International Nuclear Information System (INIS)
Woollard, G.P.; Godley, V.M.
1980-12-01
The history of improvements in the global standarization of gravity values since the advent of high range gravimeters in 1948 is reviewed. In particular the gravity base values given in SEG special publication International Gravity Measurements (Woolard and Rose, 1963) are evaluated against the most recent set of standarized gravity base values, The International Gravity Standardization Net, 1971 (Morelli et al, 1974). Adjunct IGSN 71 values prepared by the US Defense Mapping Agency Aerospace Center (unpublished) are also used to give a more comprehensive worldwide comparison of values
Initial value formulation of higher derivative gravity
International Nuclear Information System (INIS)
Noakes, D.R.
1983-01-01
The initial value problem is considered for the conformally coupled scalar field and higher derivative gravity, by expressing the equations of each theory in harmonic coordinates. For each theory it is shown that the (vacuum) equations can take the form of a diagonal hyperbolic system with constraints on the initial data. Consequently these theories possess well-posed initial value formulations
Measuring Gravity in International Trade Flows
Directory of Open Access Journals (Sweden)
E. Young Song
2004-12-01
Full Text Available The purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of income levels of countries, and in trade of most manThe purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of
Dense Gravity Currents with Breaking Internal Waves
Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey
2017-11-01
Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.
40 CFR 1065.630 - 1980 international gravity formula.
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false 1980 international gravity formula. 1065.630 Section 1065.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... international gravity formula. The acceleration of Earth's gravity, a g, varies depending on your location...
Toward An Internal Gravity Wave Spectrum In Global Ocean Models
2015-05-14
Toward an internal gravity wave spectrum in global ocean models Malte Müller1,2, Brian K. Arbic3, James G. Richman4, Jay F. Shriver4, Eric L. Kunze5...fields and tides are beginning to display realistic internal gravity wave spectra, especially as model resolution increases. This paper examines...able to simulate the internal gravity wave spectrum and the extent to which nonlinear internal wave-wave interactions contribute to the simulated
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
Value Creation in International Business
DEFF Research Database (Denmark)
is a pioneering two volume work intended to provoke theoretical and empirical development in International Business research. Moreover, it is intended as a bridge between concepts derived from general business firm-level research agendas such as value creation and business model, and internationalization......The edited collection brings into focus the meanings, interpretations and the process of value creation in international business. Exploring value creation in the context of emerging and developed economies, Volume 2 takes the perspective of small and medium sized enterprises and examines various...... approaches to value creation in the process of firm internationalization. Providing theoretical and practical insights, the authors open an intellectual debate into what value is, and how it is created through the internationalization activities of firms. Value Creation in International Business...
Value Creation in International Business
DEFF Research Database (Denmark)
The edited collection brings into focus the meanings, interpretations and the process of value creation in international business. Exploring value creation in the context of emerging and developed economies, Volume 2 takes the perspective of small and medium sized enterprises and examines various...... approaches to value creation in the process of firm internationalization. Providing theoretical and practical insights, the authors open an intellectual debate into what value is, and how it is created through the internationalization activities of firms. Value Creation in International Business...... is a pioneering two volume work intended to provoke theoretical and empirical development in International Business research. Moreover, it is intended as a bridge between concepts derived from general business firm-level research agendas such as value creation and business model, and internationalization...
An extended gravity model with substitution applied to international trade
Bikker, J.A.
The traditional gravity model has been applied many times to international trade flows, especially in order to analyze trade creation and trade diversion. However, there are two fundamental objections to the model: it cannot describe substitutions between flows and it lacks a cogent theoretical
Value Systems in International Business.
Heiba, Farouk I.
Every society has a system of values and seeks to achieve goals which it defines as desirable. To gain insight and a measure of understanding of another culture, international marketers can approach a country as a whole, seek out behavioral premises, obtain a theoretical knowledge of the culture, and learn the country's social heritage.…
The International Space University's variable gravity research facility design
Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.
1991-09-01
A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.
Statistical estimation of absolute gravity values | Aku | Science World ...
African Journals Online (AJOL)
Gravity measurements at stations in northwestern Nigeria were assumed to be random variables. Gravity data collected was used to illustrate the gravity network adjustment theories. Residuals of the network were inspected to detect gross errors by standardizing the residuals. Computed standard deviation for unit weight ...
Electromagnetic internal gravity waves in the Earth's ionospheric E-layer
International Nuclear Information System (INIS)
Kaladze, T.D.; Tsamalashvili, L.V.; Kaladze, D.T.
2011-01-01
In the Earth's ionospheric E-layer existence of the new waves connecting with the electromagnetic nature of internal gravity waves is shown. They represent the mixture of the ordinary internal gravity waves and the new type of dispersive Alfven waves. -- Highlights: ► Existence of electromagnetic internal gravity waves in the ionospheric E-layer is shown. ► Electromagnetic nature of internal gravity waves is described. ► Appearance of the new dispersive Alfven waves is shown.
National Oceanic and Atmospheric Administration, Department of Commerce — The National Geophysical Data Center (NGDC) of NOAA, in cooperation with the National Geodetic Survey of NOAA, have published a Gravity CD-ROM containing observed...
Internal gravity wave contributions to global sea surface variability
Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.
2016-02-01
High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.
Penetration of internal gravity waveguide modes into the upper atmosphere
Directory of Open Access Journals (Sweden)
Rudenko G.V.
2016-03-01
Full Text Available The paper describes internal gravity waveguide modes, using dissipative solutions above the source. We compare such a description with an accurate approach and a WKB approximation for dissipationless equations. For waveguide disturbances, dispersion relations calculated by any method are shown to be close to each other and to be in good agreement with observed characteristics of traveling ionospheric disturbances. Unlike other methods, dissipative solutions above the source allow us to adequately describe the spatial structure of disturbances in the upper atmosphere.
International opportunities and value creation in international entrepreneurship.
Mainela, Tuija; Puhakka, Vesa; Wakkee, Ingrid; Marinova, Svetla; Larimo, Jorma; Nummela, Niina
2016-01-01
International entrepreneurship (IE) as a field of research has emerged at the intersection of internationalization and entrepreneurship theories. At this intersection it has come to emphasize the activities centered on international opportunities. International opportunities, then, are about value
On the Chemical Mixing Induced by Internal Gravity Waves
Energy Technology Data Exchange (ETDEWEB)
Rogers, T. M. [School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)
2017-10-10
Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Particle dispersion and mixing induced by breaking internal gravity waves
Bouruet-Aubertot, Pascale; Koudella, C.; Staquet, C.; Winters, K. B.
2001-01-01
The purpose of this paper is to analyze diapycnal mixing induced by the breaking of an internal gravity wave — the primary wave — either standing or propagating. To achieve this aim we apply two different methods. The first method consists of a direct estimate of vertical eddy diffusion from particle dispersion while the second method relies upon potential energy budgets [Winters, K.B., Lombard, P.N., Riley, J.J., D'Asaro, E.A., 1995. J. Fluid Mech. 289, 115-128; Winters, K.B., D'Asaro, E.A., 1996. J. Fluid Mech. 317, 179-193]. The primary wave we consider is of small amplitude and is statically stable, a case for which the breaking process involves two-dimensional instabilities. The dynamics of the waves have been previously analyzed by means of two-dimensional direct numerical simulations [Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1995. J. Fluid Mech. 285, 265-301; Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1996. Dyn. Atmos. Oceans 29, 41-63; Koudella, C., Staquet, C., 1998. In: Davis, P. (Ed.), Proceedings of the IMA Conference on Mixing and Dispersion on Stably-stratified Flows, Dundee, September 1996. IMA Publication]. High resolution three-dimensional calculations of the same wave are also reported here [Koudella, C., 1999]. A local estimate of mixing is first inferred from the time evolution of sets of particles released in the flow during the breaking regime. We show that, after an early evolution dominated by shear effects, a diffusion law is reached and the dispersion coefficient is fairly independent of the initial seeding location of the particles in the flow. The eddy diffusion coefficient, K, is then estimated from the diapycnal diffusive flux. A good agreement with the value inferred from particle dispersion is obtained. This finding is of particular interest regarding the interpretation of in situ estimates of K inferred either from tracer dispersion or from microstructure measurements. Computation of the Cox number, equal to the
Rivera, Andrea
2017-01-01
Gravity is all around us. Learn how it is used in art, technology, and engineering. Five easy-to-read chapters explain the science behind gravity, as well as its real-world applications. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.
The New Gravity System: Changes in International Gravity Base Values and Anomaly Values
1980-10-01
349 44 +14.86 WA 6163 Sucre 977.7915 .776 70* +14.80 WA 6168 Trinidad 978.3374 .322 70* +14.70 BRAZIL WA 6022 Acu 978.0839 .069 02* +14.88 WA 6023...America (cont.) Woollard and Rose IGSN 71 Diff WA 6121 Panagra AP "J" 977.2860 .271 44 +14.56 WA 6139 Mariscal Sucre AP 977.2849 .270 38* +14.52 F RE C N
Internal Gravity Wave Interactions with Double-Diffusive Instabilities
Brown, Justin; Radko, Timour
2017-04-01
In this study, we focus on the phenomenon of oscillatory double-diffusive convection, which occurs when cool fresh water is stratified above warm salty water, as commonly observed in the Arctic Ocean. In the Arctic, these regions are generally stable to the development of oscillatory double-diffusive instabilities; despite this, observations show the presence of staircases, i.e., the well-defined structures consisting of a series of homogeneous layers separated by thin high-gradient interfaces. Recent studies have shown that an instability can develop in such circumstances if weak static shear is present even when the shear and double-diffusion are themselves individually stable. However, the impact of oscillating shear, associated with the ubiquitous presence of internal gravity waves, has not yet been addressed for the diffusive case. Through two-dimensional simulations of diffusive convection, we have investigated the impact of magnitude and frequency of externally forced internal waves on the double-diffusive shear instability. The analysis is focused on the parameter regime in which the flow is individually stable with respect to double-diffusion and Kelvin-Helmholtz instabilities, but could be susceptible to the combined thermohaline-shear instability. We have illustrated that rapid oscillation inhibits the development of this instability if the dominant period is shorter than four hours for the oceanographically relevant parameters; otherwise, models with static shear adequately reproduce our results. If the dominant period is shorter than four hours but still significantly exceeds the buoyancy period, the instability range is much reduced to the low Richardson number regime. Some of these simulations show the saturated system developing into structures reminiscent of double-diffusive staircases whose thickness is given by the wavelength of the forced shear. Finally, preliminary three-dimensional simulations show no major differences in the growth rate of
Indian Academy of Sciences (India)
We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...
International trade and monopolistic competition without CES: Estimating translog gravity
Novy, Dennis
2010-01-01
This paper derives a micro-founded gravity equation in general equilibrium based on a translog demand system that allows for endogenous markups and rich substitution patterns across goods. In contrast to standard CES-based gravity equations, trade is more sensitive to trade costs if the exporting country only provides a small share of the destination country's imports. As a result, trade costs have a heterogeneous impact across country pairs, with some trade flows predicted to be zero. I test...
2015-09-30
by internal wave surface currents, a process that can be validated with both in-situ observations and synthetic aperature radar (SAR) imagery which...spectrum? How does this affect the detectability of ISWs in SAR imagery? 5) How does the seasonal variability of ISW currents impact the surface gravity...LZSNFS for 2014/02/01 00Z. It shows an intrusion of Kuroshio southwest off Taiwan as often obsevered during winter season. RESULTS A 1.5 year-long
Gravity field and internal structure of Mercury from MESSENGER.
Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H
2012-04-13
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
Analytical and numerical investigation of nonlinear internal gravity waves
Directory of Open Access Journals (Sweden)
S. P. Kshevetskii
2001-01-01
coincidence of simulation outcomes with analytical ones is revealed and some examples of numerical simulations illustrating wave disintegration into solitons are given. The phenomenon of internal wave mixing is considered and is explained from the point of view of the results obtained. The numerical methods for internal wave simulation are examined. In particular, the influence of difference interval finiteness on a numerical solution is investigated. It is revealed that a numerical viscosity and numerical dispersion can play the role of regularizators to a nonlinear quasistatic problem. To avoid this effect, the grid steps should be taken less than some threshold values found theoretically.
Mixing by internal gravity waves that break at sloping topography
Chalamalla, Vamsi; Sarkar, Sutanu
2013-11-01
Direct and large eddy simulations are performed to study the near-bottom mixing that occurs during the interaction of internal waves with a critical slope. The pathway from the input wave energy to the irreversible mixing of density field is explored. Diagnostics such as the turbulent kinetic energy budget and the density variance budget are discussed to explain the phasing of turbulence and associated mixing. Background and available potential energies are utilized to differentiate irreversible mixing from the reversible buoyancy flux. Mixing efficiency in all the simulated cases is found to be much higher than the frequently used value of 0.2 especially during large convective overturns. The ratio of Ozmidov and Thorpe length scales averaged over various sections of a wave cycle is investigated to assess inferences of turbulent dissipation rate from the Thorpe length scale.
Influence of internal waves on the dispersion and transport of inclined gravity currents
Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.
2016-02-01
Brine discharge from desalination facilities presents environmental risks, particularly to benthic organisms. High concentrations of salt and chemical additives, which can be toxic to local ecosystems, are typically mitigated by dilution close to the source. Our laboratory experiments investigate how breaking internal tides can help to dilute gravity currents caused by desalination effluents and direct them away from the benthic layer. In laboratory experiments, internal waves at the pycnocline of an ambient stratification were directed towards a sloping shelf, down which ran a gravity current. The breaking internal waves were seen to increase the proportion of the fluid from the gravity current diverted away from the slope into an intrusion along the pycnocline. In a parametric study, increasing the amplitude of the internal wave was seen to increase the amount of dense fluid in the pycnocline intrusion. The amplitude required to divert the gravity current into the intrusion compares well with an analytical theory that equates the incident energy in the internal wave to the potential energy required to dilute the gravity current. These experimental results suggest that sites of breaking internal waves may be good sites for effluent disposal. Effluent diverted into the intrusion avoids the ecologically sensitive benthic layer.
Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects
Energy Technology Data Exchange (ETDEWEB)
Vigeesh, G.; Steiner, O. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany); Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de [New Mexico State University, Department of Astronomy, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003 (United States)
2017-02-01
Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.
Vestibular stimulation interferes with the dynamics of an internal representation of gravity.
De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Diaz Artiles, Ana; Seyedmadani, Kimia; Sherwood, David P; Young, Laurence R
2017-11-01
The remembered vanishing location of a moving target has been found to be displaced downward in the direction of gravity (representational gravity) and more so with increasing retention intervals, suggesting that the visual spatial updating recruits an internal model of gravity. Despite being consistently linked with gravity, few inquiries have been made about the role of vestibular information in these trends. Previous experiments with static tilting of observers' bodies suggest that under conflicting cues between the idiotropic vector and vestibular signals, the dynamic drift in memory is reduced to a constant displacement along the body's main axis. The present experiment aims to replicate and extend these outcomes while keeping the observers' bodies unchanged in relation to physical gravity by varying the gravito-inertial acceleration using a short-radius centrifuge. Observers were shown, while accelerated to varying degrees, targets moving along several directions and were required to indicate the perceived vanishing location after a variable interval. Increases of the gravito-inertial force (up to 1.4G), orthogonal to the idiotropic vector, did not affect the direction of representational gravity, but significantly disrupted its time course. The role and functioning of an internal model of gravity for spatial perception and orientation are discussed in light of the results.
Gravity Field and Internal Structure of Mercury from MESSENGER
Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc;
2012-01-01
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
Multisensory Integration and Internal Models for Sensing Gravity Effects in Primates
Directory of Open Access Journals (Sweden)
Francesco Lacquaniti
2014-01-01
Full Text Available Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects.
Vertical Transport of Momentum by the Inertial-Gravity Internal Waves in a Baroclinic Current
Directory of Open Access Journals (Sweden)
A. A. Slepyshev
2017-08-01
Full Text Available When the internal waves break, they are one of the sources of small-scale turbulence. Small-scale turbulence causes the vertical exchange in the ocean. However, internal waves with regard to the Earth rotation in the presence of vertically inhomogeneous two-dimensional current are able to contribute to the vertical transport. Free inertial-gravity internal waves in a baroclinic current in a boundless basin of a constant depth are considered in the Bussinesq approximation. Boundary value problem of linear approximation for the vertical velocity amplitude of internal waves has complex coefficients when current velocity component, which is transversal to the wave propagation direction, depends on the vertical coordinate (taking into account the rotation of the Earth. Eigenfunction and wave frequency are complex, and it is shown that a weak wave damping takes place. Dispersive relation and wave damping decrement are calculated in the linear approximation. At a fixed wave number damping decrement of the second mode is larger (in the absolute value than the one of the first mode. The equation for vertical velocity amplitude for real profiles of the Brunt – Vaisala frequency and current velocity are numerically solved according to implicit Adams scheme of the third order of accuracy. The dispersive curves of the first two modes do not reach inertial frequency in the low-frequency area due to the effect of critical layers in which wave frequency of the Doppler shift is equal to the inertial one. Termination of the second mode dispersive curves takes place at higher frequency than the one of the first mode. In the second order of the wave amplitude the Stokes drift speed is determined. It is shown that the Stokes drift speed, which is transversal to the wave propagation direction, differs from zero if the transversal component of current velocity depends on the vertical coordinate. In this case, the Stokes drift speed in the second mode is lower than
Modern Gravity Models of Internal Migration. The Case of Romania
Directory of Open Access Journals (Sweden)
Daniela BUNEA
2012-04-01
Full Text Available Internal migration, although less investigated than international migration, is a key mechanism for adjustment to regional economic shocks, especially when other tools prove useless. But this process has very complex factors of determination which can be economic, social, demographic, environmental, etc. Based on previous international studies, in the case of Romania the robust variables proved to be the population size, the per capita gross domestic product, the road density, an amenity index and the crime rate from a static perspective, and the previous migration, the population size and the amenity index from a dynamic perspective. The techniques I have employed in making this study are the Least Square Dummy Variables (LSDV, or the fixed effects method and the Generalized Method of Moments (GMM, or the dynamic method both applied to panel data.
Atmospheric gravity waves observed by an international network of micro-barographs
International Nuclear Information System (INIS)
Marty, Julien
2010-01-01
The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) manages an international network of forty-two operational infra-sound stations recording the pressure fluctuations produced at the ground surface by infrasonic waves. This thesis demonstrates that most of these stations also accurately detect the pressure fluctuations in the entire gravity wave band. This work includes carrying out and analyzing several metrological laboratory experiments and a field campaign (M2008) in Mongolia in 2008. The layout of the experiments as well as the interpretation of their results gave rise to the development of a new linear spectral numerical model able to simulate the generation and propagation of gravity waves. This model was used to quantify the gravity waves produced by the atmospheric cooling that occurs during solar eclipses. The pressure fluctuations expected at ground level were estimated and compared to the data recorded during the 1 August 2008 solar eclipse by the CTBTO and M2008 stations. A detailed data analysis reveals two waves with similar time-frequency characteristics to those simulated for a stratospheric and tropospheric cooling. This constitutes, to our knowledge, a unique result. The validation of worldwide and pluri-annual pressure measurements in the entire gravity wave band allowed the statistical study of gravity wave spectra and atmospheric tides. The work presented throughout this thesis has led to the publication of two articles. A third one is in the drafting process. (author)
Kazama, T.; Hideaki, H.; Miura, S.; Kaufman, M.; Sato, T.; Larsen, C. F.; Freymueller, J. T.
2013-12-01
It is well known that gravity values have been decreasing in Southeast Alaska, mainly due to glacier mass changes from the end of the Little Ice Age to the present. For example, absolute gravity measurements made by the ISEA1 project (2006-2008) showed a maximum gravity change rate of -5.6 micro-gal/year (Sun et al., 2010; Sato et al., 2012a), which was consistent with large uplift rates obtained from GPS data (Larsen et al., 2005). However, the newly-obtained absolute gravity values in 2012 were about 10 micro-gal greater than expected based on the gravity trends of Sun et al. (2010), possibly because of above-average snowfall in the winter of 2011-2012 (Sato et al., 2012b). In order to monitor spatiotemporal gravity changes associated with glacier mass changes, seasonal hydrological gravity changes should be quantified via continuous gravity observations and/or hydrological modeling. We thus installed a superconducting gravimeter iGrav (serial number: 003) at Egan Library, University of Alaska Southeast in June 2012, as part of the ISEA2 project (2011-2015). The mass position (unit: volts) and air pressure have been recorded every second since June 2012, and the gravity value was then calculated from the mass position, using the scale factor of -89.561 micro-gal/V (Sato et al., 2012b). After the removal of tidal gravity changes using the BAYTAP software (Tamura et al., 1991), a gravity change of 4 micro-gal in peak to peak was extracted from the long-term superconducting gravity data from June 2012 to July 2013. Note that this non-tidal gravity change includes the instrumental drift, although the drift rate was very small (less than 1 micro-gal/year) according to the linear regression to the gravity change. We will discuss possible physical mechanisms of the non-tidal gravity change associated with water redistribution, using a hydrological model (e.g., Kazama et al., 2012) and/or long-term weather data. In addition, we also measured absolute gravity values at 6
International Entrepreneurship: Value Creation Across National Borders
S.J.A. Hessels (Jolanda)
2008-01-01
textabstractThis book investigates antecedents and outcomes of international entrepreneurship. International entrepreneurship as a field of research involves both research into entrepreneurship in multiple countries (cross-country comparisons of the nature and extent of entrepreneurial activity) and
Directory of Open Access Journals (Sweden)
O. Onishchenko
2013-03-01
Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.
De Sá Teixeira, Nuno Alexandre
2014-12-01
Given its conspicuous nature, gravity has been acknowledged by several research lines as a prime factor in structuring the spatial perception of one's environment. One such line of enquiry has focused on errors in spatial localization aimed at the vanishing location of moving objects - it has been systematically reported that humans mislocalize spatial positions forward, in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, spatial localization errors were found to evolve dynamically with time in a pattern congruent with an anticipated trajectory (representational trajectory). The present study attempts to ascertain the degree to which vestibular information plays a role in these phenomena. Human observers performed a spatial localization task while tilted to varying degrees and referring to the vanishing locations of targets moving along several directions. A Fourier decomposition of the obtained spatial localization errors revealed that although spatial errors were increased "downward" mainly along the body's longitudinal axis (idiotropic dominance), the degree of misalignment between the latter and physical gravity modulated the time course of the localization responses. This pattern is surmised to reflect increased uncertainty about the internal model when faced with conflicting cues regarding the perceived "downward" direction.
Can representational trajectory reveal the nature of an internal model of gravity?
De Sá Teixeira, Nuno; Hecht, Heiko
2014-05-01
The memory for the vanishing location of a horizontally moving target is usually displaced forward in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, this downward displacement has been shown to increase with time (representational trajectory). However, the degree to which different kinematic events change the temporal profile of these displacements remains to be determined. The present article attempts to fill this gap. In the first experiment, we replicate the finding that representational momentum for downward-moving targets is bigger than for upward motions, showing, moreover, that it increases rapidly during the first 300 ms, stabilizing afterward. This temporal profile, but not the increased error for descending targets, is shown to be disrupted when eye movements are not allowed. In the second experiment, we show that the downward drift with time emerges even for static targets. Finally, in the third experiment, we report an increased error for upward-moving targets, as compared with downward movements, when the display is compatible with a downward ego-motion by including vection cues. Thus, the errors in the direction of gravity are compatible with the perceived event and do not merely reflect a retinotopic bias. Overall, these results provide further evidence for an internal model of gravity in the visual representational system.
Wziontek, Hartmut; Falk, Reinhard; Bonvalot, Sylvain; Rülke, Axel
2017-04-01
After about 10 years of successful joint operation by BGI and BKG, the International Database for Absolute Gravity Measurements "AGrav" (see references hereafter) was under a major revision. The outdated web interface was replaced by a responsive, high level web application framework based on Python and built on top of Pyramid. Functionality was added, like interactive time series plots or a report generator and the interactive map-based station overview was updated completely, comprising now clustering and the classification of stations. Furthermore, the database backend was migrated to PostgreSQL for better support of the application framework and long-term availability. As comparisons of absolute gravimeters (AG) become essential to realize a precise and uniform gravity standard, the database was extended to document the results on international and regional level, including those performed at monitoring stations equipped with SGs. By this it will be possible to link different AGs and to trace their equivalence back to the key comparisons under the auspices of International Committee for Weights and Measures (CIPM) as the best metrological realization of the absolute gravity standard. In this way the new AGrav database accommodates the demands of the new Global Absolute Gravity Reference System as recommended by the IAG Resolution No. 2 adopted in Prague 2015. The new database will be presented with focus on the new user interface and new functionality, calling all institutions involved in absolute gravimetry to participate and contribute with their information to built up a most complete picture of high precision absolute gravimetry and improve its visibility. A Digital Object Identifier (DOI) will be provided by BGI to contributors to give a better traceability and facilitate the referencing of their gravity surveys. Links and references: BGI mirror site : http://bgi.obs-mip.fr/data-products/Gravity-Databases/Absolute-Gravity-data/ BKG mirror site: http
Directory of Open Access Journals (Sweden)
Mahmoud Saber
2015-12-01
Full Text Available The Survey of criterion of gravity threshold for prosecution of crimes in international criminal court One of the issues that have gained a good place in considerations of the office of the prosecution and Icc, is the gravity threshold set out in paragraph 1(d of article 17 of statute. This concept has some challenges: challenges such as lack of definition, lack of criterion for satisfaction of this concept. Given to the fact that gravity threshold is one part of admissibility mechanism, these ambiguities can disturb the legitimacy and function of international criminal court as the first permanent international criminal court. Hence, the purpose in present paper is to clarify this significant concept. Moreover, the gravity threshold criterions and the role of this concept in situation and cases also have been analyzed. Finally, it is concluded that due to political considerations, the clarification of gravity threshold is seriously needed.
Value versus Growth International Real Estate Investment
Addae-Dapaah, K.; Webb, J. R.; Kim Hin Ho, D.; Hiang Liow, K.
2013-01-01
We use office and retail properties return data for the United States and some Asia Pacific cities to ascertain the relative performance of value and growth investment strategies. The results reveal that value portfolios outperform growth portfolios. Furthermore, while the results show that risk varies over time, time-varying risk analyses generally do not support the risk-based explanation for the value premium. Similarly, conditional market regressions do not explain the value premium anoma...
Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation
Hinson, D. P.; Tyler, G. L.
1983-01-01
The radio scintillations caused by scattering from small-scale irregularities in Titan's neutral atmosphere during a radio occultation of Voyager 1 by Titan are investigated. Intensity and frequency fluctuations occurred on time scales from about 0.1 to 1.0 sec at 3.6 and 13 cm wavelengths whenever the radio path passed within 90 km of the surface, indicating the presence of variations in refractivity on length scales from a few hundred meters to a few kilometers. Above 25 km, the altitude profile of intensity scintillations closely agrees with the predictions of a simple theory based on the characteristics of internal gravity waves propagating with little or no attenuation through the vertical stratification in Titan's atmosphere. These observations support a hypothesis of stratospheric gravity waves, possibly driven by a cloud-free convective region in the lowest few kilometers of the stratosphere.
Contributions from the Second and Third Internal Gravity Modes for the Vertical Motion Response.
Directory of Open Access Journals (Sweden)
Julio Buchmann
2008-07-01
Full Text Available In earlier papers of a series of real data integrations of the National Center for Atmospheric Research Community ClimateModel with tropical heat anomalies display regions of pronounced subsidence and drying located several thousand kilometers westwardpoleward of the heating for cases of tropical Atlantic heating and tropical east Pacifi c heating. This highly predictable sinking responseis established within the fi rst fi ve days of these integrations. The normal-modes of a set of adiabatic primitive equations linearizedabout a basic state at rest are used to partition model response into gravity-inertia and Rossby modes. The most important contributionfor the vertical motion response comes from the gravity modes added for all vertical modes. The principal emphasis is given upon thecontributions of the second and third internal vertical modes (with equivalent depths on the order of a fews hundred meters for thevertical motion response.
Farsoiya, Palas Kumar; Dasgupta, Ratul
2017-11-01
When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.
Lin, Ying-Tsong; McMahon, Kara G; Lynch, James F; Siegmann, William L
2013-01-01
The acoustic ducting effect by curved nonlinear gravity waves in shallow water is studied through idealized models in this paper. The internal wave ducts are three-dimensional, bounded vertically by the sea surface and bottom, and horizontally by aligned wavefronts. Both normal mode and parabolic equation methods are taken to analyze the ducted sound field. Two types of horizontal acoustic modes can be found in the curved internal wave duct. One is a whispering-gallery type formed by the sound energy trapped along the outer and concave boundary of the duct, and the other is a fully bouncing type due to continual reflections from boundaries in the duct. The ducting condition depends on both internal-wave and acoustic-source parameters, and a parametric study is conducted to derive a general pattern. The parabolic equation method provides full-field modeling of the sound field, so it includes other acoustic effects caused by internal waves, such as mode coupling/scattering and horizontal Lloyd's mirror interference. Two examples are provided to present internal wave ducts with constant curvature and meandering wavefronts.
Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael
2017-11-01
We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.
National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...
National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...
Group theory approach to unification of gravity with internal symmetry gauge interactions. Part 1
International Nuclear Information System (INIS)
Samokhvalov, S.E.; Vanyashin, V.S.
1990-12-01
The infinite group of deformed diffeomorphisms of space-time continuum is put into the basis of the Gauge Theory of Gravity. This gives rise to some new ways for unification of gravity with other gauge interactions. (author). 7 refs
Kepaptsoglou, Konstantinos; Karlaftis, Matthew G.; Tsamboulas, Dimitrios
2010-01-01
The gravity model has been extensively used in international trade research for the last 40 years because of its considerable empirical robustness and explanatory power. Since their introduction in the 1960's, gravity models have been used for assessing trade policy implications and, particularly recently, for analyzing the effects of Free Trade Agreements on international trade. The objective of this paper is to review the recent empirical literature on gravity models, highlight best practic...
International Fisheries Agreements and Non-consumptive Values
DEFF Research Database (Denmark)
Pintassilgo, Pedro; Laukkanen, Marita; Kronbak, Lone Grønbæk
The management of internationally shared fish stocks is a major economic, environmental and political issue. According to international law, these resources should be managed cooperatively under international fisheries agreements (IFAs). This paper studies the formation and stability of IFAs...... larger than without non- consumptive values under all possible coalition scenarios (full, partial and no cooperation). However, considering non-consumptive values does not affect the outcome of the game in terms of the prospects for cooperation: even with substantial non-consumptive benefits, the outcome...... is full non-cooperation. Hence, the trap of non-cooperation in international fisheries management cannot be overcome simply by explicitly accounting for non-consumptive values within IFAs. It is suggested that strengthening the role of IFAs and limiting the ability of non- member countries to free...
International Accounting Convergence in the Field of Fair Value Measurement
Directory of Open Access Journals (Sweden)
Diana Cozma Ighian
2015-09-01
Full Text Available The investors’ desire for high-quality, internationally comparable financial information that is useful for decision-making in increasingly global capital markets imposed an international convergence, the ultimate goal of which is a single set of international accounting standards that companies worldwide would use for both domestic and cross-border financial reporting. The guidance, set out in IFRS 13 Fair Value Measurement and the update to Topic 820 (formerly referred to as SFAS 157, completes a major project of the boards’ joint work to improve IFRSs and US GAAP and to bring about their convergence. This article describes the controversial history of fair value measurement and the main novelties in the field of fair value measurement, arising from the international convergence process.
Jaeggi, Adrian; Weigelt, Matthias; Flechtner, Frank; Guentner, Andreas; Mayer-Gürr, Torsten; Martinis, Sandro; Bruinsma, Sean; Flury, Jakob; Bourgogne, Stephane
2015-04-01
A proposal for a European Gravity Service for Improved Emergency Management (EGSIEM) has been submitted in response to the Earth Observation Call EO-1-2014 of the Horizon 2020 Framework Programme. EGSIEM shall demonstrate that observations of the redistribution of water and ice mass derived from the current GRACE mission, the future GRACE-FO mission, and additional data provide critical and complementary information to more traditional Earth Observation products and open the door for innovative approaches to flood and drought monitoring and forecasting. The EGSIEM project has recently started in January 2015. We present the three key objectives that EGSIEM shall address: 1) to establish a scientific combination service to deliver the best gravity products for applications in Earth and environmental science research based on the unified knowledge of the European GRACE community, 2) to establish a near real-time and regional service to reduce the latency and increase the temporal resolution of the mass redistribution products, and 3) to establish a hydrological and early warning service to develop gravity-based indicators for extreme hydrological events and to demonstrate their value for flood and drought forecasting and monitoring services. All of these services shall be tailored to the various needs of the respective communities. Significant efforts shall be devoted to transform the service products into user-friendly and easy-to-interpret data sets and the development of visualization tools.
Cultural value orientations, internalized homophobia, and accommodation in romantic relationships.
Gaines, Stanley O; Henderson, Michael C; Kim, Mary; Gilstrap, Samuel; Yi, Jennifer; Rusbult, Caryl E; Hardin, Deletha P; Gaertner, Lowell
2005-01-01
In the present study, we examined the impact of cultural value orientations (i.e., the personally oriented value of individualism, and the socially oriented values of collectivism, familism, romanticism, and spiritualism) on accommodation (i.e., voice and loyalty, rather than exit and neglect, responses to partners' anger or criticism) in heterosexual and gay relationships; and we examined the impact of internalized homophobia (i.e., attitudes toward self, other, and disclosure) on accommodation specifically in gay relationships. A total of 262 heterosexuals (102 men and 162 women) and 857 gays (474 men and 383 women) participated in the present study. Consistent with hypotheses, among heterosexuals and gays, socially oriented values were significantly and positively related to accommodation (whereas the personally oriented value of individualism was unrelated to accommodation); and among gays in particular, internalized homophobia was significantly and negatively related to accommodation. Implications for the study of heterosexual and gay relationships are discussed.
