WorldWideScience

Sample records for international solar maximum year

  1. Annals of the International Geophysical Year solar radio emission during the International Geophysical Year

    CERN Document Server

    Smerd, S F

    1969-01-01

    Annals of the International Geophysical Year, Volume 34: Solar Radio Emission During the International Geophysical Year covers the significant solar radio emission events observed during the International Geophysical Year (IGY). This book is composed of six chapters, and begins with a summary of tabulated quantities describing solar radio emission during the IGY. The tabulated figures illustrate the method of recording the position of radio sources on the sun, the use of symbols in describing the structure of bursts observed at single frequencies, and the different types used in a spectral

  2. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  3. Solar Eclipses and the International Year of Astronomy

    Science.gov (United States)

    Pasachoff, Jay M.

    2009-05-01

    Solar eclipses capture the attention of millions of people in the countries from which they are visible and provide a major opportunity for public education, in addition to the scientific research and student training that they provide. The 2009 International Year of Astronomy began with an annular eclipse visible from Indonesia on 26 January, with partial phases visible also in other parts of southeast Asia. On 22 July, a major and unusually long total solar eclipse will begin at dawn in India and travel across China, with almost six minutes of totality visible near Shanghai and somewhat more visible from Japanese islands and from ships at sea in the Pacific. Partial phases will be visible from most of eastern Asia, from mid-Sumatra and Borneo northward to mid-Siberia. Eclipse activities include many scientific expeditions and much ecotourism to Shanghai, Hangzhou, and vicinity. My review article on "Eclipses as an Astrophysical Laboratory" will appear in Nature as part of their IYA coverage. Our planetarium presented teacher workshops and we made a film about solar research. Several new books about the corona or eclipses are appearing or have appeared. Many articles are appearing in astronomy magazines and other outlets. Eclipse interviews are appearing on the Planetary Society's podcast "365 Days of Astronomy" and on National Geographic Radio. Information about the eclipse and safe observation of the partial phases are available at http://www.eclipses.info, the Website of the International Astronomical Union's Working Group on Solar Eclipses and of its Program Group on Public Education at the Times of Eclipses of its Commission on Education and Development. The Williams College Expedition to the 2009 Eclipse in the mountains near Hangzhou, China, is supported in part by a grant from the Committee for Research and Exploration of the National Geographic Society. E/PO workshops were supported by NASA.

  4. Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects

    Science.gov (United States)

    Bocchialini, K.; Grison, B.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Régnier, S.; Zouganelis, I.

    2018-05-01

    Taking the 32 storm sudden commencements (SSCs) listed by the International Service of Geomagnetic Indices (ISGI) of the Observatory de l'Ebre during 2002 (solar activity maximum in Cycle 23) as a starting point, we performed a multi-criterion analysis based on observations (propagation time, velocity comparisons, sense of the magnetic field rotation, radio waves) to associate them with solar sources, identified their effects in the interplanetary medium, and looked at the response of the terrestrial ionized and neutral environment. We find that 28 SSCs can be related to 44 coronal mass ejections (CMEs), 15 with a unique CME and 13 with a series of multiple CMEs, among which 19 (68%) involved halo CMEs. Twelve of the 19 fastest CMEs with speeds greater than 1000 km s-1 are halo CMEs. For the 44 CMEs, including 21 halo CMEs, the corresponding X-ray flare classes are: 3 X-class, 19 M-class, and 22 C-class flares. The probability for an SSC to occur is 75% if the CME is a halo CME. Among the 500, or even more, front-side, non-halo CMEs recorded in 2002, only 23 could be the source of an SSC, i.e. 5%. The complex interactions between two (or more) CMEs and the modification of their trajectories have been examined using joint white-light and multiple-wavelength radio observations. The detection of long-lasting type IV bursts observed at metric-hectometric wavelengths is a very useful criterion for the CME-SSC events association. The events associated with the most depressed Dst values are also associated with type IV radio bursts. The four SSCs associated with a single shock at L1 correspond to four radio events exhibiting characteristics different from type IV radio bursts. The solar-wind structures at L1 after the 32 SSCs are 12 magnetic clouds (MCs), 6 interplanetary coronal mass ejections (ICMEs) without an MC structure, 4 miscellaneous structures, which cannot unambiguously be classified as ICMEs, 5 corotating or stream interaction regions (CIRs/SIRs), one CIR

  5. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  6. Preliminary report, between seismic swarms, the constant cycles of inflation/ deflation in some volcanic calderas in the world and the minimum and/or solar maximum years

    Science.gov (United States)

    Casati, Michele

    2014-05-01

    The global communication network and GPS satellites have enabled us to monitor for more than a decade, some of the more sensitive, well-known and highly urbanized volcanic areas around the world. The possibility of electromagnetic coupling between the dynamics of the Earth-Sun and major geophysical events is a topic of research. However the majority of researchers are orienting their research in one direction. They are attempting to demonstrate a significant EM coupling between the solar dynamics and terrestrial seismicity ignoring a possible relationship between solar dynamics and the dynamics inherent in volcanic calderas. The scientific references are scarce, however, a study conducted by the Vesuvius Observatory of Naples, notes that the seismic activity on the volcano is closely related to changes in solar activity and the Earth's magnetic field. We decided to extend the study to many other volcanic calderas in the world in order to generalise the relationship between solar activity and caldera activity and/or deformation of the ground. The list of Northern Hemisphere volcanoes examined is as follows: Long Valley, Yellowstone, Three sisters, Kilauea Hawaii, Axial seamount (United States); Augustine ( Alaska), Sakurajima (Japan); Hammarinn, Krisuvik; Askja (Iceland) and Campi Flegrei (Italy). We note that the deformation of volcanoes recorded in GPS logs varies in long, slow geodynamic processes related to the two well-known time periods within the eleven-year cycle of solar magnetic activity: the solar minimum and maximum. We find that the years of minimum (maximum), are coincident with the years in which transition between a phase of deflation (inflation) occurs. Additionally, the seismicity recorded in such areas reaches its peak in the years of solar minimum or maximum. However, the total number and magnitude of seismic events is greater during deep solar minima, than maxima, evidenced by increased seismic activity occurring between 2006 and 2010. This

  7. On the current and maximum phases of solar cycle 24 in the galactic cosmic ray intensity

    International Nuclear Information System (INIS)

    Krainev, M B; Kalinin, M S

    2013-01-01

    We compare the current characteristics of the sunspot activity and cosmic ray intensity with those expected in the future maximum of the current solar cycle. The values for maximum phase are estimated from the correlation between characteristics in the maximum and in the inflection points (few years before maximum) for the previous solar cycles. The expected galactic cosmic ray phenomena typical for the maximum phase of solar cycle (Gnevyshev Gap effect, quasi-biannual oscillations and energetic hysteresis) are discussed.

  8. Weakest solar wind of the space age and the current 'MINI' solar maximum

    International Nuclear Information System (INIS)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-01-01

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (∼11%), temperature (∼40%), thermal pressure (∼55%), mass flux (∼34%), momentum flux or dynamic pressure (∼41%), energy flux (∼48%), IMF magnitude (∼31%), and radial component of the IMF (∼38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ∼1.4 nPa, compared to ∼2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ∼11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  9. INTERNAL-CYCLE VARIATION OF SOLAR DIFFERENTIAL ROTATION

    International Nuclear Information System (INIS)

    Li, K. J.; Xie, J. L.; Shi, X. J.

    2013-01-01

    The latitudinal distributions of the yearly mean rotation rates measured by Suzuki in 1998 and 2012 and Pulkkinen and Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate at the solar equator seems to have decreased since cycle 10 onward. The coefficient B of solar differential rotation, which represents the latitudinal gradient of rotation, is found to be smaller in the several years after the minimum of a solar cycle than in the several years after the maximum time of the cycle, and it peaks several years after the maximum time of the solar cycle. The internal-cycle variation of the solar rotation rates looks similar in profile to that of the coefficient B. A new explanation is proposed to address such a solar-cycle-related variation of the solar rotation rates. Weak magnetic fields may more effectively reflect differentiation at low latitudes with high rotation rates than at high latitudes with low rotation rates, and strong magnetic fields may more effectively repress differentiation at relatively low latitudes than at high latitudes. The internal-cycle variation is inferred as the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity in differentiation.

  10. Comparing maximum pressures in internal combustion engines

    Science.gov (United States)

    Sparrow, Stanwood W; Lee, Stephen M

    1922-01-01

    Thin metal diaphragms form a satisfactory means for comparing maximum pressures in internal combustion engines. The diaphragm is clamped between two metal washers in a spark plug shell and its thickness is chosen such that, when subjected to explosion pressure, the exposed portion will be sheared from the rim in a short time.

  11. Predicting Maximum Sunspot Number in Solar Cycle 24

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Considering the geomagnetic activity aa indices during the descending phase of the preceding solar cycle as the precursor, we predict the maximum amplitude of annual mean sunspot number in cycle 24 to be 111 ± 21. This suggests that the maximum amplitude of the upcoming cycle 24 will be less than ...

  12. Solar maximum mission panel jettison analysis remote manipulator system

    Science.gov (United States)

    Bauer, R. B.

    1980-01-01

    A study is presented of the development of the Remote Manipulator System (RMS) configurations for jettison of the solar panels on the Solar Maximum Mission/Multimission Satellite. A valid RMS maneuver between jettison configurations was developed. Arm and longeron loads and effector excursions due to the solar panel jettison were determined to see if they were within acceptable limits. These loads and end effector excursions were analyzed under two RMS modes, servos active in position hold submode, and in the brakes on mode.

  13. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.

  14. International solar refrigeration system

    International Nuclear Information System (INIS)

    Jilavi, A.; Khalagi Asadi, M.

    2001-01-01

    An intermittent solar refrigeration system using ammonia as refrigerant and water as absorbent, is fabricated and tested in the Center for Renewable Energy Research and Application. In this system, using solar flat plate collectors, ammonia is separated from the water-ammonia solution with quality 60%, during the day and its cooling effect happens during the night time. The system can be used in areas with high solar intensity in Iran. A comparison between the theoretical and experimental results shows that the average amount of coefficient of performance are close (COP the =0.485, COP exp =0.432). This result represents the potent rol accessibility to temperature below 10 d eg C, while the ambient temperature is about 30 d eg C

  15. Gamma ray detector for solar maximum mission (SMM) of NASA

    International Nuclear Information System (INIS)

    Brunner, W.; Brichzin, K.; Sach, E.

    1981-06-01

    For NASA's Project Solar Maximum Mission-SMM (launch 14.2.80) a Gamma Ray Detector was developed, manufactured and tested to measure solar high energetic Gamma rays and Neutron fluxes within the energy range 10-160 MeV, 4,43 MeV amd 2,23 MeV. The main components of the sensor are 7 NaI crystals 3 x 3 and a CsI crystal 30 cm diameter x 7,5 cm. The rejection of charged particles is done by two plasitc scintillators and 4 CsI-shields. From the beginning of the mission the experiment is working fully successfull. (orig.) [de

  16. The solar wind at solar maximum: comparisons of EISCAT IPS and in situ observations

    Directory of Open Access Journals (Sweden)

    A. R. Breen

    2002-09-01

    Full Text Available The solar maximum solar wind is highly structured in latitude, longitude and in time. Coronal measurements show a very high degree of variability, with large variations that are less apparent within in situ spacecraft measurements. Interplanetary scintillation (IPS observations from EISCAT, covering distances from 20 to 100 solar radii (RS, are an ideal source of information on the inner solar wind and can be used, therefore, to cast light on its evolution with distance from the Sun. Earlier comparisons of in situ and IPS measurements under solar minimum conditions showed good large-scale agreement, particularly in the fast wind. In this study we attempt a quantitative comparison of measurements made over solar maximum by EISCAT (20–100 RS and the Wind and Ulysses spacecraft (at 215 RS and 300–1000 RS, respectively. The intervals studied were August–September 1999, May 2000, September 2000 and May 2001, the last-named being the period of the second Ulysses fast latitude scan. Both ballistic and – when possible – MHD/ballistic hybrid models were used to relate the data sets, and we compare the results obtained from these two mapping methods. The results of this study suggest that solar wind velocities measured in situ were less variable than those estimated from IPS measurements closer to the Sun, with the greatest divergence between IPS velocities and in situ measurements occurring in regions where steep longitudinal velocity gradients were seen in situ. We suggest that the interaction between streams of solar wind with different velocities leads to "smoothing" of solar wind velocities between 30–60 RS and 1 AU, and that this process continues at greater distances from the Sun.Key words. Interplanetary physics (solar wind plasma; sources of the solar wind; instruments and techniques

  17. Maximum Power Angle (MPA) Based Maximum Power Point Tracking (MPPT) Technique for Efficiency Optimization of Solar PV System

    OpenAIRE

    SHARMA, DINESH KUMAR; Purohit, Ghanshyam

    2016-01-01

    A novel maximum power angle (MPA) based maximum power point tracking (MPPT) technique is reported. In this technique, a graphical and mathematical approach based maximum power angle determination mechanism is adopted. On the I-V characteristic curve, the angle made from the intersection point of open circuit voltage (VOC) and short circuit current (ISC) with respect to the voltage (V) axis to the point of maximum power (MPP) is determined using the known parameters of the solar PV module. The...

  18. Attitude sensor alignment calibration for the solar maximum mission

    Science.gov (United States)

    Pitone, Daniel S.; Shuster, Malcolm D.

    1990-01-01

    An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.

  19. Solar advanced internal film receiver

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la

    1990-01-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs

  20. Post flight analysis of NASA standard star trackers recovered from the solar maximum mission

    Science.gov (United States)

    Newman, P.

    1985-01-01

    The flight hardware returned after the Solar Maximum Mission Repair Mission was analyzed to determine the effects of 4 years in space. The NASA Standard Star Tracker would be a good candidate for such analysis because it is moderately complex and had a very elaborate calibration during the acceptance procedure. However, the recovery process extensively damaged the cathode of the image dissector detector making proper operation of the tracker and a comparison with preflight characteristics impossible. Otherwise, the tracker functioned nominally during testing.

  1. Parametric characteristics of a solar thermophotovoltaic system at the maximum efficiency

    International Nuclear Information System (INIS)

    Liao, Tianjun; Chen, Xiaohang; Yang, Zhimin; Lin, Bihong; Chen, Jincan

    2016-01-01

    Graphical abstract: A model of the far-field TPVC driven by solar energy, which consists of an optical concentrator, an absorber, an emitter, and a PV cell and is simply referred as to the far-field STPVS. - Highlights: • A model of the far-field solar thermophotovoltaic system (STPVS) is established. • External and internal irreversible losses are considered. • The maximum efficiency of the STPVS is calculated. • Optimal values of key parameters at the maximum efficiency are determined. • Effects of the concentrator factor on the performance of the system are discussed. - Abstract: A model of the solar thermophotovoltaic system (STPVS) consisting of an optical concentrator, a thermal absorber, an emitter, and a photovoltaic (PV) cell is proposed, where the far-field thermal emission between the emitter and the PV cell, the radiation losses from the absorber and emitter to the environment, the reflected loss from the absorber, and the finite-rate heat exchange between the PV cell and the environment are taken into account. Analytical expressions for the power output of and overall efficiency of the STPVS are derived. By solving thermal equilibrium equations, the operating temperatures of the emitter and PV cell are determined and the maximum efficiency of the system is calculated numerically for given values of the output voltage of the PV cell and the ratio of the front surface area of the absorber to that of the emitter. For different bandgaps, the maximum efficiencies of the system are calculated and the corresponding optimum values of several operating parameters are obtained. The effects of the concentrator factor on the optimum performance of the system are also discussed.

  2. Initial results from the repaired Solar Maximum Mission and future prospects

    International Nuclear Information System (INIS)

    Woodgate, B.E.

    1984-01-01

    Goals of the recently repaired Solar Maximum Mission Observatory are outlined, including continued emphasis on diagnosing impulsive phase of flares, studies of prominence and coronal plasmas, solar cycle variations of flares, the corona and solar irradiance, and comets. Some preliminary observations taken after the repair are shown, particularly of the X13 flare of April 1984. 9 references

  3. Nested aplanats for practical maximum-performance solar concentration.

    Science.gov (United States)

    Goldstein, Alex; Feuermann, Daniel; Conley, Gary D; Gordon, Jeffrey M

    2011-08-01

    Dual-mirror aplanats provide efficient, ultracompact, high-irradiance solar concentration and were recently developed for concentrator photovoltaics. However, inherent limitations place the focus inside the optic. This mandates a terminal dielectric concentrator to extract concentrated sunlight to the solar cell outside the optic, and an optical bond to the cell. Can a modified design strategy site the focus outside the optic (eliminating the need for an extractor and optical bond) without compromising concentrator compactness, low shading losses, or pragmatic manufacturability? We show how judiciously nested dual-mirror aplanats can satisfy all these objectives, with raytrace simulations confirming performance tantamount to the best conventional aplanats. © 2011 Optical Society of America

  4. T-year maximum discharges on water courses in Slovakia

    International Nuclear Information System (INIS)

    Podolinska, J; Sipikalova, H

    2008-01-01

    T-year maximum discharges serve the purpose of background for design, building and operation of water management constructions and facilities, regulation of water courses, flood and environmental protection. The Slovak Hydrometeorological Institute (SHMI) processes and provides these data according technical standards. It is a tradition that the whole territory of Slovakia is processed and the system of river network is considered. This way was also applied for data updating (finished in 2006) with new methods and technologies (GIS). Background materials were time series of hydrological data obtained from surface water stream-gauging stations during the whole observation period (minimum 20 years). T-year maximum discharges in 340 stream-gauging stations were calculated using mathematical-statistic methods. Pooling scheme of 100-year maximum specific discharge (q100.max) was used in the profiles without observation. The cluster analysis was applied for regional types and relative estimate deviation q100.max determined using non-linear regression formula expressing dependence of this value on specific physical-geographical characteristics. Input data were time series from 197 selected stations with a catchment area from 20 to 300 km 2 and minimum impact of anthropogenic activities. T-year maximum discharges were determined in stream-gauging stations and significant profiles by using the aforementioned methods and synchronized in the system of river network.

  5. The Effects of Solar Maximum on the Earth's Satellite Population and Space Situational Awareness

    Science.gov (United States)

    Johnson, Nicholas L.

    2012-01-01

    The rapidly approaching maximum of Solar Cycle 24 will have wide-ranging effects not only on the number and distribution of resident space objects, but also on vital aspects of space situational awareness, including conjunction assessment processes. The best known consequence of high solar activity is an increase in the density of the thermosphere, which, in turn, increases drag on the vast majority of objects in low Earth orbit. The most prominent evidence of this is seen in a dramatic increase in space object reentries. Due to the massive amounts of new debris created by the fragmentations of Fengyun-1C, Cosmos 2251 and Iridium 33 during the recent period of Solar Minimum, this effect might reach epic levels. However, space surveillance systems are also affected, both directly and indirectly, historically leading to an increase in the number of lost satellites and in the routine accuracy of the calculation of their orbits. Thus, at a time when more objects are drifting through regions containing exceptionally high-value assets, such as the International Space Station and remote sensing satellites, their position uncertainties increase. In other words, as the possibility of damaging and catastrophic collisions increases, our ability to protect space systems is degraded. Potential countermeasures include adjustments to space surveillance techniques and the resetting of collision avoidance maneuver thresholds.

  6. Predicting Maximum Sunspot Number in Solar Cycle 24 Nipa J Bhatt ...

    Indian Academy of Sciences (India)

    behaviour, precursor, spectral, climatology, recent climatology, neural networks have been used in ... precursors to estimate the solar activity in future. ... aa indices as geomagnetic precursor to estimate the maximum amplitude of upcoming solar cycle 24. These aa indices are derived using data from two nearly antipodal.

  7. Coronal mass ejections observed during the solar maximum mission: Latitude distribution and rate of occurrence

    International Nuclear Information System (INIS)

    Hundhausen, A.J.; Sawyer, C.B.; House, L.; Illing, R.M.E.; Wagner, W.J.

    1984-01-01

    Sixty-five coronal mass ejections have been identified in a systematic examination of white-light coronal images obtained between March and September 1980 by the coronagraph/polarimeter flown on the solar maximum mission spacecraft. These ejections were more uniformly distributed in position angle (or ''projected'' solar latitude) than the similar events observed during the Skylab mission in 1973--1974; 27% of the solar maximum mission mass ejections were centered at positions more than 45 0 from the solar equator. The average rate of occurrence of the observed mass ejections for the entire solar maximum mission epoch, based on the assumption that one coronagraph image per spacecraft orbit is sufficient for detection, was 0.9 +- 0.15 per 24-hour day. Application of the same sampling assumption to the Skylab data set leads to a rate of 0.75 per 24-hour day and thus a change in this rate from the Skylab era (on the declining phase of sunspot cycle 20) to solar maximum mission (near the maximum of sunspot cycle 21) of only approx.20%

  8. Sixty-Year Career in Solar Physics

    Science.gov (United States)

    Fang, C.

    2018-05-01

    This memoir reviews my academic career in solar physics for 60 years, including my research on non-LTE modeling, white-light flares, and small-scale solar activities. Through this narrative, the reader can catch a glimpse of the development of solar physics research in mainland China from scratch. In the end, some prospects for future development are given.

  9. Comparison of candidate solar array maximum power utilization approaches. [for spacecraft propulsion

    Science.gov (United States)

    Costogue, E. N.; Lindena, S.

    1976-01-01

    A study was made of five potential approaches that can be utilized to detect the maximum power point of a solar array while sustaining operations at or near maximum power and without endangering stability or causing array voltage collapse. The approaches studied included: (1) dynamic impedance comparator, (2) reference array measurement, (3) onset of solar array voltage collapse detection, (4) parallel tracker, and (5) direct measurement. The study analyzed the feasibility and adaptability of these approaches to a future solar electric propulsion (SEP) mission, and, specifically, to a comet rendezvous mission. Such missions presented the most challenging requirements to a spacecraft power subsystem in terms of power management over large solar intensity ranges of 1.0 to 3.5 AU. The dynamic impedance approach was found to have the highest figure of merit, and the reference array approach followed closely behind. The results are applicable to terrestrial solar power systems as well as to other than SEP space missions.

  10. Terrestrial exospheric hydrogen density distributions under solar minimum and solar maximum conditions observed by the TWINS stereo mission

    Directory of Open Access Journals (Sweden)

    J. H. Zoennchen

    2015-03-01

    Full Text Available Circumterrestrial Lyman-α column brightness observations above 3 Earth radii (Re have been used to derive separate 3-D neutral hydrogen density models of the Earth's exosphere for solar minimum (2008, 2010 and near-solar-maximum (2012 conditions. The data used were measured by Lyman-α detectors (LAD1/2 onboard each of the TWINS satellites from very different orbital positions with respect to the exosphere. Exospheric H atoms resonantly scatter the near-line-center solar Lyman-α flux at 121.6 nm. Assuming optically thin conditions above 3Re along a line of sight (LOS, the scattered LOS-column intensity is proportional to the LOS H-column density. We found significant differences in the density distribution of the terrestrial exosphere under different solar conditions. Under solar maximum conditions we found higher H densities and a larger spatial extension compared to solar minimum. After a continuous, 2-month decrease in (27 day averaged solar activity, significantly lower densities were found. Differences in shape and orientation of the exosphere under different solar conditions exist. Above 3 Re, independent of solar activity, increased H densities appear on the Earth's nightside shifted towards dawn. With increasing distance (as measured at 8Re this feature is shifted westward/duskward by between −4 and −5° with respect to midnight. Thus, at larger geocentric distance the exosphere seems to be aligned with the aberrated Earth–solar-wind line, defined by the solar wind velocity and the orbital velocity of the Earth. The results presented in this paper are valid for geocentric distances between 3 and 8Re.

  11. Proton Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24

    Science.gov (United States)

    Martucci, M.; Munini, R.; Boezio, M.; Di Felice, V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Santis, C.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Marcelli, N.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Potgieter, M. S.; Raath, J. L.

    2018-02-01

    Precise measurements of the time-dependent intensity of the low-energy (data spanning different solar activity periods, i.e., from minimum to maximum, are needed to achieve comprehensive understanding of such physical phenomena. The minimum phase between solar cycles 23 and 24 was peculiarly long, extending up to the beginning of 2010 and followed by the maximum phase, reached during early 2014. In this Letter, we present proton differential spectra measured from 2010 January to 2014 February by the PAMELA experiment. For the first time the GCR proton intensity was studied over a wide energy range (0.08–50 GeV) by a single apparatus from a minimum to a maximum period of solar activity. The large statistics allowed the time variation to be investigated on a nearly monthly basis. Data were compared and interpreted in the context of a state-of-the-art three-dimensional model describing the GCRs propagation through the heliosphere.

  12. Coronal temperatures, heating, and energy flow in a polar region of the sun at solar maximum

    Science.gov (United States)

    Withbroe, G. L.; Kohl, J. L.; Weiser, H.; Munro, R. H.

    1985-01-01

    The profiles of resonantly scattered Lyman-alpha coronal radiation have been used to determine the hydrogen kinetic temperature from 1.5 to 4 solar radius from the center of the polar region of the corona observed in 1980 at solar maximum. Hydrogen temperatures derived from the line profiles were found to decrease with height from 1.2 million K at r = 1.5 solar radii to 600,000 K at r = 4 solar radius. Comparison of the measured kinetic temperatures with predictions from a semiempirical two-fluid model showed evidence of a small amount of heating or a nonthermal contribution to the motions of coronal protons between 1.5 and 4 solar radius. The widths of the profiles confirmed an upper limit of 110 + or - 15 km/s on the rms magnitude of the line-of-sight component of velocities between 1.5 and 4 solar radius. Density measurements obtained in situ in the solar wind in the ecliptic were used to locate the sources of low speed and high-speed winds in the polar region. An eclipse photograph of the corona at solar maximum is provided.

  13. Maximum Power Point Tracking With Improved Incremental Conductance Method for Fast Changing Solar Irradiation Level

    Science.gov (United States)

    >Tey Kok Soon, Saad Mekhilef,

    2013-06-01

    This paper proposed an improved incremental conductance method to track the Maximum Power Point (MPP) for PV Panel under fast changing solar irradiation. When there is increment in solar irradiation level, the conventional incremental conductance method is confused and responses incorrectly. The proposed method response correctly and there is no steady state oscillation compared to the conventional method. Matlab simulation is carried out for both the improved and conventional incremental conductance method under fast changing solar irradiation level. The simulation results showed the system able to track the MPP faster than the conventional method.

  14. Modeling of Maximum Power Point Tracking Controller for Solar Power System

    Directory of Open Access Journals (Sweden)

    Aryuanto Soetedjo

    2012-09-01

    Full Text Available In this paper, a Maximum Power Point Tracking (MPPT controller for solar power system is modeled using MATLAB Simulink. The model consists of PV module, buck converter, and MPPT controller. The contribution of the work is in the modeling of buck converter that allowing the input voltage of the converter, i.e. output voltage of PV is changed by varying the duty cycle, so that the maximum power point could be tracked when the environmental changes. The simulation results show that the developed model performs well in tracking the maximum power point (MPP of the PV module using Perturb and Observe (P&O Algorithm.

  15. Fast-PPP assessment in European and equatorial region near the solar cycle maximum

    Science.gov (United States)

    Rovira-Garcia, Adria; Juan, José Miguel; Sanz, Jaume

    2014-05-01

    The Fast Precise Point Positioning (Fast-PPP) is a technique to provide quick high-accuracy navigation with ambiguity fixing capability, thanks to an accurate modelling of the ionosphere. Indeed, once the availability of real-time precise satellite orbits and clocks is granted to users, the next challenge is the accuracy of real-time ionospheric corrections. Several steps had been taken by gAGE/UPC to develop such global system for precise navigation. First Wide-Area Real-Time Kinematics (WARTK) feasibility studies enabled precise relative continental navigation using a few tens of reference stations. Later multi-frequency and multi-constellation assessments in different ionospheric scenarios, including maximum solar-cycle conditions, were focussed on user-domain performance. Recently, a mature evolution of the technique consists on a dual service scheme; a global Precise Point Positioning (PPP) service, together with a continental enhancement to shorten convergence. A end to end performance assessment of the Fast-PPP technique is presented in this work, focussed in Europe and in the equatorial region of South East Asia (SEA), both near the solar cycle maximum. The accuracy of the Central Processing Facility (CPF) real-time precise satellite orbits and clocks is respectively, 4 centimetres and 0.2 nanoseconds, in line with the accuracy of the International GNSS Service (IGS) analysis centres. This global PPP service is enhanced by the Fast-PPP by adding the capability of global undifferenced ambiguity fixing thanks to the fractional part of the ambiguities determination. The core of the Fast-PPP is the capability to compute real-time ionospheric determinations with accuracies at the level or better than 1 Total Electron Content Unit (TECU), improving the widely-accepted Global Ionospheric Maps (GIM), with declared accuracies of 2-8 TECU. This large improvement in the modelling accuracy is achieved thanks to a two-layer description of the ionosphere combined with

  16. Analysis of ionosphere variability over low-latitude GNSS stations during 24th solar maximum period

    Science.gov (United States)

    Venkata Ratnam, D.; Sivavaraprasad, G.; Latha Devi, N. S. M. P.

    2017-07-01

    Global Positioning System (GPS) is a remote sensing tool of space weather and ionospheric variations. However, the interplanetary space-dependent drifts in the ionospheric irregularities cause predominant ranging errors in the GPS signals. The dynamic variability of the low-latitude ionosphere is an imperative threat to the satellite-based radio communication and navigation ranging systems. The study of temporal and spatial variations in the ionosphere has triggered new investigations in modelling, nowcasting and forecasting the ionospheric variations. Hence, in this paper, the dynamism in the day-to-day, month-to-month and seasonal variability of the ionospheric Total Electron Content (TEC) has been explored during the solar maximum period, January-December 2013, of the 24th solar cycle. The spatial and temporal variations of the ionosphere are analysed using the TEC values derived from three Indian low-latitude GPS stations, namely, Bengaluru, Guntur and Hyderabad, separated by 13-18° in latitude and 77-81° in longitude. The observed regional GPS-TEC variations are compared with the predicted TEC values of the International Reference Ionosphere (IRI-2012 and 2007) models. Ionospheric parameters such as Vertical TEC (VTEC), relative TEC deviation index and monthly variations in the grand-mean of ionosphere TEC and TEC intensity, along with the upper and lower quartiles, are adopted to investigate the ionosphere TEC variability during quiet and disturbed days. The maximum ionospheric TEC variability is found during March and September equinoxes, followed by December solstice while the minimum variability is observed during June solstice. IRI models are in reasonable agreement with GPS TEC but are overestimating during dawn hours (01:00-06:00 LT) as compared to the dusk hours. Higher percentage deviations are observed during equinoctial months than summer over EIA stations, Guntur and Hyderabad. GPS TEC variations are overestimated during dawn hours for all the

  17. Formation of a strong southward IMF near the solar maximum of cycle 23

    Directory of Open Access Journals (Sweden)

    S. Watari

    2004-01-01

    Full Text Available We analyzed observations of the solar activities and the solar wind parameters associated with large geomagnetic storms near the maximum of solar cycle 23. This analysis showed that strong southward interplanetary magnetic fields (IMFs, formed through interaction between an interplanetary disturbance, and background solar wind or between interplanetary disturbances are an important factor in the occurrence of intense geomagnetic storms. Based on our analysis, we seek to improve our understanding of the physical processes in which large negative Bz's are created which will lead to improving predictions of space weather.

    Key words. Interplanetary physics (Flare and stream dynamics; Interplanetary magnetic fields; Interplanetary shocks

  18. Approaching solar maximum 24 with STEREO--Multipoint observations of solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Dresing, N.; Heber, B.; Klassen, A., E-mail: dresing@physik.uni-kiel.de [IEAP, University of Kiel, Kiel (Germany); Cohen, C.M.S.; Leske, R.A.; Mewaldt, R.A. [California Institute of Technology, Pasadena, CA (United States); Gomez-Herrero, R. [Space Research Group, University of Alcal´a, Alcal´a (Spain); Mason, G.M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD (United States); Von Rosenvinge, T.T. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2014-07-01

    Since the beginning of the Solar Terrestrial Relations Observatory (STEREO) mission at the end of 2006, the two spacecraft have now separated by more than 130◦ degrees from the Earth. A 360-degree view of the Sun has been possible since February 2011, providing multipoint in situ and remote sensing observations of unprecedented quality. Combining STEREO observations with near-Earth measurements allows the study of solar energetic particle (SEP) events over a wide longitudinal range with minimal radial gradient effects. This contribution provides an overview of recent results obtained by the STEREO/IMPACT team in combination with observations by the ACE and SOHO spacecraft. We focus especially on multi-spacecraft investigations of SEP events. The large longitudinal spread of electron and 3He-rich events as well as unusual anisotropies will be presented and discussed. (author)

  19. Investigation on the Maximum Power Point in Solar Panel Characteristics Due to Irradiance Changes

    Science.gov (United States)

    Abdullah, M. A.; Fauziah Toha, Siti; Ahmad, Salmiah

    2017-03-01

    One of the disadvantages of the photovoltaic module as compared to other renewable resources is the dynamic characteristics of solar irradiance due to inconsistency weather condition and surrounding temperature. Commonly, a photovoltaic power generation systems consist of an embedded control system to maximize the power generation due to the inconsistency in irradiance. In order to improve the simplicity of the power optimization control, this paper present the characteristic of Maximum Power Point with various irradiance levels for Maximum Power Point Tracking (MPPT). The technique requires a set of data from photovoltaic simulation model to be extrapolated as a standard relationship between irradiance and maximum power. The result shows that the relationship between irradiance and maximum power can be represented by a simplified quadratic equation. The first section in your paper

  20. Maximizing Output Power of a Solar Panel via Combination of Sun Tracking and Maximum Power Point Tracking by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Mohsen Taherbaneh

    2010-01-01

    Full Text Available In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar panel orientation in horizontal and vertical directions by two DC motors properly designed. A DC-DC converter is employed to track the solar panel maximum power point. In addition, the proposed system has the capability of the extraction of solar panel I-V curves. Experimental results present that the proposed fuzzy techniques result in increasing of power delivery from the solar panel, causing a reduction in size, weight, and cost of solar panels in photovoltaic systems.

  1. Matching of Silicon Thin-Film Tandem Solar Cells for Maximum Power Output

    Directory of Open Access Journals (Sweden)

    C. Ulbrich

    2013-01-01

    Full Text Available We present a meaningful characterization method for tandem solar cells. The experimental method allows for optimizing the output power instead of the current. Furthermore, it enables the extraction of the approximate AM1.5g efficiency when working with noncalibrated spectra. Current matching of tandem solar cells under short-circuit condition maximizes the output current but is disadvantageous for the overall fill factor and as a consequence does not imply an optimization of the output power of the device. We apply the matching condition to the maximum power output; that is, a stack of solar cells is power matched if the power output of each subcell is maximal at equal subcell currents. The new measurement procedure uses additional light-emitting diodes as bias light in the JV characterization of tandem solar cells. Using a characterized reference tandem solar cell, such as a hydrogenated amorphous/microcrystalline silicon tandem, it is possible to extract the AM1.5g efficiency from tandems of the same technology also under noncalibrated spectra.

  2. Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system

    Directory of Open Access Journals (Sweden)

    S. Shabaan

    2018-05-01

    Full Text Available Solar photovoltaic (PV systems are a clean and naturally replenished energy source. PV panels have a unique point which represents the maximum available power and this point depend on the environmental conditions such as temperature and irradiance. A maximum power point tracking (MPPT is therefore necessary for maximum efficiency. In this paper, a study of MPPT for PV water pumping system based on adaptive neuro-fuzzy inference system (ANFIS is discussed. A comparison between the performance of the system with and without MPPT is carried out under varying irradiation and temperature conditions. ANFIS based controller shows fast response with high efficiency at all irradiance and temperature levels making it a powerful technique for non-linear systems as PV modules. Keywords: MPPT, ANFIS, Boost converter, PMDC pump

  3. Twenty-five years of maximum-entropy principle

    Science.gov (United States)

    Kapur, J. N.

    1983-04-01

    The strengths and weaknesses of the maximum entropy principle (MEP) are examined and some challenging problems that remain outstanding at the end of the first quarter century of the principle are discussed. The original formalism of the MEP is presented and its relationship to statistical mechanics is set forth. The use of MEP for characterizing statistical distributions, in statistical inference, nonlinear spectral analysis, transportation models, population density models, models for brand-switching in marketing and vote-switching in elections is discussed. Its application to finance, insurance, image reconstruction, pattern recognition, operations research and engineering, biology and medicine, and nonparametric density estimation is considered.

  4. First ten years of hinode solar on-orbit observatory

    CERN Document Server

    Imada, Shinsuke; Kubo, Masahito

    2018-01-01

    This book provides the latest scientific understanding of the Sun, sharing insights gleaned from the international solar physics project Hinode. The authors (who are the main project contributors) review, from the various viewpoints, the discoveries and advances made by the on-orbit operations of the Hinode spacecraft in its first decade. Further, they present a wealth of scientifically important photographs and data from Hinode. Launched in September 2006, Hinode is the third Japanese solar observatory on orbit, and employs three highly advanced telescopes jointly developed and operated with international partners. The book describes the background of these research topics, how the Hinode telescopes have tackled various challenges, and the scientific achievements and impacts in the first 10 years. Furthermore, it explores future perspective of researches in Japan. The book will benefit undergraduate students interested in recent advance in the solar research, as well as graduate students and researchers work...

  5. First ten years of Hinode solar on-orbit observatory

    CERN Document Server

    Imada, Shinsuke; Kubo, Masahito

    2018-01-01

    This book provides the latest scientific understanding of the Sun, sharing insights gleaned from the international solar physics project Hinode. The authors (who are the main project contributors) review, from the various viewpoints, the discoveries and advances made by the on-orbit operations of the Hinode spacecraft in its first decade. Further, they present a wealth of scientifically important photographs and data from Hinode. Launched in September 2006, Hinode is the third Japanese solar observatory on orbit, and employs three highly advanced telescopes jointly developed and operated with international partners. The book describes the background of these research topics, how the Hinode telescopes have tackled various challenges, and the scientific achievements and impacts in the first 10 years. Furthermore, it explores future perspective of researches in Japan. The book will benefit undergraduate students interested in recent advance in the solar research, as well as graduate students and researchers work...

  6. Performance characteristics and parametric choices of a solar thermophotovoltaic cell at the maximum efficiency

    International Nuclear Information System (INIS)

    Dong, Qingchun; Liao, Tianjun; Yang, Zhimin; Chen, Xiaohang; Chen, Jincan

    2017-01-01

    Graphical abstract: The overall model of the solar thermophotovoltaic cell (STPVC) composed of an optical lens, an absorber, an emitter, and a photovoltaic (PV) cell with an integrated back-side reflector is updated to include various irreversible losses. - Highlights: • A new model of the irreversible solar thermophotovoltaic system is proposed. • The material and structure parameters of the system are considered. • The performance characteristics at the maximum efficiency are revealed. • The optimal values of key parameters are determined. • The system can obtain a large efficiency under a relative low concentration ratio. - Abstract: The overall model of the solar thermophotovoltaic cell (STPVC) composed of an optical lens, an absorber, an emitter, and a photovoltaic (PV) cell with an integrated back-side reflector is updated to include various irreversible losses. The power output and efficiency of the cell are analytically derived. The performance characteristics of the STPVC at the maximum efficiency are revealed. The optimum values of several important parameters, such as the voltage output of the PV cell, the area ratio of the absorber to the emitter, and the band-gap of the semiconductor material, are determined. It is found that under the condition of a relative low concentration ratio, the optimally designed STPVC can obtain a relative large efficiency.

  7. A Maximum Likelihood Approach to Determine Sensor Radiometric Response Coefficients for NPP VIIRS Reflective Solar Bands

    Science.gov (United States)

    Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong

    2011-01-01

    Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.

  8. Wind and Solar Curtailment: International Experience and Practices

    DEFF Research Database (Denmark)

    Lew, Debra; Bird, Lori; Milligan, Michael

    2013-01-01

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusse...

  9. Solar Panel System for Street Light Using Maximum Power Point Tracking (MPPT Technique

    Directory of Open Access Journals (Sweden)

    Wiedjaja A.

    2014-03-01

    Full Text Available Solar energy is one form of the renewable energy which is very abundant in regions close to the equator. One application of solar energy is for street light. This research focuses on using the maximum power point tracking technique (MPPT, particularly the perturb and observe (P&O algorithm, to charge battery for street light system. The proposed charger circuit can achieve 20.73% higher power efficiency compared to that of non-MPPT charger. We also develop the LED driver circuit for the system which can achieve power efficiency up to 91.9% at a current of 1.06 A. The proposed street lightning system can be implemented with a relatively low cost for public areas.

  10. Theoretical study of the seasonal behavior of the global ionosphere at solar maximum

    Science.gov (United States)

    Sojka, J. J.; Schunk, R. W.

    1989-01-01

    The seasonal behavior of the global ionosphere was studied using a time-dependent three-dimensional physical model (developed by Shunk and his coworkers) of the ionosphere at altitudes between 120 and 800 km. This model accounts for field-aligned diffusion, cross-field electrodynamic drifts both the equatorial region and at high latitudes, interhemispheric flow, thermospheric winds, polar wind escape, energy-dependent chemical reactions, neutral composition changes, ion production due to solar EUV radiation and auroral precipitation, thermal conduction, diffusion-thermal heat flow, and local heating and cooling processes. The model studies were carried out for both June and December solstice conditions at solar maximum and for low geomagnetic activity. The ionospheric features predicted by the model agreed qualitatively with the available measurements.

  11. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    Science.gov (United States)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1990-01-01

    The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.

  12. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.

    Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  13. Control of the Soft X-ray Polychromator on the Solar Maximum Mission Satellite

    Science.gov (United States)

    Springer, L. A.; Levay, M.; Gilbreth, C. W.; Finch, M. L.; Bentley, R. D.; Firth, J. G.

    1981-01-01

    The Soft X-ray Polychromator on the Solar Maximum Mission Satellite consists of two largely independent instruments: the Flat Crystal Spectrometer, a highly collimated scanning spectrometer mounted on a raster platform, and the Bent Crystal Spectrometer, a broadly collimated spectrometer providing high time-resolution (128 ms) spectra for the study of rapidly evolving phenomena. Each instrument is controlled by a microcomputer system built around an RCA 1802 microprocessor. This paper presents a discussion of the motivation for using a microprocessor in this application, and the design concepts that were implemented. The effectiveness of the approach as seen after several months of operation will also be discussed.

  14. CAWSES November 7-8, 2004, Superstorm: Complex Solar and Interplanetary Features in the Post-Solar Maximum Phase

    Science.gov (United States)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-01-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to 44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  15. Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2016-01-01

    Highlights: • Novel high accurate sensorless dual-axis solar tracker. • It has the advantages of both sensor based and sensorless solar trackers. • It does not have the disadvantages of sensor based and sensorless solar trackers. • Tracking error of only 0.11° that is less than the tracking errors of others. • An increase of 28.8–43.6% depending on the seasons in the energy efficiency. - Abstract: In this study, a novel high accurate sensorless dual-axis solar tracker controlled by the maximum power point tracking unit available in almost all photovoltaic systems is proposed. The maximum power point tracking controller continuously calculates the maximum output power of the photovoltaic module/panel/array, and uses the altitude and azimuth angles deviations to track the sun direction where the greatest value of the maximum output power is extracted. Unlike all other sensorless solar trackers, the proposed solar tracking system is a closed loop system which means it uses the actual direction of the sun at any time to track the sun direction, and this is the contribution of this work. The proposed solar tracker has the advantages of both sensor based and sensorless dual-axis solar trackers, but it does not have their disadvantages. Other sensorless solar trackers all are open loop, i.e., they use offline estimated data about the sun path in the sky obtained from solar map equations, so low exactness, cloudy sky, and requiring new data for new location are their problems. A photovoltaic system has been built, and it is experimentally verified that the proposed solar tracking system tracks the sun direction with the tracking error of 0.11° which is less than the tracking errors of other both sensor based and sensorless solar trackers. An increase of 28.8–43.6% depending on the seasons in the energy efficiency is the main advantage of utilizing the proposed solar tracking system.

  16. A New Fuzzy-Based Maximum Power Point Tracker for a Solar Panel Based on Datasheet Values

    Directory of Open Access Journals (Sweden)

    Ali Kargarnejad

    2013-01-01

    Full Text Available Tracking maximum power point of a solar panel is of interest in most of photovoltaic applications. Solar panel modeling is also very interesting exclusively based on manufacturers data. Knowing that the manufacturers generally give the electrical specifications of their products at one operating condition, there are so many cases in which the specifications in other conditions are of interest. In this research, a comprehensive one-diode model for a solar panel with maximum obtainable accuracy is fully developed only based on datasheet values. The model parameters dependencies on environmental conditions are taken into consideration as much as possible. Comparison between real data and simulations results shows that the proposed model has maximum obtainable accuracy. Then a new fuzzy-based controller to track the maximum power point of the solar panel is also proposed which has better response from speed, accuracy and stability point of view respect to the previous common developed one.

  17. The ultraviolet dayglow at solar maximum. 1 - Far UV spectroscopy at 3.5 A resolution

    Science.gov (United States)

    Eastes, R. W.; Feldman, P. D.; Gentieu, E. P.; Christensen, A. B.

    1985-01-01

    The earth's far ultraviolet dayglow (1080-1515 A) was observed at about 3.5 A resolution during a period of high solar activity near solar maximum om June 27, 1980. The observations were made at local noon by rocket-borne spectrometers viewing toward the earth's northern limb at 90 deg zenith angle (ZA) at altitudes between 100 and 245 km, and at 98 deg ZA between 245 and 260 km. The zenith angle was 8.9 deg. These spectra are compared with earlier lower-resolution dayglow data obtained during a period of lower solar activity and with auroral spectra. The brightness ratio of O I 1356 to the N2 Lyman-Birge-Hopfield (LBH) system, an indicator of the O to N2 density ratio, is lower than that previously measured at mid-latitudes and closer to the value found in aurorae. In the LBH system a depletion of the bands originating on the v-prime = 3 vibrational level of the excited state is found. Some weak N2 Birge-Hopfield bands and N I lines only marginally detected previously in the dayglow are confirmed.

  18. Utilizing Maximum Power Point Trackers in Parallel to Maximize the Power Output of a Solar (Photovoltaic) Array

    Science.gov (United States)

    2012-12-01

    input and output parameters required for efficiency calculations. 70 B. MPPT SELECTION 1. STEVAL SPV1020 MPPT with DC-DC Boost Converter The...the power output of the solar array. Currently, most military applications that utilize solar energy omit or use only a single MPPT per PV system. The...photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase the power output of the solar array. Currently, most military

  19. The effect of the heliospheric current sheet on cosmic ray intensities at solar maximum: Two alternative hypotheses

    International Nuclear Information System (INIS)

    Thomas, B.T.; Goldstein, B.E.; Smith, E.J.

    1986-01-01

    There is now a growing awareness that solar cycle related changes in the large-scale structure of the heliospheric current sheet may play an important role in the modulation of galactic cosmic rays. To date, attention has been focused on the configuration of the current sheet at times near solar minimum when the current sheet structure is relatively simple. Previous analyses have explored the effect on cosmic ray intensities of a single current sheet which is tilted with respect to the heliographic equator under the assumption that the tilt of the current sheet is a minimum at solar minimum and increases as solar maximum approaches. This paper attempts to extend the previous analyses into the period near solar maximum. Two alternative hypotheses are explored: (1) that the tilt of the current sheet continues to increase as solar maximum approaches, finally becoming vertical and overturning, and (2) that the single sheet structure breaks down near solar maximum and the sun at this time sheds the poloidal flux of the previous cycle and develops a new field structure of the opposite polarity. It is found that both hypotheses lead to variations in cosmic ray intensity comparable to those actually observed over the solar cycle

  20. Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2014-08-01

    Full Text Available The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and a fuzzy logic MPPT controller. Dynamic analyses of the current-fed buck-boost converter systems are conducted and results are presented in the paper. The maximum power point tracking function is achieved through appropriate control of the power switches of the power converter. A fuzzy logic controller is developed to perform the MPPT function for obtaining maximum power from the PV panel. The MATLAB-based Simulink piecewise linear electric circuit simulation tool is used to verify the complete circuit simulation model.

  1. Mining international year book, 1978

    International Nuclear Information System (INIS)

    Skinner, W.

    1978-01-01

    The 1978 issue of the Mining International Year Book marks the 91st year of publication and contains particulars of the principal and other international companies associated with the Mining Industry. The book is recognized as the foremost reference work of its kind with a coverage both wide and detailed. The many companies registered abroad are distinguished by an entry immediately beneath the title giving the date and place of incorporation; where the date of registration alone is mentioned, the company is registered in the United Kingdom. As in previous years each entry has been reviewed and, where necessary, revised in the light of additional information received since the previous volume. The information thus recorded is the latest available at the time of going to press. Special features of value and interest include cross-reference index to all principal, subsidiary and associated companies in this edition, geographical index, suppliers' directory and buyers' guide, world production table, mining areas of Australia, and professional services section

  2. 2015: International Year of Light

    CERN Multimedia

    Paola Catapano

    2015-01-01

    The year 2015, a century after the publication of Einstein’s Theory of General Relativity in 1915, has been proclaimed the International Year of Light and light-based technologies by the UN General Assembly. CERN is taking this opportunity to communicate informationabout the High Luminosity LHC project and CERN’s involvement in the SESAME synchrotron project in Jordan. In addition, light has been chosen as the main theme of CERN’s participation in the 2015 Researchers’ Night.   “Light” as “luminosity” will be the underlying theme of the communication campaign launched to increase awareness of CERN’s High Luminosity LHC (HL-LHC). By increasing the luminosity of the LHC by a factor of 10, the ambitious project aims at extending the discovery potential of CERN’s flagship accelerator. The challenging upgrade requires a number of key technological breakthroughs, including innovative high-field supercond...

  3. Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...

    Indian Academy of Sciences (India)

    tribpo

    Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...

  4. The Maximum Mass Solar Nebula and the early formation of planets

    Science.gov (United States)

    Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-03-01

    Current planet formation theories provide successful frameworks with which to interpret the array of new observational data in this field. However, each of the two main theories (core accretion, gravitational instability) is unable to explain some key aspects. In many planet formation calculations, it is usual to treat the initial properties of the planet forming disc (mass, radius, etc.) as free parameters. In this paper, we stress the importance of setting the formation of planet forming discs within the context of the formation of the central stars. By exploring the early stages of disc formation, we introduce the concept of the Maximum Mass Solar Nebula (MMSN), as opposed to the oft-used Minimum Mass Solar Nebula (here mmsn). It is evident that almost all protoplanetary discs start their evolution in a strongly self-gravitating state. In agreement with almost all previous work in this area, we conclude that on the scales relevant to planet formation these discs are not gravitationally unstable to gas fragmentation, but instead form strong, transient spiral arms. These spiral arms can act as efficient dust traps allowing the accumulation and subsequent fragmentation of the dust (but not the gas). This phase is likely to populate the disc with relatively large planetesimals on short timescales while the disc is still veiled by a dusty-gas envelope. Crucially, the early formation of large planetesimals overcomes the main barriers remaining within the core accretion model. A prediction of this picture is that essentially all observable protoplanetary discs are already planet hosting.

  5. Fixed-head star tracker magnitude calibration on the solar maximum mission

    Science.gov (United States)

    Pitone, Daniel S.; Twambly, B. J.; Eudell, A. H.; Roberts, D. A.

    1990-01-01

    The sensitivity of the fixed-head star trackers (FHSTs) on the Solar Maximum Mission (SMM) is defined as the accuracy of the electronic response to the magnitude of a star in the sensor field-of-view, which is measured as intensity in volts. To identify stars during attitude determination and control processes, a transformation equation is required to convert from star intensity in volts to units of magnitude and vice versa. To maintain high accuracy standards, this transformation is calibrated frequently. A sensitivity index is defined as the observed intensity in volts divided by the predicted intensity in volts; thus, the sensitivity index is a measure of the accuracy of the calibration. Using the sensitivity index, analysis is presented that compares the strengths and weaknesses of two possible transformation equations. The effect on the transformation equations of variables, such as position in the sensor field-of-view, star color, and star magnitude, is investigated. In addition, results are given that evaluate the aging process of each sensor. The results in this work can be used by future missions as an aid to employing data from star cameras as effectively as possible.

  6. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23

    Directory of Open Access Journals (Sweden)

    K. E. J. Huttunen

    2005-02-01

    Full Text Available The magnetic structure and geomagnetic response of 73 magnetic clouds (MC observed by the WIND and ACE satellites in solar cycle 23 are examined. The results have been compared with the surveys from the previous solar cycles. The preselected candidate MC events were investigated using the minimum variance analysis to determine if they have a flux-rope structure and to obtain the estimation for the axial orientation (θC, φC. Depending on the calculated inclination relative to the ecliptic we divided MCs into "bipolar" (θC<45° and "unipolar" (θC>45°. The number of observed MCs was largest in the early rising phase, although the halo CME rate was still low. It is likely that near solar maximum we did not identify all MCs at 1AU, as they were crossed far from the axis or they had interacted strongly with the ambient solar wind or with other CMEs. The occurrence rate of MCs at 1AU is also modified by the migration of the filament sites on the Sun towards the poles near solar maximum and by the deflection of CMEs towards the equator due to the fast solar wind flow from large polar coronal holes near solar minimum. In the rising phase nearly all bipolar MCs were associated with the rotation of the magnetic field from the south at the leading edge to the north at the trailing edge. The results for solar cycles 21-22 showed that the direction of the magnetic field in the leading portion of the MC starts to reverse at solar maximum. At solar maximum and in the declining phase (2000-2003 we observed several MCs with the rotation from the north to the south. We observed unipolar (i.e. highly inclined MCs frequently during the whole investigated period. For solar cycles 21-22 the majority of MCs identified in the rising phase were bipolar while in the declining phase most MCs were unipolar. The geomagnetic response of a given MC depends greatly on its magnetic structure and the orientation of the sheath fields. For each event we distinguished the

  7. Solar Program Overview: Fiscal Years 2002& 2003 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2004-06-01

    This document describes the research activities and accomplishments of the DOE Solar Energy Technologies Program for fiscal years 2002 and 2003. It includes detailed accounts, charts, and photos of R&D activities in the areas of photovoltaics, concentrating solar power, and solar heating and lighting

  8. From the Sun’s south to the north pole – Ulysses COSPIN/LET composition measurements at solar maximum

    Directory of Open Access Journals (Sweden)

    M. Y. Hofer

    2003-06-01

    Full Text Available Based on elemental abundance ratios derived from the Ulysses COSPIN/LET measurements, we classified the energetic particle populations during and after the socalled Fast Latitude Scan – the time period during which the Ulysses spacecraft traveled from the highest heliolatitude south to maximum northern latitude, i.e. 27 November 2000 to 13 October 2001 – as being mixed between solar energetic particles (major component and particles accelerated at stream interaction regions. During the fast latitude scan, the Ulysses spacecraft made the first transit in heliolatitude from pole to pole during solar activity maximum conditions, providing a unique opportunity to acquire energetic particle composition data over a maximum range of heliolatitudes in the inner heliosphere. At low latitudes, based on our elemental abundance analysis, we found that while solar energetic particles dominated, there were indications for particle acceleration at single compression regions in a few instances. In the high heliolatitude range the observed elemental particle compositions are mainly of the solar energetic particle type. Within the statistical errors, the observed abundance ratios were independent of latitude, and were characteristic of solar energetic particles. These observations raise an important question for the theories of particle propagation in the inner heliosphere. The daily elemental abundance ratios of S/O, Mg/O and Si/O shown here are the first measured ratios at high heliolatitudes in the energy range from 13.0 to 30.0 MeV/n.Key words. Interplanetary physics (energetic particles; interplanetary shocks – Solar physics, astrophysics and astronomy (flares and mass ejections

  9. Solar solutions | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-09-07

    Sep 7, 2016 ... It's known as the water tower of Asia, and it's drying up. Pakistani farmers in the Hindu Kush Himalayan region are using solar-powered water pumps to combat the effects of climate change.​ This article is part of an ongoing series of stories about innovative projects in the developing world, a partnership ...

