits), breccia chimney filling deposits, deposits in metamorphic rocks, metasomatic deposits, deposits in intrusive rocks, deposits associated with hematite breccia complexes, deposits in granitic rocks, deposits in volcanic rocks, deposits in proterozoic discordances (Athabasca basin, Pine Creek geo-syncline); 4 - French uranium bearing areas and deposits: history of the French uranium mining industry, geological characteristics of French deposits (black shales, sandstones, granites), abroad success of French mining companies (Africa, North America, South America, Australia, Asia); 5 - exploration and exploitation; 6 - uranium economy: perspectives of uranium demand, present day production status, secondary resources, possible resources, market balances, prices and trends, future availability and nuclear perspectives. (J.S.)

  2. International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues. Book of Abstracts

    International Nuclear Information System (INIS)

    2014-01-01

    The long term sustainability of nuclear power will depend on, among several factors, an adequate supply of uranium resources that can be delivered to the marketplace at competitive prices. New exploration technologies and a better understanding of the genesis of uranium ores will be required to discover often deep-seated and increasingly hard to find uranium deposits. Exploration, mining and milling technologies should be environmentally benign, and site decommissioning plans should meet the requirements of increasingly stringent environmental regulations and societal expectations. The purpose of this symposium is to analyse uranium supply–demand scenarios and to present and discuss new developments in uranium geology, exploration, mining and processing, as well as in environmental requirements for uranium operations and site decommissioning. The presentations and discussions at URAM-2014 will: - Lead to a better understanding of the adequacy of uranium sources (both primary and secondary) to meet future demand; - Provide information on geological models, new exploration concepts, knowledge and technologies that will potentially lead to the discovery and development of new uranium resources; - Describe new production technologies that have the potential to more efficiently and sustainably develop new uranium resources; and - Document the environmental compatibility of uranium production and the overall effectiveness of progressive final decommissioning and, where required, remediation of production facilities.

  3. Australian uranium today

    International Nuclear Information System (INIS)

    Fisk, B.

    1978-01-01

    The subject is covered in sections, entitled: Australia's resources; Northern Territory uranium in perspective; the government's decision [on August 25, 1977, that there should be further development of uranium under strictly controlled conditions]; Government legislation; outlook [for the Australian uranium mining industry]. (U.K.)

  4. Breccia-pipe uranium mining in northern Arizona; estimate of resources and assessment of historical effects

    Science.gov (United States)

    Bills, Donald J.; Brown, Kristin M.; Alpine, Andrea E.; Otton, James K.; Van Gosen, Bradley S.; Hinck, Jo Ellen; Tillman, Fred D.

    2011-01-01

    About 1 million acres of Federal land in the Grand Canyon region of Arizona were temporarily withdrawn from new mining claims in July 2009 by the Secretary of the Interior because of concern that increased uranium mining could have negative impacts on the land, water, people, and wildlife. During a 2-year interval, a Federal team led by the Bureau of Land Management is evaluating the effects of withdrawing these lands for extended periods. As part of this team, the U.S. Geological Survey (USGS) conducted a series of short-term studies to examine the historical effects of breccia-pipe uranium mining in the region. The USGS studies provide estimates of uranium resources affected by the possible land withdrawal, examine the effects of previous breccia-pipe mining, summarize water-chemistry data for streams and springs, and investigate potential biological pathways of exposure to uranium and associated contaminants. This fact sheet summarizes results through December 2009 and outlines further research needs.

  5. Energy from the west: energy resource development systems report. Volume IV: uranium. Final report, 1975-1978

    International Nuclear Information System (INIS)

    White, I.L.; Chartock, M.A.; Leonard, R.L.; Ballard, S.C.; Gilliland, M.

    1979-01-01

    This report describes the technologies likely to be used for development of uranium resources in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming). It provides information on input materials and labor requirements, outputs, residuals, energy requirements, economic costs, and resource specific state and federal laws and regulations

  6. Undiscovered Resource Modelling: Towards Applying a Systematic Approach to Uranium or How Much Uranium is Left and Where Might It Be Found?

    International Nuclear Information System (INIS)

    Fairclough, Martin; Katona, Laz

    2014-01-01

    Uranium Resource Modelling: Why do we want to plan for it? Purely from a supply-demand perspective: 1) Current supplies (at mid-range demand scenario) only enough until 2035 (likely to increase due to reactor shut down/stockpiling); 2) Not all uranium will be brought into production; 3) Long lead in times (particularly) for U mines; 4) Projections to 2060 (beyond IR) e.g IAEA TECDOC). From a socio-economic perspective: 1) Need for financial analysis; 2) Need for comparison with other land uses; 3) Need for comparison with other tracts of land; 4) Need for consideration of economic/environmental consequences of possible development; 5) Security of supply!!!

  7. Canadian resources of uranium and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, J W; Roscoe, S M [Dept. of Mines and Technical Surveys, Ottawa, Ontario (Canada)

    1964-07-01

    Canada has been one of the world's leading producers of uranium since the metal became important as a raw material in the development and production of atomic energy. One of the largest known deposits in the world is in Canada where present reserves represent about 37 per cent of the total among those countries that have published reserve statistics. The production of uranium has been characterized by features which are unique in Canadian mining, because the industry was created by the government at a time of emergency and, unlike other minerals, the sale of its product is controlled by the state. The rapid growth of the uranium-mining industry since World War II has been a remarkable achievement. In 1958, Canada was the world's leading producer of uranium and the value of U{sub 3}O{sub 8} produced in both 1958 and 1959 exceeded the value of any other Canadian-produced metal. As an export commodity, uranium ranked fourth in value in 1959 following newsprint, wheat, and lumber. Production from 25 mines in that year was 14 462 tonnes of U{sub 3}O{sub 8} valued at $345 million (all monetary values are in U.S. dollars). Since 1959, however, the decline in production, resulting from declining export markets, has been almost as rapid as the spectacular rise from 1953 to 1959. At the end of 1963 only seven mines were in production and by the end of 1965 only two mines are expected to remain in operation. (author)

  8. Assessment of undiscovered resources in calcrete uranium deposits, Southern High Plains region of Texas, New Mexico, and Oklahoma, 2017

    Science.gov (United States)

    Hall, Susan M.; Mihalasky, Mark J.; Van Gosen, Bradley S.

    2017-11-14

    The U.S. Geological Survey estimates a mean of 40 million pounds of in-place uranium oxide (U3O8) remaining as potential undiscovered resources in the Southern High Plains region of Texas, New Mexico, and Oklahoma. This estimate used a geology-based assessment method specific to calcrete uranium deposits.

  9. Uranium Resource Availability Analysis of Four Nuclear Fuel Cycle Options

    International Nuclear Information System (INIS)

    Youn, S. R.; Lee, S. H.; Jeong, M. S.; Kim, S. K.; Ko, W. I.

    2013-01-01

    Making the national policy regarding nuclear fuel cycle option, the policy should be established in ways that nuclear power generation can be maintained through the evaluation on the basis of the following aspects. To establish the national policy regarding nuclear fuel cycle option, that must begin with identification of a fuel cycle option that can be best suited for the country, and the evaluation work for that should be proceeded. Like all the policy decision, however, a certain nuclear fuel cycle option cannot be superior in all aspects of sustain ability, environment-friendliness, proliferation-resistance, economics, technologies, which make the comparison of the fuel cycle options very complicated. For such a purpose, this paper set up four different fuel cycle of nuclear power generation considering 2nd Comprehensive Nuclear Energy Promotion Plan(CNEPP), and analyzed material flow and features in steady state of all four of the fuel cycle options. As a result of an analysis on material flow of each nuclear fuel cycle, it was analyzed that Pyro-SFR recycling is most effective on U resource availability among four fuel cycle option. As shown in Figure 3, OT cycle required the most amount of U and Pyro-SFR recycle consumed the least amount of U. DUPIC recycling, PWR-MOX recycling, and Pyro-SFR recycling fuel cycle appeared to consumed 8.2%, 12.4%, 39.6% decreased amount of uranium respectively compared to OT cycle. Considering spent fuel can be recycled as potential energy resources, U and TRU taken up to be 96% is efficiently used. That is, application period of limited uranium natural resources can be extended, and it brings a great influence on stable use of nuclear energy