Analysis of International Accounting Regulations with Regards to Fair Value
Directory of Open Access Journals (Sweden)
Diana COZMA IGHIAN
2010-08-01
Full Text Available Unifying the economical-financial information at an international level represents today, within the context of the globalization and integration of the financial markets around the world, an important and urgent demand. One of the coordinates of accounting globalization is the fair value based valuation system. This tendency arises from the contents of international accounting standards and from the progress of world-wide regulating practice. The economic and market events of the past years have highlighted the importance of fair value measurements used in financial statements and have emphasized the need for consistency and comparability in those measurements infinancial statements prepared around the globe.
International Business Models Developed Through Brokerage Knowledge and Value Creation
DEFF Research Database (Denmark)
Petersen, Nicolaj Hannesbo; Rasmussen, Erik Stavnsager
This paper highlights theoretically and empirically international business model decisions in networks with knowledge sharing and value creation. The paper expands the conceptual in-ternational business model framework for technology-oriented companies to include the focal firm’s network role...... and strategic fit in a global embeddedness. The brokerage role in the in-ternationalization of a network is discussed from both a theoretical and empirical point of view. From a business model and social network analysis perspective, this paper will show how firms and network grow internationally through two...
Propagation of 3D internal gravity wave beams in a slowly varying stratification
Fan, Boyu; Akylas, T. R.
2017-11-01
The time-mean flows induced by internal gravity wave beams (IGWB) with 3D variations have been shown to have dramatic implications for long-term IGWB dynamics. While uniform stratifications are convenient both theoretically and in the laboratory, stratifications in the ocean can vary by more than an order of magnitude over the ocean depth. Here, in view of this fact, we study the propagation of a 3D IGWB in a slowly varying stratification. We assume that the stratification varies slowly relative to the local variations in the wave profile. In the 2D case, the IGWB bends in response to the changing stratification, but nonlinear effects are minor even in the finite amplitude regime. For a 3D IGWB, in addition to bending, we find that nonlinearity results in the transfer of energy from waves to a large-scale time-mean flow associated with the mean potential vorticity, similar to IGWB behavior in a uniform stratification. In a weakly nonlinear setting, we derive coupled evolution equations that govern this process. We also use these equations to determine the stability properties of 2D IGWB to 3D perturbations. These findings indicate that 3D effects may be relevant and possibly fundamental to IGWB dynamics in nature. Supported by NSF Grant DMS-1512925.
Spectral decomposition of internal gravity wave sea surface height in global models
Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis
2017-10-01
Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.
Giersch International Symposion 2016 : Week 1 : Experimental Search for Quantum Gravity
Experimental Search for Quantum Gravity
2018-01-01
This book summarizes recent developments in the research area of quantum gravity phenomenology. A series of short and nontechnical essays lays out the prospects of various experimental possibilities and their current status. Finding observational evidence for the quantization of space-time was long thought impossible. In the last decade however, new experimental design and technological advances have changed the research landscape and opened new perspectives on quantum gravity. Formerly dominated by purely theoretical constructions, quantum gravity now has a lively phenomenology to offer. From high precision measurements using macroscopic quantum oscillators to new analysis methods of the cosmic microwave background, no stone is being left unturned in the experimental search for quantum gravity. This book sheds new light on the connection of astroparticle physics with the quantum gravity problem. Gravitational waves and their detection are covered. It illustrates findings from the interconnection between gene...
The value of international prostate symptom scoring system in the ...
African Journals Online (AJOL)
2012-04-10
Apr 10, 2012 ... Abstract. Objective: To determine the value of international prostate symptom scoring (IPSS) system in management of patients with benign prostatic ... negative effects it has on quality of life.[3]. In any disease, measuring ... pelvic ultrasound, cystoscopy to exclude bladder pathology, quantitative PSA, and ...
Shades of African values and interests in Nigeria's international ...
African Journals Online (AJOL)
Shades of African values and interests in Nigeria's international relations: investigating the gains and the costs, 1960 – 2014. ... of policies that ensure that the country recovers all she lost in her years of naivety in I.R. The study adopted the historical methodology which emphasizes critical analyses and interpretation of facts.
Human Rights and Values Education: Using the International Standards.
Reardon, Betty A.
1994-01-01
Asserts that, in teaching about human rights, the international standards should be the fundamental core of the content and values to be communicated. Recommends that teachers should use the Universal Declaration of Human Rights as the standard by which the actions of individuals and governments should be compared. (CFR)
Internal gravity, self-energy, and disruption of comets and asteroids
Dobrovolskis, Anthony R.; Korycansky, D. G.
2018-03-01
The internal gravity and self-gravitational energy of a comet, asteroid, or small moon have applications to their geophysics, including their formation, evolution, cratering, and disruption, the stresses and strains inside such objects, sample return, eventual asteroid mining, and planetary defense strategies for potentially hazardous objects. This paper describes the relation of an object's self-energy to its collisional disruption energy, and shows how to determine an object's self-energy from its internal gravitational potential. Any solid object can be approximated to any desired accuracy by a polyhedron of sufficient complexity. An analytic formula is known for the gravitational potential of any homogeneous polyhedron, but it is widely believed that this formula applies only on the surface or outside of the object. Here we show instead that this formula applies equally well inside the object. We have used these formulae to develop a numerical code which evaluates the self-energy of any homogeneous polyhedron, along with the gravitational potential and attraction both inside and outside of the object, as well as the slope of its surface. Then we use our code to find the internal, external, and surface gravitational fields of the Platonic solids, asteroid (216) Kleopatra, and comet 67P/Churyumov-Gerasimenko, as well as their surface slopes and their self-gravitational energies. We also present simple spherical, ellipsoidal, cuboidal, and duplex models of Kleopatra and comet 67P, and show how to generalize our methods to inhomogeneous objects and magnetic fields. At present, only the self-energies of spheres, ellipsoids, and cuboids (boxes) are known analytically (or semi-analytically). The Supplementary Material contours the central potential and self-energy of homogeneous ellipsoids and cuboids of all aspect ratios, and also analytically the self-gravitational energy of a "duplex" consisting of two coupled spheres. The duplex is a good model for "contact binary
International trade and monopolistic competition without\\ud CES : estimating translog gravity\\ud
Novy, Dennis
2010-01-01
This paper derives a micro-founded gravity equation in general equilibrium based on a translog demand system that allows for endogenous markups and rich substitution patterns across goods. In contrast to standard CES-based gravity equations, trade is more sensitive to trade costs if the exporting country only provides a small share of the destination country?s imports. As a result, trade costs have a heterogeneous impact across country pairs, with some trade flows predicted to be zero. I test...
Newell, D. B.
2012-12-01
As outlined in Resolution 1 of the 24th Meeting of the General Conference on Weights and Measures (CGPM) on the future revision of the International System of Units (SI) [1], the current four SI base units the kilogram, the ampere, the kelvin and the mole, will be redefined in terms of invariants of nature. The new definitions will be based on fixed numerical values of the Planck constant (h), the elementary charge (e), the Boltzmann constant (k), and the Avogadro constant (NA), respectively. While significant progress has been made towards providing the necessary experimental results for the redefinition, some disagreement among the relevant data remain. Among the set of discrepant data towards the redefinition of the SI are the determinations of the Planck constant from the National Institute of Standards and Technology (NIST) watt balance [2] and the recent result from the National Research Council Canada (NRC) watt balance [3], with the discrepancy of roughly 2.5 parts in 107 being significantly outside the reported uncertainties. Of major concern is that the watt balance experiment is seen as a key component of a mise en pratique for the new kilogram definition, once such a redefinition takes place. The basic operational principle of a watt balance relates the Planck constant to mass, length, and time through h = mgvC, where m is the mass of an artifact mass standard, g is the local acceleration of gravity, v is a velocity, and C is a combination of frequencies and scalar constants. With the total uncertainty goal for the watt balance on the order of a few parts in 108, g needs to be determined at the location of the mass standard to parts in 109 such that its uncertainty is negligible in the final watt balance result. NIST and NRC have formed a collaborative effort to reconcile the relevant discrepant data and provide further progress towards preparing and testing a mise en pratique for the new kilogram definition. As an initial step, direct comparisons of
The internal gravity wave spectrum in two high-resolution global ocean models
Arbic, B. K.; Ansong, J. K.; Buijsman, M. C.; Kunze, E. L.; Menemenlis, D.; Müller, M.; Richman, J. G.; Savage, A.; Shriver, J. F.; Wallcraft, A. J.; Zamudio, L.
2016-02-01
We examine the internal gravity wave (IGW) spectrum in two sets of high-resolution global ocean simulations that are forced concurrently by atmospheric fields and the astronomical tidal potential. We analyze global 1/12th and 1/25th degree HYCOM simulations, and global 1/12th, 1/24th, and 1/48th degree simulations of the MITgcm. We are motivated by the central role that IGWs play in ocean mixing, by operational considerations of the US Navy, which runs HYCOM as an ocean forecast model, and by the impact of the IGW continuum on the sea surface height (SSH) measurements that will be taken by the planned NASA/CNES SWOT wide-swath altimeter mission. We (1) compute the IGW horizontal wavenumber-frequency spectrum of kinetic energy, and interpret the results with linear dispersion relations computed from the IGW Sturm-Liouville problem, (2) compute and similarly interpret nonlinear spectral kinetic energy transfers in the IGW band, (3) compute and similarly interpret IGW contributions to SSH variance, (4) perform comparisons of modeled IGW kinetic energy frequency spectra with moored current meter observations, and (5) perform comparisons of modeled IGW kinetic energy vertical wavenumber-frequency spectra with moored observations. This presentation builds upon our work in Muller et al. (2015, GRL), who performed tasks (1), (2), and (4) in 1/12th and 1/25th degree HYCOM simulations, for one region of the North Pacific. New for this presentation are tasks (3) and (5), the inclusion of MITgcm solutions, and the analysis of additional ocean regions.
Multifractal singular value decomposition (MSVD) for extraction of marine gravity anomaly
LYU, Wenchao; Zhu, Benduo; Qiu, Yan
2015-04-01
The concept of singularity is used for characterizing different types of nonlinear natural processes, including volcanic eruptions, faults, cloud formation, landslides, rainfall, hurricanes, flooding, earthquakes, wildfires, oil fields and mineralization. The singularity often results in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval.The marine gravitation field has multi-fractal features, which show different scale invariant properties in region and local field. The SVD can be used in geophysical data processing for signal and noise separation, radar processing for enhancing weak signals in vertical seismic profiles (VSP). It has also been used in multi component seismic polarization filters and evaluating the amount of wavy reflections in ground-penetrating radar (GPR) images of base surge deposits. With the SVD, a matrix X can be decomposed to a series of eigenvalues. The eigenvalues conformed fractal or multi-fractal distribution described with the power-law function. The multi-fractal SVD can be used for feature extraction and anomaly identification for marine gravity investigation.This paper aims to analyze the marine gravitation data using the SVD and multifractal methods. This paper will also aim to more clearly define the spatial relationship between marine mineralization and the deep geological structures in the field by extracting the marine gravitation information at a particular frequency to provide valuable in depth evidence for predicting new deposits and deep tectonic.
The Value of Science Policy Internships to Interns and Employers
Landau, E. A.
2014-12-01
My interns often look at me wide-eyed when I tell them to approach a Member of Congress at a congressional reception and introduce themselves. I understand their shock, as I once had the same experience. This presentation will look at the internship experience from the perspective of the intern and the employer, describing the value of the internship to each. I will detail my experience as an intern in the American Geosciences Institute Government Affairs Program, and my current position as the creator and hiring manager of the American Geophysical Union Public Affairs Department internship. This perspective will be augmented by information from recent AGU Public Affairs interns. Internships equate to experience, one critical and often underdeveloped component of a student or recent graduate's resume. Each of these internships offers the unique opportunity for students and recent graduates of geophysical science programs to immerse themselves in the science policy field, doing work alongside professionals and serving as an important part of their respective work environment. The networking opportunities and skills learned are highly valuable to those building their resumes and trying to break into the field - or simply figuring out what future career path to take. Scientific societies see value in investing in the next generation of scientific leaders and ensuring their perspective includes an understanding of science policy and the societal impacts of science. These internship experiences are often eye-opening and sometimes career-changing.
1980-12-01
changes of the order of 500 mgal to 3000 mgal. These findings resulted in a series of tests (Woollard, 1964) to esta - blish the cause of the... Ruinas de Sopan 978.2140 .199 39* -14.61 WA 4012 Tegucigalpa 978.0869 .072 32* -14.58 NICARAGUA wiA 4013 Managua 978.2858 .270 92* -14.88 Managua "K
Reasoning about the value of cultural awareness in international collaboration
Directory of Open Access Journals (Sweden)
Helena Bernáld
Full Text Available As international collaborations become a part of everyday life, cultural awareness becomes crucial for our ability to work with people from other countries. People see, evaluate, and interpret things differently depending on their cultural background and cultural awareness. This includes aspects such as appreciation of different communication patterns, the awareness of different value systems and, not least, to become aware of our own cultural values, beliefs and perceptions. This paper addresses the value of cultural awareness in general through describing how it was introduced in two computer science courses with a joint collaboration between students from the US and Sweden. The cultural seminars provided to the students are presented, as well as a discussion of the students\\' reflections and the teachers\\' experiences. The cultural awareness seminars provided students with a new understanding of cultural differences which greatly improved the international collaboration. Cultural awareness may be especially important for small countries like New Zealand and Sweden, since it could provide an essential edge in collaborations with representatives from more \\'powerful\\' countries.
National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...
Human Rights, Fundamental Freedoms and Universal Values in International Relations
Directory of Open Access Journals (Sweden)
Lev S. Voronkov
2016-01-01
Full Text Available The author analyzes the evolution of human rights and fundamental freedoms in domestic political life of individual states and in international relations as well over the latest two centuries. The article traces the role of struggle for liberal political human rights and civilian freedoms in the dismantling of the feudal-absolutist regimes as well as the challenges of radical left-wing (communist and far right-wing (national-socialistic threats to be met by the supporters of liberal political rights and civil freedoms in the interwar period. The list of human rights and fundamental freedoms had constantly been updating in the postwar period, including by the efforts of the UNO and other international organizations, and fixing in different international documents. The author emphasizes the import role of the Conference on Security and Cooperation in Europe (CSCE in transforming the issues of human rights and fundamental freedoms into the essential element of public diplomacy of contemporary states. He traces the process of the increasing utilization of liberal political rights and civilian freedoms, which are usually the effective tools for domestic democratic transformation, within the framework of diplomatic practice of European and North-American states, aimed at ensuring their political and economic interests on the world stage. In this regard the author addresses the attempts of Western countries to legalize "humanitarian"interventions in circumvention of the UN Security Council. The article emphasizes the necessity to replenish the understanding of universal human rights and freedoms by the values, developed both by the international community within the framework of implementing the Millennium Development Goals and by various countries and peoples, which in sum constitute the modern international civilizational baggage.
Voigt, C.; Denker, H.; Timmen, L.
2016-12-01
The latest generation of optical atomic clocks is approaching the level of one part in 1018 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m2 s-2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 1018. The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m2 s-2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m2 s-2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m2 s-2, while the range of the potential between specific laboratories is 0.3 and 1.1 m2 s-2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10-17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10-18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage.
Bora, Dipok K.; Borah, Kajaljyoti; Mahanta, Rinku; Borgohain, Jayanta Madhab
2018-03-01
b-value is one of the most significant seismic parameters for describing the seismicity of a given region at a definite time window. In this study, high-resolution map of the Gutenberg-Richter b-value, seismic moment-release, Bouguer gravity anomaly and fault-plane solutions containing faulting styles are analyzed in the Indo-Burma ranges of northeast India using the unified and homogeneous part of the seismicity record in the region (January 1964-December 2016). The study region is subdivided into few square grids of geographical window size 1° × 1° and b-values are calculated in each square grid. Our goal is to explore the spatial correlations and anomalous patterns between the b-value and parameters like seismic moment release, Bouguer gravity anomaly and faulting styles that can help us to better understand the seismotectonics and the state of present-day crustal stress within the Indo-Burma region. Most of the areas show an inverse correlation between b-value and seismic moment release as well as convergence rates. While estimating the b-value as a function of depth, a sudden increase of b-value at a depth of 50-60 km was found out and the receiver function modeling confirms that this depth corresponds to the crust-mantle transition beneath the study region. The region is also associated with negative Bouguer gravity anomalies and an inverse relation is found between Gravity anomaly and b-value. Comparing b-values with different faulting styles, reveal that the areas containing low b-values show thrust mechanism, while the areas associated with intermediate b-values show strike-slip mechanism. Those areas, where the events show thrust mechanism but containing a strike-slip component has the highest b-value.
The international regulation of Informal Value Transfer Systems
Directory of Open Access Journals (Sweden)
Anand Ajay Shah
2007-12-01
Full Text Available After the 11th September 2001 attacks on the United States international attention quickly focused on the sources and methods of terrorist financing. Among the methods terrorists and other criminal actors use to transfer funds are Informal Value Transfer Systems (IVTS which operate either outside the formal financial sector, or through use of the formal financial sector, but without leaving a full record of the transaction. Though the vast majority of funds moved through IVTS are the earnings of migrant workers and immigrant communities, the lack of uniform worldwide regulation of IVTS provides ample opportunity for abuse and misuse. The international community primarily responded to IVTS concerns through the Financial Action Task Force on Money Laundering, which issued a series of recommendations and best practices for states in regulating IVTS operations. While these recommendations are a secure beginning to regulation of IVTS operating within ethnic communities, they fail to address the more modern forms of IVTS that have come about in the post-Cold War globalised world. Comprehensive recommendations governing all types of IVTS, as well as concerted international cooperation and coordination are necessary to address this global phenomenon.
Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.
2018-04-01
We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.
Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves.
Ripepe, M; Barfucci, G; De Angelis, S; Delle Donne, D; Lacanna, G; Marchetti, E
2016-11-10
Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.
Modulation of internal estimates of gravity during and after prolonged roll-tilts.
Directory of Open Access Journals (Sweden)
Alexander A Tarnutzer
Full Text Available Perceived direction of gravity, as assessed by the subjective visual vertical (SVV, shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56 yo repetitively adjusted a luminous arrow to the SVV over periods of 5 min while upright, roll-tilted (± 45°, ± 90°, and immediately after returning to upright. Significant (p<0.05 drifts (median absolute drift-amplitude: 10°/5 min were found in 71% (± 45° and 78% (± 90° of runs. At ± 90° roll-tilt significant increases in absolute adjustment errors were more likely (76%, whereas significant increases (56% and decreases (44% were about equally frequent at ± 45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71 sec was noted in 47% of all runs (all subjects pooled. No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central
Modulation of Internal Estimates of Gravity during and after Prolonged Roll-Tilts
Tarnutzer, Alexander A.; Bertolini, Giovanni; Bockisch, Christopher J.; Straumann, Dominik; Marti, Sarah
2013-01-01
Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56yo) repetitively adjusted a luminous arrow to the SVV over periods of 5min while upright, roll-tilted (±45°, ±90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5min) were found in 71% (±45°) and 78% (±90°) of runs. At ±90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ±45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central adaptation, most
Directory of Open Access Journals (Sweden)
Soner Gokten
2017-06-01
Full Text Available Value Creation Reporting: Answering the Question ‘Value to Whom’ according to the International Integrated Reporting Framework The principal function of integrated reporting is the reporting of value and this phenomenon seems the most philosophical part of the International Framework. This paper discusses what the value concept refers to in the Framework: Value to investors, value to society or value to present and future generations? In this sense, we try to answer this question by highlighting the dynamics of capital formations according to interrelations between capitals and demonstrating the value creation process in the short, medium, and longer term. We show that (1 „profit” is the result of short term value creation, which indicates the „value to value chain stakeholders”, (2 „expected fair value of equity” represents the „value to investors” and (3 „longer term value” represents the „value to society” according to the International Framework. Additionally, we touch on the inadequacies of the current Framework and suggest future research opportunities within the scope of value creation reporting. To our knowledge, this study is the first to provide a detailed framework on the dynamics of capitals usage and it attempts to show the intersection of accounting and finance in terms of value creation reporting.
Conformal internal symmetry of 2d σ-models coupled to gravity and a dilaton
International Nuclear Information System (INIS)
Julia, B.; Nicolai, H.
1996-08-01
General relativity reduced to two dimensions possesses a large group of symmetries that exchange classical solutions. The associated Lie algebra is known to contain the affine Kac-Moody algebra A 1 (1) and half of a real Witt algebra. In this paper we exhibit the full symmetry under the semi-direct product of Lie(A 1 (1) ) by the Witt algebra Lie(W). Furthermore we exhibit the corresponding hidden gauge symmetries. We show that the theory can be understood in terms of an infinite dimensional potential space involving all degrees of freedom: The dilaton as well as matter and gravitation. In the dilaton sector the linear system that extends the previously known Lax pair has the form of a twisted self-duality constraint that is the analog of the self-duality constraint arising in extended supergravities in higher spacetime dimensions. Our results furnish a group theoretical explanation for the simultaneous occurrence of two spectral parameters, a constant one (=y) and a variable one (=t). They hold for all 2d non-linear σ-models that are obtained by dimensional reduction of G/H models in three dimensions coupled to pure gravity. In that case the Lie algebra is Lie(W∝G (1) ); this symmetry acts on a set of off shell fields (in a fixed gauge) and preserves the equations of motion. (orig.)
Conformal internal symmetry of 2d σ-models coupled to gravity and a dilaton
International Nuclear Information System (INIS)
Julia, B.
1996-01-01
General relativity reduced to two dimensions possesses a large group of symmetries that exchange classical solutions. The associated Lie algebra is known to contain the affine Kac-Moody algebra A 1 (1) and half of a real Witt algebra. In this paper we exhibit the full symmetry under the semi-direct product of Lie(A 1 (1) ) by the Witt algebra Lie(W). Furthermore we exhibit the corresponding hidden gauge symmetries. We show that the theory can be understood in terms of an infinite dimensional potential space involving all degrees of freedom: the dilaton as well as matter and gravitation. In the dilaton sector the linear system that extends the previously known Lax pair has the form of a twisted self-duality constraint that is the analog of the self-duality constraint arising in extended supergravities in higher space-time dimensions. Our results furnish a group theoretical explanation for the simultaneous occurrence of two spectral parameters, a constant one (=y) and a variable one (=t). They hold for all 2d non-linear σ-models that are obtained by dimensional reduction of G/H models in three dimensions coupled to pure gravity. (orig./WL) (orig.)
Work Values of Lithuanian University Students: Internal Structure
Directory of Open Access Journals (Sweden)
Vincentas Lamanauskas
2017-04-01
Full Text Available Individual’s work values define his/her career purposefulness. Individual’s chosen work values allow foreseeing what activity context and career model is important for him/her, seeking to successfully realize oneself in professional activity. Planning his/her professional career an individual is searching for the activity sphere, which could conform not only to his/her personal features, but also to his/her value orientations. Work values important for the individual allow realizing if they form conditions for planning modern career (successfully solve constantly changing activity problems and to correspond to always new raised requirements for a person in the organisation or in labour market, the realisation of which in today’s constantly changing labour market and social context becomes more and more problematic. Empiric research was carried out seeking to discover the work (activity value structure. The research instrument was created by the authors of the research. Two hundred sixty five first-year students from three Lithuanian universities participated in the research. These are the main higher education institutions, preparing teachers in Lithuania. The obtained results show that work value structure of the first year students studying in social and humanitarian science programmes can be expressed by 6 main factors: responsible activity values, active work values, harmony values, reward values, activity style values, and social status values. Also, the main differences were ascertained between female and male work value structure. Responsible activity values, active work values and harmony values were much more important for female than male students.
Cultural value orientations, internalized homophobia, and accommodation in romantic relationships
Gaines, S.O.; Henderson, M.C.; Kim, M.; Gilstrap, S.; Yi, J.; Rusbult, C.E.; Hardin, D.P.; Gaertner, L.A.
2005-01-01
In the present study, we examined the impact of cultural value orientations (i.e., the personally oriented value of individualism, and the socially oriented values of collectivism, familism, romanticism, and spiritualism) on accommodation (i.e., voice and loyalty, rather than exit and neglect,
Rider, Elizabeth A; Kurtz, Suzanne; Slade, Diana; Longmaid, H Esterbrook; Ho, Ming-Jung; Pun, Jack Kwok-hung; Eggins, Suzanne; Branch, William T
2014-09-01
The human dimensions of healthcare--core values and skilled communication necessary for every healthcare interaction--are fundamental to compassionate, ethical, and safe relationship-centered care. The objectives of this paper are to: describe the development of the International Charter for Human Values in Healthcare which delineates core values, articulate the role of skilled communication in enacting these values, and provide examples showing translation of the Charter's values into action. We describe development of the Charter using combined qualitative research methods and the international, interprofessional collaboration of institutions and individuals worldwide. We identified five fundamental categories of human values for every healthcare interaction--Compassion, Respect for Persons, Commitment to Integrity and Ethical Practice, Commitment to Excellence, and Justice in Healthcare--and delineated subvalues within each category. We have disseminated the Charter internationally and incorporated it into education/training. Diverse healthcare partners have joined in this work. We chronicle the development and dissemination of the International Charter for Human Values in Healthcare, the role of skilled communication in demonstrating values, and provide examples of educational and clinical programs integrating these values. The Charter identifies and promotes core values clinicians and educators can demonstrate through skilled communication and use to advance humanistic educational programs and practice. Copyright © 2014. Published by Elsevier Ireland Ltd.
The international educational exchanges: history and modern value
Directory of Open Access Journals (Sweden)
L S Astafeva
2009-09-01
Full Text Available In article the history, a current state and prospects of development of the international educational exchanges is considered. Influence world processes of globalisation and internationalisation on educational processes of multinational high schools is shown.
Gunnestad, Arve; Mørreaunet, Sissel; Onyango, Silas
2015-01-01
This article highlights value learning in kindergartens exemplified by the value of forgiveness. Values are basic ideas on human behaviour and they function as a compass that helps children to make choices and priorities in their lives, to choose between good or bad, right or wrong. Value learning is an important part of the educational work in a…
Properties of internal planetary-scale inertio gravity waves in the mesosphere
Directory of Open Access Journals (Sweden)
H. G. Mayr
2004-11-01
Full Text Available At high latitudes in the upper mesosphere, horizontal wind oscillations have been observed with periods around 10h. Waves with such a period are generated in our Numerical Spectral Model (NSM, and they are identified as planetary-scale inertio gravity waves (IGW. These IGWs have periods between 9 and 11h and appear above 60km in the zonal mean (m=0, as well as in m=1 to 4, propagating eastward and westward. Under the influence of the Coriolis force, the amplitudes of the waves propagating westward are larger at high latitudes than those propagating eastward. The waves grow in magnitude at least up to about 100km and have vertical wavelengths around 25km. Applying a running window of 15 days for spectral analysis, the amplitudes in the wind field are typically between 10 and 20m/s and can reach 30m/s in the westward propagating component for m=1 at the poles. In the temperature perturbations, the wave amplitudes above 100km are typically 5K and as large as 10K for m=0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. Numerical experiments show that such waves are also generated without excitation of the migrating tides. The amplitudes and periods then are similar, indicating that the tides are not essential to generate the waves. However, the seasonal variations without tides are significantly different, which leads to the conclusion that non linear interactions between the semidiurnal tide and planetary waves must contribute to the excitation of the IGWs. Directly or indirectly through the planetary waves, the IGWs are apparently excited by the instabilities that arise in the zonal mean circulation. When the solar heating is turned off for m=0, both the PWs and IGWs essentially disappear. That the IGWs and PWs have common roots in their excitation mechanism is also indicated by the striking similarity of their seasonal variations in the
Key-value store with internal key-value storage interface
Energy Technology Data Exchange (ETDEWEB)
Bent, John M.; Faibish, Sorin; Ting, Dennis P. J.; Tzelnic, Percy; Gupta, Uday; Grider, Gary; Bonnie, David J.
2018-01-16
A key-value store is provided having one or more key-value storage interfaces. A key-value store on at least one compute node comprises a memory for storing a plurality of key-value pairs; and an abstract storage interface comprising a software interface module that communicates with at least one persistent storage device providing a key-value interface for persistent storage of one or more of the plurality of key-value pairs, wherein the software interface module provides the one or more key-value pairs to the at least one persistent storage device in a key-value format. The abstract storage interface optionally processes one or more batch operations on the plurality of key-value pairs. A distributed embodiment for a partitioned key-value store is also provided.
Near-surface current meter array measurements of internal gravity waves
Energy Technology Data Exchange (ETDEWEB)
Jones, H.B.E. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
We have developed various processing algorithms used to estimate the wave forms produced by hydrodynamic Internal Waves. Furthermore, the estimated Internal Waves are used to calculate the Modulation Transfer Function (MTF) which relates the current and strain rate subsurface fields to surface scattering phenomenon imaged by radar. Following a brief discussion of LLNL`s measurement platform (a 10 sensor current meter array) we described the generation of representative current and strain rate space-time images from measured or simulated data. Then, we present how our simulation capability highlighted limitations in estimating strain rate. These limitations spurred the application of beamforming techniques to enhance our estimates, albeit at the expense of collapsing our space-time images to 1-D estimates. Finally, we discuss progress with regard to processing the current meter array data captured during the recent Loch Linnhe field trials.
Indian values of tissue weighting factors for internal dosimetry
International Nuclear Information System (INIS)
Mehta, S.K.
1995-01-01
In the present work the induced cancer component of detriment by the relative risk (RR) as well as US National Institute of Health (NIH) models using Indian organ based baseline cancer data and the all-causes mortality of the Indian population has been estimated. The Indian values of tissue weighting factors (W T ) have been worked out by the ICRP-60 methodology. The Indian values of detriment from the exposure of principal organs stomach, lung, colon and bone marrow are factors of 1.5 to 2.5 lower than the corresponding ICRP values. The Indian values of W T differ significantly from the ICRP five population average values. A tissue weighting factor of 0.08 for breast, colon, lung and stomach for the Indian population is more appropriate than the ICRP assigned factors of 0.05, 0.12, 0.12 and 0.12 respectively for these organs. For gonads, the appropriate Indian factor is 0.29 instead of the ICRP value of 0.20. The use of appropriate Indian values of W T is advocated for the Indian population in special investigation cases requiring regulatory intervention. (author). 11 refs., 11 figs., 4 tabs
Internal and external communication. A tool for value creation
International Nuclear Information System (INIS)
Cruz, J.
2009-01-01
Communication both internal and external in the Cofrentes Nuclear Power plant has become an essential element. In fact, it always has been. Over the past 25 years, we have strived to consolidate communication plans that, today, provided us with a large body of knowledge in this field. (Author)
Character Values and Their Internalization in Teaching and Learning English at Madrasah
Islami, Milad
2016-01-01
In addition to communicating intellectual-based concepts such as ideas, belief and thought, language is used to communicate norms, values and emotions. As the result, it is important to internalize the character values into the teaching and learning activity of English. The study describes the analysis of the internalization of character values.…
Directory of Open Access Journals (Sweden)
Claudia de Rham
2014-08-01
Full Text Available We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP, cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alternative and related models of massive gravity such as new massive gravity, Lorentz-violating massive gravity and non-local massive gravity.
Cultivating characters (moral value) through internalization strategy in science classroom
Ibrahim, M.; Abadi
2018-01-01
It is still in a crucial debate that characters play an important learning outcome to be realized by design. So far, most people think that characters were reached as nurturance effect with the assumption that students who are knowledgeable and skillful will have good characters automatically. Lately, obtained evidence that this assumption is not true. Characters should be taught deliberately or by design. This study was designed to culture elementary school students’ characters through science classroom. The teaching-learning process was conducted to facilitate and bridge the students from the known (concrete images: Science phenomena) to the unknown (abstract ideas: characters: care, and tolerance. Characters were observed five weeks before and after the intervention. Data were analyzed from observation of 24 students in internalization strategy-based courses. Qualitative and quantitative data suggested that the internalization strategy that use of science phenomena to represent abstract ideas (characters) in science classroom positively cultivating characters.
Automated borehole gravity meter system
International Nuclear Information System (INIS)
Lautzenhiser, Th.V.; Wirtz, J.D.
1984-01-01
An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity
Human Rights, Fundamental Freedoms and Universal Values in International Relations
Lev S. Voronkov
2016-01-01
The author analyzes the evolution of human rights and fundamental freedoms in domestic political life of individual states and in international relations as well over the latest two centuries. The article traces the role of struggle for liberal political human rights and civilian freedoms in the dismantling of the feudal-absolutist regimes as well as the challenges of radical left-wing (communist) and far right-wing (national-socialistic) threats to be met by the supporters of liberal politic...
Social values and health policy: a new international research programme.