  10. Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion?

    Directory of Open Access Journals (Sweden)

    I. Charvátová

    Full Text Available A solar activity cycle of about 2400 years has until now been of uncertain origin. Recent results indicate it is caused by solar inertial motion. First we describe the 178.7-year basic cycle of solar motion. The longer cycle, over an 8000 year interval, is found to average 2402.2 years. This corresponds to the Jupiter/Heliocentre/Barycentre alignments (9.8855 × 243. Within each cycle an exceptional segment of 370 years has been found characterized by a looping pattern by a trefoil or quasitrefoil geometry. Solar activity, evidenced by 14C tree-ring proxies, shows the same pattern. Solar motion is computable in advance, so this provides a basis for future predictive assessments. The next 370-year segment will occur between AD 2240 and 2610.

    Key words: Solar physics (celestial mechanics

  11. Dual-Axis Solar Tracking System for Maximum Power Production in ...

    African Journals Online (AJOL)

    The power developed in a solar energy system depends fundamentally upon the amount of sunlight captured by the photovoltaic modules/arrays. This paper describes a simple electro-mechanical dual axis solar tracking system designed and developed in a study. The control of the two axes was achieved by the pulses ...

  12. Lower atmosphere of solar flares; Proceedings of the Solar Maximum Mission Symposium, Sunspot, NM, Aug. 20-24, 1985

    International Nuclear Information System (INIS)

    Neidig, D.F.

    1986-01-01

    The topics discussed by the present conference encompass the chromospheric flare phenomenon, white light flares, UV emission and the flare transition region, the flare corona and high energy emissions, stellar flares, and flare energy release and transport. Attention is given to radiative shocks and condensation in flares, impulsive brightening of H-alpha flare points, the structure and response of the chromosphere to radiation backwarming during solar flares, the interpretation of continuum emissions in white light flares, and the radiation properties of solar plasmas. Also discussed are EUV images of a solar flare and C III intensity, an active region survey in H-alpha and X-rays, dynamic thermal plasma conditions in large flares, the evolution of the flare mechanism in dwarf stars, the evidence concerning electron beams in solar flares, the energetics of the nonlinear tearing mode, macroscopic electric fields during two-ribbon flares, and the low temperature signatures of energetic particles

  13. Design and simulation of maximum power point tracking (MPPT) system on solar module system using constant voltage (CV) method

    Science.gov (United States)

    Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan

    2016-02-01

    Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.

  14. Solar buildings program contract summary, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-07

    The mission of the US Department of Energy's Solar Buildings Program is to advance the development and widespread deployment of competitive solar thermal technologies for use in buildings. The long-term goal of the Program is to combine solar energy technologies with energy-efficient construction techniques and create cost-effective buildings that have a zero net need for fossil fuel energy on an annual basis. The Solar Buildings Program conducts research and development on solar technologies that can deliver heat, light, and hot water to residential and commercial buildings. By working closely with manufacturers in both the buildings and solar energy industries and by supporting research at universities and national laboratories, the Solar Buildings Program brings together the diverse players developing reliable and affordable solar technologies for building applications. The National Renewable Energy Laboratory (NREL) in Golden, Colorado, and Sandia National Laboratories (SNL) in Albuquerque, New Mexico, jointly participate in the Solar Buildings Program. These two national laboratories work closely with industry researching new concepts, developing technology improvements, reducing manufacturing costs, monitoring system performance, promoting quality assurance, and identifying potential new markets. In calendar year 1999, the Solar Buildings Program focused primarily on solar hot water system research and development (R and D), US industry manufacturing assistance, and US market assistance. The Program also completed a number of other projects that were begun in earlier years. This Contract Summary describes the Program's contracted activities that were active during 1999.

  15. UC Berkeley's Celebration of the International Year of Astronomy 2009

    Science.gov (United States)

    Cobb, B. E.; Croft, S.; Silverman, J. M.; Klein, C.; Modjaz, M.

    2010-08-01

    We present the astronomy outreach efforts undertaken for the International Year of Astronomy 2009 at the University of California, Berkeley. Our department-wide endeavors included a monthly public lecture series by UC Berkeley astronomers and a major astronomy outreach event during a campus-wide university "open house," which included solar observing and a Starlab Planetarium. In addition to sharing our outreach techniques and outcomes, we discuss some of our unique strategies for advertising our events to the local community.

  16. International solar energy research co-operation

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.; Peippo, K.; Konttinen, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Finland has participated in several IEA activities during 1996-97. HUT coordinates the activities, but practical participation in collaborative actions take place both in industrial companies and research organisations. Neste Ltd has directly participated in several tasks and information of results has been disseminated more widely to Finnish industries and organisations. Co-operation projects covered here are: (1) IEA Photovoltaic Power Systems Task 1 `Information dissemination`, (2) IEA Photovoltaic Power Systems Task 3 `Use of Photovoltaic systems in Stand Alone and Island Applications`, (3) IEA Photovoltaic Power Systems Task 7 `Photovoltaics in built environment`, (4) IEA Solar Heating and Cooling Program Task 16 `Photovoltaics in buildings` and (5) IEA Working Group `Materials in Solar Thermal Collectors`

  17. The Temporal and Spatial Scales of Density Structures Released in the Slow Solar Wind During Solar Activity Maximum

    Science.gov (United States)

    Sanchez-Diaz, E.; Rouillard, A. P.; Davies, J. A.; Lavraud, B.; Pinto, R. F.; Kilpua, E.

    2017-12-01

    In a recent study, we took advantage of a highly tilted coronal neutral sheet to show that density structures, extending radially over several solar radii (R s), are released in the forming slow solar wind approximately 4-5 R s above the solar surface. We related the signatures of this formation process to intermittent magnetic reconnection occurring continuously above helmet streamers. We now exploit the heliospheric imagery from the Solar Terrestrial Relation Observatory (STEREO) to map the spatial and temporal distribution of the ejected structures. We demonstrate that streamers experience quasi-periodic bursts of activity with the simultaneous outpouring of small transients over a large range of latitudes in the corona. This cyclic activity leads to the emergence of well-defined and broad structures. Derivation of the trajectories and kinematic properties of the individual small transients that make up these large-scale structures confirms their association with the forming slow solar wind (SSW). We find that these transients are released, on average, every 19.5 hr, simultaneously at all latitudes with a typical radial size of 12 R s. Their spatial distribution, release rate, and three-dimensional extent are used to estimate the contribution of this cyclic activity to the mass flux carried outward by the SSW. Our results suggest that, in interplanetary space, the global structure of the heliospheric current sheet is dominated by a succession of blobs and associated flux ropes. We demonstrate this with an example event using STEREO-A in situ measurements.

  18. Ulysses COSPIN observations of cosmic rays and solar energetic particles from the South Pole to the North Pole of the Sun during solar maximum

    Directory of Open Access Journals (Sweden)

    R. B. McKibben

    Full Text Available In 2000–2001 Ulysses passed from the south to the north polar regions of the Sun in the inner heliosphere, providing a snapshot of the latitudinal structure of cosmic ray modulation and solar energetic particle populations during a period near solar maximum.  Observations from the COSPIN suite of energetic charged particle telescopes show that latitude variations in the cosmic ray intensity in the inner heliosphere are nearly non-existent near solar maximum, whereas small but clear latitude gradients were observed during the similar phase of Ulysses’ orbit near the 1994–95 solar minimum. At proton energies above ~10 MeV and extending up to >70 MeV, the intensities are often dominated by Solar Energetic Particles (SEPs accelerated near the Sun in association with intense solar flares and large Coronal Mass Ejections (CMEs. At lower energies the particle intensities are almost constantly enhanced above background, most likely as a result of a mix of SEPs and particles accelerated by interplanetary shocks. Simultaneous high-latitude Ulysses and near-Earth observations show that most events that produce large flux increases near Earth also produce flux increases at Ulysses, even at the highest latitudes attained. Particle anisotropies during particle onsets at Ulysses are typically directed outwards from the Sun, suggesting either acceleration extending to high latitudes or efficient cross-field propagation somewhere inside the orbit of Ulysses. Both cosmic ray and SEP observations are consistent with highly efficient transport of energetic charged particles between the equatorial and polar regions and across the mean interplanetary magnetic fields in the inner heliosphere.

    Key words. Interplanetary physics (cosmic rays – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections

  19. Morphology of equatorial plasma bubbles during low and high solar activity years over Indian sector

    Science.gov (United States)

    Kumar, Sanjay

    2017-05-01

    In the present study, slant total electron content (STEC) data computed from ground based GPS measurements over Hyderabad (Geog. Lat. 17.41° N, geog. long. 78.55° E, mag. lat. 08.81° N) and two close stations at Bangalore (Geog. Lat. 13.02°/13.03° N, geog. long. 77.57°/77.51° E, mag. lat. 04.53°/04.55° N) in Indian region during 2007-2012, have been used to study the occurrences and characteristics of equatorial plasma bubbles (EPBs). The analysis found maximum EPB occurrences during the equinoctial months and minimum during the December solstice throughout 2007-2012 except during the solar minimum years in 2007-2009. During 2007-2009, the maximum EPB occurrences were observed in June solstice which could not be predicted by the model proposed by Tsunoda (J. Geophys. Res., 90:447-456, 1985). The equinox maximum in EPB occurrences for high solar activity years could be caused by the vertical F-layer drift due to pre-reversal electric field (PRE), and expected to be maximum when day-night terminator aligns with the magnetic meridian i.e. during the equinox months whereas maximum occurrences during the solstice months of solar minimum could be caused by the seed perturbation in plasma density induced by gravity waves from tropospheric origins. Generally EPB occurrences are found to be more prominent during nighttime hours (2000-2400 hours) than the daytime hours. Peak in EPB occurrences is in early night for high solar activity years whereas same is late night for low solar activity. The day and nighttime EPB occurrences have been analyzed and found to vary in accordance with solar activity with an annual correlation coefficient (R) of ˜0.99 with F_{10.7} cm solar Flux. Additionally, solar activity influence on EPB occurrences is seasonal dependent with a maximum influence during the equinox season (R=0.88) and a minimum during winter season (R =0.73). The solar activity influences on EPB occurrences are found in agreement with the previous works reported in

  20. The International Student Question: 45 Years Later

    Science.gov (United States)

    Aw, Fanta

    2012-01-01

    Since the publication of Dremuk's article 45 years ago, the landscape of international educational exchange has changed significantly. Some of the most notable trends distinguishing the past from the present are highlighted. Forty-five years ago, Dremuk's article emphasized the importance of institutional commitment to international educational…

  1. SOHO celebrates its first year in space with new results on the solar wind

    Science.gov (United States)

    1996-12-01

    space, and sees it carrying intermittent bright patches corresponding with relatively dense concentrations of solar material. These gusts are milder than the occasional mass ejections also seen by LASCO, which accompany great convulsions in the solar magnetic field. SOHO's solar wind analyser CELIAS has detected many previously unrecorded elements and isotopes among the charged atoms of the solar wind. The solar wind mapper, SWAN, observes the widespread effects of solar wind particles as they interact with the atoms of an interstellar breeze blowing into the solar system. Yet the results on the solar wind represent only a fraction of SOHO's achievements so far, with twelve sets of instruments observing everything from oscillations deep inside the Sun, to the solar influence on energetic cosmic rays coming from the Galaxy. Stealing the show in helioseismology SOHO is a project of international cooperation between the European Space Agency and NASA. The spacecraft was built in Europe and instrumented by scientists on both sides of the Atlantic. NASA launched SOHO and provides the ground stations and an operations centre at the Goddard Space Flight Center near Washington. SOHO has an uninterrupted view of the Sun from a halo orbit around Lagrangian Point N 1 where the gravity of the Sun and the Earth are in balance, 1,500,000 kilometres out on the sunward side of the Earth. The spacecraft's engineering has proved to be excellent and no practical difficulty is anticipated in keeping SOHO operational into the sunspot maximum expected in 2000-2001. SOHO was launched on 2 December 1995. Check-out observations with some instruments began just a few days later. SOHO attained its L1 halo orbit on 14 February 1996, and commissioning was formally completed on 16 April. Already the first results were showing unprecedented images of the solar atmosphere, of the heliosphere filled by the solar wind, and even of the Sun's interior as revealed by oscillations due to sound waves in the

  2. Predicting Maximum Sunspot Number in Solar Cycle 24 Nipa J Bhatt ...

    Indian Academy of Sciences (India)

    Key words. Sunspot number—precursor prediction technique—geo- magnetic activity index aa. 1. Introduction. Predictions of solar and geomagnetic activities are important for various purposes, including the operation of low-earth orbiting satellites, operation of power grids on. Earth, and satellite communication systems.

  3. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  4. The International Heliophysical Year in France

    Science.gov (United States)

    Schmieder, B.

    We are preparing in France the anniversary of IGY 50 We are gathering our efforts around few actions 1 We planned to follow the international campaigns with our solar Telescope THEMIS in Tenerife with the spacecrafts SOHO Cluster and the magnetometers of Superdarn A group is already formed with C Hanuise as responsible to understand some physical processes involved in these phenomena by using former data 2 On the initiative of CAWSES SCOSTEP program we plan to rehabilitate our heliograph in Meudon in order to be able to participate to the international network of flare survey The Japonese are leading this program Shibata and Kurokawa 3 We are developping lectures for students in different places in France We planned to work on the development of a DVD and video games in a IHY European context 4 We have also an outreach program which consists of an exhibition This exibition could be duplicated in France and for French speaking countries

  5. International Polar Year Historical Data and Literature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The International Polar Year Historical Data and Literature collection (formerly known as the Discovery and Access of Historic Literature from the IPYs (DAHLI)...

  6. Max 1991: Flare Research at the Next Solar Maximum. Workshop 1: Scientific Objectives

    Science.gov (United States)

    Canfield, Richard C.; Dennis, Brian R.

    1988-01-01

    The purpose of the Max 1991 program is to gather coordinated sets of solar flare and active region data and to perform interpretive and theoretical research aimed at understanding flare energy storage and release, particle acceleration, flare energy transport, and the propagation of flare effects to Earth. The workshop was divided into four areas of concern: energy storage, energy release, particle acceleration, and energy transport.

  7. Dual-Axis Solar Tracking System for Maximum Power Production in PV Systems

    Directory of Open Access Journals (Sweden)

    Muhd.Ikram Mohd. Rashid

    2015-12-01

    Full Text Available The power developed in a solar energy system depends fundamentally upon the amount of sunlight captured by the photovoltaic modules/arrays. This paper describes a simple electro-mechanical dual axis solar tracking system designed and developed in a study. The control of the two axes was achieved by the pulses generated from the data acquisition (DAQ card fed into four relays. This approach was so chosen to effectively avoid the error that usually arises in sensor-based methods. The programming of the mathematical models of the solar elevation and azimuth angles was done using Borland C++ Builder. The performance and accuracy of the developed system was evaluated with a PV panel at latitude 3.53o N and longitude 103.5o W in Malaysia. The results obtained reflect the effectiveness of the developed tracking system in terms of the energy yield when compared with that generated from a fixed panel. Overall, 20%, 23% and 21% additional energy were produced for the months of March, April and May respectively using the tracker developed in this study.

  8. Relations between the solar inertial motion, solar activity and geomagnetic index aa since the year 1844

    Czech Academy of Sciences Publication Activity Database

    Charvátová, Ivanka; Střeštík, Jaroslav

    2007-01-01

    Roč. 40, - (2007), s. 1026-1031 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608 Institutional research plan: CEZ:AV0Z30120515 Keywords : solar motion * solar activity * geomagnetic activity Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.774, year: 2007

  9. International Living With a Star (ILWS), a new collaborative space program in Solar, Heliospheric and Solar-Terrestrial Physics

    Science.gov (United States)

    Opgenoorth, H. J.; Guhathakurta, M.; Liu, W.; Kosugi, T.; Zelenyi, L.

    2003-04-01

    research in solar-terrestrial studies, including all relevant data sources as well as theory and modeling. The future ILWS program will be supervised by an international steering committee, involving representatives from the 4 main space agencies NASA, ESA, ISAS, RSA, and, emphasising the importance of ground-based instrumentation in the systematic approach of the ILWS programme, also from the Canadian Space Agency (CSA). More specific work will be carried out through an IWLS Working Group, membership to which is open to space organizations committed to contribute to ILWS over the next decade. Adequate contributions to ILWS can include any of the following: - Space Flight Missions - Mission payloads or subsystems - Mission launch or tracking services - Additional data sources supporting S/C (sounding rockets, balloon, or ground-based) - Data dissemination, storage, distribution and value adding systems In addition topical ILWS Task Groups will be established as necessary to support specific ILWS-WG projects/studies. This poster will biefly summarize the origins, objectives, and provisional organizational structure for ILWS and how this program can benifit from and contribute to international collaborative efforts towards International Heliospheric Year (IHY).

  10. Sudden ionospheric disturbances in solar cycle 24

    Science.gov (United States)

    Bothmer, Volker; Bernert, Barbara

    2014-05-01

    Sudden ionospheric disturbances in solar cycle 24 Within the framework of the UN International Space Weather Initiative, and building upon the achievements of the International Heliophysical Year, the German project SIMONE (Sun Ionosphere MOnitoring NEtwork) operates several SID monitors provided by the University of Stanford. Here we present an overview of sudden ionospheric disturbances recorded since 2006 at the high school Gymnasium Walsrode until to date. The continous measurements allow a detailed comparison of locally measured SIDs with the general trend of solar activity during the current solar maximum. We further show that the measurements reveal specific information on the variable response of the dayside ionosphere to solar flares.

  11. The maximum theoretical performance of unconcentrated solar photovoltaic and thermoelectric generator systems

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2017-01-01

    The maximum efficiency for photovoltaic (PV) and thermoelectric generator (TEG) systems without concentration is investigated. Both a combined system where the TEG is mounted directly on the back of the PV and a tandem system where the incoming sunlight is split, and the short wavelength radiatio...

  12. Improvement of Maximum Power Point Tracking Perturb and Observe Algorithm for a Standalone Solar Photovoltaic System

    Directory of Open Access Journals (Sweden)

    MUHAMMAD MATEEN AFZAL AWAN

    2017-07-01

    Full Text Available Extraction of maximum power from PV (Photovoltaic cell is necessary to make the PV system efficient. Maximum power can be achieved by operating the system at MPP (Maximum Power Point (taking the operating point of PV panel to MPP and for this purpose MPPT (Maximum Power Point Trackers are used. There are many tracking algorithms/methods used by these trackers which includes incremental conductance, constant voltage method, constant current method, short circuit current method, PAO (Perturb and Observe method, and open circuit voltage method but PAO is the mostly used algorithm because it is simple and easy to implement. PAO algorithm has some drawbacks, one is low tracking speed under rapid changing weather conditions and second is oscillations of PV systems operating point around MPP. Little improvement is achieved in past papers regarding these issues. In this paper, a new method named ?Decrease and Fix? method is successfully introduced as improvement in PAO algorithm to overcome these issues of tracking speed and oscillations. Decrease and fix method is the first successful attempt with PAO algorithm for stability achievement and speeding up of tracking process in photovoltaic system. Complete standalone photovoltaic system?s model with improved perturb and observe algorithm is simulated in MATLAB Simulink

  13. The solar house of CRESESB: seven years of success

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, Marco Antonio; Souza, Hamilton Moss de, E-mail: marcoag@cepel.br

    2005-07-01

    The solar house is located in the facilities of CEPEL - Centro de Pesquisas de Energia Eletrica (Electric Power Research Centre) at Fundao Island, Rio de Janeiro, Brazil. It is powered by a stand-alone PV system and is operated by CRESESB - Centro de Referencia para Energia Solar e Eolica Sergio de Salvo Brito (Reference Centre for Solar and Wind Energy Sergio de Salvo Brito) as a demonstration centre. The solar house was built in 1997, and during seven years of operation it received about 9.000 visitors (up to middle 2004). The present paper shares some aspects of the experience gained with the solar house, including technical details of the systems installed, the experience in operation and maintenance, and the divulgation and training of personnel so far obtained. (author)

  14. A new maximum power point method based on a sliding mode approach for solar energy harvesting

    International Nuclear Information System (INIS)

    Farhat, Maissa; Barambones, Oscar; Sbita, Lassaad

    2017-01-01

    Highlights: • Create a simple, easy of implement and accurate V MPP estimator. • Stability analysis of the proposed system based on the Lyapunov’s theory. • A comparative study versus P&O, highlight SMC good performances. • Construct a new PS-SMC algorithm to include the partial shadow case. • Experimental validation of the SMC MPP tracker. - Abstract: This paper presents a photovoltaic (PV) system with a maximum power point tracking (MPPT) facility. The goal of this work is to maximize power extraction from the photovoltaic generator (PVG). This goal is achieved using a sliding mode controller (SMC) that drives a boost converter connected between the PVG and the load. The system is modeled and tested under MATLAB/SIMULINK environment. In simulation, the sliding mode controller offers fast and accurate convergence to the maximum power operating point that outperforms the well-known perturbation and observation method (P&O). The sliding mode controller performance is evaluated during steady-state, against load varying and panel partial shadow (PS) disturbances. To confirm the above conclusion, a practical implementation of the maximum power point tracker based sliding mode controller on a hardware setup is performed on a dSPACE real time digital control platform. The data acquisition and the control system are conducted all around dSPACE 1104 controller board and its RTI environment. The experimental results demonstrate the validity of the proposed control scheme over a stand-alone real photovoltaic system.

  15. Maximum And Minimum Temperature Trends In Mexico For The Last 31 Years

    Science.gov (United States)

    Romero-Centeno, R.; Zavala-Hidalgo, J.; Allende Arandia, M. E.; Carrasco-Mijarez, N.; Calderon-Bustamante, O.

    2013-05-01

    Based on high-resolution (1') daily maps of the maximum and minimum temperatures in Mexico, an analysis of the last 31-year trends is performed. The maps were generated using all the available information from more than 5,000 stations of the Mexican Weather Service (Servicio Meteorológico Nacional, SMN) for the period 1979-2009, along with data from the North American Regional Reanalysis (NARR). The data processing procedure includes a quality control step, in order to eliminate erroneous daily data, and make use of a high-resolution digital elevation model (from GEBCO), the relationship between air temperature and elevation by means of the average environmental lapse rate, and interpolation algorithms (linear and inverse-distance weighting). Based on the monthly gridded maps for the mentioned period, the maximum and minimum temperature trends calculated by least-squares linear regression and their statistical significance are obtained and discussed.

  16. International Year of Astronomy 2009 Opening Ceremony - Philippines

    Science.gov (United States)

    Ty, J. K.

    2009-03-01

    On February 16th, the local opening ceremony of the International Year of Astronomy was held at SM Mall of Asia Foyer 1 area. Around 200 or more participants from various schools, agencies and astronomical organizations attended the said event. Speakers included Ms. Yolanda Berenguer, Space Education Programme Coordinator, UNESCO, as well as Department of Science and Technology Secretary Estrella Alabastro and Rizal Technological University President Dr. Jose Macaballug. Dr. Armando Lee and Mr. Christopher Go gave brief lectures on "New Solar System and Search for Other Habitable Worlds" and "Jupiter and Red Spot, Jr.", respectively.

  17. Solar advanced internal film receiver; Receptor avanzado de pelicular interna

    Energy Technology Data Exchange (ETDEWEB)

    Torre Cabezas, M. de la

    1990-07-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs.

  18. Thirty years of luminescent solar concentrator research: solar energy for the built environment

    Energy Technology Data Exchange (ETDEWEB)

    Debije, Michael G.; Verbunt, Paul P.C. [Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (Netherlands)

    2012-01-15

    Research on the luminescent solar concentrator (LSC) over the past thirty-odd years is reviewed. The LSC is a simple device at its heart, employing a polymeric or glass waveguide and luminescent molecules to generate electricity from sunlight when attached to a photovoltaic cell. The LSC has the potential to find extended use in an area traditionally difficult for effective use of regular photovoltaic panels: the built environment. The LSC is a device very flexible in its design, with a variety of possible shapes and colors. The primary challenge faced by the devices is increasing their photon-to-electron conversion efficiencies. A number of laboratories are working to improve the efficiency and lifetime of the LSC device, with the ultimate goal of commercializing the devices within a few years. The topics covered here relate to the efforts for reducing losses in these devices. These include studies of novel luminophores, including organic fluorescent dyes, inorganic phosphors, and quantum dots. Ways to limit the surface and internal losses are also discussed, including using organic and inorganic-based selective mirrors which allow sunlight in but reflect luminophore-emitted light, plasmonic structures to enhance emissions, novel photovoltaics, alignment of the luminophores to manipulate the path of the emitted light, and patterning of the dye layer to improve emission efficiency. Finally, some possible 'glimpses of the future' are offered, with additional research paths that could result in a device that makes solar energy a ubiquitous part of the urban setting, finding use as sound barriers, bus-stop roofs, awnings, windows, paving, or siding tiles. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Optimal year-round operation of a concentrated solar energy plant in the south of Europe

    International Nuclear Information System (INIS)

    Martín, Lidia; Martín, Mariano

    2013-01-01

    We present the year-round optimization of the operation of a concentrated solar power facility evaluating the molten salts storage, the power block and cooling. We locate the plant in the south of Europe, Almería (Spain), where high solar radiation is available. The operation of the plant is a function of the solar incidence as well as the climate and atmospheric conditions. The optimization of the system is formulated as a multiperiod Non-linear Programming problem (NLP) that is solved for the optimal production of electricity over a year defining the main operating variables of the thermal and cooling cycles. For a maximum of 25 MW in summer and a minimum of 9.5 MW in winter the annual production cost of electricity is 0.15 €/kWh consuming an average of 2.1 L water /kWh. The investment for the plant is 260 M€. Scale-up studies reveal that the production cost can decrease by half while the investment per unit of power should become competitive with current coal based power plants if solar and coal facilities present similar production capacities. -- Highlights: • Plant design so far relies on process simulation and only partial optimization studies. • We optimize the operation of a concentrated solar power plant. • The facility involves solar field, molten salts, steam and electricity generation and cooling. • The results are promising and validate literature sensitive studies

  20. Prospective Out-of-ecliptic White-light Imaging of Interplanetary Corotating Interaction Regions at Solar Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ming; Yang, Liping; Liu, Ying D.; Keiji, Hayashi; Li, Huichao [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Davies, Jackie A.; Harrison, Richard A. [RAL Space, STFC-Rutherford Appleton Laboratory, Harwell Campus, Didcot (United Kingdom); Li, Bo; Xia, Lidong, E-mail: mxiong@spacweather.ac.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai (China)

    2017-07-20

    Interplanetary corotating interaction regions (CIRs) can be remotely imaged in white light (WL), as demonstrated by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and Heliospheric Imagers (HIs) on board the twin Solar TErrestrial RElations Observatory ( STEREO ) spacecraft. The interplanetary WL intensity, due to Thomson scattering of incident sunlight by free electrons, is jointly determined by the 3D distribution of electron number density and line-of-sight (LOS) weighting factors of the Thomson-scattering geometry. The 2D radiance patterns of CIRs in WL sky maps look very different from different 3D viewpoints. Because of the in-ecliptic locations of both the STEREO and Coriolis spacecraft, the longitudinal dimension of interplanetary CIRs has, up to now, always been integrated in WL imagery. To synthesize the WL radiance patterns of CIRs from an out-of-ecliptic (OOE) vantage point, we perform forward magnetohydrodynamic modeling of the 3D inner heliosphere during Carrington Rotation CR1967 at solar maximum. The mixing effects associated with viewing 3D CIRs are significantly minimized from an OOE viewpoint. Our forward modeling results demonstrate that OOE WL imaging from a latitude greater than 60° can (1) enable the garden-hose spiral morphology of CIRs to be readily resolved, (2) enable multiple coexisting CIRs to be differentiated, and (3) enable the continuous tracing of any interplanetary CIR back toward its coronal source. In particular, an OOE view in WL can reveal where nascent CIRs are formed in the extended corona and how these CIRs develop in interplanetary space. Therefore, a panoramic view from a suite of wide-field WL imagers in a solar polar orbit would be invaluable in unambiguously resolving the large-scale longitudinal structure of CIRs in the 3D inner heliosphere.

  1. Performance experiments with alternative advanced teleoperator control modes for a simulated solar maximum satellite repair

    Science.gov (United States)

    Das, H.; Zak, H.; Kim, W. S.; Bejczy, A. K.; Schenker, P. S.

    1992-01-01

    Experiments are described which were conducted at the JPL Advanced Teleoperator Lab to demonstrate and evaluate the effectiveness of various teleoperator control modes in the performance of a simulated Solar Max Satellite Repair (SMSR) task. THe SMSR was selected as a test because it is very rich in performance capability requirements and it actually has been performed by two EVA astronauts in the Space Shuttle Bay in 1984. The main subtasks are: thermal blanket removal; installation of a hinge attachment for electrical panel opening; opening of electrical panel; removal of electrical connectors; relining of cable bundles; replacement of electrical panel; securing parts and cables; re-mate electrical connectors; closing of electrical panel; and reinstating thermal blanket. The current performance experiments are limited to thermal blanket cutting, electrical panel unbolting and handling electrical bundles and connectors. In one formal experiment even different control modes were applied to the unbolting and reinsertion of electrical panel screws subtasks. The seven control modes are alternative combinations of manual position and rate control with force feedback and remote compliance referenced to force-torque sensor information. Force-torque sensor and end effector position data and task completion times were recorded for analysis and quantification of operator performance.

  2. Quantitative analysis of hard X-ray 'footpoint' flares observed by the solar maximum mission

    Science.gov (United States)

    Mackinnon, A. L.; Brown, J. C.; Hayward, J.

    1985-01-01

    Amplifier gain and collimator hole size variations across the field of view, amplifier/filter efficiency, variations in effective collimator hole size and angular response with photon energy, dead-time, and hard X-ray plate transmission, are among the factors for which instrumental corrections have to be incorporated to effect reliable correction and deconvolution of images from the SMM satellite's Hard X-ray Imaging Spectrometer (HXIS). Attention is given to the substantial Poisson noise in these energy bands. The maximum entropy deconvolution/correction routine developed for establishing the spatial structure reliably inferrable from HXIS data is presented, together with the results of the application of this routine to the three impulsive flares reported by Duijemian et al. (1982) from April 10, May 21, and November 5, 1980.

  3. Flat-fielding of Solar Hα Observations Based on the Maximum Correntropy Criterion

    Science.gov (United States)

    Xu, Gao-Gui; Zheng, Sheng; Lin, Gang-Hua; Wang, Xiao-Fan

    2016-08-01

    The flat-field CCD calibration method of Kuhn et al. (KLL) is an efficient method for flat-fielding. However, since it depends on the minimum of the sum of squares error (SSE), its solution is sensitive to noise, especially non-Gaussian noise. In this paper, a new algorithm is proposed to determine the flat field. The idea is to change the criterion of gain estimate from SSE to the maximum correntropy. The result of a test on simulated data demonstrates that our method has a higher accuracy and a faster convergence than KLL’s and Chae’s. It has been found that the method effectively suppresses noise, especially in the case of typical non-Gaussian noise. And the computing time of our algorithm is the shortest.

  4. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    Science.gov (United States)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  5. Wind and solar energy curtailment: A review of international experience

    DEFF Research Database (Denmark)

    Bird, Lori; Lew, Debra; Milligan, Michael

    2016-01-01

    Greater penetrations of variable renewable generation on some electric grids have resulted in increased levels of curtailment in recent years. Studies of renewable energy grid integration have found that curtailment levels may grow as the penetration of wind and solar energy generation increases....

  6. International Heliophysical Year: GPS Network in Africa

    Science.gov (United States)

    Amory-Mazaudier, C.; Basu, S.; Bock, O.; Combrink, A.; Groves, K.; Fuller Rowell, T.; Lassudrie-Duchesne, P.; Petitdidier, M.; Yizengaw, E.

    2009-04-01

    The main scientific objectives of the International Heliophysical Year are to discover and study all the physical processes coupling the Earth to the Sun. During the IHY a number of scientific instruments are being deployed all over the world. This brief report presents the scientific objectives, the GPS receiver network over Africa and the long lasting research planned for the next decades in Africa.

  7. In-flight calibration and performance evaluation of the fixed head star trackers for the solar maximum mission

    Science.gov (United States)

    Thompson, R. H.; Gambardella, P. J.

    1980-01-01

    The Solar Maximum Mission (SMM) spacecraft provides an excellent opportunity for evaluating attitude determination accuracies achievable with tracking instruments such as fixed head star trackers (FHSTs). As a part of its payload, SMM carries a highly accurate fine pointing Sun sensor (FPSS). The EPSS provides an independent check of the pitch and yaw parameters computed from observations of stars in the FHST field of view. A method to determine the alignment of the FHSTs relative to the FPSS using spacecraft data is applied. Two methods that were used to determine distortions in the 8 degree by 8 degree field of view of the FHSTs using spacecraft data are also presented. The attitude determination accuracy performance of the in flight calibrated FHSTs is evaluated.

  8. Maximum movement velocity of the upper limbs reflects maximum gait speed in community-dwelling adults aged older than 60 years.

    Science.gov (United States)

    Iwata, Akira; Higuchi, Yumi; Sano, Yuki; Ogaya, Shinya; Kataoka, Masataka; Yonetsu, Ryo; Okuda, Kuniharu; Iwata, Hiroshi; Fuchioka, Satoshi

    2014-10-01

    A number of studies have shown that the maximum movement velocity of the lower limbs is a critical determinant of gait speed in elderly adults. However, it is still unclear whether gait speed is associated with the movement velocity of the lower limbs or the movement velocity itself. Therefore, we measured the movement velocity of upper limbs that would not have a direct effect on gait, and examined the relationship between the movement velocity and gait speed. A total of 76 community-dwelling adults aged older than 60 years (mean age 73.3 years) participated in the study. We measured the movement velocity of the upper limbs, maximum gait speed, quadriceps strength, trunk muscle endurance and skeletal muscle mass index. A significant correlation was found between the movement velocity of the upper limbs and maximum gait speed (r=0.47; Pgait speed as a dependent variable, age, movement velocity of the upper limbs, body mass index and quadriceps strength were selected as independent variables (R(2)=0.55, Pgait speed, suggesting that the ability to move any region rapidly might be a critical factor in maximum gait speed. © 2014 Japan Geriatrics Society.

  9. Study of GNSS Loss of Lock Characteristics under Ionosphere Scintillation with GNSS Data at Weipa (Australia) During Solar Maximum Phase.

    Science.gov (United States)

    Liu, Yang; Fu, Lianjie; Wang, Jinling; Zhang, Chunxi

    2017-09-25

    One of the adverse impacts of scintillation on GNSS signals is the loss of lock status, which can lead to GNSS geometry and visibility reductions that compromise the accuracy and integrity of navigation performance. In this paper the loss of lock based on ionosphere scintillation in this solar maximum phase has been well investigated with respect to both temporal and spatial behaviors, based on GNSS observatory data collected at Weipa (Australia; geographic: 12.45° S, 130.95° E; geomagnetic: 21.79° S, 214.41° E) from 2011 to 2015. Experiments demonstrate that the percentage of occurrence of loss of lock events under ionosphere scintillation is closely related with solar activity and seasonal shifts. Loss of lock behaviors under ionosphere scintillation related to elevation and azimuth angles are statistically analyzed, with some distinct characteristics found. The influences of daytime scintillation and geomagnetic storms on loss of lock have also been discussed in details. The proposed work is valuable for a deeper understanding of theoretical mechanisms of-loss of lock under ionosphere scintillation in global regions, and provides a reference for GNSS applications in certain regions at Australian low latitudes.

  10. ISES International Solar Energy Society working committee report

    International Nuclear Information System (INIS)

    Belcastro, G.N.; De Lillo, A.; Messana, C.

    1993-01-01

    In Italy, the potential for photovoltaic power production has been estimated at about 40,000 billion kWh/year. Given that this nation's total power demand is about 200 billion kWh/year, it's obvious that even the limited use of this renewable energy source would significantly reduce national dependency on foreign energy supplies. In this context, this paper assesses the prospects for the development of photovoltaic energy in Italy. The various aspects covered include: the current level of technology and national manufacturing capabilities; planned R ampersand D investments to the year 2000; current and future solar cell and module efficiency levels; the most promising solar cell materials; photovoltaic equipment manufacturing costs; grid connected demonstration plants operating world-wide; photovoltaic power production costs; environmental impacts; world market structure and major manufacturers; suitable applications; and legislated Italian national development incentives

  11. Ionospheric error contribution to GNSS single-frequency navigation at the 2014 solar maximum

    Science.gov (United States)

    Orus Perez, Raul

    2017-04-01

    For single-frequency users of the global satellite navigation system (GNSS), one of the main error contributors is the ionospheric delay, which impacts the received signals. As is well-known, GPS and Galileo transmit global models to correct the ionospheric delay, while the international GNSS service (IGS) computes precise post-process global ionospheric maps (GIM) that are considered reference ionospheres. Moreover, accurate ionospheric maps have been recently introduced, which allow for the fast convergence of the real-time precise point position (PPP) globally. Therefore, testing of the ionospheric models is a key issue for code-based single-frequency users, which constitute the main user segment. Therefore, the testing proposed in this paper is straightforward and uses the PPP modeling applied to single- and dual-frequency code observations worldwide for 2014. The usage of PPP modeling allows us to quantify—for dual-frequency users—the degradation of the navigation solutions caused by noise and multipath with respect to the different ionospheric modeling solutions, and allows us, in turn, to obtain an independent assessment of the ionospheric models. Compared to the dual-frequency solutions, the GPS and Galileo ionospheric models present worse global performance, with horizontal root mean square (RMS) differences of 1.04 and 0.49 m and vertical RMS differences of 0.83 and 0.40 m, respectively. While very precise global ionospheric models can improve the dual-frequency solution globally, resulting in a horizontal RMS difference of 0.60 m and a vertical RMS difference of 0.74 m, they exhibit a strong dependence on the geographical location and ionospheric activity.

  12. The International Heliophysical Year Education and Outreach Program

    Science.gov (United States)

    Rabello-Soares, M.; Morrow, C.; Thompson, B.

    2006-12-01

    The International Heliophysical Year (IHY) will celebrate the 50th anniversary of the International Geophysical Year (IGY) and will continue its tradition of international research collaboration. The term "heliophysical" is an extension of the term "geophysical", where the Earth, Sun & Solar System are studied not as separate domains but through the universal processes governing the heliosphere. IHY represents a logical next-step, extending the studies into the heliosphere and thus including the drivers of geophysical change. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe the IHY Education and Outreach Program, how to participate and the benefits in doing so. ~

  13. Evaluation of integrated testing the maximum force of students aged 17-20 years

    Directory of Open Access Journals (Sweden)

    V.N. Sergienko

    2013-08-01

    Full Text Available The features of indicators of strength abilities of students of basic medical group are shown. The study involved 800 women aged 17-20 years, who were divided into age groups of 200 students. Established positive momentum indicators test dynamometry right and left hand, postural strength, forearm flexors right and left hands, extensor thighs and shins. Revealed results of a comprehensive development of maximum force to 12-point scale of the sigmoid in the age aspect. Notes are not identical levels of development. Comprehensive assessment "satisfactory" to be in the range 56-67,5% in all age groups of girls. The estimate of "excellent" is not fixed. It is necessary to pay attention to when planning the means and methods of force directions in physical education.

  14. Towards better description of solar activity variation in the International Reference Ionosphere topside ion composition model

    Czech Academy of Sciences Publication Activity Database

    Truhlík, Vladimír; Bilitza, D.; Třísková, Ludmila

    2015-01-01

    Roč. 55, č. 8 (2015), s. 2099-2105 ISSN 0273-1177 R&D Projects: GA MŠk(CZ) LH11123 Institutional support: RVO:68378289 Keywords : ion composition * topside ionosphere * solar activity * empirical model * International Reference Ionosphere Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.409, year: 2015 http://www.sciencedirect.com/science/article/pii/S027311771400489X

  15. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    Science.gov (United States)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  16. The 11-year solar cycle, the 27-day Sun's rotation and the area of the stratospheric Aleutian high

    Directory of Open Access Journals (Sweden)

    Boris Soukharev

    2001-03-01

    Full Text Available The effect of the 11-year solar cycle on the 30-hPa geopotential height and temperature fields in the area of the Aleutian high caused by solar activity oscillations resulting from the Sun's rotation (27.2 d is investigated, applying methods of statistical cross-spectral analysis to daily data for the period from 1965 to 1998. The area of the stratospheric Aleutian high is considered as an 'indicator' of the solar influence on the winter stratosphere proceeding from the results by LABITZKE and VAN LOON (1988, and VAN LOON and LABITZKE (1990. An effect of the 11-year solar cycle on the response of the summer middle stratosphere to solar activity oscillations on the time scale of the Sun's rotation is not found. In contrast to summer, the atmospheric responses in winter demonstrate clear differences between maximum and minimum of the 11-year solar cycle for the 27.2 d solar rotation periodicity and for the two other oscillations of 29.4 d and 25.3 d, resulting from the modulation of the 27.2 d solar-induced periodicity by the annual atmospheric variation. The atmospheric response for the fourth periodicity studied, the 17 d oscillation, which is supposed to be a normal mode of the atmosphere, close to the known 16-day wave (MADDEN, 1978, also shows a clear dependence on the 11-year solar cycle. For all the periodicities studied the coherence between the 10.7 cm solar radio flux and the 30-hPa height/temperature fields in the Aleutian high area in winter is on the average stronger at maxima than at minima of the 11-year solar cycle. The corresponding amplitudes of the solar-induced geopotential height and temperature perturbations are also larger at high than at low solar activity, with the largest differences revealed at the moderate and polar latitudes. Thus, we conclude that the response of the winter 30-hPa height/temperature fields in the area of the Aleutian high to solar oscillations on the time scale of the Sun's rotation is on the average

  17. Statistical analysis of the 11-year and the 80-year solar cycles

    International Nuclear Information System (INIS)

    Bielekova, M.

    1984-01-01

    The time dependences of Wolf's number in the available 11-year cycles of solar activity by use of the method of the linear two-parameter regression analysis and of its subsequent extension are calculated. The parameters of the cycles are determined and then are compared. The period of the long (the 80-year) solar cycle corresponding to the maximal total correlation coefficient and to the minimal standard deviation has been further numerically determined. Thereby the parameters of the long cycles of solar activity characterized by Wolf's numbers are calculated. The long solar cycle with the period 82.8-84.8 years has been proved to be statistically significant, which is in good agreement with the period of the long cycle, i. e. about 80 years. On the basis of the data on smoothed maxima of Wolf's numbers in individual 11-year solar cycles and by use of the method mentioned above, the existence of the long solar cycles with the period 87.2 and 81.8 years has been statistically proved as well

  18. Solar Energy Technologies Program: Multi-Year Technical Plan 2003-2007 and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This publication charts a 5-year planning cycle for the U.S. Department of Energy Solar Energy Technologies Program. The document includes anticipated technical plans for the next 5 years for photovoltaics, concentrating solar power, solar water and space heating, solar hybrid lighting, and other new concepts that can take advantage of the solar resource. Solar energy is described as a clean, abundant, renewable energy resource that can benefit the nation by diversifying our energy supply.

  19. Bibliometric Analysis of International Collaboration in Wind and Solar Energy

    Directory of Open Access Journals (Sweden)

    Ichiro Sakata

    2013-09-01

    Full Text Available Modern technology is increasingly complex and demands an ever-widening range of knowledge and skills. No single country will possess all the knowledge and skills required for addressing global issues such as climate change. Technology collaboration between leading countries is important to promptly and efficiently address the problem. Previous studies have shown that a high level of collaboration is correlated with high paper productivity. This paper first aims to use objective data and create maps that enable us to see both the distribution of worldwide research competency and the relationship of international collaboration in clean energy research. In the international research network of wind power and solar cell, 4,189 institutions located in 121 countries and 6,600 institutions located in 125 countries are included respectively. This paper discusses various factors that would have an impact on research capability and support strong international relationships. With respect to research capability, governmental policies, stability of governmental commitment, natural conditions and historical and institutional differences have a significant impact on it. For research collaborations, factors such as geographical proximity, international science and technology policy, and developmental stage of technology have been brought to attention. This study demonstrates that bibliometrics is a methodology that is capable of providing a knowledge base that is useful in the development of the international science and technology policy and technological management strategy.

  20. The international space year: priorities and perspectives

    International Nuclear Information System (INIS)

    Kondratyev, K.Y.

    1990-01-01

    Principal purposes of the international space year (ISY) have been discussed. In view of the increasing significance of ecological problems it is becoming clear that there have to be two key directions of the ISY programmes: 1) various problems relevant to the international geosphere-biosphere programme (global climate change, global biosphere dynamics, regional ecological problems: desertification, forest decline, acid rains etc); 2) comparative planetology. One of the most urgent problems is connected with the accomplishment of the 'mission to planet earth' which has to be based on the creation of an optimal global system of satellite and conventional ecological observations (especially for various typical ecosystems). Studies of the other planets have to be coordinated with requirements of further investigations in the field of the earth's ecology

  1. Quantifying uncertainties of climate signals related to the 11-year solar cycle

    Science.gov (United States)

    Kruschke, T.; Kunze, M.; Matthes, K. B.; Langematz, U.; Wahl, S.

    2017-12-01

    Although state-of-the-art reconstructions based on proxies and (semi-)empirical models converge in terms of total solar irradiance, they still significantly differ in terms of spectral solar irradiance (SSI) with respect to the mean spectral distribution of energy input and temporal variability. This study aims at quantifying uncertainties for the Earth's climate related to the 11-year solar cycle by forcing two chemistry-climate models (CCMs) - CESM1(WACCM) and EMAC - with five different SSI reconstructions (NRLSSI1, NRLSSI2, SATIRE-T, SATIRE-S, CMIP6-SSI) and the reference spectrum RSSV1-ATLAS3, derived from observations. We conduct a unique set of timeslice experiments. External forcings and boundary conditions are fixed and identical for all experiments, except for the solar forcing. The set of analyzed simulations consists of one solar minimum simulation, employing RSSV1-ATLAS3 and five solar maximum experiments. The latter are a result of adding the amplitude of solar cycle 22 according to the five reconstructions to RSSV1-ATLAS3. Our results show that the climate response to the 11y solar cycle is generally robust across CCMs and SSI forcings. However, analyzing the variance of the solar maximum ensemble by means of ANOVA-statistics reveals additional information on the uncertainties of the mean climate signals. The annual mean response agrees very well between the two CCMs for most parts of the lower and middle atmosphere. Only the upper mesosphere is subject to significant differences related to the choice of the model. However, the different SSI forcings lead to significant differences in ozone concentrations, shortwave heating rates, and temperature throughout large parts of the mesosphere and upper stratosphere. Regarding the seasonal evolution of the climate signals, our findings for short wave heating rates, and temperature are similar to the annual means with respect to the relative importance of the choice of the model or the SSI forcing for the

  2. Beyond the International Year of Astronomy

    Science.gov (United States)

    Owens, S.

    2010-08-01

    The International Year of Astronomy (IYA2009) is over, and we are working to build upon its legacy. Many of the projects that ran during IYA2009 have come to an end, but the networks that developed and ran them - networks of amateur and professional astronomers, science communicators, educators - are still here, passionate about continuing to engage the public with astronomy. One of my key duties as IYA2009 UK Coordinator was to support and develop these networks, and it is that support that would be most sorely missed had IYA2009 just petered out at the end of last year. Fortunately that hasn't happened, and the three main IYA2009 project partners - the Royal Astronomical Society, the Science and Technology Facilities Council, and the Institute of Physics - have been joined by two others - the Society for Popular Astronomy and the British Astronomical Association - in Beyond IYA.

  3. History of Spanish Selection of the International Solar Energy; Historia de la Asociacion Espanola de Energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.

    2004-07-01

    This paper is about the old and new Spanish Sections of the International Solar Energy Society (ISES). The old Section was formed on the initiative of the Spanish Association Atecyr and was named ISES Espana. As a legal Spanish association, it developed its activities from 1981 until 1991 when economic difficulties made ISES suspend the Section. In that year Prof. Manuel Vazquez, director of the Laboratory of Solar Energy of the University of Vigo, became interested in the subject and participated in his restlessness to other Spanish members of ISES. All of them agreed to create a new Spanish association under the name of Asociacion Espanola de Energia Solar (AEDES), which was registered as an ONG in the Spanish National Register of Associations and ratified by ISES as its Spanish Section in 1993. In this paper the significant data of the old and new sections are given, including the names of representative people and members of the Board and the development of the membership. (Author)

  4. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    Science.gov (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  5. The bottomside parameters B0, B1 obtained from incoherent scatter measurements during a solar maximum and their comparisons with the IRI-2001 model

    Directory of Open Access Journals (Sweden)

    N. K. Sethi

    2002-06-01

    Full Text Available High resolution electron density profiles (Ne measured with the Arecibo (18.4 N, 66.7 W, Incoherent Scatter radar (I. S. are used to obtain the bottomside shape parameters B0, B1 for a solar maximum period (1989–90. Median values of these parameters are compared with those obtained from the IRI-2001 model. It is observed that during summer, the IRI values agree fairly well with the Arecibo values, though the numbers are somewhat larger during the daytime. Discrepancies occur during winter and equinox, when the IRI underestimates B0 for the local times from about 12:00 LT to about 20:00 LT. Furthermore, the IRI model tends to generally overestimate B1 at all local times. At Arecibo, B0 increases by about 50%, and B1 decreases by about 30% from solar minimum to solar maximum.Key words. Ionosphere (equational ionosphere; modeling and forecasting

  6. Heat transfer analysis of a volumetric solar receiver by coupling the solar radiation transport and internal heat transfer

    International Nuclear Information System (INIS)

    Chen, Xue; Xia, Xin-Lin; Liu, Hua; Li, Yang; Liu, Bo

    2016-01-01

    Highlights: • A model coupling solar radiation transport and internal heat transfer is developed. • Two other treatment approaches for the concentrated solar radiation are compared. • Porous parameters significantly affect the distribution of absorbed solar radiation. • The TBC approach overestimates the solid temperature with a deviation up to 76.4%. • The CIR approach provides acceptable temperature field with deviation less than 3.4%. - Abstract: Volumetric receivers have become a promising technology for the solar thermal conversion. The absorption of concentrated solar radiation and the heat transfer to the working fluid are the two dominant processes. To effectively investigate the thermal performance of receiver, a numerical model coupling the solar radiation transport and the internal heat transfer is presented. Solar radiation transport from the dish concentrator to the interior of receiver is simulated with the Monte Carlo ray tracing method. Combining the distribution of absorbed solar energy in the receiver, the local thermal non-equilibrium model with P1 approximation is used to solve the internal heat transfer. Two other treatment approaches for the concentrated solar radiation are compared. One considers the solar radiation on the front surface of receiver as thermal boundary condition (TBC) and the other as a collimated incident radiation (CIR) beam. The results show that the porosity and mean cell size have a great effect on the distribution of absorbed solar radiation. Compared with the coupling approach, the TBC approach overestimates the solid temperature near the front surface with a deviation up to 76.4%, while the CIR approach provides acceptable temperature field with a deviation less than 3.4%. In addition, the fluid and solid temperatures both decrease as the slope error of concentrator increases.

  7. METIS-ESA solar orbiter mission internal straylight analysis

    Science.gov (United States)

    Verroi, E.; Da Deppo, V.; Naletto, G.; Fineschi, S.; Antonucci, E.

    2017-11-01

    METIS is the Multi Element Telescope for Imaging and Spectroscopy for the ESA Solar Orbiter. Its target is the solar corona from a near-Sun orbit in two different spectral bands: the HI UV narrow band at 121.6 nm, and the VL visible light band. METIS adopts a novel inverted externally occulted configuration, where the disk light is shielded by an annular occulter, and an annular aspherical mirror M1 collects the signal coming from the corona. After M1 the coronal light passes through an internal occulter and is then reflected by a second annular mirror M2 toward a narrow filter for the 121.6 nm HI line selection. The visible light reflected by the filter is used to feed a visible light (580 - 640 nm) polarimetric channel. The photospheric light passing through the entrance aperture is back-rejected by a spherical rejection mirror. Since the coronal light is enormously fainter than the photospheric one, a very tough suppression is needed for the internal stray light, in particular the requirement for the stray light suppression is more stringent in the VL than in the UV, because the emission of the corona with respect to the disk emission is different in the two cases, and the requirements are a suppression of at least 10-9 times for the VL and a suppression of at least 10-7 times for the UV channel. This paper presents the stray light analysis for this new coronographic configuration. The complexity of the optomechanical design of METIS, combined with the faintness of the coronal light with respect to the solar disk noise, make a standard ray tracing approach not feasible because it is not sufficient to stop at the first generation of scattered rays in order to check the requirements. Also scattered rays down to the fourth generation must be treated as sources of new scattering light, to analyze the required level of accuracy. If used in a standard ray tracing scattering analysis, this approach is absolutely beyond the computational capabilities today available

  8. Latitudinal and radial variation of >2 GeV/n protons and alpha-particles at solar maximum: ULYSSES COSPIN/KET and neutron monitor network observations

    Directory of Open Access Journals (Sweden)

    A. V. Belov

    Full Text Available Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in September 1997. In 2000/2001 the spacecraft passed from the south to the north polar regions of the Sun in the inner heliosphere. In contrast to the first rapid pole to pole passage in 1994/1995 close to solar minimum, Ulysses experiences now solar maximum conditions. The Kiel Electron Telescope (KET measures also protons and alpha-particles in the energy range from 5 MeV/n to >2 GeV/n. To derive radial and latitudinal gradients for >2 GeV/n protons and alpha-particles, data from the Chicago instrument on board IMP-8 and the neutron monitor network have been used to determine the corresponding time profiles at Earth. We obtain a spatial distribution at solar maximum which differs greatly from the solar minimum distribution. A steady-state approximation, which was characterized by a small radial and significant latitudinal gradient at solar minimum, was interchanged with a highly variable one with a large radial and a small – consistent with zero – latitudinal gradient. A significant deviation from a spherically symmetric cosmic ray distribution following the reversal of the solar magnetic field in 2000/2001 has not been observed yet. A small deviation has only been observed at northern polar regions, showing an excess of particles instead of the expected depression. This indicates that the reconfiguration of the heliospheric magnetic field, caused by the reappearance of the northern polar coronal hole, starts dominating the modulation of galactic cosmic rays already at solar maximum.