  10. National uranium resource evaluation program. Hydrogeochemical and stream sediment reconnaissance basic data for Oklahoma City NTMS Quadrangle, Oklahoma. Uranium resource evaluation project

    International Nuclear Information System (INIS)

    1978-01-01

    Field and laboratory data are presented for 812 groundwater samples and 847 stream sediment samples. Statistical and areal distributions of uranium and other possibly uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on the results from groundwater sampling, the most promising formations for potential uranium mineralization in the quadrangle are the Permian Bison, Purcell-Salt Plains-Kingman, Fairmont, Dog Creek, Chickasha, Duncan, and Cedar Hills Formations. These units are characterized by relatively high average concentrations of uranium, conductivity, arsenic, calcium, lithium, molybdenum, and sulfate. In addition, groundwaters from the Pennsylvanian Oscar Formation are characterized by values above the 85th percentile for uranium, conductivity, the uranium/sulfate ratio, arsenic, and vanadium. Results of stream sediment sampling indicate that the most promising formations for potential uranium mineralization include the same Permian Formation as indicated by groundwater sampling (Bison, Purcell-Salt Plains-Kingman, Fairmont, Dog-Creek, Chickasha, Duncan, and Cedar Hill Formations) in an area where these formations crop out north of the North Canadian River. Stream sediment samples from this area are characterized by concentrations above the 85th percentile for uranium, thorium, arsenic, lithium, manganese, and vanadium

  11. Moving to world's best uranium address

    International Nuclear Information System (INIS)

    Noakes, Frank

    2006-01-01

    Most exploration dollars spent in South Australia are focused on exploiting uranium. This is for good reason as South Australia is the world's best address for uranium. Pressure to cut CO 2 emissions and the ballistic growth of the Chinese and Indian economies has heightened expectations that the worldwide use of uranium for power generation will mushroom beyond its current 17% market share. The recent Australia-China deal only seems to confirm this; hence uranium's growing popularity among miners and explorers. Such is the attractiveness of uranium-related floats, when Toro Energy sought $18m in March it was swamped with more than three times share application volume. In the north west, Southern Gold and Hindmarsh Resources are expectantly drilling for commercial uranium deposits all around the acreage that hosts the Challenger gold mine in the Gawler Craton. The first exploration drilling for uranium in quaternary-age river channels will take place in South Australia's far north in May. Red Metal says while older and deeper tertiary river channels in the area that host the Beverley uranium mine were explored for uranium, the younger near-surface channel has not had a single hole drilled for uranium. This is despite the area being one of the 'hottest radiogenic terrains in South Australia'. The company will target calcrete-style uranium mineralisation similar to the Yerrlirrie deposit in Western Australia (52,000t U308). Tasman Resources will start drilling to test seven uranium targets within 30km of Olympic Dam, the world's largest known uranium deposit, later this year. Tasman also holds tenements adjoining the Warrior uranium deposit near Tarcoola that contains known radiometric anomalies within the 40km-long Wynbring paleochannels. They are the fourth largest uranium explorer in South Australia. Alliance Resources and its JV partner Quasar Resources are exploring the Beverley 4 Mile uranium prospect at Arkaroola. Quasar is an affiliate of Heathgate Resources

  12. Provision by the uranium and uranium products

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2005-01-01

    International uranium market is converted from the buyer market into the seller market. The prices of uranium are high and the market attempts to adapt to changing circumstances. The industry of uranium enrichment satisfies the increasing demands but should to increase ots capacities. On the whole the situation is not stable and every year may change the existing position [ru

  13. Investigation of aeration rate on Uranium bio leaching in internal airlift bioreactor

    International Nuclear Information System (INIS)

    Zolala, M. R.; Safdari, S. J.; Haghighi Asl, A.; Rashidi, A.

    2012-01-01

    Uranium is leached from the uranium ore of the second anomaly of Saghand by the Acidithiobacillus ferroxidans bacteria in an internal airlift bio-reactor. This study has been made to find the effect of aeration rate as well as its optimal value. The experiments have been carried out at 4 aeration rates to find the best recovery results in the least possible time duration. The results showed that the most percentage of the uranium recovery is in the superficial gas velocity of 0.010 m/s. The recovery at this aeration rate has an efficiency of more than 95 p ercent i n 11 days. Also, the best range for aeration study in the airlift bio-reactor is calculated with a minimum value of 0.0065 m/s which is the critical value of the uranium particle suspension as well as the maximum value of 0.015 m/s. The stress on the bacteria increases the recovery time process in velocities of more than 0.015 m/s.

  14. Uranium industry framework

    International Nuclear Information System (INIS)

    Riley, K.

    2008-01-01

    The global uranium market is undergoing a major expansion due to an increase in global demand for uranium, the highest uranium prices in the last 20 years and recognition of the potential greenhouse benefits of nuclear power. Australia holds approximately 27% of the world's uranium resources (recoverable at under US$80/kg U), so is well placed to benefit from the expansion in the global uranium market. Increasing exploration activity due to these factors is resulting in the discovery and delineation of further high grade uranium deposits and extending Australia's strategic position as a reliable and safe supplier of low cost uranium.

  15. Uranium Resources Inventory at Jumbang III West Kalimantan Systematic Prospection

    International Nuclear Information System (INIS)

    Soetopo, B; Wusana Y; Paimin; Sudjiman, FX

    1998-01-01

    Systematic prospection at jumbang III sector, west kalimantan has been carried out for identifying characteristic occurrence of the U mineralization and inventorying U resources potential area. The investigation has been based on U indication discovered in the form of a radiometric anomaly outcrop as high as 9000c/s. The possibility the U occurrence potential at the investigated may be resulted from granitic magma intrusion which produced an allogeneic type of uranium controlled by tectonic force. The method of the investigation includes systematic geological mapping and the result of the investigation shows that the lithology at the area is metamorphic rocks, intruded by biotite granite and dyke biotite adamelite and kersantite. Geological structure is NE-SW N-S and ESE- WNW strike slip faults. The uranium mineralization includes uraninite associated with magnetite, ilmenite, pyrite, pyrhotite, molybdenite, chalcopyrite, rutile, tourmaline, and quarts by magmatic hydrothermal process of allogeneic type U. The total U content of rock area is 7,57-4197,67 ppm U potential of the estimation result is 187.920 ton reserve and 25.3812 ton metallic U

  16. Uranium issues and policies: an overview

    International Nuclear Information System (INIS)

    Patterson, J.A.

    1979-01-01

    US policy is to reestablish the viability of nuclear energy and to expand the useful energy derived from uranium. A comprehensive assessment of US uranium resources is a key part of this effort. This assessment should lead to resolution of issues regarding adequacy of US uranium resources and production capability to meet long-term need in an economic manner. DOE programs on ore-reserve estimation, resource appraisal (particularly NURE), and production capability analysis are responsive to these information needs, as well as concerns regarding uranium demand, market growth, uranium prices, and foreign supply and demand. The cooperation of industry, particularly in providing basic information needed for DOE studies, is a vital element of this activity

  17. Comments on classification of uranium resources

    Science.gov (United States)

    Masters, Charles D.

    1978-01-01

    National resource assessments are intended to give some insight into future possibilities for the recovery of a desired resource. The resource numbers themselves only useful when related to economically controlled factors, such as industry capability as reflected in rated of production, rates of discovery, and technology development. To that end, it is useful to divide the resource base into component parts to which appropriate econometrics can be applied. A system of resource reporting adhering to these principles has been agreed to by the two major resource agencies in Government, the U>S. Geological Survey and the U.S. Bureau of Mines (USGS Bulletin 1450-A). Conceptually, then, a plan for resource reporting has been devised, and all resource reporting by these two agencies follows the agreed-upon pattern. Though conceptual agreement has been reached, each commodity has its own peculiar data problems; hence an operational definition to fit the conceptual pattern must be evolved for each mineral. Coal is the only commodity to date for which an operational agreement has been reached (USGS Bulletin 1450-B), but the basic essentials of an operational classification within the guideline of Bulletin 1450-A have been reported for oil and gas in USGS circular 725. The basic classification system is now well established and received general endorsement by Resources for the Future in a study of mineral resource classification systems prepared for the the Electric Power Research Institute (Schanz, 1976), and with respect to coal by the International Energy Agency.