Littlejohns, Peter; Weale, Albert; Chalkidou, Kalipso; Faden, Ruth; Teerawattananon, Yot
2012-01-01
This editorial aims to outline the context of healthcare priority-setting, and summarise each of the other ten papers in this special edition. It introduces a new multidisciplinary research programme drawing on ethics, philosophy, health economics, political science and health technology assessment, out of which the papers in this edition have arisen. Key normative concepts are introduced and policy and research context provided to frame subsequent papers in the edition. Common challenges of health priority-setting are faced by many countries across the world, and a range of social value judgments is in play as resource allocation decisions are made. Although the challenges faced by different countries are in many ways similar, the way in which social values affect the processes and content of priority-setting decisions means that those challenges are resolved very differently in a variety of social, political, cultural and institutional settings, as subsequent papers in this edition demonstrate. How social values affect decision making in this way is the subject of a new multi-disciplinary research programme. Technical analyses of health priority setting are commonplace, but approaching the issues from the perspective of social values and conducting comparative analyses across countries with very different cultural, social and institutional contexts provides the content for a new research agenda.
Educating Latino Children: International Perspectives and Values in Early Education
Souto-Manning, Mariana
2009-01-01
To implement culturally responsive early education that is developmentally appropriate for Latino children, it is important to look at values that permeate education in Latin America. Therefore, the author draws on ethnographic data (interviews, observations, artifacts, and field notes) from early childhood centers and schools in Mexico, Brazil…
Manipulating the discount rate when valuing international investment projects
Directory of Open Access Journals (Sweden)
A. A. Medved
2017-01-01
Full Text Available The article deals with the practice of evaluation of international investment projects using the cash flow discounting rate. The problem of the discount rate manipulating is connected with the category “country risk”, which often determines the impact on the rate and, accordingly, the investment decisions. Critically examines existing approaches to the definition of “country risk”. Categories that make up a complete picture of “country risk” are distinguished. The general defect of existing country risk concepts is revealed – the fact that the measurements are based on rather subjective assessments and do not have sufficient empirical evidence, the fact that almost all of them have a clear liberal democratic bias: as a rule, drawing attention to the relationship between the political system and stability, the liberal democratic structure of society is recognized as the most stable, without any acceptable scientific evidence, followed by autocracy, military dictatorships and new independent states. The author affirms the lack of a clear and unambiguous definition of this category, the controversial approach to ranking of countries. The author analyzes and proves the bias of rating assigned by foreign companies. As a conclusion the need to create a national research concept of the “country risk” category is аffirms with the subsequent promotion of national rating agencies to the world market. The author's conception of the category “country risk” is proposed, an author's definition is given to this notion, it is recommended to establish the primacy of national ratings over foreign ones both in domestic and international relations in order to have independent influence on international capital flows. It is also proposed the evaluation of projects based on the dynamic discounting rates, especially for long-term strategic projects.
Controlling pandemic flu: the value of international air travel restrictions.
Directory of Open Access Journals (Sweden)
Joshua M Epstein
2007-05-01
Full Text Available Planning for a possible influenza pandemic is an extremely high priority, as social and economic effects of an unmitigated pandemic would be devastating. Mathematical models can be used to explore different scenarios and provide insight into potential costs, benefits, and effectiveness of prevention and control strategies under consideration.A stochastic, equation-based epidemic model is used to study global transmission of pandemic flu, including the effects of travel restrictions and vaccination. Economic costs of intervention are also considered. The distribution of First Passage Times (FPT to the United States and the numbers of infected persons in metropolitan areas worldwide are studied assuming various times and locations of the initial outbreak. International air travel restrictions alone provide a small delay in FPT to the U.S. When other containment measures are applied at the source in conjunction with travel restrictions, delays could be much longer. If in addition, control measures are instituted worldwide, there is a significant reduction in cases worldwide and specifically in the U.S. However, if travel restrictions are not combined with other measures, local epidemic severity may increase, because restriction-induced delays can push local outbreaks into high epidemic season. The per annum cost to the U.S. economy of international and major domestic air passenger travel restrictions is minimal: on the order of 0.8% of Gross National Product.International air travel restrictions may provide a small but important delay in the spread of a pandemic, especially if other disease control measures are implemented during the afforded time. However, if other measures are not instituted, delays may worsen regional epidemics by pushing the outbreak into high epidemic season. This important interaction between policy and seasonality is only evident with a global-scale model. Since the benefit of travel restrictions can be substantial while
Dilemmas in international research and the value of practical wisdom.
Jarvis, Kimberly
2017-04-01
When conducting research in an international setting, in a country different than that of the researcher, unpredictable circumstances can arise. A study conducted by a novice North American researcher with a vulnerable population in northern Ghana highlights these happenings with an emphasis placed on the ethical challenges encountered. An illustration from the research is used to highlight an ethical dilemma while in the field, and how utilizing a moral decision-making framework can assist in making choices about a participant's right to autonomy, privacy, and confidentiality during the research process. Moral frameworks, however, can never be enough to solve a dilemma since guidelines only describe what to aim for and not how to interpret or use them. Researchers must therefore strive to move beyond these frameworks to employ practical wisdom or phronesis so to combine the right thing to do with the skill required to figure out what the right choice is. The skill of practical wisdom must be acquired because without it international researchers indecisively fumble around with good intentions, often leaving a situation in worse shape than they found it. © 2016 John Wiley & Sons Ltd.
Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam;
2013-01-01
Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and
The Value of Narrative Medical Writing in Internal Medicine Residency.
Liao, Joshua M; Secemsky, Brian J
2015-11-01
Narrative medical writing can be utilized to help increase the value and patient-centeredness of health care. By supporting initiatives in areas such as population health management, quality improvement and health disparities, it provides benefits that are particularly relevant to physicians focused on health care improvement, reform and redesign. Graduate medical education (GME) represents a key time and opportunity for internists to learn and practice this form of writing. However, due to a number of local and systems factors, many have limited opportunities to engage in narrative medical writing compared to other non-clinical activities. By capitalizing on the momentum created by recent GME reform, several strategies can be utilized to overcome these barriers and establish narrative medical writing as a viable professional and communication skill.
Book Review: Is Fair Value Fair? Financial Reporting from an International Perspective
DEFF Research Database (Denmark)
Thinggaard, Frank
2005-01-01
This is a review of Henk Langendijk, Dirk Swagerman and Willem Verhoog (Eds) "Is Fair Value Fair? Financial Reporting from an International Perspective," Chichester: John Wiley, 2003, ISBN 0 470 85028 0.......This is a review of Henk Langendijk, Dirk Swagerman and Willem Verhoog (Eds) "Is Fair Value Fair? Financial Reporting from an International Perspective," Chichester: John Wiley, 2003, ISBN 0 470 85028 0....
DEFF Research Database (Denmark)
Forsberg, René; Sideris, M.G.; Shum, C.K.
2005-01-01
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...
Tamer A. El Nashar
2016-01-01
The objective of this paper is to examine the impact of inclusive business on the internal ethical values and the internal control quality while conceiving the accounting perspective. I construct the hypothesis for this paper based on the potential impact on the organizations’ awareness to be directed to the inclusive business approach that will significantly impact the culture of the organizations then the ethical values and the internal control quality. I use the approach of the expected va...
Directory of Open Access Journals (Sweden)
Mohammed Ali Berawi
2015-02-01
Full Text Available Soekarno–Hatta Airport is the main gateway for international flights to Greater Jakarta. Its accessibility depends on the inter-city and Sedyatmo toll roads, which causes congestion in peak hours, leading to uncertainty about travel times. The Soekarno–Hatta International Airport Rail Link (SHIARL is proposed as an alternative mass transportation project, which is expected to provide accessibility and mobility for people and goods to and from the airport. Previously, the project was unattractive to private investors as it was technically and financially unfeasible. Therefore, this research aims to improve the feasibility of the Soekarno-Hatta International Airport Rail Link (SHIARL by using a value-engineering approach to create maximum value for money for the project. This research combines quantitative and qualitative methods. Questionnaire surveys are distributed to various stakeholders in the project, and a focus-group discussion (FGD is conducted. The results identified additional, innovative functions through the integration of the Mass Rapid Transit (MRT, flood control, telecommunications, and development in the downtown area around the station. The life-cycle cost analysis confirmed the increased value for money because of the project’s additional functions, including a positive Net Present Value (NPV. Moreover, the findings showed that the internal rate of return (IRR was 3% higher than the original single-function project.
Dare to Dream: Personal Values, Life Goals, and International Students in New Zealand.
Zhang, Kaili C; Zhang, Abraham
2017-10-01
It has been well identified and supported in the literature that values and life goals are associated with one's general well-being. However, there have been few studies on values and life goals among international students in New Zealand. This study addressed this lack of research by focusing on the life goals and personal values among international students in three tertiary institutes in New Zealand. Based on the literature review, the hypothesis of this study is that international students' intrinsic life goals are positively correlated with their spiritual values. In contrast, extrinsic goals did not have similar effects. The Aspirations Index, which was used to assess life goals, and the Schwartz' value survey, which measured the students' personal values, were both distributed to the participants. Follow-up interviews with 24 of the participants were also conducted. Findings revealed that spiritual values were positively correlated with intrinsic goals and that extrinsic goals did not have similar effects. As the research findings showed that spiritual values were positively correlated with intrinsic goals, helping international students to find meaning and purpose in life may promote their well-being, and the learning and growth of international students can be improved by incorporating spiritual values and cultural aspects in college education. The authors also argue that a holistic approach to college education for international students is needed.
Loi, Shyeh Tjing; Papaloizou, John C. B.
2018-04-01
The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.
Directory of Open Access Journals (Sweden)
Tamer A. El Nashar
2016-12-01
Full Text Available The objective of this paper is to examine the impact of inclusive business on the internal ethical values and the internal control quality while conceiving the accounting perspective. I construct the hypothesis for this paper based on the potential impact on the organizations’ awareness to be directed to the inclusive business approach that will significantly impact the culture of the organizations then the ethical values and the internal control quality. I use the approach of the expected value and variance of random variable test in order to analyze the potential impact of inclusive business. I support the examination by discrete probability distribution and continuous probability distribution. I find a probability of 85.5% to have a significant potential impact of the inclusive business by 100% score on internal ethical values and internal control quality. And to help contribute to sustainability growth, reduce poverty and improve organizational culture and learning.
Choi, Hyun Seok; Sul, Jin Gon; Yi, Kyung Sik; Seo, Jeong-Min; Chung, Ki Young
2010-07-01
Gravity-induced loss of consciousness (G-LOC) is caused by loss of cerebral blood flow during high +Gz (head-to-foot inertial forces). The resistance of the jugular vein is a significant factor in decrease in cerebral blood flow. Ultrasonography of thoracic inlet veins, including internal jugular vein, is feasible to visualize the internal jugular vein and hemodynamic information. Anti-gravity straining maneuver (AGSM) was widely recognized as one of the important factors in preventing G-LOC. The purpose of this study was to evaluate the relationship between the ultrasonographic shape and size of internal jugular vein during AGSM and G-LOC. 47 trainee pilots who participated in human centrifuge education program were enrolled. They were all men, and their mean age was 23.9 +/- 1.38 years. Questionnaire sheets were used to collect information about well-being sensation, smoking, drinking, height, and weight. Using ultrasonography, we monitored shape and size of internal jugular vein during AGSM. After ultrasonographic examination, 47 subjects underwent human centrifuge on the same day. The protocol of human centrifuge training was maximal 6G with sustaining time of 30 s. G-LOC occurred to ten out of 47 subjects in human centrifuge. To find presumptive variable associated with G-LOC, we performed logistic regression analysis. Concave contour and smaller cross-sectional area of internal jugular vein during AGSM were associated with G-LOC.
Guo, Z.; Gies, D. R.; Matson, R. A.
2017-12-01
We report the discovery of a post-mass-transfer Gamma Doradus/Delta Scuti hybrid pulsator in the eclipsing binary KIC 9592855. This binary has a circular orbit, an orbital period of 1.2 days, and contains two stars of almost identical masses ({M}1=1.72 {M}⊙ ,{M}2=1.71 {M}⊙ ). However, the cooler secondary star is more evolved ({R}2=1.96 {R}⊙ ), while the hotter primary is still on the zero-age-main-sequence ({R}1=1.53 {R}⊙ ). Coeval models from single-star evolution cannot explain the observed masses and radii, and binary evolution with mass-transfer needs to be invoked. After subtracting the binary light curve, the Fourier spectrum shows low-order pressure-mode pulsations, and more dominantly, a cluster of low-frequency gravity modes at about 2 day-1. These g-modes are nearly equally spaced in period, and the period spacing pattern has a negative slope. We identify these g-modes as prograde dipole modes and find that they stem from the secondary star. The frequency range of unstable p-modes also agrees with that of the secondary. We derive the internal rotation rate of the convective core and the asymptotic period spacing from the observed g-modes. The resulting values suggest that the core and envelope rotate nearly uniformly, i.e., their rotation rates are both similar to the orbital frequency of this synchronized binary.
de Rham, Claudia
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
Diagnostics of values and internal conflicts in the general and clinical psychology
Directory of Open Access Journals (Sweden)
E. B. Fantalova, Ph. D in psychology, lecturer, Moscow state university of psychology and education
2013-04-01
Full Text Available The purpose of the real work - an illustration of opportunities of application of the two first techniques from author's system "Diagnostics of the Internal Conflict" in the field of the general and clinical psychology, namely, techniques "Level of correlation of value and accessibility in different life spheres" and techniques "Seven conditions". The first of them opens level of dissociation of «Value - Accessibility », and also value-oriented constructs – the internal conflict, internal vacuum, a neutral zone. The second technique is directed on an assessment of specific features of emotional regulation of experience of the internal conflicts and internal vacuum in different life spheres of the person. Approbation of these techniques took place as on the clinical contingent (patients with an arterial hypertension, and on healthy faces (students. In work the hypotheses opening the psychometric maintenance of key parameters of offered two techniques were confirmed.
Value Relevance Change Under International Accounting Standards: An Empirical Study of Peru
Chunhui Liu; Lee J. Yao; Michelle Y. M. Yao
2012-01-01
In face of broad adoption of International Financial Reporting Standards (IFRS), the Securities and Exchange Commission (SEC) is considering its quality and acceptability. This paper reports a study that examines changes in value relevance with a sample of Peru firms mandated to use international accounting standards between 1999 and 2007. The period under study is broken into a period of International Accounting Standards (IAS) between 1999 and 2001, a period of early IFRS between 2002 and 2...
Gubbi, Sathyajit R.; Aulakh, Preet S.; Ray, Sougata; Sarkar, M. B.; Chittoor, Raveendra
While overseas acquisitions by emerging-economy firms are gaining increased attention from the business press, our understanding of whether and why this inorganic mode of international expansion creates value to acquirer firms is limited. We argue that international acquisitions facilitate
Character Values and Their Internalization in Teaching and Learning English at Madrasah
Directory of Open Access Journals (Sweden)
Milad Islami
2016-12-01
Full Text Available Language is more than to express the ideas, believe, and thought or as intellectual based, it also expresses the norms, values, and even emotions. As the result, it is important to internalize the character values into the teaching and learning activity of English. Since the focus of this study was on the analysis of the internalization of character values without any experimental or manipulated settings involved, the design of this study was qualitative. The results showed that there were at least six character values performed by the students in learning English, they were independent, hardworking ethos, curiosity, democratic attitude, communicative manner, and reading interest. In addition, the character values were internalized by the English teacher into the process of teaching and learning even though she did not realize it.
Perceived value congruence and attitudes toward international relations and foreign policies
Wetherell, Geoffrey; Benson, Or'Shaundra; Reyna, Christine; Brandt, Mark J
2015-01-01
Much of the justification for granting foreign aid is to support nations and international policies promoting one's national values. However, little to no research has examined how perceptions of similarity between nations, especially value similarity, drive feelings toward other nations and policy
Initial-value problem for the Gardner equation applied to nonlinear internal waves
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of
New standards for reducing gravity data: The North American gravity database
Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.
2005-01-01
The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
Elina KALLAS; Pille MOTSMEES; Anne REINO
2010-01-01
The aim of the article is to find how perception of values is related to job satisfaction on an example of international manufacturing service corporation providing provides manufacturing services for the global customers. The study was carried out in 2009 and 1180 employees from seven factories located in six countries participated in the survey that focused on different aspects of job satisfaction and perceived organizational values. Results imply that job satisfaction of employees from dif...
Reduced Gravity Zblan Optical Fiber
Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.
2000-01-01
Two optical fiber pullers have been designed for pulling ZBLAN optical fiber in reduced gravity. One fiber puller was designed, built and flown on board NASA's KC135 reduced gravity aircraft. A second fiber puller has been designed for use on board the International Space Station.
Personal-organisational value conflicts and job satisfaction of internal construction stakeholders
Directory of Open Access Journals (Sweden)
Babak Panahi
2016-03-01
Full Text Available This paper concerns the issue of value conflicts in construction organizations. This research was conducted in the Malaysian construction industry to fill the gap in the knowledge in areas of organizational behaviour in the construction industry in terms of the possible effects of conflicts on the job satisfaction of internal construction stakeholders. The conflicts considered are those rooted in differences between personal and organizational values. This research targeted professional project consultants identified as architects, engineers, and quantity surveyors as the internal construction stakeholders in Malaysia. The personal-organizational values and the level of job satisfaction of the stakeholders were assessed using a questionnaire survey. To achieve the research objective, comparative and hierarchical regression analyses were performed. The results generated by the analyses indicated a high level of value conflicts in the construction organizations which significantly and negatively affected job satisfaction of the internal stakeholders. Therefore this research, through investigating the potential effect of value conflicts on the stakeholders’ job satisfaction, reveals the importance of the interaction between personal and organizational values in construction organizations which contributes to the extant literature of organizational behaviour in construction.
A Diagnostic Test for Apraxia in Stroke Patients : Internal consistency and diagnostic value
van Heugten, C.M.; Dekker, J.; Deelman, B.G.; Stehmann-Saris, J.C; Kinebanian, A
The internal consistency and the diagnostic value of a test for apraxia in patients having had a stroke are presented. Results indicate that the items of the test form a strong and consistent scale: Cronbach's alpha as well as the results of a Mokken scale analysis present good reliability and good
Exposure limits for nanoparticles: report of an international workshop on nano reference values
van Broekhuizen, P.; van Veelen, W.; Steekstra, W.H.; Schulte, P.; Reijnders, L.
2012-01-01
This article summarizes the outcome of the discussions at the international workshop on nano reference values (NRVs), which was organized by the Dutch trade unions and employers’ organizations and hosted by the Social Economic Council in The Hague in September 2011. It reflects the discussions of 80
Heffron, Sean; Maresco, Peter A.
2014-01-01
The value of an international experience--especially for students of business--continues to be an area of focus at colleges and universities. Students across all disciplines within the business curriculum: accounting, economics, finance, management, marketing, or sport management are expected by employers to possess knowledge of, and appreciation…
A diagnostic test for apraxia in stroke patients: internal consistency and diagnostic value.
Heugten, C.M. van; Dekker, J.; Deelman, B.G.; Stehmann-Saris, F.C.; Kinebanian, A.
1999-01-01
The internal consistency and the diagnostic value of a test for apraxia in patients having had a stroke are presented. Results indicate that the items of the test form a strong and consistent scale: Cronbach's alpha as well as the results of a Mokken scale analysis present good reliability and good
The Culture of Learning Continuum: Promoting Internal Values in Higher Education
Sagy, Ornit; Kali, Yael; Tsaushu, Masha; Tal, Tali
2018-01-01
This study endeavors to identify ways to promote a productive learning culture in higher education. Specifically, we sought to encourage development of internal values in students' culture of learning and examine how this can promote their understanding of scientific content. Set in a high enrollment undergraduate biology course, we designed a…
International Students' Perceptions of the Value of U.S. Higher Education
Urban, Ewa; Palmer, Louann Bierlein
2016-01-01
We examined international students' perceptions of the personal and professional value they receive from higher education in the United States. Results indicated that students' professional outcomes were significantly lower than their expectations related to their professional development, while students benefited personally to a much greater…
Internal Branding: Using Performance Technology To Create an Organization Focused on Customer Value.
Tosti, Donald T.; Stotz, Rodger
2000-01-01
Presents a performance technology approach to revenue enhancement, with the goal of improving customer retention through building customer value. Topics include internal branding, a way to make sure that what the company delivers matches what's promised in the advertising; product versus service brands; and customer satisfaction, including…
Massive gravity from bimetric gravity
International Nuclear Information System (INIS)
Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt
2013-01-01
We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)
Telzer, Eva H; Tsai, Kim M; Gonzales, Nancy; Fuligni, Andrew J
2015-01-01
Family obligation is an important aspect of family relationships among families from Mexican backgrounds and can have significant implications for adolescents' well-being. Prior research and theory regarding youths' obligations offer conflicting hypotheses about whether it is detrimental or beneficial for adolescents' well-being. In the current longitudinal study, we used a daily diary method among 428 Mexican American adolescents and their parents to closely examine the impact of adolescents' family obligation values and family assistance behaviors on internalizing symptoms over time. The authors closely examined the role of the family context in these associations. Results suggest that family obligation values relate to declines in adolescents' internalizing symptoms, whereas family assistance behaviors are both a protective and risk factor, depending on the family context. Only when youths provide family assistance in response to acute changes in parental physical and psychological distress do family assistance behaviors relate to increases in adolescents' internalizing symptoms.
Personal values, subjective well-being and destination-loyalty intention of international students.
Jamaludin, N L; Sam, D L; Sandal, G M; Adam, A A
2016-01-01
What are the factors that predict international students' destination-loyalty intention? This is the main question this paper addresses, using an online survey among 396 (short-term, N = 182) and (long-term, N = 214) international students at a Norwegian university. Structural equation model-AMOS was conducted to examine relationships among personal values, subjective well-being and destination-loyalty intentions. The results showed that: (1) universalism was positively related to subjective well-being for short-term students; and (2) subjective well-being was positively related to destination-loyalty intention for all groups. We found that relatively stable and happy individuals might be important for ensuring destination-loyalty intentions. Results also indicated that personal values that emphasize justice and equity are also important for short-term international students' well-being.
Clément, Gilles
2007-01-01
Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term reduced gravity during surface operations will require effective, multi-system countermeasures. Artificial gravity, which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by short-radius human centrifuge devices within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient
Directory of Open Access Journals (Sweden)
Barceló Carlos
2005-12-01
Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
The virtual international authority file - VIAF and aggregation of values by authority metadata
Directory of Open Access Journals (Sweden)
Luiza de Menezes Romanetto
2017-06-01
Full Text Available The Virtual International Authority File (VIAF is an international cooperation consortium, which has established cooperation between national bibliographic agencies and libraries in several parts of the world and has added value and availability of authority files in Linked Open Data. The consortium was designed based on bases, concepts and technologies established in cataloging, which due to technological limitations, have been converted through World Wide Web Consortium recommendations to publish linked data. It provides infrastructure for the exchange and sharing of authority data in Web of data, in addition to the construction of value vocabularies of high level. This study aims to present and describe the bases, concepts and technologies involved in the development of VIAF. The study was accomplished through of literature documentary and shows, as a result, the relationship between concepts of authority control, bibliographic control, linked data, among others, with the established infrastructure in VIAF. Furthermore, it shows the contributions of the consortium to the unification of the national variations in descriptions of value, through cluster formation, which provides terminological control in the values that include linguistic and cultural diversity. In conclusion, the VIAF is a democratic initiative of international cooperation and can be used as a reliable source of authority files for librarian institutions, as well as to the Linked Data community.
Van Beuzekom, A D; Van Gisbergen, J A
2000-07-01
One of the key questions in spatial perception is whether the brain has a common representation of gravity that is generally accessible for various perceptual orientation tasks. To evaluate this idea, we compared the ability of six tilted subjects to indicate earth-centric directions in the dark with a visual and an oculomotor paradigm and to estimate their body tilt relative to gravity. Subjective earth-horizontal and -vertical data were collected, either by adjusting a visual line or by making saccades, at 37 roll-tilt angles across the entire range. These spatial perception responses and the associated body-tilt estimates were subjected to a principal-component analysis to describe their tilt dependence. This analysis allowed us to separate systematic and random errors in performance, to disentangle the effects of task (horizontal vs. vertical) and paradigm (visual vs. oculomotor) in the space-perception data, and to compare the veridicality of space perception and the sense of self-tilt. In all spatial-orientation tests, whether involving space-perception or body-tilt judgments, subjects made considerable systematic errors which mostly betrayed tilt underestimation [Aubert effect (A effect)] and peaked near 130 degrees tilt. However, the A effect was much smaller in body-tilt estimates than in spatial pointing, implying that the underlying signal processing must have been different. Pointing results obtained with the visual and the oculomotor paradigm were not identical either, but these differences, which were task-related (horizontal vs. vertical), were subtle in comparison. The tilt-dependent pattern of random errors (noisy scatter) was almost identical in visual and oculomotor pointing results, showing a steep monotonic increase with tilt angle, but was again clearly different in the body-tilt estimates. These findings are discussed in the context of a conceptual model in an attempt to explain how the different patterns of systematic and random errors in
Value problem in perception of sustainable development in international public law
Directory of Open Access Journals (Sweden)
Dragan Djurdjevic
2017-07-01
Full Text Available In this article, normative perception of sustainable development is problematized in its value content. The aim is to focus inner logic which makes this concept so difficult to define in practice. The value content of sustainable development is observed in its substantive legal aspects, international administrative practice and in the framework of its national administration, as the contexts of perception. We find that underlying values are related to human development, human rights and equitable social organisation, and the reflection of the knowledge about the connection between human activities, the environment and natural resources and economic growth. Also, sustainable development is a historical category, concerning the need for fairness in the allocation of resources and meeting basic needs for all, but some methods of its global contextualization destabilise fairness. We conclude that sustainable development today needs redefining in value terms, based on distributive justice.
International Nuclear Information System (INIS)
Dias, Fabio C.; Almeida, Silvio G. de; Renha Junior, Geraldo
2011-01-01
The International Target Values (ITVs) are reasonable uncertainty estimates that can be used in judging the reliability of measurement techniques applied to industrial nuclear and fissile materials subject to accountancy and/or safeguards verification. In the absence of relevant experimental estimates, ITVs can also be used to select measurement techniques and calculate sample population during the planning phase of verification activities. It is important to note that ITVs represent estimates of the 'state-of-the-practice', which should be achievable under routine measurement conditions affecting both facility operators and safeguards inspectors, not only in the field, but also in laboratory. Tabulated values cover measurement methods used for the determination of volume or mass of the nuclear material, for its elemental and isotopic assays, and for its sampling. The 2010 edition represents the sixth revision of the International Target Values (ITVs), issued by the International Atomic Energy Agency (IAEA) as a Safeguards Technical Report (STR-368). The first version was released as 'Target Values' in 1979 by the Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA) and focused on destructive analytical methods. In the latest 2010 revision, international standards in estimating and expressing uncertainties have been considered while maintaining a format that allows comparison with the previous editions of the ITVs. Those standards have been usually applied in QC/QA programmes, as well as qualification of methods, techniques and instruments. Representatives of the Brazilian Nuclear Energy Commission (CNEN) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) participated in previous Consultants Group Meetings since the one convened to establish the first list of ITVs released in 1993 and in subsequent revisions, including the latest one
Garg, Mukesh
2017-01-01
This thesis draws on agency theory to primarily investigate whether CEOs’ and CFOs’ voluntary certification of internal controls over financial reporting (hereafter, ICFR) is associated with audit fees and value relevance of Australian financial reports. The thesis also examines whether corporate governance and audit quality are associated with the likelihood that firms provide the CEOs’ and CFOs’ voluntary ICFR certification. While agency theory predicts that firms with high agency costs are...
Newburgh, Ronald
2010-01-01
It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.
Directory of Open Access Journals (Sweden)
Carlos Barceló
2011-05-01
Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
Directory of Open Access Journals (Sweden)
Rosaria Cerrone
2013-12-01
Full Text Available A critical component of safe and sound bank management is constituted by an effective and efficient system of internal controls, which help to ensure that the goals and objectives of a bank will be met, that long-term profitability targets will be achieved, and maintain reliable financial and managerial reporting. Such a system can also ensure that the bank will comply with laws and regulations as well as policies, plans, internal rules and procedures, and decrease the risk of unexpected losses or damage to the bank’s reputation. The paper describes the essential elements of a sound internal control system and through a qualitative approach, it shows how is tied to the rules attaining capital requirements and, above all, to the purpose of the Internal Capital Adequacy Assessment Process (ICAAP which aims at determining the adequate capitalisation of a bank given the risks endured as well as future risks arising from growth, and new business lines. After the recent financial crisis ICAAP is becoming more and more relevant and a central component of an effective strategy for managing risk and creating value. All principles and considerations are referred to Italian Credit Cooperative Banks particular both for dimension and for governance and risk management. They have been contacted though local federations and the results confirm the existing of weakness in internal controls.
THE INTRINSIC EXPLANATORY VALUE OF SOCIAL CONSTRUCTIVISM IN INTERNATIONAL RELATIONS THEORY
Directory of Open Access Journals (Sweden)
Ts. V. Karkalanov
2016-01-01
Full Text Available Why has constructivism emerged as an important force in the field of international relations and politics in the end of the 20th century? Why constructivism and not any other theoretical approach? The constructivist perspective of international relations appeared as a counterbalance to rationalism that was entrenched in US Political Science throughout the last decades. Analyzing the contemporary state of world affairs through the prism of social constructivism provides us with a unique understanding of how intersubjective perceptions lead to unique epistemic interpretations of reality, which form the ideological framework within which social constructs are being generated. Constructivism succeeds not only in identifying the motives behind the behavior of international actors, but also in unfolding the mechanism through which those motives are being envisaged and accepted through the process of social construction – here lies the greatest value of the constructivist approach in IR theory. Culture formation, nation building, imagined communities, security complexes – the constructivist approach remains an invaluable tool in the arsenal of political analysts, seeking to understand how culture, history, social order, religion, and language project their infl uence on the international arena and ultimately: why international players behave the way they do?
National Research Council Canada - National Science Library
Anderson, Brian
1997-01-01
Our senior leadership is placing renewed emphasis on Air Force core values and recognizes the internalization of these values are critical to the long-term success of our professional officer corps...
Scherer, G F E; Pietrzyk, P
2014-01-01
Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism and forms increased numbers of root coils. Three known factors contribute to waving: circumnutation, gravisensing and negative thigmotropism. In microgravity, deprivation of wild type (WT) and mutant roots of gravisensing and thigmotropism and circumnutation (known to slow down in microgravity, and could potentially lead to fewer waves or increased coiling in both WT and mutant). To resolve this, mutant ppla-I-1 and WT were grown in the BIOLAB facility in the International Space Station. In 1-g, roots of both types only showed waving. In the first experiment in microgravity, the mutant after 9 days formed far more coils than in 1-g but the WT also formed several coils. After 24 days in microgravity, in both types the coils were numerous with slightly more in the mutant. In the second experiment, after 9 days in microgravity only the mutant formed coils and the WT grew arcuated roots. Cell file rotation (CFR) on the mutant root surface in microgravity decreased in comparison to WT, and thus was not important for coiling. Several additional developmental responses (hypocotyl elongation, lateral root formation, cotyledon expansion) were found to be gravity-influenced. We tentatively discuss these in the context of disturbances in auxin transport, which are known to decrease through lack of gravity. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Applicability of International and DOE Target Values to ALD Destructive Measurement Applications
International Nuclear Information System (INIS)
Holland, M.K.
2002-01-01
International Target values and target value applicability are a function of the nuclear material processing campaign or application for which the accountability measurement method is being applied. Safeguarding significant quantities of nuclear-grade materials requires that accountability measurements be as accurate, precise, and representative as practically possible. In general, the ITV provides a benchmark for determining generic acceptability of the performance of the various accountability measurement methods, since it represents a performance level that is accepted as highly reliable. There are cases where it is acceptable to select alternative accountability methods not specifically referenced by the ITV, or to use the recognized measurement method, even though the uncertainties are greater than the target values
DEFF Research Database (Denmark)
Kumar, Rajesh; Nti, Kofi O
2004-01-01
The article assesses the role played by national cultural values in shaping the evolution of international strategic alliances. The authors build on a systems dynamic model of alliance evolution in which the developmental path of an alliance depends on how the partners manage process and outcome...... discrepancies that may emerge during the course of an alliance. They argue that national culture affects alliance evolution by influencing partners sensitivity to discrepancy detection , shaping the nature of attributions they make, and by affecting the partners reactions to discrepancies. They focus...... on differences in three value orientations among cultures. activity orientation, mastery over nature, and assumptions about human nature are the value orientations that affect alliance functioning. The author/s argue that alliances are prone to interpretational, attributional, and behavioral conflicts...
Internalization strategies and value implications of latin american emerging market multinationals
Directory of Open Access Journals (Sweden)
Aysun Ficici
2009-03-01
Full Text Available This study investigates the Internationalization strategies and their value implications of Latin American Emerging Market Multinationals (LAEMMs. We examine 66 mergers and acquisitions (M&A announcements, 20 joint venture (JV announcements and 9 Strategic Alliance (SA announcements associated with LAEMMs during the sample period of 1991-2005. First, the paper explores the effects of cross-border expansion patterns on firm value creation. Second, it examines market reaction to the announcements of cross-border expansion patterns. Third, it evaluates firm performance in relation to the cross-border expansion activities. This study finds that most LAEMMs do not earn significantly positive abnormal returns during the event windows defined in this study. However, it is generally evident that there is value creation in international expansion activities. According to the event-study results, value creation is mostly associated with SAs. This finding is consistent with previous research. It is also indicated that most SA announcements are received by the market positively. JVs also experience value creation during the event windows utilized in this study. However, value creation of JVs is not to the extent that of SAs. Market reaction to JV announcements is also positive, but not to the degree of SAs.