    Key words. Interplanetary physics (cosmic rays; energetic particles – Space plasma physics (charged particle motion and acceleration

  9. Latitudinal and radial variation of >2 GeV/n protons and alpha-particles at solar maximum: ULYSSES COSPIN/KET and neutron monitor network observations

    Directory of Open Access Journals (Sweden)

    A. V. Belov

    2003-06-01

    Full Text Available Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in September 1997. In 2000/2001 the spacecraft passed from the south to the north polar regions of the Sun in the inner heliosphere. In contrast to the first rapid pole to pole passage in 1994/1995 close to solar minimum, Ulysses experiences now solar maximum conditions. The Kiel Electron Telescope (KET measures also protons and alpha-particles in the energy range from 5 MeV/n to >2 GeV/n. To derive radial and latitudinal gradients for >2 GeV/n protons and alpha-particles, data from the Chicago instrument on board IMP-8 and the neutron monitor network have been used to determine the corresponding time profiles at Earth. We obtain a spatial distribution at solar maximum which differs greatly from the solar minimum distribution. A steady-state approximation, which was characterized by a small radial and significant latitudinal gradient at solar minimum, was interchanged with a highly variable one with a large radial and a small – consistent with zero – latitudinal gradient. A significant deviation from a spherically symmetric cosmic ray distribution following the reversal of the solar magnetic field in 2000/2001 has not been observed yet. A small deviation has only been observed at northern polar regions, showing an excess of particles instead of the expected depression. This indicates that the reconfiguration of the heliospheric magnetic field, caused by the reappearance of the northern polar coronal hole, starts dominating the modulation of galactic cosmic rays already at solar maximum.Key words. Interplanetary physics (cosmic rays; energetic particles – Space plasma physics (charged particle motion and acceleration

  10. The International Standards for Solar Thermal Collectors and Components as a Medium of Quality Assurance

    International Nuclear Information System (INIS)

    Alkishriwi, Nouri; Schorn, Christian A.; Theis, Danjana

    2014-01-01

    Within this publication a detailed overview about the national and international solal't1lel1nai standards is made. The various tests are described and a cross reference list for comparing the different standards is given. Moreover a certification model is presented and the advantage of third party assessment is carried out. The requirement for a solar thermal test laboratory to conduct independent third party assessment by means of an ISO/IEC17065 accreditation is given. Finally the concept of a quality system for solar thermal markets is explained and major advantages are outlined. Solar thermal systems and their components are described in various national and international standards. In Europe the standard EN12975 defines the regulations and requirements for solar thermal collectors. The standard EN12976 is established for the evaluation of factory made solar thermal systems. The EN12977 is the state of the art standard for the evaluation of custom build systems. Nowadays in Libya the standard ISO9806 for solar collectors and the standard ISO9459 for domestic water heating systems define the regulations and requirements for solar thermal collectors and systems. In the meanwhile, empowered Center for Renewable Energy and Energy Efficiency Certification Body is under construction. This body is working now to set the minimum requirements of the testing facilities of solar thermal systems. The international standard for collector testing is the ISO9806 and the standard ISO9459 Part 2, 4, 5 for domestic water heating systems. Within the year 2013 a revision of the ISO9806 will be published and, for the first time, a consistent harmonized standard for the main solar thermal markets will be set in force. Besides the various standards for solar thermal products a meaningful element for the quality assurance and the customer protection is third party certification. Third party certification involves an independent assessment, declaring that specified requirements

  11. Field-aligned flows of H+ and He+ in the mid-latitude topside ionosphere at solar maximum

    International Nuclear Information System (INIS)

    Bailey, G.J.; Sellek, R.

    1992-01-01

    A time-dependent mathematical model of the Earth's ionosphere and plasmasphere has been used to investigate the field-aligned flows of H + and He + in the topside ionosphere at L = 3 during solar maximum. When the flux-tube content is low there are upward flows of H + and He + during daytime in both the winter and summer topside ionospheres. During winter night-time the directions of flow are, in general, downwards for He + , because of the night-time decrease in He + scale height, and upwards for H + , because of the replenishment needs of the flux tube. In the winter topside ionosphere, during the later stages of flux-tube replenishment, H + generally flows downwards during both day and night as a result of the greater plasma pressure in the summer hemisphere whilst He + flows upwards during the day and downwards at night. In the summer topside ionosphere H + flows upward to replace the H + lost from the plasmasphere to the winter topside ionosphere whilst the winter helium bulge leads to flows of He + that are in the direction winter hemisphere to summer hemisphere. When the flux-tube content is low, counterstreaming of H + and He + , with H + flowing upwards and He + downwards, occurs for most of the day above about 5000 km altitude in the summer hemisphere. There are occurrences of this type of counterstreaming in both the summer and winter hemispheres during the night. When the flux-tube content is high, counterstreaming of H + and He + occurs less frequently and over smaller regions of the flux tube. There are regions in both hemispheres where H + flows downwards whilst He + flows upwards. (Author)

  12. On possible cosmic origin of the 11-year solar cycle

    Science.gov (United States)

    Kotov, V. A.; Sanchez, F. M.; Bizouard, K.

    2012-06-01

    In order to test Dicke's idea of a clock hidden inside the Sun and determine the initial phase of the solar cycle, the epochs of the extrema of the Wolf numbers observed over the past 400 years are examined. It is shown that extrema that obey the period P W equaled 11.07(4) years retain the initial phase, which cannot be explained in terms of local physics and concepts of the past century regarding the mechanism of the solar cycle based on the theory of a magnetic dynamo and the phenomenological model of the Babcock-Leighton cycle. It is suggested that the cycle has a cosmic (cosmological) origin. This is clearly indicated by the correlation of the cycle period with a holographic time-scale of the Universe, ( a 0 R 3)1/4/ c ≈ 11.0(4) years, where a 0 and R are the radii of the first Bohr orbit of a hydrogen atom and the observable Universe, respectively, and c is the speed of light. It is noted that there are other strict holographic relations that include a 0, R, P W , the wavelength of the microwave background radiation (with a temperature of 2.7 K), and a period of the global solar pulsations equal to 9600.6 s. The true physical nature of the governing mechanism for the 11-year cycle can perhaps only be understood based on modern concepts about the nonlocality of our world, which follows from Bell's theorem, which is grounded on the achievements of quantum mechanics at the turn of the 20th and 21st centuries, as well as using a model of a holographic Universe free of c.

  13. Reference values of maximum walking speed among independent community-dwelling Danish adults aged 60 to 79 years

    DEFF Research Database (Denmark)

    Tibaek, S; Holmestad-Bechmann, N; Pedersen, Trine B

    2015-01-01

    OBJECTIVES: To establish reference values for maximum walking speed over 10m for independent community-dwelling Danish adults, aged 60 to 79 years, and to evaluate the effects of gender and age. DESIGN: Cross-sectional study. SETTING: Danish companies and senior citizens clubs. PARTICIPANTS: Two....../second, respectively. Significant differences (Pgender categories. Men were found to walk faster than women, and individuals aged 60 to 69 years walked faster than individuals aged 70 to 79 years. CONCLUSIONS: This study established the reference values for maximum walking speed...... over 10m among independent community-dwelling Danish adults aged 60 to 79 years. The study results showed significant differences in maximum walking speed for different ages and between men and women....

  14. Lunar Rocks: Available for Year of the Solar System Events

    Science.gov (United States)

    Allen, J. S.

    2010-12-01

    NASA is actively exploring the moon with our Lunar Reconnaissance Orbiter, the Grail Discovery Mission will launch next year, and each year there is an International Observe the Moon Night providing many events and lunar science focus opportunities to share rocks from the moon with students and the public. In our laboratories, we have Apollo rocks and soil from six different places on the moon, and their continued study provides incredibly valuable ground truth to complement space exploration missions. Extensive information and actual lunar samples are available for public display and education. The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. The lunar rocks and soils continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA is eager for scientists and the public to have access to these exciting Apollo samples through our various loan procedures. NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. Mr. Parker will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets of twelve thin sections of Apollo lunar samples are available for short-term loan from JSC Curation. The thin

  15. Power companies international year book 1997

    International Nuclear Information System (INIS)

    Anon.

    1996-12-01

    The Power Companies International Yearbook covers around 250 major international power generating and distributing companies worldwide, giving a comprehensive overview of this dynamic global industry. Both publicly and privately owned companies are features. It details financial performance, ownership status, affiliated businesses, activities, operations, key personnel, type/capacity of generation, subsidiary activities and plans for diversification within and outside the global power sector. (Author)

  16. The Antarctic ozone minimum - Relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle

    Science.gov (United States)

    Callis, L. B.; Natarajan, M.

    1986-01-01

    Photochemical calculations along 'diabatic trajectories' in the meridional phase are used to search for the cause of the dramatic springtime minimum in Antarctic column ozone. The results indicate that the minimum is principally due to catalytic destruction of ozone by high levels of total odd nitrogen. Calculations suggest that these levels of odd nitrogen are transported within the polar vortex and during the polar night from the middle to upper stratosphere and lower mesosphere to the lower stratosphere. The possibility that these levels are related to the 11-year solar cycle and are increased by enhanced formation in the thermosphere and mesosphere during solar maximum conditions is discussed.

  17. Argonne Solar Energy Program annual report. Summary of solar program activities for fiscal year 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The R and D work done at Argonne National Laboratory on solar energy technologies during the period October 1, 1978 to September 30, 1979 is described. Technical areas included in the ANL solar program are solar energy collection, heating and cooling, thermal energy storage, ocean thermal energy conversion, photovoltaics, biomass conversion, satellite power systems, and solar liquid-metal MHD power systems.

  18. Solar power plants - State of the art and prospects from the international point of view

    Science.gov (United States)

    Faninger, G.

    Solar-thermal and photovoltaic systems are discussed. The possibilities for solar production of electricity is compared with those for alternative energy sources: running water, wind, waves, and heat gradients in oceans. Solar ponds are briefly discussed. The components of solar-thermal power plants are treated, including concentrators, refractors, collectors, and heliostats. The state of international cooperation and goal-setting is examined along with ways of optimizing solar-thermal systems. The tower and farm concepts of such systems are evaluated. For photovoltaic systems, the state of the art in solar cells, the structure of solar generators, cost factors, and system tests are discussed. The possible contributions of energy satellites are noted.

  19. Reconstruction of a Hundred Years Series of Solar Filaments from Daily Observational Data

    Science.gov (United States)

    Tlatova, K. A.; Vasil'eva, V. V.; Tlatov, A. G.

    2017-12-01

    The preliminary results of solar filaments distinguished in daily H-alpha observations at Kodaikanal (1912-2002) are presented. To mark the boundaries of solar filaments, methods based on automated procedures of marking low-contrast objects on the solar disk, as well as editing of the marked boundaries in a semiautomated manner, were developed. The characteristics of solar filaments were analyzed. Latitudinal diagrams of filaments number in 15-23 activity cycles were constructed. As is shown, one maximum in the filament latitudinal distribution may be clearly distinguished during activity cycles in both hemispheres. This maximum is located slightly higher (θ 25°-30°) than the sunspot distribution maximum (θ 14°-17°). However, there are no other local maxima related to the zonal structure of the large-scale magnetic field (Makarov and Sivaraman, 1989).

  20. Enhancing the stepped solar still performance using internal and external reflectors

    International Nuclear Information System (INIS)

    Omara, Z.M.; Kabeel, A.E.; Younes, M.M.

    2014-01-01

    Highlights: • Stepped solar still with internal and external reflectors have been investigated. • The productivity of the modified stepped solar still is higher than conventional by 103%. • The productivity of stepped still with external mirror is higher than that for conventional still by 88%. - Abstract: The performance of stepped solar still with internal and external reflectors have been investigated in the current study. The reflectors are used to enhance energy input to the stepped still. The influence of internal and external (top and bottom) reflectors on the performance of the stepped solar still is investigated. A comparison between modified stepped solar still and conventional solar still is carried out to evaluate the developed desalination system performance under the same climate conditions. The results indicated that, during experimentation the productivity of the modified stepped solar still with internal and external (top and bottom) reflectors is higher than that for conventional still approximately by 125%. In this case the estimated cost of 1 l of distillate for stepped still with reflectors and conventional solar stills is approximately 0.031$ and 0.049$, respectively

  1. Governing climate? 20 years of international negotiations

    International Nuclear Information System (INIS)

    Aykut, Stefan; Dahan, Amy

    2015-01-01

    As greenhouse gas concentrations in the atmosphere have reached a record level in 2013, the authors propose an analysis and an assessment of international negotiations and governance on the climate issue since the Kyoto protocol. They precisely describe the mechanics of these negotiations, recall their different steps (the IPCC creation, the Rio conference, the UN Convention, the Kyoto protocol), describe the emergence of the different concepts which have been used to define the negotiation framework, comment the definition of the three main structuring principles of the struggle against climate change (precautionary principle, principle of common but differentiated responsibility, right to development), and outline the role of adaptation. They discuss the negotiation context, the emergence of a European leadership, the failure of the Copenhagen conference, and the importance of domestic policies. They also address other related concerns: the maintenance of the prevailing model of economic growth, national sovereignty, the postures of some companies and sectors. The authors present and analyse the situation and posture of different countries: USA, China, emerging powers like Brazil and India, Europe, Germany and France. They make some propositions to build up a new type of international climate governance, and outline the need of a convergence of international energy, commercial and development agendas, and of the development of a bottom-up approach

  2. International Polar Year 2007: An Integrated Heliospheric and Oceanographic Program?

    Science.gov (United States)

    Johnson, G.; Davila, J.

    An international symposium SPerspectives of Modern Polar ResearchT was convened - in Bad Durkeim, Germany 2001 to celebrated the 175the anniversary of the birth of Georg von Neumayer. At that symposium the Nermayer Declaration was adopted to commemorate the 125th anniversary of the IPY in 2007. SA 125th year IPY program be initiated using new and present technologies to determine: 1 . Causes and effects of climatic variability-air/sea/ice interactins, and 2. Lithosphere dynamicsUevolution and history of crust and sedimentary cover. The po lar regions would be the focus.T Polar oceanographic contributions to global climate change are still a matter of conjecture, and to a large extent so are the extraterrestrial contributions. The proposed IPY would focus on these issues. As part of the global heat engine, the polar regions hav a major role in the worldSs transfer of energy, and the ocean/stmosphere system is known to be both an indicator and a componenet of climate change. It is clear that acomplex suite of significant, interrelated, atmospheric, oceanic and terrestrial changes has occurred in the the polsar regions in recent decades. These events are affecting every part of the polar environment and are having repercussions on society. In a similar vein an International Heliophysical Year (IHY) has been proposed to obtain a coordinated set of observations to study at the largest scale the solar genergated events that affect life and climate on Earth as has been documented in the Holocene sedimentary recofd. A modeling capability is the ultimate goal so the physical process can be tracked throughout the entire Sun-Earth system. This program will require an integrated, holistic system approach encompassing a side range of disciplines with new and improved technologies for long term measurements on the seabed, in the water column and in space over all seasons. Coordination, collaboration and documentation of an interated science plan with international scientific

  3. Economic analysis of solar industrial process heat systems: A methodology to determine annual required revenue and internal rate of return

    Science.gov (United States)

    Dickinson, W. C.; Brown, K. C.

    1981-08-01

    An economic evaluation of solar industrial process heat systems, is developed to determine the annual required revenue and the internal rate of return. First, a format is provided to estimate the solar system's installed cost, annual operating and maintenance expenses, and net annual solar energy delivered to the industrial process. The annual required revenue and the price of solar is calculated. The economic attractiveness of the potential solar investment can be determined by comparing the price of solar energy with the price of fossilfuel, both expressed in levelized terms. This requires calcuation of the internal rate of return on the solar investment or, in certain cases, the growth rate of return.

  4. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    International Nuclear Information System (INIS)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui

    2012-01-01

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  5. Overview of Solar Seismology: Oscillations as Probes of Internal Structure and Dynamics in the Sun

    Science.gov (United States)

    Toomre, J.

    1984-01-01

    The physical nature of solar oscillations is reviewed. The nomenclature of the subject and the techniques used to interpret the oscillations are discussed. Many of the acoustic and gravity waves that can be observed in the atmosphere of the Sun are actually resonant or standing modes of the interior; precise measurements of the frequencies of such modes allow deductions of the internal structure and dynamics of this star. The scientific objectives of such studies of solar seismic disturbances, or of solar seismology, are outlined. The reasons why it would be very beneficial to carry out further observations of solar oscillations both from ground based networks and from space will be discussed.

  6. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  7. 10 Years of Student Questions about the Sun and Solar Physics: Preparing Graduate Students to Work with Parker Solar Probe Data

    Science.gov (United States)

    Gross, N. A.; Hughes, W. J.; Wiltberger, M. J.

    2017-12-01

    The NSF funded CISM Space Weather Summer School is designed for graduate students who are just starting in space physics. It provides comprehensive conceptual background to the field. Insights about student understanding and learning from this summer school can provide valuable information to graduate instructors and graduate student mentors. During the school, students are invited to submit questions at the end of the lecture component each day. The lecturers then take the time to respond to these questions. We have collected over 4000 student questions over the last 15 years. A significant portion of the summer school schedule is devoted to solar physics and solar observations, and the questions submitted reflect this. As researchers prepare to work with graduate students who will analyze the data from the Parker Solar Probe, they should be aware of the sorts of questions these students will have as they start in the field. Some student questions are simply about definitions: - What is a facula/prominence/ribbon structure/arcade? - What is a Type 3 radio burst? - How is a solar flare defined? How is it different from a CME/energetic particle event? - What is the difference between "soft" and "hard" X-rays?Other student questions involve associations and correlations. - Why are solar flares associated with CME's? - Are all magnetic active regions associated with sunspots? - How does a prominence eruption compare to a CME? - Why do energetic particles follow the magnetic field lines but the solar wind does not? - Why are radio burst (F10.7 flux) associated with solar flares (EUV Flux)?Others can be topics of current research. - What is the source of the slow solar wind? - Why is there a double peak in the sunspot number the solar maximum? - Why is the corona hotter than the solar surface. What is the mechanism of coronal heating? The goal of this paper is to identify and categorize these questions for the community so that graduate educators can be aware of them

  8. Spacelab - Ten years of international cooperation

    Science.gov (United States)

    Bignier, M.; Harrington, J. C.; Sander, M. J.

    1983-01-01

    The history, current status, and future plans of the Spacelab program are reviewed, with a focus on the cooperative relationship between ESA and NASA. The initial decision to undertake the program and the three agreements signed to begin its implementation are examined, and the division of responsibilities and financial contributions is discussed insofar as it affected the management structure. Consideration is given to the major facilities, the 50-mission operational cycle, communications, the currently scheduled activities (through 1985), the prospective later uses, and the ten dedicated discipline laboratories. The importance of continuous mutual support during the planning and development phases is stressed. The program so far is considered a success, in terms of the goals set by the participants and in terms of the resolution of the problems inherent in international technological endeavors.

  9. Analysis of Dynamic Characteristic for Solar Arrays in Series and Global Maximum Power Point Tracking Based on Optimal Initial Value Incremental Conductance Strategy under Partially Shaded Conditions

    Directory of Open Access Journals (Sweden)

    Jian Zhao

    2017-01-01

    Full Text Available Partial shading (PS is an unavoidable condition which significantly reduces the efficiency and stability of a photovoltaic (PV system. With PS, the system usually exhibits multiple-peak output power characteristics, but single-peak is also possible under special PS conditions. In fact it is shown that the partial shading condition (PSC is the necessary but not sufficient condition for multiple-peak. Based on circuit analysis, this paper shows that the number of peak points can be determined by short-circuit currents and maximum-power point currents of all the arrays in series. Then the principle is established based on which the number of the peak points is to be determined. Furthermore, based on the dynamic characteristic of solar array, this paper establishes the rule for determination of the relative position of the global maximum power point (GMPP. In order to track the GMPP within an appropriate period, a reliable technique and the corresponding computer algorithm are developed for GMPP tracking (GMPPT control. It exploits a definable nonlinear relation has been found between variable environmental parameters and the output current of solar arrays at every maximum power point, obtained based on the dynamic performance corresponding to PSC. Finally, the proposed method is validated with MATLAB®/Simulink® simulations and actual experiments. It is shown that the GMPPT of a PV generation system is indeed realized efficiently in a realistic environment with partial shading conditions.

  10. International Year of Astronomy (IYA 2009): Selected Resources

    Science.gov (United States)

    Taha, Mandy; Kraus, Joseph R.

    2009-01-01

    The International Year of Astronomy 2009 (IYA2009) is a global celebration of astronomy and its contributions to society and culture initiated by the International Astronomical Union (IAU) and UNESCO. Through local, national and international events, the organization wants to help the citizens of the world connect with the universe through the day…

  11. Energetic evaluation of the largest geomagnetic storms of solar cycle 24 on March 17, 2015 and September 8, 2017 during solar maximum and minimum, respectively

    International Nuclear Information System (INIS)

    Tomova, Dimitrinka; Velinov, Peter; Tassev, Yordan; Tomova, Dimitrinka

    2018-01-01

    Some of the most powerful Earth’s directed coronal mass ejections (CMEs) from the current 24 solar cycle have been investigated. These are CMEs on March 15, 2015 and on September 4 and 6, 2017. As a result of these impacts of Sun on Earth, the highest intensity of the geomagnetic storms for the 24th solar cycle is observed. These G4 – Severe geomagnetic storms are in the periods March 17÷19, 2015 and September 7÷10, 2017. We use the solar wind parameters (velocity V, density or concentration N , temperature T p and intensity of the magnetic field B) from measurements by WIND, ACE and SOHO space crafts in the Lagrange equilibrium point L1 between Sun and Earth. We make calculations for the kinetic (dynamic) energy density E k , thermal energy density E t and magnetic energy density E m during the investigated periods May 10÷24, 2015 and September 2÷16, 2017. Both the energy densities for the individual events and the cumulative energy for each of them are evaluated. The quantitative analysis shows that not always the size of the geomagnetic reaction is commensurate with the density of the energy flux reaching the magnetosphere. In both studied periods, the energy densities have different behaviour over time. But for both periods, we can talk about the prognostic effect – with varying degrees of increase of the dynamic and thermal energies. Such an effect is not observed in the density of magnetic energy. An inverse relationship between the magnitude of the density of energies and the effect of Forbush decrease of the galactic cosmic rays is established. Key words: solar activity, flares, coronal mass ejection (CME), G4 –Severe geomagnetic storms, energy density of the solar wind, space weather

  12. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen: Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.; Hayden, H.

    2005-05-01

    The International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen provides an opportunity to learn about current significant research on solar concentrators for generating electricity or hydrogen. The conference will emphasize in-depth technical discussions of recent achievements in technologies that convert concentrated solar radiation to electricity or hydrogen, with primary emphasis on photovoltaic (PV) technologies. Very high-efficiency solar cells--above 37%--were recently developed, and are now widely used for powering satellites. This development demands that we take a fresh look at the potential of solar concentrators for generating low-cost electricity or hydrogen. Solar electric concentrators could dramatically overtake other PV technologies in the electric utility marketplace because of the low capital cost of concentrator manufacturing facilities and the larger module size of concentrators. Concentrating solar energy also has advantages for th e solar generation of hydrogen. Around the world, researchers and engineers are developing solar concentrator technologies for entry into the electricity generation market and several have explored the use of concentrators for hydrogen production. The last conference on the subject of solar electric concentrators was held in November of 2003 and proved to be an important opportunity for researchers and developers to share new and crucial information that is helping to stimulate projects in their countries.

  13. The 11 Year Solar Cycle Response of the Equatorial Ionization Anomaly Observed by GPS Radio Occultation

    Science.gov (United States)

    Li, King-Fai; Lin, Li-Ching; Bui, Xuan-Hien; Liang, Mao-Chang

    2018-01-01

    We have retrieved the latitudinal and vertical structures of the 11 year solar cycle modulation on ionospheric electron density using 14 years of satellite-based radio occultation measurements utilizing the Global Positioning System. The densities at the crests of the equatorial ionization anomaly (EIA) in the subtropics near 300 km in 2003 and 2014 (high solar activity with solar 10.7 cm flux, F10.7 ≈ 140 solar flux unit (sfu)) were 3 times higher than that in 2009 (low solar activity F10.7 ≈ 70 sfu). The higher density is attributed to the elevated solar extreme ultraviolet and geomagnetic activity during high solar activity periods. The location of the EIA crests moved 50 km upward and 10° poleward, because of the enhanced E × B force. The EIA in the northern hemisphere was more pronounced than that in the southern hemisphere. This interhemispheric asymmetry is consistent with the effect of enhanced transequatorial neutral wind. The above observations were reproduced qualitatively by the two benchmark runs of the Thermosphere-Ionosphere-Electrodynamics General Circulation Model. In addition, we have studied the impact of the 11 year solar cycle on the 27 day solar cycle response of the ionospheric electron density. Beside the expected modulation on the amplitude of the 27 day solar variation due to the 11 year solar cycle, we find that the altitude of the maximal 27 day solar response is unexpectedly 50 km higher than that of the 11 year solar response. This is the first time that a vertical dependence of the solar responses on different time scales is reported.

  14. Theoretical variations of the thermal performance of different solar collectors and solar combi systems as function of the varying yearly weather conditions in Denmark

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2009-01-01

    radiation, but both the annual thermal performance and the annual utilized solar energy can with a reasonable approximation be fitted to a linear function of the yearly solar radiation on the collector for both flat plate and evacuated tubular solar collectors. Also evacuated tubular solar collectors......The thermal performances of solar collectors and solar combi systems with different solar fractions are studied under the influence of the Danish Design Reference Year, DRY data file, and measured weather data from a solar radiation measurement station situated at the Technical University...... of Denmark in Kgs. Lyngby. The data from DRY data file are used for any location in Denmark. The thermal performances of the solar heating systems are calculated by means of validated computer models. The measured yearly solar radiation varies by approximately 23% in the period from 1990 until 2002...

  15. Maximum Sunspot Numbers and Active Days

    OpenAIRE

    Heon-Young Chang

    2013-01-01

    Parameters associated with solar minimum have been studied to relate them to solar activity at solar maximum so that one could possibly predict behaviors of an upcoming solar cycle. The number of active days has been known as a reliable indicator of solar activity around solar minimum. Active days are days with sunspots reported on the solar disk. In this work, we have explored the relationship between the sunspot numbers at solar maximum and the characteristics of the monthly number...

  16. Internal and External Light Trapping for Solar Cells and Modules

    NARCIS (Netherlands)

    van Dijk, L.

    2016-01-01

    Renewable energy resources are essential to realize a sustainable society and a clean environment. In virtually all energy scenarios, solar power will supply a significant share of the world energy demand within a few decades. This energy transition can be significantly supported and accelerated

  17. Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...

    Indian Academy of Sciences (India)

    tribpo

    3Moscow State University, Department of Physics, 119899 Moscow, Russia. * e mail: gbelvedere@alpha4. ct. astro, it. Key words. Sun: magnetic fields, rotation, activity. Extended abstract. Here we outline how asymptotic models may contribute to the investigation of mean field dynamos applied to the solar convective zone.

  18. Lunar radionuclide records of average solar-cosmic-ray fluxes over the last ten million years

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1980-01-01

    Because changes in solar activity can modify the fluxes of cosmic-ray particles in the solar system, the nature of the galactic and solar cosmic rays and their interactions with matter are described and used to study the ancient sun. The use of cosmogenic nuclides in meteorites and lunar samples as detectors of past cosmic-ray variations are discussed. Meteorite records of the history of the galactic cosmic rays are reviewed. The fluxes of solar protons over various time periods as determined from lunar radionuclide data are presented and examined. The intensities of solar protons emitted during 1954 to 1964 (11-year solar cycle number 19) were much larger than those for 1965 to 1975 (solar cycle 20). Average solar-proton fluxes determined for the last one to ten million years from lunar 26 Al and 53 Mn data show little variation and are similar to the fluxes for recent solar cycles. Lunar activities of 14 C (and preliminary results for 81 Kr) indicate that the average fluxes of solar protons over the last 10 4 (and 10 5 ) years are several times larger than those for the last 10 6 to 10 7 years; however, cross-section measurements and other work are needed to confirm these flux variations

  19. The Founding Years of the International New Venture

    DEFF Research Database (Denmark)

    Rasmussen, Erik Stavnsager; Servais, Per; Madsen, Tage Koed

    2007-01-01

    Several studies have focused on International New Ventures; smaller, entrepreneurial firms which adopt a global focus from the beginning and operate in international markets from the earliest day of their establishment. In this paper we intend to focus on the founding years of the International New...... Ventures through the use of a large scale study of all types of industrial firms. This is supplemented with a large number of case studies of International New Ventures since 1997. Some preliminary conclusions are: When the International New Ventures are compared with other types of firms, large...... differences can be seen in their internationalization and in the development in the first three years. The complexity of the internationalization of the International New Ventures is e.g. high compared with other types of international firms....

  20. Solar Variability and Climate Change in the Last 2000 Years

    Science.gov (United States)

    Pang, K.; Yau, K.

    2002-12-01

    Studying past climatic data can help us better understand present natural variations and predict future trends. Identification of cycles can be useful to forecasting. However, various reconstructions of the climate of the last 1000 years have given only broad similarities, with large variances in time and space [Briffa JGR 106, 2929, 2001]. For example, during the Little Ice Age (ca. 1600-1800) severe winters were frequent in Europe and China, but not over Greenland [Sci. Amer., 2/1992, 21]. The differences in modeling results are partly due to uncertainties in the past radiative forcing [Mann, Eos 82 (46), 2001]. Another outstanding question is whether we are in a time similar to Medieval Warm Period. From the frequencies of sunspot and aurora sightings, abundance of carbon-14 in the rings of long-lived trees, and beryllium-10 in the annual layers of polar ice cores, we have reconstructed the recent history of a variable Sun. In the past 1800 years the Sun has gone through nine cycles of changes in brightness. While these long-term changes account for less than one percent of the total irradiance, there is a clear evidence that they affect the climate. During the Maunder Minimum (1645-1715) few sunspots were seen--about 1 in 10 yr from China or Europe--indicative of a weak Sun. Eddy [Science 192, 1189, 1976] used historical aurora, C-14 and climate data to confirm its reality, and link it to the Little Ice Age. Using new historical sunspot catalogues [Yau, Quart. J. Roy. Astron. Soc., 29, 175, 1988], we have identified or confirmed earlier solar minima at 200-300, 400-500, 580-820, 980-1070, 1280-1350, 1410-1590; and maxima at 1080-1280, 1350-1400, etc. All these features are coincident with respective minima or maxima in the frequency of aurora sightings from Europe or Asia. Both time series are in turn consistent with radioisotope data [Pang, Eos. 9/2002]. Carbon-14 and beryllium-10 are made by cosmic rays high in the atmosphere. When the Sun is active the solar

  1. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. [Department of Earth Science Education, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Yi, Y., E-mail: suyeonoh@jnu.ac.kr [Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134 (Korea, Republic of)

    2017-05-01

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cycles and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.

  2. Irish medical students’ understanding of the intern year

    LENUS (Irish Health Repository)

    Gouda, P,

    2016-03-01

    Upon completion of medical school in Ireland, graduates must make the transition to becoming interns. The transition into the intern year may be described as challenging as graduates assume clinical responsibilities. Historically, a survey of interns in 1996 found that 91% felt unprepared for their role. However, recent surveys in 2012 have demonstrated that this is changing with preparedness rates reaching 52%. This can be partially explained by multiple initiatives at the local and national level. Our study aimed evaluate medical student understanding of the intern year and associated factors. An online, cross-sectional survey was sent out to all Irish medical students in 2013 and included questions regarding their understanding of the intern year. Two thousand, two hundred and forty-eight students responded, with 1224 (55.4%) of students agreeing or strongly agreeing that they had a good understanding of what the intern year entails. This rose to 485 (73.7%) among senior medical students. Of junior medical students, 260 (42.8%) indicated they understood what the intern year, compared to 479 (48.7%) of intermediate medical students. Initiatives to continue improving preparedness for the intern year are essential in ensuring a smooth and less stressful transition into the medical workforce

  3. On dependence of seismic activity on 11 year variations in solar activity and/or cosmic rays

    Science.gov (United States)

    Zhantayev, Zhumabek; Khachikyan, Galina; Breusov, Nikolay

    2014-05-01

    It is found in the last decades that seismic activity of the Earth has a tendency to increase with decreasing solar activity (increasing cosmic rays). A good example of this effect may be the growing number of catastrophic earthquakes in the recent rather long solar minimum. Such results support idea on existence a solar-lithosphere relationship which, no doubts, is a part of total pattern of solar-terrestrial relationships. The physical mechanism of solar-terrestrial relationships is not developed yet. It is believed at present that one of the main contenders for such mechanism may be the global electric circuit (GEC) - vertical current loops, piercing and electrodynamically coupling all geospheres. It is also believed, that the upper boundary of the GEC is located at the magnetopause, where magnetic field of the solar wind reconnects with the geomagnetic field, that results in penetrating solar wind energy into the earth's environment. The effectiveness of the GEC operation depends on intensity of cosmic rays (CR), which ionize the air in the middle atmosphere and provide its conductivity. In connection with the foregoing, it can be expected: i) quantitatively, an increasing seismic activity from solar maximum to solar minimum may be in the same range as increasing CR flux; and ii) in those regions of the globe, where the crust is shipped by the magnetic field lines with number L= ~ 2.0, which are populated by anomalous cosmic rays (ACR), the relationship of seismic activity with variations in solar activity will be manifested most clearly, since there is a pronounced dependence of ACR on solar activity variations. Checking an assumption (i) with data of the global seismological catalog of the NEIC, USGS for 1973-2010, it was found that yearly number of earthquake with magnitude M≥4.5 varies into the 11 year solar cycle in a quantitative range of about 7-8% increasing to solar minimum, that qualitatively and quantitatively as well is in agreement with the

  4. International conference on comparative assessments of solar power technologies

    International Nuclear Information System (INIS)

    Roy, A.

    1994-02-01

    Many regions in the world which lack fossil fuel resources but possess ample sunshine seek to identify near-term solar technologies capable of gradually replacing their fuel imports in cost-effective fashion. The conference addresses the following topics: technical and economical studies specifying their underlying basic assumption, methods and rules for evaluation in order to enable meaningful comparison between different technologies and systems. Detailed delineation of numerical and graphical representations, critical analysis and comparison between simulations, and test validity. Generalized performance indicators for systems and subsystems, problems of measuring and evaluating physical parameters, of terminology and conceptual tools for comparative evaluations. Advances in research development, engineering and field performance, including implications pertaining to comparative assessments and definitions of criteria and standards helpful to comparative evaluation. Assessments of the full (and hidden) cost of fossil energies as compared to solar, including environmental costs. Cost/benefit studies for remote versus centralized systems. (ed.)

  5. Internal checkup illumination sources for METIS coronagraph on solar orbiter

    Science.gov (United States)

    Frassetto, F.; Poletto, L.; Fineschi, S.; De Santi, C.; Meneghini, M.; Meneghesso, G.; Antonucci, E.; Naletto, G.; Romoli, M.; Spadaro, D.; Nicolini, G.

    2017-11-01

    METIS is one of the remote sensing instrument on the Solar Orbiter mission. It will acquire coronal images from distances from the Sun as close as 0.28 AU. The mission innovations rely not only in the spacecraft orbit; METIS introduces many technical breakthroughs in the optical layout and in many other areas, mainly the inverted external occulter and the visible light (VL) polarimeter.

  6. NASA and international studies of the Solar Probe Mission

    Science.gov (United States)

    Randolph, James E.

    1992-01-01

    A review is presented summarizing the history and current status of the studies of the Solar Probe Mission by NASA and other space agencies. The technology and scientific challenges of the mission are addressed in these studies and can be met with current instrument and technology capabilities. The specific set of experiments recommended by a scientific advisory group to the NASA study for integration into the design concept is discussed.

  7. Celebrating the Eighth Annual International Observe the Moon Night and Supporting the 2017 Solar Eclipse

    Science.gov (United States)

    Buxner, Sanlyn; Jones, Andrea; Bleacher, Lora; Shaner, Andy; Wenger, Matthew; Bakerman, Maya; Joseph, Emily; Day, Brian; White, Vivian; InOMN Coordinating Committee

    2017-01-01

    2017 marks the eighth International Observe the Moon Night (InOMN), which will be held on July 15, 2017. We will present findings from the first seven years, including the most recent figures from the October 2016 event, and provide an overview of the 2017 events which will support the Great American Eclipse which occurs about five weeks later, on August 21, 2017.InOMN is an annual worldwide public event that encourages observation, appreciation, and understanding of our Moon and its connection to NASA planetary science and exploration. This year InOMN’s event will support broad efforts to promote the eclipse by providing resources to help InOMN hosts highlight lunar science that will influence the eclipse, such as the topography of the Moon, which affects the edges of the eclipse path and the location and duration of Baily’s beads. The InOMN team will host webinars to discuss the Moon, lunar science, and lunar and solar eclipses.Each year, thousands of visitors take part in hundreds of events across the world. In the first seven years (2010 to 2016) over 3,700 events were registered worldwide and hosted by a variety of institutions including astronomy clubs, observatories, schools, and universities and held at a variety of public and private institutions all over the world including museums, planetaria, schools, universities, observatories, parks, and private businesses and homes. Evaluation of InOMN reveals that events are raising visitors’ awareness of lunar science and exploration, providing audiences with information about lunar science and exploration, and inspiring visitors to want to learn more about the Moon and providing connections to opportunities to do so.InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter, NASA's Solar System Exploration Research Virtual Institute (SSERVI), and the Lunar and Planetary Institute. Learn more and register to host an event at http://observethemoonnight.org/.

  8. Irish Medical Students’ Understanding of the Intern Year

    OpenAIRE

    Gouda, Pishoy; Kitt, Kevin; Evans, David S; Goggin, Deirdre; McGrath, Deirdre; Last, Jason; Hennessy, Martina; Arnett, Richard; O'Flynn, Siun; Dunne, Fidelma PM; O'Donovan, Diarmuid

    2016-01-01

    Upon completion of medical school in Ireland, graduates must make the transition to becoming interns. The transition into the intern year may be described as challenging as graduates assume clinical responsibilities. Historically, a survey of interns in 1996 found that 91% felt unprepared for their role. However, recent surveys in 2012 have demonstrated that this is changing with preparedness rates reaching 52%. This can be partially explained by multiple initiatives at the local and national...

  9. Internal resistance of rear totally diffused solar cells with line shaped contacts

    Science.gov (United States)

    Meier, Sebastian; Saint-Cast, Pierre; Wöhrle, Nico; Fell, Andreas; Greulich, Johannes; Wolf, Andreas; Glunz, Stefan W.

    2017-11-01

    We present an analytical model for the internal resistance of passivated emitter and rear totally diffused (PERT) solar cells. First, we apply the model of Saint-Cast for the spreading resistance of a passivated emitter and rear cell (PERC) structure with line-shaped contacts. To account for the additional vertical current flow through the silicon wafer and the lateral current flow through the back surface field of a PERT structure, we add a parallel current path using common analytical expressions. We compare the analytical models with two-dimensional numerical simulations based on Quokka 3 and find deviations of less than 6% for the internal resistance. In addition, we compare the analytical model of the internal resistance of PERC and PERT solar cells with experimental data of the series resistance of PERC and PERT solar cells.

  10. International Polar Year Historical Data and Literature, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The International Polar Year Historical Data and Literature collection (formerly known as the Discovery and Access of Historic Literature from the IPYs (DAHLI)...

  11. The numerical simulation of the WWER-440/V-213 reactor pressure vessel internals response to maximum hypothetical large break loss of coolant accident

    International Nuclear Information System (INIS)

    Hermansky, P.; Krajcovic, M.

    2012-01-01

    The reactor internals are designed to ensure cooling of the fuel, to ensure the movement of emergency control assemblies under all operating conditions including accidents and facilitate removal of the fuel and of the internals following an accident This paper presents results of the numerical simulation of the WWER-440/V213 reactor vessel internals dynamic response to maximum hypothetical Large-Break Loss of Coolant Accident. The purpose of this analysis is to determine the reactor vessel internals response due to rapid depressurization and to prove no such deformations occur in the reactor vessel internals which would prevent timely and proper activation of the emergency control assemblies. (Authors)

  12. 22 Year Periodicity in the Solar Differential Rotation

    Indian Academy of Sciences (India)

    tribpo

    1995). Recently, we determined periodicities in the solar differential rotation through the power spectrum analysis of the differential rotation parameters derived from the data on sunspot groups compiled from Greenwich Photoheliographic Results (GPR) during 1879 1976 and from Mt. Wilson velocity data during 1969 1994 ...

  13. 22 Year Periodicity in the Solar Differential Rotation

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Using the data on sunspot groups compiled during 1879. 1975, we determined variations in the differential rotation coefficients A and Β during the solar cycle. The variation in the equatorial rotation rate A is found to be significant only in the odd numbered cycles, with an ampli tude ~ 0.01 µrads–1. There exists a ...

  14. STDAC: Solar Thermal Design Assistance Center annual report fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC`s major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia`s solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry`s ability to successfully bring improved systems to the marketplace. By collaborating with Sandia`s Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

  15. STDAC: Solar thermal design assistance center annual report fiscal year 1994

    Science.gov (United States)

    The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC's major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia's solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry's ability to successfully bring improved systems to the marketplace. By collaborating with Sandia's Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

  16. Solar-Iss a New Solar Reference Spectrum Covering the Far UV to the Infrared (165 to 3088 Nm) Based on Reanalyzed Solar/solspec Cycle 24 Observations

    Science.gov (United States)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Bolsée, D.; Pereira, N.; Sluse, D.; Cessateur, G.

    2017-12-01

    Since April 5, 2008 and until February 15, 2017, the SOLSPEC (SOLar SPECtrometer) spectro-radiometer of the SOLAR facility on the International Space Station performed accurate measurements of Solar Spectral Irradiance (SSI) from the far ultraviolet to the infrared (165 nm to 3088 nm). These measurements, unique by their large spectral coverage and long time range, are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry), noticeably through the "top-down" mechanism amplifying ultraviolet (UV) solar forcing effects on the climate (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and troposphere regions). SOLAR/SOLSPEC, with almost 9 years of observations covering the essential of the unusual solar cycle 24 from minimum in 2008 to maximum, allowed to establish new reference solar spectra from UV to IR (165 to 3088 nm) at minimum (beginning of mission) and maximum of activity. The complete reanalysis was possible thanks to revised engineering corrections, improved calibrations and advanced procedures to account for thermal, aging and pointing corrections. The high quality and sensitivity of SOLSPEC data allow to follow temporal variability in UV but also in visible along the cycle. Uncertainties on these measurements are evaluated and results, absolute reference spectra and variability, are compared with other measurements (WHI, ATLAS-3, SCIAMACHY, SORCE/SOLSTICE, SORCE/SIM) and models (SATIRE-S, NRLSSI, NESSY)

  17. The prominent 1.6-year periodicity in solar motion due to the inner planets

    Czech Academy of Sciences Publication Activity Database

    Charvátová, Ivanka

    2007-01-01

    Roč. 25, č. 5 (2007), s. 1227-1232 ISSN 0992-7689 R&D Projects: GA AV ČR(CZ) IAA300120608 Institutional research plan: CEZ:AV0Z30120515 Keywords : solar-planetary relationships * solar physics * celestial mechanis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.427, year: 2007

  18. Ultraviolet imager for the International Solar Terrestrial Physics Mission

    Science.gov (United States)

    Torr, Douglas G.; Torr, Marsha R.; Zukic, Muamer; Spann, James F.; Johnson, R. Barry

    1993-12-01

    Imaging of the earth's auroral regions in the ultraviolet provides information on a global scale on the energy flux and characteristics of precipitating particles and on the composition of the atmosphere in which the energy is deposited. We report the design of an imager with 0.6-mrad angular resolution over an 8-deg field of view sampled with 39,500 pixels, yielding global auroral coherent imaging from above 6 RE (Earth radar). High-performance filters provide spectrally pure measurements of four key far-UV (FUV) features, with 5 X 10-5 out-of-band rejection. Together with the solar blind intensified CCD detector, a net rejection of 10-9 of all out-of-band emissions is achieved.

  19. Locating solar and wind parks in South-Eastern Nigeria for maximum population coverage: A multi-step approach

    NARCIS (Netherlands)

    Ikejemba, Eugene Chidiebere; Schuur, Peter

    2016-01-01

    Power outages in the most populous country in the continent of Africa, Nigeria, is one issue that has woefully defied almost all known hypotheses for centuries, as enormous investments over the years have provided no palpable result. Considering that electricity plays a vital role in modern society,

  20. Ultraviolet imager for the International Solar Terrestrial Physics mission

    International Nuclear Information System (INIS)

    Torr, D.G.; Zukic, M.; Torr, M.R.; Spann, J.F.; Johnson, R.B.

    1993-01-01

    Imaging of the earth's auroral regions in the ultraviolet provides information on a global scale on the energy flux and characteristics of precipitating particles an on the composition of the atmosphere in which the energy is deposited. The authors report the design of an imager with 0.6-mrad angular resolution over an 8-deg field of view sampled with 39,500 pixels, yielding global auroral coherent imaging from above 6 R E (Earth radii). High-performance filters provide spectrally pure measurements of four key far-UV (FUV) features, with 5 x 10 -5 out-of-band rejection. Together with a solar blind intensified CCD detector, a net rejection of 10 -9 of all out-of-band emissions is achieved. The optical design comprises a three-mirror f/3 system that yields a noise equivalent sensitivity of 10 rayleighs (R) for a 37-s frame rate. The intrascene and interscene dynamic ranges are 1,000 and 10 5 , respectively. The optical surface microroughness is less than 2 nm, providing exceptionally low light scattering characteristics, allowing simultaneous observations of very weak and bright emissions. The imager should provide about two orders of magnitude improvement in performance over previous designs

  1. Solar zenith angle dependence of plasma density and temperature in the polar cap ionosphere and low-altitude magnetosphere during geomagnetically quiet periods at solar maximum

    Czech Academy of Sciences Publication Activity Database

    Kitamura, N.; Ogawa, Y.; Nishimura, Y.; Terada, N.; Ono, T.; Shinbori, A.; Kumamoto, A.; Truhlík, Vladimír; Šmilauer, Jan

    2011-01-01

    Roč. 116, - (2011), A08227/1-A08227/13 ISSN 0148-0227 R&D Projects: GA ČR GAP209/10/2086 Institutional research plan: CEZ:AV0Z30420517 Keywords : MASS-SPECTROMETER OBSERVATIONS * ELECTRON-TEMPERATURE * HIGH-LATITUDE * ION OUTFLOWS * F-REGION Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.021, year: 2011 http://www.agu.org/pubs/crossref/2011/2011JA016631.shtml

  2. A Model of the Solar Chromosphere: Structure and Internal Circulation

    International Nuclear Information System (INIS)

    Song, P.

    2017-01-01

    A model of the solar chromosphere that consists of two fundamentally different regions, a lower region and an upper region, is proposed. The lower region is covered mostly by weak locally closed magnetic field and small network areas of extremely strong, locally open field. The field in the upper region is relatively uniform and locally open, connecting to the corona. The chromosphere is heated by strong collisional damping of Alfvén waves, which are driven by turbulent motions below the photosphere. The heating rate depends on the field strength, wave power from the photosphere, and altitude in the chromosphere. The waves in the internetwork area are mostly damped in the lower region, supporting radiation in the lower chromosphere. The waves in the network area, carrying more Poynting flux, are only weakly damped in the lower region. They propagate into the upper region. As the thermal pressure decreases with height, the network field expands to form the magnetic canopy where the damping of the waves from the network area supports radiation in the whole upper region. Because of the vertical stratification and horizontally nonuniform distribution of the magnetic field and heating, one circulation cell is formed in each of the upper and lower regions. The two circulation cells distort the magnetic field and reinforce the funnel-canopy-shaped magnetic geometry. The model is based on classical processes and is semi-quantitative. The estimates are constrained according to observational knowledge. No anomalous process is invoked or needed. Overall, the heating mechanism is able to damp 50% of the total wave energy.

  3. A Model of the Solar Chromosphere: Structure and Internal Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Song, P. [Space Science Laboratory and Department of Physics, University of Massachusetts Lowell (United States)

    2017-09-10

    A model of the solar chromosphere that consists of two fundamentally different regions, a lower region and an upper region, is proposed. The lower region is covered mostly by weak locally closed magnetic field and small network areas of extremely strong, locally open field. The field in the upper region is relatively uniform and locally open, connecting to the corona. The chromosphere is heated by strong collisional damping of Alfvén waves, which are driven by turbulent motions below the photosphere. The heating rate depends on the field strength, wave power from the photosphere, and altitude in the chromosphere. The waves in the internetwork area are mostly damped in the lower region, supporting radiation in the lower chromosphere. The waves in the network area, carrying more Poynting flux, are only weakly damped in the lower region. They propagate into the upper region. As the thermal pressure decreases with height, the network field expands to form the magnetic canopy where the damping of the waves from the network area supports radiation in the whole upper region. Because of the vertical stratification and horizontally nonuniform distribution of the magnetic field and heating, one circulation cell is formed in each of the upper and lower regions. The two circulation cells distort the magnetic field and reinforce the funnel-canopy-shaped magnetic geometry. The model is based on classical processes and is semi-quantitative. The estimates are constrained according to observational knowledge. No anomalous process is invoked or needed. Overall, the heating mechanism is able to damp 50% of the total wave energy.

  4. Thirty Years of "International Journal of Behavioral Development": Scope, Internationality, and Impact since Its Inception

    Science.gov (United States)

    Schui, Gabriel; Krampen, Gunter

    2010-01-01

    The article presents 30-year bibliometrical results on trends in the scope, internationality, and impact of the "International Journal of Behavioral Development" ("IJBD") from its inception in 1978 to 2007. Bibliometric data were collected using the databases PsycINFO and Social Science Citation Index (SSCI), and the "IJBD" itself. In comparison…

  5. Annals of the international geophysical year ionospheric drift observations

    CERN Document Server

    Rawer, K; Beloussov, V V; Beynon, W J G

    2013-01-01

    Annals of the International Geophysical Year, Volume 33: Results of Ionospheric Drift Observations describes the systematic changes in individual ionospheric observations during the International Geophysical Year (IGY). This book is composed of four chapters, and begins with a presentation of the general data on stations and the lists of publications concerning drift work during IGY/IGC. The next chapter contains the results obtained mainly by intercomparison of the time shift between fadings observed on three antenna separated by a distance of roughly a wavelength. These data are followed by

  6. Year of the Solar System: New Worlds, New Discoveries and Why People Should Care (Invited)

    Science.gov (United States)

    Green, J. L.; Adams, J.; McCuistion, D.; Erickson, K. J.

    2010-12-01

    The next two years represents a historic time in planetary science. In order to better communicate this period to our target audiences, NASA’s Planetary Science Division created the Year of the Solar System (YSS) initiative. YSS is being designed to raise awareness, build excitement and make connections with educators, students and the American public about planetary science events and discoveries. Over the next Martian year, with our international partners we will encounter two comets; orbit spacecraft around Venus, Mercury and Vesta; continue to explore Mars with rovers; and launch robotic explorers to Jupiter, Earth’s moon, and Mars. For the first time ever NASA will launch three planetary missions within four months of each other! With the successful accomplishment of these mission events will come a series of fabulous scientific discoveries. We must take advantage of this unique opportunity to get the word out about the scientific revolution occurring in planetary science. This presentation will also discuss the importance of providing relatable material through Earth analogs, comparative visuals, interactive web-based tools and other ideas to communicate, why people should care about these exciting discoveries to come.

  7. Assessment of industry views on international business prospects for solar thermal technology

    Energy Technology Data Exchange (ETDEWEB)

    Easterling, J.C.

    1984-09-01

    This report contains a review of solar thermal industry viewpoints on their prospects for developing international business. The report documents the industry's current involvement in foreign markets, view of foreign competition in overseas applications, and view of federal R and D and policy requirements to strengthen international business prospects. The report is based on discussions with equipment manufacturers and system integrators who have a product or service with potential international demand. Interviews with manufacturers and system integrators were conducted by using a standard format for interview questions. The use of a standard format for questions provided a basis for aggregating similar views expressed by US companies concerning overseas business prospects. A special effort was made to gather responses from the entire solar thermal industry, including manufacturers of line-focus, point-focus, and central receiver systems. General, technical, economic, institutional, and financial findings are provided in this summary. In addition, Pacific Northwest Laboratory (PNL) recommendations are provided (based upon advice from the Solar Thermal Review Panel) for activities to improve US solar thermal business prospects overseas.

  8. PERICLES: a knowledge management programme applied to solar data from International Space Station-Columbus

    Science.gov (United States)

    Muller, Christian; PERICLES Consortium

    2017-06-01

    The FP-7 (Framework Programme 7 of the European Union) PERICLES project addresses the life-cycle of large and complex data sets to cater for the evolution of context of data sets and user communities, including groups unanticipated when the data was created. Semantics of data sets are thus also expected to evolve and the project includes elements which could address the reuse of data sets at periods where the data providers and even their institutions are not available any more. This paper presents the PERICLES science case with the example of the SOLAR (SOLAR monitoring observatory) payload on International Space Station-Columbus.

  9. Yearly thermal performances of solar heating plants in Denmark – Measured and calculated

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Perers, Bengt

    2018-01-01

    The thermal performance of solar collector fields depends mainly on the mean solar collector fluid temperature of the collector field and on the solar radiation. For Danish solar collector fields for district heating the measured yearly thermal performances per collector area varied in the period...... 2012–2016 between 313 kWh/m2 and 577 kWh/m2, with averages between 411 kWh/m2 and 463 kWh/m2. The percentage difference between the highest and lowest measured yearly thermal performance is about 84%. Calculated yearly thermal performances of typically designed large solar collector fields at six...... different locations in Denmark with measured weather data for the years 2002–2010 vary between 405 kWh/m2 collector and 566 kWh/m2 collector, if a mean solar collector fluid temperature of 60 °C is assumed. This corresponds to a percentage difference between the highest and lowest calculated yearly thermal...

  10. Unmanned solar systems exploration - An arena for international cooperation

    Science.gov (United States)

    Herman, D. H.; Pacault, R.

    1974-01-01

    Mission profiles for a Mars Surface Sample Return (MSSR) mission are considered. A profile using separate launches for a lander/ascent module and an orbiter/return system could use present technology and is appropriate for international cooperation. The achievement of clean interfaces between major building blocks and ease of controlling back contamination are advantages offered by the concept. A spatially distributed surface sample could be obtained by using multiple landers delivering samples to a common orbiter. The Pioneer Venus program, originally planned as a cooperative NASA-ESRO project, resulted in development of a standardized spacecraft bus yielding benefits at minimized cost. The first joint US-European planetary mission now planned is the launch of a Pioneer class orbiter to Jupiter in 1980. Feasibility studies are being conducted.

  11. The prominent 1.6-year periodicity in solar motion due to the inner planets

    Directory of Open Access Journals (Sweden)

    I. Charvátová

    2007-06-01

    Full Text Available The solar motion due to the inner (terrestrial planets (Mercury, Me; Venus, V; Earth, E; Mars, Ma has been calculated (here for the years 1868–2030. The author found these basic properties of this motion: the toroidal volume in which the Sun moves has the inner radius of 101.3 km and the outer radius of 808.2 km. The solar orbit due to the inner (terrestrial planets is "heart-shaped". The orbital points which are the closest to the centre lie at the time distance of 1.6 years (584 days, on the average, and approximately coincide with the moments of the oppositions of V and E. The spectrum of periods shows the dominant period of 1.6 years (V-E and further periods of 2.13 years (E-Ma (25.6 months, QBO, 0.91 years (V-Ma, 0.8 years ((V-E/2 and 6.4 years. All the periods are above the 99% confidence level. A possible connection of this solar motion with the mid-term quasi-periodicities (MTQP, i.e. 1.5–1.7 years in solar and solar-terrestrial indices can be proposed.

  12. The solarPACES strategy for the solar thermal breakthrough

    International Nuclear Information System (INIS)

    Burch, G.D.; Grasse, W.

    1997-01-01

    IEA(International Energy Agency)/SolarPACES(Solar Power and Chemical Energy systems)represents a world wide coalition for information sharing and collaboration on applications of concentrated solar energy. The current SolarPACES community has built up solar thermal system know-how over 15 years, is operating the three main solar test centres in the world. Its main activities are in the following four fields: solar thermal electric power systems, solar chemistry, solar technology and advanced applications and non-technical activities. The article presents the talk on the strategy of solarPACES given at the International Workshop on applied solar energy held in Tashkent(Uzbekistan) in June 1997. (A.A.D.)

  13. A cumulative (alternating) method of presentation of the twenty two-year periodicity of solar activity

    International Nuclear Information System (INIS)

    Bumba, V.; Hejna, L.