  18. Domestic utility attitudes toward foreign uranium supply

    International Nuclear Information System (INIS)

    1981-06-01

    The current embargo on the enrichment of foreign-origin uranium for use in domestic utilization facilities is scheduled to be removed in 1984. The pending removal of this embargo, complicated by a depressed worldwide market for uranium, has prompted consideration of a new or extended embargo within the US Government. As part of its on-going data collection activities, Nuclear Resources International (NRI) has surveyed 50 domestic utility/utility holding companies (representing 60 lead operator-utilities) on their foreign uranium purchase strategies and intentions. The most recent survey was conducted in early May 1981. A number of qualitative observations were made during the course of the survey. The major observations are: domestic utility views toward foreign uranium purchase are dynamic; all but three utilities had some considered foreign purchase strategy; some utilities have problems with buying foreign uranium from particular countries; an inducement is often required by some utilities to buy foreign uranium; opinions varied among utilities concerning the viability of the domestic uranium industry; and many utilities could have foreign uranium fed through their domestic uranium contracts (indirect purchases). The above observations are expanded in the final section of the report. However, it should be noted that two of the observations are particularly important and should be seriously considered in formulation of foreign uranium import restrictions. These important observations are the dynamic nature of the subject matter and the potentially large and imbalanced effect the indirect purchases could have on utility foreign uranium procurement

  19. Resource impact evaluation of in-situ uranium groundwater restoration

    International Nuclear Information System (INIS)

    Charbeneau, R.J.; Rohlich, G.A.

    1981-11-01

    The purpose of this study was to determine the impact of restoration on the groundwater following in-situ uranium solution mining in South Texas. Restoration is necessary in order to reduce the amounts of undesired chemical constituents left in solution after mining operations have ceased, and thus return the groundwater to a quality consistent with pre-mining use and potential use. Various restoration strategies have been proposed and are discussed. Of interest are the hydrologic, environmental, social, and economic impacts of these restoration alternatives. Much of the discussion concerning groundwater restoration is based on the use of an ammonium carbonate-bicarbonate leach solution in the mining process. This has been the principal leach solution used during the early period of mining in South Texas. Recently, because of apparent difficulties in restoring ammonium to proposed or required levels, many of the companies have changed to the use of other leach solutions. Because little is known about restoration with these other leach solutions they have not been specifically addressed in this report. Likewise, we have not addressed the question of the fate of heavy metals. Following a summary of the development of South Texas in-situ mining in Chapter Two, Chapter Three describes the surface and groundwater resources of the uranium mining district. Chapter Four addresses the economics of water use, and Chapter Five is concerned with regulation of the in-situ uranium industry in Texas. A discussion of groundwater restoration alternatives and impacts is presented in Chapter Six. Chapter Seven contains a summary and a discussion, and conclusions derived from this study. Two case histories are presented in Appendices A and B

  20. Uranium - the world picture

    International Nuclear Information System (INIS)

    Silver, J.M.; Wright, W.J.

    1976-01-01

    The world resources of uranium and the future demand for uranium are discussed. The amount of uranium available depends on the price which users are prepared to pay for its recovery. As the price is increased, there is an incentive to recover uranium from lower grade or more difficult deposits. In view of this, attention is drawn to the development of the uranium industry in Australias

  1. Uranium in Niger

    International Nuclear Information System (INIS)

    Gabelmann, E.

    1978-03-01

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities [fr

  2. Uranium in South Africa: 1985

    International Nuclear Information System (INIS)

    1986-03-01

    South Africa's participation in the nuclear industry was limited to the production of uranium and research, with minor commercial activities. The commissioning of the Koeberg Nuclear power station in 1984 placed South Africa firmly on the path of commercial nuclear power generation. A unique, locally developed uranium enrichment process will enable South Africa to be self-sufficient in its nuclear-fuel needs. Uranium has always been of secondary importance to gold as a target commodity in the exploration of the quartz-pebble conglomerates. In the Witwatersrand Basin it is estimated that in excess of R100 million was spent on exploration during 1985. This was spent primarily in the search for gold but as many of the gold reefs are uraniferous, new uranium resources are being discovered concurrently with those of gold. Uranium mineralization is present in rocks which encompass almost the whole of the geological history of South Africa. Significant mineralization is restricted to five fairly well-defined time periods. Each period is characterized by a distinct type or combination of types of mineralization. Resource estimates are divided into separate categories that reflect different levels of confidence in the quantities reported. The resource categories are further separated into levels of exploitability based on the estimated cost of their exploitation. A major part (87%) of South Africa's uranium resources is present as a by-product of gold in the quartz-pebble conglomerates of the Witwatersrand Basin. The uranium resources in the reasonably assured resources (RAR) and estimated additional resources - category I (EAR-I) catogories were 483 300 t U. Production during 1985 was 4880 t U. Although a production peaking at over 1200 t U/a is theoretically attainable, it is considered, from market projections, that a production ceilling of 10 000 t U/a would be more realistic

  3. Dynamic evolution of shear - extensional tectonics in South China and uranium resource exploration strategic analysis

    International Nuclear Information System (INIS)

    Fang Shiyi; Tao Zhijun; Han Qiming

    2012-01-01

    A variety of multi- types, multi-level, multi-era shear - extensional tectonics in south China is developed, the main form of shear-extensional tectonics, and developmental characteristics and metallogenic geodynamic evolution is discovered, and thus uranium resource exploration strategic analysis is conducted

  4. Uranium industry annual, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    In the Uranium Industry Annual 1991, data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2. A feature article entitled ''The Uranium Industry of the Commonwealth of Independent States'' is included in this report

  5. The international uranium market - structure and outlook

    International Nuclear Information System (INIS)

    Noreng, Oe.

    1978-01-01

    It is pointed out that the international uranium market is immature and is subject to factors of a political, rather than economic nature. This is due largely to potential military exploitation, which has led USA, Canada and Australia to adopt a restrictive export policy. South Africa and France, on the other hand have a more liberal attitude. The history of the market, and the development of U308 prices are then discussed and related to the phases in the commercial exploitation of nuclear power. The present market structure is described, both international and within Canada, USA, Australia, South Africa and France. The future demand is then discussed, assuming three levels of demand and various price categories. It is shown that the demand will be only slightly influenced by moderate to large increases in price, assuming price rises for coal and oil. It is concluded that the price can rise to $400-500/pound U308. (JIW)

  6. Field manual for ground water reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1977-01-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, groundwater sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  7. Uranium and the fast reactor

    International Nuclear Information System (INIS)

    Price, T.

    1982-01-01

    The influence of uranium availability upon the future of the fast reactor is reviewed. The important issues considered are uranium reserves and resources, uranium market prices, fast reactor economics and the political availability of uranium to customers in other countries. (U.K.)

  8. Assessment of internal dose caused by uranium isotopes for workers in the phosphatic industry using alpha spectrometry

    International Nuclear Information System (INIS)

    Kharita, M. H.; Sakhita, Kh.; Al-Dallal, Z.

    2007-04-01

    There is probability of exposure to uranium for workers in the phosphate industry (Internal exposure) by inhalation, and the deposition of this uranium in organs and tissues, and the consequence excretion out of the body by perspiration or urine. This study focuses on the determination of uranium in urine samples of workers .some results seem to be higher than the detection limit of the method, therefore routine monitoring is required for those workers.(Author)

  9. Training and replacing a 'lost generation' of uranium professionals

    International Nuclear Information System (INIS)

    Chalmers, M.S.