Kiefer, Claus
2012-01-01
The search for a quantum theory of the gravitational field is one of the great open problems in theoretical physics. This book presents a self-contained discussion of the concepts, methods and applications that can be expected in such a theory. The two main approaches to its construction - the direct quantisation of Einstein's general theory of relativity and string theory - are covered. Whereas the first attempts to construct a viable theory for the gravitational field alone, string theory assumes that a quantum theory of gravity will be achieved only through a unification of all the interactions. However, both employ the general method of quantization of constrained systems, which is described together with illustrative examples relevant for quantum gravity. There is a detailed presentation of the main approaches employed in quantum general relativity: path-integral quantization, the background-field method and canonical quantum gravity in the metric, connection and loop formulations. The discussion of stri...
International Nuclear Information System (INIS)
Giribet, G E
2005-01-01
Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)
Hong, Michael K Y; Skandarajah, Anita R; Higgins, Rose D; Faiz, Omar D; Hayes, Ian P
2017-08-01
International comparison of outcomes of surgical diseases has become a global focus because of widespread concern over surgical quality, rising costs and the value of healthcare. Acute diverticulitis is a common disease potentially amenable to optimization of strategies for operative intervention. The aim was to compare the emergency operative intervention rates for acute diverticulitis in USA, England and Australia. Unplanned admissions for acute diverticulitis were found from an international administrative dataset between 2008 and 2014 for hospitals in USA, England and Australia. The primary outcome measured was emergency operative intervention rate. Secondary outcomes included inpatient mortality and percutaneous drainage rate. Multivariable analysis was performed after development of a weighted comorbidity scoring system. There were 15,150 unplanned admissions for acute diverticulitis. The emergency operative intervention rates were 16, 13 and 10% for USA, England and Australia. The percutaneous drainage rate was highest in USA at 10%, while the mortality rate was highest in England at 2.8%. The propensity for emergency operative intervention was higher in USA (OR 1.45, p diverticulitis. International variations raise the issue of healthcare value in terms of differing resource use and outcomes.
2012-07-01
A report from a MoDOT asphalt paving project was that unexpected results were obtained when adhering to the standard for determination of bulk specific gravity of compacted asphalt mixture (Gmb) specimens, AASHTO T 166. The test method requires speci...
International strategies for growth : monetizing gas reserves to add value to the bottom line
International Nuclear Information System (INIS)
Mihaichuk, G.
1998-01-01
The direction taken by oil and gas companies, including TransCanada International, in their strategy for growth in global energy markets was discussed. The role that gas plays in meeting the objectives was examined and the different ways in which gas reserves and investments in the gas sector are being turned into high-performing vehicles for adding value to the bottom line were described. Deregulation of, and competition within, the gas and electric power industries are the driving factors for changes within the energy industries. Natural gas will be a winner because it is the first choice for new power generation. Many companies have entered the international playing field to take advantage of the opportunities in international markets. The problems and solutions to monetizing natural gas reserves, some of the international political issues such as regulatory uncertainty, cross-border disputes, lack of regional integration, and sanctions, and how these adverse effects may be mitigated through mergers, acquisitions, or joint ventures, are explored. 14 figs
THE VALUE RELEVANCE OF INTERNATIONAL ACCOUNTING STANDARD IMPLEMENTATION AND AUDIT QUALITY
Directory of Open Access Journals (Sweden)
Hanifa Zulhaimi
2015-12-01
Full Text Available The implementation of international accounting standards in Indonesia has significantly affected financial reporting. It increases information relevance for the investors because a fair value comprehensively represents assets and liabilities of an entity as of the balance sheet date. However, this triggers polemics over the value relevance of International Financial Reporting Standard (IFRS. This can be seen from stock price decline. This study aims to find out the effect of net income and other comprehensive income on stock price and to observe the effect of other comprehensive income moderated by audit quality. Furthermore this study also aims to find out the effect of the subjectivity of OCI components. Using a sample of 79 companies, the writer analyzes 2014 financial statements derived from Indonesia Stock Exchange. Based on the result, the predetermined hypotheses are unable to prove. Net income is the only variable that affects stock return. Thus it can be concluded that net income has a value relevance for the investors in making economic decisions.
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
Energy Technology Data Exchange (ETDEWEB)
Dias, Fabio C., E-mail: fabio@ird.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Almeida, Silvio G. de; Renha Junior, Geraldo, E-mail: silvio@abacc.org.b, E-mail: grenha@abacc.org.b [Agencia Brasileiro-Argentina de Contabilidade e Controle de Materiais Nucleares (ABACC), Rio de Janeiro, RJ (Brazil)
2011-07-01
The International Target Values (ITVs) are reasonable uncertainty estimates that can be used in judging the reliability of measurement techniques applied to industrial nuclear and fissile materials subject to accountancy and/or safeguards verification. In the absence of relevant experimental estimates, ITVs can also be used to select measurement techniques and calculate sample population during the planning phase of verification activities. It is important to note that ITVs represent estimates of the 'state-of-the-practice', which should be achievable under routine measurement conditions affecting both facility operators and safeguards inspectors, not only in the field, but also in laboratory. Tabulated values cover measurement methods used for the determination of volume or mass of the nuclear material, for its elemental and isotopic assays, and for its sampling. The 2010 edition represents the sixth revision of the International Target Values (ITVs), issued by the International Atomic Energy Agency (IAEA) as a Safeguards Technical Report (STR-368). The first version was released as 'Target Values' in 1979 by the Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA) and focused on destructive analytical methods. In the latest 2010 revision, international standards in estimating and expressing uncertainties have been considered while maintaining a format that allows comparison with the previous editions of the ITVs. Those standards have been usually applied in QC/QA programmes, as well as qualification of methods, techniques and instruments. Representatives of the Brazilian Nuclear Energy Commission (CNEN) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) participated in previous Consultants Group Meetings since the one convened to establish the first list of ITVs released in 1993 and in subsequent revisions
The value of the physical examination in clinical practice: an international survey.
Elder, Andrew T; McManus, I Chris; Patrick, Alan; Nair, Kichu; Vaughan, Louella; Dacre, Jane
2017-12-01
A structured online survey was used to establish the views of 2,684 practising clinicians of all ages in multiple countries about the value of the physical examination in the contemporary practice of internal medicine. 70% felt that physical examination was 'almost always valuable' in acute general medical referrals. 66% of trainees felt that they were never observed by a consultant when undertaking physical examination and 31% that consultants never demonstrated their use of the physical examination to them. Auscultation for pulmonary wheezes and crackles were the two signs most likely to be rated as frequently used and useful, with the character of the jugular venous waveform most likely to be rated as -infrequently used and not useful. Physicians in contemporary hospital general medical practice continue to value the contribution of the physical examination to assessment of outpatients and inpatients, but, in the opinion of trainees, teaching and demonstration could be improved. © Royal College of Physicians 2017. All rights reserved.
Rouvinskaya, Ekaterina; Kurkin, Andrey; Kurkina, Oxana
2017-04-01
Intensive internal gravity waves influence bottom topography in the coastal zone. They induce substantial flows in the bottom layer that are essential for the formation of suspension and for the sediment transport. It is necessary to develop a mathematical model to predict the state of the seabed near the coastline to assess and ensure safety during the building and operation of the hydraulic engineering constructions. There are many models which are used to predict the impact of storm waves on the sediment transport processes. Such models for the impact of the tsunami waves are also actively developing. In recent years, the influence of intense internal waves on the sedimentation processes is also of a special interest. In this study we adapt one of such models, that is based on the advection-diffusion equation and allows to study processes of resuspension under the influence of internal gravity waves in the coastal zone, for solving the specific practical problems. During the numerical simulation precomputed velocity values are substituted in the advection - diffusion equation for sediment concentration at each time step and each node of the computational grid. Velocity values are obtained by the simulation of the internal waves' dynamics by using the IGW Research software package for numerical integration of fully nonlinear two-dimensional (vertical plane) system of equations of hydrodynamics of inviscid incompressible stratified fluid in the Boussinesq approximation bearing in mind the impact of barotropic tide. It is necessary to set the initial velocity and density distribution in the computational domain, bottom topography, as well as the value of the Coriolis parameter and, if necessary, the parameters of the tidal wave to carry out numerical calculations in the software package IGW Research. To initialize the background conditions of the numerical model we used data records obtained in the summer in the southern part of the shelf zone of Sakhalin Island
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2008-05-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out
GOCE and Future Gravity Missions for Geothermal Energy Exploitation
Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia
2016-08-01
Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
International Nuclear Information System (INIS)
Isham, C.
1989-01-01
Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)
Mass Inflation in Brans-Dicke gravity
Avelino, P. P.; Hamilton, A. J. S.; Herdeiro, C. A. R.
2009-01-01
A detailed non-linear analysis of the internal structure of spherical, charged black holes that are accreting scalar matter is performed in the framework of the Brans-Dicke theory of gravity. We choose the lowest value of the Brans-Dicke parameter that is compatible with observational constraints. First, the homogeneous approximation is used. It indicates that mass inflation occurs and that the variations of the Brans-Dicke scalar inside the black hole, which could in principle be large in th...
Arambewela, Rodney; Hall, John
2013-01-01
The article investigates the interactional effects of internal and external university learning environments, and the influence of personal values, in the satisfaction formation process of international postgraduate students from Asia. Past research on student satisfaction has been narrowly focused on certain aspects of the university internal…
Gravity field and zonal winds of rotationally distorted Jupiter (Invited)
Kong, D.; Zhang, K.; Schubert, G.
2013-12-01
Interpretation of JUNO's gravity measurements requires an accurate description of Jupiter's gravitational field in its equilibrium under the balance of self-gravity, internal pressure and strong rotational effects. Rotational distortion cannot be treated as a small perturbation on a spherically symmetric state. We report the results of two related problems pertinent to the interpretation of Jupiter's gravitational coefficients. In the first problem, we carry out the accurate computation of the zonal gravitational coefficients J_2, J_4,...,J_{12} taking into account the full rotational distortion. The first 3 coefficients J_2, J_4, J_6 are found to be in a good agreement with the measured values for Jupiter. In the second problem we compute an upper bound to the effects of zonal winds on the gravitational coefficients of rotationally distorted Jupiter with non-spherical geometry. We argue that the two problems are mathematically and physically coupled and inseparable for the interpretation of JUNO's gravity measurements.
Exposure limits for nanoparticles: report of an international workshop on nano reference values.
van Broekhuizen, Pieter; van Veelen, Wim; Streekstra, Willem-Henk; Schulte, Paul; Reijnders, Lucas
2012-07-01
This article summarizes the outcome of the discussions at the international workshop on nano reference values (NRVs), which was organized by the Dutch trade unions and employers' organizations and hosted by the Social Economic Council in The Hague in September 2011. It reflects the discussions of 80 international participants representing small- and medium-size enterprises (SMEs), large companies, trade unions, governmental authorities, research institutions, and non-governmental organizations (NGOs) from many European countries, USA, India, and Brazil. Issues that were discussed concerned the usefulness and acceptability of precaution-based NRVs as a substitute for health-based occupational exposure limits (OELs) and derived no-effect levels (DNELs) for manufactured nanoparticles (NPs). Topics concerned the metrics for measuring NPs, the combined exposure to manufactured nanomaterials (MNMs) and process-generated NPs, the use of the precautionary principle, the lack of information about the presence of nanomaterials, and the appropriateness of soft regulation for exposure control. The workshop concluded that the NRV, as an 8-h time-weighted average, is a comprehensible and useful instrument for risk management of professional use of MNMs with a dispersible character. The question remains whether NRVs, as advised for risk management by the Dutch employers' organization and trade unions, should be under soft regulation or that a more binding regulation is preferable.
Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.
1985-01-01
The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.
The International Diversification of Banks and the Value of their Cross-Border M&A Advice
de Jong, A.; Ongena, S.; van der Poel, M.
2010-01-01
This paper investigates the effects of international diversification of banks on the value of their M&A advice. We study bidder returns to 1,253 cross-border M&A announcements. We find that acquirers engaging a more internationally diversified financial advisor generate lower excess returns.
Finnegan, Alan; Finnegan, Sara; McKenna, Hugh; McGhee, Stephen; Ricketts, Lynda; McCourt, Kath; Warren, Jem; Thomas, Mike
2016-01-01
Between 2001 and 2014, British military nurses served in Afghanistan caring for both Service personnel and local nationals of all ages. However, there have been few research studies assessing the effectiveness of the military nurses' operational role and no papers naming the core values and characteristics. This paper is from the only qualitative nursing study completed during this period where data was collected in the War Zone. To explore the characteristics and values that are intrinsic to military nurses in undertaking their operational role. A constructivist grounded theory was utilised. The authors designed the interview schedule, and then following a pilot study, conducted and transcribed the discussions. Informed consent and UK Ministry of Defence Research Ethical Committee approval was obtained. Camp Bastion Hospital, Afghanistan, in 2013. Semi-structured interviews were conducted with 18 British Armed Forces nurses. A theoretical model was developed that identifies the intrinsic characteristics and values required to be a military nurse. Nursing care delivered within the operational environment was perceived as outstanding. Nurses consciously detached themselves from any legal processes and treated each casualty as a vulnerable patient, resulting in care, compassion and dignity being provided for all patients, irrespective of their background, beliefs or affiliations. The study findings provide military nurses with a framework for a realistic personal development plan that will allow them to build upon their strengths as well as to identify and ameliorate potential areas of weakness. Placing nurses first, with a model that focusses on the requirements of a good nurse has the potential to lead to better patient care, and improve the quality of the tour for defence nurses. These findings have international implications and have the potential for transferability to any level of military or civilian nursing practice. Crown Copyright © 2015. Published by
Pisoft, Petr; Sacha, Petr; Miksovsky, Jiri; Huszar, Peter; Scherllin-Pirscher, Barbara; Foelsche, Ulrich
2018-01-01
We revise selected findings regarding the utilization of Global Positioning System radio occultation (GPS RO) density profiles for the analysis of internal gravity waves (IGW), introduced by Sacha et al. (2014). Using various GPS RO datasets, we show that the differences in the IGW spectra between the dry-temperature and dry-density profiles that were described in the previous study as a general issue are in fact present in one specific data version only. The differences between perturbations in the temperature and density GPS RO profiles do not have any physical origin, and there is not the information loss of IGW activity that was suggested in Sacha et al. (2014). We investigate the previously discussed question of the temperature perturbations character when utilizing GPS RO dry-temperature profiles, derived by integration of the hydrostatic balance. Using radiosonde profiles as a proxy for GPS RO, we provide strong evidence that the differences in IGW perturbations between the real and retrieved temperature profiles (which are based on the assumption of hydrostatic balance) include a significant nonhydrostatic component that is present sporadically and might be either positive or negative. The detected differences in related spectra of IGW temperature perturbations are found to be mostly about ±10 %. The paper also presents a detailed study on the utilization of GPS RO density profiles for the characterization of the wave field stability. We have analyzed selected stability parameters derived from the density profiles together with a study of the vertical rotation of the wind direction. Regarding the Northern Hemisphere the results point to the western border of the Aleutian high, where potential IGW breaking is detected. These findings are also supported by an analysis of temperature and wind velocity profiles. Our results confirm advantages of the utilization of the density profiles for IGW analysis.
Directory of Open Access Journals (Sweden)
P. Pisoft
2018-01-01
Full Text Available We revise selected findings regarding the utilization of Global Positioning System radio occultation (GPS RO density profiles for the analysis of internal gravity waves (IGW, introduced by Sacha et al. (2014. Using various GPS RO datasets, we show that the differences in the IGW spectra between the dry-temperature and dry-density profiles that were described in the previous study as a general issue are in fact present in one specific data version only. The differences between perturbations in the temperature and density GPS RO profiles do not have any physical origin, and there is not the information loss of IGW activity that was suggested in Sacha et al. (2014. We investigate the previously discussed question of the temperature perturbations character when utilizing GPS RO dry-temperature profiles, derived by integration of the hydrostatic balance. Using radiosonde profiles as a proxy for GPS RO, we provide strong evidence that the differences in IGW perturbations between the real and retrieved temperature profiles (which are based on the assumption of hydrostatic balance include a significant nonhydrostatic component that is present sporadically and might be either positive or negative. The detected differences in related spectra of IGW temperature perturbations are found to be mostly about ±10 %. The paper also presents a detailed study on the utilization of GPS RO density profiles for the characterization of the wave field stability. We have analyzed selected stability parameters derived from the density profiles together with a study of the vertical rotation of the wind direction. Regarding the Northern Hemisphere the results point to the western border of the Aleutian high, where potential IGW breaking is detected. These findings are also supported by an analysis of temperature and wind velocity profiles. Our results confirm advantages of the utilization of the density profiles for IGW analysis.
Disinvestment and Value-Based Purchasing Strategies for Pharmaceuticals: An International Review.
Parkinson, Bonny; Sermet, Catherine; Clement, Fiona; Crausaz, Steffan; Godman, Brian; Garner, Sarah; Choudhury, Moni; Pearson, Sallie-Anne; Viney, Rosalie; Lopert, Ruth; Elshaug, Adam G
2015-09-01
mainly taken the form of price reductions, especially when market failures are perceived to exist, and restricting treatment to subpopulations, particularly when a drug is no longer considered value for money. There is considerable experimentation internationally in mechanisms for disinvestment and the opportunity for countries to learn from each other. Ongoing evaluation of disinvestment strategies is essential, and ought to be reported in the peer-reviewed literature.
Campbell, Joyce K; Ortiz, Michael V; Ottolini, Mary C; Birch, Sarah; Agrawal, Dewesh
2017-04-01
Optimizing clinical proficiency and education of residents has become more important with restricted residency duty hours. Our objective was to investigate how interns spend their time on inpatient rotations and the perceived educational value of workday activities. We performed a descriptive self-work sampling study using a personal digital assistant (PDA) to randomly query interns on inpatient rotations in real time regarding their activity and the perceived educational value of that activity on a 4-point Likert scale. A total of 31 interns participated on 88 workdays over a 5-month period, generating 2082 samples from which the average workday was modeled. Time spent using the electronic health record (EHR) accounted for 33% of intern time, communicating with the health care team 23%, educational activities 17%, and time with patients and families 12%. Time with patients and families was perceived to be the most educational part of clinical service. Time spent using the EHR was perceived as the least educational. Interns perceived clinical service as excellent or good 37% of the time, while planned educational activities were perceived as excellent or good 81% of the time. Interns spend the majority of their time using the EHR and communicating with the health care team. Interns perceive time spent in planned educational activities has more educational value than time spent in clinical service. The distribution of daily activities is discordant with the perceived educational value of those activities. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Sabik, Joseph F; Raza, Sajjad; Blackstone, Eugene H; Houghtaling, Penny L; Lytle, Bruce W
2013-01-22
The study sought to determine if left internal thoracic artery (LITA) grafting of the left anterior descending (LAD) at reoperative coronary artery bypass grafting (CABG) improves patient outcomes. LITA grafting to the LAD is the gold standard for primary CABG, but its value for reoperative CABG is unknown. From January 1985 to January 2007, reoperative CABG was performed in 3,473 patients who did not receive a LITA during their primary CABG and whose anterior myocardium (LAD) was at risk at reoperation: 2,389 had LITA grafting and 1,084 saphenous vein (SV) grafting to the LAD. Propensity matching (908 matched pairs) was used for balanced comparison of outcomes. Follow-up was continued to 20 years post-operatively, with a mean follow-up of 11 ± 8.2 years. Unadjusted hospital mortality was 2.2% and 6.5% in the LITA and SV groups, respectively (p grafting of the LAD at reoperation resulted in an absolute mortality risk reduction of 6.0% and a hazard ratio of 0.85, with number needed to treat of 16 patients. LITA-to-LAD grafting at reoperation is safe and confers a risk-adjusted survival advantage. When appropriate, a LITA should be used to revascularize the LAD at coronary reoperations. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Crustal structure under the central High Atlas Mountains (Morocco) from geological and gravity data
Ayarza, P.; Alvarez-Lobato, F.; Teixell, A.; Arboleya, M. L.; Tesón, E.; Julivert, M.; Charroud, M.
2005-05-01
Seismic wide angle and receiver function results together with geological data have been used as constraints to build a gravity-based crustal model of the central High Atlas of Morocco. Integration of a newly acquired set of gravity values with public data allowed us to undertake 2-2.5D gravity modelling along two profiles that cross the entire mountain chain. Modelling suggests moderate crustal thickening, and a general state of Airy isostatic undercompensation. Localized thickening appears restricted to the vicinity of a north-dipping crustal-scale thrust fault, that offsets the Moho discontinuity and defines a small crustal root which accounts for the minimum Bouguer gravity anomaly values. Gravity modelling indicates that this root has a northeasterly strike, slightly oblique to the ENE general orientation of the High Atlas belt. A consequence of the obliquity between the High Atlas borders and its internal and deep structure is the lack of correlation between Bouguer gravity anomaly values and topography. Active buckling affecting the crust, a highly elevated asthenosphere, or a combination of both are addressed as side mechanisms that help to maintain the high elevations of the Atlas mountains.
Newtonian gravity in loop quantum gravity
Smolin, Lee
2010-01-01
We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.
Study of values and interpersonal perception in cosmonauts on board of international space station
Vinokhodova, A. G.; Gushin, V. I.
2014-01-01
The increased heterogeneity of International Space Station (ISS) crews' composition (in terms of nationality, profession and gender) together with stressful situations, due to space flight, can have a significant impact on group interaction and cohesion, as well as on communications with Mission Control Center (MCC) and the success of the mission as a whole. Culturally related differences in values, goals, and behavioral norms could influence mutual perception and, thus, cohesive group formation. The purpose of onboard "Interaction-Attitudes" experiment is to study the patterns of small group (space crew) behavior in extended space flight. Onboard studies were performed in the course of ISS Missions 19-30 with participation of twelve Russian crewmembers. Experimental schedule included 3 phases: preflight training and Baseline Data Collection; inflight activities once in two weeks; post-flight measurement. We used Personal Self-Perception and Attitudes (PSPA) software for analyzing subjects' attitudes toward social environment (crewmembers and MCC). It is based on the semantic differential and the repertory grid technique. To study the content of interpersonal perception we used content-analysis with participation of the experts, independently attributing each construct to the 17 semantic categories, which were described in our previous study. The data obtained demonstrated that the system of values and personal attitudes in the majority of participated cosmonauts remained mostly stable under stress-factors of extended space flight. Content-analysis of the important criteria elaborated by the subjects for evaluation of their social environment, showed that the most valuable personal traits for cosmonauts were those that provided the successful fulfillment of professional activity (motivation, intellectual level, knowledge, and self-discipline) and good social relationships (sociability, friendship, and tolerance), as well. Post-flight study of changes in perceptions
International target values 2000 for measurement uncertainties in safeguarding nuclear materials
International Nuclear Information System (INIS)
Aigner, H.; Binner, R.; Kuhn, E.
2001-01-01
The IAEA has prepared a revised and updated version of International Target Values (ITVs) for uncertainty components in measurements of nuclear material. The ITVs represent uncertainties to be considered in judging the reliability of analytical techniques applied to industrial nuclear and fissile material subject to safeguards verification. The tabulated values represent estimates of the 'state of the practice' which ought to be achievable under routine conditions by adequately equipped, experienced laboratories. The ITVs 2000 are intended to be used by plant operators and safeguards organizations as a reference of the quality of measurements achievable in nuclear material accountancy, and for planning purposes. The IAEA prepared a draft of a technical report presenting the proposed ITVs 2000, and in April 2000 the chairmen or officers of the panels or organizations listed below were invited to co- author the report and to submit the draft to a discussion by their panels and organizations. Euratom Safeguards Inspectorate, ESAKDA Working Group on Destructive Analysis, ESARDA Working Group on Non Destructive Analysis, Institute of Nuclear Material Management, Japanese Expert Group on ITV-2000, ISO Working Group on Analyses in Spent Fuel Reprocessing, ISO Working Group on Analyses in Uranium Fuel Fabrication, ISO Working Group on Analyses in MOX Fuel Fabrication, Agencia Brasileno-Argentina de Contabilidad y Control de Materiales Nucleares (ABACC). Comments from the above groups were received and incorporated into the final version of the document, completed in April 2001. The ITVs 2000 represent target standard uncertainties, expressing the precision achievable under stipulated conditions. These conditions typically fall in one of the two following categories: 'repeatability conditions' normally encountered during the measurements done within one inspection period; or 'reproducibility conditions' involving additional sources of measurement variability such as
Gravity with Intermediate Goods Trade
Directory of Open Access Journals (Sweden)
Sujin Jang
2017-12-01
Full Text Available This paper derives the gravity equation with intermediate goods trade. We extend a standard monopolistic competition model to incorporate intermediate goods trade, and show that the gravity equation with intermediates trade is identical to the one without it except in that gross output should be used as the output measure instead of value added. We also show that the output elasticity of trade is significantly underestimated when value added is used as the output measure. This implies that with the conventional gravity equation, the contribution of output growth can be substantially underestimated and the role of trade costs reduction can be exaggerated in explaining trade expansion, as we demonstrate for the case of Korea's trade growth between 1995 and 2007.
International Nuclear Information System (INIS)
Lamon, Raphael
2010-01-01
Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem. Furthermore, we
Energy Technology Data Exchange (ETDEWEB)
Lamon, Raphael
2010-06-29
Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem
Giving Your Patrons the World: Barriers to, and the Value of, International Interlibrary Loan
Munson, Kurt; Thompson, Hilary H.
2018-01-01
Using the 2011 and 2015 survey by the Reference and User Services Association Sharing and Transforming Access to Resources Section (RUSA STARS) of international interlibrary loans (ILL), the authors explore barriers to this method of meeting patrons' information needs. They evaluate international ILL in the context of developments in the…
Evaluating the value chain model for service organisational strategy: International hotels.
Choi, Keetag.
2000-01-01
Strategic models like Porter's (1985) value chain have not been fully evaluated in the strategy literature and applied to all industries. To theoretically redefine the value chain technique, this research evaluates the value chain's use with various strategic issues by applying it to a specific aspect in the service field, namely the hotel industry. The study defines five key questions by which to evaluate a strategic model and the value chain model is examined using them. This research is a ...
Is nonrelativistic gravity possible?
Kocharyan, A. A.
2009-01-01
We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Eins...
Directory of Open Access Journals (Sweden)
Wahyu Tamtomo Adi
2015-06-01
The segmented models results vary that the value of male is higher than female, the value of high income is higher than low income, the values of taxi user is higher than car user, the value of business traveler is higher than leisure and commuter traveler, the value of self-finance journey is lower than the journey paid by the company. With the standard level of service, the probability result of mode sharing shows that the majority of respondents will use the train service (40.99%, followed by the other modes: bus (30.90%, car (16.52%, and taxi (11.59%. Keywords: Jakarta, SHIA airport, access mode, value of in-vehicle time, value of waiting time, model segmentation, mode sharing.
Roth, Guy; Kanat-Maymon, Yaniv; Bibi, Uri
2011-01-01
Background: This study examined students' perceptions of autonomy-supportive teaching (AST) and its relations to internalization of pro-social values and bullying in class. Aims: We hypothesized that: (1) teachers' AST, which involves provision of rationale and taking the student's perspective, would relate positively to students' identified…
Narlikar, Jayant V.
2002-09-01
This talk presents a light-hearted look at the phenomenon of gravity, the most enigmatic of all known natural interactions. The fact that a major international society is wholly devoted towards understanding this basic interaction of nature is ample testimony to its intellectual challenges. The GR-meetings are held once every three years to bring together workers in the field to share their ignorance as well as expertise in the field of gravity. It would be presumptuous on my part to attempt to tell anything new to the experts gathered here. This evening I will stay away from the complexities and take a light hearted look at some ideas and phenomena that make gravity so peculiar.
Auty, Geoff
2016-01-01
Inspired by the inclusion of a British astronaut on the International Space Station, explanations and demonstrations that lead to an understanding of how satellites stay above the Earth are described. This is a mixture of separate ideas that have been demonstrated successfully at a public exhibition of science-based activities. Although some…
Gravity Aided Navigation Precise Algorithm with Gauss Spline Interpolation
Directory of Open Access Journals (Sweden)
WEN Chaobin
2015-01-01
Full Text Available The gravity compensation of error equation thoroughly should be solved before the study on gravity aided navigation with high precision. A gravity aided navigation model construction algorithm based on research the algorithm to approximate local grid gravity anomaly filed with the 2D Gauss spline interpolation is proposed. Gravity disturbance vector, standard gravity value error and Eotvos effect are all compensated in this precision model. The experiment result shows that positioning accuracy is raised by 1 times, the attitude and velocity accuracy is raised by 1～2 times and the positional error is maintained from 100~200 m.
Do employers value international study and internships? A comparative analysis of 31 countries
Van Mol, C.
2017-01-01
International student mobility is often promoted as enhancing graduates’ employability in globalised labour markets. Nevertheless, empirical evidence on this assumed causal link remains limited. Particularly the perspectives of employers remains understudied. Therefore, in this paper I analyse (1)
Value of External Reviews of Research at the International Agricultural Research Centers
Fuglie, Keith; Ruttan, Vernon W.
1989-01-01
The Consultative Groups on International Agricultural Research (CGIAR) funds a decentralized system of International Agricultural Research Centers. To monitor the Centers, the CGIAR has instituted a system of program and management reviews. But there is some controversy concerning the proper role, cost, and impact of these reviews. In 1984 we conducted a survey of scientific and administrative staff at the Centers to elicit their perspectives about the benefits and costs of the reviews. We al...
Three-dimensional tricritical gravity
Bergshoeff, Eric A.; de Haan, Sjoerd; Merbis, Wout; Rosseel, Jan; Zojer, Thomas
2012-01-01
We consider a class of parity-even, six-derivative gravity theories in three dimensions. After linearizing around anti-de Sitter space, the theories have one massless and two massive graviton solutions for generic values of the parameters. At a special, so-called tricritical, point in parameter
Bakhmetieva, Nataliya V.; Grigoriev; Tolmacheva, Ariadna V.
Artificial periodic irregularities (API) formed by the powerful standing radio waves in the ionospheric plasma give the good chance for the lower ionosphere comprehensive studies. In this paper we present some applications of the API technique for experimental studies of sporadic E-layers (E _{s}), internal gravity waves and turbulent events in the lower ionosphere. API are formed in the field of the standing radio wave produced by interference of the incident wave and reflected one from the ionosphere (in more details about the API technique one can see in the book Belikovich et al., Ionospheric Research by Means of Artificial Periodic Irregularities - Katlenburg-Lindau, Germany. 2002. Copernicus GmbH. ISBN 3-936586-03-9). The spatial period of the irregular structure is equal to the standing wavelength Lambda or one-half the powerful wavelength lambda/2. API diagnostics are carried out at the API relaxation or decay stage by their sounding of probing radio pulses. Based on the measurement of an amplitude and a phase of the API scattered signal their relaxation time and regular vertical plasma velocity are measured. In the E-region of the ionosphere API are formed as a result of the diffusion redistribution of the non-uniformly heated plasma. The relaxation of the periodic structure is specified by the ambipolar diffusion process. The diffusion time is tau=(K (2) D _{a}) (-1) where K=2pi/Lambda and D _{a} is the ambipolar diffusion rate. The atmospheric turbulence causes reduction of the API relaxation time in comparison the diffusion time. Determination of the turbulent velocity is based on this fact. The vertical plasma velocity is determined by measuring the phase of the scattered signal. Atmospheric waves having the periods from 5-10 minutes to 5-6 hours give the contribution to temporal variations of the velocity. Parameters and effects of atmospheric waves and the turbulence on the API relaxation process are presented. Determination of the masses of the
Norsk, P.; Shelhamer, M.
2016-01-01
This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.
The value of an intercâmbio: brazilian student mobility, bilateralism & international education
Directory of Open Access Journals (Sweden)
Eric Spears
2014-05-01
Full Text Available Brazil’s emergence in the global economy as a member of the BRIC (Brazil, Russia, India, China, and South Africa states has prompted the federal government to establish the Brazilian Scientific Mobility Program (Science Without Borders in order to advance the country’s social capital and infrastructure in STEM (Science, Technology, Engineering, and Math related disciplines and industries. Public and private investment in the Scientific Mobility Program has transformed the way in which Brazilian government, universities, and citizenry places value the intercâmbio (student exchange experience in the United States. STEM-related disciplines are now disproportionately funded versus social sciences, humanities, and fine arts fields. This development has altered the way in which student mobility in the United States is given worth and changed the trajectory of international education in Brazil. This research provides a conceptual analysis of the Brazilian Scientific Mobility Program by using a critical political economy perspective. The essay conceptualizes the Science Without Borders initiative at global, national, and local levels. This research also explores what implications the bilateral U.S.-Brazil Educational Partnership may have on future policy, practice, and ultimately, funding of Brazilian student mobility. A emergência do Brasil no âmbito da economia mundializada como participante do BRIC (Brasil, Rússia, Índia, China e África do Sul mobilizou o governo federal brasileiro a estabelecer um programa estatal de mobilidade acadêmica (Programa Ciência sem Fronteiras de modo a fazer avançar o capital social do país (general intellect e a infraestrutura em STEM (Ciência, Tecnologia, Engenharia e Matemática relacionadas à indústria. Investimentos públicos e privados no programa de mobilidade acadêmica transformaram o modo como o governo brasileiro e as universidades valorizam o intercâmbio estudantil com os Estados Unidos. As
The Intrinsic explanatory value of social constructivism in International Relations Theory
KARKALANOV TSVETKO V.