    1988-01-01

    A cumulative method is shown of graphical presentation of the twenty two-year periodicity of solar activity which allows to see the twenty two-year waves of solar activity as basic elements of a cumulative curve of yearly means of observed relative numbers. The ascending branch of each wave represents the successively summed yearly means belonging to the even eleven-year cycles while the descending branch represents yearly means successively subtracted from such a value belonging to the odd eleven-year cycles. In this way the mutual relations were investigated of the individual eleven-year cycles forming one twenty two-year cycle as well as the secular changes in these relations due to the variability of the power of the individual eleven-year cycles and consequent variations of the general secular trends in solar activity development. Also discussed were the length of the periods of secular activity changes using the method of the correlation periodogram. The fine structure was also shown of the main twenty two-year period and the same twenty two-year waves in other indices of solar activity were searched for. (author). 1 figs., 2 tabs., 19 refs

  14. The international year of biodiversity: a celebration and cogitation

    NARCIS (Netherlands)

    Ghazoul, J.; Peña-Claros, M.

    2010-01-01

    To both celebrate and reflect upon this International Year of Biodiversity, Biotropica has invited opinion articles from a number of scientists across the globe. As lightly edited personal opinions, the commentaries reflect the diversity of passionate and often controversial views expressed across

  15. [In 2009, International Year of Astronomy: Galileo, Mutis and Duperier].

    Science.gov (United States)

    González de Posada, Francisco

    2009-01-01

    In commemoration of International Year of Astronomy (2009, proclaimed by the United Nations (UN) 62nd General Assembly) Galileo's revolutions, named, respectively, astronomic, philosophical, mathematical and theological are considered first. And complementarily the Spanish contributions of the doctor Jose Celestino Mutis and Arturo Duperier to the astrophysics are remembered, in their respective anniversary.

  16. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  17. Solar panels for the International Space Station are uncrated and moved in the SSPF

    Science.gov (United States)

    1998-01-01

    In the Space Station Processing Facility, a worker (left) guides the lifting of solar panels for the International Space Station (ISS). The panels are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of the Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend 5 days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed.

  18. Solar Multi-stage Refrigeration Systems on the Basis of Absorber with the Internal Evaporative Cooling

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-08-01

    Full Text Available In the article, the developed schematics are presented for the alternative refrigeration systems and air-conditioning systems, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution. Multi-stage principle of construction of drying and cool contours of solar systems is used with growth of concentration of absorbent on the stages of cooler. An absorber with internal evaporative cooling, allowing to remove the separate evaporated cooler, usually included after the absorber of the proper stage, is developed. Heat-mass-transfer apparatus of film-type, entering in the complement of drying and cool contours compatible and executed on the basis of multichannel compositions from polymeric materials. The preliminary comparative analysis of possibilities of the solar refrigeration systems and air-conditioning systems is executed.

  19. Análise de repetibilidade de caracteres forrageiros de genótipos de Panicum maximum, avaliados com e sem restrição solar Repeatability analysis of forage traits of Panicum maximum genotypes evaluated under natural and attenuated solar radiation

    Directory of Open Access Journals (Sweden)

    Alberto Cargnelutti Filho

    2004-06-01

    Full Text Available O objetivo do trabalho foi determinar o número de medições necessárias à predição do desempenho de cinco genótipos de Panicum maximum Jacq. Os genótipos (Gatton, Vencedor, Mombaça, Tanzânia e Tobiatã foram avaliados sob os sistemas de cultivo com e sem restrição solar, na Fundação Estadual de Pesquisa Agropecuária, situada em Tupanciretã - Rio Grande do Sul. No sistema de cultivo com restrição solar, os genótipos foram avaliados sob um bosque de eucalipto. Em cada uma das oito medições (cortes, foram avaliadas a matéria seca total, matéria seca de folhas, matéria seca de colmo, matéria seca folha + colmo, altura de planta e relação matéria seca folha/colmo. As estimativas dos coeficientes de repetibilidade foram obtidas por três métodos - análise da variância, componentes principais e análise estrutural. Concluiu-se que os oito cortes possibilitaram selecionar genótipos superiores em relação a todas as características, com 80% de exatidão no prognóstico de seu valor real.The objective of this study was to determine how many evaluations were necessary to predict the performance of Panicum maximum Jacq. genotypes. The genotypes Gatton, Vencedor, Mombaça, Tanzânia, and Tobiatã were evaluated under natural and attenuated solar radiation at the Fundação Estadual de Pesquisa Agropecuária, Tupanciretã, RS. Attenuated solar radiation was obtained when plants were grown in Eucalyptus woods. Genotypes in both crop systems were evaluated eight times. Total dry matter production, leaf, stem, and leaf plus stem dry matter, plant height and index of leaf and stem dry matter were recorded each evaluation time. Repeatability estimations were obtained through variance, structural, and principal component analysis. In conclusion, eight evaluations permit to select superior Panicum maximum genotypes, considering all characteristics, with 80% accuracy of the real value.

  20. Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations

    Science.gov (United States)

    Nieves-Chinchilla, T.; Vourlidas, A.; Raymond, J. C.; Linton, M. G.; Al-haddad, N.; Savani, N. P.; Szabo, A.; Hidalgo, M. A.

    2018-02-01

    The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term "magnetic obstacle" (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions ( i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward

  1. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    Energy Technology Data Exchange (ETDEWEB)

    Vigeesh, G.; Steiner, O. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany); Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de [New Mexico State University, Department of Astronomy, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003 (United States)

    2017-02-01

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.

  2. Comparison of theoretically predicted and observed Solar Maximum Mission X-ray spectra for the 1980 April 13 and May 9 flares

    International Nuclear Information System (INIS)

    Smith, D.F.; Orwig, L.E.

    1982-01-01

    A method for predicting the hard X-ray spectrum in the 10--100 keV range for compact flares during their initial rise is developed on the basis of a thermal model. Observations of the flares of 1980 April 13, 4:05 U.T., and 1980 May 9, 7:12 U.T. are given and their combined spectra from the Hard X-ray Burst Spectrometer and Hard X-ray Imaging Spectrometer on the Solar Maximum Mission are deduced. Constraints on the cross sectional area of the supposed emitting arch are obtained from data from the Hard X-ray Imaging Spectrometer. A power-law spectrum is predicted for the rise of the flare of April 13 for initial arch densities less than 10 10 cm -3 and also for the flare of May 9 for initial arch densities less than 5.4 x 10 10 cm -3 . In both cases power-law spectra are observed. Limitations and implications of these results are discussed

  3. The 11-years solar cycle as the manifestation of the dark Universe

    CERN Document Server

    Zioutas, K; Semertzidis, Y K; Papaevangelou, T; Hoffmann, D H H; Anastassopoulos, V

    2014-01-01

    The solar luminosity in the visible changes at the 10-3 level, following an 11 years period. In X-rays, which should not be there, the amplitude varies 100000 times stronger, making their mysterious origin since the discovery in 1938 even more puzzling, and inspiring. We suggest that the multifaceted mysterious solar cycle is due to some kind of dark matter streams hitting the Sun. Planetary gravitational lensing enhances (occasionally) slow moving flows of dark constituents towards the Sun, giving rise to the periodic behaviour. Jupiter provides the driving oscillatory force, though its 11.8 years orbital period appears slightly decreased, just as 11 years, if the lensing impact of other planets is included. Then, the 11 years solar clock may help to decipher (overlooked) signatures from the dark sector in laboratory experiments or observations in space.

  4. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  5. First Year Experience: How We Can Better Assist First-Year International Students in Higher Education

    Science.gov (United States)

    Yan, Zi; Sendall, Patricia

    2016-01-01

    While many American colleges and universities are providing a First Year Experience (FYE) course or program for their first year students, those programs are not often customized to take into account international students' (IS) unique challenges. Using quantitative and qualitative methods, this study evaluated a FYE course that was customized for…

  6. Ion rates in the International Space Station during the December 2006 Solar Particle Event

    OpenAIRE

    2011-01-01

    Abstract Solar Particle Events (SPEs) are a major concern during prolonged space missions. During such events, a large amount of light ions, mostly protons and helium nuclei, are accelerated with enough energy to traverse the spacecraft hull and therefore represent a high hazard for the crew health. The ALTEA particle telescope was collecting continuous data inside the USLab module of the International Space Station (ISS) during most of the December 2006 SPEs. The telescope is able to meas...

  7. Goiania, ten years later. Proceedings of an international conference

    International Nuclear Information System (INIS)

    1998-12-01

    Following the radiological accident that happened in Goiania, Brazil, in late 1987, the Brazilian National Nuclear Energy Commission (CNEN) was able to turn to the international community for assistance under the terms of the 1986 IAEA sponsored Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency; this marked the first time the convention was invoked. Additionally, to prevent the loss of useful information, CNEN and the IAEA designated a panel of international experts to investigate the causes and consequences of the accident and draw up a comprehensive report, 'The Radiological Accident in Goiania', which the IAEA published in 1988. Under its nuclear safety programme, it is the IAEA's intention to follow up serious radiological accidents with review and analysis, to document the causes and circumstances and to disseminate conclusions, lessons to be learned and recommendations from which all States may benefit. A decade after the Goiania accident, the CNEN convened the international conference 'Goiania, Ten Years Later' in co-operation with the IAEA. The purpose of this conference was to share with the local population and the international community the knowledge gained during this tragic event and in the following years. The conference attracted some 400 participants from 17 countries (Argentina, Austria, Brazil, Canada, Cuba, El Salvador, Estonia, Germany, Israel, Italy, Mexico, Peru, Russian Federation, Spain, Uruguay, United States of America and Venezuela). The present IAEA proceedings contain some 50 papers selected for publication by the editorial committee of the conference

  8. Changing response of the North Atlantic/European winter climate to the 11 year solar cycle

    Science.gov (United States)

    Ma, Hedi; Chen, Haishan; Gray, Lesley; Zhou, Liming; Li, Xing; Wang, Ruili; Zhu, Siguang

    2018-03-01

    Recent studies have presented conflicting results regarding the 11 year solar cycle (SC) influences on winter climate over the North Atlantic/European region. Analyses of only the most recent decades suggest a synchronized North Atlantic Oscillation (NAO)-like response pattern to the SC. Analyses of long-term climate data sets dating back to the late 19th century, however, suggest a mean sea level pressure (mslp) response that lags the SC by 2-4 years in the southern node of the NAO (i.e. Azores region). To understand the conflicting nature and cause of these time dependencies in the SC surface response, the present study employs a lead/lag multi-linear regression technique with a sliding window of 44 years over the period 1751-2016. Results confirm previous analyses, in which the average response for the whole time period features a statistically significant 2-4 year lagged mslp response centered over the Azores region. Overall, the lagged nature of Azores mslp response is generally consistent in time. Stronger and statistically significant SC signals tend to appear in the periods when the SC forcing amplitudes are relatively larger. Individual month analysis indicates the consistent lagged response in December-January-February average arises primarily from early winter months (i.e. December and January), which has been associated with ocean feedback processes that involve reinforcement by anomalies from the previous winter. Additional analysis suggests that the synchronous NAO-like response in recent decades arises primarily from late winter (February), possibly reflecting a result of strong internal noise.

  9. NASA's Solar System Exploration Research Virtual Institute: Building Collaboration Through International Partnerships

    Science.gov (United States)

    Gibbs, K. E.; Schmidt, G. K.

    2017-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on re-search at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the international partner re-search efforts and how we are engaging the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  10. Fifty years of wilderness science: An international perspective

    Science.gov (United States)

    Steve Carver; Steve McCool; Zdenka Krenova; Mark Fisher; Stephen. Woodley

    2014-01-01

    The 50th Anniversary of the U.S. Wilderness Act is a cause for celebration, not least of which is the scientific use recognized in Section 4(b) of the act. This year also marks the 20th anniversary of publication of the International Journal of Wilderness (IJW). IJW plays a unique role in wilderness stewardship, science, and advocacy, providing a forum for presentation...

  11. INES (International Nuclear Event Scale) five-years on

    International Nuclear Information System (INIS)

    Taylor, R.H.; Mortin, S.J.

    1996-01-01

    INES - the International Nuclear Event Scale - has now been successfully communicating nuclear risks to the public for five years. Despite being created as a communication tool, its firm scientific base has given it credibility and is responsible, at least in part, for its success. Further improvements in its use are still being made, while keeping in mind the scale's main communication role and the need to respond rapidly to events. (UK)

  12. Report on the participation in the international convention of the International Solar Enertgy Society held in Zimbabwe; Jinbabue deno Kokusai Taiyo Energy Gakkai sekai taikai ni sankashite

    Energy Technology Data Exchange (ETDEWEB)

    Katsube, K.

    1996-03-29

    The international convention of ISES (International Solar Energy Society) was held at Harare, the metropolis of Zimbabwe, South Africa, from September 11 to 15, 1995. 550 delegates from 55 countries attended the convention out of which 40 members were from Japan. The convention is to be held every two years. Zimbabwe has been promoting realistic policy called Zimbabwe socialism, and is called an A student. The ISES meeting was held for 5 days, and many programs such as general meeting, presentation by subcommittees, and conducted tours were proceeded everyday. The address of the President, the main event, took place for one hour in the evening of the second day. A proposal was made to the effect that it was necessary to strengthen ISES and to hold a solar energy summit meeting. Approximately 50 companies displayed products in the exhibition, but it was regrettable that Canon was the only company from Japan to display the products. Next convention is scheduled to be held in Taejon, Korea in August, 1997. 14 figs.

  13. On climatic changes related to the 22-year solar cycle

    Science.gov (United States)

    Schuurmans, C. J. E.

    1974-01-01

    The 22-year or double sunspot cycle as a cause for longitudinal displacements of atmospheric semi-permanent centers of action is studied. A difference in frequency of occurence of Icelandic lows between the two halves of the double sunspot cycle during winter seasons is found.

  14. Evaluation of solar radio bursts' effect on GPS receiver signal tracking within International GPS Service network

    Science.gov (United States)

    Chen, Zhiyu; Gao, Yang; Liu, Zhizhao

    2005-06-01

    The direct interference from solar radio bursts (SRB) has not usually been considered as a potential threat to global positioning system (GPS) signal tracking, since the flux densities of most bursts are below 40,000 solar flux units (sfu), a threat threshold to GPS L1 frequency proposed by Klobuchar et al. (1999). Recent analysis indicated that a much lower threshold should be adopted for codeless or semicodeless dual-frequency GPS receivers. In this investigation, severe signal corruptions were found at dayside International GPS Service GPS receiver stations during a large solar radio burst that accompanied the super flare of 28 October 2003. Almost no GPS L2 signals were tracked during the solar flux peak time for areas near the subsolar point. Correlation analysis was performed between the rate of loss of lock on GPS L2 frequency and solar radio flux density at different bands, and a correlation index as high as 0.75 is revealed in the 1415 MHz solar radiation band, which is located between the two GPS operating frequencies L2 (1227.60 MHz) and L1 (1575.42 MHz). The correlation analysis indicates that GPS signal losses of lock were primarily caused by microwave in-band interference and that the threat threshold of SRB effects on the GPS system should be re-evaluated, since the flux density of the burst at 1415 MHz was just 4,000-12,000 sfu, which is far below the previously proposed threat threshold. The signal-tracking performance of different types of GPS receivers during such a super flare event is also presented.

  15. A feasibility study for an International Year of Landcare

    Science.gov (United States)

    Mutota, E.; Arnalds, A.

    2009-04-01

    Human-induced activities place enormous pressures on the land worldwide, creating competition and conflict, and suboptimal use of the land. Climate change, loss of biodiversity and land degradation leads to decreasing productivity, food and water shortages, and reduced economic benefits, among others. In order to address these challenges and achieve sustainability goals, the need to change the way global resources are being utilized is crucial. A holistic and integrated community-based approach such as Landcare could be a viable approach to meet this worldwide challenge. Landcare is about committed people working together on land rehabilitation and restoration projects at the local level, transforming attitudes and stimulating new ideas among land users, generating support and building partnerships between and among local communities, governments and the private sector. Landcare initiatives have grown in a number of countries where success stories of actions on the ground clearly show the wider application of the Landcare approach in resolving many of the world's environmental problems and livelihood challenges. However, the potential of Landcare have not yet been widely exploited on a scale that really matters—as local actions build up towards global progress, there is more scope for unified efforts towards a global Landcare movement. Following the recommendation given at the International Forum on Soils, Society and Global Change in 2007 in Iceland (http://www.iisd.ca/YMB/SDFSS/), an International Year of Landcare should be established. Such a year would bring into focus efforts to build local capacity and share knowledge and experiences between provinces, countries and continents on Landcare. Additionally, holding a year concerned with Landcare would greatly contribute to the attainment of the Millennium Development Goals, the UN environmental conventions and many other sustainability goals. Our study supports the notion that Landcare offers a robust platform

  16. LOCAL INTERSTELLAR HYDROGEN'S DISAPPEARANCE AT 1 AU: FOUR YEARS OF IBEX IN THE RISING SOLAR CYCLE

    International Nuclear Information System (INIS)

    Saul, Lukas; Rodríguez, Diego; Scheer, Juergen; Wurz, Peter; Bzowski, Maciej; Kubiak, Marzena; Sokół, Justina; Fuselier, Stephen; McComas, Dave; Möbius, Eberhard

    2013-01-01

    NASA's Interstellar Boundary Explorer (IBEX) mission has recently opened a new window on the interstellar medium (ISM) by imaging neutral atoms. One ''bright'' feature in the sky is the interstellar wind flowing into the solar system. Composed of remnants of stellar explosions as well as primordial gas and plasma, the ISM is by no means uniform. The interaction of the local ISM with the solar wind shapes our heliospheric environment with hydrogen being the dominant component of the very local ISM. In this paper, we report on direct sampling of the neutral hydrogen of the local ISM over four years of IBEX observations. The hydrogen wind observed at 1 AU has decreased and nearly disappeared as the solar activity has increased over the last four years; the signal at 1 AU has dropped off in 2012 by a factor of ∼8 to near background levels. The longitudinal offset has also increased with time presumably due to greater radiation pressure deflecting the interstellar wind. We present longitudinal and latitudinal arrival direction measurements of the bulk flow as measured over four years beginning at near solar minimum conditions. The H distribution we observe at 1 AU is expected to be different from that outside the heliopause due to ionization, photon pressure, gravity, and filtration by interactions with heliospheric plasma populations. These observations provide an important benchmark for modeling of the global heliospheric interaction. Based on these observations we suggest a further course of scientific action to observe neutral hydrogen over a full solar cycle with IBEX.

  17. The International Year of Astronomy 2009 - the global programme

    Science.gov (United States)

    Russo, Pedro; Lindberg Christensen, L.

    2008-05-01

    The International Astronomical Union (IAU) has launched 2009 as the International Year of Astronomy (IYA2009) under the theme "The Universe, yours to discover". IYA2009 marks the four hundredth anniversary of Galileo Galilei's first astronomical observation through a telescope. It will be a global celebration of astronomy and its contribution to society and culture, with a strong emphasis on education, public engagement and the involvement of young people, with events at national, regional, and global levels throughout the whole of 2009. IYA2009 has been endorsed by UNESCO and the UN General Assembly. As today, the International Year of Astronomy 2009 is supported by 108 National Nodes, 18 Organisational nodes, 9 IYA2009 Task Groups, 11 Organisational Associates and 11 Global Cornerstone projects. The IYA2009 Global Cornerstone projects are global programmes of activities centred on a specific theme and represent the means to achieve the IYA2009's main goals; whether it is the support and promotion of women in astronomy, the preservation of dark-sky sites around the world or educating and explaining the workings of the Universe to millions, the eleven cornerstones will be the key facets of the success of the IYA2009. The authors will present a snapshot of the current global status of the IYA2009 programme.

  18. The International Year of Astronomy 2009: The Global Programme

    Science.gov (United States)

    Russo, P.; Christensen, L. L.; Barrosa, M.

    2008-11-01

    The International Astronomical Union (IAU) has launched 2009 as the International Year of Astronomy (IYA2009) under the theme ``The Universe, Yours to Discover.'' IYA2009 marks the four hundredth anniversary of Galileo Galilei's first astronomical observation through a telescope. It will be a global celebration of astronomy and its contribution to society and culture, with a strong emphasis on education, public engagement and the involvement of young people, with events at national, regional, and global levels throughout the whole of 2009. IYA2009 has been endorsed by UNESCO and the UN General Assembly. As of today, the International Year of Astronomy 2009 is supported by 118 National Nodes, 21 Organisational nodes, 11 IYA2009 Special Task Groups, 17 Organisational Associates, 11 Global Cornerstone projects. And two special projects the IYA2009 Global Cornerstone projects are global programmes of activities centred on a specific theme and represent the means to achieve the IYA2009's main goals; whether it is the support and promotion of women in astronomy, the preservation of dark-sky sites around the world or educating and explaining the workings of the universe to millions, the Cornerstones will be the key facets of the success of the IYA2009. The authors will present a snapshot of the current global status of the IYA2009 programme.

  19. AAVSO and the International Year of Light (Poster abstract)

    Science.gov (United States)

    Larsen, K.

    2015-06-01

    (Abstract only) The United Nations General Assembly has officially designated 2015 to be the International Year of Light (IYL). Modeled in part on the earlier International Year of Astronomy (IYA), this cross-disciplinary, international educational and outreach project will celebrate the importance of light in science, technology, cultural heritage, and the arts. It ties in with several important anniversaries, such as the 1000th anniversary of the publication of Ibn Al Haythem's “Book of Optics,” the 150th anniversary of Maxwell's equations of electromagnetism, the centenary of Einstein's General Theory of Relativity, and the 50th anniversary of the discovery of the Cosmic Microwave Background Radiation. Because variable stars are defined as such due to the variability of the light we observe from them, all of the AAVSO programs, regardless of type of variable or instrumentation (eye, DSLR, PEP, or CCD) have natural tie-ins to the study of light. This poster will highlight a number of specific ways that AAVSO members and the organization as a whole can become intimately involved with this unique outreach opportunity.

  20. The future of the International Year of Astronomy 2009 website

    Science.gov (United States)

    Shida, R. Y.; Russo, P.; Christensen, L. L.

    2008-06-01

    The internet will, without doubt, be one of the most important channels connecting the International Year of Astronomy (IYA2009) activities with the general public. The IYA2009 website went online in December 2006 and since then has served as the main communication tool between all the countries and agencies that are taking part in this event. Recently a new strategy has been applied to the IYA2009 project and its communication. The project has changed from catering mainly to internal communication needs (IAU Single Points of Contacts) to communicating more with external groups and the wider world, including lay people. Some features of the current website will be demonstrated, and ways of using web tools to empower astronomy communication will be suggested. Plans for the future evolution of the IYA2009 website as new events and ideas come up before 2009 will also be discussed.

  1. Solar System Exploration Research Virtual Institute: Year Three Annual Report 2016

    Science.gov (United States)

    Pendleton, Yvonne; Schmidt, Greg; Kring, David; Horanyi, Mihaly; Heldmann, Jennifer; Glotch, Timothy; Rivkin, Andy; Farrell, William; Pieters, Carle; Bottke, William; hide

    2016-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) is pleased to present the 2016 Annual Report. Each year brings new scientific discoveries, technological breakthroughs, and collaborations. The integration of basic research and development, industry and academic partnerships, plus the leveraging of existing technologies, has further opened a scientific window into human exploration. SSERVI sponsorship by the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD) continues to enable the exchange of insights between the human exploration and space science communities, paving a clearer path for future space exploration. SSERVI provides a unique environment for scientists and engineers to interact within multidisciplinary research teams. As a virtual institute, the best teaming arrangements can be made irrespective of the geographical location of individuals or laboratory facilities. The interdisciplinary science that ensues from virtual and in-person interactions, both within the teams and across team lines, provides answers to questions that many times cannot be foreseen. Much of this research would not be accomplished except for the catalyzing, collaborative environment enabled by SSERVI. The SSERVI Central Office, located at NASA Ames Research Center in Silicon Valley, California, provides the leadership, guidance and technical support that steers the virtual institute. At the start of 2016, our institute had nine U.S. teams, each mid-way through their five-year funding cycle, plus nine international partnerships. However, by the end of the year we were well into the selection of four new domestic teams, selected through NASA's Cooperative Agreement Notice (CAN) process, and a new international partnership. Understanding that human and robotic exploration is most successful as an international endeavor, international partnerships collaborate with SSERVI domestic teams on a no-exchange of funds basis

  2. Rosetta begins its 10-year journey to the origins of the Solar System

    Science.gov (United States)

    2004-03-01

    a year, at least until December 2015, and will have a ringside seat to monitor the « awakening » of the comet’s activity as it comes closer to the Sun and reached its perihelion, in October 2015. Probing the comet The Rosetta probe was built for ESA by an industrial team of over 50 European companies led by EADS Astrium. It is a 3 tonne spacecraft with solar arrays spanning an impressive 32 metres. This is the first probe designed to travel beyond the orbit of Mars to rely on solar cells for its power supply. In addition to the Philae lander, Rosetta incorporates a 165 kg science payload consisting of 11 instruments developed in partnership by ESA member countries and by the the United States. Four of these instruments are dedicated to observation of the nucleus: the ALICE ultraviolet spectrometer, the OSIRIS high-resolution camera, the VIRTIS imaging spectrometer and the MIRO microwave radiometer/spectrometer. Three more instruments will study the composition of the nucleus and its emanations; the COSIMA and ROSINA spectrometers and the MIDAS microscope. The GIADA collector will analyse dusts in the vicinity of the nucleus while the RPC group of sensors will characterise the internal structure of the comet’s coma and its interaction with the solar wind. The last two instruments, CONSERT and RSI, will use radio waves, one to probe the internal structure of the nucleus and the other to determine the distribution of masses inside the nucleus and the structure of the coma. The Philae lander, developed under the leadership of Germany’s DLR aerospace research agency, carries 9 instruments provided by ESA member countries in partnership with the United States, Hungary and Russia. Among these, the ÇIVA/ROLIS set of cameras will provide panoramic and stereoscopic high-resolution views. The APXS, COSAC and Ptolemy instruments will analyse soil compounds. The SESAME seismometer will probe the surface to a depth of 2 m, while its characteristics will be studied by the

  3. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  4. The International Reference Ionosphere - 45 Years of International Space Weather Collaboration

    Science.gov (United States)

    Bilitza, D.; Reinisch, B. W.; Rawer, K. M.

    2015-12-01

    The International Reference Ionosphere (IRI) project was started in 1970 when the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) joined forces to establish an internationally accepted reference model for the ionosphere. COSPAR needed such a specification for the evaluation of environmental effects on spacecraft and experiments in space, and URSI for radiowave propagation studies and applications. Because of this operational needs both unions requested that IRI be based primarily on data using all available and reliable data sources from space and ground. Similar activities had been started for the Atmosphere with the COSPAR International Reference Atmosphere (CIRA) model and for the Earth's magnetic field with the International Geomagnetic Reference Field (IGRF) model of the International Association of Geomagnetism and Aeronomy (IAGA). This presentation will give a brief overview over the IRI project and the progress made since its inception. An important milestone was reached early last year when IRI was voted to become the ISO standard for the ionosphere; the International Standardization Organization (ISO) is in charge of establishing and publishing international standards. This talk will discuss the most recent status of IRI activities including the development of a Real-Time IRI and the IRI 2015 Workshop, the first COSPAR Capacity Building Workshop on a Space Weather topic, that will be held in Bangkok from November 2 to 13. The IRI model is heavily used for a wide range of applications in science, engineering and education. We will discuss some of the more important ones of these applications and present measures of success that underline the superior performance of the model and the wide acceptance in the science community and science-interested public.

  5. Maximum mouth opening and trismus in 143 patients treated for oral cancer: a 1-year prospective study.

    Science.gov (United States)

    Wetzels, Jan-Willem G H; Merkx, Matthias A W; de Haan, Anton F J; Koole, Ron; Speksnijder, Caroline M

    2014-12-01

    Patients with oral cancer can develop restricted mouth opening (trismus) because of the oncologic treatment. Maximum mouth opening (MMO) was measured in 143 patients shortly before treatment and 0, 6, and 12 months posttreatment, and the results were analyzed using a linear mixed-effects model. In every patient, MMO decreased after treatment. The patients who underwent surgery, recovered partially by 6 and 12 months after treatment, whereas the patients who received both surgery and radiotherapy or primary radiotherapy did not recover. Tumor location, tumor size, and alcohol consumption had independent effects on MMO. Having trismus (MMO trismus after oral cancer treatment. © 2014 Wiley Periodicals, Inc.

  6. [Ten years after the latest revision International Anatomical Terminology].

    Science.gov (United States)

    Kachlík, D; Bozdechová, I; Cech, P; Musil, V; Báca, V

    2008-01-01

    Ten years ago, the latest revision of the Latin anatomical nomenclature was approved and published as Terminologia Anatomica (International Anatomical Terminology), and is acknowledged by the organization uniting national anatomical societies--International Federation of Associations of Anatomists. The authors concentrate on new terms included in the nomenclature and on the linguistic changes of terminology. The most frequent errors done by medical specialists in the usage of the Latin anatomical terminology are emphasized and the situation of eponyms in contemporary anatomy is discussed in detail as well. The last version of the nomenclature makes its way very slowly in the professional community and it is necessary to refer to positive changes and advantages it has brought. The usage of this Latin anatomical nomenclature version is suggested by the International Federation to follow in theoretical and clinical fields of medicine. The authors of the article strongly recommend using the recent revision of the Latin anatomical nomenclature both in the oral and written forms, when educating and publishing.

  7. [International adoption from Ethiopia in a 5-year period].

    Science.gov (United States)

    Martínez Ortiz, A; Domínguez Pinilla, N; Wudineh, M; González-Granado, L I

    2015-05-01

    An increase in the number of internationally adopted children has been observed in the last few years. The country of origin that has experienced a greater increase is Ethiopia. The health of internationally adopted children from Ethiopia has not been extensively assessed to date. The main objective of the study is to determine the prevalence of infectious diseases in children adopted from Ethiopia, and to assess their nutritional status. A prospective, observational cohort study was conducted using the medical records of 251 children adopted from Ethiopia to Spain in the period from Jan 1, 2006 and December 31, 2010. The mean age of the children was 7 months (range 1-120). Abnormalities were detected on physical examination in 56.6%. In 90% of cases the child was less than 5 years-old. Half of the sample had a weight below the third percentile, with some degree of malnutrition in 65% of the children. HIV exposure was not uncommon (4.8%). Low weight and acute gastroenteritis were the main findings in this cohort. Infectious diseases should be systematically assessed. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  8. First Asia-Pacific Regional School of the International Heliophysical Year (IHY) 2007 program

    CERN Document Server

    Gopalswamy, Natchimuthuk; Ambastha, Ashok; Heliophysical Processes

    2010-01-01

    An outgrowth of the first Asia-Pacific Regional School on the International Heliophysical Year (IHY), this volume contains a collection of review articles describing the universal physical processes in the heliospace influenced by solar electromagnetic and mass emissions. The Sun affects the heliosphere in the short term (space weather) and in the long term (space climate) through numerous physical processes that exhibit similarities in various spatial domains of the heliosphere. The articles take into account various aspects of the Sun-heliosphere connection under a systems approach. This volume will serve as a ready reference work for research in the emerging field of heliophysics, which describes the physical processes taking place in the physical space controlled by the Sun out to the local interstellar medium.

  9. Study of solar features causing GMSs with 250γ H 400γ

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 61; Issue 1. Study of solar features causing GMSs with 250 < < ... Statistically, it is observed that maximum number of GMSs have occurred during the maximum solar activity years of 21st and 22nd solar cycles. A peculiar result has been observed during the years ...

  10. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui, E-mail: quweizhe@ouc.edu.cn [College of Environment Oceanography, Ocean University of China, Qingdao 266100 (China)

    2012-07-15

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  11. A 33,000-Year-Old incipient dog from the Altai Mountains of Siberia : Evidence of the earliest domestication disrupted by the last Glacial Maximum

    NARCIS (Netherlands)

    Ovodov, Nikolai D.; Crockford, Susan J.; Kuzmin, Yaroslav V.; Higham, Thomas F. G.; Hodgins, Gregory W. L.; van der Plicht, Johannes; Stepanova, Anna

    2011-01-01

    Background: Virtually all well-documented remains of early domestic dog (Canis familiaris) come from the late Glacial and early Holocene periods (ca. 14,000-9000 calendar years ago, cal BP), with few putative dogs found prior to the Last Glacial Maximum (LGM, ca. 26,500-19,000 cal BP). The dearth of

  12. Internal Diversification of Mitochondrial Haplogroup R0a Reveals Post-Last Glacial Maximum Demographic Expansions in South Arabia

    Czech Academy of Sciences Publication Activity Database

    Černý, Viktor; Mulligan, C. J.; Fernandes, V.; Silva, N. M.; Alshamali, F.; Non, A.; Harich, N.; Cherni, L.; El Gaaied, A. B. A.; Al-Meeri, A.; Pereira, L.

    2011-01-01

    Roč. 28, č. 1 (2011), s. 71-78 ISSN 0737-4038 R&D Projects: GA MŠk ME 917 Institutional research plan: CEZ:AV0Z80020508 Keywords : phylogeography * Arabia * migrations Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 5.550, year: 2011 http://mbe.oxfordjournals.org/content/28/1/71.full.pdf+html

  13. The Role of Current Sheets in Solar Eruptive Events: An ISSI International Team Project

    Science.gov (United States)

    Suess, Steven T.; Poletto, Giannina

    2006-01-01

    Current sheets (CSs) are a prerequisite for magnetic reconnection. An International Space Science Institute (ISSI, of Bern, Switzerland) research team will work to empirically define current sheet properties in the solar atmosphere and their signatures in the interplanetary medium, and to understand their role in the development of solar eruptive events. The project was inspired by recently acquired ground and space based observations that reveal CS signatures at the time of flares and Coronal Mass Ejections (CMEs), in the chromosphere, in the corona and in the interplanetary medium. At the same time, theoretical studies predict the formation of CSs in different models and configurations, but theories and observational results have not yet developed an interaction efficient enough to allow us to construct a unified scenario. The team will generate synergy between observers, data analysts, and theoreticians, so as to enable a significant advance in understanding of current sheet behavior and properties. A further motivation for studying CSs is related to the expected electric fields in CSs that may be the source of solar energetic particles (SEPs). The team has 14 members from Europe and the US. The first meeting is in October 2006 and the second is late in 2007.

  14. Solar panels for the International Space Station are uncrated and moved in the SSPF

    Science.gov (United States)

    1998-01-01

    In the Space Station Processing Facility, the overhead crane slowly moves solar panels intended for the International Space Station (ISS). The panels are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of the Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend 5 days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed. At the left of the crane and panels is the Multipurpose Logistics Module (MPLM), the Leonardo A reusable logistics carrier, the MPLM is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000.

  15. Canadian Preparations for the International Polar Year 2007-2008

    Science.gov (United States)

    Hik, D. S.; Edwards, K. E.

    2006-12-01

    The launch of the International Polar Year on March 1, 2007 will not only mark the beginning of data collection of innovative scientific programs but it will also unleash a series of innovative education and outreach opportunities to increase public awareness of the polar regions and their global impact. IPY education and outreach programs intend to enhance new methods of communication amongst international scientific partners and organizations; inspire the growth and engagement of the next generation of polar researchers; demystify scientific outcomes of IPY into relevant everyday impacts for the public; and express the wonder and significance of the polar regions through medium of art, exhibits, and writing. Canadian researchers, artists, educators and youth are providing significant leadership in the development of such IPY programming and are involved in almost half of the IPO endorsed EOC proposals. Recognizing that Canada has a critical role to play in IPY as host, leader and participant, preparations in Canada have been extensive. A network of national, territorial, and regional organizing bodies has been established to coordinate the development of the national IPY programs; to support the financial and logistical planning; as well as to facilitate the advancement of international partnerships. The success of the Canadian IPY program, measured as either capacity building, strength of partnerships, or efficiency of logistics and operations, will depend upon having committed partners who are specifically part of the Canadian IPY effort. As the Canadian IPY education and outreach program evolves it is being built firmly on partnerships with existing scientific and education organizations in Canada such as youth organizations, national media corporations, and polar science based programs. By building on existing national strengths we are able to capture the existing energy and activity from IPY 2007-2008 to create a longer term sustainable polar education

  16. ATS-5 solar cell experiment results after one year in synchronous orbit

    Science.gov (United States)

    Anspaugh, B. E.

    1972-01-01

    The results of the ATS-5 solar cell experiment after one year in synchronous orbit are reported. A partial failure in the experimental electronics package has caused a loss of data from half the 80 experimental solar cells. Procedures for extracting data due to a partial spacecraft failure are described and discussed. Data from the remaining 40 solar cells, including 15 mounted on a thin flexible structure are analyzed. Data are corrected to a solar intensity of 140 mW/sq cm and a temperature of 25 C. It was found that after one year in synchronous orbit: (1) cells with 1.52-mm-thick coverslides did not show a clear-cut advantage over those with 0.15-mm coverslides, (2) cells with solderless grid lines are degrading at the same rate as are cells with solder-dipped grid lines, (3) cells not quite completely covered with coverslides suffered a large power loss in comparison to cells fully covered, (4) no clear-cut advantage of 10-cm cells over 2-cm cells has yet been observed, (5) cells mounted on the flexible panel with relatively little backshielding did not degrade any faster than those with substantial backshielding, and (6) the flight data in large part confirms the adequacy of the ground-based techniques used in our preflight radiation test program.

  17. Education and outreach for the International Polar Year

    Science.gov (United States)

    Pfirman, Stephanie; Bell, Robin Elizabeth; Turrin, Margie; Maru, Poonam

    2004-12-01

    If the 65 educators, scientists, and media specialists who gathered at the “Bridging the Poles” workshop in Washington, D.C. last June have their way a semitrailer truck labeled “Got Snow?” would traverse the country during the International Polar Year (IPY) of 2007-2009 loaded with polar gear, interactive activities, and a snowmaker. We would significantly increase the number of Arctic residents—especially indigenous Alaskans—with Ph.D.s. We would build exchange programs between inner city youths and polar residents. Polar exhibitions would open at natural history and art museums and zoos. And polar postage stamps, interactive polar computer games, national polar book-of-the-month recommendations, made-for-TV polar documentaries, and a polar youth forum would bring the poles front and center to the public's attention.

  18. Global Change Encyclopedia - A project for the international space year

    Science.gov (United States)

    Cihlar, J.; Simard, R.; Manore, M.; Baker, R.; Clark, D.; Kineman, J.; Allen, J.; Ruzek, M.

    1991-01-01

    'Global Change Encyclopedia' is a project for the International Space Year in 1992. The project will produce a comprehensive set of satellite and other global data with relevance to studies of global change and of the earth as a system. These data will be packaged on CD-ROMs, accompanied by appropriate software for access, display and manipulation. On behalf of the Canadian Space Agency, the project is being carried out by the Canada Centre for Remote Sensing, with the U.S. National Oceanic and Atmospheric Administration and the U.S. National Aeronautics and Space Administration as major contributors. This paper highlights the background leading to the project, the concept and principal characteristics of the Encyclopedia itself, and the current status and plans.

  19. Contribution from twenty two years of CSNI International Standard Problems

    International Nuclear Information System (INIS)

    1998-03-01

    This report provides a brief overview on the contribution of some CSNI International Standard Problems (ISPs) to nuclear reactor safety issues (41 ISPs performed over the last 22 years). This CSNI activity on ISPs has been one of the major activities of the Principal Working Group no.2 on Coolant System Behaviour. Its domain extended from thermal-hydraulics to several other accident domains following the main concerns of nuclear reactor safety, e.g., LOCA predictions fuel behaviour, operator procedures, containment thermal-hydraulics severe accidents, VVERs, etc. ISPs are providing unique material and benefits for some safety related issues. Clearly, all the technical findings and benefits provided by ISPs are still needed and contribute to advancement of nuclear safety. The report provides some overview on the general objectives of ISPs, content and types of ISPs, and technical domains covered by ISPs, followed by a synthesis of technical findings and benefits to the scientific community

  20. Maximum growth potential in loblolly pine: results from a 47-year-old spacing study in Hawaii

    Science.gov (United States)

    Lisa J. Samuelson; Thomas L. Eberhardt; John R. Butnor; Tom A. Stokes; Kurt H. Johnsen

    2010-01-01

    Growth, allocation to woody root biomass, wood properties, leaf physiology, and shoot morphology were examined in a 47-year-old loblolly pine (Pinus taeda L.) density trial located in Maui, Hawaii, to determine if stands continued to carry the high density, basal area, and volume reported at younger ages and to identify potential factors controlling...

  1. 78 FR 691 - Guarantee Fee Rates for Guaranteed Loans for Fiscal Year 2013; Maximum Portion of Guarantee...

    Science.gov (United States)

    2013-01-04

    ... DEPARTMENT OF AGRICULTURE Rural Business-Cooperative Service Guarantee Fee Rates for Guaranteed...; Annual Renewal Fee for Fiscal Year 2013 AGENCY: Rural Business-Cooperative Service, USDA. ACTION: Notice... persistently poor, are experiencing trauma as a result of natural disaster, or are experiencing fundamental...

  2. 77 FR 5759 - Guarantee Fee Rates for Guaranteed Loans for Fiscal Year 2012; Maximum Portion of Guarantee...

    Science.gov (United States)

    2012-02-06

    ... DEPARTMENT OF AGRICULTURE Rural Business-Cooperative Service Guarantee Fee Rates for Guaranteed...; Annual Renewal Fee for Fiscal Year 2012 AGENCY: Rural Business-Cooperative Service, USDA. ACTION: Notice... remain persistently poor, that experience long-term population decline and job deterioration, that are...

  3. Single basin double slope solar still: Year round performance prediction for local climatic conditions at Southern India

    Directory of Open Access Journals (Sweden)

    Kulandaivel Kalidasa Murugavel

    2014-01-01

    Full Text Available In this work, performance of a single basin double slope solar still has been studied theoretically and experimentally. The theoretical model is used to predict the year round performance of the still at the local climatic conditions for the year 2008. Average values of maximum and minimum atmospheric temperatures, wind velocities were taken from meteorological data for last five years. Radiation models were used to predict the global and diffused irradiances on the inclined covers. The time to time variations in transmittance of the cover were considered. The rate of production variation and the total production for first day of the every month had been calculated. The overall production of the still was higher during March, April, August, November and December and it is around 4 liters/day. The average production of the still was 2.1 liters/day/m2. The economy of the still was also studied and the payback period of the still was three years.

  4. Assessment Of The Viability Of Kaduna City Climate For Year Round Use Of Direct Solar Thermal Cooking Fuel In Housing

    Directory of Open Access Journals (Sweden)

    Boumann Ephraim Sule

    2017-10-01

    Full Text Available Solar energy obtained from the sun is the world most abundant and cheapest source of energy as a cooking fuel. It comes in two forms Concentrated Solar Thermal direct conversion of solar energy to heat that cooks and Solar Photovoltaic PV a conversion of solar energy to electrical then to heat energy the former technology is simple and far cheaper. Despite all these architectural and engineering researches is yet to capture it for indoor cooking because of inability to cook year round due the claimed hindrances by weather condition such as clouds rainfall wind dusty atmosphere and many others. This paper attempted to look into the possibility of cooking year round in Kaduna city. It collected and analyzed ten years climatic data from three different meteorological stations strategically located round the city this showed a low solar radiation in the month of August. It further compared the result with a literature review of solar cooking carried in the same month the findings showed at the peak of each weather hindrance a another element overrides it to give enough minimum energy for cooking a meals. This paper has therefore pointed the potentials of Kaduna city climate for year round use of concentrated solar thermal as a cooking fuel in residential building and further recommends the architectural collaboration with engineers for the direct capturing of solar rays into residential dwelling as a sustainable cooking fuel.

  5. Sixty years of the International Journal of Biometeorology

    Science.gov (United States)

    Sheridan, Scott C.; Allen, Michael J.

    2017-09-01

    The International Journal of Biometeorology (IJB) has continuously evolved since its first publications in 1957. In this paper, we examine these changes using a database that includes all manuscript titles and author information. A brief history considers the development of the journal and shifts over time. With an interdisciplinary focus, publications draw on a wide array of subdisciplines. Using content analysis, we evaluate the themes found within IJB. Some research themes have maintained prominence throughout the journal's history, while other themes have waxed or waned over time. Similarly, the most influential manuscripts throughout the past 60 years reveal that human biometeorological papers, particularly regarding thermal comfort, have been influential throughout the journal's history, with other themes, including phenology and animal biometeorology, more concentrated in specific periods. Dominated by North America and Europe in the early years, publication authorship has shifted over the last decade to be more globally representative. Recent inclusion of special issues devoted to regional biometeorological issues, as well as to Students and New Professionals, offer insight into the future direction of the IJB.

  6. Ademe et Vous. International Newsletter No. 30, September-October 2014. Solar Decathlon: Tomorrow's sustainable house

    International Nuclear Information System (INIS)

    Martin, Valerie; Seguin-Jacques, Catherine; Tappero, Denis

    2014-09-01

    A unique international university competition to design and build an energy autonomous, solar house: that was the brief for the Solar Decathlon held in France last July. Diversified and reliable, all forms of solar energy have a key role to play in the energy transition. ADEME has therefore opted actively to support the development of these technical solutions going forward. In December 2011, ADEME, ADEREE (Moroccan agency for the development of renewable energies and energy efficiency) and BMWi (German Federal Ministry of Economics and Technology) started up a twinning programme funded by the EU to encourage the development of energy efficiency and renewable energies in Morocco

  7. Local Times of Galactic Cosmic Ray Intensity Maximum and Minimum in the Diurnal Variation

    Directory of Open Access Journals (Sweden)

    Su Yeon Oh

    2006-06-01

    Full Text Available The Diurnal variation of galactic cosmic ray (GCR flux intensity observed by the ground Neutron Monitor (NM shows a sinusoidal pattern with the amplitude of 1sim 2 % of daily mean. We carried out a statistical study on tendencies of the local times of GCR intensity daily maximum and minimum. To test the influences of the solar activity and the location (cut-off rigidity on the distribution in the local times of maximum and minimum GCR intensity, we have examined the data of 1996 (solar minimum and 2000 (solar maximum at the low-latitude Haleakala (latitude: 20.72 N, cut-off rigidity: 12.91 GeV and the high-latitude Oulu (latitude: 65.05 N, cut-off rigidity: 0.81 GeV NM stations. The most frequent local times of the GCR intensity daily maximum and minimum come later about 2sim3 hours in the solar activity maximum year 2000 than in the solar activity minimum year 1996. Oulu NM station whose cut-off rigidity is smaller has the most frequent local times of the GCR intensity maximum and minimum later by 2sim3 hours from those of Haleakala station. This feature is more evident at the solar maximum. The phase of the daily variation in GCR is dependent upon the interplanetary magnetic field varying with the solar activity and the cut-off rigidity varying with the geographic latitude.

  8. Correlation between maximum phonetically balanced word recognition score and pure-tone auditory threshold in elder presbycusis patients over 80 years old.

    Science.gov (United States)

    Deng, Xin-Sheng; Ji, Fei; Yang, Shi-Ming

    2014-02-01

    The maximum phonetically balanced word recognition score (PBmax) showed poor correlation with pure-tone thresholds in presbycusis patients older than 80 years. To study the characteristics of monosyllable recognition in presbycusis patients older than 80 years of age. Thirty presbycusis patients older than 80 years were included as the test group (group 80+). Another 30 patients aged 60-80 years were selected as the control group (group 80-) . PBmax was tested by Mandarin monosyllable recognition test materials with the signal level at 30 dB above the averaged thresholds of 0.5, 1, 2, and 4 kHz (4FA) or the maximum comfortable level. The PBmax values of the test group and control group were compared with each other and the correlation between PBmax and predicted maximum speech recognition scores based on 4FA (PBmax-predict) were statistically analyzed. Under the optimal test conditions, the averaged PBmax was (77.3 ± 16.7) % for group 80- and (52.0 ± 25.4) % for group 80+ (p < 0.001). The PBmax of group 80- was significantly correlated with PBmax-predict (Spearman correlation = 0.715, p < 0.001). The score for group 80+ was less statistically correlated with PBmax-predict (Spearman correlation = 0.572, p = 0.001).

  9. Dynamical characterization of the last prolonged solar minima

    Science.gov (United States)

    Cionco, Rodolfo Gustavo; Compagnucci, Rosa Hilda

    2012-11-01

    The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle. The advance of this hypothesis is based on phenomenological correlations between dynamical parameters of the Sun's movement around the barycentre of the Solar System and sunspots time series; and more especially, identifying relationships linking solar barycentric dynamics with prolonged minima (especially Grand Minima events). However, at present there is no clear physical mechanism relating these phenomena. The possible celestial influence on solar cycle modulation is of great importance not only in solar physics but also in Earth sciences, because prolonged solar minima have associated important climatic and telluric variations, in particular, during the Maunder and Dalton Minimum. In this work we looked for a possible causal link in relation with solar barycentric dynamics and prolonged minima events. We searched for particular changes in the Sun's acceleration and concentrated on long-term variations of the solar cycle. We show how the orbital angular momentum of the Sun evolves and how the inclination of the solar barycentric orbit varies during the epochs of orbital retrogressions. In particular, at these moments, the radial component of the Sun's acceleration (i.e., in the barycentre-Sun direction) had an exceptional magnitude. These radial impulses occurred at the very beginning of the Maunder Minimum, during the Dalton Minimum and also at the maximum of cycle 22 before the present extended minimum. We also found a strong correlation between the planetary torque and the observed sunspots international number around that maximum. We apply our results in a novel theory of Sun-planets interaction that it is sensitive to Sun barycentric dynamics and found a very important effect on the Sun's capability of storing hypothetical reservoirs of potential energy that could be released by

  10. One-Year stable perovskite solar cells by 2D/3D interface engineering

    Science.gov (United States)

    Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; de Angelis, F.; Graetzel, M.; Nazeeruddin, Mohammad Khaja

    2017-06-01

    Despite the impressive photovoltaic performances with power conversion efficiency beyond 22%, perovskite solar cells are poorly stable under operation, failing by far the market requirements. Various technological approaches have been proposed to overcome the instability problem, which, while delivering appreciable incremental improvements, are still far from a market-proof solution. Here we show one-year stable perovskite devices by engineering an ultra-stable 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3PbI3 perovskite junction. The 2D/3D forms an exceptional gradually-organized multi-dimensional interface that yields up to 12.9% efficiency in a carbon-based architecture, and 14.6% in standard mesoporous solar cells. To demonstrate the up-scale potential of our technology, we fabricate 10 × 10 cm2 solar modules by a fully printable industrial-scale process, delivering 11.2% efficiency stable for >10,000 h with zero loss in performances measured under controlled standard conditions. This innovative stable and low-cost architecture will enable the timely commercialization of perovskite solar cells.

  11. 75 Years of the International Labour Review: A Retrospective.

    Science.gov (United States)

    Thomas, Albert; And Others

    1996-01-01

    Contains 18 articles published in International Labour Review from 1921-1975 that discuss the International Labour Organisation, international labor movement and law, economics and the labor market, family security, full employment, population growth, industrial welfare, trade policy and employment growth, and income expectations and rural-urban…

  12. Solar photochemistry - twenty years of progress, what`s been accomplished, and where does it lead?

    Energy Technology Data Exchange (ETDEWEB)

    Blake, D M

    1995-01-01

    It has been more than 20 years since the first oil embargo. That event created an awareness of the need for alternative sources of energy and renewed interest in combining sunlight and chemistry to produce the chemicals and materials required by industry. This paper will review approaches that have been taken, progress that has been made, and give some projections for the near and longer term prospects for commercialization of solar photochemistry.

  13. The 11-year solar cycle affects the intensity and annularity of the Arctic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Huth, Radan; Bochníček, Josef; Hejda, Pavel

    2007-01-01

    Roč. 69, č. 9 (2007), s. 1095-1109 ISSN 1364-6826 R&D Projects: GA AV ČR IAA3042401 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z30120515 Keywords : Arctic Oscillation * Solar cycle * 10.7 cm radio flux * Sea level pressure * Principal component analysis Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.566, year: 2007

  14. Harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle

    Science.gov (United States)

    Scafetta, N.

    2012-12-01

    We show that the Schwabe frequency band of the Zurich sunspot record since 1749 is made of three major cycles that are closely related to the spring tidal period of Jupiter and Saturn (~9.93 year), to the tidal sidereal period of Jupiter (about 11.86 years) and to a central cycle that may be associated to a quasi-11-year solar dynamo cycle. The central harmonic is approximately synchronized to the average of the two planetary frequencies. A harmonic model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals major beat periods occurring at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. Equivalent synchronized cycles are found in cosmogenic solar proxy records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial three-frequency beat cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima around 1900-1920 and 1960-1980, the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005, and a secular upward trending during the 20th century. The latter modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature modulation since 1850. The model forecasts a new prolonged solar minimum during 2020-2045, which is produced by the minima of both the 61 and 115-year reconstructed cycles. Finally, the model predicts

  15. The relativistic solar particle event of May 17th, 2012 observed on board the International Space Station

    Directory of Open Access Journals (Sweden)

    Berrilli Francesco

    2014-05-01

    Full Text Available High-energy charged particles represent a severe radiation risk for astronauts and spacecrafts and could damage ground critical infrastructures related to space services. Different natural sources are the origin of these particles, among them galactic cosmic rays, solar energetic particles and particles trapped in radiation belts. Solar particle events (SPE consist in the emission of high-energy protons, alpha-particles, electrons and heavier particles from solar flares or shocks driven by solar plasma propagating through the corona and interplanetary space. Ground-level enhancements (GLE are rare solar events in which particles are accelerated to near relativistic energies and affect space and ground-based infrastructures. During the current solar cycle 24 a single GLE event was recorded on May 17th, 2012 associated with an M5.1-class solar flare. The investigation of such a special class of solar events permits us to measure conditions in space critical to both scientific and operational research. This event, classified as GLE71, was detected on board the International Space Station (ISS by the active particle detectors of the ALTEA (Anomalous Long Term Effects in Astronauts experiment. The collected data permit us to study the radiation environment inside the ISS. In this work we present the first results of the analysis of data acquired by ALTEA detectors during GLE71 associated with an M5.1-class solar flare. We estimate the energy loss spectrum of the solar particles and evaluate the contribution to the total exposure of ISS astronauts to solar high-energy charged particles.

  16. NASA's Great Observatories Celebrate the International Year of Astronomy

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for larger version In 1609, Galileo improved the newly invented telescope, turned it toward the heavens, and revolutionized our view of the universe. In celebration of the 400th anniversary of this milestone, 2009 has been designated as the International Year of Astronomy. Today, NASA's Great Observatories are continuing Galileo's legacy with stunning images and breakthrough science from the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory. While Galileo observed the sky using visible light seen by the human eye, technology now allows us to observe in many wavelengths, including Spitzer's infrared view and Chandra's view in X-rays. Each wavelength region shows different aspects of celestial objects and often reveals new objects that could not otherwise be studied. This image of the spiral galaxy Messier 101 is a composite of views from Spitzer, Hubble, and Chandra. The red color shows Spitzer's view in infrared light. It highlights the heat emitted by dust lanes in the galaxy where stars can form. The yellow color is Hubble's view in visible light. Most of this light comes from stars, and they trace the same spiral structure as the dust lanes. The blue color shows Chandra's view in X-ray light. Sources of X-rays include million-degree gas, exploded stars, and material colliding around black holes. Such composite images allow astronomers to see how features seen in one wavelength match up with those seen in another wavelength. It's like seeing with a camera, night vision goggles, and X-ray vision all at once. In the four centuries since Galileo, astronomy has changed dramatically. Yet our curiosity and quest for knowledge remain the same. So, too, does our wonder at the splendor of the universe. The International Year of Astronomy Great Observatories Image Unveiling is supported by the NASA Science Mission Directorate Astrophysics Division. The project is a

  17. Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle

    Science.gov (United States)

    Scafetta, Nicola

    2012-05-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle may be associated to a quasi-11-year solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Spörer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial three-frequency beat cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900-1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature

  18. Temperature reconstruction and volcanic eruption signal from tree-ring width and maximum latewood density over the past 304 years in the southeastern Tibetan Plateau.