    2007-01-01

    It wasn't long ago, actually only a few years ago, when uranium companies and skilled uranium professionals receive little attention and limited interest from other sections of the mining and resource industries. Actually, there were many uranium professionals, whom in some cases, spent over a decade unwinding their CV's to limit the emphasis on uranium exploration and development from the past. Actually, when the bottom fell out of the uranium industry in the late 70's and early 80's there were literally tens of thousands of professionals internationally that were in a major regroup with their careers to get back into mining proper without the uranium connection and believe me, that wasn't always easy. As in most cases, there was no or limited places for uranium professionals wanting to stay in the industry and consequently, virtually all were forced to leave the sector. Who could have predicted that, after nearly 25 years of limited international investment and significant interest in new uranium exploration and development, that the price for yellowcake today would be in excess of US$100/pound? Concerns over energy security and global warming on top of the all-time high uranium price have really come together to make a true uranium renaissance. A renaissance which looks sounder and more sustainable than ever before. So, how is the industry facing a chronic shortage of experience and the huge task of training a multidisciplinary professional workforce going to cope? Effectively there is a 'lost generation' of professionals and very few people available or knowledgeable enough to train those new to the industry. This is a unique problem in the industry and likely more chronic than the other mining sectors, as typically the economic cycles are seven or eight years, not 25 years as has been seen with uranium

  10. International uranium production. Namibian perspective

    International Nuclear Information System (INIS)

    Daniel, P.

    1984-01-01

    The Rossing uranium deposit is the only one currently being mined in Namibia. Construction began in 1974 and production started in 1979. Current production is close to 4800 s.t. U3O8 per annum. About 160 000 mt of ore and waste are removed from the open pit every day. Each truck load is radiometrically scanned to determine ore grade and is discharged either directly into the primary crusher or into low-grade stockpiles. The uranium is extracted in a sulphuric acid leaching plant and upgraded in an ion exchange and solvent extraction plant. An ion exchange plant recovers uranium from the tailings solution. Three thousand people are employed at the mine, most living in the nearby town site. Employee training and development are emphasized. Employee health is carefully monitored; no occupationally-related disease has been reported. Rossing contributes one third of the GNP of Namibia. (L.L.)

  11. Study contribution to the new international philosophy of the radiological safety system on chemical processing of the natural uranium

    International Nuclear Information System (INIS)

    Silva, T.M. da.

    1988-01-01

    The objective of the work is to adapt the radiological Safety System in the facilities concerned to the chemical treatment of the uranium concentrated (yellow-cake) until conversion in uranium hexafluoride in the pilot plant of IPEN-CNEN/SP, to the new international philosophy adopted by the International Commission Radiological on Protection ICPR publication 22(1973), 26(1977), 30(1978) and the International Atomic Energy Agency IAEA publication 9(1982). The new philosophy changes fully the Radiological Protection concepts of preceding philosophy, changes, also, the concept of the work place and individual monitoring as well as the classification of the working areas. These new concepts are applied in each phase of the natural uranium treatment chemical process in conversion facility. (author)

  12. Hydrogeochemical and stream sediment reconnaissance (HSSR) program of the National Uranium Resource Evaluation (NURE) 1973-1984. Technical history

    International Nuclear Information System (INIS)

    1985-01-01

    The Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program of the National Uranium Resource Evaluation (NURE) generated a database of interest to scientists and other professional personnel in the academic, business, industrial, and governmental communities. NURE was a program of the Department of Energy Grand Junction Office (GJO) to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. The HSSR program provided for the collection of water and sediment samples located on the 1 0 x 2 0 National Topographic Map Series (NTMS) quadrangle grid across the conterminous United States and Alaska and the analysis of these samples for uranium as well as for a number of additional elements. Although the initial purpose of the program was to provide information regarding uranium resources, the information recorded about other elements and general field or site characteristics has made this database potentially valuable for describing the geochemistry of a location and addressing other issues such as water quality. The purpose of this Technical History is to summarize in one report those aspects of the HSSR program that are likely to be important in helping users assess the database and make informed judgements about its application to specific research questions. The history begins with an overview of the NURE Program and its components. Following a general description of the goals, objectives, and key features of the HSSR program, the implementation of the program at each of the four federal laboratories is presented in four separate chapters. These typically cover such topics as sample collection, sample analysis, and data management. 80 refs., 5 figs., 9 tabs

  13. Uranium, depleted uranium, biological effects

    International Nuclear Information System (INIS)

    2001-01-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  14. Uranium Industry Annual, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ''Decommissioning of US Conventional Uranium Production Centers,'' is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2

  15. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  16. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 10 x 20 NTMS quadrangles. National Uranium Resource Evaluation program

    International Nuclear Information System (INIS)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1 0 x 2 0 National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program

  17. A review of uranium extraction from seawater: Recent international research and development

    International Nuclear Information System (INIS)

    Nor Azillah Fatimah Othman; Jamaliah Sharif; Siti Fatahiyah Mohamad

    2012-01-01

    Radiation-induced grafting co-polymerization is widely used technique to produce high performance chemically active polymer materials for adsorption and separation processes on the basis of various commercial polymers available in different forms (films, fibers, resins, textiles, powders). The design and synthesis of polymer supported reagents that can selectively complex metal ions from multi-component solutions have been an important area of research during the last decades. Uranyl ions have been one of the target ions to be removed from aqueous systems. Despite the very low uranium concentration (3.3 ppb) in seawater, its total amount reaches 4 x 10 12 kg, that is equivalent to 1000 times of the mine uranium. To recover an economically significant quantity of uranium from seawater, an adsorption method using a suitable solid adsorbent seems to be feasible with regard to economical and environmental impacts. Extensive investigations of adsorbents capable of recovering uranium from seawater and aqueous systems have been carried out during the last two decades especially in Japan Atomic Energy Agency, Japan but until now, this method is not feasible for mass production. In this paper, recent international activities are summarized, on both the laboratory scale experiments and large scale marine experiments. Research and Development opportunities are discussed for improving the system performance and making the collection of uranium from seawater more economically competitive. (author)

  18. Lung cancer in uranium miners: A tissue resource and pilot study. Progress report, September 25, 1992 - May 31, 1993

    International Nuclear Information System (INIS)

    Samet, J.M.

    1993-05-01

    This project involves two related activities directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first activity involves a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second activity is a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives are to facilitate the investigation of molecular changes in radon exposed lung cancer cases and to develop methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and to assess the feasibility of recruiting former uranium miners into a longitudinal study that collects multiple biologic specimens

  19. Comparing recent uranium supply scenarios

    International Nuclear Information System (INIS)

    Arnold, N.; Gufler, K.

    2014-01-01

    For more than one decade – even after the Fukushima accidents - an increase in global nuclear energy generation capacity is widely expected. At the same time a variety of uranium supply scenarios were published by industry, academics or international organizations, drawing different pictures of future uranium supply. They were created with the background of a uranium market facing several challenges. First an excursion in the uranium market price, in 2007, then reduced nuclear growth expectations after 2011, at least in non-Asian countries, also implying considerable changes to the supply side. For this publication a meta-study was carried out identifying, evaluating and comparing different recent scenarios on the availability of uranium. While there are some differences in the frame conditions (e.g. the expected uranium demand, the time fame, the considered mining projects,..), there are also notable similarities in these scenarios. This concerns long lead times for mine openings as well as the dependence on large mining projects (e.g. Olympic Dam, Cigar Lake). Generally, a decline in production in about 10 years is assumed, and thus the necessity of the timely development of mining projects is pointed out. In addition the omission of uranium from Russian nuclear weapons and the chances of keeping the changes in secondary supplies in balance with primary production have been widely discussed. Here, the production growth in Kazakhstan but also the role of the current market situation are central aspects. As another aspect the possible contribution from unconventional resources is of interest, particularly against the background of rising production costs for conventional resources. Finally, it shall be reflected how well older scenarios were able to map the reality and which trends could or could not be anticipated. It is relevant to identify which aspects in the development of mining capacities are essential for security of supply, and can therefore be regarded

  20. World nuclear-fuel procurement: relationships between uranium and enrichment markets. Final report. International energies studies program

    International Nuclear Information System (INIS)

    Neff, T.L.