2016-01-01
Why has constructivism emerged as an important force in the field of international relations and politics in the end of the 20th century? Why constructivism and not any other theoretical approach? The constructivist perspective of international relations appeared as a counterbalance to rationalism that was entrenched in US Political Science throughout the last decades. Analyzing the contemporary state of world affairs through the prism of social constructivism provides us with a unique unders...
Alber, Hans-Dieter
1998-01-01
This book contributes to the mathematical theory of systems of differential equations consisting of the partial differential equations resulting from conservation of mass and momentum, and of constitutive equations with internal variables. The investigations are guided by the objective of proving existence and uniqueness, and are based on the idea of transforming the internal variables and the constitutive equations. A larger number of constitutive equations from the engineering sciences are presented. The book is therefore suitable not only for specialists, but also for mathematicians seeking for an introduction in the field, and for engineers with a sound mathematical background.
Failures in sand in reduced gravity environments
Marshall, Jason P.; Hurley, Ryan C.; Arthur, Dan; Vlahinic, Ivan; Senatore, Carmine; Iagnemma, Karl; Trease, Brian; Andrade, José E.
2018-04-01
The strength of granular materials, specifically sand is important for understanding physical phenomena on other celestial bodies. However, relatively few experiments have been conducted to determine the dependence of strength properties on gravity. In this work, we experimentally investigated relative values of strength (the peak friction angle, the residual friction angle, the angle of repose, and the peak dilatancy angle) in Earth, Martian, Lunar, and near-zero gravity. The various angles were captured in a classical passive Earth pressure experiment conducted on board a reduced gravity flight and analyzed using digital image correlation. The data showed essentially no dependence of the peak friction angle on gravity, a decrease in the residual friction angle between Martian and Lunar gravity, no dependence of the angle of repose on gravity, and an increase in the dilation angle between Martian and Lunar gravity. Additionally, multiple flow surfaces were seen in near-zero gravity. These results highlight the importance of understanding strength and deformation mechanisms of granular materials at different levels of gravity.
Valuating the Value and Risk of International Start-up Ventures
Ido Kallir; Tamir Agmon
2015-01-01
Fair value depends on an estimate of the both cash flow and risk, which is not an easy task when valuing startup firms. We present a measurement instrument for the future risk of small and risky firms that follows the major propositions in accounting and finance. It differs from other valuation instruments in looking simultaneously at the assets and liabilities. We test the VBB as a measure for value over time by using a database of VC backed innovative companies that oridary DCF valuation fa...
Energy Technology Data Exchange (ETDEWEB)
Andrieux, S.; Joussemet, M.; Lorentz, E.
1996-12-31
When they are subjected to excessive loads, some materials may exhibit a softening behaviour resulting from the deterioration of their mechanical properties. To idealize such behaviours, constitutive relations with softening are introduced, for which the size of the domain of reversibility in the stress-space decreases. These models feature a strain localization within the material, in agreement with experiments, but cannot predict the subsequent behaviour because they lead to shear bands the width of which is equal to zero, physically unacceptable and numerically troublesome. It has been proposed in the literature to overcome these difficulties by adding to the list of internal variable the spatial gradients of some of them. This procedure suffers from lack of firm methodological basis. Although, some quantitative justification have been advanced relying on some kind of microscopic analysis. Therefore, we propose to extend the classical (local) models by introducing the internal state variable first gradients. Given local model within the framework of standard generalized materials, consistent homogenization procedure is put forward to derive macroscopic free energy and dissipation potentials. The standard generalized character is preserved, with an extended set of state variables, containing not only the strain and the internal variables but also the internal variable derivatives. Nevertheless, when dealing with the whole structure, the independence between the new state variables is lost. We propose then to generalize the constitutive relations, leading to a new variational principle that ensures the Clausius-Duhem inequality at the structure scale. (authors). 9 refs.
International Nuclear Information System (INIS)
Andrieux, S.; Joussemet, M.; Lorentz, E.
1996-01-01
When they are subjected to excessive loads, some materials may exhibit a softening behaviour resulting from the deterioration of their mechanical properties. To idealize such behaviours, constitutive relations with softening are introduced, for which the size of the domain of reversibility in the stress-space decreases. These models feature a strain localization within the material, in agreement with experiments, but cannot predict the subsequent behaviour because they lead to shear bands the width of which is equal to zero, physically unacceptable and numerically troublesome. It has been proposed in the literature to overcome these difficulties by adding to the list of internal variable the spatial gradients of some of them. This procedure suffers from lack of firm methodological basis. Although, some quantitative justification have been advanced relying on some kind of microscopic analysis. Therefore, we propose to extend the classical (local) models by introducing the internal state variable first gradients. Given local model within the framework of standard generalized materials, consistent homogenization procedure is put forward to derive macroscopic free energy and dissipation potentials. The standard generalized character is preserved, with an extended set of state variables, containing not only the strain and the internal variables but also the internal variable derivatives. Nevertheless, when dealing with the whole structure, the independence between the new state variables is lost. We propose then to generalize the constitutive relations, leading to a new variational principle that ensures the Clausius-Duhem inequality at the structure scale. (authors)
Finley, Jane B.; Taylor, Susan Lee; Warren, D. Lee
2007-01-01
Researchers agree that students' critical thinking and decision making skills are enhanced through exposure to new cultures and global markets. Thus, one way of bringing about improvement in these areas is through international travel courses. The purpose of this study is threefold. One, to describe the process involved in the creation of a…
Alagaraja, Meera
2013-01-01
Purpose: The purpose of this article is to outline the role of human resource development (HRD) in Lean strategy as the context for assessing interactions with internal customers. Identifying the perceived gap in role expectations and fulfillment emphasizes important priorities and offers tangible measures for assessing HRD contributions. A focus…
International Nuclear Information System (INIS)
Andrieux, S.; Joussemet, M.; Lorentz, E.
1996-01-01
A general framework for deriving and using a class of constitutive laws incorporating spatial gradients of internal variables is presented. It uses two basic ingredients: a derivation of such models by homogenization techniques and a reformulation of the evolution equation at the scale of the whole structure. (orig.)
Gravity observations for hydrocarbon reservoir monitoring
Glegola, M.A.
2013-01-01
In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The
Adi, Wahyu Tamtomo
2015-01-01
This study attempts to identify the characteristics and preference of the SHIA airport travelers, estimate the subjective value of in-vehicle time and waiting time by providing choice experiments regarding the available modes in combination with the Airport Rail Link (ARL) service as hypothetical situation, analyze how the values vary according to the socio-demographics of respondents and forecasting the mode sharing and the elasticity based on several scenarios. Five hundred respondents as p...
Mihaela Gruiescu; Corina Ioanăs; Adriana Florina Popa
2010-01-01
As the present financial markets have broadened and deepened, increasing numbers of firms are utilizing innovative financial instruments to accomplish business objectives and enhance shareholder value. It is crucial for the financial managers to keep abreast of available financial instruments, the business settings in which these instruments can create—and destroy—value, and modern analysis techniques for these instruments. A financial manager also should possess a basic understanding of the ...
An international meta-analysis of values of travel time savings.
Shires, J D; de Jong, G C
2009-11-01
Values of travel time savings are often used in cost-benefit analysis of transport projects and policies, and also to compute generalised travel costs. There has been considerable debate as to whether different research methods (e.g. stated versus revealed preference) will lead to different values of travel time savings, and which segmentations (e.g. by income or mode) are most important to capture the heterogeneity in these values. In addition there are many countries where no specific valuation studies have been done. In this paper new equations are estimated on the outcomes of value of travel time savings studies from various countries. In the data set, several countries appear more than once, which is taken into account by estimating random effects panel models. The meta-analysis sheds some new light on the variation of the value of travel time savings by income, country, travel purpose, mode, distance and by survey method. Furthermore, the resulting meta-models are applied to produce new values of travel time savings for business travel, commuting and for other purposes in passenger transport, for 25 European Union Member states. Similar methods could be used to statistically analyse studies carried out on other non-monetary effects, both for transport and non-transport projects, and for inclusion in cost-benefit analysis.
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...
Beysens, D.A.; van Loon, J.J.W.A.; Beysens, D.A.; van Loon, J.J.W.A.
2015-01-01
It is generally thought that gravity is zero on an object travelling at constant velocity in space. This is not exactly so. We detail in the following those causes that make space gravity not strictly zero.
... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...
Gravity observations for hydrocarbon reservoir monitoring
Glegola, M.A.
2013-01-01
In this thesis the added value of gravity observations for hydrocarbon reservoir monitoring and characterization is investigated. Reservoir processes and reservoir types most suitable for gravimetric monitoring are identified. Major noise sources affecting time-lapse gravimetry are analyzed. The added value of gravity data for reservoir monitoring and characterization is analyzed within closed-loop reservoir management concept. Synthetic 2D and 3D numerical experiments are performed where var...
Terrestrial Gravity Fluctuations
Directory of Open Access Journals (Sweden)
Jan Harms
2015-12-01
Full Text Available Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^–23 Hz^–1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our
Terrestrial Gravity Fluctuations
Harms, Jan
2015-12-01
Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of
Zavoreo, Iris; Aleksić-Shibabi, Anka; Demarin, Vida
2006-01-01
The aim of the study was to evaluate the role of cerebral vasoreactivity measurement in the follow up of patients with severe internal carotid stenosis. We used breath holding index (BHI) as a quantitative parameter of cerebral vasoreactivity and functional state of cerebral hemodynamics. We evaluated data of 150 patients with high grade carotid stenosis (definition according to standardized criteria of the Cerebrovascular Laboratory, Reference Center for Neurovascular Disorders of the Minist...
Smit, Eileen M; Tremethick, Mary Jane
Reflection is a widely accepted learning tool and a component of competent professional practice. An exploratory descriptive study was conducted to compare the breadth and level of reflection between students engaged in individual reflection papers and students engaged in an online group reflection discussion after an international cultural immersion service-learning program. Results indicated that students participating in the online group discussion had a higher level of reflective thinking and discussed more topics in their written reflections.
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
Bergshoeff, E.; Pope, C.N.; Stelle, K.S.
1990-01-01
We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.
Dualities and emergent gravity: Gauge/gravity duality
de Haro, Sebastian
2017-08-01
In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence (via coarse-graining). I apply this framework to gauge/gravity dualities, considering in detail three examples: AdS/CFT, Verlinde's scheme, and black holes. My main point about gauge/gravity dualities is that the theories involved, qua theories of gravity, must be background-independent. I distinguish two senses of background-independence: (i) minimalistic and (ii) extended. I argue that the former is sufficiently strong to allow for a consistent theory of quantum gravity; and that AdS/CFT is background-independent on this account; while Verlinde's scheme best fits the extended sense of background-independence. I argue that this extended sense should be applied with some caution: on pain of throwing the baby (general relativity) out with the bath-water (extended background-independence). Nevertheless, it is an interesting and potentially fruitful heuristic principle for quantum gravity theory construction. It suggests some directions for possible generalisations of gauge/gravity dualities. The interpretation of dualities is discussed; and the so-called 'internal' vs. 'external' viewpoints are articulated in terms of: (i) epistemic and metaphysical commitments; (ii) parts vs. wholes. I then analyse the emergence of gravity in gauge/gravity dualities in terms of the two available conceptualisations of emergence; and I show how emergence in AdS/CFT and in Verlinde's scenario differ from each other. Finally, I give a novel derivation of the Bekenstein-Hawking black hole entropy formula based on
G.M. Gómez (Georgina)
2011-01-01
markdownabstractThis article describes the activities of The association Pueblos en Acción Comunitaria (PAC) as a model of value chain organization with an entrepreneurial vision and Christian inspiration and enquires in what ways it represents a new model to promote local development and poverty
Solem, Michael; Lambert, David; Tani, Sirpa
2013-01-01
GeoCapabilities is a transatlantic collaborative project for researching the purposes and values of geography education through a "capabilities approach." Inspired by the writings of philosopher Amartya Sen and economist Martha Nussbaum, the capabilities approach provides a normative framework for understanding the broader aims of…
Impact of parenting styles on adolescents' self-esteem and internalization of values in Spain.
Martínez, Isabel; García, José Fernando
2007-11-01
The relationship of parenting styles with adolescents' outcomes was analyzed within a sample of Spanish adolescents. A sample of 1456 teenagers from 13 to 16 years of age, of whom 54.3% were females, reported on their parents' child-rearing practices. The teenagers' parents were classified into one of four groups (authoritative, authoritarian, indulgent, or neglectful). The adolescents were then contrasted on two different outcomes: (1) priority given to Schwartz's self-transcendence (universalism and benevolence) and conservation (security, conformity, and tradition) values and (2) level of self-esteem (appraised in five domains: academic, social, emotional, family and physical). The results show that Spanish adolescents from indulgent households have the same or better outcomes than adolescents from authoritative homes. Parenting is related with two self-esteem dimensions--academic and family--and with all the self-transcendence and conservation values. Adolescents of indulgent parents show highest scores in self-esteem whereas adolescents from authoritarian parents obtain the worst results. In contrast, there were no differences between the priority given by adolescents of authoritative and indulgent parents to any of the self-transcendence and conservation values, whereas adolescents of authoritarian and neglectful parents, in general, assign the lowest priority to all of these values.
Aviation Impacts on Property Values and Management: The Case of Suvarnabhumi International Airport
Directory of Open Access Journals (Sweden)
Patcharin Limlomwongse Suksmith
2015-07-01
Full Text Available Many countries have developed policies and measures to deal with the external impact of aviation on the wider community. There is, however, often controversy and lack of acceptance of some measures, such as compensation, in the communities affected by aviation. Such measures are often felt to be ineffective and perceived as unfair. A clear and objective model for determining compensation would be helpful to reduce controversy. The objective of this study is therefore to examine the relationship between aviation impacts and property values in the case of Thailand's Suvarnabhumi Airport for application to the possible improvement of compensation packages. Multiple regression analysis was used to determine the relationship between five common impacts of aviation (safety, noise, scenery, air pollution, and traffic and property value change, with data from a survey of sample communities around the airport. The results, both for the overall neighborhood and for separate land used types, show that only noise and air pollution demonstrate significant negative relations with property value. The effect of noise drives a higher impact on property price than the effect of air pollution. The main contribution of this research is to improve developing country compensation models by applied measurement from regression analysis to identify factors with significant impacts, using property value change as proxy to measure the impact of the airport. For example, in the case of Thailand, a compensation model should consider noise and air pollution as the main factors rather than consider only noise contour area. The higher weight on noise should be designed to reflect land use types. Furthermore the market value of property loss should be taken into account when designing a compensation package. The survey and regression method used in this study can be adapted for finding relevant factors and suggesting appropriate compensation for other environmental and
Consolidated science requirements for a next generation gravity field mission
Pail, Roland; Bingham, Rory; Braitenberg, Carla; Eicker, Annette; Floberghagen, Rune; Haagmans, Roger; Horwath, Martin; LaBrecque, John; Longuevergne, Laurent; Panet, Isabelle; Rolstad-Denby, Cecile; Wouters, Bert
2014-05-01
As a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics), science requirements for a next generation gravity field mission (beyond GRACE-FO) shall be defined and consolidated. A consolidation of the user requirements is required, because several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+). For this purpose, the science requirements shall be accorded by the different user groups, i.e. hydrology, ocean, cryosphere, solid Earth and atmosphere, under the boundary condition of the technical feasibility of the mission concepts and before the background of double- and multi-pair formations. This initiative shall mainly concentrate on the consolidation of the science requirements, and should result in a document that can be used as a solid basis for further programmatic and technological developments. Based on limited number of realistic mission scenarios, a consolidated view on the science requirements within the international user communities shall be derived, research fields that could not be tackled by current gravity missions shall be identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return shall be evaluated. The final science requirements shall be agreed upon during a workshop which will be held in September 2014. In this contribution, the mission scenarios will be discussed and first results of the consolidation process will be presented.
Directory of Open Access Journals (Sweden)
Kenneth Chan
2010-11-01
Full Text Available The presence of retropharyngeal tissue mass often raises the suspicion of malignancy, especially in elderly patients. This prompts urgent biopsy to investigate tissue histology. We discuss a case where this is contraindicated as the retropharyngeal mass was illustrated by CT scanning and confirmed with MRI to be a tortuous coursing internal carotid artery. An awareness of this unusual anatomical variation and a careful interpretation of imaging studies both at the stage of differential diagnosis and pre-operative screening are essential to avoid damage to important structures, causing unnecessary complications.
Valuing the commons: An international study on the recreational benefits of the Baltic Sea.
Czajkowski, Mikołaj; Ahtiainen, Heini; Artell, Janne; Budziński, Wiktor; Hasler, Berit; Hasselström, Linus; Meyerhoff, Jürgen; Nõmmann, Tea; Semeniene, Daiva; Söderqvist, Tore; Tuhkanen, Heidi; Lankia, Tuija; Vanags, Alf; Zandersen, Marianne; Żylicz, Tomasz; Hanley, Nick
2015-06-01
The Baltic Sea provides benefits to all of the nine nations along its coastline, with some 85 million people living within the catchment area. Achieving improvements in water quality requires international cooperation. The likelihood of effective cooperation is known to depend on the distribution across countries of the benefits and costs of actions needed to improve water quality. In this paper, we estimate the benefits associated with recreational use of the Baltic Sea in current environmental conditions using a travel cost approach, based on data from a large, standardized survey of households in each of the 9 Baltic Sea states. Both the probability of engaging in recreation (participation) and the number of visits people make are modeled. A large variation in the number of trips and the extent of participation is found, along with large differences in current annual economic benefits from Baltic Sea recreation. The total annual recreation benefits are close to 15 billion EUR. Under a water quality improvement scenario, the proportional increases in benefits range from 7 to 18% of the current annual benefits across countries. Depending on how the costs of actions are distributed, this could imply difficulties in achieving more international cooperation to achieve such improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Estimating gravity equations with endogeneous trade costs
Rudolph, Stephan
2010-01-01
A basic assumption of the gravity equation of international trade is that increasing trade costs lower exports. Butintuition and theory imply that a high export volume lowers bilateral trade costs as well, because a fixed cost intensivetrade sector probably bears lower average costs with more trade. In this case, standard gravity estimation might bebiased due to simultaneity. This paper finds an empirical interdependency between exports and trade costs. Using asimultaneous equation model to f...
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis; Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2017-02-22
We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.
INTERNALIZING KALOSARA’S VALUE IN A TRADITIONAL DANCE ‘LULO’, KENDARI, SOUTHEAST SULAWESI
Directory of Open Access Journals (Sweden)
Muh Subair
2018-12-01
Full Text Available Message of peace may grow anywhere, and if it grows on the culture of community, it will last in perpetuity. Therefore, this research tries to identify any local wisdom that fully embraces the message of peace in the city of Kendari, Southeast Sulawesi, by employing descriptive-qualitative approach. In-depth interview, literature review, and observation indicated that the sacrality of kalosara value among Tolakinese people still holds an essential aspect to their life. It is a distinctive totem made of rattan wood in circular-and-intertwined shape, which is believed to be a representation of Sangia (the highest deity in Tolakinese belief. Its presence is not only acted as a complement to traditional ceremonies, but also its effectiveness to settle any disputes, confrontation, and even vengeful grudge in murder cases. Two opposing sides with drawn swords will automatically restraint themselves whenever one tries to settle the fight ensuing by throwing a hat-shaped item by exclamation to consider it as kalosara, as though it holds a magical quality that affects their subconscious mind. Consequently, those two Tolakinese people are immediately willing to reconcile themselves. This magical value can be transformed into more wide-array aspect, by strengthening the circular energy of kalosara in the form of various mass activities, particularly in a traditional dance called ‘lulo’, which truly represents kalosara with their signature circular motion. By accentuating the circular motion of lulo dance as representation of kalosara, it is expected to enrich its value and sacrality, thus the atmospehere of peacefulness will grow within the Tolakinese people and spread over to other communities in Kendari, as a unified lulo society, or any other aspiring lulo societies.
Roth, Guy; Kanat-Maymon, Yaniv; Bibi, Uri
2011-12-01
This study examined students' perceptions of autonomy-supportive teaching (AST) and its relations to internalization of pro-social values and bullying in class. We hypothesized that: (1) teachers' AST, which involves provision of rationale and taking the student's perspective, would relate positively to students' identified internalization of considerateness towards classmates, and would relate negatively to external regulation (considerateness to obtain rewards or avoid punishments); (2) students' identified regulation would relate negatively to self-reported bullying in class, whereas external regulation would relate positively to bullying; and (3) the relation between teachers' AST and student bullying would be mediated by students' identification with the value of considerateness towards others. The sample consisted of 725 junior high school students (50% females) in Grades 7 and 8 from 27 classes in four schools serving students from lower-middle to middle-class socioeconomic backgrounds. The participants completed questionnaires assessing the variables of interest. Correlational analysis supported the hypotheses. Moreover, mediational analyses using hierarchical linear modelling (HLM) demonstrated that identified regulation mediates the negative relation between AST and self-reported bullying in class. The mediational hypothesis was supported at the between-class level and at the within-class level. The findings suggest that school policy aimed at bullying reduction should go beyond external control that involves external rewards and sanctions and should help teachers acquire autonomy-supportive practices focusing on students' meaningful internalization. ©2010 The British Psychological Society.
Directory of Open Access Journals (Sweden)
John R.F. Gladman
2008-06-01
Full Text Available In this paper, I argue that the International Classification of Functioning, Disability and Health (ICF, proposed by the World Health Organization, provides not only a model to understand health, but a model to understand rehabilitation and geri-atric medicine. The ICF proposes that poor health is defined by a complex product of the interactions between several domains: body functions and structures (and impairments of them, activities (and limitations in their performance, par-ticipation (and restrictions to it, the physical and social environment (which may be facilitating or hindering and per-sonal factors. I propose that the ICF allows a logical classification of the potential interventions that are possible to improve health during rehabilitation or geriatric practice. These interventions may target each of the domains of health in the ICF. An example is given illustrating this approach in the management of a person who has fallen. This model of rehabilitation illustrates that rehabilitation is a complex multidisciplinary process, comprising restorative and adaptive strategies including the use of assistive technologies, and which is reliant upon careful assessment and care planning.
THE INTERNAL VALUE CHAIN IN THE COLLECTION, PROCESSING AND MARKETING OF COFFEE
Directory of Open Access Journals (Sweden)
Maricela Arias-Madrazo
2016-01-01
Full Text Available The losses of recent years in the coffee industry in the province of Santiago de Cuba and in particular Business Unit Base Café (Café UEB Taíno Agricultural Company, require the immediate search for the causes and measures to reverse losses into profit. The UEB no response to the incessant changes Café technological and organizational information to the environment, characterized by a poor accounting system that manages costs, only accumulates, giving priority to the product and not resource-consumingactivities, coupled to the lack of a framework consistent with the need for business development are thefactors that have influenced the losses. Focus strategically costs basing decisions of managers to generate profits, based on the value chain, is the focus of this article, for which techniques were used strategic management of costs and their specific methods.
Cohen, Lori R.; Milyavskaya, Marina; Koestner, Richard
2009-01-01
The present study examined the way in which children attending Orthodox Jewish schools internalize the value of both their Jewish studies and secular studies, as well as the value of Jewish cultural practices. A distinction was made between identified internalization, where children perceive Jewish studies and Jewish culture to be an important…
Critical behaviors of gravity under quantum perturbations
Directory of Open Access Journals (Sweden)
ZHANG Hongsheng
2014-02-01
Full Text Available Phase transition and critical phenomenon is a very interesting topic in thermodynamics and statistical mechanics. Gravity is believed to have deep and inherent relation to thermodynamics. Near the critical point,the perturbation becomes significant. Thus for ordinary matter (governed by interactions besides gravity the critical behavior will become very different if we ignore the perturbations around the critical point,such as mean field theory. We find that the critical exponents for RN-AdS spacetime keep the same values even when we consider the full quantum perturbations. This indicates a key difference between gravity and ordinary thermodynamic system.
International Nuclear Information System (INIS)
Gao Peihong; Cai Shifeng; Zhao Bin; Wang Guangbin; Peng Hongjuan; Liu Shaoling
2007-01-01
Objective: To investigate the diagnostic value of internal septation for differentiating benign from malignant breast lesions. Methods: A total of 26 patients were included in the study, in which 12 patients had 20 lesions of breast carcinoma and 14 patients had 25 lesions of fibroadenoma diagnosed either pathologically or clinically. The differential diagnoistic value of the hypointensive internal septation was analyzed. Results: The signal intensity of fibroadenomas and malignant lesions on T 2 -weighted fat-suppressed images could be classified as iso- to hyper- intensity, hypointensity and mixed intensity. According to the signal intensity classification, there were 5, 11 and 4 cases in patients with breast carcinoma respectively, while 11, 10, 4 cases in patients with fibroadenoma respectively. There was no statistical difference in the distribution between the two patient groups (χ 2 =1.764, P=0.414). The shape of fibroadenomas and malignant lesions could be classified as irregular, roundish or lobulated. According to the morphological classification, there were 12, 7 and 1 case in patients with breast carcinoma respectively, while 1, 7, 17 cases in patients with fibroadenoma respectively. There was statistical difference in the distribution between the two patient groups (χ 2 =23.262, P=0.000). The typical features of fibroadenomas were as follows: lobulated shape, hypointensive internal septations on T 2 -weighted or postcontrast images. The diagnostic sensitivity of the three imaging features for fibroadenoma was 68%(17/25), 52%(13/25), and 72%(18/25) respectively; and the diagnostic specificity was 95%(19/20), 90%(18/20), 95% (19/20) respectively. Conclusion: The internal septation is a rather specific sign for diagnosis of fibroadenomas. (authors)
Quintic quasi-topological gravity
Energy Technology Data Exchange (ETDEWEB)
Cisterna, Adolfo [Vicerrectoría académica, Universidad Central de Chile,Toesca 1783 Santiago (Chile); Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile,Casilla 567, Valdivia (Chile); Guajardo, Luis; Hassaïne, Mokhtar [Instituto de Matemática y Física, Universidad de Talca,Casilla 747, Talca (Chile); Oliva, Julio [Departamento de Física, Universidad de Concepción,Casilla, 160-C, Concepción (Chile)
2017-04-11
We construct a quintic quasi-topological gravity in five dimensions, i.e. a theory with a Lagrangian containing R{sup 5} terms and whose field equations are of second order on spherically (hyperbolic or planar) symmetric spacetimes. These theories have recently received attention since when formulated on asymptotically AdS spacetimes might provide for gravity duals of a broad class of CFTs. For simplicity we focus on five dimensions. We show that this theory fulfils a Birkhoff’s Theorem as it is the case in Lovelock gravity and therefore, for generic values of the couplings, there is no s-wave propagating mode. We prove that the spherically symmetric solution is determined by a quintic algebraic polynomial equation which resembles Wheeler’s polynomial of Lovelock gravity. For the black hole solutions we compute the temperature, mass and entropy and show that the first law of black holes thermodynamics is fulfilled. Besides of being of fourth order in general, we show that the field equations, when linearized around AdS are of second order, and therefore the theory does not propagate ghosts around this background. Besides the class of theories originally introduced in https://arxiv.org/abs/1003.4773, the general geometric structure of these Lagrangians remains an open problem.
Fotopoulou, Christina; Zang, Rongyu; Gultekin, Murat; Cibula, David; Ayhan, Ali; Liu, Dongli; Richter, Rolf; Braicu, Ioana; Mahner, Sven; Harter, Philipp; Trillsch, Fabian; Kumar, Sanjeev; Peiretti, Michele; Dowdy, Sean C; Maggioni, Angelo; Trope, Claes; Sehouli, Jalid
2013-04-01
The value of surgery for recurrent epithelial ovarian cancer (OC) is controversial. The aim of the present study was to evaluate the outcome of EOC-patients who underwent tertiary cytoreductive surgery (TCS) and to identify prognostic markers for complete tumor resection and survival. Retrospective multicenter evaluation of TCS patients treated between 1997 and 2011 in 14 centers across Europe, the United States, and Asia. We evaluated 406 patients (median age, 55 years; range, 16-80 years). Median time from first to second recurrence was 18 months (2-204 months). Median follow-up from TCS was 14 months (0-182 months), and median OS was 26 months (95 % CI, 19.62-32.38 months). Median OS for patients without versus any tumor residuals was 49 months (95 % CI, 42.5-56.4 months) versus 12 months (95 % CI 9.3-14.7 months) (p < 0.001). The majority of the patients had an advanced initial FIGO stage III/IV (69 %), peritoneal carcinomatosis (51.7 %), and absence of ascites (72.2 %). A total of 224 patients (54.1 %) underwent complete tumor resection. The most frequent tumor dissemination site was the pelvis (73 %). Rates of major operative morbidity and 30-day mortality were 25.9 % and 3.2 %, respectively. Multivariate analysis identified platinum resistance, tumor residuals at secondary surgery, and peritoneal carcinomatosis to be of predictive significance for complete tumor resection, while tumor residuals at secondary and tertiary surgery, decreasing interval to second relapse, ascites, upper abdominal tumor involvement, and nonplatinum third-line chemotherapy significantly affected OS. In this largest known database for TCS, residual tumor retains its high impact on survival even in the tertiary setting of OC. In specialized centers high rates of complete tumor resection can be obtained. Prospective analyses are warranted to define the value of TCS in EOC.
Directory of Open Access Journals (Sweden)
Marian Tukuta
2015-04-01
Objectives: The purpose of this article was to examine the critical role played by the procurement function in business and to reveal the challenges faced by procurement professionals in developing economies as well as to suggest solutions to these challenges. Method: A sequential literary analysis was used, complemented by cross-country qualitative data gathered from one hundred diverse procurement practitioners from Botswana, Namibia and Zimbabwe. These were primarily participants in a series of procurement workshops run by the researchers from January to June 2014. Results: Findings suggested that limited recognition, increasing unethical behaviour, poor supplier service delivery, poor regulatory environment, varying supplier standards and poor corporate governance are the main challenges faced by the procurement profession in these countries. Conclusion: The study’s findings imply that there is limited understanding regarding the role procurement plays in both government and non-government institutions in developing economies. The article suggests solutions which procurement professionals and organisations can implement in order to unlock the potential value in the procurement function.
Directory of Open Access Journals (Sweden)
MARIJA NIKOLIC
2013-12-01
Full Text Available The trend towards foreign investments in Serbia has been in rapid progress in recent years. The biggest and most valuable numbers of investments are coming from Italy. The authors’ expectation is that the trend of Italian investments in future will continue; therefore it is of high importance for the representatives of both countries’ business sectors to understand and accept differences and similarities to the other country’s business culture. Research of cultural differences between two nations , which are considered like a frame of business culture, helps avoiding possible misunderstandings and improving business cooperation between two countries. Having in mind students of economics and management, on one hand like future leaders of Italian and Serbian business and on other like representatives of the current education value system in the field of economics and management, this study consists of an application of the 7-D Hofstede Model. The application of the model takes place through the administration of two surveys done by students of Serbian Megatrend University, in Belgrade, and Italian Università degli Studi Gabriele d’Annunzio, in Pescara.
Analisis Waste dalam Aliran Material Internal dengan Value Stream Mapping Pada PT XYZ
Directory of Open Access Journals (Sweden)
Gita Ayu
2012-06-01
Full Text Available The main focus of the research is excess inventory and motion waste which commonly occur in warehouse and production floor. This research is carried out to minimize the average level and eliminate unnecessary motions, with consideration of electronic pull and traceability system characteristics. Product X,the highest-selling product, is the object of this research. To identify the current condition, the current state Value Stream Mapping (VSM is developed as the basis to arrange improvement plan to minimize the wastes. Safety stock is determined through average and maximum consumption difference; and reorder point is determined to comply with pull approach. Average inventory level is calculated using continuous review method. The simulation was conducted and it was shown that 8.29 minutes is the maximum lateness. Thus, safety stock and reorder point are adjusted accordingly to anticipate stockout due to lateness. The improvement of process cycle efficiency is shown to increase from 4.1 % to 5.1 % as projected in future state VSM.
Martínez, Isabel; García, José Fernando
2008-01-01
The relation between parenting styles and adolescent outcomes was analyzed in a sample of 1,198 15-18-year-old Brazilians. The adolescents were classified into 1 of 4 groups (Authoritative, Authoritarian, Indulgent, and Neglectful) on the basis of their own ratings of their parents on two dimensions: Acceptance/ Involvement and Strictness/Imposition. The adolescents were then contrasted along two different outcomes: (1) priority given to Schwartz Self-transcendence and Conservation values, and (2) level of Self-esteem (appraised in 5 domains: Academic, Social, Emotional, Family, and Physical). Results showed that Authoritative and Indulgent parenting is associated with the highest internalization of Self-Transcendence and Conservation values of teenagers, whereas Authoritarian parenting is associated with the lowest. On the other hand, adolescents with Indulgent parents have equal or higher levels of Self-esteem than adolescents with Authoritative parents, while adolescents raised in Authoritarian and Neglectful homes have the lowest scores in Self-Esteem.