    Science.gov (United States)

    Li, Mingqi; Huang, Lei; Yin, Zhi-Yong; Shao, Xuemei

    2017-11-01

    This study presents a 304-year mean July-October maximum temperature reconstruction for the southeastern Tibetan Plateau based on both tree-ring width and maximum latewood density data. The reconstruction explained 58% of the variance in July-October maximum temperature during the calibration period (1958-2005). On the decadal scale, we identified two prominent cold periods during AD 1801-1833 and 1961-2003 and two prominent warm periods during AD 1730-1800 and 1928-1960, which are consistent with other reconstructions from the nearby region. Based on the reconstructed temperature series and volcanic eruption chronology, we found that most extreme cold years were in good agreement with major volcanic eruptions, such as 1816 after the Tambora eruption in 1815. Also, clusters of volcanic eruptions probably made the 1810s the coldest decade in the past 300 years. Our results indicated that fingerprints of major volcanic eruptions can be found in the reconstructed temperature records, while the responses of regional climate to these eruption events varied in space and time in the southeastern Tibetan Plateau.

  19. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model

    Science.gov (United States)

    Ball, W. T.; Unruh, Y. C.; Krivova, N. A.; Solanki, S.; Harder, J. W.

    2011-06-01

    Aims: We investigate how well modeled solar irradiances agree with measurements from the SORCE satellite, both for total solar irradiance and broken down into spectral regions on timescales of several years. Methods: We use the SATIRE model and compare modeled total solar irradiance (TSI) with TSI measurements over the period 25 February 2003 to 1 November 2009. Spectral solar irradiance over 200-1630 nm is compared with the SIM instrument on SORCE over the period 21 April 2004 to 1 November 2009. We discuss the overall change in flux and the rotational and long-term trends during this period of decline from moderate activity to the recent solar minimum in ~10 nm bands and for three spectral regions of significant interest: the UV integrated over 200-300 nm, the visible over 400-691 nm and the IR between 972-1630 nm. Results: The model captures 97% of the observed TSI variation. This is on the order at which TSI detectors agree with each other during the period considered. In the spectral comparison, rotational variability is well reproduced, especially between 400 and 1200 nm. The magnitude of change in the long-term trends is many times larger in SIM at almost all wavelengths while trends in SIM oppose SATIRE in the visible between 500 and 700 nm and again between 1000 and 1200 nm. We discuss the remaining issues with both SIM data and the identified limits of the model, particularly with the way facular contributions are dealt with, the limit of flux identification in MDI magnetograms during solar minimum and the model atmospheres in the IR employed by SATIRE. However, it is unlikely that improvements in these areas will significantly enhance the agreement in the long-term trends. This disagreement implies that some mechanism other than surface magnetism is causing SSI variations, in particular between 2004 and 2006, if the SIM data are correct. Since SATIRE was able to reproduce UV irradiance between 1991 and 2002 from UARS, either the solar mechanism for SSI

  20. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    international collaboration by describing the globalisation of the economy and current efforts of technology collaboration and transfer. Finally, it considers various ways to strengthen international energy technology collaboration. This paper is one of six case-studies designed in an effort to provide practical insights on the role international technology collaboration could play to achieve the objectives of the UNFCCC. They will all consider the past achievements of international technology collaboration, and the role it could play in helping to develop and disseminate new technologies in the future: what worked, what did not work and why, and what lessons might be drawn from past experiences. Most case studies consider energy technologies that could help mitigate greenhouse gas emissions. A few others consider areas not directly related to greenhouse gas emissions but where international technology collaboration has proven particularly successful in the past. This case study reviews past and current experience in international collaboration in the field of concentrating solar technologies in order to identify lessons that may be relevant for more general climate-friendly technology collaboration. It presents concentrating solar technologies in their current status, recent achievements and development prospects. It analyses the present successes and failures of different forms of international collaboration in this field, and draws lessons for further elaboration of international technology collaboration in addressing climate change.

  1. VIIRS reflective solar bands on-orbit calibration and performance: a three-year update

    Science.gov (United States)

    Sun, Junqiang; Wang, Menghua

    2014-11-01

    The on-orbit calibration of the reflective solar bands (RSBs) of VIIRS and the result from the analysis of the up-to-date 3 years of mission data are presented. The VIIRS solar diffuser (SD) and lunar calibration methodology are discussed, and the calibration coefficients, called F-factors, for the RSBs are given for the latest reincarnation. The coefficients derived from the two calibrations are compared and the uncertainties of the calibrations are discussed. Numerous improvements are made, with the major improvement to the calibration result come mainly from the improved bidirectional reflectance factor (BRF) of the SD and the vignetting functions of both the SD screen and the sun-view screen. The very clean results, devoid of many previously known noises and artifacts, assures that VIIRS has performed well for the three years on orbit since launch, and in particular that the solar diffuser stability monitor (SDSM) is functioning essentially without flaws. The SD degradation, or H-factors, for most part shows the expected decline except for the surprising rise on day 830 lasting for 75 days signaling a new degradation phenomenon. Nevertheless the SDSM and the calibration methodology have successfully captured the SD degradation for RSB calibration. The overall improvement has the most significant and direct impact on the ocean color products which demands high accuracy from RSB observations.

  2. Performance Comparison between ĆUK and SEPIC Converters for Maximum Power Point Tracking Using Incremental Conductance Technique in Solar Power Applications

    OpenAIRE

    James Dunia; Bakari M. M. Mwinyiwiwa

    2013-01-01

    Photovoltaic (PV) energy is one of the most important energy resources since it is clean, pollution free, and endless. Maximum Power Point Tracking (MPPT) is used in photovoltaic (PV) systems to maximize the photovoltaic output power, irrespective the variations of temperature and radiation conditions. This paper presents a comparison between Ćuk and SEPIC converter in maximum power point tracking (MPPT) of photovoltaic (PV) system. In the paper, advantages and disadvantages of both converter...

  3. Internal transmission coefficient in charges carrier generation layer of graphene/Si based solar cell device

    Science.gov (United States)

    Rosikhin, Ahmad; Winata, Toto

    2016-04-01

    Internal transmission profile in charges carrier generation layer of graphene/Si based solar cell has been explored theoretically. Photovoltaic device was constructed from graphene/Si heterojunction forming a multilayer stuck with Si as generation layer. The graphene/Si sheet was layered on ITO/glass wafer then coated by Al forming Ohmic contact with Si. Photon incident propagate from glass substrate to metal electrode and assumed that there is no transmission in Al layer. The wavelength range spectra used in this calculation was 200 - 1000 nm. It found that transmission intensity in the generation layer show non-linear behavior and partitioned by few areas which related with excitation process. According to this information, it may to optimize the photons absorption to create more excitation process by inserting appropriate material to enhance optical properties in certain wavelength spectra because of the exciton generation is strongly influenced by photon absorption.

  4. Solar cycle variations in IMF intensity

    International Nuclear Information System (INIS)

    King, J.H.

    1979-01-01

    Annual averages of logarithms of hourly interplanetary magnetic field (IMF) intensities, obtained from geocentric spacecraft between November 1963 and December 1977, reveal the following solar cycle variation. For 2--3 years at each solar minimum period, the IMF intensity is depressed by 10--15% relative to its mean value realized during a broad 9-year period contered at solar maximum. No systematic variations occur during this 9-year period. The solar minimum decrease, although small in relation to variations in some other solar wind parameters, is both statistically and physically significant

  5. Solar cycle variations in IMF intensity

    International Nuclear Information System (INIS)

    King, J.H.

    1979-03-01

    Annual averages of logarithms of hourly interplanetary magnetic field intensities, obtained from geocentric spacecraft between November 1963 and December 1977, reveal the following solar cycle variation. For 2 to 3 years at each solar minimum period, the IMF intensity is depressed by 10-15 percent relative to its mean value realized during a broad nine-year period centered at solar maximum. No systematic variations occur during this nine-year period. The solar minimum decrease, although small relative to variations in some other solar wind parameters, is both statistically and physically significant

  6. Implementation of a Strengthened International Safeguards System. ABACC 15 Years

    International Nuclear Information System (INIS)

    Vicens, H.R.; Maceiras, E.; Dominguez, C.A.

    2011-01-01

    The purpose of the paper is to explain how the system of a regional safeguard has been operating and developing in the framework of the Brazilian-Argentine Agency of Accounting and control of nuclear Materials (ABACC), and how the international recommendations of radiological protection must be taken into account in the safeguards implementation and its impact in the international context.

  7. International Collaboration: the Virtuous Cycle of Low Carbon Innovation and Diffusion. An Analysis of Solar Photovoltaic, Concentrating Solar Power and Carbon Capture and Storage

    International Nuclear Information System (INIS)

    Dominique, Katheen

    2010-01-01

    International collaboration can be leveraged to accelerate the innovation and diffusion of low carbon technologies required to realize the shift to a low carbon trajectory. A collaborative approach to innovation has the potential to capture several benefits, including: pooling risks and achieving scale; knowledge sharing that accommodates competition and cooperation; the creation of a global market; facilitation of policy learning and exchange; and the alignment of technology, finance and policy. International Collaboration: the Virtuous Cycle of Low Carbon Innovation and Diffusion An Analysis of Solar Photovoltaic, Concentrating Solar Power and Carbon Capture and Storage A range of obstacles to the diffusion of low carbon technologies provides ample opportunity for international collaboration in global market creation and capacity building, expanding beyond conventional modes of technology transfer. Current collaborative efforts for carbon capture and storage, solar photovoltaic and concentrating solar power technologies are active in all stages of innovation and diffusion and involve a wide range of actors. Yet, current efforts are not sufficient to achieve the necessary level of emission mitigation at the pace required to avoid catastrophic levels of atmospheric destabilization. This analysis sets forth recommendation to scale up current endeavors and create new ones. The analysis begins by describing the fundamental characteristics of innovation and diffusion processes that create opportunities for international collaboration. It then illustrates a broad array of on-going collaborative activities, depicting how these efforts contribute to innovation and diffusion. Finally, highlighting the gap between the current level of collaborative activities and technology targets deemed critical for emission mitigation, the report sets forth several recommendations to build on current efforts and construct new endeavors

  8. Princess Elisabeth Antarctica: an International Polar Year outreach and media success story

    Directory of Open Access Journals (Sweden)

    Joseph Cheek

    2011-12-01

    Full Text Available One of the priorities of the fourth International Polar Year (IPY was to increase awareness of the polar regions and polar science among the general public through education, communication and other forms of outreach. This paper reports on the media coverage of Princess Elisabeth Antarctica (PEA, Belgium's “zero-emission” Antarctic research station designed by the non-profit International Polar Foundation (IPF to run on wind and solar energy and to employ state-of-the-art forms of energy management and other “green” technology. This paper provides background information on PEA, a review of IPF's media strategy for the project, a description of media coverage of the station and a discussion of the way in which the IPF's main messages were reported in the media. IPF staff surveyed approximately 300 media reports released between February 2004, when the PEA project was announced to the general public, and June 2010, when the IPF presented their findings at the IPY conference in Oslo. PEA was featured 580 times in print and web media in Belgium, and 303 times outside Belgium. Major international agencies such as the Associated Press, Agence France Presse, the BBC, Al-Jazeera and Reuters covered the project. On television and radio, PEA was featured in news broadcasts from all four major television networks in Belgium, most major radio stations and 34 different television and radio news outlets outside Belgium. The paper concludes that the media coverage for PEA was significant and suggests reasons why the project was so widely reported.

  9. TECHNICAL CHARACTERIZATION OF ECO-COMPATIBLE PLASTIC FILMS FOR SOIL SOLARIZATION: FOUR YEARS OF EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Salvatore Margiotta

    2007-12-01

    Full Text Available Soil solarization relies on solar radiation being converted to heat for the killing of soilborne pathogens. On one hand, this technique can be considered as an environmentally-friendly way to manage soilborne pests, as an alternative of methyl bromide phased-out in 2005, than using chemicals. On the other hand, high employment of traditional plastic sheets in agriculture causes the production of enormous quantities of waste, whose inappropriate management might have negative effects on the environment. In order to determine a reduction of the charge of plastic waste and to facilitate the waste disposal, one of the most interesting approaches, from an environmental point of view, lies in the location of innovatory plastic films such as co-extruded ultrathin films, which are able to reduce the plastic quantity to be managed, and biodegradable laminates, which after a first usage, will spontaneously start up a degradation process that avoids their collection and their consequent disposal. Beside the ecological proprieties of these innovative films, it is necessary to study their technical and agronomical behavior in order to determine their efficiency and the possibility to be used in place of the traditional plastic films. This paper represents a review of the researches carrier out by the Technical Economics Department of the University of Basilicata (Italy in the last years (1999, 2000, 2002 and 2003 on the technical performances of some innovative plastic films used for soil solarization.

  10. An International Polar Year Adventure in the Arctic

    Science.gov (United States)

    Wartes, D.

    2008-12-01

    Native students in the UA system who participated in RAHI are nearly twice as likely to earn a bachelor's degree, than those who did not attend RAHI. The past two summers, in celebration of the International Polar Year, in collaboration with Ilisagvik College, at the completion of the traditional RAHI program, ten RAHI students flew to Barrow for an additional two weeks of study. Five students participated in an archaeological dig and five students performed research with the Barrow Arctic Science Consortium scientists studying climate change. And another student was the Alaskan delegate to the Students on Ice, a 2-week ship-based adventure in northern Canada. In addition, ten students from Greenland visited the program, with plans to more fully participate next summer. This added dimension to the program has proved successful, allowing the students to compare and contrast between their own countries and indigenous perspectives. Global warming was an issue that was hotly debated, as its effects are so evident in the Polar Regions. In the Arctic, one's life is directly tied to the ice and snow. As the ice disappears and/or changes, the Indigenous people have to adapt. RAHI would like to share with you some of the results of this past summer's IPY activities.

  11. FETTU Wins International Year of Astronomy 2009 Prize

    Science.gov (United States)

    2010-02-01

    The "From Earth to the Universe" (FETTU) project -- a worldwide series of exhibitions featuring striking astronomical imagery -- has won the first Mani Bhaumik prize for excellence in astronomy education and public outreach. This award was given for the best of the tens of thousands of activities conducted during the International Year of Astronomy (IYA) 2009. NASA was a major sponsor of the project, which was led by the Chandra X-ray Center, that placed these images into public parks, metro stations, libraries, and other non-traditional locations around the world. The exhibit showcases some of the best astronomical images taken from telescopes both on the ground and in space, representing the wide variety of wavelengths and objects observed. While FETTU has been a worldwide effort, a NASA grant provided the primary funding for the FETTU exhibits in the US. NASA funds also supplied the project's infrastructure as well as educational and other materials that helped the FETTU international efforts to thrive. "We are truly thrilled to see how many people FETTU has reached both in the US and around the world," said Hashima Hasan, NASA's Single Point of Contact for IYA2009. "It's an investment we feel has been well spent." In the US, FETTU has been placed on semi-permanent display at Chicago's O'Hare and Atlanta's Hartsfield airports. In addition, a traveling version of the exhibit has visited over a dozen US cities such as Washington, DC, Anchorage, AK, Memphis, TN, and New York City. Three tactile and Braille versions of the FETTU exhibit were also made possible by the NASA funds, each of which has traveled to multiple locations around the country. "It's been so rewarding to see how people - many of whom had never seen these images - have embraced the wonders of astronomy through these exhibits," said Kimberly Kowal Arcand, co-chair of the FETTU project at the Chandra X-ray Center, which is located at the Smithsonian Astrophysical Observatory in Cambridge, Mass. "The

  12. Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum

    Science.gov (United States)

    Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.

    2010-01-01

    Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.

  13. Standardized monitoring of Rangifer health during International Polar Year

    Directory of Open Access Journals (Sweden)

    Susan Kutz

    2013-06-01

    Full Text Available Normal 0 21 false false false SV X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Normal tabell"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-fareast-language:EN-US;} Monitoring of individual animal health indices in wildlife populations can be a powerful tool for evaluation of population health, detecting changes, and informing management decisions. Standardized monitoring allows robust comparisons within and across populations, and over time and vast geographic regions. As an International Polar Year Initiative, the CircumArctic Rangifer Monitoring and Assessment network established field protocols for standardized monitoring of caribou and reindeer (Rangifer tarandus health, which included body condition, contaminants, and pathogen exposure and abundance. To facilitate use of the protocols, training sessions were held, additional resources were developed, and language was translated where needed. From March 2007 to September 2010, at least 1206 animals from 16 circumpolar herds were sampled in the field using the protocols. Four main levels of sampling were done and ranged from basic to comprehensive sampling. Possible sources of sampling error were noted by network members early in the process and protocols were modified or supplemented with additional visual resources to improve clarity when needed. This is the first time that such broad and comprehensive circumpolar sampling of migratory caribou and wild reindeer, using standardized protocols covering both body

  14. PCDTBT based solar cells: one year of operation under real-world conditions

    Science.gov (United States)

    Zhang, Yiwei; Bovill, Edward; Kingsley, James; Buckley, Alastair R.; Yi, Hunan; Iraqi, Ahmed; Wang, Tao; Lidzey, David G.

    2016-02-01

    We present measurements of the outdoor stability of PCDTBT:PC71BM based bulk heterojunction organic solar cells for over the course of a year. We find that the devices undergo a burn-in process lasting 450 hours followed by a TS80 lifetime of up to 6200 hours. We conclude that in the most stable devices, the observed TS80 lifetime is limited by thermally-induced stress between the device layers, as well as materials degradation as a result of edge-ingress of water or moisture through the encapsulation.

  15. MIT Solar Building 5: the second year's performance

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T E; Quinlan, E

    1979-11-01

    The MIT Solar Building 5 has shown the problems associated with direct gain approaches can be overcome with new architectural finish materials that emphasize their thermophysical properties. Three new materials are demonstrated in the building: (1) a transparent window insulation; (2) a glare modulating and light directing louver; and (3) a ceiling tile that stores heat latently. 1978-1979 thermal performance measurements showed the sun supplied 62% of the building's seasonal heating requirement while an additional 13% of the load was supplied by internal gains from the lights. This was done by glazing only 45% of the south wall. Economic analyses show the payback period is 4 to 5 times faster than when using the flat plate collector approach. Architectural flexibility has been increased, even to the point where new kinds of spaces can be created using these materials.

  16. 75 FR 53640 - Call for Applications for the International Buyer Program Calendar Year 2012

    Science.gov (United States)

    2010-09-01

    ... addition, the applicant should describe in detail the international marketing program to be conducted for... DEPARTMENT OF COMMERCE International Trade Administration [Docket No.: 100806330-0330-01] Call for Applications for the International Buyer Program Calendar Year 2012 AGENCY: International Trade Administration...

  17. 76 FR 54428 - Call for Applications for the International Buyer Program Calendar Year 2013

    Science.gov (United States)

    2011-09-01

    ... in detail the international marketing program to be conducted for the event, and explain how efforts... DEPARTMENT OF COMMERCE International Trade Administration [Docket No. 110729450-1450-01] Call for Applications for the International Buyer Program Calendar Year 2013 AGENCY: International Trade Administration...

  18. INIS annual report 2000. International nuclear information system 30 years

    International Nuclear Information System (INIS)

    Song Qinglin; Xue Enjie

    2001-01-01

    Main achievements of INIS (International Nuclear Information System) since its founding in 1970 are presented. More than 2 220 000 records have been collected in INIS Database; the INIS bibliographic database and full text database of NCL (Non-conventional literature) are produced and distributed in electronic form on CD-ROM; INIS database can also be accessed on Internet since 1998. 65 719 bibliographic records and 12 992 full text of NCL documents were added to INIS during 2000. INIS is made up of 103 Member States and 19 International Organizations

  19. Internal exposure in French nuclear power plants : 10 years on

    International Nuclear Information System (INIS)

    Chevalier, C.; Gonin, M.

    1992-01-01

    Collectively speaking, internal exposure in French nuclear power plants is negligible. However, some quite high individual doses have been recorded. The details of cases of significant contamination are presented here in table form. A brief discussion of a few particular cases underscores the problems involved. (author)

  20. Pneumonia and Wheezing in the First Year : An International Perspective

    NARCIS (Netherlands)

    Garcia-Marcos, Luis; Mallol, Javier; Sole, Dirceu; Brand, Paul L. P.; Martinez-Torres, Antonela; Sanchez-Solis, Manuel

    2015-01-01

    Background: The relationship between pneumonia and recurrent wheezing (RW) and the factors associated to pneumonia in wheezing and non-wheezing infants have not been compared between affluent and non-affluent populations. Methods: The International Study of Wheezing in Infants (EISL) is a large

  1. Deployment summary: Fiscal years 1995-2000 [USDOE Office of International Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-07-01

    This publication summarizes the progress made by the Office of International Programs (IP) in deploying innovative technologies for the environmental remediation of the DOE complex and for sites of its international collaborators for fiscal years 1995 through 2000.

  2. Putting the 'I' in IHY the United Nations report for the International Heliophysical year 2007

    CERN Document Server

    Thompson, Barbara J

    2009-01-01

    Presents the international aspects and achievements of the 'International Heliophysical Year (IHY) 2007'. This book shows how much astronomy contributes to the basis of knowledge society as today's concept for mastering the future.

  3. Deployment summary: Fiscal years 1995-2000 [USDOE Office of International Programs

    International Nuclear Information System (INIS)

    2000-01-01

    This publication summarizes the progress made by the Office of International Programs (IP) in deploying innovative technologies for the environmental remediation of the DOE complex and for sites of its international collaborators for fiscal years 1995 through 2000

  4. Solar-assisted district heating system - Scientific study. Solar-assisted district heating system with long-term thermal storage in Friedrichshafen-Wiggenhausen and Hamburg-Bramfeld.. Results of the first year of operation; Solar unterstuetzte Nahwaermeversorgung - Wissenschaftliches Begleitprogramm. Solare Nahwaermeversorgung mit Langzeitwaermespeicher in Friedrichshafen-Wiggenhausen und Hamburg-Bramfeld. Ergebnisse des ersten Betriebsjahres

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M.E.; Mahler, B.; Hahne, E. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik

    1998-12-31

    The first two pilot plants for solar district heating with seasonal thermal energy storage were put in operation in October 1996. Both projects were initiated by the Institute for Thermodynamics and Thermal Energy Technology (ITW) of the University of Stuttgart that also provided scientific support up to the present. This report presents the results of the first two years of operation of both plants. Both solar plants have been operated without any major problems. The solar energy yield in the first year of operation has only been reduced by the unsatisfactory operation of the heating grid. The most important step towards optimising the plants is the adjustment of the internal heating systems and thus the reduction of the heating temperatures which are currently too high. Based on subject pre-conditions the results projected for the first pilot plants for solar district heating and long-term thermal energy storage will be reached in the following years of operation. (orig.) [Deutsch] Im Oktober 1996 gingen die ersten beiden Pilotanlagen zur solaren Nahwaermeversorgung mit saisonaler Waermespeicherung in Betrieb. Beide Projekte wurden vom Institut fuer Thermodynamik und Waermetechnik (ITW), Universitaet Stuttgart initiiert und ueber die gesamte bisherige Laufzeit wissenschaftlich begleitet. Die Ergebnisse des ersten Betriebsjahres der beiden Anlagen sind in diesem Bericht zusammengestellt. In beiden Faellen funktionieren die Solaranlagen ohne grosse Probleme. Die solaren Ertraege wurden im ersten Betriebsjahr noch durch die unzureichende Betriebsweise der Heiznetze gemindert. Wichtigster Ansatzpunkt fuer eine Optimierung der Anlagen ist die Einregulierung der hausinternen Heizungssysteme und damit die Absenkung der derzeit noch zu hohen Heiznetztemperaturen. Unter dieser Voraussetzung werden die vorausgesagten Ergebnisse fuer die ersten Pilotanlagen zur solaren Nahwaerme mit Langzeit-Waermespeicher in den naechsten Betriebsjahren erreicht werden. (orig.)

  5. International Year of Planet Earth - Activities and Plans in Mexico

    Science.gov (United States)

    Alaniz-Alvarez, S.; Urrutia-Fucugauchi, J.

    2007-12-01

    IYPE started as a joint initiative by UNESCO and IUGS with participation of several geosciences organizations, and has developed into a major program in geosciences with inclusion of national committees. In this presentation we focus on current activities and plans in our country, and in the international activities. IYPE activities have concentrated in publications and organization of conferences and meetings. A book series on Earth Science Experiments for Children has been defined, with the first books published on "Atmospheric Pressure and Free Fall of Objects" and "Light and Colors". Following books are on "Standing on Archimedes" and "Foucault and the Climate". Books are distributed free to school children, with more than 10,000 copies given of first volume. Other publications include the special issues of El Faro science magazine edited by the National University, with last issue published and distributed electronically and in hard copies this August. Special events include Conference of IYPE Executive Director presented during the International Day of Science Museums in late May in Science Museum Universum. This was followed by a Planet Earth Week in the University. Current plans include an electronic open-access publication, additional publications of the Planet Earth series, articles and special issues in journals and magazines, and events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Life. The metropolitan area of Mexico City, with around 20 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes translation into Spanish of IYPE publications and the participation in programs and activities. In addition to activities in the different countries, we consider that IYPE should result in initiatives for

  6. International Conference on Population and Development: year-end update.

    Science.gov (United States)

    Chasek, P; Goree, L J

    1993-12-21

    This report is an update for the period during September-December 1993 on the International Conference on Population and Development (ICPD). The report summarizes the UN General Assembly's annotated outline of the Cairo document on the preamble, responsibilities, and implementation. A brief history of the ICPD is given as well as a summary of the roundtable discussions among a number of governments and agencies (Germany, Switzerland,UNFPA, ESCAP, the International Academy of the Environment, the UN Environmental Program, the Vienna Institute for Development and Cooperation, and the nongovernmental organization (NGO) planning committee of the ICPD). The General Assembly identifies the topic of responsibility as the recognition of the link between population, sustained economic growth, and sustainable development; gender equality and empowerment of women; the family composition; population growth and structure; reproductive rights and health and family planning; health and mortality; population distribution; and international migration. Implementation concerns include IEC, capacity building, technology, national action, international cooperation, partnerships between NGOs and private or community groups, and follow-up. During the Second Committee meeting comments are reported to have been solicited about the outline. Dr. Nafis Sadik, as ICPD Secretary General, helped 92 countries prepare national population reports and to establish public awareness of population and development issues. 50 countries have population reports. Delegates are being asked to endorse the ECOSOC resolution 1991/93 (A/48/430) and the annotated outline of the final document (A/48/430/Add.1). The annotated outline debates are summarized. Dr. Sadik summarizes 15 points on improvements to the document. A draft incorporating improvements is expected to be ready in January 1994 and discussed at the third session of the ICPD preparatory committee meeting in April 1994. The ICPD Preparatory Committee

  7. Chernobyl five years after. WHO to spearhead international programme

    International Nuclear Information System (INIS)

    1991-01-01

    In April 1990, an agreement was signed between the WHO and the USSR Ministry of Health to set up a long-term international programme to assist the populations affected by the Chernobyl accident, as well as to increase the body of scientific knowledge about radiation effects. The programme will deal with monitoring and treatment of the affected populations and will carefully examine emergency prevention issues. Funding will come primarily from voluntary contributions from WHO Member States

  8. 40 years of solar cell research in the CINVESTAV of the IPN; 40 anos de investigacion de celdas solares en el CINVESTAV del IPN

    Energy Technology Data Exchange (ETDEWEB)

    Morales Acevedo, Arturo [Centro de Investigaciones y Estudios Avanzados del Instituto Politecnico Nacional, Mexico (Mexico)

    2007-06-15

    Basically, this presentation describes what the Centro de Investigaciones y de Estudios Avanzados (CINVESTAV) has been working on during this last 40 years, e.g. solar cells. Firstly, it is explained the starting point of the research of solar cells in this institute. Next, it is briefly described the project focused on the factory, which produced 3-inch solar cells, and there are also explained the methodologies that were used in order to produce such sort of cells. In addition, the issues related to photovoltaic systems are explained, among there are found: the characteristics and the first places where they were installed, among others. Next, it is described the program of the PV system installation in the facilities of some child hostel of the Republic of Mexico, carried out with the collaboration of the National Indigenist Institute (INI). Next, it is presented the technology that the CINVESTAV is currently working on, i.e. crystalline silicon solar cells. Besides, it is shown by graphic and illustrative means the process of the same. Finally, it is described the strategic plan suggested in order to produce solar cells in Mexico; besides, there are shown the got conclusions a long with the future expectations. [Spanish] En esta presentacion se describe basicamente todo lo que ha pasado a lo largo de 40 anos en el Centro de Investigaciones y de Estudios Avanzados (CINVESTAV), en relacion a las celdas solares. En primer plano, se describe el punto de inicio de la investigacion de celdas solares en esta institucion. Enseguida, se describe brevemente el proyecto que se realizo sobre la planta piloto fabricante de celdas solares de 3 pulgadas de diametro, tambien se explican las metodologias que se seguian para fabricar dichas celdas. Mas adelante, se explican cuestiones relacionadas con los modulos fotovoltaicos entre las que se encuentran: las caracteristicas y los primeros lugares donde fueron instalados este tipo de sistemas. Enseguida, se describe el programa

  9. Seven Years of World-Wide Participation in International Observe the Moon Night

    Science.gov (United States)

    Buxner, Sanlyn; Jones, Andrea J.; Bleacher, Lora; Wenger, Matthew; Shaner, Andrew; Joseph, Emily C. S.; Day, Brian; Canipe, Marti; InOMN Coordinating Committee

    2016-10-01

    International Observe the Moon Night (InOMN) is an annual worldwide public event that encourages observation, appreciation, and understanding of our Moon and its connection to NASA planetary science and exploration. Everyone on Earth is invited to join the celebration by hosting or attending an InOMN event - and uniting on one day each year to look at and learn about the Moon together. This year marks the seventh year of InOMN, which will be held on October 8, 2016. Between 2010 and 2015, a total of 3,275 events were registered worldwide, 49% of which were held in the United States. In 2015, a total of 545 events were registered on the InOMN website from around the world. These events were scheduled to be held in 54 different countries, 43% of which were registered in the United States from 40 states and the District of Columbia. InOMN events are hosted by a variety of institutions including astronomy clubs, observatories, schools, and universities and hosted at a variety of public and private institutions all over the world including museums, planetaria, schools, universities, observatories, parks, and private businesses and private homes. Evaluation of InOMN is led by the Planetary Science Institute who assesses the success of InOMN through analysis of event registrations, facilitator surveys, and visitor survey. Current InOMN efforts demonstrate success in meeting the overall goals of the LRO E/PO goals including raising visitors' awareness of lunar science and exploration, providing audiences with information about lunar science and exploration along with access to LRO data and science results, and inspiring visitors to want to learn more about the Moon and providing connections to opportunities to do so. InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter, NASA's Solar System Exploration Research Virtual Institute (SSERVI), and the Lunar and Planetary Institute. Learn more at http://observethemoonnight.org/.

  10. Positioning Space Solar Power (SSP) as the Next Logical Step after the International Space Station (ISS)

    Science.gov (United States)

    Charania, A.

    2002-01-01

    At the end of the first decade of the 21st century, the International Space Station (ISS) will stand as a testament of the engineering capabilities of the international community. The choices for the next logical step for this community remain vast and conflicting: a Mars mission, moon colonization, Space Solar Power (SSP), etc. This examination focuses on positioning SSP as one such candidate for consideration. A marketing roadmap is presented that reveals the potential benefits of SSP to both the space community and the global populace at large. Recognizing that scientific efficiency itself has no constituency large enough to persuade entities to outlay funds for such projects, a holistic approach is taken to positioning SSP. This includes the scientific, engineering, exploratory, economic, political, and development capabilities of the system. SSP can be seen as both space exploration related and a resource project for undeveloped nations. Coupling these two non-traditional areas yields a broader constituency for the project that each one alone could generate. Space exploration is many times seen as irrelevant to the condition of the populace of the planet from which the money comes for such projects. When in this new century, billions of people on the planet still have never made a phone call or even have access to clean water, the origins of this skepticism can be understandable. An area of concern is the problem of not living up to the claims of overeager program marketers. Just as the ISS may never live up to the claims of its advocates in terms of space research, any SSP program must be careful in not promising utopian global solutions to any future energy starved world. Technically, SSP is a very difficult problem, even harder than creating the ISS, yet the promise it can hold for both space exploration and Earth development can lead to a renaissance of the relevance of space to the lives of the citizens of the world.

  11. ISES [International Solar Energy Society] and the UNCED [United Nations Conference on Environment and Development] process

    International Nuclear Information System (INIS)

    Lorriman, D.

    1992-01-01

    The International Solar Energy Society (ISES)/United Nations World Commission on Environment and Development (UNCED) process, developed as a preparation for the Earth Summit 92 held in Brazil, involved the collection and compilation of material and the development of consensus. The process involved five phases of a survey on environment and energy issues, roundtable events, and final input into the Earth Summit. The following are results from the ISES survey. When setting national energy policies, the two least important considerations are concern for global environmental impacts and life cycle costs of energy options. In terms of electricity supply, the main issues are reliability and dispatchability. The most significant issues impacting economic development in developing countries are population growth and land resource degradation. Fresh water pollution was a concern in all countries. In industrialized countries with adequate power supply, the main issue is improved quality of life. In developing countries, growth dominates the need for new energy supplies. A large number of recommendations for United Nations action are presented. 3 refs

  12. International Space Station Solar Alpha Rotary Joint Failure Analysis: The Materials and Processes Perspective

    Science.gov (United States)

    Dasgupta, Rajib; Figert, John; Jerman, Greg; Wright, Clara; Basta, Erin A.; Golden, Johnny L.

    2009-01-01

    This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the ISS configurations spanning ISS Stage 12A. The objective of this analysis is to validate and correlate analytical models used to verify the ISS critical interface dynamic loads and improve its fatigue life prediction. On-Orbit dynamic responses were measured during the ISS configurations throughout ISS Stage 12A by the two main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS) and the Structural Dynamic Measurement System (SDMS). These nominal on-orbit events include Russian vehicle docking and undockings. Also, the ISS photogrammetric system recorded the movements of the 2A and 4A solar arrays during a modified ISS maneuver. Modal analyses were performed on the measured data to extract modal parameters including frequency, damping and mode shapes. Correlation and comparisons between the test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the ISS configurations under consideration.

  13. Far ultraviolet filters for the ISTP UV imager. [International Solar-Terrestrial Physics mission

    Science.gov (United States)

    Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin; Spann, James F.; Torr, Marsha R.

    1992-01-01

    The far ultraviolet (FUV) imager for the International Solar-Terrestrial Physics (ISTP) mission is designed to image four features of the aurora: O I lines at 130.4 nm and 135.6 nm and the N2 Lyman-Birge-Hopfield (LBH) bands between 140 nm-160 nm (LBH long) and 160 nm-180 nm (LBH long). We report the design and fabrication of narrow-band and broadband filters for the ISTP FUV imager. Narrow-band filters designed and fabricated for the O I lines have a bandwidth of less than 5 nm and a peak transmittance of 22.3 and 29.6 percent at 130.4 nm and 135.6 nm, respectively. Broadband filters designed and fabricated for LBH bands have the transmittance greater than 40 percent for LBH short and close to 60 percent for LBH long. Blocking of out-of-band wavelengths for all filters is better than 0.001 percent with the transmittance at 121.6 nm of less than 10 exp -6 percent.

  14. 50th IMO - 50 Years of International Mathematical Olympiads

    CERN Document Server

    Gronau, Hans-Dietrich; Schleicher, Dierk

    2011-01-01

    In July 2009 Germany hosted the 50th International Mathematical Olympiad (IMO). For the very first time the number of participating countries exceeded 100, with 104 countries from all continents. Celebrating the 50th anniversary of the IMO provides an ideal opportunity to look back over the past five decades and to review its development to become a worldwide event. This book is a report about the 50th IMO as well as the IMO history. A lot of data about all the 50 IMOs are included. We list the most successful contestants, the results of the 50 Olympiads and the 112 countries that have ever ta

  15. Health care in the first year after international adoption.

    Science.gov (United States)

    Schulte, Elaine E; Springer, Sarah H

    2005-10-01

    After international adoption, routine screenings for infectious and nutritional diseases, lead exposure, and vision and hearing difficulties are early priorities for children's postadoptive health care. Specific health concerns raised before adoption should also be reviewed after children arrive home with their families. Once appropriate postadoptive screenings and immunizations have been initiated, the challenge for the primary care provider is to determine the intervals and content of future follow-up visits. Clinical decision making is influenced by a specific child's age, acute medical needs, and developmental assessments.

  16. Solar thermal technology evaluation, fiscal year 1982. Volume 1: Executive summary

    Science.gov (United States)

    1983-01-01

    Three primary solar concepts the central receiver, parabolic dish, and parabolic trough are investigated. To a lesser extent, the hemispherical bowl and salt-gradient solar pond are also being studied. Each technology is described.

  17. Compulsory commitment to care of substance misusers: international trends during 25 Years.

    Science.gov (United States)

    Israelsson, Magnus; Gerdner, Arne

    2012-01-01

    The study explores international trends in law on compulsory commitment to care of substance misusers (CCC), and two subtypes - civil CCC and CCC within criminal justice legislation - as well as maximum length and amount of applications of such care. The time period covers more than 25 years, and a total of 104 countries and territories. The study is based on available data in three times of observation (1986, 1999 and 2009). Applications of CCC in number of cases are studied on European level for the years 2002-2006. Trends are analyzed using nonparametric tests and general linear models for repeated measures. Findings are discussed from contextual analysis. There is a trend towards decrease in the number of countries worldwide having civil CCC legislation after the millennium, while CCC under criminal law has increased since the mid-1980s, resulting in some total net decrease. The shift results in longer mean duration of CCC and an increase in the number of cases sentenced. There is a risk that the shift from civil CCC to penal CCC implies more focus on young out-acting males in compulsory treatment and that the societal responsibility for more vulnerable persons might be neglected. Copyright © 2012 S. Karger AG, Basel.

  18. The impact of the year-on-year variation in the intensity of solar radiation on the energy intensity of low-energy and passive houses

    Directory of Open Access Journals (Sweden)

    Šubrt Roman

    2017-01-01

    Full Text Available Solar radiation is a significant segment of heat gains in the operation of buildings. The importance of this segment is highlighted by lowering the energy performance of buildings. The current condition of assessment considers the standard values of solar radiation but these are often very different from the fair values. In the contribution it draws attention to not only to on-year variation in solar fluctuations in the intensity of solar radiation and its significant long-term deviation from the standard values but also to the impact to energy building in reliance to its energy intensity. The attention will be focused also to different values in standards valid in the Czech Republic. This specification of energy assessment of buildings is not only necessary to approximate calculations of real state, but mainly because we can expect more disputes about if a building has declared calculating the parameters of a building with nearly zero-energy or passive house.

  19. Maximum power point tracker based on fuzzy logic

    International Nuclear Information System (INIS)

    Daoud, A.; Midoun, A.

    2006-01-01

    The solar energy is used as power source in photovoltaic power systems and the need for an intelligent power management system is important to obtain the maximum power from the limited solar panels. With the changing of the sun illumination due to variation of angle of incidence of sun radiation and of the temperature of the panels, Maximum Power Point Tracker (MPPT) enables optimization of solar power generation. The MPPT is a sub-system designed to extract the maximum power from a power source. In the case of solar panels power source. the maximum power point varies as a result of changes in its electrical characteristics which in turn are functions of radiation dose, temperature, ageing and other effects. The MPPT maximum the power output from panels for a given set of conditions by detecting the best working point of the power characteristic and then controls the current through the panels or the voltage across them. Many MPPT methods have been reported in literature. These techniques of MPPT can be classified into three main categories that include: lookup table methods, hill climbing methods and computational methods. The techniques vary according to the degree of sophistication, processing time and memory requirements. The perturbation and observation algorithm (hill climbing technique) is commonly used due to its ease of implementation, and relative tracking efficiency. However, it has been shown that when the insolation changes rapidly, the perturbation and observation method is slow to track the maximum power point. In recent years, the fuzzy controllers are used for maximum power point tracking. This method only requires the linguistic control rules for maximum power point, the mathematical model is not required and therefore the implementation of this control method is easy to real control system. In this paper, we we present a simple robust MPPT using fuzzy set theory where the hardware consists of the microchip's microcontroller unit control card and

  20. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Ranjit; Bharvirkar, Ranjit; Gambhir, Ashwin; Phadke, Amol

    2011-08-10

    Although solar costs are dropping rapidly, solar power is still more expensive than conventional and other renewable energy options. The solar sector still needs continuing government policy support. These policies are driven by objectives that go beyond the goal of achieving grid parity. The need to achieve multiple objectives and ensure sufficient political support for solar power makes it diffi cult for policy makers to design the optimal solar power policy. The dynamic and uncertain nature of the solar industry, combined with the constraints offered by broader economic, political and social conditions further complicates the task of policy making. This report presents an analysis of solar promotion policies in seven countries - Germany, Spain, the United States, Japan, China, Taiwan, and India - in terms of their outlook, objectives, policy mechanisms and outcomes. The report presents key insights, primarily in qualitative terms, and recommendations for two distinct audiences. The first audience consists of global policy makers who are exploring various mechanisms to increase the penetration of solar power in markets to mitigate climate change. The second audience consists of key Indian policy makers who are developing a long-term implementation plan under the Jawaharlal Nehru National Solar Mission and various state initiatives.

  1. ENUGU USING MAXIMUM TEMPERATURE DATA

    African Journals Online (AJOL)

    2008-01-28

    Jan 28, 2008 ... daily global solar radiation on a horizontal surface for some towns in Nigeria. For example, Sanusi and Aliyu (2005) used maximum temperature data to predict for. Sokoto. lheonu (2001) did the same for lbadan. Badmus and Momoh(2005) did likewise for Birnin Kebbi. So did Awachie and Okeke(1 990) for ...

  2. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  3. International cyclotron conferences: twenty-five years of progress

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.A.

    1984-01-01

    This brief introduction reviews a few of the highlights of the nine previous meetings to perhaps convey an appreciation of the time-scale of the significant achievements of past years and to leave the thought that the future is as filled with promise as was the past.

  4. International cyclotron conferences: twenty-five years of progress

    International Nuclear Information System (INIS)

    Martin, J.A.

    1984-01-01

    This brief introduction reviews a few of the highlights of the nine previous meetings to perhaps convey an appreciation of the time-scale of the significant achievements of past years and to leave the thought that the future is as filled with promise as was the past

  5. International education: 20 years after implementation of a training program.

    Science.gov (United States)

    Lee, S T

    2001-06-01

    Medical care in developing countries may be improved by various means. Advances in the medical education and training of specialists play an important role in improving health care systems. The results of the efforts of a neurosurgeon from North America who helped establish neurosurgical training in Taiwan are reported after a follow-up period of 20 years.

  6. Numerical Simulation of the Application of Solar Radiant Systems, Internal Airflow and Occupants’ Presence in the Improvement of Comfort in Winter Conditions

    OpenAIRE

    Eusébio Z. E. Conceição; Mª Manuela J. R. Lúcio

    2016-01-01

    In this work, the use of numerical simulation in the application of solar radiant systems, internal airflow and occupants’ presence in the improvement of comfort in winter conditions is made. The thermal comfort, the local thermal discomfort and the air quality in an occupied chamber space are evaluated. In the experimental measurements, a wood chamber, a desk, two seats, two seated hygro-thermal manikins, a warm radiant floor, a solar radiation simulator and a water solar collector are used....

  7. Failure Analysis in Space: International Space Station (ISS) Starboard Solar Alpha Rotary Joint (SARJ) Debris Analysis

    Science.gov (United States)

    Long, V. S.; Wright, M. C.; McDanels, S. J.; Lubas, D.; Tucker, B.; Marciniak, P. J.

    2010-01-01

    This slide presentation reviews the debris analysis of the Starboard Solar Alpha Rotary Joint (SARJ), a mechanism that is designed to keep the solar arrays facing the sun. The goal of this was to identify the failure mechanism based on surface morphology and to determine the source of debris through elemental and particle analysis.

  8. Future NASA solar system exploration activities: A framework for international cooperation

    Science.gov (United States)

    French, Bevan M.; Ramlose, Terri; Briggs, Geoffrey A.

    1992-01-01

    The goals and approaches for planetary exploration as defined for the NASA Solar System Exploration Program are discussed. The evolution of the program since the formation of the Solar System Exploration Committee (SSEC) in 1980 is reviewed and the primary missions comprising the program are described.

  9. Climate Control of a Greenhouse with Concentrating Solar Power System : International Conference on Agricultural Engineering

    NARCIS (Netherlands)

    Iwan van Bochove; Piet Sonneveld

    2013-01-01

    There are several greenhouses built with solar panels integrated into the roof. In summer time this will operate very well, although broad shadow stripes can result in growth and yield differences. In winter the amount of sunlight is further limited by the solar panels and will result in further

  10. Eight years of the Mayo International Health Program: what an international elective adds to resident education.

    Science.gov (United States)

    Sawatsky, Adam P; Rosenman, David J; Merry, Stephen P; McDonald, Furman S

    2010-08-01

    To examine the educational benefits of international elective rotations during graduate medical education. We studied Mayo International Health Program (MIHP) participants from April 1, 2001, through July 31, 2008. Data from the 162 resident postrotation reports were reviewed and used to quantitatively and qualitatively analyze MIHP elective experiences. Qualitative analysis of the narrative data was performed using NVivo7 (QRS International, Melbourne, Australia), a qualitative research program, and passages were coded and analyzed for trends and themes. During the study period, 162 residents representing 20 different specialties were awarded scholarships through the MIHP. Residents rotated in 43 countries, serving over 40,000 patients worldwide. Their reports indicated multiple educational and personal benefits, including gaining experience with a wide variety of pathology, learning to work with limited resources, developing clinical and surgical skills, participating in resident education, and experiencing new peoples and cultures. The MIHP provides the structure and funding to enable residents from a variety of specialties to participate in international electives and obtain an identifiable set of unique, valuable educational experiences likely to shape them into better physicians. Such international health electives should be encouraged in graduate medical education.

  11. Marco Polo: International Small Solar System Body Exploration Mission in 2010's

    Science.gov (United States)

    Yano, Hajime

    Since 2000, Japanese scientists and engineers have investigated new generation primitive body missions in the post-Hayabusa era in 2010's. Receiving the Minorbody Exploration Forum Final Report, ISAS established the nation-wide Small Body Exploration Working Group (SBE-WG) in 2004. After the successful exploration of the S-type NEO Itokawa by Hayabusa in 2005, the Hayabusa-2 concept emerged for a C-type asteroid sample return by the original Hayabusa spacecraft system with minor improvements and modifications. In parallel to that effort, the SBE-WG continued to develop the post-Hayabusa mission concept as "Hayabusa Mk-II," a fully model-changed, advanced spacecraft with the sample return capability from the most primitive bodies of the solar system. It is this Hayabusa Mk-II that has became the foundation of the International small body exploration concept "Marco Polo" since 2006. Jointly proposed to the first call of the ESA Cosmic Vision by scientists from Japan, Europe, and the U.S., the Marco Polo concept was selected as one of the M-class mission candidates for the assessment study phase in the fall of 2007. In 2008, the international joint study team has been created and its mission definitions, system requirements, and target selections are currently under the study. The top-level scientific themes are to decode the solar system formation and evolution in the astrobiology and astromineralogy contexts as one of the most important scientific challenges of 2010's. These themes are sub-divided into several objectives to be achieved by both instruments carried onboard the mother spacecraft (MSC), a large lander, or small hopping rovers and returned samples. The initial mission target candicdates include comet-asteroid transition (CAT) objects, D-type asteroids and C-type binary asteroids in near-Earth orbits. In the baseline scenario, a Soyuz launcher provided by ESA will launch the JAXA-made MSC with sampling and other in-situ science instruments provided by

  12. Internal heat exchange in an ejector-compression solar refrigeration system with R142b

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Joge I; Estrada, Claudio A; Best, Roberto [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico); Dorantes Ruben, J [Departamento de Energia, UNAM Azcapotzalco, Mexico, D.F. (Mexico)

    2000-07-01

    One way to use more efficiently the actual energy transfer in the ejector-compression system, is the use of heat exchangers between some of the components. The inclusion of two heat exchangers, preheater and precooler, is considered in a basic ejector-compression refrigeration system with refrigerant 142b. This study accounts for the energy and exergy efficiencies. COP and {epsilon}, according to parameter variations such as ejector efficiency, generation temperature with different superheating, condensation temperature and heat exchangers effectiveness. As known, the most important parameters in ejector-compression system analysis are the entrain-ment ratio U and system efficiencies COP and {epsilon}. The highest system COP and {epsilon}, as the entrainment ratio U, correspond to the highest exchangers effectiveness, highest superheating generator temperatures, highest ejector efficiency and lowest condenser temperature. For the COP and {epsilon} ratios, their maxima correspond to the same independent variables aforementioned for one of the higher superheating generator temperatures. In this case, this result indicates that the exergy efficiency {epsilon} does not contradict the information given by energy efficiency COP. So, to select correctly and optimum design condition, is enough to employ the COP ratio, which maximum value for the data shown corresponds to a superheating generator temperature of about 110 Celsius degrees, that can only be reached by evacuated tubular collectors or CPC solar concentrators. [Spanish] Una forma de usar mas eficientemente la transferencia real de energia en el sistema eyector-compresion es el uso de intercambiadores de calor entre algunos de los componentes. La inclusion de dos intercambiadores de calor precalentador y pre-enfriador se considera en un sistema de refrigeracion eyector-compresion con refrigerante 142b. Este estudio toma en cuenta las eficiencias de energia y exergia, COP y {epsilon}, de acuerdo con las variaciones

  13. Efficiency Limits of Solar Energy Harvesting via Internal Photoemission in Carbon Materials

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2018-02-01

    Full Text Available We describe strategies to estimate the upper limits of the efficiency of photon energy harvesting via hot electron extraction from gapless absorbers. Gapless materials such as noble metals can be used for harvesting the whole solar spectrum, including visible and near-infrared light. The energy of photo-generated non-equilibrium or ‘hot’ charge carriers can be harvested before they thermalize with the crystal lattice via the process of their internal photo-emission (IPE through the rectifying Schottky junction with a semiconductor. However, the low efficiency and the high cost of noble metals necessitates the search for cheaper abundant alternative materials, and we show here that carbon can serve as a promising IPE material candidate. We compare the upper limits of performance of IPE photon energy-harvesting platforms, which incorporate either gold or carbon as the photoactive material where hot electrons are generated. Through a combination of density functional theory, joint electron density of states calculations, and Schottky diode efficiency modeling, we show that the material electron band structure imposes a strict upper limit on the achievable efficiency of the IPE devices. Our calculations reveal that graphite is a good material candidate for the IPE absorber for harvesting visible and near-infrared photons. Graphite electron density of states yields a sizeable population of hot electrons with energies high enough to be collected across the potential barrier. We also discuss the mechanisms that prevent the IPE device efficiency from reaching the upper limits imposed by their material electron band structures. The proposed approach is general and allows for efficient pre-screening of materials for their potential use in IPE energy converters and photodetectors within application-specific spectral windows.

  14. Auroras and Space Weather Celebrating the International Heliophysics Year in Classroom

    Science.gov (United States)

    Craig, N.; Peticolas, L. M.; Angelopoulos, V.; Thompson, B.

    2007-05-01

    2007 Celebrates the International Heliophysics year and its outreach has a primary objective, to "demonstrate the beauty, relevance and significance of Space and Earth Science to the world." NASA's first five-satellite mission, THEMIS (Time History of Events and Macroscale Interactions during Substorms), was launched on February 17, 2007 and is to investigate a key mystery surrounding the dynamics of the auroras- when, where, and how are they triggered? When the five probes align perfectly over the North American continent- every four days - and with 20 ground stations in Northern Canada and Alaska with automated, all-sky cameras will document the auroras from Earth. To monitor the large-scale local effects of the currents in space, THEMIS Education and Outreach program has installed 10 ground magnetometers, instruments that measure Earth's magnetic field, in competitively selected rural schools around the country and receive data. The THEMIS Education and Outreach Program shares the IHY objective by bringing in this live local space weather data in the classrooms and engaging the teachers and students on authentic research in the classroom. The data are displayed on the school computer monitors as well as on the THEMIS E/PO website providing the local data to the science mission as well as schools. Teachers use the data to teach about the aurora not only in math and science, but also in Earth science, history and art. These students and their teachers are our ambassadors to rural America and share the excitement of learning and teaching with their regional teachers. We will share how authentic space science data related to Earth's magnetic field and auroras can be understood, researched, predicted and shared via the internet to any school around the globe that wished to be part of tracking solar storms. Complimenting IHY, World Space Week will take place from October 4-10th and this year. World Space week is "an international celebration of science and technology

  15. Priority Science Targets for Future Sample Return Missions within the Solar System Out to the Year 2050

    Science.gov (United States)

    McCubbin, F. M.; Allton, J. H.; Barnes, J. J.; Boyce, J. W.; Burton, A. S.; Draper, D. S.; Evans, C. A.; Fries, M. D.; Jones, J. H.; Keller, L. P.; hide

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections: (1) Apollo samples, (2) LUNA samples, (3) Antarctic meteorites, (4) Cosmic dust particles, (5) Microparticle Impact Collection [formerly called Space Exposed Hardware], (6) Genesis solar wind, (7) Star-dust comet Wild-2 particles, (8) Stardust interstellar particles, and (9) Hayabusa asteroid Itokawa particles. In addition, the next missions bringing carbonaceous asteroid samples to JSC are Hayabusa 2/ asteroid Ryugu and OSIRIS-Rex/ asteroid Bennu, in 2021 and 2023, respectively. The Hayabusa 2 samples are provided as part of an international agreement with JAXA. The NASA Curation Office plans for the requirements of future collections in an "Advanced Curation" program. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. Here we review the science value and sample curation needs of some potential targets for sample return missions over the next 35 years.

  16. The Networks Of The Astronomical Society Of The Pacific And The International Year Of Astronomy

    Science.gov (United States)

    Fraknoi, Andrew; Manning, J.; Gurton, S.; Gibbs, M.; Hurst, A.; White, V.; Berendsen, M.

    2007-12-01

    Serious planning has begun for the International Year of Astronomy (IYA) in 2009, which will also be the 120th anniversary of the Astronomical Society of the Pacific (ASP). A key element required for IYA's success in reaching the maximum number of people in the U.S. will be to find effective ways of disseminating the programs and materials that are being developed. The ASP's national networks of educational intermediaries can play a major role in training, dissemination, and organization for IYA. These networks include: the Project ASTRO National Site Network (13 regional sites training professional and amateur astronomers to work with local teachers and families), the Night Sky Network (over 200 amateur astronomy clubs engaged in active outreach), the Astronomy from the Ground Up Network (smaller science and nature centers increasing their offerings in astronomy), and the Cosmos in the Classroom Network (hundreds of instructors of introductory astronomy in community, state, and liberal arts colleges). The ASP also offers "The Universe in the Classroom", a quarterly newsletter for those teaching astronomy in grades 3-12, an extensive web site of educational resources, podcasts, workshops, national conferences, and awards to help improve the public understanding of astronomy. At the Summer 2008 AAS meeting, the ASP will sponsor a major symposium and workshops on preparing for IYA (and working with a range of different audiences.)

  17. Concordia, Antarctica, seismic experiment for the International Polar Year (CASE-IPY

    Directory of Open Access Journals (Sweden)

    Alessia Maggi

    2014-06-01

    Full Text Available The CASE-IPY project, part of the larger POLENET initiative of geophysical observations for the International Polar Year, was built on our extensive experience of running seismological stations in Antarctica, both on rock sites (Dumont d’Urville station, and directly on the ice plateau (Concordia station. For CASE-IPY, we deployed 8 temporary seismic stations on the Antarctic plateau: 3 situated near Concordia itself (starting 2008, and the other 5 regularly spaced between Concordia and Vostok (2010-2012, following the maximum in ice topography. The technical problems we have encountered in our field deployments were essentially due to a combination of extreme environmental conditions and isolation of deployment sites. The 3 stations near Concordia were used as test sites to experiment different solutions, and to converge on a design for the 5 main stations. Results from the nearest stations, which transmit data regularly to Concordia, are very promising. The data recorded by our stations will be distributed widely in the scientific community. We expect them to be exploited essentially for structural studies involving Antarctica itself (its ice-cap, crust and lithosphere via receiver functions, noise correlation, and surface-wave tomography, but also for studies of the Earth’s core.