    1982-03-01

    This article explores the relationships between international uranium and enrichment markets under current contracting and equity arrangements and in comparison with actual feed requirements for existing and committed reactors. We begin with an overview of the world situation, examining current and prospective conditions. We then consider enrichment and uranium supply and demand situations of the three consumer nations outside the United States with the largest nuclear programs: France, Japan, and the Federal Republic of Germany. We conclude with an evaluation of likely directions of change in the coupled markets for uranium and enrichment services

  1. Uranium in Canada 1994 assessment of supply and requirements

    International Nuclear Information System (INIS)

    1994-11-01

    A summary of results of the annual assessment conducted by the Uranium Resource Appraisal Group of Natural Resources Canada. The appraisal group's mandate includes auditing the measured, indicated and inferred resources contained in Canadian uranium deposits mineable under current technological conditions in given price ranges and assessing the levels of Canadian uranium production that could by supported by these deposits. The group also relates known resources to domestic uranium requirements and export commitments. 2 tabs., 7 figs

  2. Application for assistance to United Nations rotating fund for the study of natural resources, for uranium prospecting

    International Nuclear Information System (INIS)

    1976-01-01

    This memoranda is a United Nations petition about natural resources study which allow the uranium prospecting. These areas will be studied on sedentary, anomalous and crystal land as well as radiometric rises

  3. Field manual for stream sediment reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1976-07-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, stream sediment sample collection, water sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  4. Uranium and thorium occurrences in New Mexico: distribution, geology, production, and resources, with selected bibliography. Open-file report OF-183

    International Nuclear Information System (INIS)

    McLemore, V.T.

    1983-09-01

    Over 1300 uranium and thorium occurrences are found in over 100 formational units in all but two counties, in all 1- by 2-degree topographic quadrangles, and in all four geographic provinces in New Mexico. Uranium production in New Mexico has surpassed yearly production from all other states since 1956. Over 200 mines in 18 counties in New Mexico have produced 163,010 tons (147,880 metric tons) of U 3 O 8 from 1948 to 1982, 40% of the total uranium production in the United States. More than 99% of this production has come from sedimentary rocks in the San Juan Basin area in northwestern New Mexico; 96% has come from the Morrison Formation alone. All of the uranium reserves and the majority of the potential uranium resources in New Mexico are in the Grants uranium district. About 112,500 tons (102,058 metric tons) of $30 per pound of U 3 O 8 reserves are in the San Juan Basin, about 55% of the total $30 reserves in the United States. Thorium reserves and resources in New Mexico have not been adequately evaluated and are unknown. Over 1300 uranium and thorium occurrences are described in this report, about 400 of these have been examined in the field by the author. The occurrence descriptions include information on location, commodities, production, development, geology, and classification. Over 1000 citations are included in the bibliography and referenced in the occurrence descriptions. Production statistics for uranium mines that operated from 1948 to 1970 are also included. Mines that operated after 1970 are classified into production categories. 43 figures, 9 tables

  5. Electric power generation and uranium management

    International Nuclear Information System (INIS)

    Szergenyi, Istvan

    1989-01-01

    Assuming the present trend of nuclear power generation growth, the ratio of nuclear energy in the world power balance will double by the turn of the century. The time of reasonably exploited uranium resources can be predicted as a few decades. Therefore, new nuclear reactor types and more rational uranium management is needed to prolong life of known uranium resources. It was shown how can a better uranium utilization be expected by closed fuel cycles, and what advantages in uranium management can be expected by a better co-operation between small countries and big powers. (R.P.) 16 refs.; 4 figs

  6. Internal irradiation by radon daughters in Bulgarian uranium mines over the period 1956-1990

    International Nuclear Information System (INIS)

    Dimitrov, M.; Presiyanov, D.

    1993-01-01

    The results of over 30-years' radiation monitoring in Bulgarian uranium mines are summed up in retrospect. The overall organization and the parameters monitored during the different periods are discussed. A radiological characteristic of the working environment is presented which includes radon and its decay products. The internal irradiation levels during different time periods and in different mines have been estimated. The health costs of uranium mining in Bulgaria are discussed and conclusions and recommendations for radiological control are made. (author)

  7. Situation and development trend of nuclear power and uranium industry in the united states and Russia

    International Nuclear Information System (INIS)

    Tan Chenglong

    2005-01-01

    This paper introduces the situation, trend of nuclear electrical and uranium industry in the United States and Russia. The United States and Russia are the two biggest countries in the world which generated nuclear power earliest. After 40 years' development, nuclear power in the United States and Russia are approximately 20%, 11% respectively of the total generation capacity in 2001. In the United States, only 6% of the nuclear power consumed uranium resource is domestic, in Russia about half of its uranium production is for export. Due to the collision between the energy development and environment protection, nuclear power in USA is still strong, but the uranium industry declines. In the future, uranium production for nuclear power in the United States will depend on the international market and the uranium storage of different levels. On the basis of pacifying people and making the country prosper, Russia has established their great plans for nuclear power with their substantial uranium resources. The author considers the supply and demand of uranium industry will remain balanced in the future decade on the whole, despite the United States and Russia's trend of uranium industry could take a major effect on uranium industry to the world. (authors)

  8. Data on foreign regions where uranium resources are developed, 2 and 3

    International Nuclear Information System (INIS)

    1982-07-01

    This book was published in July, 1976, before, and the revised edition was published at the beginning of 1982 as Part 1, Asia and Africa. This is Part 2, in which the regions of North America, Central and South America are reported, and Part 3 concerning Australian regions. The state of resource exploration and development, the policy of uranium mining, Japanese policy to advance in, the geological features and deposits, and the promising regions in Canada, USA, various countries in Central America and South America and Australia are described. Canada is one of the promising regions in the world regarding uranium deposits, and the exploration activity is brisk. In USA, the joint exploration with US persons having the mining right is the main method, and the companies must be established to develop mines. In Australia, P.N.C. Exploration P/L continues the exploration. (Kako, I.)

  9. Applied internal dosimetry staff exposed to Uranium

    International Nuclear Information System (INIS)

    Trotta, Marisa V.; Arguelles, Maria G.

    2009-01-01

    Dosimetric calculations are performed in order to estimate the quantity of a radionuclide that is incorporated by a worker. Urine determinations of activity and mass of uranium are made in the laboratory of Personal and Area Dosimetry. The paper presents reference values concerning the activity excreted in urine due to the incorporation of uranium compounds. The compounds analyzed are natural uranium and uranium enriched to 20 %, both soluble and insoluble. According to the limits allowed for the incorporation of uranium compounds of Type F and M, we verify that the times of monitoring and the detection limits of the equipment used to determine the activity are appropriate. On the other hand, the S-type compounds determination in urine is useful in cases of accidental incorporations (above the ALI) as a first and quick estimate; MDA (0.017 Bq / L) does not allow detection in routine monitoring; measurement in lungs, and faeces should be included. (author)

  10. Uranium of Kazakhstan

    International Nuclear Information System (INIS)

    Tsalyuk, Yu.; Gurevich, D.

    2000-01-01

    Over 25 % of the world's uranium reserves are concentrated in Kazakhstan. So, the world's largest Shu-Sarysu uranium province is situated on southern Kazakhstan, with resources exceeding 1 billion tonnes of uranium. No less, than 3 unique deposits with resources exceeding 100,000 tonnes are situated here. From the economic point of view the most important thing is that these deposits are suitable for in-situ leaching, which is the cheapest, environmentally friendly and most efficient method available for uranium extracting. In 1997 the Kazatomprom National Joint-Stock Company united all Kazakhstan's uranium enterprises (3 mine and concentrating plants, Volkovgeologiya Joint-Stock Company and the Ulbinskij Metallurgical plant). In 1998 uranium production came to 1,500 tonnes (860 kg in 1997). In 1999 investment to the industry were about $ 30 million. Plans for development of Kazakhstan's uranium industry provide a significant role for foreign partners. At present, 2 large companies (Comeco (Canada), Cogema (France) working in Kazakhstan. Kazakatomprom continues to attract foreign investors. The company's administration announced that in that in next year they have plan to make a radical step: to sell 67 % of stocks to strategic investors (at present 100 % of stocks belongs to state). Authors of the article regard, that the Kazakhstan's uranium industry still has significant reserves to develop. Even if the scenario for the uranium industry could be unfavorable, uranium production in Kazakhstan may triple within the next three to four years. The processing of uranium by the Ulbinskij Metallurgical Plant and the production of some by-products, such as rhenium, vanadium and rare-earth elements, may provide more profits. Obviously, the sale of uranium (as well as of any other reserves) cannot make Kazakhstan a prosperous country. However, country's uranium industry has a god chance to become one of the most important and advanced sectors of national economy

  11. Estimation of uranium resources by life-cycle or discovery-rate models: a critique

    International Nuclear Information System (INIS)

    Harris, D.P.