Watchman, Karen; Janicki, Matthew P; Udell, Leslie; Hogan, Mary; Quinn, Sam; Beránková, Anna
2018-01-01
The International Summit on Intellectual Disability and Dementia covered a range of issues related to dementia and intellectual disability, including the dearth of personal reflections of persons with intellectual disability affected by dementia. This article reflects on this deficiency and explores some of the personal perspectives gleaned from the literature, from the Summit attendees and from the experiences of persons with intellectual disability recorded or scribed in advance of the two-day Summit meeting. Systemic recommendations included reinforcing the value of the involvement of persons with intellectual disability in (a) research alongside removing barriers to inclusion posed by institutional/ethics review boards, (b) planning groups that establish supports for dementia and (c) peer support. Practice recommendations included (a) valuing personal perspectives in decision-making, (b) enabling peer-to-peer support models, (c) supporting choice in community-dwelling arrangements and (d) broadening availability of materials for persons with intellectual disability that would promote understanding of dementia.
Directory of Open Access Journals (Sweden)
Pešić-Tomić Vesna
2014-01-01
Full Text Available The objective of this paper is an effort to view the possibilities of integrated use of target costing, activity based costing and Kaizen concept in the internal value chain as the central link of the entire chain. The idea is to stimulate the company management to think about the costs, position they take in the structure of price cost and their influence on forming the sales price since it is very important to produce right product for the consumer, of desired quality and functionality but along with as low production costs as possible. It is therefore needed to construct the right design of a product and provide its production at the shortest possible time along with as low costs as possible which will impact the efficiency of the entire value chain.
Towards consolidated science requirements for a next generation gravity field mission
Pail, R.; Braitenberg, C. F.; Eicker, A.; Floberghagen, R.; Forsberg, R.; Haagmans, R.; Horwath, M.; Kusche, J.; Labrecque, J. L.; Panet, I.; Rolstad Denby, C.; Schröter, J.; Wouters, B.
2013-12-01
As a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics), we target on the consolidation of science requirements for a next generation gravity field mission (beyond GRACE-FO). Several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+), and a consolidation within the different user groups is required, under the boundary condition of the technical feasibility of the mission concepts and before the background of double- and multi-pair formations. Therefore, this initiative shall concentrate on the consolidation of the science requirements, and should result in a document that can be used as a solid basis for further programmatic and technological developments. Based on limited number of realistic mission scenarios, a consolidated view on the science requirements within the international user communities shall be derived, research fields that could not be tackled by current gravity missions shall be identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return shall be evaluated. The final science requirements shall be agreed upon during a workshop which is planned for the second half of 2014. In this contribution, the mission scenarios will be discussed and first results of the consolidation process will be presented.
International Nuclear Information System (INIS)
Burkhard, N.R.
1979-01-01
The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables
Directory of Open Access Journals (Sweden)
Animesh Mukherjee
1991-01-01
Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.
Classical Weyl transverse gravity
Energy Technology Data Exchange (ETDEWEB)
Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)
2017-05-15
We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)
Mass gap in Yang's theory of gravity
Mielke, Eckehard W.
2015-06-01
The quantization of a curvature-squared model of gravity, in the affine form proposed by Yang, is reconsidered in the path integral formulation. Due to its inherent Weyl invariance, sharing this with internal Yang-Mills fields, it or some of its topological generalizations are still a possible route to quantum gravity. Instanton type solutions with double duality properties exhibit a "vacuum degeneracy", i.e. a bifurcation into distinct classical Einsteinian backgrounds. For linearized fields, this conclusively induces a mass gap in the graviton spectrum, a feature which is an open problem in the quantization of internal Yang-Mills fields.
Artificial Gravity Research Project
Kamman, Michelle R.; Paloski, William H.
2005-01-01
Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term hypogravity during surface operations will require effective, multi-system countermeasures. Artificial gravity (AG), which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by a human centrifuge device within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient, multi-system countermeasure and its potential for improving the environment and simplifying operational activities (e.g., WCS, galley, etc.), much still needs to be learned regarding the human response to rotating environments before AG can be successfully implemented. This paper will describe our approach for developing and implementing a rigorous AG Research Project to address the key biomedical research questions that must be answered before developing effective AG countermeasure implementation strategies for exploration-class missions. The AG Research Project will be performed at JSC, ARC, extramural academic and government research venues, and international partner facilities maintained by DLR and IMBP. The Project includes three major ground-based human research subprojects that will lead to flight testing of intermittent short-radius AG in ISS crewmembers after 201 0, continuous long-radius AG in CEV crews transiting to and from the Moon, and intermittent short-radius AG plus exercise in lunar habitats. These human ground-based subprojects include: 1) a directed, managed international short-radius project to investigate the multi-system effectiveness of intermittent AG in human subjects deconditioned by bed rest, 2) a directed, managed long-radius project to investigate the capacity of humans to live and work for extended periods in rotating environments, and 3) a focused
Indian Academy of Sciences (India)
2016-11-02
Nov 2, 2016 ... the existence of dark energy and dark matter, several modified theories of gravitation have been proposed as alternative to Einstein's theory. By modifying the geometrical part of Einstein–Hilbert action of general relativity, we obtain the modified gravity. Modified gravity is of great importance because it can ...
Bergshoeff, Eric A.; Roo, Mees de; Kerstan, Sven F.; Kleinschmidt, Axel; Riccioni, Fabio
We consider the problem of finding a dual formulation of gravity in the presence of non-trivial matter couplings. In the absence of matter a dual graviton can be introduced only for linearised gravitational interactions. We show that the coupling of linearised gravity to matter poses obstructions to
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2004-01-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction
Consolidated science and user requirements for a next generation gravity field mission
Pail, Roland; Bingham, Rory; Braitenberg, Carla; Eicker, Annette; Horwath, Martin; Longuevergne, Laurent; Panet, Isabelle; Rolstad-Denby, Cecile; Wouters, Bert
2015-04-01
In an internationally coordinated initiative among the main user communities of gravity field products the science and user requirements for a future gravity field mission constellation (beyond GRACE-FO) have been reviewed and defined. This activity was realized as a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics). After about one year of preparation, in a user workshop that was held in September 2014 consensus among the user communities of hydrology, ocean, cryosphere, solid Earth and atmosphere on consolidated science requirements could be achieved. The consolidation of the user requirements became necessary, because several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+). Based on limited number of mission scenarios which took also technical feasibility into account, a consolidated view on the science requirements among the international user communities was derived, research fields that could not be tackled by current gravity missions have been identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return has been evaluated. The resulting document shall form the basis for further programmatic and technological developments. In this contribution, the main results of this initiative will be presented. An overview of the specific requirements of the individual user groups, the consensus on consolidated requirements as well as the new research fields that have been identified during this process will be discussed.
Consolidated science and user needs for a sustained satellite gravity observing system
Pail, R.
2015-12-01
In an internationally coordinated initiative among the main user communities of gravity field products the science requirements for a future gravity field mission constellation (beyond GRACE-FO) have been reviewed and defined. This activity was realized as a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics). After about one year of preparation, in a user workshop that was held in September 2014 consensus among the user communities of hydrology, ocean, cryosphere, solid Earth and atmosphere on consolidated science requirements could be achieved.The consolidation of the user requirements became necessary, because several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+). Based on limited number of mission scenarios which took also technical feasibility into account, a consolidated view on the science requirements among the international user communities was derived, research fields that could not be tackled by current gravity missions have been identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return has been evaluated. The resulting document shall form the basis for further programmatic and technological developments. In this contribution, the main results of this initiative will be presented. An overview of the specific requirements of the individual user groups, the consensus on consolidated science and user needs as well as the new research fields that have been identified during this process will be discussed.
Galathea-3: A global marine gravity profile
DEFF Research Database (Denmark)
Strykowski, Gabriel; Cordua, Knud Skou; Forsberg, René
2012-01-01
topography. This paper reports on the second experiment in which a continuous marine gravity profile along the ship’s route was measured. The focus of the paper is on the practical aspects of such large scale world wide operation and on the challenges of the data processing. Furthermore, the processed free......-air gravity values are compared to 3 global models: EGM96, EGM08 and DNSC08. Even though the along-track resolution of marine data is higher than the resolution in any global gravity model (which influences the direct comparison of the collected marine data to the model) the statistics for the residual free......-air gravity anomalies show, that EGM08 and DNSC08 are better models than EGM96 for all Galathea-3 legs. Some areas along the ships route are quite challenging for modellers....
Palsingh, S. (Inventor)
1975-01-01
An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.
Directory of Open Access Journals (Sweden)
Øyvind Grøn
2012-12-01
Full Text Available The effect of gravity upon changes of the entropy of a gravity-dominated system is discussed. In a universe dominated by vacuum energy, gravity is repulsive, and there is accelerated expansion. Furthermore, inhomogeneities are inflated and the universe approaches a state of thermal equilibrium. The difference between the evolution of the cosmic entropy in a co-moving volume in an inflationary era with repulsive gravity and a matter-dominated era with attractive gravity is discussed. The significance of conversion of gravitational energy to thermal energy in a process with gravitational clumping, in order that the entropy of the universe shall increase, is made clear. Entropy of black holes and cosmic horizons are considered. The contribution to the gravitational entropy according to the Weyl curvature hypothesis is discussed. The entropy history of the Universe is reviewed.
Contribution of the GOCE gradiometer components to regional gravity solutions
Naeimi, Majid; Bouman, Johannes
2017-05-01
The contribution of the GOCE gravity gradients to regional gravity field solutions is investigated in this study. We employ radial basis functions to recover the gravity field on regional scales over Amazon and Himalayas as our test regions. In the first step, four individual solutions based on the more accurate gravity gradient components Txx, Tyy, Tzz and Txz are derived. The Tzz component gives better solution than the other single-component solutions despite the less accuracy of Tzz compared to Txx and Tyy. Furthermore, we determine five more solutions based on several selected combinations of the gravity gradient components including a combined solution using the four gradient components. The Tzz and Tyy components are shown to be the main contributors in all combined solutions whereas the Txz adds the least value to the regional gravity solutions. We also investigate the contribution of the regularization term. We show that the contribution of the regularization significantly decreases as more gravity gradients are included. For the solution using all gravity gradients, regularization term contributes to about 5 per cent of the total solution. Finally, we demonstrate that in our test areas, regional gravity modelling based on GOCE data provide more reliable gravity signal in medium wavelengths as compared to pre-GOCE global gravity field models such as the EGM2008.
Micro-gravity Isolation using only Electro-magnetic Actuators
DEFF Research Database (Denmark)
Vinther, D.; Alminde, Lars; Bisgaard, Morten
2004-01-01
In this paper the design, construction and test of a free floating micro-gravity isolation platform to reduce the acceleration dose on zero gravity experiments on e.g. the International Space Station (ISS) is discussed. During the project a system is specified and constructed whereupon it is test...
Directory of Open Access Journals (Sweden)
Hajji Salman
2011-10-01
Full Text Available Abstract Background No published data is currently available that describes the dietary patterns or physiological profiles of athletes participating on the Kuwaiti national fencing team and its potential impact on health and physical performance. The purpose of this investigation was to: 1 collect baseline data on nutrient intake 2 collect, analyze and report baseline for body composition, plasma lipid and lipoprotein concentrations during the competitive season, 3 compare the results with the international norms, 4 and provide necessary health and nutritional information in order to enhance the athletes' performance and skills. Methods Fifteen national-class fencers 21.5 ± 2.6 years of age participated in this study. Food intake was measured using a 3-day food record. Body composition was estimated using both the BOD POD and Body Mass Index (BMI. Total blood lipid profiles and maximum oxygen consumption was measured for each of the subjects during the competitive season. Results The results of the present study showed significant differences in dietary consumption in comparison with the recommended dietary allowances (RDA. The blood lipids profile and body composition (BMI and % body fat were in normal range in comparison with international norms However, the average VO2 max value was less than the value of the other fencers. Conclusion Due to the results of the research study, a dietary regimen can be designed that would better enhance athletic performance and minimize any health risks associated with nutrition. Percent body fat and BMI will also be categorized for all players. In addition, the plasma blood tests will help to determine if any of the players have an excessive level of lipids or any blood abnormalities. The outcomes of present study will have a direct impact on the players health and therefore their skills and athletic performance.
Liao, Kelly Yu-Hsin; Wei, Meifen
2014-01-01
The theoretical model proposed by Berry and colleagues (Berry, 1997; Berry, Kim, Minde, & Mok, 1987) highlights the importance of identifying moderators in the acculturation process. Accordingly, the current study examined the Asian cultural value of family recognition through achievement (FRTA) and contingency of self-worth on academic competence (CSW-AC) as moderators in the association between academic stress and positive affect among Chinese international students. A total of 370 Chinese international students completed online surveys. Results from a hierarchical regression indicated that while academic stress was negatively associated with positive affect, FRTA was positively associated with positive affect. In other words, those with high academic stress reported a lower level of positive affect. However, individuals who endorsed high levels of FRTA reported a higher level of positive affect. In addition, results also revealed a significant interaction between academic stress and CSW-AC on positive affect. Thus, the study's finding supported the moderator role of CSW-AC. Simple effect analyses were conducted to examine the significant interaction. The results showed that higher levels of CSW-AC strengthened the negative association between academic stress and positive affect but lower levels of CSW-AC did not. Future research directions and implications are discussed.
Snozek, C L H; Katzmann, J A; Kyle, R A; Dispenzieri, A; Larson, D R; Therneau, T M; Melton, L J; Kumar, S; Greipp, P R; Clark, R J; Rajkumar, S V
2008-10-01
To determine if the serum free light chain (FLC) ratio has prognostic value in patients with symptomatic multiple myeloma (MM), baseline serum samples from a well-characterized cohort of 790 newly diagnosed MM patients were tested with the FLC assay. FLC ratio was calculated as kappa/lambda (reference range 0.26-1.65). On the basis of the distribution of values, a cutpoint kappa/lambda FLC ratio of 32 was chosen for further analysis. Overall survival was significantly inferior in patients with an abnormal FLC ratio of 32 (n=479) compared with those with an FLC ratio between 0.03 and 32 (n=311), with median survival of 30 versus 39 months, respectively. We incorporated abnormal FLC ratio with the International Staging System (ISS) risk factors (that is, albumin or=3.5 g/l), to create a risk stratification model with improved prognostic capabilities. Patients with 0, 1, 2 or 3 adverse risk factors had significantly different overall survival, with median survival times of 51, 39, 30 and 22 months, respectively (P<0.001). These findings suggest that the serum FLC ratio at initial diagnosis is an important predictor of prognosis in myeloma, and can be incorporated into the ISS for improved risk stratification.
Dubovsky, S L
2004-01-01
We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group using the explicitly covariant language. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity can be described by a consistent low-energy effective theory with cutoff $\\sim\\sqrt{mM_{Pl}}$ free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz--Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of ...
Canullo, Luigi; Radovanović, Sandro; Delibasic, Boris; Blaya, Juan Antonio; Penarrocha, David; Rakic, Mia
2017-05-01
The primary aim of this study was to evaluate 23 pathogens associated with peri-implantitis at inner part of implant connections, in peri-implant and periodontal pockets between patients suffering peri-implantitis and participants with healthy peri-implant tissues; the secondary aim was to estimate the predictive value of microbiological profile in patients wearing dental implants using data mining methods. Fifty participants included in the present case─control study were scheduled for collection of plaque samples from the peri-implant pockets, internal connection, and periodontal pocket. Real-time polymerase chain reaction was performed to quantify 23 pathogens. Three predictive models were developed using C4.5 decision trees to estimate the predictive value of microbiological profile between three experimental sites. The final sample included 47 patients (22 healthy controls and 25 diseased cases), 90 implants (43 with healthy peri-implant tissues and 47 affected by peri-implantitis). Total and mean pathogen counts at inner portions of the implant connection, in peri-implant and periodontal pockets were generally increased in peri-implantitis patients when compared to healthy controls. The inner portion of the implant connection, the periodontal pocket and peri-implant pocket, respectively, presented a predictive value of microbiologic profile of 82.78%, 94.31%, and 97.5% of accuracy. This study showed that microbiological profile at all three experimental sites is differently characterized between patients suffering peri-implantitis and healthy controls. Data mining analysis identified Parvimonas micra as a highly accurate predictor of peri-implantitis when present in peri-implant pocket while this method generally seems to be promising for diagnosis of such complex infections. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Curing singularities in cosmological evolution of F(R) gravity
International Nuclear Information System (INIS)
Appleby, Stephen A.; Battye, Richard A.; Starobinsky, Alexei A.
2010-01-01
We study F(R) modified gravity models which are capable of driving the accelerating epoch of the Universe at the present time whilst not destroying the standard Big Bang and inflationary cosmology. Recent studies have shown that a weak curvature singularity with |R| → ∞ can arise generically in viable F(R) models of present dark energy (DE) signaling an internal incompleteness of these models. In this work we study how this problem is cured by adding a quadratic correction with a sufficiently small coefficient to the F(R) function at large curvatures. At the same time, this correction eliminates two more serious problems of previously constructed viable F(R) DE models: unboundedness of the mass of a scalar particle (scalaron) arising in F(R) gravity and the scalaron overabundance problem. Such carefully constructed models can also yield both an early time inflationary epoch and a late time de Sitter phase with vastly different values of R. The reheating epoch in these combined models of primordial and present dark energy is completely different from that of the old R+R 2 /6M 2 inflationary model, mainly due to the fact that values of the effective gravitational constant at low and intermediate curvatures are different for positive and negative R. This changes the number of e-folds during the observable part of inflation that results in a different value of the primordial power spectrum index
Induced gravity II: grand unification
Energy Technology Data Exchange (ETDEWEB)
Einhorn, Martin B. [Kavli Institute for Theoretical Physics, Kohn Hall,University of California,Santa Barbara, CA 93106-4030 (United States); Jones, D.R. Timothy [Kavli Institute for Theoretical Physics, Kohn Hall,University of California,Santa Barbara, CA 93106-4030 (United States); Dept. of Mathematical Sciences, University of Liverpool,Peach Street, Liverpool L69 3BX (United Kingdom)
2016-05-31
As an illustration of a renormalizable, asymptotically-free model of induced gravity, we consider an SO(10) gauge theory interacting with a real scalar multiplet in the adjoint representation. We show that dimensional transmutation can occur, spontaneously breaking SO(10) to SU(5)⊗U(1), while inducing the Planck mass and a positive cosmological constant, all proportional to the same scale v. All mass ratios are functions of the values of coupling constants at that scale. Below this scale (at which the Big Bang may occur), the model takes the usual form of Einstein-Hilbert gravity in de Sitter space plus calculable corrections. We show that there exist regions of parameter space in which the breaking results in a local minimum of the effective action giving a positive dilaton (mass){sup 2} from two-loop corrections associated with the conformal anomaly. Furthermore, unlike the singlet case we considered previously, some minima lie within the basin of attraction of the ultraviolet fixed point. Moreover, the asymptotic behavior of the coupling constants also lie within the range of convergence of the Euclidean path integral, so there is hope that there will be candidates for sensible vacua. Although open questions remain concerning unitarity of all such renormalizable models of gravity, it is not obvious that, in curved backgrounds such as those considered here, unitarity is violated. In any case, any violation that may remain will be suppressed by inverse powers of the reduced Planck mass.
Induced gravity II: grand unification
Einhorn, Martin B.; Jones, D. R. Timothy
2016-05-01
As an illustration of a renormalizable, asymptotically-free model of induced gravity, we consider an SO(10) gauge theory interacting with a real scalar multiplet in the adjoint representation. We show that dimensional transmutation can occur, spontaneously breaking SO(10) to SU(5)⊗U(1), while inducing the Planck mass and a positive cosmological constant, all proportional to the same scale v. All mass ratios are functions of the values of coupling constants at that scale. Below this scale (at which the Big Bang may occur), the model takes the usual form of Einstein-Hilbert gravity in de Sitter space plus calculable corrections. We show that there exist regions of parameter space in which the breaking results in a local minimum of the effective action giving a positive dilaton (mass)2 from two-loop corrections associated with the conformal anomaly. Furthermore, unlike the singlet case we considered previously, some minima lie within the basin of attraction of the ultraviolet fixed point. Moreover, the asymptotic behavior of the coupling constants also lie within the range of convergence of the Euclidean path integral, so there is hope that there will be candidates for sensible vacua. Although open questions remain concerning unitarity of all such renormalizable models of gravity, it is not obvious that, in curved backgrounds such as those considered here, unitarity is violated. In any case, any violation that may remain will be suppressed by inverse powers of the reduced Planck mass.
Acoustic-gravity modons in the atmosphere
Directory of Open Access Journals (Sweden)
L. Stenflo
Full Text Available It is shown that the equations governing low-frequency acoustic-gravity waves in a stable stratified atmosphere can have localized dipole-vortex solutions (modons. They propagate in the horizontal direction with a speed that is larger than that of all possible linear internal waves.
Boundary dynamics in dilaton gravity
International Nuclear Information System (INIS)
Das, S.R.; Mukherji, S.
1994-06-01
We study the dynamics of the boundary in two dimensional dilaton gravity coupled to N massless scalars. We rederive the boundary conditions of [1] and [3] in a way which makes the requirement of reparametrization invariance and the role of conformal anomaly explicit. We then study the semiclassical behaviour of the boundary in the N=24 theory in the presence of an incoming matter wave with a constant energy flux spread over a finite interval. There is a critical value of the matter energy density below which the boundary is stable and all the matter is reflected back. For energy densities greater than this critical value there is a similar behaviour for small values of the total energy thrown in. However, when the total energy exceeds another critical value the boundary exhibits a runaway behaviour and the spacetime develops in singularities and horizons. (author). 10 refs, 3 figs
Directory of Open Access Journals (Sweden)
J. Ambjørn
1995-07-01
Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.
CERN. Geneva
2007-01-01
Of the four fundamental forces, gravity has been studied the longest, yet gravitational physics is one of the most rapidly developing areas of science today. This talk will give a broad brush survey of the past achievements and future prospects of general relativistic gravitational physics. Gravity is a two frontier science being important on both the very largest and smallest length scales considered in contemporary physics. Recent advances and future prospects will be surveyed in precision tests of general relativity, gravitational waves, black holes, cosmology and quantum gravity. The aim will be an overview of a subject that is becoming increasingly integrated with experiment and other branches of physics.
Depper, Gina L.
2017-01-01
The world faces significant environmental challenges due largely to unsustainable human behavior. Values have been found to be a direct and indirect predictor of human behavior and understanding how they are formed/influenced is critical to any strategy of behavioral change. Our understanding of how environmental values are transmitted and…
Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.
2012-01-01
We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.
International Nuclear Information System (INIS)
Williams, Ruth M
2006-01-01
A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday
National Oceanic and Atmospheric Administration, Department of Commerce — In 1985, Dr. William F. Haxby of the Lamont-Doherty Geological Observatory of Columbia University prepared this data base of free-air gravity anomalies, based on the...
Carroll versus Galilei gravity
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)
2017-03-30
We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (71 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received in...
Soones, Tacara N; O'Brien, Bridget C; Julian, Katherine A
2015-09-01
In order to teach residents how to work in interprofessional teams, educators in graduate medical education are implementing team-based care models in resident continuity clinics. However, little is known about the impact of interprofessional teams on residents' education in the ambulatory setting. To identify factors affecting residents' experience of team-based care within continuity clinics and the impact of these teams on residents' education. This was a qualitative study of focus groups with internal medicine residents. Seventy-seven internal medicine residents at the University of California San Francisco at three continuity clinic sites participated in the study. Qualitative interviews were audiotaped and transcribed. The authors used a general inductive approach with sensitizing concepts in four frames (structural, human resources, political and symbolic) to develop codes and identify themes. Residents believed that team-based care improves continuity and quality of care. Factors in four frames affected their ability to achieve these goals. Structural factors included communication through the electronic medical record, consistent schedules and regular team meetings. Human resources factors included the presence of stable teams and clear roles. Political and symbolic factors negatively impacted team-based care, and included low staffing ratios and a culture of ultimate resident responsibility, respectively. Regardless of the presence of these factors or resident perceptions of their teams, residents did not see the practice of interprofessional team-based care as intrinsically educational. Residents' experiences practicing team-based care are influenced by many principles described in the interprofessional teamwork literature, including understanding team members' roles, good communication and sufficient staffing. However, these attributes are not correlated with residents' perceptions of the educational value of team-based care. Including residents in
Nelson, George
2004-01-01
Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…
Streaming gravity mode instability
International Nuclear Information System (INIS)
Wang Shui.
1989-05-01
In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs
Quantum massive conformal gravity
Energy Technology Data Exchange (ETDEWEB)
Faria, F.F. [Universidade Estadual do Piaui, Centro de Ciencias da Natureza, Teresina, PI (Brazil)
2016-04-15
We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed. (orig.)
Directory of Open Access Journals (Sweden)
Frédéric Gosselin
Full Text Available BACKGROUND: Recent approaches mixing frequentist principles with bayesian inference propose internal goodness-of-fit (GOF p-values that might be valuable for critical analysis of bayesian statistical models. However, GOF p-values developed to date only have known probability distributions under restrictive conditions. As a result, no known GOF p-value has a known probability distribution for any discrepancy function. METHODOLOGY/PRINCIPAL FINDINGS: We show mathematically that a new GOF p-value, called the sampled posterior p-value (SPP, asymptotically has a uniform probability distribution whatever the discrepancy function. In a moderate finite sample context, simulations also showed that the SPP appears stable to relatively uninformative misspecifications of the prior distribution. CONCLUSIONS/SIGNIFICANCE: These reasons, together with its numerical simplicity, make the SPP a better canonical GOF p-value than existing GOF p-values.
Garland, G D; Wilson, J T
2013-01-01
The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp
Gravity Before Einstein and Schwinger Before Gravity
Trimble, Virginia L.
2012-05-01
Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.
Gravity Anomalies Over The Gongola Arm, Upper Benue Trough ...
African Journals Online (AJOL)
A regional gravity survey of the Gongola Arm of the Benue trough was carried out with the aim of determining structures of interest. The results of the gravity interpretation showed that the area of study is characterized by negative Bouguer anomalies that trend in the NE-SW direction and range in value from -75 to -15 mGal ...
2D gravity, random surfaces and all that
International Nuclear Information System (INIS)
Ambjoern, J.
1990-11-01
I review the recent progress in 2d gravity and discuss the new numerical simulations for 2d gravity and for random surfaces in d>2. The random surface theories of interest in d>2 have extrinsic curvature terms, and for a finite value of the extrinsic curvature coupling there seems to be a second order phase transition where the string tension scales. (orig.)
Gravity Wave Variances and Propagation Derived from AIRS Radiances
2011-04-15
even if the waves are initially conservative there. The zonal mean values of N2 at January, 2005 are shown in Fig. 1. The input 2-D wave amplitude A is...Sigmond, M., Vin - cent, R., and Watanabe, S.: Recent developments in gravity-wave effects in climate models and the global distribution of gravity
and three-dimensional gravity modeling along western continental ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
geological body (Sharma and Bhattacharji 1996). Smith (1959, 1960) has provided maximum depth- estimation formulae for local gravity and magnetic anomalies, which are independent of the shape of the anomalous mass. These are based on ∆gmax and ∆g , the maximum gravity anomaly value and its horizontal gradient ...
National Aeronautics and Space Administration — Genome-wide transcriptional profiling showed that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene...
Field, L K; Steinhardt, M A
1992-01-01
This study investigated two opposing orientations toward exercise and wellness behavior as related to selected personal characteristics. A "self-trusting" orientation focuses on process measures, and exercise and wellness behavior is internally directed. A "self-controlling" orientation focuses on outcome measures, and exercise and wellness behavior is externally directed. Relationships among variables were assessed using Pearson correlation and step-wise multiple regression. One questionnaire was administered to all subjects under quiet classroom conditions. Subjects were enrolled in university physical education activity classes (N = 154), a health promotion and fitness undergraduate class (N = 52), and a commercial aerobic dance program (N = 68). The questionnaire, containing 157 items, assessed exercise orientation, wellness orientation, general self-esteem, physical self-esteem, self-reinforcement, expectancy values for exercise, and level of physical activity. Individuals who reported exercising to improve physical appearance and/or physical performance had higher control scores on the exercise scale; exercising for pleasure or social reasons served as suppressor variables. High control scores on wellness and exercise orientation were indicative of individuals less likely to positively self-reinforce their behavior. A high control score on the wellness scale was significantly related to lower general and physical self-esteem scores. Finally, higher physical self-esteem was significantly related to exercising for pleasure and athletic reasons; exercising to improve physical appearance served as a suppressor variable. These data strengthen the recommendation that health promotion professionals consider alternative approaches to promoting exercise and enhancing wellness.(ABSTRACT TRUNCATED AT 250 WORDS)
Directory of Open Access Journals (Sweden)
Maartens Roy
2004-01-01
Full Text Available The observable universe could be a 1+3-surface (the "brane" embedded in a 1+3+$d$-dimensional spacetime (the "bulk", with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the $d$ extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak ($sim$TeV level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. General relativity cannot describe gravity at high enough energies and must be replaced by a quantum gravity theory, picking up significant corrections as the fundamental energy scale is approached. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review discusses the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models.
Iwamoto, Derek Kenji; Liu, William Ming
2010-01-01
The current study investigated the direct and moderating effects of racial identity, ethnic identity, Asian values, and race-related stress on positive psychological well-being among 402 Asian American and Asian international college students. Results revealed that the racial identity statuses Internalization, Immersion-Emersion, Dissonance, Asian values and Ethnic Identity Affirmation and Belonging were significant predictors of well-being. Asian values, Dissonance and Conformity were found to moderate the relationship between race-related stress on well-being. Specifically, individuals in low race-related stress conditions who had low Asian values, high Conformity and low Dissonance attitudes started high on well being but decreased as race-related stress increased. These findings underscore the importance of how racial identity statuses, Asian values and ethnic identity jointly and uniquely explain and moderate the effects of race-related stress on positive well-being. Implications for future research and clinical practice are discussed.
A Gravity data along LARSE (Los Angeles Regional Seismic Experiment) Line II, Southern California
Wooley, R.J.; Langenheim, V.E.
2001-01-01
The U.S. Geological Survey conducted a detailed gravity study along part of the Los Angeles Regional Seismic Experiment (LARSE) transect across the San Fernando Basin and Transverse Ranges to help characterize the structure underlying this area. 249 gravity measurements were collected along the transect and to augment regional coverage near the profile. An isostatic gravity low of 50-60 mGal reflects the San Fernando-East Ventura basin. Another prominent isostatic gravity with an amplitude of 30 mGal marks the Antelope Valley basin. Gravity highs occur over the Santa Monica Mountains and the Transverse Ranges. The highest isostatic gravity values coincide with outcrops of Pelona schist.
Talvik, Silja; Oja, Tõnis; Ellmann, Artu; Jürgenson, Harli
2014-05-01
Gravity field models in a regional scale are needed for a number of applications, for example national geoid computation, processing of precise levelling data and geological modelling. Thus the methods applied for modelling the gravity field from surveyed gravimetric information need to be considered carefully. The influence of using different gridding methods, the inclusion of unit or realistic weights and indirect gridding of free air anomalies (FAA) are investigated in the study. Known gridding methods such as kriging (KRIG), least squares collocation (LSCO), continuous curvature (CCUR) and optimal Delaunay triangulation (ODET) are used for production of gridded gravity field surfaces. As the quality of data collected varies considerably depending on the methods and instruments available or used in surveying it is important to somehow weigh the input data. This puts additional demands on data maintenance as accuracy information needs to be available for each data point participating in the modelling which is complicated by older gravity datasets where the uncertainties of not only gravity values but also supplementary information such as survey point position are not always known very accurately. A number of gravity field applications (e.g. geoid computation) demand foran FAA model, the acquisition of which is also investigated. Instead of direct gridding it could be more appropriate to proceed with indirect FAA modelling using a Bouguer anomaly grid to reduce the effect of topography on the resulting FAA model (e.g. near terraced landforms). The inclusion of different gridding methods, weights and indirect FAA modelling helps to improve gravity field modelling methods. It becomes possible to estimate the impact of varying methodical approaches on the gravity field modelling as statistical output is compared. Such knowledge helps assess the accuracy of gravity field models and their effect on the aforementioned applications.
Rodríguez M., Federmán
2014-01-01
The purpose of the article is to explain the liberal and realist discourses that underpinned the Canadian International Security Policy (CISP) during the post-Cold War. In particular, it offers evidence to show that Canadian governments inevitably debate between cosmopolitan values and strategic interests in formulating their respective policies of international security. After considering how liberal and realist orientations of this policy have been studied in the literature on CISP, it expl...
Greenland inland ice melt-off: Analysis of global gravity data from the GRACE satellites
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg; Andersen, Ole Baltazar; Svendsen, Peter L.
2011-01-01
This paper gives an introductory analysis of gravity data from the GRACE (Gravity Recovery And Climate Experiment) twin satellites. The data consist of gravity data in the form of 10-day maximum values of 1◦ by 1◦ equivalent water height (EWH) in meters starting at 29 July 2002 and ending at 25...
Estimating Janka hardness from specific gravity for tropical and temperate species
Michael C. Wiemann; David W. Green
2007-01-01
Using mean values for basic (green) specific gravity and Janka side hardness for individual species obtained from the world literature, regression equations were developed to predict side hardness from specific gravity. Statistical and graphical methods showed that the hardnessâspecific gravity relationship is the same for tropical and temperate hardwoods, but that the...
Hairs of discrete symmetries and gravity
Directory of Open Access Journals (Sweden)
Kang Sin Choi
2017-06-01
Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Hairs of discrete symmetries and gravity
Energy Technology Data Exchange (ETDEWEB)
Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)
2017-06-10
Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.
Gravity and embryonic development
Young, R. S.
1976-01-01
The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.
International Nuclear Information System (INIS)
Novozhilov, Yu.V.; Vassilevich, D.V.