  18. Ten years' experience in determining internal contamination among plutonium laboratory workers

    International Nuclear Information System (INIS)

    Deworm, J.; Fieuw, G.

    1976-01-01

    Glove boxes in plutonium laboratories are fitted with ''sniffers'' (air samplers), which evaluate atmospheric contamination. The results of the measurements over a ten-year period of operation are available, and cases of detection in this way of air contamination exceeding the maximum permissible concentrations are exceptional. During contamination aerodynamic particle diameters of 1 - 4 μm were measured. The concentration and characteristics of the aerosol have made it possible to ascertain the inhalable fraction and to estimate the pulmonary and systemic burden in workers. The workers exposed in the laboratories undergo a urine test each month. The results obtained show that there is little risk of internal contamination without the person concerned being aware of an abnormal situation. In the majority of cases it is possible to take proper precautions and to collect the data necessary for evaluating the body burden. Three cases of specific contamination are examined in detail: contamination by plutonium and americium from a non-identified source, detected by routine urine analysis; contamination by inhalation of plutonium; an injury to the left forefinger, accompanied by plutonium contamination. (author)

  19. Thirty-five years of successful international cooperation in nuclear knowledge preservation: The International Nuclear Information System (INIS)

    International Nuclear Information System (INIS)

    Atieh, T.; Workman, R.

    2006-01-01

    This paper describes the operations and main activities of the International Nuclear Information System (INIS), which was established 35 years ago as the international mechanism for exchanging information in the fields of peaceful uses of nuclear sciences and technology. It outlines the system's main features, users and products. International cooperation and decentralisation are the distinguishing features of this system. INIS produces, maintains and preserves Member States knowledge in these fields. The system has been instrumental in supporting national nuclear programmes, and thousands of scientists, researchers and universities students are using INIS products to retrieve current and historical nuclear information. (author)

  20. Erosion Results of the MISSE 8 Polymers Experiment After 2 Years of Space Exposure on the International Space Station

    Science.gov (United States)

    de Groh, Kim K.; Banks, Bruce A.; Asmar, Olivia C.; Yi, Grace T.; Mitchell, Gianna G.; Guo, Aobo; Sechkar, Edward A.

    2017-01-01

    Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft, it is important to know the LEO AO erosion yield (E(sub y), volume loss per incident oxygen atom) of materials susceptible to AO reaction. A spaceflight experiment, called the Polymers Experiment, which contained 42 samples, was developed to determine the effect of solar exposure on the AO E(sub y) of fluoropolymers flown in ram, wake, or zenith orientations. The Polymers Experiment was exposed to the LEO space environment on the exterior of the International Space Station (ISS) as part of the Materials International Space Station Experiment 8 (MISSE 8) mission. The MISSE 8 mission included samples flown in a zenith/nadir orientation for 2.14 years in the MISSE 8 Passive Experiment Container (PEC), and samples flown in a ram/wake orientation for 2.0 years in the Optical Reflector Materials Experiment-III (ORMatEIII) tray. The experiment included Kapton H (Registered Trademark) witness samples for AO fluence determination in each orientation. This paper provides an overview of the MISSE 8 mission, a description of the flight experiment with details on the polymers flown, the characterization techniques used, the AO fluence for each exposure orientation, and the LEO E(sub y) results. The E(sub y) of Teflon fluorinated ethylene propylene (FEP) samples flown in ram, wake, and zenith orientations have been compared, and the E(sub y) was found to be highly dependent on orientation and therefore environmental exposure. The FEP E(sub y) was found to directly correlate with the solar exposure/AO fluence ratio showing the effect of solar radiation and/or heating due to solar exposure on FEP erosion. In addition, back-surface carbon painted FEP (C-FEP) flown in the zenith orientation had a significantly higher E(sub y) than clear FEP or Al-FEP further

  1. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  2. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  3. Solar flare forecasting from 1 to 7 days in the Kiev State University astronomic observatory during 1976-1980 years

    Energy Technology Data Exchange (ETDEWEB)

    Romanchuk, P.R.; Izotova, I.Yu.; Krivodubskij, V.N.; Adamenko, A.S.; Babij, V.P.

    1982-01-01

    A study has been made of the relashionship between the daily solar flares of Importance <= 1 in sunspot groups and the average number of centers in a group during the group passage on the solar disk, and of the values for the total area of sunspots in the sunspot group evolution maximum. Presented is the information on the reliability of the predictions of the flare activity in the sunspot groups basing on this relationship as well as on two others (the dependence of the flare activity on the sunspot Zurich classes and on the sizes of convective elements). For the period since January 1, 1977 till June 3, 1979, that coincides with most complete data observed, the 60% and 80% confidence is shown for the prediction of subflares (525 predictions) and Importance 1 flares (388 predictions), respectively, with the systematic error taken into account.

  4. Fourteen Thousand Solar Systems and Growing: Results From the Starchitect Online Game at One Year

    Science.gov (United States)

    Harold, J. B.

    2015-12-01

    Starchitect (www.starchitect.net) is an online, end-to-end stellar and planetary evolution game designed to teach players about a variety of astronomy and planetary topics. Supported by NASA and NSF, and developed at the National Center for Interactive Learning at the Space Science Institute, the game uses the "sporadic play" model of games such as Farmville, where players might only take actions a few times a day, but continue playing for months. This framework is a natural fit for teaching about the evolution of stars and planets. Starchitect's systems evolve at a million years a minute, so that while massive stars will supernova almost immediately, lower mass stars like our sun will live for weeks of game time, possibly evolving life before passing through a red giant stage and ending their lives as white dwarfs. The game has now been live for over a year, playable both on Facebook and externally, and over 14,000 solar systems have been created by over 11,000 players. Since the game itself is heavily instrumented we now have access to a wealth of data that can be used to examine how people are playing the game and what tasks they are successfully engaging with. Through an embedded quiz game we are even in the position to assess the prior knowledge of our audience and execute pre/post assessments tied to game play. This paper will briefly describe the game and its educational strategies, then summarize some of our current results.

  5. Dielectric compound parabolic concentrating solar collector with frustrated total internal reflection absorber

    Science.gov (United States)

    Hull, J. R.

    Since its introduction, the concept of nonimaging solar concentrators, as exemplified by the compound parabolic concentrator (CPC) design, has greatly enhanced the ability to collect solar energy efficiently in thermal and photovoltaic devices. When used as a primary concentrator, a CPC can provide significant concentration without the complication of a tracking mechanism and its associated maintenance problems. When used as a secondary, a CPC provides higher total concentration, or for a fixed concentration, tolerates greater tracking error in the primary.

  6. Day of the year-based prediction of horizontal global solar radiation by a neural network auto-regressive model

    Science.gov (United States)

    Gani, Abdullah; Mohammadi, Kasra; Shamshirband, Shahaboddin; Khorasanizadeh, Hossein; Seyed Danesh, Amir; Piri, Jamshid; Ismail, Zuraini; Zamani, Mazdak

    2016-08-01

    The availability of accurate solar radiation data is essential for designing as well as simulating the solar energy systems. In this study, by employing the long-term daily measured solar data, a neural network auto-regressive model with exogenous inputs (NN-ARX) is applied to predict daily horizontal global solar radiation using day of the year as the sole input. The prime aim is to provide a convenient and precise way for rapid daily global solar radiation prediction, for the stations and their immediate surroundings with such an observation, without utilizing any meteorological-based inputs. To fulfill this, seven Iranian cities with different geographical locations and solar radiation characteristics are considered as case studies. The performance of NN-ARX is compared against the adaptive neuro-fuzzy inference system (ANFIS). The achieved results prove that day of the year-based prediction of daily global solar radiation by both NN-ARX and ANFIS models would be highly feasible owing to the accurate predictions attained. Nevertheless, the statistical analysis indicates the superiority of NN-ARX over ANFIS. In fact, the NN-ARX model represents high potential to follow the measured data favorably for all cities. For the considered cities, the attained statistical indicators of mean absolute bias error, root mean square error, and coefficient of determination for the NN-ARX models are in the ranges of 0.44-0.61 kWh/m2, 0.50-0.71 kWh/m2, and 0.78-0.91, respectively.

  7. Reference values of maximum isometric muscle force obtained in 270 children aged 4-16 years by hand-held dynamometry

    NARCIS (Netherlands)

    Beenakker, E A; van der Hoeven, J H; Fock, J M; Maurits, N M

    Since muscle force and functional ability are not related linearly; maximum force can be reduced while functional ability is still maintained. For diagnostic and therapeutic reasons loss of muscle force should be detected as early and accurately as possible. Because of growth factors, maximum muscle

  8. 15 Years of R&D in Central Solar Heating in Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    Danish R&D activities during the last two decades in the field of Central Solar Heating Plants and Thermal Energy Storage Technologies are presented. The most relevant central solar heating plants (CSHPs), with and without seasonal storage, are examined and essential experiences highlighted...

  9. A 33,000-year-old incipient dog from the Altai Mountains of Siberia: evidence of the earliest domestication disrupted by the Last Glacial Maximum.

    Directory of Open Access Journals (Sweden)

    Nikolai D Ovodov

    Full Text Available BACKGROUND: Virtually all well-documented remains of early domestic dog (Canis familiaris come from the late Glacial and early Holocene periods (ca. 14,000-9000 calendar years ago, cal BP, with few putative dogs found prior to the Last Glacial Maximum (LGM, ca. 26,500-19,000 cal BP. The dearth of pre-LGM dog-like canids and incomplete state of their preservation has until now prevented an understanding of the morphological features of transitional forms between wild wolves and domesticated dogs in temporal perspective. METHODOLOGY/PRINCIPAL FINDING: We describe the well-preserved remains of a dog-like canid from the Razboinichya Cave (Altai Mountains of southern Siberia. Because of the extraordinary preservation of the material, including skull, mandibles (both sides and teeth, it was possible to conduct a complete morphological description and comparison with representative examples of pre-LGM wild wolves, modern wolves, prehistoric domesticated dogs, and early dog-like canids, using morphological criteria to distinguish between wolves and dogs. It was found that the Razboinichya Cave individual is most similar to fully domesticated dogs from Greenland (about 1000 years old, and unlike ancient and modern wolves, and putative dogs from Eliseevichi I site in central Russia. Direct AMS radiocarbon dating of the skull and mandible of the Razboinichya canid conducted in three independent laboratories resulted in highly compatible ages, with average value of ca. 33,000 cal BP. CONCLUSIONS/SIGNIFICANCE: The Razboinichya Cave specimen appears to be an incipient dog that did not give rise to late Glacial-early Holocene lineages and probably represents wolf domestication disrupted by the climatic and cultural changes associated with the LGM. The two earliest incipient dogs from Western Europe (Goyet, Belguim and Siberia (Razboinichya, separated by thousands of kilometers, show that dog domestication was multiregional, and thus had no single place of

  10. Solar Probe Plus: A Scientific Investigation Sixty Years in the Making

    Science.gov (United States)

    McNutt, R. L., Jr.

    2015-12-01

    The in situ measurment of the conditions near the Sun's corona, responsible for coronal heating, solar wind acceleration, and energetic particle production and transport has been a high priority, but elusive, scientific goal since the beginning of the Space Age. The first proposal for a solar probe was from the six-man Fields and Particles Group (Committee 8 of the Space Science Board (SSB)) chaired by John Simpson of the University of Chicago. In their interim report of 24 Octobr 1958, the Group suggested a variety of missions, including "a solar probe to pass inside the orbit of Mercury to study the particles and fields in the vicinity of the Sun...". The exteme thermal and propulsive requirements were immediately recognized. Following initial trajectory studies using a variety of gravity-assist stategies, in the mid-1970's detailed mission and engineering studies for such a mission were carried out in the U.S. by the Jet Propulsion Laboratory (JPL) and in Europe by the European Space Agency (ESA). The mission rationale did not change substantially since the 1978 workshop at which Harold Glaser, then head of NASA's Solar Terrestrial Program office asked the attendees "What can Solar Probe do that no other mission can do?" Answers provided at the workshop included solar energetic particle propagation effects, acceleration of the solar wind, and testing "the validity of the many models now in use for interpretation of remotely observed solar phenomena and interplanetary phenomena observed near 1 AU." Studies in the 1980's emphasized a comprehensive payload passing to within 4 solar radii of the Sun's center. Budgetary concerns led to a "minimal mission" concept in 1995, followed by a more robust concept studied in 1999. A renewed study in 2005 was followed by a non-nucelar "Solar Probe Lite." The requirment to use solar power eliminated the use of a Jupiter gravity assist and a polar pass as close as 4 solar radii. However, the substitute of using multiple Venus

  11. The Direct Response in the Equatorial Pacific to the 11 year Solar Cycle Forcing and its mechanisms

    Science.gov (United States)

    Huo, Wenjuan; Xiao, Ziniu

    2017-04-01

    The equatorial Pacific response to 11-year solar cycle is assessed in observation and ensemble historical-Nat simulations from the Coupled Model Intercomparison Project, Phase 5 (CMIP5). We find the central equatorial Pacific is sensitive to the solar forcing. A significant positive correlation is found between observed sea surface temperature (SST) anomaly and sunspot number (SSN) index with a lag of 2 years in the central Pacific. The 11-year solar signal particularly exits in the SST and zonal wind anomalies from spectrum analysis. Based on composite analysis, a warming response appears in the central Pacific with lagging the solar cycle by 1-2 years in observation, and 2-3 years in simulation results. Associated with the ocean temperature anomaly, an anomalous twin Walker circulation cells arise in the equatorial Pacific with their updraft branch centered over the central equatorial Pacific, which is significantly both in observation and simulation. Mixed layer heat budget analysis shows that the atmosphere radiation fluxes modulated by the amounts of cloud cover are responsible for the warming response pattern in the central Pacific. There is a significant positive correlation between the meridional gradient of cloud cover (Δα, Subtropics-Tropic) and zonal SST gradient (ΔT, east-west) in the equatorial Pacific. The warming response in the central equatorial Pacific is amplified by the coupled atmosphere and ocean processes. On the one hand, owing to the zonal SST gradient decreasing in the western and central Pacific but increasing in the eastern and central Pacific, anomalous zonal wind convergence appears in the central Pacific in the three years following the solar peak. The ocean heat transport effect is negative in the central equatorial Pacific, more warm water accumulates locally. On the other hand, anomalous ascending motion over the central Pacific increases the high cloud amount and lets more shortwave radiation come into surface, which combined

  12. Oblique map showing maximum extent of 20,000-year-old (Tioga) glaciers, Yosemite National Park, central Sierra Nevada, California

    Science.gov (United States)

    Alpha, T.R.; Wahrhaftig, Clyde; Huber, N.K.

    1987-01-01

    This map shows the alpine ice field and associated valley glaciers at their maximum extent during the Tioga glaciation. The Tioga glaciation, which peaked about 15,000-20,OOO years ago, was the last major glaciation in the Sierra Nevada. The Tuolumne ice field fed not only the trunk glacier that moved down the Tuolumne River canyon through the present-day Hetch Hetchy Reservoir, but it also overflowed major ridge crests into many adjoining drainage systems. Some of the ice flowed over low passes to augment the flows moving from the Merced basin down through little Yosemite Valley. Tuolumne ice flowed southwest down the Tuolumne River into the Tenaya Lake basin and then down Tenaya Canyon to join the Merced glacier in Yosemite Valley. During the Tioga glaciation, the glacier in Yosemite Valley reached only as far as Bridalveil Meadow, although during a much earlier glaciation, a glacier extended about 10 miles farther down the Merced River to the vicinity of El Portal. Ice of the Tioga glaciation also flowed eastward from the summit region to cascade down the canyons that cut into the eastern escarpment of the Sierra Nevada [see errata, below]. Southeast of the present-day Yosemite Park, glaciers formed in the Mount Lyell region flowed east onto the Mono lowland and southeast and south down the Middle and North Forks of the San Joaquin River. In the southern part of the park, glaciers nearly reached to the present-day site of Wawona along the South Fork of the Merced River. At the time of the maximum extent of the Tioga glaciation, Lake Russell (Pleistocene Mono Lake) had a surface elevation of 6,800 feet, 425 feet higher than the 1980 elevation and 400 feet lower than its maximum level at the end of the Tioga glaciation. Only a few volcanic domes of the Mono Craters existed at the time of the Tioga glaciation. The distribution of vegetation, as suggested by the green overprint, is based on our interpretation. Forests were restricted to lower elevations than present

  13. Outdoor Operational Stability of Indium-Free Flexible Polymer Solar Modules Over 1 Year Studied in India, Holland, and Denmark

    DEFF Research Database (Denmark)

    Angmo, Dechan; Sommeling, Paul M.; Gupta, Ritu

    2014-01-01

    We present an outdoor interlaboratory stability study of fully printed and coated indium-tin-oxide (ITO)-free polymer solar cell modules in JNCASR Bangalore (India), ECN (Holland), and DTU (Denmark) carried over more than 1 year. The modules comprising a fully printed and coated stack (Ag grid...

  14. Modelling the solar magnetism: from its internal origin to its manifestations at the surface

    International Nuclear Information System (INIS)

    Jouve, Laurene

    2008-01-01

    This thesis is part of the general study of dynamical processes involved in stars such as convection, rotation or magnetic fields and of their nonlinear interactions. The results of numerical simulations using the 2D finite element code STELEM and the pseudo-spectral 3D code ASH are presented. The first part of this work focuses on the global modeling of the solar dynamo. Through 2D simulations using mean-field theory, I studied the influence of a complex profile of meridional flow in Babcock-Leighton models. We show that there may be doubts about the ability of such models to reproduce the main characteristics of the solar cycle. In order to better constrain the effects of solar variability on the Earth climate, we present a first application in solar physics of sophisticated prediction methods which are used in meteorology. I also computed the first 3D MHD simulations in spherical geometry of a key step in the solar dynamo: the nonlinear evolution of magnetic structures from the base of the convection zone up to the surface where they produce active regions. Weak fields are likely to be modulated by convective motions, thus creating favored longitudes of emergence. If these structures are sufficiently arched, the orientation of bipolar spots corresponds to Joy's law. The introduction of an atmosphere in these models is a step towards a 3D global vision of our Sun. (author) [fr

  15. 35 years of International Reference Ionosphere – Karl Rawer’s legacy

    Directory of Open Access Journals (Sweden)

    D. Bilitza

    2004-01-01

    Full Text Available This presentation is given in honor of Prof. Karl Rawer’s 90th birthday. It looks back at 35 years of research and development in the framework of the International Reference Ionosphere (IRI project. K. Rawer initiated this international modeling effort and was the first Chairman of the IRI Working Group. IRI is a joint project of the Committee on Space Research (COSPAR and the International Union of Radio Science (URSI whose goal it is to establish an international standard model for the ionospheric densities, temperatures and drifts. This year we are celebrating Karl Rawer’s 90th birthday and also the 35-year anniversary of the IRI effort. My talk will review the close involvement of Karl Rawer in all stages of the development and improvement of this international standard from early on and his still very active participation in this effort.

  16. International Observe the Moon Night: Eight Years of Engaging Scientists, Educators, and Citizen Enthusiasts in NASA Science

    Science.gov (United States)

    Buxner, Sanlyn; Jones, Andrea; Bleacher, Lora; Wasser, Molly; Day, Brian; Bakerman, Maya; Shaner, Andrew; Joseph, Emily; International Observe the Moon Night Coordinating Committee

    2018-01-01

    International Observe the Moon Night (InOMN) is an annual worldwide event, held in the fall, that celebrates lunar and planetary science and exploration. InOMN is sponsored by NASA’s Lunar Reconnaissance Orbiter (LRO) in collaboration with NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the NASA’s Heliophysics Education Consortium, CosmoQuest, Night Sky Network, and Science Festival Alliance. Other key partners include the NASA Museum Alliance, Night Sky Network, and NASA Solar System Ambassadors.In 2017 InOMN will be held on October 28th, and will engage thousands of people across the globe to observe and learn about the Moon and its connection to planetary science. This year, we have partnered with the NASA Science Mission Directorate total solar eclipse team to highlight InOMN as an opportunity to harness and sustain the interest and momentum in space science and observation following the August 21st eclipse. Since 2010, over 3,800 InOMN events have been registered engaging over 550,000 visitors worldwide. Most InOMN events are held in the United States, with strong representation from many other countries. We will present current results from the 2017 InOMN evaluation.Through InOMN, we annually provide resources such as event-specific Moon maps, presentations, advertising materials, and certificates of participation. Additionally, InOMN highlights partner resources such as online interfaces including Moon Trek (https://moontrek.jpl.nasa.gov) and CosmoQuest (https://cosmoquest.org/x/) to provide further opportunities to engage with NASA science.Learn more about InOMN at http://observethemoonnight.org.

  17. The Moon's Moment in the Sun - Extending Public Engagement after the Total Solar Eclipse with International Observe the Moon Night

    Science.gov (United States)

    Bleacher, L.; Jones, A. P.; Wasser, M. L.; Petro, N. E.; Wright, E. T.; Ladd, D.; Keller, J. W.

    2017-12-01

    2017 presented an amazing opportunity to engage the public in learning about lunar and space science, the motions of the Earth-Moon-Sun system, and NASA's fleet of space missions, beginning with the 2017 total solar eclipse on 21 August and continuing with International Observe the Moon Night (InOMN) on 28 October. On 21 August 2017, everyone in the continental United States had the opportunity to witness a solar eclipse, weather permitting, in total or partial form. The path of totality, in which the Sun was completely obscured from view by the Moon, stretched from Oregon to South Carolina. The Education and Communication Team of NASA's Lunar Reconnaissance Orbiter (LRO) worked to highlight the Moon, the "central player" in the total solar eclipse, in a variety of ways for the public. Efforts included collaborating with Minor League Baseball teams to host eclipse-viewing events along the path of totality, communicating the Moon's role in the eclipse through public engagement products, communicating about InOMN as an experiential opportunity beyond the eclipse, and more. InOMN is an annual event, during which everyone on Earth is invited to observe and learn about the Moon and its connection to planetary science, and to share personal and community connections we all have to the Moon [2, 3, 4 and references therein]. For viewers across the United States, the total solar eclipse of 21 August provided an exciting opportunity to watch a New Moon cross in front of the Sun, casting the viewer in shadow and providing amazing views of the solar corona. The public observed the Moon in a different part of its orbit, when reflected sunlight revealed a fascinating lunar landscape - and extended their excitement for space science - by participating in InOMN on 28 October. With InOMN taking place barely two months after the total solar eclipse, it offered an opportunity to sustain and grow public interest in lunar and space science generated by the eclipse. We will report on

  18. Solar urticaria

    Directory of Open Access Journals (Sweden)

    Srinivas C

    1995-01-01

    Full Text Available A 35-year-old female and a 41-year-old male presented with clinical features suggestive of solar urticaria. The diagnosis of solar urticaria and the effectiveness of a combination of H1 and H2 blocking antihistamines were confirmed by phototesting with a solar simulator

  19. The Right to Development in International Law: New Momentum Thirty Years Down the Line?

    NARCIS (Netherlands)

    C.J.M. Arts (Karin); A. Tamo (Atabongawung)

    2016-01-01

    textabstractThe right to development (RTD) is contested in international law, politics and practice. This remains the case, despite the 30-year existence of the United Nations Declaration on the Right to Development (UNDRTD), the many substantive leads that current international law provides, and

  20. Scientific production and international collaboration on Solar Energy in Spain and Germany (1995-2009)

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sanchez, Maria-Louisa; Garcia-Zorita, J. Carlos

    2013-01-01

    Renewable energies carry political and financial significance in all EU countries. Their importance is translated into a major research and innovation trend, particularly in relation to the achievement of sustainable resources (Walz; Schleich & Ragwitz, 2011). Solar and Wind Energies offer...... in the case of Solar Energy production (2560 versus 2734 of increment), measured in tonnes of oil quivalent (during 1995-2009)....... the biggest potential for energy production, as it has been highlighted in the last decade (Sanz-Casado; García-Zorita; Serrano-López; Larsen & Ingwersen, 2012). Within he overall conglomerate of renewable energies, Germany has a bigger production than Spain, although the increase is higher for Spain...

  1. Conceptual model for millennial climate variability: a possible combined solar-thermohaline circulation origin for the {proportional_to}1,500-year cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dima, Mihai [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany); University of Bucharest, Department of Atmospheric Physics, Faculty of Physics, P.O. Box 11440, Magurele, Bucharest (Romania); Lohmann, Gerrit [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2009-02-15

    Dansgaard-Oeschger and Heinrich events are the most pronounced climatic changes over the last 120,000 years. Although many of their properties were derived from climate reconstructions, the associated physical mechanisms are not yet fully understood. These events are paced by a {proportional_to}1,500-year periodicity whose origin remains unclear. In a conceptual model approach, we show that this millennial variability can originate from rectification of an external (solar) forcing, and suggest that the thermohaline circulation, through a threshold response, could be the rectifier. We argue that internal threshold response of the thermohaline circulation (THC) to solar forcing is more likely to produce the observed DO cycles than amplification of weak direct {proportional_to}1,500-year forcing of unknown origin, by THC. One consequence of our concept is that the millennial variability is viewed as a derived mode without physical processes on its characteristic time scale. Rather, the mode results from the linear representation in the Fourier space of nonlinearly transformed fundamental modes. (orig.)

  2. The First Five Years of the Alpha Magnetic Spectrometer on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the five years since its installation on the International Space Station, it has collected more than 90 billion cosmic rays. Some of the unexpected results and their possible interpretations will be presented.

  3. International Geophysical Year, 1957-1958: Drifting Station Alpha Documentary Film

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This film documents the activities that occurred on Drifting Station Alpha in the Arctic Ocean during the International Geophysical Year, 1957 to 1958. The film is...

  4. International Geophysical Year, 1957-1958: Drifting Station Alpha Documentary Film, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This film documents the activities that occurred on Drifting Station Alpha in the Arctic Ocean during the International Geophysical Year, 1957 to 1958. The film is...

  5. Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: 30-year average annual maximum temperature, 1971-2000

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the 30-year (1971-2000) average annual maximum temperature in Celsius multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins

  6. TECHNICAL CHARACTERIZATION OF ECO-COMPATIBLE PLASTIC FILMS FOR SOIL SOLARIZATION: FOUR YEARS OF EXPERIMENTS

    OpenAIRE

    Salvatore Margiotta

    2007-01-01

    Soil solarization relies on solar radiation being converted to heat for the killing of soilborne pathogens. On one hand, this technique can be considered as an environmentally-friendly way to manage soilborne pests, as an alternative of methyl bromide phased-out in 2005, than using chemicals. On the other hand, high employment of traditional plastic sheets in agriculture causes the production of enormous quantities of waste, whose inappropriate management might have negative effects on the en...

  7. [Acculturation attitudes and mental health of international students in their first year].

    Science.gov (United States)

    Inoue, T; Ito, T

    1997-10-01

    The aim of the present study was to show relationship between acculturation attitudes and mental health of international students in their first year in Japan. Of 53 new international students at a university, 50 (36 male and 14 female), 19.2 years old on average, completed a questionnaire in May (one month after the arrival), October (six months later), and March of the following year (the last month of the first academic year). The questionnaire consisted of two parts: Acculturation Attitude Scale and SCL-90-R Mental Health Scale. The former was based on Kim (1988) and measured four types of acculturation attitudes: Integration, Assimilation, Separation, and Marginalization (Berry, 1990, 1992; Berry, Trimble, & Olmedo, 1986). Results indicated that effects of acculturation attitudes on mental health of international students became clear in the last month of their first year. It is argued that helping students' integration attitude has beneficial effects on their mental health.

  8. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  9. Erosion Data from the MISSE 8 Polymers Experiment After 2 Years of Space Exposure on the International Space Station

    Science.gov (United States)

    de Groh, Kim K.; Banks, Bruce A.; Asmar, Olivia C.; Yi, Grace T.; Mitchell, Gianna G.; Guo, Aobo; Sechkar, Edward A.

    2016-01-01

    The Polymers Experiment was exposed to the low Earth orbit (LEO) space environment for 2.14 and 2.0 years as part of the Materials International Space Station Experiment 8 (MISSE 8) and the Optical Reflector Materials Experiment-III (ORMatE-III), respectively. The experiment contained 42 samples, which were flown in either ram, wake, or zenith orientations. The primary objective was to determine the effect of solar exposure on the atomic oxygen erosion yield (Ey) of fluoropolymers. This paper provides an overview of the experiment with details on the polymers flown, the characterization techniques used, the atomic oxygen fluence for each exposure orientation, and the LEO Ey results. The Ey values for the fluoropolymers range from 1.45 x 10(exp -25) cm(exp 3)/atom for white Tedlar Registered Trademark? (polyvinyl fluoride with white titanium dioxide pigment) flown in the ram orientation to 6.32 x 10(exp -24) cm(exp 3)/atom for aluminized-Teflon Registered Trademark? fluorinated ethylene propylene (Al-FEP) flown in the zenith orientation. Erosion yield data for FEP flown in ram, wake and zenith orientations are compared, and the Ey was found to be highly dependent on orientation, hence environmental exposure. Teflon FEP had an order of magnitude higher Ey when flown in the zenith direction (6.32 x10(exp -24) cm(exp3)/atom) as compared to the ram direction (2.37 x 10(exp -25) cm(exp 3)/atom). The Ey of FEP was found to increase with a direct correlation to the solar exposure/AO fluence ratio showing the effect of solar radiation and/or heating due to solar exposure on FEP erosion. In addition, back-surface carbon painted FEP (C-FEP) flown in the zenith orientation had a significantly higher Ey than clear FEP or Al-FEP further indicating that heating has a significant impact on the erosion of FEP, particularly in the zenith orientation.

  10. Social Network Analysis of 50 Years of International Collaboration in the Research of Educational Technology

    Science.gov (United States)

    Guo, Shesen; Zhang, Ganzhou; Guo, Yufei

    2016-01-01

    The definition of the field of educational technology has evolved over 50 years. New inventions and economic globalization increasingly facilitate people's communication for exchange of ideas and collaboration. This work attempts to describe international research collaboration in educational technology for the past 50 years. This article intends…

  11. THE INTERNATIONAL LEAGUE AGAINST EPILEPSY AT THE THRESHOLD OF ITS SECOND CENTURY: YEAR 1

    Science.gov (United States)

    MOSHÉ, Solomon L.; PERUCCA, EMILIO; WIEBE, SAMUEL; MATHERN, GARY W.

    2010-01-01

    In July 2009, the International League against Epilepsy (ILAE) developed its four-year strategic plan in collaboration with past, current, and future leaders (www.ilae-epilepsy.org). This is the first yearly progress report, prepared by the management committee and the chair of the Strategic Task Force, to highlight progress toward achieving the plan’s goals. PMID:21219305

  12. Proceedings of the international photovoltaic solar energy conference held in Glasgow 1-5 May 2000

    International Nuclear Information System (INIS)

    Anon.

    2001-02-01

    The European Photovoltaic Solar Energy Conferences are dedicated to accelerating the impetus towards sustainable development of global PV markets. The 16th in the series, held in Glasgow UK, brought together more than 1500 delegates from 72 countries, and provided an important and vital forum for information exchange in the field. The Conference Proceedings place on record a new phase of market development and scientific endeavour in the PV industry, representing current and innovative thinking in all aspects of the science, technology, markets and business of photovoltaics. In three volumes, the Proceedings present some 790 papers selected for presentation by the scientific review committee of the 16th European Photovoltaic Solar Energy Conference. The Comprehensive range of topics covered comprises: Fundamentals, Novel Devices and New Materials. Thin Film Cells and Technologies. Space Cells and Systems. Crystalline Silicon Solar Cells and Technologies. PV Integration in Buildings. PV Modules and Components of PV Systems. Implementation, Strategies, National Programs and Financing Schemes. Market Deployment in Developing Countries. (author)

  13. Relativistic electrons in the outer-zone: An 11 year cycle, their relation to the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Belian, R.D.; Cayton, T.E.; Christensen, R.A.; Ingraham, J.C.; Meier, M.M.; Reeves, G.D. [Los Alamos National Lab., NM (United States); Lazarus, A.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1994-12-31

    We examine Los Alamos energetic electron data from 1979 through the present to show long term trends in the trapped relativistic electron populations at geosynchronous-earth-orbit (GEO). Data is examined from several CPA and SOPA instruments to cover the interval from 1979 through June 1994. It is shown that the higher energy electrons fluxes (E > 300 keV) displayed a cycle of {approx}11 years. In agreement with other investigators, we also show that the relativistic electron cycle is out of phase with the sunspot cycle. We compare the occurrences of relativistic electrons and solar wind high speed streams and determine that on the time scale of 15 years the two do not correlate well. The long-term data set we provide here shows a systematic change of the electron energy spectrum during the course of the solar cycle. This information should be useful to magnetospheric scientists, model designers and space flight planners.

  14. Solar activity, tidal friction and the earth rotation over the last 2000 years

    International Nuclear Information System (INIS)

    Kiselev, V.M.

    1981-01-01

    The tidal retardations of the Earth rotation and orbital motion of the Moon on Dynamical Time are discussed. The secular deceleration of the lunar motion deduced from an analysis of the anciept and medieval eclipses is lapger thap that obtained from recent (telescopic) observations. This discrepancy is shown to vanish if the Earth acceleration due to secular change of solar activity is taken into consideration. Therefore, one may suggest that the mean tidal friction has remained essentially constant over the last two millennia. Nontidal variations of the Earth rotation velocity in the historical past as well as at present time are shown to be caused by solar activity changes [ru

  15. Science Communication during the International Polar Year 2007-2008: Successes and Recommendations (Invited)

    Science.gov (United States)

    Carlson, D. J.; Ipy Education, Outreach; Communication Committee

    2010-12-01

    This IPY (International Polar Year 2007-2008) represented one of the largest international scientific research efforts ever undertaken. It stimulated the active engagement of thousands of teachers, students, and citizens around the globe through international collaboration and cooperation, careful cultivation of a global community of enthusiastic professional science communicators and educators, and creative use of free technologies. From music performances in Alaska to tree planting in Malaysia, hundreds of events and activities around the world demonstrated the public enthusiasm and the broad impact of IPY. This paper describes the core concepts and tangible activities developed and implemented by the IPY international Education, Outreach, and Communication (EOC) Committee and community and the International Programme Office (IPO) between March 2006 and December 2009. We present methods and accomplishments and address two questions: 1) How did these activities come about? 2) How do the ideas, tools, experiences, and successes from this IPY apply more broadly to science communication?

  16. Everyone is Welcome! Making the International Year of Astronomy Accessible to People Who are Blind

    Science.gov (United States)

    Grice, Noreen A.

    2008-05-01

    In 2009, the world unites in celebrating the International Year of Astronomy. A variety of international events will provide new opportunities to bring astronomy to laypeople including students, the general public, and underserved populations. It is critical that IYA displays and activities be inclusive and accessible to reach the broadest audience possible. This paper will explore strategies to make astronomy accessible for people who are blind or visually impaired.

  17. Learning argumentative writing in Australian schools : Chinese international students in Year 12

    OpenAIRE

    Wu, Chia Chuan

    2017-01-01

    This thesis explores Chinese international students’ experiences in learning to write argumentative genres in an Australian high school, and the ways in which they engage with Australian media texts. The school caters for international students studying English as a Second Language (ESL) in the Victoria Certificate of Education (VCE), the final two years of secondary schooling in the state of Victoria in Australia, prior to university entry. The genre-focused pedagogical approach used in teac...

  18. International Conference 'Fifteen Years after the Chornobyl Accident. Lessons Learned'. Abstracts Learning

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    The main aims of the conference are: for the scientific community in the most affected countries, to develop a common vision with the international scientific community with regard to the consequences of the Chornobyl disaster (in ecological, medical, social and other areas 15 years post-Chornobyl); to drawing conclusions and providing recommendations to allow decision makers at both national and international level to take further steps to mitigate the effects of the disaster. For the results of the Conference, to represent a common international understanding of the current situation resulting from the accident and the future initiatives which will be necessary to counter its effects

  19. FY 2000 report on the results of the development of commercialization technology of the photovoltaic power system. International cooperation project (Collection of the information on the IEA Solar Heating and Cooling Program); 2000 nendo seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu kokusai jigyo kyoryoku (IEA taiyo reidanbo kyuto program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    By sending specialists including mostly members of the IEA (International Energy Agency)/SHCP (Solar Heating and Cooling Program) to the Executive Committee Meeting of SHCP and the Task Specialist Meeting, information was collected, and the FY 2000 results were summarized. The mission of this implementing agreement by 2004 was to positively support the creation of the future environmentally sustainable by using solar design/technology to a high degree. For it, the following were to be carried out: development of solar technology including the cost reduction through the joint research with enterprises, construction of the international market, supply of the required information, quantification of the effectiveness of solar technology for the environment, tackling with the international standardization for expansion of the use in the building sector, promotion of solar technology utilization in developing countries, etc. In this fiscal year, finished were Task 19: Solar air/heat collecting system and Task 21: Natural lighting in buildings. Activities of Tasks 22-26, which started in the previous fiscal year, were continued. Activities of Tasks 27, 28 and 29 were newly started in this fiscal year. (NEDO)

  20. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  1. Knowledge Discovery in our World Information Society: Opportunities for the International Polar Year 2007-08

    Science.gov (United States)

    Berkman, P. A.

    2005-12-01

    The World Data Center system emerged in 1957-58 with the International Geophysical Year (which was renamed from the 3rd International Polar Year) to preserve and provide access to scientific data collected from observational programs throughout the Earth system. Fast forward a half century ... access to diverse digital information has become effectively infinite and instantaneous with nearly 20,000 petabytes of information produced and stored on print, optical and magnetic media each year; microprocessor speeds that have increased 5 orders of magnitude since 1972; existence of the Internet; increasing global capacity to collect and transmit information via satellites; availability of powerful search engines; and proliferation of data warehouses like the World Data Centers. The problem is that we already have reached the threshold in our world information society when accessing more information does not equate with generating more knowledge. In 2007-08, the International Council of Science and World Meteorological Organization will convene the next International Polar Year to accelerate our understanding of how the polar regions respond to, amplify and drive changes elsewhere in the Earth system (http://www.ipy.org). Beyond Earth system science, strategies and tools for integrating digital information to discover meaningful relationships among the disparate data would have societal benefits from boardrooms to classrooms. In the same sense that human-launched satellites became a strategic focus that justified national investments in the International Geophysical Year, developing the next generation of knowledge discovery tools is an opportunity for the International Polar Year 2007-08 and its affiliated programs to contribute in an area that is critical to the future of our global community. Knowledge is the common wealth of humanity. H.E. Mr. Adama Samassekou President, World Summit on the Information Society

  2. International electives in the final year of German medical school education – a student's perspective

    Directory of Open Access Journals (Sweden)

    Ebrahimi-Fakhari, Darius

    2014-08-01

    Full Text Available [english] The final year of medical school has a unique role for introducing students to their future responsibilities and challenges. At many medical schools, electives at an accredited institution abroad are a common part of the student’s final year experience. International electives provide an opportunity for a personal and academic experience that will often create new perspectives on clinical medicine and research, medical education and healthcare policy. In this article the authors reflect on their experience as elective students abroad and discuss the contribution of international electives to the constant development and progress of local final year rotations. They identify key areas for improving final year electives and outline essential features for a valuable and successful final year elective.

  3. International electives in the final year of German medical school education--a student's perspective.

    Science.gov (United States)

    Ebrahimi-Fakhari, Darius; Agrawal, Mridul; Wahlster, Lara

    2014-01-01

    The final year of medical school has a unique role for introducing students to their future responsibilities and challenges. At many medical schools, electives at an accredited institution abroad are a common part of the student's final year experience. International electives provide an opportunity for a personal and academic experience that will often create new perspectives on clinical medicine and research, medical education and healthcare policy. In this article the authors reflect on their experience as elective students abroad and discuss the contribution of international electives to the constant development and progress of local final year rotations. They identify key areas for improving final year electives and outline essential features for a valuable and successful final year elective.

  4. Manifestations of Influence of Solar Activity and Cosmic Ray Intensity on the Wheat Price in the Medieval England (1259-1703 Years)

    Science.gov (United States)

    Pustil'Nik, Lev A.; Dorman, L. I.; Yom Din, G.

    2003-07-01

    The database of Professor Rogers, with wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray variations. The main object of the statistical analysis is investigation of bursts of prices. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations in cosmic rays, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. Statistical properties of these two samples are similar both in averaged/median values of intervals and in standard deviation of this values. We show that histogram of intervals distribution for price bursts and solar minimums are coincidence with high confidence level. We analyzed direct links between wheat prices and solar activity in the th 17 Century, for which wheat prices and solar activity data as well as cosmic ray intensity (from 10 Be isotop e) are available. We show that for all seven solar activity minimums the observed prices were higher than prices for the nine intervals of maximal solar activity proceed preceding to the minimums. This result, combined with the conclusion on similarity of statistical properties of the price bursts and solar activity extremes we consider as direct evidence of a causal connection between wheat prices bursts and solar activity.

  5. De-risking concentrated solar power in emerging markets: The role of policies and international finance institutions

    International Nuclear Information System (INIS)

    Frisari, Gianleo; Stadelmann, Martin

    2015-01-01

    Concentrated solar power (CSP) is a promising technology for low-carbon energy systems, as combined with thermal storage it can store solar energy as heat, and deliver power more flexibly and when most needed by the grid. However, its high cost prevents its rapid deployment and affects its affordability in emerging economies. International financial institutions (IFIs) have emerged as key players to enable CSP in emerging economies, especially when cooperating with national policymakers. Through the analysis of two CSP plants in India and Morocco where IFIs provided the lion's share of finance, this paper aims to assess the effectiveness of their support and estimate the impact of IFIs financing on electricity production costs and mobilization of private investments. The two case studies show that public financial institutions can play a leading role in reducing the cost of CSP support on public budgets by providing concessional loans in countries where public and/or private finance would be too expensive, or extending maturities where commercial investors are present but poorly suited for project finance. Finally, we show that, combined with competitive tariff setting mechanism (tenders and auctions), public financial support can also be a cost-effective tool to engage private investors in CSP. -- Highlights: •We analyze the financial model of two large-scale concentrated solar power (CSP) plants in two emerging markets (India and Morocco). •We focus on the role of policies and public finance in reducing investment risks and generation costs. •Development banks' concessional loans can reduce the weight of CSP support on public budgets. •Even when non-concessional, development banks' loans can reduce investment costs by extending debt maturities. •Competitive tariff setting mechanisms can ensure cost-effectiveness of public financial support

  6. Solar energy for wastewater treatment: review of international technologies and their applicability in Brazil.

    Science.gov (United States)

    Marcelino, R B P; Queiroz, M T A; Amorim, C C; Leão, M M D; Brites-Nóbrega, F F

    2015-01-01

    Several studies have reported the adverse effects of recalcitrant compounds and emerging contaminants present in industrial effluents, which are not degradable by ordinary biological treatment. Many of these compounds are likely to accumulate in living organisms through the lipid layer. At concentrations above the limits of biological tolerance, these compounds can be harmful to the ecosystem and may even reach humans through food chain biomagnification. In this regard, advanced oxidation processes (AOPs) represent an effective alternative for the removal of the pollutants. This study focused on the AOP involving the use of ultraviolet radiation in homogeneous and heterogeneous systems. Based on the literature review, comparisons between natural and artificial light were established, approaching photoreactors constructive and operational characteristics. We concluded that the high availability of solar power in Brazil would make the implementation of the AOP using natural solar radiation for the decontamination of effluents feasible, thereby contributing to clean production and biodiversity conservation. This will serve as an important tool for the enforcement of environmental responsibility among public and private institutions.

  7. Variability of fractal dimension of solar radio flux

    Science.gov (United States)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  8. Feasibility of an innovative third-year chief resident system: an internal medicine residency leadership study.

    Science.gov (United States)

    Kolade, Victor O; Staton, Lisa J; Jayarajan, Ramesh; Bentley, Nanette K; Huang, Xiangke

    2014-01-01

    The role of the internal medicine chief resident includes various administrative, academic, social, and educational responsibilities, fulfillment of which prepares residents for further leadership tasks. However, the chief resident position has historically only been held by a few residents. As fourth-year chief residents are becoming less common, we considered a new model for rotating third-year residents as the chief resident. Online surveys were given to all 29 internal medicine residents in a single university-based program after implementation of a leadership curriculum and specific job description for the third-year chief resident. Chief residents evaluated themselves on various aspects of leadership. Participation was voluntary. Descriptive statistics were generated using SPSS version 21. Thirteen junior (first- or second-year) resident responses reported that the chief residents elicited input from others (mean rating 6.8), were committed to the team (6.8), resolved conflict (6.7), ensured efficiency, organization and productivity of the team (6.7), participated actively (7.0), and managed resources (6.6). Responses from senior residents averaged 1 point higher for each item; this pattern repeated itself in teaching evaluations. Chief resident self-evaluators were more comfortable running a morning report (8.4) than with being chief resident (5.8). The feasibility of preparing internal medicine residents for leadership roles through a rotating PGY-3 (postgraduate year) chief residency curriculum was explored at a small internal medicine residency, and we suggest extending the study to include other programs.

  9. Enrichment services for chromium isotopes for the GALLEX (gallium experiment) international collaboration experiment on solar neutrino flux

    Science.gov (United States)

    Szady, Andrew J.

    1990-07-01

    Detailed discussions were held with members of the Gallium Experiment (GALLEX) international solar neutrino research collaboration concerning negotiations to provide $1.4 million in services to enrich (50)Cr for a (51)Cr neutrino source. The source will be used to calibrate the 20-ton gallium solar neutrino detector currently in place in the Gran Sasso Laboratory in Italy. Funding approval for the enrichment services is expected from the European Common Market by October 19, 1990. The discussions focused on the technical aspects of the enrichment, the health and safety requirements for handling the process gas, cost projections, schedule, the Work-for-Others contract, and the method of payment. Discussions were also held with members of the Nuclear Physics Dept. at the University of Milan concerning the availability of isotopes enriched by the Calutron at the Oak Ridge National Laboratory. Very high purity material is needed to grow crystals for use in double beta decay detectors. Finally, working sessions were held to draft a coauthored paper on the results of using the gas centrifuge to remove trace quantities of (85)Kr from natural xenon.

  10. Evidence of 11-year solar cycles in tree rings from 1010 to 1110 AD - Progress on high precision AMS measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guettler, D., E-mail: guettler@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, HPK G31, Schafmattstrasse 20, 8093 Zurich (Switzerland); Wacker, L. [Laboratory of Ion Beam Physics, ETH Zurich, HPK G31, Schafmattstrasse 20, 8093 Zurich (Switzerland); Kromer, B.; Friedrich, M. [Heidelberg Academy of Sciences, 69120 Heidelberg (Germany); Institute of Botany, University of Hohenheim, 70593 Stuttgart (Germany); Synal, H.-A. [Laboratory of Ion Beam Physics, ETH Zurich, HPK G31, Schafmattstrasse 20, 8093 Zurich (Switzerland)

    2013-01-15

    Oak tree rings from Southern Germany covering the AD 1010-1110 years have been analyzed for radiocarbon with accelerator mass spectrometry (AMS) at the laboratory at ETH Zurich. High-precision measurements with a precision down to 12 years radiocarbon age and a time resolution of 2 years aimed to identify modulations of the {sup 14}C concentration in tree ring samples caused by the 11 years solar cycles, a feature that so far is not visible in the IntCal calibration curve. Our results are in good agreement with the current calibration curve IntCal09. However, we observed an offset in radiocarbon age of 25-40 years towards older values. An evaluation of our sample preparation, that included variations of e.g.: chemicals, test glasses and processing steps did not explain this offset. The numerous measurements using the AMS-MICADAS system validated its suitability for high precision measurements with high repeatability.

  11. The bidirectional pathways between internalizing and externalizing problems and academic performance from 6 to 18 years.

    Science.gov (United States)

    Van der Ende, Jan; Verhulst, Frank C; Tiemeier, Henning

    2016-08-01

    Internalizing and externalizing problems are associated with poor academic performance, both concurrently and longitudinally. Important questions are whether problems precede academic performance or vice versa, whether both internalizing and externalizing are associated with academic problems when simultaneously tested, and whether associations and their direction depend on the informant providing information. These questions were addressed in a sample of 816 children who were assessed four times. The children were 6-10 years at baseline and 14-18 years at the last assessment. Parent-reported internalizing and externalizing problems and teacher-reported academic performance were tested in cross-lagged models to examine bidirectional paths between these constructs. These models were compared with cross-lagged models testing paths between teacher-reported internalizing and externalizing problems and parent-reported academic performance. Both final models revealed similar pathways from mostly externalizing problems to academic performance. No paths emerged from internalizing problems to academic performance. Moreover, paths from academic performance to internalizing and externalizing problems were only found when teachers reported on children's problems and not for parent-reported problems. Additional model tests revealed that paths were observed in both childhood and adolescence. Externalizing problems place children at increased risk of poor academic performance and should therefore be the target for interventions.

  12. 15 Years of R&D in Central Solar Heating in Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    Danish R&D activities during the last two decades in the field of Central Solar Heating Plants and Thermal Energy Storage Technologies are presented. The most relevant central solar heating plants (CSHPs), with and without seasonal storage, are examined and essential experiences highlighted....... The Saltum and Ry plants represent the type of CSHPs with preheating the return stream of a district heating net and no storage involved. The Marstal plant represents an alternative approach, connecting the CSHP to the delivery pipe for summer operation. Here the plant involves short-term storage...... and the application of variable flow that lead to novelties in the control strategy. The plant is described and experiences are analysed. The presented cases show that the technology, under special conditions, can be economically competitive with other heating technologies. Under normal conditions, public funding...

  13. Environmental assessment of the CIESOL solar building after two years operation.

    Science.gov (United States)

    Batlles, Francisco J; Rosiek, Sabina; Muñoz, Ivan; Fernández-Alba, Amadeo R

    2010-05-01

    Life cycle assessment is applied to assess the environmental benefits and trade-offs of a solar-assisted heating, ventilating, and air-conditioning (HVAC) system installed in the CIESOL building in Almeria (southeastern Spain). The environmental performance of this system is compared to that of a conventional HVAC system using a heat pump. The study evaluates these systems from cradle to grave, and the impact assessment includes, in addition to the CML2001 method, an impact category dealing with impacts on freshwater resources. The results show that the solar-assisted HVAC involves lower impacts in many impact categories, achieving, as an example, a reduction of 80% in greenhouse-gas emissions. On the other hand, key weak points of this system are the production of capital goods, but specially water use for cooling, due to its high impact on freshwater resources. Minimization of water requirements should be a priority for further development of this promising technology.

  14. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert.

    Science.gov (United States)

    Zhang, Zhi-Shan; Zhao, Yang; Li, Xin-Rong; Huang, Lei; Tan, Hui-Juan

    2016-05-17

    In water-limited regions, rainfall interception is influenced by rainfall properties and crown characteristics. Rainfall properties, aside from gross rainfall amount and duration (GR and RD), maximum rainfall intensity and rainless gap (RG), within rain events may heavily affect throughfall and interception by plants. From 2004 to 2014 (except for 2007), individual shrubs of Caragana korshinskii and Artemisia ordosica were selected to measure throughfall during 210 rain events. Various rainfall properties were auto-measured and crown characteristics, i.e., height, branch and leaf area index, crown area and volume of two shrubs were also measured. The relative interceptions of C. korshinskii and A. ordosica were 29.1% and 17.1%, respectively. Rainfall properties have more contributions than crown characteristics to throughfall and interception of shrubs. Throughfall and interception of shrubs can be explained by GR, RI60 (maximum rainfall intensities during 60 min), RD and RG in deceasing importance. However, relative throughfall and interception of two shrubs have different responses to rainfall properties and crown characteristics, those of C. korshinskii were closely related to rainfall properties, while those of A. ordosica were more dependent on crown characteristics. We highlight long-term monitoring is very necessary to determine the relationships between throughfall and interception with crown characteristics.

  15. Global solar PV installations grew in 2015 and will continue this trend over the coming years

    International Nuclear Information System (INIS)

    2016-01-01

    According to preliminary numbers from GTM Research, 59 GW of solar PV were installed globally in 2015, representing a 34% increase over 2014 total. The fourth quarter of 2015 showed that global PV demand is very much at the mercy of government support, which can often be unpredictable and idiosyncratic, frequently leading to negative, although occasionally positive, outcomes. By the end of 2016, cumulative installations will reach 321 GW. (Author)

  16. Solar occultation observations from the international space station: Deployment of a FTS for Atmospheric chemistry and trend studies

    Science.gov (United States)

    Rinsland, C. P.; Chu, W. P.; Cunnold, D. M.

    1999-01-01

    We propose the deployment of SAGE IV on the International Space Station (ISS) for recording solar occultation observations in the 2008-2013 time period. The design of SAGE IV is based on the SAGE III near UV-visible grating spectrometer with a 1.55 μm PIN diode, but also includes a compact Fourier transform spectrometer operating between 740 and 4100 cm-1. The combined instrumentation would focus on obtaining simultaneous high vertical resolution stratospheric profiles of ozone, over 30 other molecules, temperature, density, and aerosols at low to mid-latitudes to monitor the recovery of the ozone layer as the abundances of the chlorofluorocarbons decline. SAGE IV would extend the SAGE III ISS observational record to 2008-2013 with a consistent set of observations and data processing methods.

  17. Energy policy of the International Energy Agency (IEA) countries. General review of the year 1990

    International Nuclear Information System (INIS)

    1992-01-01

    This book is a general review on energy policy leaded by Members countries of International Energy Agency (IEA) during the year 1990. This book describes also the trends and the recent events which have affected energy demand, energy conservation, energy efficiency, energy supply and energy source development. This annual review gives the IEA energy forecasting for the next years, till year 2001. A detailed study of energy policy in Federal Republic of Germany, Austria, Denmark, Greece, Ireland and Japan is given. The policy of fifteen another Members countries, which have been analyzed the previous years, is recapitulated and briefly brought up to date

  18. The Year of the Solar System: An E/PO Community's Approach to Sharing Planetary Science

    Science.gov (United States)

    Shipp, S. S.; Boonstra, D.; Shupla, C.; Dalton, H.; Scalice, D.; Planetary Science E/Po Community

    2010-12-01

    YSS offers the opportunity to raise awareness, build excitement, and make connections with educators, students and the public about planetary science activities. The planetary science education and public outreach (E/PO) community is engaging and educating their audiences through ongoing mission and program activities. Based on discussion with partners, the community is presenting its products in the context of monthly thematic topics that are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved; and how did life begin and evolve on Earth, has it evolved elsewhere in our solar system, and what are characteristics that lead to the origins of life? Each month explores different compelling aspects of the solar system - its formation, volcanism, ice, life. Resources, activities, and events are interwoven in thematic context, and presented with ideas through which formal and informal educators can engage their audiences. The month-to-month themes place the big questions in a logical sequence of deepening learning experiences - and highlight mission milestones and viewing events. YSS encourages active participation and communication with its audiences. It includes nation-wide activities, such as a Walk Through the Solar System, held between October 2010 to March 2011, in which museums, libraries, science centers, schools, planetariums, amateur astronomers, and others are kicking off YSS by creating their own scale models of the solar system and sharing their events through online posting of pictures, video, and stories. YSS offers the E/PO community the opportunity to collaborate with each other and partners. The thematic approach leverages existing products, providing a home and allowing a “shelf life” that can outlast individual projects and missions. The broad themes highlight missions and programs multiple times. YSS also leverages existing online resources and social media. Hosted on

  19. Contributions of the Spanish Astronomical Society to the International Year of Astronomy 2009

    Science.gov (United States)

    Montesinos, B.