    1976-10-01

    This report was motivated primarily by M. A. Lieberman's ''United States Uranium Resources: An Analysis of Historical Data'' (Science, April 30). His conclusion that only 87,000 tons of U 3 O 8 resources recoverable at a forward cost of $8/lb remain to be discovered is criticized. It is shown that there is no theoretical basis for selecting the exponential or any other function for the discovery rate. Some of the economic (productivity, inflation) and data issues involved in the analysis of undiscovered, recoverable U 3 O 8 resources on discovery rates of $8 reserves are discussed. The problem of the ratio of undiscovered $30 resources to undiscovered $8 resources is considered. It is concluded that: all methods for the estimation of unknown resources must employ a model of some form of the endowment-exploration-production complex, but every model is a simplification of the real world, and every estimate is intrinsically uncertain. The life-cycle model is useless for the appraisal of undiscovered, recoverable U 3 O 8 , and the discovery rate model underestimates these resources

  12. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  13. Uranium resource assessment through statistical analysis of exploration geochemical and other data. Final report

    International Nuclear Information System (INIS)

    Koch, G.S. Jr.; Howarth, R.J.; Schuenemeyer, J.H.

    1981-02-01

    We have developed a procedure that can help quadrangle evaluators to systematically summarize and use hydrogeochemical and stream sediment reconnaissance (HSSR) and occurrence data. Although we have not provided an independent estimate of uranium endowment, we have devised a methodology that will provide this independent estimate when additional calibration is done by enlarging the study area. Our statistical model for evaluation (system EVAL) ranks uranium endowment for each quadrangle. Because using this model requires experience in geology, statistics, and data analysis, we have also devised a simplified model, presented in the package SURE, a System for Uranium Resource Evaluation. We have developed and tested these models for the four quadrangles in southern Colorado that comprise the study area; to investigate their generality, the models should be applied to other quandrangles. Once they are calibrated with accepted uranium endowments for several well-known quadrangles, the models can be used to give independent estimates for less-known quadrangles. The point-oriented models structure the objective comparison of the quandrangles on the bases of: (1) Anomalies (a) derived from stream sediments, (b) derived from waters (stream, well, pond, etc.), (2) Geology (a) source rocks, as defined by the evaluator, (b) host rocks, as defined by the evaluator, and (3) Aerial radiometric anomalies

  14. Uranium industry annual 1985

    International Nuclear Information System (INIS)

    1986-11-01

    This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities, utility market requirements, and related topics. A glossary and appendices are included to assist the reader in interpreting the substantial array of statistical data in this report and to provide background information about the survey

  15. Uranium industry annual, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Uranium industry data collected in the EIA-858 survey provide a comprehensive statistical characterization of annual activities of the industry and include some information about industry plans over the next several years. This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities utility market requirements and related topics

  16. Uranium Industry. Annual 1984

    International Nuclear Information System (INIS)

    Lawrence, M.S.S.

    1985-01-01

    This report provides a statistical description of activities of the US uranium industry during 1984 and includes a statistical profile of the status of the industry at the end of 1984. It is based on the results of an Energy Information Administration (EIA) survey entitled ''Uranium Industry Annual Survey'' (Form EIA-858). The principal findings of the survey are summarized under two headings - Uranium Raw Materials Activities and Uranium Marketing Activities. The first heading covers exploration and development, uranium resources, mine and mill production, and employment. The second heading covers uranium deliveries and delivery commitments, uranium prices, foreign trade in uranium, inventories, and other marketing activities. 32 figs., 48 tabs

  17. Uranium Research in Senegal

    International Nuclear Information System (INIS)

    Kanouté, Mamadou

    2015-01-01

    The work of mining companies have so far not proved economic uranium resources, but they have nevertheless contributed greatly to a better understanding of the geology, particularly in Eastern Senegal, on the upper Precambrian basin including which equivalents exist throughout West Africa (the uranium belt of Zaire) prospected by CEA-COGEMA teams. The researches carried out in Senegal, but also in Guinea and Mali helped establish a detailed map and understand the course of geological history. With new exploration techniques and data of airborne geophysical (radiometric) provided by the Mining Sector Support Programme (PASMI 9th EDF 9 ACP SE 09), AREVA, at the end of the first period validity of the exploration permit increased significantly, the resources. Prospects are favorable to a doubling of resources; objective of a uranium mine in Senegal. Synergies are possible and desirable with joint exploitation of uranium deposits located in Mali, near the border with Senegal.

  18. Uranium toxicology

    International Nuclear Information System (INIS)

    Ferreyra, Mariana D.; Suarez Mendez, Sebastian

    1997-01-01

    In this paper are presented the methods and procedures optimized by the Nuclear Regulatory Authority (ARN) for the determination of: natural uranium mass, activity of enriched uranium in samples of: urine, mucus, filters, filter heads, rinsing waters and Pu in urine, adopted and in some cases adapted, by the Environmental Monitoring and Internal Dosimetry Laboratory. The analyzed material corresponded to biological and environmental samples belonging to the staff professionally exposed that work in plants of the nuclear fuel cycle. For a better comprehension of the activities of this laboratory, it is included a brief description of the uranium radiochemical toxicity and the limits internationally fixed to preserve the workers health

  19. Management of depleted uranium

    International Nuclear Information System (INIS)

    2001-01-01

    Large stocks of depleted uranium have arisen as a result of enrichment operations, especially in the United States and the Russian Federation. Countries with depleted uranium stocks are interested in assessing strategies for the use and management of depleted uranium. The choice of strategy depends on several factors, including government and business policy, alternative uses available, the economic value of the material, regulatory aspects and disposal options, and international market developments in the nuclear fuel cycle. This report presents the results of a depleted uranium study conducted by an expert group organised jointly by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It contains information on current inventories of depleted uranium, potential future arisings, long term management alternatives, peaceful use options and country programmes. In addition, it explores ideas for international collaboration and identifies key issues for governments and policy makers to consider. (authors)

  20. Uranium in Canada

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988 Canada's five uranium producers reported output of concentrate containing a record 12,470 metric tons of uranium (tU), or about one third of total Western world production. Shipments exceeded 13,200 tU, valued at $Cdn 1.1 billion. Most of Canada's uranium output is available for export for peaceful purposes, as domestic requirements represent about 15 percent of production. The six uranium marketers signed new sales contracts for over 11,000 tU, mostly destined for the United States. Annual exports peaked in 1987 at 12,790 tU, falling back to 10,430 tU in 1988. Forward domestic and export contract commitments were more than 70,000 tU and 60,000 tU, respectively, as of early 1989. The uranium industry in Canada was restructured and consolidated by merger and acquisition, including the formation of Cameco. Three uranium projects were also advanced. The Athabasca Basin is the primary target for the discovery of high-grade low-cost uranium deposits. Discovery of new reserves in 1987 and 1988 did not fully replace the record output over the two-year period. The estimate of overall resources as of January 1989 was down by 4 percent from January 1987 to a total (measured, indicated and inferred) of 544,000 tU. Exploration expenditures reached $Cdn 37 million in 1987 and $59 million in 1988, due largely to the test mining programs at the Cigar Lake and Midwest projects in Saskatchewan. Spot market prices fell to all-time lows from 1987 to mid-1989, and there is little sign of relief. Canadian uranium production capability could fall below 12,000 tU before the late 1990s; however, should market conditions warrant output could be increased beyond 15,000 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are now or are expected to be in service by the late 1990s. There is significant potential for discovering additional uranium resources. Canada's uranium production is equivalent, in

  1. Application of United Nations Framework Classification – 2009 (UNFC-2009) to nuclear fuel resources

    International Nuclear Information System (INIS)

    Tulsidas, H.; Hanly, A.; Li, S.; Miezitis, Y.; Carson, L.; Hall, S.; Van Gosen, B.; Vance, R.; Mukusheva, A.; Villas-Bôas, R.; Griffiths, C.; Ross, J.; MacDonald, D.; Bankes, P.