1991-01-01
We review the induced-gravity approach according to which the Einstein gravity is a long-wavelength effect induced by underlying fundamental quantum fields due to the dynamical-scale symmetry breaking. It is shown that no ambiguities arise in the definition of the induced Newton and cosmological constants if one works with the path integral for fundamental fields in the low-scale region. The main accent is on a specification of the path integral which enables us to utilize the unitarity condition and thereby avoid ambiguities. Induced Einstein equations appear from the symmetry condition that the path integral of fundamental fields for a slowly varying metric is invariant under the local vertical strokeGL(4, R)-transformations of a tetrad, which contain the local Euclidean Lorentz, O(4)-rotations as a subgroup. The relatinship to induced quantum gravity is briefly outlined. (orig.)
Gerhardt, Claus
2018-01-01
A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...
Ortín, Tomás
2015-01-01
Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.
International Nuclear Information System (INIS)
Rumpf, H.
1987-01-01
We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)
Directory of Open Access Journals (Sweden)
Cahill R. T.
2015-10-01
Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.
Directory of Open Access Journals (Sweden)
Roy Maartens
2010-09-01
Full Text Available The observable universe could be a 1+3-surface (the “brane” embedded in a 1+3+d-dimensional spacetime (the “bulk”, with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼ TeV level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity “leaks” into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall–Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies – the 5-dimensional Dvali–Gabadadze–Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.
Airborne Gravity: NGS' Gravity Data for CS06 (2012 & 2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2012 & 2013 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...
Airborne Gravity: NGS' Gravity Data for EN01 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...
Airborne Gravity: NGS' Gravity Data for ES01 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...
Airborne Gravity: NGS' Gravity Data for CN03 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2014 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...
Airborne Gravity: NGS' Gravity Data for AN03 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...
Airborne Gravity: NGS' Gravity Data for PN01 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for California and Oregon collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical...
Airborne Gravity: NGS' Gravity Data for AN08 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...
Airborne Gravity: NGS' Gravity Data for TS01 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for EN04 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Michigan and Lake Huron collected in 2012 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...
International Nuclear Information System (INIS)
Romney, B.; Barrau, A.; Vidotto, F.; Le Meur, H.; Noui, K.
2011-01-01
The loop quantum gravity is the only theory that proposes a quantum description of space-time and therefore of gravitation. This theory predicts that space is not infinitely divisible but that is has a granular structure at the Planck scale (10 -35 m). Another feature of loop quantum gravity is that it gets rid of the Big-Bang singularity: our expanding universe may come from the bouncing of a previous contracting universe, in this theory the Big-Bang is replaced with a big bounce. The loop quantum theory predicts also the huge number of quantum states that accounts for the entropy of large black holes. (A.C.)
Pizzo, Nick
2017-11-01
A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.
Characterizing repulsive gravity with curvature eigenvalues
Luongo, Orlando; Quevedo, Hernando
2014-10-01
Repulsive gravity has been investigated in several scenarios near compact objects by using different intuitive approaches. Here, we propose an invariant method to characterize regions of repulsive gravity, associated to black holes and naked singularities. Our method is based upon the behavior of the curvature tensor eigenvalues, and leads to an invariant definition of a repulsion radius. The repulsion radius determines a physical region, which can be interpreted as a repulsion sphere, where the effects due to repulsive gravity naturally arise. Further, we show that the use of effective masses to characterize repulsion regions can lead to coordinate-dependent results whereas, in our approach, repulsion emerges as a consequence of the spacetime geometry in a completely invariant way. Our definition is tested in the spacetime of an electrically charged Kerr naked singularity and in all its limiting cases. We show that a positive mass can generate repulsive gravity if it is equipped with an electric charge or an angular momentum. We obtain reasonable results for the spacetime regions contained inside the repulsion sphere whose size and shape depend on the value of the mass, charge and angular momentum. Consequently, we define repulsive gravity as a classical relativistic effect by using the geometry of spacetime only.
Experiments on bedforms created by gravity flows
Fedele, Juan; Hoyal, David; Barnaal, Zachary; Awalt, Shane
2014-05-01
We report experimental results that show a rich variety of equilibrium bedforms developed under dilute density and turbidity currents. More than 500 gravity flows were run aimed at testing the stability regions of bedforms using saline density currents or diluted sediment-laden currents running over low-density plastic sediment (SG~1.5), confined in a 7-m long and 15-cm wide flume submerged in a large fresh-water tank. Experimental currents spanned a wide range of conditions with water discharges ranging 0.2-1.2 l/s (3-18 gpm) and initial slopes ranging 1o-10o, producing subcritical, critical, and supercritical flows (Fr=0.67-2.3). Results confirm some similarities between subaerial and gravity flow bedforms both in process and product, but also reveal some interesting differences. For example, ripples and dunes form under both sub and supercritical density currents while supercritical currents yield both small and long wavelength antidunes (when wavelength is scaled with current thickness), where the latter may transition to cyclic steps. Ripples developed in flows with low bed shear stress, and therefore minimal bedload transport, and small sediment sizes. Like their subaerial counterparts, gravity flow ripples were insensitive to any length scale related to the flow, e.g., current thickness, and scale solely with sediment size. Supercritical, downstream-migrating dunes were observed to form in medium-to-coarse sediment sizes, for moderate to relatively large values of bed shear stress and bedload transport (relatively high Froude). A detailed description of the flow fields by PIV measurements indicated that supercritical dunes were not the result of instabilities of the flow interface, and did not interact with it in their final stages. Rather, these dunes scaled closely with the thickness of the inner region, i.e., the portion of the current between the bed and the velocity maximum, where vertical velocity gradients are positive, which is mechanistically
Sheafer, T.; Shenhav, S.R.; Takens, J.H.; van Atteveldt, W.H.
2014-01-01
This article applies the homophily thesis to public diplomacy and offers an empirical examination of a country's success in its mediated public diplomacy efforts. It analyzes international frame building, the process of creating or changing media frames in the international communications arena, by
Dijk, van D.; Trienekens, J.H.
2011-01-01
This volume presents seven case studies of global value chains alongside two theoretical chapters concerning these chains. The contributors explore a wide range of issues relevant to value chains: the impact of global value chains on local upgrading strategies, the role of governance structures
Gravity Data for South America
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity parameters...
Gravity Station Data for Portugal
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...
Gravity Station Data for Spain
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...
Joshi, Pankaj S
2015-01-01
This book journeys into one of the most fascinating intellectual adventures of recent decades - understanding and exploring the final fate of massive collapsing stars in the universe. The issue is of great interest in fundamental physics and cosmology today, from both the perspective of gravitation theory and of modern astrophysical observations. This is a revolution in the making and may be intimately connected to our search for a unified understanding of the basic forces of nature, namely gravity that governs the cosmological universe, and the microscopic forces that include quantum phenomena. According to the general theory of relativity, a massive star that collapses catastrophically under its own gravity when it runs out of its internal nuclear fuel must give rise to a space-time singularity. Such singularities are regions in the universe where all physical quantities take their extreme values and become arbitrarily large. The singularities may be covered within a black hole, or visible to faraway observ...
Tribology Experiment in Zero Gravity
Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.
2015-01-01
A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.
Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Townsend, Paul K.
2011-01-01
The physical modes of a recently proposed D-dimensional "critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All "log mode'' solutions, which we categorize as "spin-2'' or "Proca'', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized
Venus - Ishtar gravity anomaly
Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.
1984-01-01
The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.
Directory of Open Access Journals (Sweden)
Rovelli Carlo
1998-01-01
Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
International Nuclear Information System (INIS)
Banerjee, Rabin; Majhi, Bibhas Ranjan
2010-01-01
Starting from the definition of entropy used in statistical mechanics we show that it is proportional to the gravity action. For a stationary black hole this entropy is expressed as S=E/2T, where T is the Hawking temperature and E is shown to be the Komar energy. This relation is also compatible with the generalized Smarr formula for mass.
Artificial Gravity Research Plan
Gilbert, Charlene
2014-01-01
This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.
DEFF Research Database (Denmark)
Skielboe, Andreas
Gravity governs the evolution of the universe on the largest scales, and powers some of the most extreme objects at the centers of galaxies. Determining the masses and kinematics of galaxy clusters provides essential constraints on the large-scale structure of the universe, and act as direct probes...
Gunstone, Richard F.; White, Richard T.
1981-01-01
Reports results of a large-scale study that investigated the knowledge of gravity and related principles of mechanics possessed by first-year physics students (N=468) at Monash University, Australia. One conclusion is that students know a lot of physics but do not relate it to the everyday world. (CS)
International Nuclear Information System (INIS)
Aros, Rodrigo; Contreras, Mauricio
2006-01-01
In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively
Bergmann, P. G.; de Sabbata, V.; Treder, H.-J.
The following topics were dealt with: relativistic heat theories; unified field theory; mixed field theories; de Sitter gauges; black hole entropy; null hypersurface canonical formalism; gauge aspects; superluminal behavior; general relativity; twistor theory; quantum geometry and gravity; strings; Poincaré gauge theory and spacetime quantization.
Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja
2016-04-01
CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.
Gabadadze, Gregory T
2004-01-01
Large-distance modification of gravity may be the mechanism for solving the cosmological constant problem. A simple model of the large-distance modification -- four-dimensional (4D) gravity with the hard mass term-- is problematic from the theoretical standpoint. Here we discuss a different model, the brane-induced gravity, that effectively introduces a soft graviton mass. We study the issues of unitarity, analyticity and causality in this model in more than five dimensions. We show that a consistent prescription for the poles of the Green's function can be specified so that 4D unitarity is preserved. However, in certain instances 4D analyticity cannot be maintained when theory becomes higher dimensional. As a result, one has to sacrifice 4D causality at distances of the order of the present-day Hubble scale. This is a welcome feature for solving the cosmological constant problem, as was recently argued in the literature. We also show that, unlike the 4D massive gravity, the model has no strong-coupling probl...
Gravity separation for oil wastewater treatment
Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Krstev, Aleksandar
2010-01-01
In this paper, the applications of gravity separation for oil wastewater treatment are presented. Described is operation on conventional gravity separation and parallel plate separation. Key words: gravity separation, oil, conventional gravity separation, parallel plate separation.
Kokko, Sirpa; Dillon, Patrick
2011-01-01
This paper explores relationships between crafts, craft education and cultural heritage as reflected in the individual experiences and collective values of fifteen female university students of different nationalities. The students (all trainee teachers) were following a course in crafts and craft education as part of an International Study…
Exorcising ghosts in induced gravity
Energy Technology Data Exchange (ETDEWEB)
Narain, Gaurav [Chinese Academy of Sciences (CAS), Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Beijing (China)
2017-10-15
Unitarity of the scale-invariant coupled theory of higher-derivative gravity and matter is investigated. A scalar field coupled with a Dirac fermion is taken as the matter sector. Following the idea of induced gravity the Einstein-Hilbert term is generated via dynamical symmetry breaking of scale invariance. The renormalisation group flows are computed and one-loop RG improved effective potential of scalar is calculated. The scalar field develops a new minimum via the Coleman-Weinberg procedure inducing the Newton constant and masses in the matter sector. The spin-2 problematic ghost and the spin-0 mode of the metric fluctuation get a mass in the broken phase of the theory. The energy dependence of the vacuum expectation value in the RG improved scenario implies a running for the induced parameters. This sets up platform to ask whether it is possible to evade the spin-2 ghost by keeping its mass always above the running energy scale? In broken phase this question is satisfactorily answered for a large domain of coupling parameter space where the ghost is evaded. The spin-0 mode can be made physically realisable or not depending upon the choice of the initial parameters. The induced Newton constant is seen to vanish in the ultraviolet case. By properly choosing parameters it is possible to make the matter fields physically unrealisable. (orig.)
Quantum Gravity Effects in Cosmology
Directory of Open Access Journals (Sweden)
Gu Je-An
2018-01-01
Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.
Quantum Gravity Effects in Cosmology
Gu, Je-An; Pyo Kim, Sang; Shen, Che-Min
2018-01-01
Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2014-01-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
Gravity and Heater Size Effects on Pool Boiling Heat Transfer
Kim, Jungho; Raj, Rishi
2014-01-01
The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.
Fluid mechanics of directional solidification at reduced gravity
Chen, C. F.
1992-01-01
The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena.
Fulford, K. W. M
2011-01-01
In the current climate of dramatic advances in the neurosciences, it has been widely assumed that the diagnosis of mental disorder is a matter exclusively for value-free science. Starting from a detailed case history, this paper describes how, to the contrary, values come into the diagnosis of mental disorders, directly through the criteria at the heart of psychiatry’s most scientifically grounded classification, the American Psychiatric Association’s DSM (Diagnostic and Statistical Manual). Various possible interpretations of the prominence of values in psychiatric diagnosis are outlined. Drawing on work in the Oxford analytic tradition of philosophy, it is shown that, properly understood, the prominence of psychiatric diagnostic values reflects the necessary engagement of psychiatry with the diversity of individual human values. This interpretation opens up psychiatric diagnostic assessment to the resources of a new skills-based approach to working with complex and conflicting values (also derived from analytic philosophy) called ‘values-based practice.’ Developments in values-based practice in training, policy and research in mental health are briefly outlined. The paper concludes with an indication of how the integration of values-based with evidence-based approaches provides the basis for psychiatric practice in the twenty-first century that is both science-based and person-centred. PMID:21694963
Dorais, Gregory A.
2015-01-01
This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.
Industrial processes influenced by gravity
Ostrach, Simon
1988-01-01
In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.
Analog Systems for Gravity Duals
Hossenfelder, S.
2014-01-01
We show that analog gravity systems exist for charged, planar black holes in asymptotic Anti-de Sitter space. These black holes have been employed to describe, via the gauge-gravity duality, strongly coupled condensed matter systems on the boundary of AdS-space. The analog gravity system is a different condensed matter system that, in a suitable limit, describes the same bulk physics as the theory on the AdS boundary. This combination of the gauge-gravity duality and analog gravity therefore ...
The relativistic gravity train
Seel, Max
2018-05-01
The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.
International Nuclear Information System (INIS)
Hartle, J.B.
1985-01-01
Simplicial approximation and the ideas associated with the Regge calculus provide a concrete way of implementing a sum over histories formulation of quantum gravity. A simplicial geometry is made up of flat simplices joined together in a prescribed way together with an assignment of lengths to their edges. A sum over simplicial geometries is a sum over the different ways the simplices can be joined together with an integral over their edge lengths. The construction of the simplicial Euclidean action for this approach to quantum general relativity is illustrated. The recovery of the diffeomorphism group in the continuum limit is discussed. Some possible classes of simplicial complexes with which to define a sum over topologies are described. In two dimensional quantum gravity it is argued that a reasonable class is the class of pseudomanifolds
Gomberoff, Andres
2006-01-01
The 2002 Pan-American Advanced Studies Institute School on Quantum Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile, January 4-14, 2002. The school featured lectures by ten speakers, and was attended by nearly 70 students from over 14 countries. A primary goal was to foster interaction and communication between participants from different cultures, both in the layman’s sense of the term and in terms of approaches to quantum gravity. We hope that the links formed by students and the school will persist throughout their professional lives, continuing to promote interaction and the essential exchange of ideas that drives research forward. This volume contains improved and updated versions of the lectures given at the School. It has been prepared both as a reminder for the participants, and so that these pedagogical introductions can be made available to others who were unable to attend. We expect them to serve students of all ages well.
CERN. Geneva
2017-01-01
Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.
International Nuclear Information System (INIS)
Anon.
1997-01-01
This rubric reports on 10 short notes about international economical facts about nuclear power: Electricite de France (EdF) and its assistance and management contracts with Eastern Europe countries (Poland, Hungary, Bulgaria); Transnuclear Inc. company (a 100% Cogema daughter company) acquired the US Vectra Technologies company; the construction of the Khumo nuclear power plant in Northern Korea plays in favour of the reconciliation between Northern and Southern Korea; the delivery of two VVER 1000 Russian reactors to China; the enforcement of the cooperation agreement between Euratom and Argentina; Japan requested for the financing of a Russian fast breeder reactor; Russia has planned to sell a floating barge-type nuclear power plant to Indonesia; the control of the Swedish reactor vessels of Sydkraft AB company committed to Tractebel (Belgium); the renewal of the nuclear cooperation agreement between Swiss and USA; the call for bids from the Turkish TEAS electric power company for the building of the Akkuyu nuclear power plant answered by three candidates: Atomic Energy of Canada Limited (AECL), Westinghouse (US) and the French-German NPI company. (J.S.)
International Nuclear Information System (INIS)
Konopleva, N.P.
1996-01-01
The problems of application of nonperturbative quantization methods in the theories of the gauge fields and gravity are discussed. Unification of interactions is considered in the framework of the geometrical gauge fields theory. Vacuum conception in the unified theory of interactions and instantons role in the vacuum structure are analyzed. The role of vacuum solutions of Einstein equations in definition of the gauge field vacuum is demonstrated
Directory of Open Access Journals (Sweden)
Rovelli Carlo
2008-07-01
Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Rovelli, Carlo
2008-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Gravity, Time, and Lagrangians
Huggins, Elisha
2010-01-01
Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…
Semiclassical unimodular gravity
International Nuclear Information System (INIS)
Fiol, Bartomeu; Garriga, Jaume
2010-01-01
Classically, unimodular gravity is known to be equivalent to General Relativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimodular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we calculate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ''generalized'' version of unimodular gravity, one recovers the full set of Einstein's equations in the classical limit, including the trace, so Λ is no longer an integration constant. Finally, we consider the generally covariant theory due to Henneaux and Teitelboim, which is classically equivalent to unimodular gravity. In this case, the standard semiclassical GR results are recovered provided that the boundary term in the Euclidean action is chosen appropriately
Energy Technology Data Exchange (ETDEWEB)
Cruz, J.
2009-07-01
Communication both internal and external in the Cofrentes Nuclear Power plant has become an essential element. In fact, it always has been. Over the past 25 years, we have strived to consolidate communication plans that, today, provided us with a large body of knowledge in this field. (Author)
Yemini, Miri; Dvir, Yuval
2016-01-01
This study comprises a comprehensive attempt to reveal the power relations and conflicting interests within the local-global nexus of the Israeli public education system. The perceptions of different stakeholders were explored, in regard to the implementation of the International Baccalaureate Diploma Program as an example of a globally oriented…
DEFF Research Database (Denmark)
Kennedy, C.; Anderson, J.; Snyder, N.
2010-01-01
Crop Protection Product (CPP) national registrations and/or international trade require magnitude and decline of residue data for treated produce. These data are used to assess human dietary risk and establish legal limits (Maximum Residue Limits, MRLs) for traded produce. The ability to predict...
Wang, Yuxin; Hulstijn, Joris; Tan, Yao-Hua
2016-01-01
With increasing international trade and growing emphasis on security and efficiency, enhanced information and data-sharing between different stakeholders in global supply chains is required. Currently, data quality is not only problematic for traders, but also for various government agencies that
DEFF Research Database (Denmark)
Brown, Kerry A.; de Wit, Liesbeth; Timotijevic, Lada
2015-01-01
of folate and vitamin D Dietary Reference Values was explored in three a priori defined areas: (i) value request; (ii) evidence evaluation; and (iii) final values. Design: Qualitative case studies (semi-structured interviews and desk research). A common protocol was used for data collection, interview...... thematic analysis and reporting. Results were coordinated via cross-case synthesis. Setting: Australia and New Zealand, Netherlands, Nordic countries, Poland, Spain and UK. Subjects: Twenty-one interviews were conducted in six case studies. Results: Transparency of process was not universally observed...... across countries or areas of the recommendation setting process. Transparency practices were most commonly seen surrounding the request to develop reference values (e.g. access to risk manager/assessor problem formulation discussions) and evidence evaluation (e.g. disclosure of risk assessor data...
Plant biology in reduced gravity on the Moon and Mars.
Kiss, J Z
2014-01-01
While there have been numerous studies on the effects of microgravity on plant biology since the beginning of the Space Age, our knowledge of the effects of reduced gravity (less than the Earth nominal 1 g) on plant physiology and development is very limited. Since international space agencies have cited manned exploration of Moon/Mars as long-term goals, it is important to understand plant biology at the lunar (0.17 g) and Martian levels of gravity (0.38 g), as plants are likely to be part of bioregenerative life-support systems on these missions. First, the methods to obtain microgravity and reduced gravity such as drop towers, parabolic flights, sounding rockets and orbiting spacecraft are reviewed. Studies on gravitaxis and gravitropism in algae have suggested that the threshold level of gravity sensing is around 0.3 g or less. Recent experiments on the International Space Station (ISS) showed attenuation of phototropism in higher plants occurs at levels ranging from 0.l g to 0.3 g. Taken together, these studies suggest that the reduced gravity level on Mars of 0.38 g may be enough so that the gravity level per se would not be a major problem for plant development. Studies that have directly considered the impact of reduced gravity and microgravity on bioregenerative life-support systems have identified important biophysical changes in the reduced gravity environments that impact the design of these systems. The author suggests that the current ISS laboratory facilities with on-board centrifuges should be used as a test bed in which to explore the effects of reduced gravity on plant biology, including those factors that are directly related to developing life-support systems necessary for Moon and Mars exploration. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.
1981-01-01
Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.
Polar gravity fields from GOCE and airborne gravity
DEFF Research Database (Denmark)
Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan
2011-01-01
Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...
DEFF Research Database (Denmark)
Nordsmark, Marianne; Loncaster, Julie; Aquino-Parsons, Christina
2006-01-01
BACKGROUND AND PURPOSE: Hypoxia adversely affects treatment outcome in human uterine cervical cancer. Here, we present the results of a prospective international multi-centre study evaluating the prognostic value of pre-treatment tumour oxygen partial pressure (pO(2)) and the hypoxia marker pimon...... pimonidazole (pimo). MATERIALS AND METHODS: One hundred and twenty-seven patients with primary cervix cancer were entered. Pre-treatment tumour pO(2) measurements were obtained, and reported by the median tumour pO(2), the fraction of pO(2) values...
International Nuclear Information System (INIS)
Bhagat, R.M.; Kumar, A.
1986-01-01
Radioprotective effect of MPG has been studied on the hemoglobin level and hematocrit value of peripheral blood of Swiss albino mice against radiation-induced changes after injecting radiocalcium ( 45 Ca) at the dose level of 37 kBq/g body weight. MPG was injected 15-30 minutes before 45 Ca injection at dose of 20 mg/kg body weight intraperitoneally and also MPG was injected at various repeated doses. It has been observed that MPG in repeated doses is effective in reducing the radiation-induced changes in the hemoglobin and hematocrit value of peripheral blood of Swiss albino mice following 45 Ca internal irradiation. (author)
Variation of the gravity acceleration with the latitude and altitude
Directory of Open Access Journals (Sweden)
Wilson Lopes
2009-01-01
Full Text Available The propose of this work is an equation for the module of the acceleration vector of the gravity, varying with the latitude and altitude. For this purpose, the following values of the gravity acceleration were used, at the sea level: in the equator, g0 = 9,7803 m/s2, and in the latitude of 450, gP = 9,8062 m/s2. The terrestrial profile were assumed as being a revolution ellipsoid, flattened in the poles, and the acceleration of the gravity varying with the altitude, at sea level, was considered dependent of the latitude too.
Testing the weak gravity-cosmic censorship connection
Crisford, Toby; Horowitz, Gary T.; Santos, Jorge E.
2018-03-01
A surprising connection between the weak gravity conjecture and cosmic censorship has recently been proposed. In particular, it was argued that a promising class of counterexamples to cosmic censorship in four-dimensional Einstein-Maxwell-Λ theory would be removed if charged particles (with sufficient charge) were present. We test this idea and find that indeed if the weak gravity conjecture is true, one cannot violate cosmic censorship this way. Remarkably, the minimum value of charge required to preserve cosmic censorship appears to agree precisely with that proposed by the weak gravity conjecture.
National Aeronautics and Space Administration — Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene...
Stochastic gravity: a primer with applications
International Nuclear Information System (INIS)
Hu, B L; Verdaguer, E
2003-01-01
Stochastic semiclassical gravity of the 1990s is a theory naturally evolved from semiclassical gravity of the 1970s and 1980s. It improves on the semiclassical Einstein equation with source given by the expectation value of the stress-energy tensor of quantum matter fields in curved spacetime by incorporating an additional source due to their fluctuations. In stochastic semiclassical gravity the main object of interest is the noise kernel, the vacuum expectation value of the (operator-valued) stress-energy bi-tensor, and the centrepiece is the (semiclassical) Einstein-Langevin equation. We describe this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the energy-momentum tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open system concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise and decoherence. We then describe the applications of stochastic gravity to the backreaction problems in cosmology and black-hole physics. In the first problem, we study the backreaction of conformally coupled quantum fields in a weakly inhomogeneous cosmology. In the second problem, we study the backreaction of a thermal field in the gravitational background of a quasi-static black hole (enclosed in a box) and its fluctuations. These examples serve to illustrate closely the ideas and techniques presented in the first part. This topical review is intended as a first introduction providing readers with some basic ideas and working knowledge. Thus, we place more emphasis here on pedagogy than completeness. (Further discussions of ideas, issues and ongoing research topics can be found
Stochastic gravity: a primer with applications
Energy Technology Data Exchange (ETDEWEB)
Hu, B L [Department of Physics, University of Maryland, College Park, MD 20742-4111 (United States); Verdaguer, E [Departament de Fisica Fonamental and CER en Astrofisica Fisica de Particules i Cosmologia, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)
2003-03-21
Stochastic semiclassical gravity of the 1990s is a theory naturally evolved from semiclassical gravity of the 1970s and 1980s. It improves on the semiclassical Einstein equation with source given by the expectation value of the stress-energy tensor of quantum matter fields in curved spacetime by incorporating an additional source due to their fluctuations. In stochastic semiclassical gravity the main object of interest is the noise kernel, the vacuum expectation value of the (operator-valued) stress-energy bi-tensor, and the centrepiece is the (semiclassical) Einstein-Langevin equation. We describe this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the energy-momentum tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open system concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise and decoherence. We then describe the applications of stochastic gravity to the backreaction problems in cosmology and black-hole physics. In the first problem, we study the backreaction of conformally coupled quantum fields in a weakly inhomogeneous cosmology. In the second problem, we study the backreaction of a thermal field in the gravitational background of a quasi-static black hole (enclosed in a box) and its fluctuations. These examples serve to illustrate closely the ideas and techniques presented in the first part. This topical review is intended as a first introduction providing readers with some basic ideas and working knowledge. Thus, we place more emphasis here on pedagogy than completeness. (Further discussions of ideas, issues and ongoing research topics can be found
Measurement of Local Gravity via a Cold Atom Interferometer
International Nuclear Information System (INIS)
Zhou Lin; Xiong Zong-Yuan; Yang Wei; Tang Biao; Peng Wen-Cui; Wang Yi-Bo; Xu Peng; Wang Jin; Zhan Ming-Sheng
2011-01-01
We demonstrate a precision measurement of local gravity acceleration g in Wuhan by a compact cold atom interferometer. The atom interferometer is in vertical Mach—Zehnder configuration realized using a π/2 - π - π/2 Raman pulse sequence. Cold atoms were prepared in a magneto-optical trap, launched upward to form an atom fountain, and then coherently manipulated to interfere by stimulated Raman transition. Population signal vs Raman laser phase was recorded as interference fringes, and the local gravity was deduced from the interference signal. We have obtained a resolution of 7 × 10 −9 g after an integration time of 236s under the best vibrational environment conditions. The absolute g value was derived from the chirp rate with a difference of 1.5 × 10 −7 g compared to the gravity reference value. The tidal phenomenon was observed by continuously monitoring the local gravity over 123 h. (atomic and molecular physics)
The inverse gravimetric problem in gravity modelling
Sanso, F.; Tscherning, C. C.
1989-01-01
One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.
Directory of Open Access Journals (Sweden)
Amrita Kapur
2016-03-01
Full Text Available This article examines the unexplored potential for the International Criminal Court’s (ICC direct engagement with States to influence national prosecutorial priorities for international crimes, and how this may be leveraged to improve criminal prosecutions for crimes of sexual violence in particular. The article focuses on the intersection of two phenomenona: first, how international norms can influence national behaviour; and second, how systemic failures to prosecute crimes of sexual violence can be challenged. The article centres on engagement between the ICC and States pursuant to the principle of complementarity in The Rome Statute, as manifested in preliminary examinations. Drawing on the transnational legal process (TLP framework, the article suggests how complementarity can be utilized to promote national compliance with the international norm of criminal accountability for international crimes. By examining ICC documents and practice, the article contends that exposing the gendered dimensions of State de-prioritization of sexual violence crimes will enable the ICC, as an international institution interacting with these regimes, to better facilitate gender-sensitive criminal justice responses to international crimes. Este artículo analiza el potencial inexplorado del compromiso directo entre la Corte Penal Internacional (CPI y los estados para influir en las prioridades nacionales procesales por crímenes internacionales, y cómo esto se puede aprovechar para mejorar en particular los procesos penales por delitos de violencia sexual. El artículo pone el acento en en la intersección de dos fenómenos: en primer lugar, cómo pueden influir las normas internacionales en el comportamiento nacional; y en segundo lugar, cómo se pueden impugnar los fallos sistémicos para enjuiciar los crímenes de violencia sexual. El artículo se centra en el compromiso entre la CPI y los estados, en virtud del principio de complementariedad del
Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong
2016-06-01
According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.
Cellular basis of gravity resistance in plants
Hoson, Takayuki; Matsumoto, Shouhei; Inui, Kenichi; Zhang, Yan; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi
affected by gravity. We also examined the effects of hypergravity on the osmotic properties of azuki bean epicotyls, and found that epicotyls were capable of maintaining osmoregulation even under hypergravity conditions at least for a short period. The increase in level of total osmotic solutes was suppressed by long-term hypergravity treatment, which was accounted by suppres-sion of translocation of organic solutes such as sugars and amino acids. These various cellular events may contribute to sustaining the cell wall changes or cooperate with the cell wall in gravity resistance. Space experiments on the International Space Station will confirm whether this view is applicable to plant resistance to 1 g gravity, as to the resistance to hypergravity.
Dynamic analysis of Moste concrete gravity dam with CADAM software
Novak, Matic
2013-01-01
In this thesis a short literature overview is given for simplified dynamic analysis of concrete gravity dams. A parametric study using CADAM software was conducted. By this study the Moste concrete gravity dam response was analyzed for different loads and earthquake accelerations. The results showed that safety of Moste dam is comparable to its design safety. Also is shown that the Moste dam would sustain more intense horizontal ground movement than the designed values for sliding and overtur...
(Compactified) black branes in four dimensional f(R)-gravity
Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos
2018-02-01
A new family of analytical solutions in a four dimensional static spacetime is presented for f (R) -gravity. In contrast to General Relativity, we find that a non trivial black brane/string solution is supported in vacuum power law f (R) -gravity for appropriate values of the parameters characterizing the model and when axisymmetry is introduced in the line element. For the aforementioned solution, we perform a brief investigation over its basic thermodynamic quantities.
Massive and modified gravity as self-gravitating media
Ballesteros, Guillermo; Pilo, Luigi
2016-01-01
We study the effective field theory that describes the low-energy physics of self-gravitating media. The field content consists of four derivatively coupled scalar fields that can be identified with the internal comoving coordinates of the medium. Imposing SO(3) internal spatial invariance, the theory describes supersolids. Stronger symmetry requirements lead to superfluids, solids and perfect fluids, at lowest order in derivatives. In the unitary gauge, massive gravity emerges, being thus the result of a continuous medium propagating in spacetime. Our results can be used to explore systematically the effects and signatures of modifying gravity consistently at large distances. The dark sector is then described as a self-gravitating medium with dynamical and thermodynamic properties dictated by internal symmetries. These results indicate that the divide between dark energy and modified gravity, at large distance scales, is simply a gauge choice.
Gravity as a biochemical determinant
Siegel, S. M.
1979-01-01
The existence of obvious morphological and physiological changes in living systems exposed to altered gravity immediately informs us that prior changes have taken place in the chemistry of exposed cells, tissues and organs. These changes include transients that return more or less promptly to the norm when the system is restored to the terrestrial g-field. For example, altered serum hormone and electrolyte levels in man, which appear to reflect successful adaptation to the conditions of orbital weightlessness, disappear shortly after return to Earth. Other changes--in mineral and protein constituents of the skeletal system in man, and cell wall composition in plants--are more persistent or even permanent. Hypogravitational departures from the norm include not only "weightlessness" as achieved in orbit, but also experimental modes of compensation, on the clinostat or by flotation. These techniques are useful in the study of hypogravity but cannot replace fully the weightless environment. Plant ethylene and peroxidase both increase under orbital, clinostat and/or flotation conditions whereas 3-phosphoglyceraldehyde-dehydrogenase increases under orbital but not clinostat conditions; cytochrome reductase and malic dehydrogenase levels are affected by the clinostat, but not by actual weightless conditions. How do the altered organismal biochemistries induced by the centrifuge and the clinostat relate to one another? Does gravity operate on living systems as a continuous variable from 0 to superterrestrial values, or do deviations from g(earth) generate non-uniform, discontinuous stress responses, irrespective of sign? In plants, measurements of wall lignin content and peroxidase activity yield opposite answers. Given the limited data so far available we will consider the meaning of these contradictions.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Active Response Gravity Offload System
Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina
2011-01-01
The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.
Gravity Independent Compressor, Phase I
National Aeronautics and Space Administration — We propose to develop and demonstrate a small, gravity independent, vapor compression refrigeration system using a linear motor compressor which effectively...