    The Spanish Astronomical Society, SEA in the Spanish acronym of "Sociedad Española de Astronomía", is one of the many institutions contributing to the large number of activities coordinated by the Spanish node of the International Year of Astronomy 2009 (IYA-2009). In this paper I describe the activities programmed with a large participation of members of the Society.

  20. Far Away from the Tigers: A Year in the Classroom with Internationally Adopted Children

    Science.gov (United States)

    Katch, Jane

    2011-01-01

    Over the past three decades, more than a quarter of a million children have become citizens of the United States through international adoption. Kindergarten teacher Jane Katch recently found herself with three such children in her class: Katya, born in Russia, Jasper, from Cambodia, and Caleb, from Romania. Each child had spent early years in an…

  1. Library Experience and Information Literacy Learning of First Year International Students: An Australian Case Study

    Science.gov (United States)

    Hughes, Hilary; Hall, Nerilee; Pozzi, Megan

    2017-01-01

    This qualitative case study provides fresh understandings about first year undergraduate international students' library and information use at an Australian university, and their associated information literacy learning needs. The findings provide evidence to inform the development of library spaces and information literacy responses that enhance…

  2. Celebrating the International Year of Crystallography with a Wisconsin High School Crystal Growing Competition

    Science.gov (United States)

    Guzei, Ilia A.

    2014-01-01

    In honor of the 2014 International Year of Crystallography, the first Wisconsin Crystal Growing Competition was successfully organized and conducted. High school students from 26 schools across the state competed for prizes by growing large crystals of CuSO[subscript4]·5(H[subscript2]O). This paper describes how the event was planned and carried…

  3. Celebrate with SATELLITES: An International Polar Year Partnership to Study Earth's Materials

    Science.gov (United States)

    Hedley, Mikell Lynne; Czajkowski, Kevin; Struble, Janet; Benko, Terri; Shellito, Brad; Sheridan, Scott; Stasiuk, Mandy Munroe

    2009-01-01

    The SATELLITES program uses geospatial technologies to study surface temperatures of Earth's materials, such as sand, soil, grass, and water. Data are collected using Global Learning and Observations to Benefit the Environment (GLOBE) protocols, which are then used in research projects that are a part of the International Polar Year (IPY).…

  4. The role of education in the celebration of International Space Year

    Science.gov (United States)

    Owens, Frank C.; Mcgee, A. S.

    1991-01-01

    NASA's role in International Space Year (ISY) educational activities is described. The Agency is a coleader of the space agency forum panel of experts on education and applications, a developer of educational activities within the agency, and a facilitator of ISY-related activities in the public and private sectors in the USA.

  5. Social Environments, Writing Support Networks, and Academic Writing: A Study of First Year International Graduate Students

    Science.gov (United States)

    Moglen, Daniel Justin

    2017-01-01

    This dissertation is an inquiry into the social experiences of first year international graduate students, and how those social experiences inform their academic writing development. Drawing from the sociocognitive perspective (Atkinson, 2002; Lantolf, 2000), this study recognizes that the university is social in nature, and language learning…

  6. Thermal state of permafrost in North America: a contribution to the international polar year

    Science.gov (United States)

    S.L. Smith; V.E. Romanovsky; A.G. Lewkowicz; C.R. Burn; M. Allard; G.D. Clow; K. Yoshikawa; J. Throop

    2010-01-01

    A snapshot of the thermal state of permafrost in northern North America during the International Polar Year (IPY) was developed using ground temperature data collected from 350 boreholes. More than half these were established during IPY to enhance the network in sparsely monitored regions. The measurement sites span a diverse range of ecoclimatic and geological...

  7. The Modified Bentall Procedure: A Single-Institution Experience in 249 Patients with a Maximum Follow Up of 21.5 Years.

    Science.gov (United States)

    Celiento, Michele; Ravenni, Giacomo; Margaryan, Rafik; Ferrari, Gabriele; Blasi, Stefania; Pratali, Stefano; Bortolotti, Uberto

    2016-07-01

    The study aim was to evaluate the long-term clinical outcomes of the modified Bentall procedure (MBP) with a mechanical conduit. Between 1993 and 2014, a total of 249 patients (mean age 62 ± 12 years; range: 25-87 years) underwent a MBP at the authors' institution. The main indication was annuloaortic ectasia in 102 patients (41%), followed by acute aortic dissection in 82 patients (33%); moderate to severe aortic regurgitation was present in 79% of cases. A bicuspid aortic valve was found in 17% of patients, and Marfan syndrome in 7%. The mean NYHA functional class was 2.5 ± 1.1. Concomitant procedures were performed in 36 patients (14%). The mean follow up was 8.7 ± 5.0 years (range: 0.3-21.5 years) and was 99% complete. The total follow up was 6.475 patient-years (pt-yr). Operative mortality was 3% in elective cases. Age, prolonged cardiopulmonary bypass times and mechanical ventilation >96 h were independent risk factors for early mortality. Actuarial survival at 15 and 20 years was 62% and 60%, respectively. Risk factors for late mortality were age and emergency operation. Actuarial freedom from thromboembolism (linearized incidence 0.93%/pt-yr) was 82% at 15 years, and 74% at 20 years. Seven patients required reoperation (0.38%/pt-yr), with an actuarial freedom from reoperation of 91% at 15 years and 87% at 20 years. The incidence of overall valve-related complications was 0.32%/pt-yr, with actuarial freedoms of 94% at 15 and 20 years. The MBP has shown excellent long-term results with a low incidence of procedure-related complications up to 20 years postoperatively. For this reason, it is considered to be a valid option for the treatment of aortic root disease, whenever valvesparing procedures are not indicated.

  8. The International Geophysical Month: Short periods of cooperative study can consolidate the gains of the International Geophysical Year.

    Science.gov (United States)

    Helliwell, R A; Martin, L H

    1961-12-01

    For convenience, we summarize below some of the main advantages of the IGM concept. 1) Most organizations can mount and support intensive field operations for short periods. 2) High-quality data would be obtained, and the data could be processed more promptly than in long-term projects. 3) Laboratory equipment could in many instances be mnade available for field operations. 4) Top-caliber researchers would be available for field operations. 5) The participation of small research groups and of research workers from government and industry would be fostered. 6) Student participation would improve educational programs in, and attract needed talent to, the geophysical sciences. 7) Ship, satellite, and rocket observations could be scheduled for IGM's. 8) International scientific conferences scheduled to follow IGM's would attract working scientists. It is not suggested that these short-term exercises should replace the long synoptic programs characteristic of the IGY. Rather it is proposed that they supplement and guide any such future long-term program. If adopted, they would produce many data of value for the planning and timing of the International Year of the Quiet Sun. To bring emphasis on special observations during the IQSY, International Geophysical Months might well be scheduled to coincide with the June and December solstices, to be followed by an IGM at an equinoctial period. This would provide periods for concentrated sampling-periods in somewhat the same category as the Regular World Intervals adopted during the IGY. The more elaborate experiments could be confined to the International Geophysical Months, so that only those studies for which continuous observations are essential would be scheduled for the entire period. The duration of an International Geophysical Month would be sufficient for carrying out experiments requiring moving platforms such as ships, rockets, or satellites. It is recommended that every effort be made to schedule the first IGM

  9. SIXTEEN YEARS OF ULYSSES INTERSTELLAR DUST MEASUREMENTS IN THE SOLAR SYSTEM. II. FLUCTUATIONS IN THE DUST FLOW FROM THE DATA

    International Nuclear Information System (INIS)

    Strub, Peter; Krüger, Harald; Sterken, Veerle J.

    2015-01-01

    The Ulysses spacecraft provided the first opportunity to identify and study interstellar dust (ISD) in situ in the solar system between 1992 and 2007. Here we present the first comprehensive analysis of the ISD component in the entire Ulysses dust data set. We analyzed several parameters of the ISD flow in a time-resolved fashion: flux, flow direction, mass index, and flow width. The general picture is in agreement with a time-dependent focusing/defocusing of the charged dust particles due to long-term variations of the solar magnetic field throughout a solar magnetic cycle of 22 years. In addition, we confirm a shift in dust direction of 50° ± 7° in 2005, along with a steep, size-dependent increase in flux by a factor of 4 within 8 months. To date, this is difficult to interpret and has to be examined in more detail by new dynamical simulations. This work is part of a series of three papers. This paper concentrates on the time-dependent flux and direction of the ISD. In a companion paper we analyze the overall mass distribution of the ISD measured by Ulysses, and a third paper discusses the results of modeling the flow of the ISD as seen by Ulysses

  10. SIXTEEN YEARS OF ULYSSES INTERSTELLAR DUST MEASUREMENTS IN THE SOLAR SYSTEM. II. FLUCTUATIONS IN THE DUST FLOW FROM THE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Strub, Peter; Krüger, Harald [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Sterken, Veerle J., E-mail: krueger@mps.mpg.de [International Space Science Institute, Hallerstrasse 6, 3012 Bern (Switzerland)

    2015-10-20

    The Ulysses spacecraft provided the first opportunity to identify and study interstellar dust (ISD) in situ in the solar system between 1992 and 2007. Here we present the first comprehensive analysis of the ISD component in the entire Ulysses dust data set. We analyzed several parameters of the ISD flow in a time-resolved fashion: flux, flow direction, mass index, and flow width. The general picture is in agreement with a time-dependent focusing/defocusing of the charged dust particles due to long-term variations of the solar magnetic field throughout a solar magnetic cycle of 22 years. In addition, we confirm a shift in dust direction of 50° ± 7° in 2005, along with a steep, size-dependent increase in flux by a factor of 4 within 8 months. To date, this is difficult to interpret and has to be examined in more detail by new dynamical simulations. This work is part of a series of three papers. This paper concentrates on the time-dependent flux and direction of the ISD. In a companion paper we analyze the overall mass distribution of the ISD measured by Ulysses, and a third paper discusses the results of modeling the flow of the ISD as seen by Ulysses.

  11. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  12. First year engineering students: Perceptions of engineers and engineering work amongst domestic and international students

    Directory of Open Access Journals (Sweden)

    Dawn Bennett

    2015-03-01

    Full Text Available Despite being well ahead of many other disciplines in establishing strong and evidence-based research and practice, engineering in many countries still experiences high rates of student and graduate attrition. One possible reason for this is that students enter engineering study without understanding the realities of either their degree program or engineering work, and without a sense of motivation and commitment. The research reported here aimed to extend understanding of first year engineering students’ thinking about their competencies, identity, self-efficacy, motivation, and career. The study involved over 1,100 first year engineering students enrolled in a common first year unit. Responses were coded using the Engineers Australia graduate competencies as a framework, and this paper reports findings from the most diverse cohort of students (n=260, of whom 49% were international students with English as their second language. The research identified differences between international and domestic students’ perceptions of self and of career competencies, possibly related to self-esteem. Implications include improved confidence and motivation to learn as students consider their strengths, interests and goals. Further, the research raises the need for analysis of international students’ cultural and educational background to determine how different cohorts of international students self-appraise and how they associate learning with their future careers.

  13. Building on the International Polar Year: Discovering Interdisciplinary Data Through Federated Search

    Directory of Open Access Journals (Sweden)

    L Yarmey

    2014-10-01

    Full Text Available The legacy of the International Polar Year 2007–2008 (IPY includes advances in open data and meaningful progress towards interoperability of data, systems, and standards. Enabled by metadata brokering technologies and by the growing adoption of international metadata standards, federated data search welcomes diversity in Arctic data and recognizes the value of expertise in community data repositories. Federated search enables specialized data holdings to be discovered by broader audiences and complements the role of metadata registries such as the Global Change Master Directory, providing interoperability across the Arctic web-of-repositories.

  14. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  15. Numerical simulation of the performance and economical study of three cookers: solar, hybrid (solar and natural gas) and a LPG (Liquefied Petroleum Gases) cooker for one typical year in Fortaleza-Brazil; Simulacao numerica da performance e estudo da viabilidade economica de tres tipos de fogoes: solar, hibrido (solar e gas natural) e a GLP (Gas Liquefeito do Petroleo) para um ano em Fortaleza

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria Eugenia Vieira da; Santana, Lana Ludmila Pinheiro [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Lab. de Energia Solar e Gas Natural (LESGN); Schwarzer, Klemens [Universidade de Ciencias Aplicadas de Aachen (Germany). Solar Institute Juelich; Miller, Francisco Mateus [PETROBRAS, Rio de Janeiro, RJ (Brazil); Baratelli Junior, Fernando [PETROBRAS, Rio de Janeiro, RJ (Brazil). Gerencia de Gas e Energia

    2004-07-01

    Alternative energy sources can represent viable economical solutions for the energy supply problems and also minimize damages to the environment. This research paper presents an economical and technical study of three different types of cookers: a solar cooker, a hybrid cooker and a conventional LPG cooker, through simulation for one typical year in Fortaleza. The solar cooker used in the experiments is composed of two pots, an oven, a tank of storage and 2m{sup 2} of solar collector area. The hybrid cooker has the same structure of the solar one with an additional natural gas burner, and the LPG stove can be easily found in the market. To find the value of the necessary energy to make food in a solar cooker, the amount of solar radiation was measured, as well as the sensible and latent efficiencies of the used stove. In the hybrid, it was considered that the natural gas is used only in the periods of the day when the amount of solar energy is not enough to heat the system up to the desired temperature. The results show an economical and technical comparison of the three different types of cookers. (author)

  16. Changes in bottom water conditions on the New Jersey paleoshelf during the Paleocene-Eocene Thermal Maximum (56 million years ago)

    Science.gov (United States)

    Park, J.; Makarova, M.; Miller, K. G.; Browning, J. V.; Wright, J. D.

    2016-12-01

    The goal of my study is to reconstruct bottom water conditions on the New Jersey paleoshelf during the Paleocene-Eocene Thermal Maximum (PETM) using stable isotopes on the Millville, NJ core. We analyzed tests (shells) of three benthic foraminiferal genera (Cibicidoides, Anomalinoides, and Gavelinella) for carbon (δ13C) and oxygen (δ18O) isotopes using mass spectrometry. Benthic foraminifera are unicellular organisms that live on the ocean floor and use calcium (Ca2+) and carbonate (CO32- ) ions to construct their tests. By doing this, they record the isotopic composition of carbon and oxygen in the seawater. The δ13C records show a sharp decrease of 3.5‰ across the PETM onset, marking the globally recognized carbon isotope excursion (CIE). Coupled benthic and planktonic (surface dwellers) carbon isotopic records indicate a 3‰ vertical gradient in the water column on the shelf. This is much higher than δ13C vertical gradients in the modern ocean (<2‰) and can be explained as evidence for more efficient cycling of organic carbon during the PETM. δ18O records of benthic foraminifera show a 2‰ decrease across the CIE onset, suggesting seafloor warming of 7-10°C (assuming all due to temperature). The change in δ18O of benthic foraminifera is much greater than in the sea surface recorded by surface dwellers (1‰ or 4°C assuming all due to temperature), implying reorganization of the water column on the shelf during the PETM.

  17. Maximum Autocorrelation Factorial Kriging

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.

    2000-01-01

    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...

  18. Solar Special

    International Nuclear Information System (INIS)

    Van Roekel, A.; Osborne, J.; Schroeter, S.; De Jong, R.; De Saint Jacob, Y.

    2009-01-01

    Solar power is growing much faster than most policymakers and analysts realise. As costs come down and feed-in tariffs go up across Europe, a number of countries have started in pursuit of market leader Germany. But in Germany criticism is growing of the multi-billion-euro support schemes that keep the solar industry booming. In this section of the magazine several articles are dedicated to developments in solar energy in Europe. The first article is an overview story on the strong growing global market for solar cells, mainly thanks to subsidy schemes. The second article is on the position of foreign companies in the solar market in Italy. Article number three is dedicated to the conditions for solar technology companies to establish themselves in the German state of Saxony. Also the fifth article deals with the development of solar cells in Saxony: scientists, plant manufacturers and module producers in Saxony are working on new technologies that can be used to produce solar electricity cost-effectively. The goal is to bring the price down to match that of conventionally generated electricity within the next few years. The sixth article deals with the the solar power market in Belgium, which may be overheated or 'oversubsidized'. Article seven is on France, which used to be a pioneer in solar technology, but now produces only a fraction of the solar output of market leader Germany. However, new attractive feed-in-tariffs are changing the solar landscape drastically

  19. AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION FOR HIGH-RISK ACUTE LYMPHOBLASTIC LEUKEMIA: NON-RANDOMIZED STUDY WITH A MAXIMUM FOLLOW-UP OF MORE THAN 22 YEARS

    Directory of Open Access Journals (Sweden)

    Grzegorz Helbig

    2014-06-01

    Full Text Available Objective. To evaluate the efficacy and toxicity of autologous hematopoietic stem cell transplantation (AHSCT for high-risk acute lymphoblastic leukemia (ALL. Material and methods. Overall, 128 high-risk ALL patients at a median age of 26 years (range 18-56 years at diagnosis received AHSCT between 1991-2008. Induction treatment was anthracycline-based in all patients. Conditioning regimen consisted of CAV (cyclophosphamide, cytarabine, etoposide in 125 patients whereas 3 subjects received cyclophosphamide and TBI (total body irridation. Bone marrow was stored for 72 hours in 4oC and re-infused 24 hours after conditioning completion. Bone marrow was a source of stem cells in 119 patients, peripheral blood in 2 and 7 subjects received both bone marrow and peripheral blood. Results. With a median follow-up after AHSCT of 1.6 years (range 0.1-22.3 years, the probability of leukemia-free survival (LFS for the whole group at 10 years was 27% and 23% at 20 years. Transplant-related mortality at 100 days after AHSCT was 3.2%.. There was a strong tendency for better LFS for MRD-negative patients if compared with patients who had positive or unknown MRD status at AHSCT (32% vs 23% and 25%, respectively; p=0.06. There was no difference in LFS between B- and T-lineage ALL as well as between patients transplanted in first complete remission (CR1 and CR2. LFS at 10 years for patients with detectable BCR-ABL at transplant was 20% and this was comparable with subjects with negative and missing BCR-ABL status (26% and 28%; p=0.97. Conclusions. The results of AHSCT for high-risk ALL remains unsatisfactory with low probability of long-term LFS.

  20. Feasibility of an innovative third-year chief resident system: an internal medicine residency leadership study

    Directory of Open Access Journals (Sweden)

    Victor O. Kolade

    2014-07-01

    Full Text Available Introduction: The role of the internal medicine chief resident includes various administrative, academic, social, and educational responsibilities, fulfillment of which prepares residents for further leadership tasks. However, the chief resident position has historically only been held by a few residents. As fourth-year chief residents are becoming less common, we considered a new model for rotating third-year residents as the chief resident. Methods: Online surveys were given to all 29 internal medicine residents in a single university-based program after implementation of a leadership curriculum and specific job description for the third-year chief resident. Chief residents evaluated themselves on various aspects of leadership. Participation was voluntary. Descriptive statistics were generated using SPSS version 21. Results: Thirteen junior (first- or second-year resident responses reported that the chief residents elicited input from others (mean rating 6.8, were committed to the team (6.8, resolved conflict (6.7, ensured efficiency, organization and productivity of the team (6.7, participated actively (7.0, and managed resources (6.6. Responses from senior residents averaged 1 point higher for each item; this pattern repeated itself in teaching evaluations. Chief resident self-evaluators were more comfortable running a morning report (8.4 than with being chief resident (5.8. Conclusion: The feasibility of preparing internal medicine residents for leadership roles through a rotating PGY-3 (postgraduate year chief residency curriculum was explored at a small internal medicine residency, and we suggest extending the study to include other programs.

  1. International Year of Planet Earth - Accomplishments, Activities, Challenges and Plans in Mexico

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Alaniz-Alvarez, S.

    2009-12-01

    The International Year of Planet Earth started as a joint initiative by UNESCO and IUGS with the participation of several geosciences organizations, and developed into a major international geosciences program for the triennium 2007-2009, with the inclusion and participation of national and regional committees. In this presentation we focus on current activities and plans in our country and the participation in international activities. Mexican community has been part of international programs since the International Geophysical Year, continuing through its participation in other programs, e.g., Upper Mantle, Geodynamics, Lithosphere, IHY, IPY and eGY. IYPE activities have concentrated in publications, OneGeology, radio/TV programs, organization of conferences, meetings and outreach events. A book series on Earth Science Experiments for Children has been edited, with first books published on “Atmospheric Pressure and Free Fall of Objects”, “Light and Colors”, “Standing on Archimedes”, “Foucault and Climate” and “Earth and its Waves “. Books are distributed to schools, with tens of thousand copies distributed nationwide and new editions underway. Other publications include leaflets, books and special El Faro issues (edited by the National University) and articles in other journals. In 2007 the AGU Joint Assembly with international participation from US, Canada, Europe and Latin America was held in Acapulco. Current plans include an electronic open-access journal, additional publications of the Planet Earth series, articles and special issues in journals and magazines, plus events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Biodiversity. Mexico City metropolitan area, with > 22 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management

  2. The NASA Solar System Exploration Virtual Institute: International Efforts in Advancing Lunar Science with Prospects for the Future

    Science.gov (United States)

    Schmidt, Gregory K.

    2014-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI), originally chartered in 2008 as the NASA Lunar Science Institute (NLSI), is chartered to advance both the scientific goals needed to enable human space exploration, as well as the science enabled by such exploration. NLSI and SSERVI have in succession been "institutes without walls," fostering collaboration between domestic teams (7 teams for NLSI, 9 for SSERVI) as well as between these teams and the institutes' international partners, resulting in a greater global endeavor. SSERVI teams and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists and bringing the scientific results and excitement of exploration to the public. The domestic teams also respond to NASA's strategic needs, providing community-based responses to NASA needs in partnership with NASA's Analysis Groups. Through the many partnerships enabled by NLSI and SSERVI, scientific results have well exceeded initial projections based on the original PI proposals, proving the validity of the virtual institute model. NLSI and SSERVI have endeavored to represent not just the selected and funded domestic teams, but rather the entire relevant scientific community; this has been done through many means such as the annual Lunar Science Forum (now re-named Exploration Science Forum), community-based grass roots Focus Groups on a wide range of topics, and groups chartered to further the careers of young scientists. Additionally, NLSI and SSERVI have co-founded international efforts such as the pan-European lunar science consortium, with an overall goal of raising the tide of lunar science (and now more broadly exploration science) across the world.

  3. Enhanced solar energy absorption by internally-mixed black carbon in snow grains

    Directory of Open Access Journals (Sweden)

    M. G. Flanner

    2012-05-01

    Full Text Available Here we explore light absorption by snowpack containing black carbon (BC particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0.05–109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA (Chýlek and Srivastava, 1983 is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8–2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only ~2% of the atmospheric BC burden is cloud-borne, 71–83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32–73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43–86%, relative to scenarios that apply external optical properties to all BC. We

  4. Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains

    Energy Technology Data Exchange (ETDEWEB)

    Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng; Penner, Joyce E.; Jiao, C.

    2012-05-30

    Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism

  5. Psychological and sociocultural adjustment of first-year international students: Trajectories and predictors.

    Science.gov (United States)

    Hirai, Reiko; Frazier, Patricia; Syed, Moin

    2015-07-01

    Despite the increasing number of international students in U.S. universities, the temporal course of international students' adjustment has not been adequately tested, and only 1 study to date has examined multiple trajectories of adjustment. Therefore, the first goal of the current study was to explore multiple trajectories of adjustment among first-year international students using a broader range of adjustment measures (i.e., psychological distress, positive psychological adjustment, sociocultural adjustment). The second goal was to identify important predictors of trajectories. A wide range of individual and interpersonal predictor variables was examined, including academic stress and perceived control over academic stress, personality, social relationships, and language-related factors. Undergraduate and graduate international students in their first semester at a large midwestern university participated in this 5-wave longitudinal study (N = 248) that spanned 1 academic year. Multiple trajectories emerged, and the trajectories varied across the 3 adjustment measures. Average trajectories masked the trajectories of small groups of students who maintained or increased in terms of adjustment difficulties across outcomes. Contrary to popular theories, the U-shape adjustment trajectory (characterized by initial euphoria, distress, and then recovery) did not emerge. The most consistent predictors of adjustment trajectories were perceived present control over academic stress and Neuroticism. (c) 2015 APA, all rights reserved).

  6. Internal contamination monitoring in the German Democratic Republic. Report on the experience of twelve years

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Arndt, D.; Klucke, H.; Loessner, V.; Scheler, R.; Schlueter, W.

    1979-01-01

    After a short explanation of the organization for monitoring internal contamination in the German Democratic Republic, an estimation of working places is presented. Criteria are given for selecting persons to be subjected to a direct or indirect measurement of internal contamination. While, in the National Board of Nuclear Safety and Radiation Protection, examinations for internal contamination had formerly been made by groups of persons selected on the basis of special aspects of their work, such monitoring has for several years had a systematic character. From among all persons exposed to unsealed radionuclides, a group of persons to be subjected to monitoring has been established. The selection was made by calculating on the basis of model concepts and topical working-place data an individual incorporation risk which is specific for a given working area. The central and peripheral measuring devices of the monitoring system are presented. The central, very effective devices consist of a pair of whole-body counters. The methods of measuring internal contamination directly are supplemented by methods for measuring biological samples and exhaled breath. The monitoring system is complemented by smaller peripheral devices. Monitoring results obtained over a period of about 12 years are discussed. (author)

  7. Launching Light: Beyond the Bulb for the United Nations' International Year of Light 2015

    Science.gov (United States)

    Arcand, K. K.; Watzke, M.

    2015-09-01

    In astronomy, light is the language used to understand the Universe. From radio waves to gamma rays, light in all its forms delivers information that helps astronomers learn about the Universe. When the United Nations declared 2015 to be the International Year of Light and Light-based Technologies (IYL2015), it presented an opportunity to share the role that light plays in astronomy and beyond. The IYL2015 also offered a chance to build on experiences and sustain networks from the International Year of Astronomy in 2009. Light: Beyond the Bulb is an IYL2015 project that melds both of these goals. The project takes the form of an exhibit that showcases what light can do, from here on Earth and across the vastness of space, hosted by volunteer networks in public spaces for informal science learning.

  8. Evolution of 30 years of the International Vocabulary of Metrology (VIM)

    Science.gov (United States)

    Mari, Luca

    2015-02-01

    Since its first edition, published in 1984, the International Vocabulary of Metrology (VIM) has become a landmark for the language of measurement, and in its three editions it has evolved together with the evolution of measurement science and its applications. This paper discusses the fundamental features of the VIM as a concept system and proposes some highlights about the way in the VIM some basic and general concepts of measurement have changed their definitions in the last thirty years.

  9. Texas-Style Fundraising and Public Relations for the International Year of Astronomy

    Science.gov (United States)

    Preston, S.; Barna, J. W.; Johnson, R.; Geiger, S.; Rimm, N.; Watson, K.; Griffin, J.

    2008-11-01

    McDonald Observatory will use the International Year of Astronomy (IYA) celebration to strengthen its fundraising for science education and outreach programs. At the same time, McDonald Observatory will be undergoing a logo and branding campaign in order to better unite the work and relationship of the University of Texas Department of Astronomy, McDonald Observatory, and the Observatory's education and outreach programs.

  10. Solar cities

    International Nuclear Information System (INIS)

    Roaf, S.; Fuentes, M.; Gupta, R.

    2005-01-01

    Over the last decade, climate change has moved from being the concern of few to a widely recognized threat to humanity itself and the natural environment. The 1990s were the warmest decade on record, and ever-increasing atmospheric levels of greenhouse gases such as carbon dioxide (CO/sub 2/), could, if left unchecked lead to serious consequences globally, including increased risks of droughts, floods and storms, disruption to agriculture, rising sea levels and the spread of disease. The contribution of anthropogenic emissions of carbon dioxide has been recognized as the principal cause of the atmospheric changes that drive these climate trends. Globally, buildings are the largest source of indirect carbon emissions. In 2000, the UK Royal Commission on Environmental Pollution estimated that in order to stabilise carbon emissions at levels, which avoid catastrophic alterations in the climate, we would have to reduce emissions from the built environment by at least 60% by 2050 and 80% by 2100 relative to 1997 levels. Studies of the Oxford Ecohouse have demonstrated that it is not difficult to reduce carbon emissions from houses by 60% or more through energy efficiency measures, but it is only possible to reach the 90% level of reductions required by using renewable energy technologies. Solar energy technologies have been the most successfully applied of all renewable to date largely because they are the only systems that can be incorporated easily into the urban fabric. In addition, the short fossil fuel horizons that are predicted (c. 40 years left for oil and 65 years for gas) will drive the markets for solar technologies. For these reasons, the cities of the future will be powered by solar energy, to a greater or lesser extent, depending on the city form and location. In recognition of the need to move rapidly towards a renewable energy future, a group of international cities, including Oxford, have started the Solar City Network. In this paper we outline the

  11. Numerical investigation of the thermal and electrical performances for combined solar photovoltaic/thermal (PV/T) modules based on internally extruded fin flow channel

    Science.gov (United States)

    Deng, Y. C.; Li, Q. P.; Wang, G. J.

    2017-11-01

    A solar photovoltaic/thermal (PV/T) module based on internally extruded fin flow channel was investigated numerically in this paper. First of all, the structures of the thin plate heat exchanger and the PV/T module were presented. Then, a numerical model of the PV/T module considering solar irradiation, fluid flow and heat transfer was developed to analyze the performance of the module. Finally, the steady electrical and thermal efficiencies of the PV/T module at different inlet water temperatures and mass flow rates were achieved. These numerical results supply theory basis for practical application of the PV/T module.

  12. If the Dark Ages solar peak c.525CE caused a c.5m sea-level rise 50-100y later ("ocean memory"), the stronger 1958 solar "Grand maximum" presages a >5m rise by 2058: literature review by an impartial geologist

    Science.gov (United States)

    Higgs, Roger

    2017-04-01

    The 255 authors of IPCC's "Climate Change 2013: The Physical Science Basis" include no sedimentary geologists, specialists in ever-changing sea level (SL). According to IPCC the 0.3m SL rise(1) since tide-gauge records began (c.1700CE, Little Ice Age[LIA] acme) is unprecedented in >2ky, implicating mankind's CO2 emissions. On the contrary, a c.5m SL rise and fall between c.400CE and 1700 are indicated independently by three lines of evidence: British archaeology(2,3); worldwide raised-shoreline benchmarks(4); and Red Sea foraminifera O18 fluctuations(5). The c.5m fall is attributable to 590-1640CE cooling (ice growth) shown by a global proxy temperature graph(6; cf.7). This 1ky-long cooling and ensuing 1850-2017 warming, both sawtooth-style, in turn mimic a 1ky solar decline then rise(8), moreso after aligning the 590CE peak temperature(6) with the c.525CE solar "Grand maximum" (GM) or near-GM(8). This 65y lag reflects hitherto-neglected ocean-conveyor-belt circulation, i.e. downwelling Atlantic surface water, variably solar-warmed (depending on solar-governed cloudiness[9]), upwells decades later beside Antarctica, returning northward to affect continental air temperatures. The conveyor slowed in the LIA (c.150y offset between 1280-1700CE cluster of solar Grand minima[8] and 1430-1850 cool phase[6]). Lately the lag, obvious from visual cross-matching of 1850-2012 instrumental-temperature peaks and troughs(10) versus the 1700-2016 sunspot chart (Google images), is c.85y (1890 solar trough matches 1975 temperature trough). Similarly, SL(1) clearly lags temperature(10) by 15y (1964 and 1976 temperature troughs match 1979 and 1991 SL troughs). Thus the total SL-solar lag is 100y (85+15). Appreciating the 85y and 100y lags enables vital predictions: sunspots increased (sawtooth-style) from c.1890 until the 1958 GM (the only definite GM in >2ky[8]), therefore ongoing warming will peak c.2043 (1958+85), and SL c.2058. How high will SL rise? The 1958 solar GM exceeded (95

  13. Establishing International Blood Pressure References Among Nonoverweight Children and Adolescents Aged 6 to 17 Years.

    Science.gov (United States)

    Xi, Bo; Zong, Xin'nan; Kelishadi, Roya; Hong, Young Mi; Khadilkar, Anuradha; Steffen, Lyn M; Nawarycz, Tadeusz; Krzywińska-Wiewiorowska, Małgorzata; Aounallah-Skhiri, Hajer; Bovet, Pascal; Chiolero, Arnaud; Pan, Haiyan; Litwin, Mieczysław; Poh, Bee Koon; Sung, Rita Y T; So, Hung-Kwan; Schwandt, Peter; Haas, Gerda-Maria; Neuhauser, Hannelore K; Marinov, Lachezar; Galcheva, Sonya V; Motlagh, Mohammad Esmaeil; Kim, Hae Soon; Khadilkar, Vaman; Krzyżaniak, Alicja; Romdhane, Habiba Ben; Heshmat, Ramin; Chiplonkar, Shashi; Stawińska-Witoszyńska, Barbara; El Ati, Jalila; Qorbani, Mostafa; Kajale, Neha; Traissac, Pierre; Ostrowska-Nawarycz, Lidia; Ardalan, Gelayol; Parthasarathy, Lavanya; Zhao, Min; Zhang, Tao

    2016-01-26

    Several distributions of country-specific blood pressure (BP) percentiles by sex, age, and height for children and adolescents have been established worldwide. However, there are no globally unified BP references for defining elevated BP in children and adolescents, which limits international comparisons of the prevalence of pediatric elevated BP. We aimed to establish international BP references for children and adolescents by using 7 nationally representative data sets (China, India, Iran, Korea, Poland, Tunisia, and the United States). Data on BP for 52 636 nonoverweight children and adolescents aged 6 to 19 years were obtained from 7 large nationally representative cross-sectional surveys in China, India, Iran, Korea, Poland, Tunisia, and the United States. BP values were obtained with certified mercury sphygmomanometers in all 7 countries by using standard procedures for BP measurement. Smoothed BP percentiles (50th, 90th, 95th, and 99th) by age and height were estimated by using the Generalized Additive Model for Location Scale and Shape model. BP values were similar between males and females until the age of 13 years and were higher in males than females thereafter. In comparison with the BP levels of the 90th and 95th percentiles of the US Fourth Report at median height, systolic BP of the corresponding percentiles of these international references was lower, whereas diastolic BP was similar. These international BP references will be a useful tool for international comparison of the prevalence of elevated BP in children and adolescents and may help to identify hypertensive youths in diverse populations. © 2015 American Heart Association, Inc.

  14. Leveraging the International Polar Year Legacy: Providing Historical Perspective for IPY Education, Outreach and Communication Efforts

    Science.gov (United States)

    Tsukernik, M.; McCaffrey, M. S.

    2006-12-01

    As the International Polar Year 2007-2008 (IPY) is fast approaching, it is important to look back and learn from the previous experience. Over 125 years ago, when an Austrian explorer and naval officer Lt. Karl Weyprecht called for an international yearlong intensive effort to study the Polar Regions, he probably never imagined that his model for international collaboration would become so widely popular. Frustrated by the lack of coordinated, international collaboration in research activities, Weyprecht proposed an intensive burst of research activity over the course of at least a year. The first IPY began in 1882 with 12 nations establishing 13 stations in the Arctic and 2 in the Southern Hemisphere. The initial yearlong plan did not go beyond data collection. However, the idea lived in the minds of scientists worldwide and the second IPY followed the first one 50 years later. By 1932, technology evolved significantly, and on top of ground-based meteorological and geophysical measurements, data collection also included radiosonde and acoustic atmospheric measurements. Occurring during a global economic depression, and between world wars, the second IPY faced many challenges. However, 40 permanent stations were established, some of which are still active. Scientific exploration also reached remote frontiers from Antarctica to the Earth's ionosphere. Less than a decade after the WWII, the idea of the next IPY started to circulate in scientific circles. The world was focused on space exploration and the word "polar" seemed too narrow for the gigantic projects planned for the 1957. That is why the initial idea of the third IPY evolved into the International Geophysical Year (IGY), although polar regions were still a major focus. The success of the IGY is almost overwhelming the first Earth orbiting satellites, a traverse of Antarctica, a discovery of the Radiation Belt, a series of science education films about IGY activities and research themes are just a few

  15. The influence of meteorological factors on solar ultraviolet radiation over Pretoria, South Africa for the year 2012

    CSIR Research Space (South Africa)

    Makgabutlane, M

    2013-09-01

    Full Text Available Pretoria receives a fair amount of solar ultraviolet radiation (UVR). Certain meteorological factors affect the amount of solar UVR that reaches the ground. The most dominant influencing meteorological factors are stratospheric ozone, cloud cover...

  16. Solar potential in Turkey

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol

    2005-01-01

    Most of the locations in Turkey receive abundant solar-energy, because Turkey lies in a sunny belt between 36 deg. and 42 deg. N latitudes. Average annual temperature is 18 to 20 deg. C on the south coast, falls to 14-16 deg. C on the west coat, and fluctuates between 4 and 18 deg. C in the central parts. The yearly average solar-radiation is 3.6 kW h/m 2 day, and the total yearly radiation period is ∼2610 h. In this study, a new formulation based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG), Pola-Ribiere conjugate gradient (CGP), and Levenberg-Marquardt (LM) learning algorithms and logistic sigmoid (logsig) transfer function were used in the networks. Meteorological data for last four years (2000-2003) from 12 cities (Canakkale, Kars, Hakkari, Sakarya, Erzurum, Zonguldak, Balikesir, Artvin, Corum, Konya, Siirt, and Tekirdag) spread over Turkey were used in order to train the neural-network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine-duration, and mean temperature) are used in the input layer of the network. Solar-radiation is in the output layer. The maximum mean absolute percentage error was found to be less than 3.832% and R 2 values to be about 99.9738% for the selected stations. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values accurately

  17. Performance and Thermal Stability of a Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    Directory of Open Access Journals (Sweden)

    Joanna McFarlane

    2014-01-01

    Full Text Available Because polyaromatic hydrocarbons show high thermal stability, an example of these compounds, phenylnaphthalene, was tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 ℃ indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. This would indicate that the internal channels of cooler components of trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades to be used in a loop at temperatures significantly greater than the current 400 ℃ maximum for organic fluids. Similar degradation pathways may occur with other organic materials. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of 60% could be achieved using a high efficiency collector and 12 h thermal energy storage when run at a field outlet temperature of 550 ℃.

  18. Bridging Scholarship and Practice: 20 Years of the Public International Law and Policy Group

    Directory of Open Access Journals (Sweden)

    Brianne McGonigle Leyh

    2017-04-01

    Full Text Available When the Editor-in-Chief of the Utrecht Journal of International and European Law (UJIEL approached us with the possibility of guest editing a special issue related to public international law and policy, we felt the timing could not have been better. As academics at Utrecht University with the Netherlands Institute of Human Rights and Montaigne Centre for Judicial Administration and Conflict Resolution, we felt that a theme linking the world of lawyers with that of policymakers was important in order to examine the role of law in protecting human rights and security. Moreover, as Senior Counsel with the Public International Law & Policy Group (PILPG, which celebrated its 20-year anniversary in 2016, we welcomed the idea to link academic scholarship with the work of PILPG. After all, PILPG’s founders, Professor Paul Williams and Professor Michael Scharf, have themselves acted as bridges between scholarship and practice for years. As a result, this special edition is not only intended to highlight the extraordinary work carried out by PILPG on issues of law and policy around the world, but also to emphasise the importance of linking scholarship with practice and addressing contemporary issues impacting the world in which we live. PILPG’s motto ‘lawyering peace’ requires reflection on the role that law can play in helping to bring about the peaceful resolution of serious problems affecting individuals and societies as a whole. This special edition of UJIEL, addressing a variety of themes, does just that.

  19. Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker.

    Science.gov (United States)

    Teng, Tun-Chien; Lai, Wei-Che

    2014-12-15

    This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X).

  20. Minimum exposure limits and measured relationships between the vitamin D, erythema and international commission on non-ionizing radiation protection solar ultraviolet.

    Science.gov (United States)

    Downs, Nathan; Parisi, Alfio; Butler, Harry; Turner, Joanna; Wainwright, Lisa

    2015-01-01

    The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has established guidelines for exposure to ultraviolet radiation in outdoor occupational settings. Spectrally weighted ICNIRP ultraviolet exposures received by the skin or eye in an 8 h period are limited to 30 J m(-2). In this study, the time required to reach the ICNIRP exposure limit was measured daily in 10 min intervals upon a horizontal plane at a subtropical Australian latitude over a full year and compared with the effective Vitamin D dose received to one-quarter of the available skin surface area for all six Fitzpatrick skin types. The comparison of measured solar ultraviolet exposures for the full range of sky conditions in the 2009 measurement period, including a major September continental dust event, show a clear relationship between the weighted ICNIRP and the effective vitamin D dose. Our results show that the horizontal plane ICNIRP ultraviolet exposure may be used under these conditions to provide minimum guidelines for the healthy moderation of vitamin D, scalable to each of the six Fitzpatrick skin types. © 2014 The American Society of Photobiology.

  1. The Role of Education in the International Map Year 2015/16

    Science.gov (United States)

    Fairbairn, D.

    2014-04-01

    This paper considers the nature of the ICA-organised International Map Year (IMY), an initiative supported through United Nations structures, including the United Nations initiative on Global Geographic Information Management (UN-GGIM). Preparatory work for this project has been undertaken by a Working Group of the International Cartographic Association, and details are presented of the way in which IMY will be organised and promoted. Particular activities mentioned in depth include "national map days", children's activities, and a new book. The educational aspects of IMY are addressed, and the roles of the events and resources Are considered. It is concluded that IMY gives a significant opportunity to the world-wide cartographic community to promote its discipline through the medium of a series of activities which can be co-ordinated by ICA, but delivered at a national level.

  2. Sojourner readjustment: mental health of international students after one year's foreign sojourn and its psychosocial correlates.

    Science.gov (United States)

    Furukawa, T

    1997-04-01

    The problem of readjustment to the home culture among international students who have spent some time in a foreign culture has not received satisfactory empirical investigation in the literature. We present a longitudinal study of the readjustment of 199 Japanese adolescents who have been enrolled in 1-year placement with a host family in various countries of the world. The personality trait, coping style, social support, and emotional distress of the subjects were measured before departure, while abroad, and 6 months after return home. The students showed substantial emotional distress even 6 months after return from a foreign sojourn; neuroticism, emotion-oriented coping, and concurrently measured social support were found to significantly predict mental health during readjustment. Close attention is recommended not only for the adjustment of the international students while abroad but also for the readjustment process involved in the so-called reverse culture shock.

  3. Assessing Challenges and Opportunities for Education and Communication Activities for International Polar Year 2007-2008

    Science.gov (United States)

    McCaffrey, M. S.

    2005-05-01

    Considerable planning has gone into identifying ways to maximize International Polar Year 2007-2008 (IPY) as a global event that will facilitate the integration of research and education inherent in IPY, and draw the interest and involvement of people around the world. Documents developed through the IPY planning process, including NRC Reports (2004), and drafts reports on education and outreach from the ICSU IPY Planning Group in the Fall of 2004, and the Bridging the Poles workshop of June, 2004, articulate the tremendous potential for IPY beyond the formal research agenda and goals. With less that two years before the start of IPY and fewer than fours years before the activities are completed, these and emerging opportunities face a number of challenges. In addition to the limited time frame remaining to prepare for these activities, participants involved with IPY education and outreach will also need to consider factors such as: uncertain funding for such activities; the lack of established international networks for geoscience education; the need for high level coordination of IPY education and communication; and the creative and intellectual challenge of making the polar regions relevant to people around the world. The planning process has identified six constituencies as key audiences of IPY communication efforts: i) the scientific/research community, ii) young and potentially new polar researchers, iii) the pre-university education community, iv) arctic communities, iv) the general public, and v) decision-makers. Understanding and meeting these audiences' expectations through on-going evaluation and engagement will be key to successful IPY education and outreach efforts. A number of distinct education and outreach projects have been proposed to the ICSU-WMO IPY planning process, such as courses and workshops on specific aspects of IPY, including efforts to address the social and cultural dimension of Arctic peoples. To help meet the challenges, achieve the

  4. Financing Solar Thermal Power Plants

    International Nuclear Information System (INIS)

    Price, Henry W.; Kistner, Rainer

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  5. Financing solar thermal power plants

    International Nuclear Information System (INIS)

    Kistner, R.; Price, H.

    1999-01-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies

  6. Symposium in honour of the Administrative Tribunal of the International Labour Organization : 90 year of contribution to the creation of international civil service law

    CERN Document Server

    Colloque en l'honneur du Tribunal administratif de l'Organisation internationale du Travail : une contribution de 90 ans à la création d'un droit de la fonction publique internationale; 90 years of contribution of the Administrative Tribunal of the International Labour Organization to the creation of international civil service law; Une contribution de 90 ans du Tribunal administratif de l'Organisation internationale du Travail à la création d'un droit de la fonction publique internationale; Une contribution de 90 ans du TAOIT; 90 years of contribution of the ILOAT

    2017-01-01

    The present book arises out of a symposium that the Administrative Tribunal of the International Labour Organization organized on 5 May 2017 to celebrate the 90 years of its existence and its 125th Session held in 2017.

  7. Estimating the contribution from different ionospheric regions to the TEC response to the solar flares using data from the international GPS network

    Directory of Open Access Journals (Sweden)

    L. A. Leonovich

    2002-12-01

    Full Text Available This paper proposes a new method for estimating the contribution from different ionospheric regions to the response of total electron content variations to the solar flare, based on data from the international network of two-frequency multichannel receivers of the navigation GPS system. The method uses the effect of partial "shadowing" of the atmosphere by the terrestrial globe. The study of the solar flare influence on the atmosphere uses GPS stations located near the boundary of the shadow on the ground in the nightside hemisphere. The beams between the satellite-borne transmitter and the receiver on the ground for these stations pass partially through the atmosphere lying in the region of total shadow, and partially through the illuminated atmosphere. The analysis of the ionospheric effect of a powerful solar flare of class X5.7/3B that was recorded on 14 July 2000 (10:24 UT, N22 W07 in quiet geomagnetic conditions (Dst = -10 nT has shown that about 75% of the TEC increase corresponds to the ionospheric region lying below 300 km and about 25% to regions lying above 300 km.Key words. Ionosphere (solar radiation and cosmic ray effects; instruments and techniques – Solar physics, astrophysics and astronomy (ultraviolet emissions

  8. Estimating the contribution from different ionospheric regions to the TEC response to the solar flares using data from the international GPS network

    Directory of Open Access Journals (Sweden)

    L. A. Leonovich

    Full Text Available This paper proposes a new method for estimating the contribution from different ionospheric regions to the response of total electron content variations to the solar flare, based on data from the international network of two-frequency multichannel receivers of the navigation GPS system. The method uses the effect of partial "shadowing" of the atmosphere by the terrestrial globe. The study of the solar flare influence on the atmosphere uses GPS stations located near the boundary of the shadow on the ground in the nightside hemisphere. The beams between the satellite-borne transmitter and the receiver on the ground for these stations pass partially through the atmosphere lying in the region of total shadow, and partially through the illuminated atmosphere. The analysis of the ionospheric effect of a powerful solar flare of class X5.7/3B that was recorded on 14 July 2000 (10:24 UT, N22 W07 in quiet geomagnetic conditions (Dst = -10 nT has shown that about 75% of the TEC increase corresponds to the ionospheric region lying below 300 km and about 25% to regions lying above 300 km.

    Key words. Ionosphere (solar radiation and cosmic ray effects; instruments and techniques – Solar physics, astrophysics and astronomy (ultraviolet emissions

  9. MAXIMUM POWEWR POINT TRACKING SYSTEM FOR PHOTOVOLTAIC STATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. Elzein

    2015-01-01

    Full Text Available In recent years there has been a growing attention towards the use of renewable energy sources. Among them solar energy is one of the most promising green energy resources due to its environment sustainability and inexhaustibility. However photovoltaic systems (PhV suffer from big cost of equipment and low efficiency. Moreover, the solar cell V-I characteristic is nonlinear and varies with irradiation and temperature. In general, there is a unique point of PhV operation, called the Maximum Power Point (MPP, in which the PV system operates with maximum efficiency and produces its maximum output power. The location of the MPP is not known in advance, but can be located, either through calculation models or by search algorithms. Therefore MPPT techniques are important to maintain the PV array’s high efficiency. Many different techniques for MPPT are discussed. This review paper hopefully will serve as a convenient tool for future work in PhV power conversion.

  10. Development and use of a fifteen year-old equivalent mathematical phantom for internal dose calculations

    International Nuclear Information System (INIS)

    Jones, R.M.; Poston, J.W.; Hwang, J.L.; Jones, T.D.; Warner, G.G.

    1976-06-01

    The existence of a phantom based on anatomical data for the average fifteen-year-old provides for a proficient means of obtaining estimates of absorbed dose for children of that age. Dimensions representative of an average fifteen-year-old human, obtained from various biological and medical research, were transformed into a mathematical construct of idealized shapes of the exterior, skeletal system, and internal organs of a human. The idealization for an average adult presently in use by the International Commission on Radiological Protection was used as a basis for design. The mathematical equations describing the phantom were developed to be readily adaptable to present-day methods of dose estimation. Typical exposure situations in nuclear medicine have previously been modeled for existing phantoms. With no further development of the exposure model necessary, adaptation to the fifteen-year-old phantom demonstrated the utility of the design. Estimates of absorbed dose were obtained for the administration of two radiopharmaceuticals, /sup 99m/Tc-sulfur colloid and /sup 99m/Tc-DMSA

  11. A 5-year prospective observational study of the outcomes of international treatment guidelines for Crohn's disease.

    LENUS (Irish Health Repository)

    Cullen, Garret

    2012-02-01

    BACKGROUND & AIMS: Therapeutic strategies for patients with Crohn\\'s disease are based on American and European guidelines. High rates of corticosteroid dependency and low remission rates are identified as weaknesses of this therapy and as justification for early introduction of biologic agents (top-down treatment) in moderate\\/severe Crohn\\'s disease. We reviewed outcomes and corticosteroid-dependency rates of patients with moderate-to-severe disease who were treated according to the international guidelines. METHODS: Consecutive patients (102) newly diagnosed with Crohn\\'s disease in 2000-2002 were identified from a prospectively maintained database. Severity of disease was scored using the Harvey-Bradshaw Index (HBI). Disease was classified by Montreal classification. Five-year follow-up data were recorded. RESULTS: Seventy-two patients had moderate\\/severe disease at diagnosis (HBI >8). Fifty-four (75%) had nonstricturing, nonpenetrating disease (B1). Sixty-four (89%) received corticosteroids, and 44 (61%) received immunomodulators. Twenty-one patients (29%) received infliximab. Thirty-nine patients (54%) required resection surgery. At a median of 5 years, 66 of 72 (92%) patients with moderate\\/severe disease were in remission (median HBI, 1). Twenty-five patients (35%) required neither surgery nor biologic therapy. CONCLUSIONS: When international treatment guidelines are strictly followed, Crohn\\'s disease patients can achieve high rates of remission and low rates of morbidity at 5 years. Indiscriminate use of biologic agents therefore is not appropriate for all patients with moderate-to-severe disease.

  12. Development of Solar Research

    Science.gov (United States)

    Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.

    Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.

  13. Solar Thermal Electricity Generating System

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  14. Space Environment Factors Affecting the Performance of International Space Station Materials: The First Two Years of Flight Operations

    Science.gov (United States)

    Koontz, Steven L.; Peldey, Michael; Mayeaux, Brian; Milkatarian, Ronald R.; Golden, John; Boeder, paul; Kern, John; Barsamian, Hagop; Alred, John; Soares, Carlos; hide

    2003-01-01

    In this paper, the natural and induced space environment factors affecting materials performance on ISS are described in some detail. The emphasis will be on ISS flight experience and the more significant design and development issues of the last two years. The intent is to identify and document the set of space environment factors, affecting materials, that are producing the largest impacts on the ISS flight hardware verification and acceptance process and on ISS flight operations. Orbital inclination (S1.6 ) and altitude (nominal3S0 km to 400 km altitude) determine the set of natural environment factors affecting the functional life of materials and subsystems on ISS. ISS operates in the F2 region of Earth's ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, and solar UV, VUV, and x-ray radiation, as well as galactic cosmic rays, trapped radiation, and solar cosmic rays (1,2). The high latitude orbital environment also exposes external surfaces to significantly less well-defined or predictable fluxes of higher energy trapped electrons and auroral electrons (3 ,4). The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. Environment factors induced by ISS flight operations include ram-wake effects, magnetic induction voltages arising from flight through Earth's magnetic field, hypergolic thruster plume impingement from proximity operations of visiting vehicles, materials outgassing, venting and dumping of fluids, ISS thruster operations, as well as specific electrical power system interactions with the ionospheric plasma (S-7). ISS must fly in a very limited number of approved flight attitudes leading to location specific environmental exposures and extreme local thermal environments (8). ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals (atomic oxygen) are largely excluded (9-11). At high

  15. The international space of the Danish testing community in the interwar years

    DEFF Research Database (Denmark)

    Ydesen, Christian

    2012-01-01

    The focus of this article is to draw attention to the presence and importance of travelling ideas, knowledge, and practices in Danish history of educational test- ing. The article introduces and employs a spatial methodological approach in relation to the connections between the international...... testing community and the emerging Danish practice of intelligence testing in the interwar years. The arti- cle represents a contribution to an investigation of the social and cultural exchange of educational ideas between the Anglo-Saxon world and Scandinavia, in general, and Denmark in particular....... Moreover, the article argues for the posi- tive gains of drawing on a spatial frame of interpretation when dealing with national educational history....

  16. Proceedings of the international conference- hundred years of x-rays and radioactivity

    International Nuclear Information System (INIS)

    Sood, D.D.; Jain, H.C.; Reddy, A.V.R.; Ramakumar, K.L.; Kulkarni, S.G.

    1996-02-01

    The International Conference- Hundred Years of X-rays and Radioactivity was held during Feb 21-24, 1996 at Bhabha Atomic Radiation Centre, Mumbai. The topics covered in the conference included: i) historical aspects, ii) production of x-rays through synchrotron and lasers, iii) application of x-rays in quantum physics, materials science, biology and medicine, iv) nuclear physics and chemistry, v) radiation chemistry, vi) radiation biology, vii) health and safety, viii) applications of radioisotopes in medicine, industry and agriculture and ix) environmental aspects of radioactivity. Papers relevant to INIS are indexed separately

  17. Auroral spectrograph data annals of the international geophysical year, v.25

    CERN Document Server

    Carrigan, Anne; Norman, S J

    1964-01-01

    Annals of the International Geophysical Year, Volume 25: Auroral Spectrograph Data is a five-chapter text that contains tabulations of auroral spectrograph data. The patrol spectrograph built by the Perkin-Elmer Corporation for the Aurora and Airglow Program of the IGY is a high-speed, low-dispersion, automatic instrument designed to photograph spectra of aurora occurring along a given magnetic meridian of the sky. Data from each spectral frame were recorded on an IBM punched card. The data recorded on the cards are printed onto the tabulations in this volume. These tabulations are available

  18. What is happening in the International Polar Year? Latest news about the climate changes

    International Nuclear Information System (INIS)

    Orheim, Olav

    2008-01-01

    The International Polar (IPY) Year 2007-2008 is a large scientific programme focused on the Arctic and the Antarctic. Scientists from over 60 nations participates. The IPY have two primary objectives: to improve weather forecasts especially regarding extreme weather and to improve climatic models for better understanding of possible instabilities, especially regarding ocean currents. The presentation includes data on natural climate change, temperature anomaly, the ice in the Arctic Ocean and Northern and Southern Hemisphere sea ice area, current in Southern and Northern hemisphere sea ice area and variations of the surface temperature ice arctic regions antarctic regions. The presentation was held at the MNT-Forum, 29. January 2008

  19. Journal of Environmental Radioactivity special issue: II International Conference on Radioecological Concentration Processes. (50 years later).