    2014-01-01

    Nuclear energy currently provides approximately 15% of the world’s electricity, utilized in about 30 countries. As many countries are planning to expand capacity or introduce nuclear power into the energy mix, the demand for uranium fuel is expected to increase. Reactors suitable for utilizing thorium as fuel are also being developed for deployment in the long-term. Since nuclear power is capital intensive and uranium feedstock is required for a nuclear reactor life of between 40 and 60 years, operators need assurance of a reliable uranium supply. Comprehensive and up-to-date information on the worldwide supply of nuclear fuel resources is therefore essential for planning and implementation of nuclear power programmes. Information on resources are provided through the bi-annual Organisation for Economic Co-operation and Development / Nuclear Energy Agency – International Atomic Energy Agency (OECD-NEA/IAEA ) report “Uranium: Resources, Production and Demand” (the “Red Book”) and the online datasets of World Distribution of Uranium Deposits (UDEPO) and World Thorium Deposits and Resources (ThDEPO).

  2. Uranium demand. An exploration challenge

    Energy Technology Data Exchange (ETDEWEB)

    Roux, A J.A.

    1976-10-01

    The estimated world resources of uranium as well as the estimated consumption of uranium over the next 25 years are briefly discussed. Attention is also given to the prospecting for uranium in South Africa and elsewhere in the world.

  3. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Greece

    International Nuclear Information System (INIS)

    1977-10-01

    Greece, with an area of 131,944 km 2 , has been actively explored since 1971 under a programme of co-operation with UNDP and IAEA on which close to US $1 million have been spent so far. The programme is focused on the Rhodope Precambrian massif, which is the most attractive structural unit from the geological point of view. The indications available at present, and which have been known for a long time, are also to be found in this unit. They are associated either with Tertiary continental volcanism or with detritic sediments in basins covering this massif. So far there is no evidence of their being of any economic value. The paucity of data available on the basement of the Rhodope precludes any prediction as to the possibility of its containing Pre-cambrian uranium mineralizations. One might perhaps think in terms of mineralizations of the alaskite or alkaline complex type, or also of vein-type deposits. But it is primarily in the deposits associated with tertiary trachy-rhyolitic volcanism that we have most confidence, especially in the Rhodope massif and the Vardar region but possibly elsewhere in the Hellenides as well. All things considered, we place Greece in Group 2 of the IUREP classification. (author)

  4. Uranium health physics

    International Nuclear Information System (INIS)

    1980-01-01

    This report contains the papers delivered at the Summer School on Uranium Health Physics held in Pretoria on the 14 and 15 April 1980. The following topics were discussed: uranium producton in South Africa; radiation physics; internal dosimetry and radiotoxicity of long-lived uranium isotopes; uranium monitoring; operational experience on uranium monitoring; dosimetry and radiotoxicity of inhaled radon daughters; occupational limits for inhalation of radon-222, radon-220 and their short-lived daughters; radon monitoring techniques; radon daughter dosimeters; operational experience on radon monitoring; and uranium mill tailings management

  5. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-31

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this.

  6. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance basic data for Beeville NTMS Quadrangle, Texas. Uranium resource evaluation project

    International Nuclear Information System (INIS)

    1979-01-01

    Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations; and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this

  7. Uranium as Raw Material for Nuclear Energy

    International Nuclear Information System (INIS)

    Lelek, V.

    2006-01-01

    There is lot of information bringing our attention to the problem of limited raw material resources. Fortunately uranium for nuclear energy is very concentrated source and that is why its transport brings no problems and could be realized from anywhere. Second question is if overall resources are available for current nuclear energy development. Data documenting reasons for nowadays price growth are presenting and it is clearly shown that the most probable explanation is that there is gap in new uranium mines preparation and the lot of smaller mines were closed in the period of low uranium prices. Conclusion is that there is at least for the first half of this century even for thermal reactors enough uranium. Situation could be changed if there will massive production of liquid fuel using hydrogen, produced through nuclear heating. Public information about former military uranium resources are also included. Contemporary about one half of US nuclear power-stations is using high enriched uranium diluted with natural uranium - it is expected to continue this way up to 2012. Uranium is complicated market (Authors)

  8. Recovery of uranium from uranium bearing black shale

    International Nuclear Information System (INIS)

    Das, Amrita; Yadav, Manoj; Singh, Ajay K.

    2016-01-01

    Black shale is the unconventional resource of uranium. Recovery of uranium from black shale has been carried out by the following steps: i) size reduction, ii) leaching of uranium in the aqueous medium, iii) fluoride ion removal, iv) solvent extraction of uranium from the aqueous leach solution, v) scrubbing of the loaded solvent after extraction to remove impurities as much as possible and vi) stripping of uranium from the loaded organic into the aqueous phase. Leaching of black shale has been carried out in hydrochloric acid. Free acidity of the leach solution has been determined by potentiometric titration method. Removal of fluoride ions has been done using sodium chloride. Solvent extraction has been carried out by both tributyl phosphate and alamine-336 as extractants. Scrubbing has been tried with oxalic acid and sulphuric acid. Stripping with sodium carbonate solution has been carried out. Overall recovery of uranium is 95%. (author)

  9. International uranium supply to the US market

    International Nuclear Information System (INIS)

    Bonny, J.

    1987-01-01

    The 1980s have seen a major redistribution of global uranium production. Since 1984, the first full year of production from the Key Lake Mine, Canada has displaced the US as the world's largest uranium producer. Uranium production in the US has stabilized in the range of 10 to 15 million lb U 3 O 8 per year, having declined from a peak of over 43 million lb in 1980. Production from Africa and Europe has declined slightly, and Australia, with the startup of Ranger Mine, has emerged as a significant producer. The main factors that have affected the distribution of production aside from price and demand are ore grades and production costs, currency exchange rates, long-term contracts, and tied supply. It is interesting to examine uranium supply and demand for the North American continent. In 1980 and 1981, North American production was more than twice reactor requirements. By 1985, however, requirements were only slightly lower than production, a situation that has persisted into 1987. Indeed, given the export commitments by Canadian and US producers to Europe and Asia, it is apparent that the US must import uranium from other countries. The relative balance in North American supply and demand suggests that free trade between Canada and the US for both uranium and conversion services would be beneficial to both countries

  10. Analysis of uranium supply to 2050

    International Nuclear Information System (INIS)

    2001-05-01

    The central theme of this report is to assess the adequacy of uranium resources to meet future requirements based on a range of opinions as to the future of nuclear power. The report discusses three demand cases that project uranium requirements from 2000 to 2050. The report also reviews the supply sources that are expected to be available to meet reactor uranium demand through to 2050. Supply is divided into two broad categories: secondary and primary supply. The report also assesses the adequacy of uranium resources to satisfy market based production requirements

  11. Czechoslovak uranium

    International Nuclear Information System (INIS)

    Pluskal, O.

    1992-01-01

    Data and knowledge related to the prospecting, mining, processing and export of uranium ores in Czechoslovakia are presented. In the years between 1945 and January 1, 1991, 98,461.1 t of uranium were extracted. In the period 1965-1990 the uranium industry was subsidized from the state budget to a total of 38.5 billion CSK. The subsidies were put into extraction, investments and geologic prospecting; the latter was at first, ie. till 1960 financed by the former USSR, later on the two parties shared costs on a 1:1 basis. Since 1981 the prospecting has been entirely financed from the Czechoslovak state budget. On Czechoslovak territory uranium has been extracted from deposits which may be classified as vein-type deposits, deposits in uranium-bearing sandstones and deposits connected with weathering processes. The future of mining, however, is almost exclusively being connected with deposits in uranium-bearing sandstones. A brief description and characteristic is given of all uranium deposits on Czechoslovak territory, and the organization of uranium mining in Czechoslovakia is described as is the approach used in the world to evaluate uranium deposits; uranium prices and actual resources are also given. (Z.S.) 3 figs

  12. Uranium in South Africa: 1987

    International Nuclear Information System (INIS)