    Science.gov (United States)

    Garcia-Tenorio, Rafael; Holm, Elis

    2018-06-01

    An international conference on Radioecological Concentration Processes was held in Seville, Spain, 6-9 November 2016 at the Centro Nacional de Aceleradores. It was attended by 160 participants from 35 different countries. This was the 2nd conference on this item since 1966, 50 years ago. The conference covered aspects of radiological important radionuclides on terrestrial, marine and freshwater environments and has allowed obtaining a clear picture of the status of the Radioecology as a consolidated discipline in the 21st century. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. From Earth to the Universe: Image Exhibitions in the International Year of Astronomy 2009

    Directory of Open Access Journals (Sweden)

    Watzke, M.

    2008-02-01

    Full Text Available The fantastic images of the Universe are largely responsible for the magical appeal that astronomy has for lay people. Indeed, popular images of the cosmos can engage the general public not only in the aesthetics of the visual realm, but also in the science of the knowledge and understanding behind them. The International Year of Astronomy 2009 (IYA2009 is an unprecedented opportunity to present astronomy to the global community. From Earth to the Universe (www.fromearthtotheuniverse.org endeavours to bring these images to a wider audience in non-traditional venues, such as art museums, public galleries, shopping malls and public gardens.

  1. International conference on nuclear physics. Nuclear shells - 50 years. Summaries of reports

    International Nuclear Information System (INIS)

    Khazov, Yu.A.

    1999-01-01

    Abstracts of reports made at the 49 meeting on nuclear spectroscopy and nuclear structure are presented. This meeting took place in April 21-24, 1999, at Dubna, Russia. The International Conference Nuclear Shells - 50 years took place in the framework of the 49 meeting. Results of experimental investigations of nuclear properties and nuclear reaction mechanisms are given. Problems of the theoretical description of nuclear structures and nuclear reactions are discussed. The particular attention is given to nuclear spectroscopy technique and its using for applied researches

  2. I.G.Y. Ascaplots annals of the international geophysical year, v.20

    CERN Document Server

    Stoffregen, W

    Annals of the International Geophysical Year, Volume 20, Part II: I.G.Y. Ascaplots is a four-chapter text that provides the data on half-hourly auroral all-sky camera plots from 115 stations for the period 1958-1959. This period cover two winters in the northern hemisphere characterized by high auroral activity. This part also presents the list of stations, as well as the maps of the northern and southern distribution of all-sky cameras, with some modifications and additions to the earlier list. Data from the added Japanese station in the Antarctic are received and are included with the data

  3. maXImum medical aid

    African Journals Online (AJOL)

    1990-08-04

    Aug 4, 1990 ... Over the past 5 years, the medicines price index has risen by. 152,0% (20,3% per annum). The consumer price index (CPI) increased by 108,4% .... EXAMPLES OF FOUR TYPICAL ENTRIES IN THE MMAP LIST. Maximum. "- dispensed. No. in. Approved price before. Product list name. Strength. Form. Pack.

  4. Four-cell solar tracker

    Science.gov (United States)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  5. Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells

    KAUST Repository

    Burkhard, George F.

    2010-05-31

    Accurately measuring internal quantum efficiency requires knowledge of absorption in the active layer of a solar cell. The experimentally accessible total absorption includes significant contributions from the electrodes and other nonactive layers. We suggest a straightforward method for calculating the active layer contribution that minimizes error by subtracting optically-modeled electrode absorption from experimentally measured total absorption. (Figure Presented) © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Melting empires? Climate change and politics in Antarctica since the International Geophysical Year.

    Science.gov (United States)

    Howkins, Adrian

    2011-01-01

    This article examines the relationship between climate change and politics in Antarctica since the International Geophysical Year of 1957-8, paying particular attention to the work of the British Antarctic Survey. Research conducted in Antarctica has played an important role in the understanding of climate change on a global scale. In turn, fears about the consequences of global climate change have radically changed perceptions of Antarctica and profoundly shaped scientific research agendas: a continent that until fifty years ago was perceived largely as an inhospitable wilderness has come to be seen as a dangerously vulnerable environment. This radical shift in perception contrasts with a fundamental continuity in the political power structures of the continent. This article argues that the severity of the threat of climate change has reinforced the privileged political position of the "insider" nations within the Antarctic Treaty System.

  7. The Effect of Burnout on Medical Errors and Professionalism in First-Year Internal Medicine Residents.

    Science.gov (United States)

    Kwah, Jason; Weintraub, Jennifer; Fallar, Robert; Ripp, Jonathan

    2016-10-01

    Burnout is a common issue in internal medicine residents, and its impact on medical errors and professionalism is an important subject of investigation. To evaluate differences in medical errors and professionalism in internal medicine residents with and without burnout. A single institution observational cohort study was conducted between June 2011 and July 2012. Burnout was measured using the Maslach Burnout Inventory to generate subscores for the following 3 domains: emotional exhaustion, depersonalization, and sense of personal accomplishment. By convention, burnout was defined as a high emotional exhaustion or depersonalization subscore. Medication prescription error rate was the chosen measure of medical errors. Professionalism was measured cumulatively through examining discharge summaries completed within 48 hours, outpatient charts completed within 72 hours, and the average time to review outpatient laboratory tests. Of a total of 54 eligible first-year residents, 53 (98%) and 32 (59%) completed the initial and follow-up surveys, respectively. Residents with year-end burnout had a lower rate of medication prescription errors (0.553 versus 0.780, P  = .007). Discharge summaries completed within 48 hours of discharge (83.8% versus 84.0%, P  = .93), outpatient charts completed within 72 hours of encounter (93.7% versus 94.3%, P  = .31), and time (minutes) to review outpatient laboratory test results (72.3 versus 26.9, P  = .28) were similar between residents with and without year-end burnout. This study found a small decrease in medical errors in residents with year-end burnout compared to burnout-free residents and no difference in selected measures of professionalism.

  8. The International Geophysical Year: Its influence on the beginning of the French space program

    Science.gov (United States)

    Moulin, Hervé

    2010-03-01

    In 1957-1958, the International Geophysical Year (IGY) was the most important scientific cooperation programme in the World, after the Second World War. Thousands of scientists from 67 countries were involved in this large operation, among them a lot of French scientists. IGY was previously called the IPY (International Polar Year) and France, as many other countries, has been involved in the Arctic and Antarctic regions researches. Everybody knows that the IGY is at the origin of Sputnik and the first launch of Russian and American satellites. But, we know less about the IGY rockets programme itself in which France had intended to participate. This paper will discuss this programme with a special highlight on some aspects of the French participation and their relationship with the IGY programme. This approach arises several questions, such as: Which French scientists have been involved? What was the attitude of the French Government about this program, etc. We focus our analysis on the interrogation: did the IGY have any real influence on the origin of the French space research activities?

  9. International Year of Light 2015 opens new dimensions in optics and photonics education

    Science.gov (United States)

    Curticapean, Dan

    2015-10-01

    The United Nations have declared 2015 as the International Year of Light (IYL2015) and light-based technologies [1]. As a main result, the public interest is focused on both the achievements and the new frontiers of optics and photonics. This opens up new perspectives in the teaching and training of optics and photonics. In the first part of the paper, the author presents the numerous anniversaries occurring in the International Year of Light 2015 together with their importance to the development of science and technology. In the second part, we report on an interactive video projection at the opening ceremony of the IYL2015 in Paris on January 19-20, 2015. Students of Offenburg University have established an interactive video projection which visualizes Twitter and Facebook messages posted with the hashtag #iyl2015 in a mapping technique. Thus, the worldwide community can be interactively part of the opening ceremony. Finally, upcoming global community projects related to optics and astronomy events are presented.

  10. International radiation protection recommendations. Five years experience of ICRP Publication 26

    International Nuclear Information System (INIS)

    Lindell, B.; Beninson, D.; Sowby, F.D.

    1983-01-01

    The International Commission on Radiological Protection has issued radiation protection recommendations since 1928. The latest set of basic recommendations was adopted by the Commission on 17 January 1977, and subsequently published as ICRP Publication 26. This document has met with a wider interest than any of the previous ICRP recommendations. It has been considered to mark a radical change in the protection policy advocated by ICRP. It is not often appreciated that recommendations which are believed to be 'new' in ICRP Publication 26 had already been made in ICRP Publication 9 more than ten years earlier. In any event, ICRP Publication 26 has had a substantial impact on regulatory work in countries all over the world. It forms the basis for the Basic Safety Standards of the international organizations IAEA, ILO, OECD/NEA and WHO. The paper refers to the experience gained in using the new ICRP recommendations over the five years that have passed since ICRP Publication 26 was adopted and discusses some of the problems that have arisen in the practical application of the new recommendations in various countries. (author)

  11. 30-year International Pediatric Craniofacial Surgery Partnership: Evolution from the "Third World" Forward.

    Science.gov (United States)

    Swanson, Jordan W; Skirpan, Jan; Stanek, Beata; Kowalczyk, Maciej; Bartlett, Scott P

    2016-04-01

    Craniofacial diseases constitute an important component of the surgical disease burden in low- and middle-income countries. The consideration to introduce craniofacial surgery into such settings poses different questions, risks, and challenges compared with cleft or other forms of plastic surgery. We report the evolution, innovations, and challenges of a 30-year international craniofacial surgery partnership. We retrospectively report a partnership between surgeons at the Uniwersytecki Szpital Dzieciecy in Krakow, Poland, and a North American craniofacial surgeon. We studied patient conditions, treatment patterns, and associated complications, as well as program advancements and limitations as perceived by surgeons, patient families, and hospital administrators. Since partnership inception in 1986, the complexity of cases performed increased gradually, with the first intracranial case performed in 1995. In the most recent 10-year period (2006-2015), 85 patients have been evaluated, with most common diagnoses of Apert syndrome, Crouzon syndrome, and single-suture craniosynostosis. In the same period, 55 major surgical procedures have been undertaken, with LeFort III midface distraction, posterior vault distraction, and frontoorbital advancement performed most frequently. Key innovations have been the employment of craniofacial distraction osteogenesis, the use of Internet communication and digital photography, and increased understanding of how craniofacial morphology may improve in the absence of surgical intervention. Ongoing challenges include prohibitive training pathways for pediatric plastic surgeons, difficulty in coordinating care with surgeons in other institutions, and limited medical and material resources. Safe craniofacial surgery can be introduced and sustained in a resource-limited setting through an international partnership.

  12. THE YOUNG SOLAR ANALOGS PROJECT. I. SPECTROSCOPIC AND PHOTOMETRIC METHODS AND MULTI-YEAR TIMESCALE SPECTROSCOPIC RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R. O.; Briley, M. M.; Lambert, R. A.; Fuller, V. A.; Newsome, I. M.; Seeds, M. F. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 26808 (United States); Saken, J. M.; Kahvaz, Y. [Department of Physics and Physical Science, Marshall University, Huntington, WV 25755 (United States); Corbally, C. J. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721-0065 (United States)

    2015-12-15

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (S{sub MW}), and describe the method we use to transform our instrumental indices to S{sub MW} without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our “Superstar technique” for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the “photospheric” indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days–months) and short

  13. Excitation of Solar-like Oscillations: From PMS to MS Stellar Models ...

    Indian Academy of Sciences (India)

    Excitation of Solar-like Oscillations: From PMS to MS Stellar Models ... In the past approximately five years, solar-like oscillations have been detected in several ..... circles correspond to the maximum of mode excitation rates obtained as explained in section. 6.2 for the. PMS models shown in the left panel. The continuous.

  14. GPS - VTEC in the American sector during a high solar activity year Observations and IRI predictions

    CERN Document Server

    Ezquer, R G; Casleo, S J; Casleo, S J; Kiorcheff, E; Meza, A; Mosert, M; Oviedo, R D V; Radicella, S M

    2002-01-01

    VTEC measurements obtained with GPS satellite signals during year 1999 are used to check the validity of IRI to predict this ionospheric variable in the American sector. Measurements obtained during June solstice and September equinox at 9 stations are considered. The considered latitude range extends from 18.4 to -64.7 and the longitude ranges from 281.3 to 297.7. The deviation between modelled and measured values was obtained. The results show that for solstice the model overestimates VTEC at nighttime, sunrise and sunset hours and underestimates VTEC for daylight hours at northern stations. For the South, IRI overestimates the VTEC for all hours of the day during solstice. Good agreement was observed for some cases during equinox. Additional studies covering more stations and conditions and using ionosonde data will be useful to complete the IRI validation.

  15. GPS - VTEC in the American sector during a high solar activity year: Observations and IRI predictions

    International Nuclear Information System (INIS)

    Ezquer, R.G.; Brunini, C.; Meza, A.; Mosert, M.; Oviedo, R. del V.; Kiorcheff, E.; Radicella, S.M.

    2003-01-01

    VTEC measurements obtained with GPS satellite signals during year 1999 are used to check the validity of IRI to predict this ionospheric variable in the American sector. Measurements obtained during June solstice and September equinox at 9 stations are considered. The considered latitude range extends from 18.4 to -64.7 and the longitude ranges from 281.3 to 297.7. The deviation between modelled and measured values was obtained. The results show that for solstice the model overestimates VTEC at nighttime, sunrise and sunset hours and underestimates VTEC for daylight hours at northern stations. For the South, IRI overestimates the VTEC for all hours of the day during solstice. Good agreement was observed for some cases during equinox. Additional studies covering more stations and conditions and using ionosonde data will be useful to complete the IRI validation. (author)

  16. Spatio-temporal observations of the tertiary ozone maximum

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2009-07-01

    Full Text Available We present spatio-temporal distributions of the tertiary ozone maximum (TOM, based on GOMOS (Global Ozone Monitoring by Occultation of Stars ozone measurements in 2002–2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ~72 km. Although the explanation for this phenomenon has been found recently – low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses – models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere.

    The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory, TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model and found that the specific features are reproduced satisfactorily by the model.

    Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  17. Cross-year peer tutoring on internal medicine wards: results of a qualitative focus group analysis

    Directory of Open Access Journals (Sweden)

    Krautter M

    2014-09-01

    Full Text Available Markus Krautter,1 Sven Andreesen,2 Nadja Köhl-Hackert,2 Katja Hoffmann,3 Wolfgang Herzog,2 Christoph Nikendei2 1Department of Nephrology, University of Heidelberg, 2Department of General Internal Medicine and Psychosomatics, University of Heidelberg Medical Hospital, 3Department of General Practice and Health Services Research, University Hospital Heidelberg, Heidelberg, Germany Background: Peer-assisted learning (PAL has become a well-accepted teaching method within medical education. However, descriptions of on-ward PAL programs are rare. A focus group analysis of a newly established PAL program on an internal medicine ward was conducted to provide insights into PAL teaching from a student perspective.Purpose: To provide insights into students' experiences regarding their on-ward training with and without accompanying PAL tutors.Methods: A total of N=168 medical students in their sixth semester participated in the investigation (intervention group: N=88; control group: N=80. The intervention group took part in the PAL program, while the control group received standard on-ward training. There were seven focus groups with N=43 participants (intervention group: four focus groups, N=28 participants; control group: three focus groups, N=15 participants. The discussions were analyzed using content analysis.Results: The intervention group emphasized the role of the tutors as competent and well-trained teachers, most beneficial in supervising clinical skills. Tutors motivate students, help them to integrate into the ward team, and provide a non-fear-based working relationship whereby students' anxiety regarding working on ward decreases. The control group had to rely on autodidactic learning strategies when neither supervising physicians nor final-year students were available.Conclusion: On-ward PAL programs represent a particularly valuable tool for students' support in training clinical competencies on ward. The tutor–student working alliance

  18. Astronomy Camp = IYA x 22: 22 Years of International Astronomy Education

    Science.gov (United States)

    Hooper, Eric Jon; McCarthy, D. W.; Camp Staff, Astronomy

    2010-01-01

    Do you remember childhood dreams of being an astronomer, or the ravenous desire for ever larger glass and better equipment as an amateur astronomer? What if your child or the person down the street could live that dream for a weekend or a week? The University of Arizona Astronomy Camp continues to substantiate those dreams after more than two decades in existence. Astronomy Camp is an immersion hands-on field experience in astronomy, ranging from two to eight nights, occurring a few times per year. Participants span an age range from elementary students to octogenarians. The three basic offerings include adult camps, a beginning Camp for teenagers, and an advanced teen Camp. Several variants of the basic Camp model have evolved, including an ongoing decade long series of specialized Camps for Girl Scout leaders from across the country, funded by the NIRCam instrument development program for the James Webb Space Telescope. The advanced teen Camp is a microcosm of the entire research arc: the participants propose projects, spend the week collecting and analyzing data using research grade CCDs, infrared arrays, and radio/sub-millimeter telescopes, and finish with a presentation of the results. This past summer the Camps moved to Kitt Peak National Observatory for the first time, providing access to a vast and diverse collection of research instruments, including the 0.9-meter WIYN and 2.3-meter Bok telescopes, the McMath-Pierce Solar Telescope, and the 12-meter ARO radio telescope. Education research into the Camp's impact indicates that reasons for its appeal to youth include a learner-centered and personal approach with a fun attitude toward learning, authentic scientific inquiry led by mentors who are real scientists, a peer group with common interests in science and engineering, and the emotional appeal of spending time on a dark "sky island" devoted to the exploration of nature.

  19. Recommendations of the International Symposium on Contraceptive Research and Development for the Year 2000 and Beyond.

    Science.gov (United States)

    1993-01-01

    The government of Mexico and the UNDP/UNFPA/WHO/World Bank Special Programme of Research, Development, and Research Training in Human Reproduction organized an international symposium on "Contraceptive Research and Development for the Year 2000 and Beyond" that was held March 8-10, 1993 in Mexico City. 11 recommendations were established: 1) reproductive and sexual health should be given priority in both governmental and nongovernmental health research agendas, with coordination and collaboration between public and private sectors, nationally and internationally; 2) more funds should be provided by international donors for such research in developing countries; 3) women's health advocates and potential users should be represented on advisory bodies and in the decision making processes; 4) the existing health infrastructure and family planning services available, method potential, and safeguards concerning safety, effectiveness, and consent should be considered before adopting a new procedure; 5) "basic biomedical, technological, clinical, epidemiological, and social science research" leading to new or improved methods that are safe, effective, affordable, suitable for different age groups and designed in response to user's needs should receive increased support; 6) support should also be increased for "introductory, sociocultural, programmatic, operational, epidemiological, and qualitative research" that improves information, method, or service delivery; 7) research is needed on sexuality, gender roles, and gender relationships in different cultures; in particular, on discrimination and violence against women, sexual behavior, risk taking attitudes toward disease transmission and pregnancy, men's perceived needs, and the reasons for refusal of or inability to use services available; 8) industry, especially in developing countries, should collaborate with national regulatory agencies in order to expedite the process of development; 9) research should be undertaken

  20. Four years of international counter proliferation training: The U.S. Department of Defense's experience

    International Nuclear Information System (INIS)

    Strauss, H.J.

    2001-01-01

    Full text: Over the last four years, the U.S. Department of Defense has engaged 17 countries in the former Soviet Union, Eastern/Central Europe, and the Baltic states in two counterproliferation initiatives, i.e., the DOD/FBI and the DOD/U.S. Customs Service Counterproliferation Programs. These activities are designed to train and equip border security and law enforcement personnel to prevent, deter, and investigate incidents related to weapons of mass destruction, as well as the trafficking in chemical, nuclear, and biological weapons materials and technologies. Though these programs have begun to produce tangible successes, some recipient countries have failed to demonstrate an earnest commitment to program goals. The U.S. DOD has fielded varied training courses in the region, together with associated WMD detection equipment. In spite of demands by the political leadership in many of the engaged countries, the most successful training has proven to be the more basic rather than the advanced training. Similarly, the real equipment needs prove to be for low rather than high technology. The presentation will explore the systemic, political/military, and geographic factors contributing to this result. The U.S. Department of Defense will continue to engage participating nations in these international counterproliferation programs, and will continue to respond positively to assistance requests based on recipient country needs and honest commitment. Still there remain numerous opportunities for other donor states and international agencies to make positive contributions in the counterproliferation arena. Only with increased donor state commitment - fiscal, programmatic, and personnel - together with full donor state coordination, can international proliferation and trafficking problems be effectively deterred and resolved. (author)

  1. The International Nuclear and Radiological Event Scale (INES): 20 Years of Nuclear Communication

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: Today, the International Atomic Energy Agency (IAEA) and the OECD Nuclear Energy Agency (NEA) are celebrating the 20th anniversary of the International Nuclear and Radiological Event Scale (INES). Jointly developed by the IAEA and the NEA in 1990, in the aftermath of the Chernobyl accident, the purpose of INES is to help nuclear and radiation safety authorities and the nuclear industry worldwide to rate nuclear and radiological events and to communicate their safety significance to the general public, the media and the technical community. INES has often been compared to other scales used to measure physical properties such as temperature - the Celsius, Kelvin or Fahrenheit scales - or rate events such as earthquakes - the Richter scale. Like these scales, INES also has a sound technical background and can be easily understood. INES was initially used to classify events at nuclear power plants only. It was subsequently extended to rate events occurring in any nuclear facility and during the transport of radioactive material, thus also covering events related to the overexposure of workers. Since 2008, INES has been extended to any event associated with the transport, storage and use of radioactive material and radiation sources, from those occurring at nuclear facilities to those associated with industrial use. More generally, INES has also become a crucial nuclear communications tool. Since its inception, it has been adopted in 69 countries, and an increasing number of countries have expressed their interest in using INES and have designated INES national officers. Over the years, national nuclear safety authorities have made growing use of INES, while the public and the media have become more familiar with the scale and its significance. This is where the true success of INES stands, having helped to foster transparency and provide a better understanding of nuclear-related events and activities. For a full description of the International Nuclear and

  2. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  3. The Virtual World Presence of the International Year of Astronomy 2009

    Science.gov (United States)

    Gauthier, Adrienne J.; Huber, D.; Gay, P. L.; New Media Task Group IYA2009

    2010-01-01

    From January 2009 to January 2010, the virtual celebration of the International Year of Astronomy 2009 has come full circle side-by-side with the real world celebrations. Throughout the year, the 'Astronomy 2009' island promoted the IYA2009 within the virtual world of Second Life(R) with the goal to engage and inspire the general public in astronomy. This island is situated in the group area called SciLands, a science and technology focused mini-continent of over 60 islands. We are host to immersive exhibits for the real life projects: From Earth to the Universe, The World at Night, Dark Skies Awareness, Let There Be Night, IAAA The Artists' Universe, 365 Days of Astronomy podcast, Spitzer's MIPSGAL/GLIMPSE walkable image, and Adler Planetarium's Far Out Fridays lecture series. Spitzer Space Telescope, Chandra X-ray Observatory, and the Hubble Heritage project provided over 300 free textures in a gift pack to visitors. Other exhibits include a replica of the Lord Rosse Leviathan telescope, an astrophotography grotto featuring Adam Block, David Malin, and John Gleason's work, a functional planetarium donated by Rob Knop, and live star party events from Chico Observatory. We'll review the exhibits and live events presented throughout the past year and speak towards the plans for the future. Formative evaluation strategies and first impressions of the summative evaluation of the first year of the project will be presented. Special thanks to our sponsors: Interstellar Studios/400 Years of the Telescope, Department of Astronomy University of Arizona, Spitzer Space Telescope, Chandra X-Ray Observatory, and Helio Huet.

  4. The International Year of Astronomy 2009 Websites _ Connecting IYA2009 with its Community

    Science.gov (United States)

    Russo, Pedro; Lindberg Christensen, L.; Shida, R.

    2008-05-01

    The International Year of Astronomy 2009 (IYA2009) project looks like it will be the most "wired” astronomy project in history. IYA2009 already now has more individual web sites associated with it than any other astronomy project in the past. More than 60 Cornerstone websites, national websites etc. exist at the time of submission of this abstract. The main IYA2009 website (www.astronomy2009.org) is an important channel linking the different IYA2009 organisational levels. The first incarnation of this site was released in December 2006 and has served as the main information repository and as the basic communication tool between all the nodes that take part of IYA2009. Recently the website has changed from supporting the internal organisational needs for communication to a more appealing and content-rich website to meet the needs of the wider "external” world, including media, enthusiasts, laypeople, etc. This talk we will give an overview of the many websites and plans for the future of the IYA2009 websites will be put forward for discussion.

  5. Smartphones and professionalism: A cross-sectional study on interns and final-year medical students

    Directory of Open Access Journals (Sweden)

    Saleh Alqaryan

    2016-09-01

    Full Text Available The smartphone is a powerful tool that can be used to improve the health care system as long as certain checks and balances are implemented. It is commonly used by health care providers and medical students. A cross-sectional study conducted at Qassim University, Saudi Arabia. Final-year medical students and interns were included. A survey was distributed and divided into three sections: personal technology, experiences of using smartphones during clinical rotations, and attitudes about the usage of smartphones for clinical work. A total of 156 interns and students participated in the study. All of them owned a smartphone. Three-quarters of the respondents used their mobile for personal purposes, while 71.2% used them to look up medical references and resources. Respondents also used personal mobiles to keep in contact with team members regarding patient- (29.5% and non-patientrelated issues (26.3%. Some 16% of participants did not have any security features on their smartphones. Over half the participants did not get proper instructions about using their smartphones from either their medical college or senior residents or consultants. There is a lot to be done in this area, as certain regulations need to be carried out to lead toward a world that is pro-technology, health centered, and safe.

  6. Twelve years of follow up of cases with old 241Am internal contamination.

    Science.gov (United States)

    Malátová, Irena; Vrba, Tomás; Becková, Vera; Pospísilová, Helena

    2010-10-01

    A group of workers internally contaminated with Am have been followed for about 12 years. The source of contamination was AmO2 powder used for production of AmBe neutron sources and other applications. The production of some radionuclide sources included chemical treatment of the original material, which transformed the americium into the nitrate, but mostly powder metallurgy was used for production of sources for smoke detectors. In vivo measurement of the workers was performed with two LEGe detectors placed near the head of the measured person. Calibration was performed with four different physical skull phantoms of different origin and a voxel phantom with Monte Carlo simulation, which was developed to fit the head sizes of individual persons. Samples of urine and feces were analyzed by means of radiochemical separation followed by alpha-spectrometry. Separation of 241Am from mineralized excreta was performed by combined anion exchange and extraction chromatographic techniques. As a tracer, 243Am was used. When the measured data (83 data on skeletal activity, activity in 389 bioassay samples) were compared with International Commission on Radiological Protection's and Leggett's biokinetic models of americium, it was found that in most cases, after more than 15 y since the intake, the excretion rate was lower (or skeletal activity higher) than predicted. On the other hand, the ratio of excreted activity in urine and feces agrees well with model predictions.

  7. Wavelet-based multifractal analysis on a time series of solar activity and PDO climate index

    Science.gov (United States)

    Maruyama, Fumio; Kai, Kenji; Morimoto, Hiroshi

    2017-09-01

    There is increasing interest in finding the relation between solar activity and climate change. In general, fractal properties may be observed in the time series of the dynamics of complex systems, such as solar activity and climate. This study investigates the relations among solar activity, geomagnetic activity, and climatic regime shift by performing a multifractal analysis. To investigate the change in multifractality, we apply a wavelet transform to time series. The change in fractality of the sunspot number (SSN) correlates closely with that of the solar polar field strength. For the SSN and solar polar field strength, a weak multifractality or monofractality is present at the maximum SSN, minimum SSN, and maximum solar polar field strength. A strong multifractality is present two years before the maximum SSN. The climatic regime shift occurs when the SSN increases and the disturbance of the geomagnetic activity is large. At the climatic regime shift, the changes in the fractality of the Pacific Decadal Oscillation (PDO) index and changes in that of the solar activity indices corresponded with each other. From the fractals point of view, we clarify the relations among solar activity, geomagnetic activity, and climatic regime shift. The formation of the magnetic field of the sunspots is correlated with the solar polar field strength. The solar activity seems to influence the climatic regime shift. These findings will contribute to investigating the relation between solar activity and climate change.

  8. Ten Years, Twenty Issues, and Two Hundred Papers of Numeracy: Toward International Reach and Transdisciplinary Utility

    Directory of Open Access Journals (Sweden)

    H.L. Vacher

    2017-07-01

    Full Text Available This issue completes the first ten years of Numeracy. The purpose of this introductory editorial is to review what has happened to the journal in those ten years. In the twenty issues, Numeracy’s output has been 201 papers counting the one or two editorials per issue. More than 50% of the papers are full, peer-reviewed articles, including 13 papers in two theme collections. The others are peer-reviewed notes and perspectives, editor-reviewed book reviews (15% of the total, and a column by contributing co-editor, Dorothy Wallace. The current issue marks an upswing in the number of notes, and our first discussion/reply. The number of papers per year has been increasing (e.g., 66% more in the last three years than in the first three years. The download rate has increased from about 5,000 in the first two years to 5,000 in about 40 days now. The editorial goes on to document two main outcomes. First, the journal is gaining an international reach: more than half the downloads occur outside the United States now, and the number of contributions from outside the United States has increased from 4 in the first five years to 15 in the second five years. Second, the across-the-curriculum nature of quantitative literacy is coming to the fore. The transdisciplinarity of QL is strikingly evident in this issue, which is discussed in some detail, especially how it conforms to the mission of the Association of American Colleges and Universities. The editorial ends with some results from a small ad hoc study of Google Scholar Citation Profiles. The question was, of the profiles that used “numeracy” or “quantitative literacy” as keywords, what other keywords did those profiles use, and what were the source countries? The results show that (1 QL is very much an American term, (2 there is, metaphorically, a vast and interesting numeracy ecosystem out there for Numeracy to engage and serve, and (3 as we become more global, the transdisciplinary relevance

  9. RECALMIN II. Eight years of hospitalisation in Internal Medicine Units (2007-2014). What has changed?

    Science.gov (United States)

    Zapatero-Gaviria, A; Barba-Martín, R; Canora Lebrato, J; Fernández-Pérez, C; Gómez-Huelgas, R; Bernal-Sobrino, J L; Díez-Manglano, J; Marco-Martínez, J; Elola-Somoza, F J

    2017-11-01

    To analyse the evolution of care provided by the internal medicine units (IMU) of the Spanish National Health System from 2007 to 2014. We analysed all discharges from the IMU of the Spanish National Health System in 2007 and 2014, using the Minimum Basic Data Set. We compared the risk factors by episode, mortality and readmissions between the two periods. We prepared specific fits for the risk for mortality and readmissions in heart failure, pneumonia and chronic obstructive pulmonary disease, as well as the Charlson index for all activity. Discharges from the IMU between the two periods increased 14%. The average patient age increased by 2.8 years (71.2±17.1 vs. 74±16.2; pde Medicina Interna (SEMI). All rights reserved.

  10. International year of Chemistry 2011. A guide to the history of clinical chemistry.

    Science.gov (United States)

    Kricka, Larry J; Savory, John

    2011-08-01

    This review was written as part of the celebration of the International Year of Chemistry 2011. In this review we provide a chronicle of the history of clinical chemistry, with a focus on North America. We outline major methodological advances and trace the development of professional societies and journals dedicated to clinical chemistry. This review also serves as a guide to reference materials for those interested in the history of clinical chemistry. The various resources available, in sound recordings, videos, moving images, image and document archives, museums, and websites dedicated to diagnostic company timelines, are surveyed. These resources provide a map of how the medical subspecialty of clinical chemistry arrived at its present state. This information will undoubtedly help visionaries to determine in which direction clinical chemistry will move in the future.

  11. Progress on Creating the Galileoscope for the International Year of Astronomy 2009

    Science.gov (United States)

    Pompea, S. M.; Fienberg, R. T.; Arion, D. N.; Smith, T. C.; Isbell, D.

    2008-11-01

    For the International Year of Astronomy 2009 (IYA2009), we have designed an educational program based on understanding the basic principles of telescopes and using telescopes for astronomical observations. As part of this program, we have designed an educational telescope kit that can be assembled by students and used to observe the Moon, Jupiter, and Saturn from urban environments. A premise of the project is that for students, the building of their own telescope is far better than getting an assembled one. The Galileoscope is designed to create ``Wow!'' experiences in kids when viewing Saturn, Jupiter, and the Moon. With the Galileoscope, Galileo's observations can be easily duplicated across the country, even in major cities. We have designed the Galileoscope and its associated educational materials for use in a wide variety of educational environments including planetariums, small science and nature centers, classrooms, and amateur astronomy clubs.

  12. [A 70-year-old woman presenting with restless shoulder following posterior internal capsule infarction].

    Science.gov (United States)

    Matsubara, Takeo; Suzuki, Keisuke; Okamura, Madoka; Shiina, Tomohiko; Miyamoto, Masayuki; Nakamura, Toshiki; Hirata, Koichi

    2017-11-25

    A 70-year-old woman noticed difficulty in speech and weakness of the left upper and lower limb upon awakening. Neurological examination showed dysarthria and left hemiparesis. No sensory disturbance was observed. Brain MRI revealed acute infarction in the right posterior limb of the internal capsule. On the hospital day 1, she developed the abnormal sensations restricted to the bilateral shoulders, resulting in difficulty initiating sleep. On laboratory data, renal function and serum hemoglobin and ferritin levels were normal. When four essential features of restless legs syndrome (RLS) were applied to her shoulders, the patient met RLS criteria. Following low dose pramipexole treatment, the abnormal sensation of the shoulders and insomnia significantly improved. We should be aware of the possibility of RLS or its variant, including "restless shoulder" of our patient, for the cause of insomnia following acute ischemic infarction.

  13. The International Space of the Danish Testing Community in the Post-war Years

    DEFF Research Database (Denmark)

    Andreasen, Karen Egedal; Ydesen, Christian

    2016-01-01

    International forums and organizations, as well as non-governmental organizations, have played a considerable role in societal developments since the end of World War II. Many changes in post-war Danish public schools like standardized educational testing were formed in dialogue with or initiated...... in such forums or organizations. This contribution explores the importance of these connections by focussing on the period from 1945 to around 1990, i.e., from the end of World War II when Danish education was characterized by a high degree of national unity as a contrast to the strife of the inter-war years......, and up to the end of the Cold War. Exploring the transnational angle is a highly relevant and interesting research topic because it contributes to a deeper understanding of the origin, development and design of Danish school policy and school practice, and the influence from transnational spaces....

  14. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    Science.gov (United States)

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  15. Mathematical development of a 10 years old child phantom for use in internal dosimetry

    International Nuclear Information System (INIS)

    Deus, S.F.; Poston, J.W.; Watanabe, S.

    1989-08-01

    The main objectives of this work are: 1) to develop a project of a mathematical phantom representing as far as possible a child of 10 years old and 2)to use this phantom as a base for the specific absorbed fractions (SAF) calculations in the internal organs and skeleton due to the radioisotopes most used in nuclear medicine. This phantom was similar in shape to the Fisher and Snyder one, but several changes were introduced to make the phantom more realistic. Those changes included the addition of a neck region, puting the arms outside the trunk region, changes in the trunk, head and genitalia regions shapes. Several modifications were also done in the skeleton. For instance, the head bones, rib cage, pelvis, vertebral column, scapula, clavicles and the arms and legs bones were made very close to the real anatomic shapes. Some internal organs as the brain, lungs, liver, small and large intestines were also changed as a consenquence of the above modifications. In all those cases, the changes were made not only in the shapes but also in the organs and bones position in such a way to be more representative of the 10 years old anatomic age. Estimates of the SAF obtained by the use of this phantom, resulted, as expected, significantly different from those obtained by the use of a simpler model. In other words, the ratio between the SAF in the organs of the phantom developed in this project and the SAF in the organs of the phantom similar to the adult (obtained by reducing each region of the adult phantom by the use of appropriate factor) vary from 0.37 to 5. Those differences and their meaning are also discussed. (author) [pt

  16. Hemoglobin transfusion trigger in an internal medicine department - A "real world" six year experience.

    Science.gov (United States)

    Rahimi-Levene, Naomi; Ziv-Baran, Tomer; Peer, Victoria; Golik, Ahuva; Kornberg, Abraham; Zeidenstein, Ronit; Koren-Michowitz, Maya

    2018-01-01

    Transfusion guidelines advocate restrictive rather than liberal use of red blood cells (RBC) and are based mostly on randomized trials in intensive care and surgical departments. We aimed to study RBC transfusion practice in the medical patients' population. The data in this study were collected from patients over the age of 18 years admitted to an Internal Medicine department between 2009 and 2014 who received at least one unit of packed red blood cells (RBC). In addition, data on demographics, patients' diagnoses, laboratory tests and number of transfused RBC units were extracted from the electronic health records. One thousand three hundred and twenty eight patients were included, having mean age of 75 ± 14 years. The median hemoglobin (Hb) trigger for RBC transfusion was 8.0 g/dl (IQR 7.3-8.7g/dl), and most patients received either one (43.4%) or two (33.4%) RBC units. There was no significant difference in Hb trigger between males and females (Hb 8.0 g/dl and 7.9 g/dl, respectively, p = 0.098), and a weak correlation with age (r = 0.108 p = 0.001). Patients with cardiovascular and lung diseases had a statistically significant higher Hb trigger compared to patients without those diagnoses, however the median difference between them was 0.5 g/dl or less. These "real world" data we collected show a Hb trigger compliant with the upper limit of published guidelines and influenced by medical patients' common diagnoses. Prospective trials addressing patients hospitalized in internal medicine departments could further contribute to transfusion decision algorithms.

  17. Internal Consistency and Associated Characteristics of Informant Discrepancies in Clinic Referred Youths Age 11 to 17 Years

    Science.gov (United States)

    De Los Reyes, Andres; Youngstrom, Eric A.; Pabon, Shairy C.; Youngstrom, Jennifer K.; Feeny, Norah C.; Findling, Robert L.

    2011-01-01

    In this study, we examined the internal consistency of informant discrepancies in reports of youth behavior and emotional problems and their unique relations with youth, caregiver, and family characteristics. In a heterogeneous multisite clinic sample of 420 youths (ages 11-17 years), high internal consistency estimates were observed across…

  18. Seeing the Forest for the Trees: The International Baccalaureate Primary Years Programme Exhibition and Global Citizenship Education

    Science.gov (United States)

    Palmer, Nicholas

    2016-01-01

    The purpose of this research was to determine the depth and scope of Global Citizenship Education (GCE) through the International Baccalaureate (IB) Primary Years Programme (PYP) exhibition. The small-scale qualitative study describes how a fifth-grade cohort and teachers at The International School of Azerbaijan uncover GCE in situ. Drawing on…

  19. Setting Them up for Success: Assessing a Pre-Research Assignment for First-Year International Students

    Science.gov (United States)

    Avery, Susan

    2017-01-01

    As the international student population continues to grow, librarians must adjust their instruction to meet the needs of students who are adapting to a new country, culture, and language. This study assesses first-year international students as they engage in the research process through the completion of concept maps that precede database…

  20. A Brief History of International Latin American Student Fraternities: A Movement That Lasted 86 Years (1889-1975)

    Science.gov (United States)

    Fajardo, Oliver

    2015-01-01

    An international Latin American student fraternity movement preceded the current Latino Greeks that are seen on college campuses today. This document provides new information that has not been published. The movement lasted 86 years and primarily served wealthy international Latin American students who came to the United States to study and, once…

  1. Hard and soft tissue imaging of the temporomandibular joint 30 years after diagnosis of osteoarthrosis and internal derangement

    NARCIS (Netherlands)

    deLeeuw, R; Boering, G; vanderKuijl, B; Stegenga, B

    1996-01-01

    Purpose: This article describes the clinical and imaging findings in the temporomandibular joints (TMJs) of patients 30 years after the initial diagnosis of osteoarthrosis and internal derangement. Patients and Methods: Fifty-five TMJs with a history of osteoarthrosis and internal derangement and 37

  2. The POSNA-COUR International Scholar Program. Results of the First 7 Years.

    Science.gov (United States)

    Fornari, Eric D; Sabharwal, Sanjeev; Schwend, Richard M

    2017-12-01

    The Pediatric Orthopedic Society of North America (POSNA)-Children's Orthopedics in Underserved Regions (COUR) International Scholar Program was initiated in 2007 to provide educational opportunities for emerging leaders who treat children with orthopaedic conditions in resource-challenged environments worldwide. Financial support is available each year for 4 to 6 orthopaedic surgeons to attend either the POSNA Annual Meeting or the International Pediatric Orthopedic Symposium. The scholars are also encouraged to visit selected centers for observerships during their trip. Since 2007 there have been 41 international scholars who have participated in the program. We wished to assess the impact of the program and to obtain feedback to improve the experience for future participants. A 23-question web-based survey was created and sent to 38 past scholars from 22 countries who have participated in the program by July 2013. The responses were gathered online and the data were analyzed for the 24 (62%) respondents from 18 countries who completed the survey. Of the respondents, 16/24 (66%) reported that their current practice is comprised of at least 75% pediatrics. Twelve of 24 (52%) were fellowship trained in pediatric orthopaedics, typically outside of North America. All scholars found the meeting they attended to be very useful and have subsequently made changes to their clinical practice. Nineteen of 24 (82%) did a premeeting or postmeeting observership. Twenty-two of 24 (92%) participants have remained in contact with POSNA members they met at the meeting, with 86% of respondents stating that they have subsequently consulted POSNA members on management of patients. Sixty-two percent of the scholars had a POSNA member visit them following the scholarship and 29% have since returned to visit POSNA members for further clinical observerships. Twenty-one of 24 (91%) have had the opportunity to share the knowledge they gained with others in their region through lectures

  3. The University of Delaware Carlson International Polar Year Events: Collaborative and Educational Outreach

    Science.gov (United States)

    Nelson, F. E.; Bryant, T.; Wellington, P.; Dooley, J.; Bird, M.

    2008-12-01

    Delaware is a small state with, by virtue of its coastal location, a large stake in climatic change in the polar regions. The University of Delaware has maintained a strong presence in cold-regions research since the mid-1940s, when William Samuel Carlson, a highly accomplished Arctic explorer, military strategist, and earth scientist, was named 20th President (1946-50) of the University. Carlson played a leading role in two of the University of Michigan's Greenland expeditions in the late 1920s and early 1930s. As Director of the Arctic, Desert, and Tropic Branch of the US Army Air Forces Tactical Center during World War II, Colonel Carlson played a role in developing several air transportation routes through the Arctic that helped to facilitate the Allied victory in Europe. Carlson authored many scientific and popular publications concerned with the Arctic, including the books Greenland Lies North (1940) and Lifelines Through the Arctic (1962). Although the University of Delaware has maintained a vigorous and continuous program of polar research since Carlson's tenure, the faculty, staff, and students involved are diffused throughout the University's colleges and departments, without an institutional focal point. Consequently, although many of these individuals are well known in their respective fields, the institution has not until recently been perceived widely as a center of polar-oriented research. The goals of the Carlson International Polar Year Events are to: (a) develop a sense of community among UD's diffuse polar-oriented researchers and educators; (b) create a distinctive and highly visible role for UD in the milieu of IPY activities; (c) promote interest in and knowledge about the polar regions in the State of Delaware, at all educational levels; (d) forge a close relationship between UD and the American Geographical Society, a national organization involved closely with previous International Polar Years; and (e) create a new basis for development

  4. Globe at Night: From IYA2009 to the International Year of Light 2015 and Beyond

    Science.gov (United States)

    Walker, Constance Elaine; Pompea, Stephen M.; Sparks, Robert T.

    2015-08-01

    Citizen-science is a rewardingly inclusive way to bring awareness to the public on important issues like the disappearing starry night sky, its cause and solutions. Citizen-science can also provide meaningful, hands-on “science process” experiences for students. One program that does both is Globe at Night (www.globeatnight.org), an international campaign to raise public awareness of the impact of light pollution by having people measure night-sky brightness and submit observations via a “web app” on any smart device or computer. Additionally, 2 native mobile apps - Loss of the Night for iPhone & Android, and Dark Sky Meter for iPhone - support Globe at Night.Since 2006, more than 125,000 vetted measurements from 115 countries have been reported. For 2015 the campaign is offered as a 10-day observation window each month when the Moon is not up. To facilitate Globe at Night as an international project, the web app and other materials are in many languages. (See www.globeatnight.org/downloads.)Students and the general public can use the data to monitor levels of light pollution around the world, as well as understand light pollution’s effects on energy consumption, plants, wildlife, human health and our ability to enjoy a starry night sky. Projects have compared Globe at Night data with ground-truthing using meters for energy audits as well as with data on birds and bats, population density, satellite data and trends over time. Globe at Night tackles grand challenges and everyday problems. It provides resources for formal and informal educators to engage learners of all ages. It has 9 years of experience in best practices for data management, design, collection, visualization, interpretation, etc. It has externally evaluated its program, workshops, lesson plans and accompanying kit to explore reasons for participation, skills developed, impact of experiences and perceived outcomes. Three recent papers (Birriel et al. 2014; Kyba et al. 2013; 2015) verify the

  5. Solar Radiation Model for Development and Control of Solar Energy Sources

    Directory of Open Access Journals (Sweden)

    Dominykas Vasarevičius

    2016-06-01

    Full Text Available The model of solar radiation, which takes into account direct, diffused and reflected components of solar energy, has been presented. Model is associated with geographical coordinates and local time of every day of the year. It is shown that using analytic equations for modelling the direct component, it is possible to adopt it for embedded systems with low computational power and use in solar tracking applications. Reflected and diffused components are especially useful in determining the performance of photovoltaic modules in certain location and surroundings. The statistical method for cloud layer simulation based on local meteorological data is offered. The presented method can’t be used for prediction of weather conditions but it provides patterns of solar radiation in time comparable to those measured with pyranometer. Cloud layer simulation together with total solar radiation model is a useful tool for development and analysis of maximum power point tracking controllers for PV modules.

  6. Maximum likelihood scaling (MALS)

    NARCIS (Netherlands)

    Hoefsloot, Huub C. J.; Verouden, Maikel P. H.; Westerhuis, Johan A.; Smilde, Age K.

    2006-01-01

    A filtering procedure is introduced for multivariate data that does not suffer from noise amplification by scaling. A maximum likelihood principal component analysis (MLPCA) step is used as a filter that partly removes noise. This filtering can be used prior to any subsequent scaling and

  7. Functional Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg

    2005-01-01

    \\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...

  8. Maximum likely scale estimation

    DEFF Research Database (Denmark)

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo

    2005-01-01

    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and...

  9. Astronomia.pl: Ideas for the International Year of Astronomy 2009

    Science.gov (United States)

    Czart, K.; Pomierny, J.

    2008-06-01

    Astronomia.pl is an internet portal for Polish-speaking people. As a website, most of our activities in IYA2009 will focus on the internet and other electronic media. We will prepare a content-rich website, in cooperation with the Polish committee for IYA2009. We present some extended suggestions for ideas proposed by the IAU, like postage stamps or mobile phone wallpapers, ring tones and themes and some original propositions like naming a small Solar System body for each country, a computer game, a stadium as a solar clock, a media event with thousands of amateur astronomers in one place and a network of cities.

  10. Comment on "A statistical comparison of solar wind sources of moderate and intense geomagnetic storms at solar minimum and maximum" by Zhang, J.-C., M. W. Liemohn, J. U. Kozyra, M. F. Thomsen, H. A. Elliott, and J. M. Weygand, JGR, 2006

    OpenAIRE

    Yermolaev, Yu. I.; Yermolaev, M. Yu.; Lodkina, I. G.

    2006-01-01

    Conditions in the solar wind resulting in magnetic storms on the Earth are a subject of long and intensive investigations. Recently Zhang et al. (2006), published a paper, where they used superposed epoch analyses method to study solar wind features during 549 geomagnetic storms. Unfortunately, the used methodical approach has not allowed to improve essentially understanding of relation of magnetic storms with conditions in the solar wind, and first of all for the following reasons: (1) they ...

  11. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  12. Studies of Solar Flare and Interplanetary Particle Acceleration and Coordination of Ground-Based Solar Observations in Support of US and International Space Missions

    Science.gov (United States)

    Kiplinger, Alan L.

    1998-01-01

    A primary focus has been to conduct studies of particular types of hard X-ray evolution in solar flares and their associations with high energy interplanetary protons observed near Earth. Previously, two large investigations were conducted that revealed strong associations between episodes of progressive spectral hardening seen in solar events and interplanetary proton events (Kiplinger, 1995). An algorithm was developed for predicting interplanetary protons that is more accurate than those currently in use when hard X-ray spectra are available. The basic research on a third study of the remaining independent subset of Hard X-ray Burst Spectrometer (HXRBS) events randomly not selected by the original studies was completed. This third study involves independent analyses of the data by two analysts. The results echo the success of the earlier studies. Of 405 flares analyzed, 12 events were predicted to have associated interplanetary protons at the Space Environment Service Center (SESC) level. Of these, five events appear to be directly associated with SESC proton events, six other events had lower level associated proton events, and there was only one false alarm with no protons. Another study by Garcia and Kiplinger (1995) established that progressively hardening hard X-ray flares associated with interplanetary proton events are intrinsically cooler and not extremely intense in soft X-rays unless a "contaminating" large impulsive flare accompanies the hardening flare.

  13. ISES International Solar Energy Society working committee report. Comitati di lavoro ISES: Rapporto del Comitato Energia Fotovoltaica della Sezione Italiana dell'ISES

    Energy Technology Data Exchange (ETDEWEB)

    Belcastro, G.N. (Ente Nazionale per l' Energia Elettrica, Rome (Italy)); De Lillo, A.; Messana, C. (ENEA, Casaccia (Italy). Area Energetica)

    In Italy, the potential for photovoltaic power production has been estimated at about 40,000 billion kWh/year. Given that this nation's total power demand is about 200 billion kWh/year, it's obvious that even the limited use of this renewable energy source would significantly reduce national dependency on foreign energy supplies. In this context, this paper assesses the prospects for the development of photovoltaic energy in Italy. The various aspects covered include: the current level of technology and national manufacturing capabilities; planned R D investments to the year 2000; current and future solar cell and module efficiency levels; the most promising solar cell materials; photovoltaic equipment manufacturing costs; grid connected demonstration plants operating world-wide; photovoltaic power production costs; environmental impacts; world market structure and major manufacturers; suitable applications; and legislated Italian national development incentives.

  14. Solar energy potential

    Science.gov (United States)

    1973-01-01

    The potential of solar energy as a national resource is discussed. Research and development programs for the development of eleven concepts are described to show the proposed funding for each year over a fifteen year period. The estimated energy contributions by period for each of the solar concepts are analyzed. The estimated impact of the solar concepts to the year 2020 are tabulated.

  15. Advances in seismic monitoring at Deception Island volcano (Antarctica since the International Polar Year

    Directory of Open Access Journals (Sweden)

    Enrique Carmona

    2014-06-01

    Full Text Available Deception Island is an active volcano located in the south Shetland Islands, Antarctica. It constitutes a natural laboratory to test geophysical instruments in extreme conditions, since they have to endure not only the Antarctic climate but also the volcanic environment. Deception is one of the most visited places in Antarctica, both by scientists and tourists, which emphasize the importance of volcano monitoring. Seismic monitoring has been going on since 1986 during austral summer surveys. The recorded data include volcano-tectonic earthquakes, long-period events and volcanic tremor, among others. The level of seismicity ranges from quiet periods to seismic crises (e.g. 1992-1993, 1999. Our group has been involved in volcano monitoring at Deception Island since 1994. Based on this experience, in recent years we have made the most of the opportunities of the International Polar Year 2007-2008 to introduce advances in seismic monitoring along four lines: (1 the improvement of the seismic network installed for seismic monitoring during the summer surveys; (2 the development and improvement of seismic arrays for the detection and characterization of seismo-volcanic signals; (3 the design of automated event recognition tools, to simplify the process of data interpretation; and (4 the deployment of permanent seismic stations. These advances help us to obtain more data of better quality, and therefore to improve our interpretation of the seismo-volcanic activity at Deception Island, which is a crucial step in terms of hazards assessment.

  16. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    Science.gov (United States)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  17. Reliability and Degradation of Solar PV Modules—Case Study of 19-Year-Old Polycrystalline Modules in Ghana

    Directory of Open Access Journals (Sweden)

    David A. Quansah

    2017-05-01

    Full Text Available Fourteen (14 rack-mounted polycrystalline modules installed on the concrete roof of the solar energy applications laboratory at the Kwame Nkrumah University of Science and Technology (KNUST in Ghana, a hot humid environment, were assessed after 19 years of continuous outdoor exposure. The physical state of the modules was documented using a visual inspection checklist. They were further assessed by current-voltage (I-V characterization and thermal imaging. The modules were found to be in good physical state, except some bubbles on front side and minor discolouration/corrosion at edge of the cells. Compared with reference values, the performance decline of the modules observed over the exposure period was: nominal power (Pnom, 21% to 35%; short circuit current (Isc, 5.8% to 11.7%; open circuit voltage (Voc 3.6% to 5.6% and 11.9% to 25.7% for fill factor (FF. It is hoped that this study will provide some helpful information to project developers, manufacturers and the research community on the long-term performance of PV modules in Ghana.

  18. [80 years' of internal medicine education at the medical school of the university in Belgrade (1922-2002)].

    Science.gov (United States)

    Micić, Jovan; Micić, Dragan

    2003-01-01

    ORGANISATION OF TEACHING INTERNAL MEDICINE: The Department for Internal Medicine and Internal Clinics were founded in spring 1922. Dr. Radenko Stankovic and Dr. Dimitrije Antic were appointed as part-time Professors, while Dr. Aleksandar Ignjatovski, a former Full-time Professor of the Warsaw University, was appointed as professor under contract. A year later, Dr. Aleksandar Radosavljevic was appointed as Part-time Professor. In the General State Hospital and Military Hospital, certain wards were turned into clinics. II and III Internal Clinics were situated in the barracks, while the Propedeutic and I Internal Clinics were located in the Military Hospital. Upon the construction of the buildings of the Internal Clinic and General State Hospital, the Propedeutic and I Internal Clinics were permanently placed in the new building, and II and III Internal Clinics in the General State Hospital. Teaching of Internal Medicine started 31 October 1922. Dr. R. Stanko vic delivered a lecture in Propedeutics for students of the fifth term. This date marks the beginning of teaching internal medicine at the newly established School of Medicine, University of Belgrade. Dr. A. Ignjatovski started lecturing Internal medicine 23 March 1923, whereas Dr. D. Antic and and Dr. A. Radosavljevic also delivered lectures in the areas of Internal Medicine within their professional scope. At the beginning, the clinics belonged to the General State Hospital. It was impossible to teach successfully in hospital, therefore upon the professors' request, the clinics were separated and thus became the institutions belonging to the School of Medicine-educational institutions, while hospitals were health institutions. The rule was 'one professor--one clinic'. After the Second World War, teaching Internal Medicine was begun in demolished buildings in very difficult financial circumstances. The Propedeutic Internal clinic was renamed IV Internal Clinic, which continued dealing predominantly with

  19. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    Science.gov (United States)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  20. A Simple Technique for Sustaining Solar Energy Production in Active Convective Coastal Regions

    Directory of Open Access Journals (Sweden)

    Moses E. Emetere

    2016-01-01

    Full Text Available The climatic factors in the coastal areas are cogent in planning a stable and functional solar farm. 3D simulations relating the surface temperature, sunshine hour, and solar irradiance were adopted to see the effect of minute changes of other meteorological parameters on solar irradiance. This enabled the day-to-day solar radiation monitoring with the primary objective to examine the best technique for maximum power generation via solar option in coastal locations. The month of January had the highest turbulent features, showing the influence of weather and the poorest solar radiance due to low sunshine hour. Twenty-year weather parameters in the research area were simulated to express the systematic influence of weather of PV performance. A theoretical solar farm was illustrated to generate stable power supply with emphasis on the longevity of the PV module proposed by introducing an electronic concentrator pillar (CP. The pictorial and operational model of the solar farm was adequately explained.