    1988-06-01

    South Africa's participation in the nuclear industry was limited to the production of uranium and research, with minor commercial activities. The commissioning of the Koeberg Nuclear power station in 1984 placed South Africa firmly on the path of commercial nuclear power generation. A unique locally developed uranium enrichment process wil enable South Africa to be self-sufficient in its nuclear-fuel needs. Uranium has always been of secondary importance to gold as a target commodity in the exploration of the quartz-pebble conglomerates. In the Witwatersrand Basin it is estimated that in excess of R300 million was spend on exploration during 1987. This was spend primarily in the search for gold but as many of the gold reefs are uraniferous, new uranium resources are being discovered concurrently with those of gold. Uranium mineralization is present in rocks which encompass almost the whole of the geological history of South Africa. Significant mineralization is restricted to five fairly well-defined time periods. Each period is characterized by a distinct type or combination of types of mineralization. Resource estimates are divided into separate categories that reflect different levels of confidence in the quantities reported. The resource categories are further separated into levels of exploitability based on the estimated cost of their exploitation. A major part (87%) of South Africa's uranium resources is present as a by-product of gold in the quartz-pebble conglomerates of the Witwatersrand Basin. The uranium resources in the RAR and EAR-I categories were 536 500 t u. Production during 1987 was 3963 t u. Although a production peaking at over 1100 t U/a is theoretically attainable, it is considered, from market projections, that a production ceiling of 10 000 t U/a would be more realistic

  13. Recovering uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Wet-process phosphoric acid contains a significant amount of uranium. This uranium totals more than 1,500 tons/yr in current U.S. acid output--and projections put the uranium level at 8,000 tons/yr in the year 2000. Since the phosphoric acid is a major raw material for fertilizers, uranium finds its way into those products and is effectively lost as a resource, while adding to the amount of radioactive material that can contaminate the food chain. So, resource-conservation and environmental considerations both make recovery of the uranium from phosphoric acid desirable. This paper describes the newly developed process for recovering uranium from phosphoric acid by using solvent-extraction technique. After many extractants had been tested, the researchers eventually selected the combination of di (2-ethylhexyl) phosphoric acid (DEPA) and trioctylphosphine oxide (TOPO) as the most suitable. The flowscheme of the process is included

  14. International Commission On Radiological Protection: recommendations relevant to the uranium industry

    International Nuclear Information System (INIS)

    Clement, C.H.

    2010-01-01

    The International Commission on Radiological Protection (ICRP) is an independent, international organization that advances for the public benefit the science of radiological protection, in particular by providing recommendations and guidance on all aspects of protection against ionizing radiation. This presentation touches on aspects of The 2007 Recommendations of the ICRP, a fundamental document that lays out the system of radiological protection for all exposure situations and types, and focuses on other recent publications relevant to the uranium industry. Of particular relevance are the 2009 ICRP Statement on Radon and the accompanying report on lung cancer risk from radon. (author)

  15. Extraction of uranium low-grade ores from Great Divide Basin, Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Judd, J.C.; Nichols, I.L.; Huiatt, J.L.

    1983-04-01

    The US Bureau of Mines is investigating the leachability of carbonaceous uranium ore samples submitted by the DOE under an Interagency Agreement. Studies on eight samples from the Great Divide Basin, Wyoming, are the basis of this report. The uranium content of the eight ore samples ranged from 0.003 to 0.03% U 3 O 8 and contained 0.7 to 45% organic carbon. Experiments were performed to determine the feasibility of extracting uranium using acid leaching, roast-acid leaching and pressure leaching techniques. Acid leaching with 600 lb/ton H 2 SO 4 plus 10 lb/ton NaClO 3 for 18 h at 70 0 C extracted 65 to 83% of the uranium. One sample responded best to a roast-leach treatment. When roasting for 4 h at 500 0 C followed by acid leaching of the calcine using 600 lb/ton H 2 SO 4 , the uranium extraction was 82%. Two of the samples responded best to an oxidative pressure leach for 3 h at 200 0 C under a total pressure of 260 psig; uranium extractions were 78 and 82%

  16. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    Western world requirements for uranium based on increasing energy consumption and a changing energy mix, will warrant the development of Australia's resources. By 1985 Australian mines could be producing 9500 tonnes of uranium oxide yearly and by 1995 the export value from uranium could reach that from wool. In terms of benefit to the community the economic rewards are considerable but, in terms of providing energy to the world, Australias uranium is vital

  17. Fabrication of uranium-based ceramics using internal gelation for the conversion of trivalent actinides

    International Nuclear Information System (INIS)

    Daniels, Henrik

    2012-01-01

    Alternative to today's direct final waste disposal strategy of long-lived radionuclides, for example the minor actinides neptunium, americium, curium and californium, is their selective separation from the radioactive wastestream with subsequent transmutation by neutron irradiation. Hereby it is possible to obtain nuclides with a lower risk-potential concerning their radiotoxicity. 1 neutron irradiation can be carried out either with neutron sources or in the next generation of nuclear reactors. Before the treatment, the minor actinides need to be converted in a suitable chemical and physical form. Internal gelation offers a route through which amorphous gel-spheres can be obtained directly from a metal-salt solution. Due to the presence of different types of metal ions as well as changing pH-values in a stock solution, a complex hydrolysis behaviour of these elements before and during gelation occurs. Therefore, investigations with uranium and neodymium as a minor actinide surrogate were carried out. As a result of suitable gelation-parameters, uraniumneodymium gel-spheres were successfully synthesised. The spheres also stayed intact during the subsequent thermal treatment. Based upon these findings, uranium-plutonium and uranium-americium gels were successfully created. For theses systems, the determined parameters for the uraniumneodymium gelation could also be applied. Additionally, investigations to reduce the acidity of uranium-based stock solutions for internal gelation were carried out. The necessary amount of urea and hexamethylenetetramine to induce gelation could hereby be decreased. This lead to a general increase of the gel quality and made it possible to carry out uranium-americium gelation in the first place. To investigate the stability of urea and hexamethylenetetramine, solutions of these chemicals were irradiated with different radiation doses. These chemicals showed a high stability against radiolysis in aqueous solutions.

  18. Search for uranium: a perspective

    International Nuclear Information System (INIS)

    Grutt, E.W. Jr.

    1975-01-01

    The history of uranium mining in the USA is reviewed. It is postulated that some two million tons of U 3 O 8 will be needed to provide fuel for US nuclear power plants through the year 2000. World resources of U ores are reviewed. The functions of the ERDA National Uranium Resources Evaluation Program (NURE), including aerial surveying, in relation to the assessment of potential uranium reserves in the USA are discussed. The scope of ERDA research and development programs are briefly reviewed. (U.S.)

  19. Improving the Assessment of Internal Occupational Exposure to Natural Uranium from Urinalysis by Normalization to Creatinine

    International Nuclear Information System (INIS)

    Marko, R.; Kol, R.; Katorza, E.; German, U.; Balaish, Y.; Lorber, A.; Karpas, Z.

    2002-01-01

    The assessment of occupational internal exposure to natural uranium is normally carried out by combining Uranium Lung Detection (ULD) and urine analysis. The ULD is a direct measurement of the uranium content in lungs. The urine analysis measures the amount of uranium excreted from the body. The biokinetic models that are in use for dose assessments from urine analysis measurements are usually based on 24-hour urine collection. There are three traditional methods to collect urine samples: a) 24-hour collection - the subject is asked to collect all the urine excreted during a 24-hour period. b) Simulated 24-hour collection - the subject collects all the urine excreted during three consecutive 8-hour workdays. c) Spot samples - the subject gives a single urine sample at some time during work hours

  20. Industrial types of uranium deposits in Kazakhstan

    International Nuclear Information System (INIS)

    Fyodorov, G.V.

    2001-01-01

    The main industrial uranium deposits of Kazakhstan that can be commercially mined, are located in two ore regions and are represented by two types of the uranium deposits. The first region is named Chu-Syrdarya (75.6% of total resources of Kazakhstan) and is located in the South of Kazakhstan and this one is the largest in the world among the regions of the deposits connected with the bed oxidation zone, localized in the permeable sediments and amenable for in-situ leach mining. The second region is named Kokshetau (16% of total resources) and is located in the North of Kazakhstan at the north edge of Kazak Shield and is characterized by the vein-stockwork type of deposit. Other industrial deposits (8.4% of total resources) are grouped in two regions that have been determined and are retained as reserves for economical and ecological reasons. These are: Pricaspian region with the organic phosphate type of uranium deposits; and Ili-Balkhash region with mainly the coal-uranium type. There are 44 industrial uranium deposits with resources ranging from 1000 t to 100000 t U and more in each of them, in all, in Kazakhstan. Seven of them are completely mined now. Total uranium resources in Kazakhstan are determined at 1670000 t U. (author)