Directory of Open Access Journals (Sweden)
Niels Christian Hvidt
2016-08-01
Full Text Available Modern healthcare research has only in recent years investigated the impact of health care workers’ religious and other moral values on medical practice, interaction with patients, and ethically complex decision-making. Thus far, no international data exist on the way such values vary across different countries. We therefore established the NERSH International Collaboration on Values in Medicine with datasets on physician religious characteristics and values based on the same survey instrument. The present article provides (a an overview of the development of the original and optimized survey instruments, (b an overview of the content of the NERSH data pool at this stage and (c a brief review of insights gained from articles published with the questionnaire. The questionnaire was developed in 2002, after extensive pretesting in the United States and subsequently translated from English into other languages using forward-backward translations with Face Validations. In 2013, representatives of several national research groups came together and worked at optimizing the survey instrument for future use on the basis of the existing datasets. Research groups were identified through personal contacts with researchers requesting to use the instrument, as well as through two literature searches. Data were assembled in Stata and synchronized for their comparability using a matched intersection design based on the items in the original questionnaire. With a few optimizations and added modules appropriate for cultures more secular than that of the United States, the survey instrument holds promise as a tool for future comparative analyses. The pool at this stage consists of data from eleven studies conducted by research teams in nine different countries over six continents with responses from more than 6000 health professionals. Inspection of data between groups suggests large differences in religious and other moral values across nations and cultures
Normal gravity field in relativistic geodesy
Kopeikin, Sergei; Vlasov, Igor; Han, Wen-Biao
2018-02-01
Modern geodesy is subject to a dramatic change from the Newtonian paradigm to Einstein's theory of general relativity. This is motivated by the ongoing advance in development of quantum sensors for applications in geodesy including quantum gravimeters and gradientometers, atomic clocks and fiber optics for making ultra-precise measurements of the geoid and multipolar structure of the Earth's gravitational field. At the same time, very long baseline interferometry, satellite laser ranging, and global navigation satellite systems have achieved an unprecedented level of accuracy in measuring 3-d coordinates of the reference points of the International Terrestrial Reference Frame and the world height system. The main geodetic reference standard to which gravimetric measurements of the of Earth's gravitational field are referred is a normal gravity field represented in the Newtonian gravity by the field of a uniformly rotating, homogeneous Maclaurin ellipsoid of which mass and quadrupole momentum are equal to the total mass and (tide-free) quadrupole moment of Earth's gravitational field. The present paper extends the concept of the normal gravity field from the Newtonian theory to the realm of general relativity. We focus our attention on the calculation of the post-Newtonian approximation of the normal field that is sufficient for current and near-future practical applications. We show that in general relativity the level surface of homogeneous and uniformly rotating fluid is no longer described by the Maclaurin ellipsoid in the most general case but represents an axisymmetric spheroid of the fourth order with respect to the geodetic Cartesian coordinates. At the same time, admitting a post-Newtonian inhomogeneity of the mass density in the form of concentric elliptical shells allows one to preserve the level surface of the fluid as an exact ellipsoid of rotation. We parametrize the mass density distribution and the level surface with two parameters which are
International Nuclear Information System (INIS)
Listengarten, M.A.; Band, I.M.; Trzhaskovskaya, M.B.; AN SSSR, Leningrad. Inst. Yadernoj Fiziki)
1985-01-01
Behaviour of internal conversion coefficients (ICC) was analysed with provision for exchange and overlapping coorections. Consideration is carried out in the approximation of suddenness. Calculations of conversion matrix elements, exchange and overlapping integrals were performed by means of electron wave functions determined by the Hartree-Fock-Dirac relativistic method with provision completely for exchang.e interaction for atoms with Z=10, 15, 30, 50 for K- and L 1 -sheells. A part of calculations is carried out in the Hartree-Fock-Slater model. Corrections calculated in the two models differ markedly, however, as the correction itself is small, its change has no significance in practice. The calculations performed agree well with data of other authors and with the most accurate modern measurements of K/L 1
Airborne Gravity: NGS' Gravity Data for AN02 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS05 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AN05 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AN06 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS04 (2009)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AS01 (2008)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AN04 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS08 (2015)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for CS08 collected in 2006 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for ES02 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida and the Gulf of Mexico collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...
Airborne Gravity: NGS' Gravity Data for AS02 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS07 (2014 & 2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 & 2016 over 3 surveys,TX14-2, TX16-1 and TX16-2. This data set is part of the Gravity for the Re-definition of...
International Nuclear Information System (INIS)
Jones, K.R.W.
1995-01-01
We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective interpretation of the wavefunction. Inspired by the ideas of Schroedinger, and Bell, we seek a dimensional reduction procedure to map complex wavefunctions in configuration space onto a family of observable fields in space-time. Consideration of quasi-classical conservation laws selects the reduced one-body quantities as the basis for an explicit quasi-classical coarse-graining. These we interpret as describing the objective reality of the laboratory. Thereafter, we examine what may stand in the role of the usual Copenhagen observer to localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed, without need of an external observer. Finally, the concept of quantisation is re-interpreted as a nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally self-bound solitary waves. Contrasting this theory with its canonically quantised analogue, we find that the given interpretation is empirically distinguishable, in principle. This result encourages deeper study of nonlinear field theories as a testable alternative to canonically quantised gravity. (author). 46 refs., 5 figs
Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio
2016-01-01
We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...
Skordis, Constantinos
2011-12-28
General relativity (GR) is a phenomenologically successful theory that rests on firm foundations, but has not been tested on cosmological scales. The deep mystery of dark energy (and possibly even the requirement of cold dark matter (CDM)) has increased the need for testing modifications to GR, as the inference of such otherwise undetected fluids depends crucially on the theory of gravity. Here, I discuss a general scheme for constructing consistent and covariant modifications to the Einstein equations. This framework is such that there is a clear connection between the modification and the underlying field content that produces it. I argue that this is mandatory for distinguishing modifications of gravity from conventional fluids. I give a non-trivial example, a simple metric-based modification of the fluctuation equations for which the background is exact ΛCDM, but differs from it in the perturbations. I show how this can be generalized and solved in terms of two arbitrary functions. Finally, I discuss future prospects and directions of research.
GRACE Data-based High Accuracy Global Static Earth's Gravity Field Model
Directory of Open Access Journals (Sweden)
CHEN Qiujie
2016-04-01
Full Text Available To recover the highly accurate static earth's gravity field by using GRACE satellite data is one of the hot topics in geodesy. Since linearization errors of dynamic approach quickly increase when extending satellite arc length, we established a modified dynamic approach for processing GRACE orbit and range-rate measurements in this paper, which treated orbit observations of the twin GRACE satellites as approximate values for linearization. Using the GRACE data spanning the period Jan. 2003 to Dec. 2010, containing satellite attitudes, orbits, range-rate, and non-conservative forces, we developed two global static gravity field models. One is the unconstrained solution called Tongji-Dyn01s complete to degree and order 180; the other one is the Tongji-Dyn01k model computed by using Kaula constraint. The comparisons between our models and those latest GRACE-only models (including the AIUB-GRACE03, the GGM05S, the ITSG-Grace2014k and the Tongji-GRACE01 published by different international groups, and the external validations with marine gravity anomalies from DTU13 product and height anomalies from GPS/levelling data, were performed in this study. The results demonstrate that the Tongji-Dyn01s has the same accuracy level with those of the latest GRACE-only models, while the Tongji-Dyn01k model is closer to the EIGEN6C2 than the other GRACE-only models as a whole.
Laurence, Caroline O; Eley, Diann S; Walters, Lucie; Elliott, Taryn; Cloninger, Claude Robert
2016-10-01
To describe the personality profiles of International Medical Graduates (IMGs) undertaking General Practice (GP) training in Australia. A better understanding of the personal characteristics of IMGs may inform their training and enhance support for their vital contribution to the Australian rural workforce. Cross-sectional self-report questionnaires. Independent variables included socio-demographics, prior training, the Temperament and Character Inventory, and the Resilience Scale. GP registrars (IMGs = 102; AMGs = 350) training in the Australian General Practice Training rural and general pathway and the Australian College of Rural and Remote Medicine independent pathway. Univariate analysis explored the differences in levels of traits between IMG and AMG registrars. Compared to the general population both groups have moderately high resilience, and well-organised characters with high Self-directedness, high Cooperativeness and low Self-transcendence, supported by temperaments which were high in Persistence and Reward Dependence. IMGs were different than AMGs in two temperament traits, Novelty Seeking and Persistence and two character traits, Self-directedness and Cooperativeness. Factors such as cultural and training backgrounds, personal and professional expectations, and adjustments necessary to assimilate to a new lifestyle and health system are likely to be responsible for differences found between groups. Understanding the personality profiles of IMGs provides opportunities for targeted training and support which may in turn impact on their retention in rural areas. © 2016 National Rural Health Alliance Inc.
Villalobos Reyes, Marjorie; Mederico, Maracelly; Paoli de Valeri, Mariela; Briceño, Yajaira; Zerpa, Yajaira; Gómez-Pérez, Roald; Camacho, Nolis; Martínez, José Luis; Valeri, Lenín; Arata-Bellabarba, Gabriela
2014-11-01
To obtain local reference values for blood lipids and blood pressure (BP), and to determine the prevalence of metabolic syndrome (MS) in children and adolescents from Mérida, Venezuela, and to compare results using local and international cut-off values. The study enrolled 916 participants of both sexes aged 9-18 years of age from educational institutions. Demographic, anthropometric, and BP data were collected. Fasting blood glucose and lipid profile were measured. Percentile distribution of lipid and BP values was done by age group and sex. Prevalence of MS was estimated based on the NCEP-ATPIII classification (as modified by Cook et al.) and the classification of the International Diabetes Federation, using percentiles of Mérida and the USA as cut-off points. Agreement between both classifications was estimated using the kappa test (κ). Prevalence of MS was 2.2% by Cook-Merida percentiles, as compared to 1.8% by Cook-USA percentiles, a moderate agreement (κ=0.54). Agreement between Cook et al. and IDF using Merida percentiles was weak (κ=0.28). There was a higher frequency of abdominal obesity, hypertriglyceridemia and hypertension, and a lower frequency of low HDL-C using Mérida percentiles. The risk (odds ratio) of having MS is greater if abdominal obesity exists (OR: 98.63, CI: 22.45-433.35, p=0.0001). MS was significantly more common in obese subjects (18.3%, p=0.0001). Prevalence of MS in this sample of children and adolescents was 2.2%. Lipid and BP values were lower in Venezuelan as compared to US, European, and Asian children and adolescents, and similar to those in Latin-American references. Own reference values are required for accurate diagnosis of MS, as well as a worldwide consensus on its diagnostic criteria. Copyright © 2014 SEEN. Published by Elsevier Espana. All rights reserved.
Black holes as quantum gravity condensates
Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo
2018-03-01
We model spherically symmetric black holes within the group field theory formalism for quantum gravity via generalized condensate states, involving sums over arbitrarily refined graphs (dual to three-dimensional triangulations). The construction relies heavily on both the combinatorial tools of random tensor models and the quantum geometric data of loop quantum gravity, both part of the group field theory formalism. Armed with the detailed microscopic structure, we compute the entropy associated with the black hole horizon, which turns out to be equivalently the Boltzmann entropy of its microscopic degrees of freedom and the entanglement entropy between the inside and outside regions. We recover the area law under very general conditions, as well as the Bekenstein-Hawking formula. The result is also shown to be generically independent of any specific value of the Immirzi parameter.
z -Weyl gravity in higher dimensions
Energy Technology Data Exchange (ETDEWEB)
Moon, Taeyoon; Oh, Phillial, E-mail: dpproject@skku.edu, E-mail: ploh@skku.edu [Department of Physics and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)
2017-09-01
We consider higher dimensional gravity in which the four dimensional spacetime and extra dimensions are not treated on an equal footing. The anisotropy is implemented in the ADM decomposition of higher dimensional metric by requiring the foliation preserving diffeomorphism invariance adapted to the extra dimensions, thus keeping the general covariance only for the four dimensional spacetime. The conformally invariant gravity can be constructed with an extra (Weyl) scalar field and a real parameter z which describes the degree of anisotropy of conformal transformation between the spacetime and extra dimensional metrics. In the zero mode effective 4D action, it reduces to four-dimensional scalar-tensor theory coupled with nonlinear sigma model described by extra dimensional metrics. There are no restrictions on the value of z at the classical level and possible applications to the cosmological constant problem with a specific choice of z are discussed.
Free surface flows under compensated gravity conditions
Dreyer, Miachel E
2007-01-01
This book considers the behavior of fluids in a low-gravity environment with special emphasis on application in PMD (propellant management device) systems . In the compensated gravity environment of a spacecraft, the hydrostatic pressure decreases to very low values depending on the residual acceleration, and surface tension forces become dominant. Consequently, surface tension can be used to transport and position liquids if the residual acceleration and the resulting hydrostatic pressure are small compared to the capillary pressure. One prominent application is the use of PMDs in surface-tension satellite tanks. PMDs must ensure that the tank outlet is covered with liquid whenever outflow is demanded. Furthermore, PMDs are used to ensure expulsion and refilling of tanks for liquids and gases for life support, reactants, and experiment supplies. Since most of the PMD designs are not testable on ground and thus rely on analytical or numerical concepts, this book treats three different flow problems with analy...
Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions
McCullough, Christopher; Bettadpur, Srinivas
2015-04-01
In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.
Fixed points of quantum gravity
Litim, D F
2003-01-01
Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.
Measuring wood specific gravity, correctly
G. Bruce Williamson; Michael C. Wiemann
2010-01-01
The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a foresterâs variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these...
Quantum Gravity in Two Dimensions
DEFF Research Database (Denmark)
Ipsen, Asger Cronberg
The topic of this thesis is quantum gravity in 1 + 1 dimensions. We will focus on two formalisms, namely Causal Dynamical Triangulations (CDT) and Dy- namical Triangulations (DT). Both theories regularize the gravity path integral as a sum over triangulations. The difference lies in the class...
Bergshoeff, Eric; Hohm, Olaf; Merbis, Wout; Routh, Alasdair J.; Townsend, Paul K.
2014-01-01
We present an alternative to topologically massive gravity (TMG) with the same 'minimal' bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new 'minimal massive gravity'
The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling
Choi, Sungchan; Götze, Hans-Jürgen; Meyer, Uwe; Desire-Group
2010-05-01
This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. The results of the 3D gravity modelling based the GPS analysis, magnetic field characters, seismic researches and analysis of earthquake data allow us to propose that (1) the DSB is divided into two tectonic blocks by the region between the Lisan peninsula and the southern margin of the northern DSB and (2) the tectonic system in the DSB is defined as a counter-clockwise rotating pull
Magnetic Fields Versus Gravity
Hensley, Kerry
2018-04-01
Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal
Energy Technology Data Exchange (ETDEWEB)
Harris, R.N.; Ponce, D.A.; Oliver, H.W. [Geological Survey, Menlo Park, CA (USA); Healey, D.L. [Geological Survey, Denver, CO (USA)
1989-12-31
The Nevada Test Site (NTS) and vicinity includes portions of the Goldfield, Caliente, Death Valley, and Las Vegas. This report documents and consolidates previously published and recently compiled gravity data to establish a gravity data base of about 16,000 stations for the NTS and vicinity. While compiling data sets, redundant stations and stations having doubtful locations or gravity values were excluded. Details of compiling the gravity data sets are discussed in later sections. Where feasible, an accuracy code has been assigned to each station so that the accuracy or reliability of each station can be evaluated. This data base was used in preparing complete Bouguer and isostatic gravity maps of the NTS and vicinity. Since publication of the complete Bouguer gravity map, additional data were incorporated into the isostatic gravity map. Gravity data were compiled from five sources: 14,183 stations from the US Geological Survey (USGS), 326 stations from Exploration Data Consultants (EDCON) of Denver, Colorado, 906 stations from the Los Alamos National Laboratory (LANL), 212 stations from the University of Texas at Dallas (UTD), and 48 stations from the Defense Mapping Agency (DMA). Gravity stations established under YMP are shown. The objective of this gravity survey was to explore for the presence of plutons. This volume contains only compiled data.
An econometric model on bilateral trade in education using an augmented gravity model
Directory of Open Access Journals (Sweden)
Christina Tay
2014-05-01
trade in education or trade in goods/services to test for their relevance and significance in this area of study.Practical implications: This paper aims to contribute to existing literature on trade in services and trade in education by borrowing some of the same assumptions on market structures usually made for services and international trade to show that the international trade theories can help explain the pattern of trade in education. The econometric model formulated enables governments to design policies that could facilitate, direct and promote the development and growth of education as a trade. It could also assist institutions to adjust and choose more efficient methods of structuring their policies and formulating their marketing strategies, targeted towards different country segments.Social implications: With the share of education services in world trade increasing, it becomes even more important to be able to accurately model trade in education services. Thus, my introduction of the augmented gravity model on trade in education provides new and interesting avenues for further macro research of trade in education on an international platform.Originality/value: I borrow the same assumptions on market structures usually made for services to show that international trade theories can help explain the pattern of trade in education. This paper proposes an effective econometric model using the gravity equation to help governments as well as institutions evaluate the importance of the various determinants of trade in education.
Modified gravity from the nonperturbative quantization of a metric
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany); Eurasian National University, Institute for Basic Research, Astana (Kazakhstan); Folomeev, Vladimir [IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany); Kleihaus, Burkhard; Kunz, Jutta [Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany)
2015-04-01
Based on certain assumptions for the expectation value of a product of the quantum fluctuating metric at two points, the gravitational and scalar field Lagrangians are evaluated. Assuming a vanishing expectation value of the first-order terms of the metric, the calculations are performed with an accuracy of second order. It is shown that such quantum corrections give rise to modified gravity. (orig.)
Experimental search for quantum gravity
2018-01-01
This book summarizes recent developments in the research area of quantum gravity phenomenology. A series of short and nontechnical essays lays out the prospects of various experimental possibilities and their current status. Finding observational evidence for the quantization of space-time was long thought impossible. In the last decade however, new experimental design and technological advances have changed the research landscape and opened new perspectives on quantum gravity. Formerly dominated by purely theoretical constructions, quantum gravity now has a lively phenomenology to offer. From high precision measurements using macroscopic quantum oscillators to new analysis methods of the cosmic microwave background, no stone is being left unturned in the experimental search for quantum gravity. This book sheds new light on the connection of astroparticle physics with the quantum gravity problem. Gravitational waves and their detection are covered. It illustrates findings from the interconnection between gene...
Mobile quantum gravity sensor with unprecedented stability
Leykauf, Bastian; Freier, Christian; Schkolnik, Vladimir; Krutzik, Markus; Peters, Achim
2017-04-01
The gravimetric atom interferometer GAIN is based on interfering ensembles of laser-cooled 87Rb atoms in a fountain setup, using stimulated Raman transitions. GAIN's rugged design allows for transports to sites of geodetic and geophysical interest while maintaining a high accuracy compatible with the best classical instruments. We compared our instrument's performance with falling corner-cube and superconducting gravimeters in two measurement campaigns at geodetic observatories in Wettzell, Germany and Onsala, Sweden. Our instrument's long-term stability of 0.5 nm/s2 is the best value for absolute gravimeters reported to date [1]. Our measured gravity value agrees with other state-of-the-art gravimeters on the 10-9 level in g, demonstrating effective control over systematics including wavefront distortions of the Raman beams [2]. By using the juggling technique [3], we are able to perform gravity measurements on two atomic clouds simultaneously. Advantages include the suppression of common mode phase noise, enabling differential phase shift extraction without the need for vibration isolation. We will present the results of our first gravity gradient measurements. [1] Freier, Hauth, Schkolnik, Leykauf, Schilling, Wziontek, Scherneck, Müller and Peters (2016). Mobile quantum gravity sensor with unprecedented stability. Journal of Physics: Conference Series, 8th Symposium on Frequency Standards and Metrology 2015, 723, 12050. [2] Schkolnik, Leykauf, Hauth, Freier and Peters (2015). The effect of wavefront aberrations in atom interferometry. Applied Physics B, 120(2), 311 - 316. [3] Legere and Gibble (1998). Quantum Scattering in a Juggling Atomic Fountain. Physical Review Letters, 81(1), 5780 - 5783.
Shamier Ebrahim
2016-01-01
Equal pay is an area of employment law that is complex and not easily understood. This complexity is recognised by the International Labour Organisation (ILO), which notes that equal pay for work of equal value has proved to be difficult to understand, both with regard to what it entails and in its application. Amendments have been made to the Employment Equity Act 55 of 1998 (EEA) to include a specific provision to regulate equal pay claims in the form of section 6(4)-(5) of the EEA. The ame...
Higher derivative mimetic gravity
Gorji, Mohammad Ali; Mansoori, Seyed Ali Hosseini; Firouzjahi, Hassan
2018-01-01
We study cosmological perturbations in mimetic gravity in the presence of classified higher derivative terms which can make the mimetic perturbations stable. We show that the quadratic higher derivative terms which are independent of curvature and the cubic higher derivative terms which come from curvature corrections are sufficient to remove instabilities in mimetic perturbations. The classified higher derivative terms have the same dimensions but they contribute differently in the background and perturbed equations. Therefore, we can control both the background and the perturbation equations allowing us to construct the higher derivative extension of mimetic dark matter and the mimetic nonsingular bouncing scenarios. The latter can be thought as a new higher derivative effective action for the loop quantum cosmology scenario in which the equations of motion coincide with those suggested by loop quantum cosmology. We investigate a possible connection between the mimetic cosmology and the Randall-Sundrum cosmology.
International Nuclear Information System (INIS)
Gregory, Ruth
2007-01-01
The study of braneworlds has been an area of intense activity over the past decade, with thousands of papers being written, and many important technical advances being made. This book focuses on a particular aspect of braneworlds, namely perturbative gravity in one specific model: the Randall-Sundrum model. The book starts with an overview of the Randall-Sundrum model, discussing anti-de Sitter (AdS) space and the Israel equations in some detail. It then moves on to discuss cosmological branes, focusing on branes with constant curvature. The book then turns to brane gravity, i.e. what do we, as brane observers, perceive the gravitational interaction to be on the brane as derived from the actual five-dimensional gravitational physics? After a derivation of the general brane equations from the Israel equations, the remainder of the book deals with perturbative gravity. This part of the book is extremely detailed, with calculations given explicitly. Overall, the book is quite pedagogical in style, with the aim being to explain in detail the topics it chooses to cover. While it is not unusual to have books written on current and extremely popular research areas, it is unusual to have calculations written so explicitly. This is both a strength and a weakness of this book. It is a strength because the calculations are presented in a detail that students learning the topic will definitely appreciate; however, the narrow focus of the book also means that it lacks perspective and fails to present the broader context. In choosing to focus on one particular aspect of Randall-Sundrum branes, the book has not managed to communicate why a large number of theorists have worked so intensively on this model. In its early stages, the explicit detail of the Randall-Sundrum model would be extremely useful for a student starting out in this research area. In addition, the calculational detail later in the computation of the graviton propagator on the brane would also be welcome not
Energy Technology Data Exchange (ETDEWEB)
Gregory, Ruth [Department of Mathematical Sciences Science Laboratory, South Road, Durham DH1 3LE (United Kingdom)
2007-06-18
The study of braneworlds has been an area of intense activity over the past decade, with thousands of papers being written, and many important technical advances being made. This book focuses on a particular aspect of braneworlds, namely perturbative gravity in one specific model: the Randall-Sundrum model. The book starts with an overview of the Randall-Sundrum model, discussing anti-de Sitter (AdS) space and the Israel equations in some detail. It then moves on to discuss cosmological branes, focusing on branes with constant curvature. The book then turns to brane gravity, i.e. what do we, as brane observers, perceive the gravitational interaction to be on the brane as derived from the actual five-dimensional gravitational physics? After a derivation of the general brane equations from the Israel equations, the remainder of the book deals with perturbative gravity. This part of the book is extremely detailed, with calculations given explicitly. Overall, the book is quite pedagogical in style, with the aim being to explain in detail the topics it chooses to cover. While it is not unusual to have books written on current and extremely popular research areas, it is unusual to have calculations written so explicitly. This is both a strength and a weakness of this book. It is a strength because the calculations are presented in a detail that students learning the topic will definitely appreciate; however, the narrow focus of the book also means that it lacks perspective and fails to present the broader context. In choosing to focus on one particular aspect of Randall-Sundrum branes, the book has not managed to communicate why a large number of theorists have worked so intensively on this model. In its early stages, the explicit detail of the Randall-Sundrum model would be extremely useful for a student starting out in this research area. In addition, the calculational detail later in the computation of the graviton propagator on the brane would also be welcome not
Frè, Pietro Giuseppe
2013-01-01
‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differe...
International Nuclear Information System (INIS)
Francaviglia, M.
1990-01-01
Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)
Stochastic quantization and gravity
International Nuclear Information System (INIS)
Rumpf, H.
1984-01-01
We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)
Teleparallel Gravity An Introduction
Aldrovandi, Ruben
2013-01-01
Teleparallel Gravity (TG) is an alternative theory for gravitation, which is equivalent to General Relativity (GR). However, it is conceptually different. For example in GR geometry replaces the concept of force, and the trajectories are determined by geodesics. TG attributes gravitation to torsion, which accounts for gravitation by acting as a force. TG has already solved some old problems of gravitation (like the energy-momentum density of the gravitational field). The interest in TG has grown in the last few years. The book here proposed will be the first one dedicated exclusively to TG, and will include the foundations of the theory, as well as applications to specific problems to illustrate how the theory works.
Mannheim, Philip D
2005-01-01
This timely and valuable book provides a detailed pedagogical introduction and treatment of the brane-localized gravity program of Randall and Sundrum, in which gravitational signals are able to localize around our four-dimensional world in the event that it is a brane embedded in an infinitely-sized, higher dimensional anti-de Sitter bulk space. A completely self-contained development of the material needed for brane-world studies is provided for both students and workers in the field, with a significant amount of the material being previously unpublished. Particular attention is given to issues not ordinarily treated in the brane-world literature, such as the completeness of tensor gravitational fluctuation modes, the causality of brane-world propagators, and the status of the massless graviton fluctuation mode in brane worlds in which it is not normalizable.
2000-01-01
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
Burrage, Clare; Sakstein, Jeremy
2018-03-01
Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.
Directory of Open Access Journals (Sweden)
Shamier Ebrahim
2016-07-01
Full Text Available Equal pay is an area of employment law that is complex and not easily understood. This complexity is recognised by the International Labour Organisation (ILO, which notes that equal pay for work of equal value has proved to be difficult to understand, both with regard to what it entails and in its application. Amendments have been made to the Employment Equity Act 55 of 1998 (EEA to include a specific provision to regulate equal pay claims in the form of section 6(4-(5 of the EEA. The amendments were made in terms of the Employment Equity Amendment Act 47 of 2013, which came into effect on 1 August 2014 by presidential proclamation. Prior to section 6(4, the EEA did not contain a specific provision regulating equal pay claims. Claims could be brought in terms of section 6(1 of the EEA, which prohibits unfair discrimination on a number of grounds. The recent amendments to the EEA in the form of section 6(4-(5 (including the Employment Equity Regulations and the Code of Good Practice on Equal Pay for Work of Equal Value in respect of equal pay claims is a response to the ILO's criticism of South Africa's failure to include specific equal pay provisions in the EEA. Section 6(4 of the EEA provides for three causes of action in respect of equal pay. They are as follows: (a equal pay for the same work; (b equal pay for substantially the same work; and (c equal pay for work of equal value. The first two causes of action are not difficult to understand as opposed to the third cause of action, which is complex. The ILO has recognised the complexity of the third cause of action, "equal pay for work of equal value". In Mangena v Fila South Africa 2009 12 BLLR 1224 (LC, the Labour Court remarked in the context of an equal pay for work of equal value claim that it does not have expertise in job grading and in the allocation of value to particular occupations. This article will deal with the third cause of action only, "equal pay for work of equal value". The
Measurement of Jupiter’s asymmetric gravity field
Iess, L.; Folkner, W. M.; Durante, D.; Parisi, M.; Kaspi, Y.; Galanti, E.; Guillot, T.; Hubbard, W. B.; Stevenson, D. J.; Anderson, J. D.; Buccino, D. R.; Casajus, L. Gomez; Milani, A.; Park, R.; Racioppa, P.; Serra, D.; Tortora, P.; Zannoni, M.; Cao, H.; Helled, R.; Lunine, J. I.; Miguel, Y.; Militzer, B.; Wahl, S.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.
2018-03-01
The gravity harmonics of a fluid, rotating planet can be decomposed into static components arising from solid-body rotation and dynamic components arising from flows. In the absence of internal dynamics, the gravity field is axially and hemispherically symmetric and is dominated by even zonal gravity harmonics J2n that are approximately proportional to qn, where q is the ratio between centrifugal acceleration and gravity at the planet’s equator. Any asymmetry in the gravity field is attributed to differential rotation and deep atmospheric flows. The odd harmonics, J3, J5, J7, J9 and higher, are a measure of the depth of the winds in the different zones of the atmosphere. Here we report measurements of Jupiter’s gravity harmonics (both even and odd) through precise Doppler tracking of the Juno spacecraft in its polar orbit around Jupiter. We find a north–south asymmetry, which is a signature of atmospheric and interior flows. Analysis of the harmonics, described in two accompanying papers, provides the vertical profile of the winds and precise constraints for the depth of Jupiter’s dynamical atmosphere.
Free-air gravity anomaly map of the Long Island Platform
Hutchinson, D.R.; Leeds, W.D.; Bell, Robin; Grow, J.A.
1986-01-01
The U.S. Geological Survey (USGS) has collected marine gravity data along the U.S. Atlantic continental margin during the last decade. This map of the Long Island platform combines the data used to make the preliminary free-air gravity anomaly map of the Atlantic continental margin (Grow and others, 1976) with the new gravity values collected aboard the RV Gilliss in 1979 and the RV Gyre in 1981.
Time lapse gravity monitoring at Coso geothermal field
Woolf, Rachel Vest
An extensive time lapse gravity data set was acquired over the Coso geothermal field near Ridgecrest, California starting in 1987, with the latest data set acquired in 2013. In this thesis I use these gravity data to obtain a better understanding of mass changes occurring within the geothermal field. Geothermal energy is produced by flashing naturally heated ground water into steam which is used to turn turbines. Brine and re-condensed steam are then re-injected into the reservoir. A percentage of the water removed from the system is lost to the process. The time lapse gravity method consists of gravity measurements taken at the same locations over time, capturing snap shots of the changing field. After careful processing, the final data are differenced to extract the change in gravity over time. This change in gravity can then be inverted to recover the change in density and therefore mass over time. The inversion process also produces information on the three dimensional locations of these mass changes. Thirty five gravity data sets were processed and a subsection were inverted with two different starting times, a sixteen point data set collected continuously between 1991 and 2005, and a thirty-eight point data set collected between 1996 and 2005. The maximum change in gravity in the 1991 data group was -350 microGal observed near station CSE2. For the 1996 data group the maximum gravity change observed over the nine year period was -248 microGal. The gravity data were then inverted using the surface inversion method. Three values of density contrast were used, -0.05 g/cm3, -0.10 g/cm3, and -0.20 g/cm3. The starting surface in 1991 was set to 2,500 ft above sea level. The changes in surfaces were then converted to mass changes. The largest total mass change recovered was -1.39x1011 kg. This mass value is of the same order of magnitude as published well production data for the field. Additionally, the gravity data produces a better understanding of the spatial
Directory of Open Access Journals (Sweden)
Deptuła Adam
2017-01-01
Full Text Available This paper presents possible applications of acoustic diagnostics in inspecting the technical condition of an internal combustion engine with autoignition on the example of the Fiat drive unit with the common rail system. As a result of measuring the sound pressure level for specific faults and comparing the noise generated by the motor running smoothly, the detailed maps of changes in the acoustic spectrum may be generated. These results may be helpful in future diagnostics of internal combustion engines. In the paper, we present the results from the scientific works in the area of research, design and operation of internal combustion engines, conducted at the Department of Automotive Engineering, in cooperation with the Laboratory of Hydraulic Drives & Vibroacoustics of Machines at the Wroclaw University of Technology. The broader study has so far allowed us to develop an authoritative method of identifying the type of engine damage using gametree structures. The present works assess the possibility of using multi-valued logic trees.
Airborne Gravity: NGS' Gravity Data for EN10 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...
Airborne Gravity: NGS' Gravity Data for EN09 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Massachusetts, Connecticut, Rhode Island, New Hampshire, New York, and the Atlantic Ocean collected in 2012 over 1 survey. This data set is...
Systematic simulations of modified gravity: chameleon models
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Li, Baojiu [Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Winther, Hans A. [Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo (Norway); Zhao, Gong-Bo, E-mail: philippe.brax@cea.fr, E-mail: a.c.davis@damtp.cam.ac.uk, E-mail: baojiu.li@durham.ac.uk, E-mail: h.a.winther@astro.uio.no, E-mail: gong-bo.zhao@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)
2013-04-01
In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.
Systematic simulations of modified gravity: chameleon models
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine; Li, Baojiu; Winther, Hans A.; Zhao, Gong-Bo
2013-01-01
In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc −1 , since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future
Regularization of instabilities in gravity theories
Ramazanoǧlu, Fethi M.
2018-01-01
We investigate instabilities and their regularization in theories of gravitation. Instabilities can be beneficial since their growth often leads to prominent observable signatures, which makes them especially relevant to relatively low signal-to-noise ratio measurements such as gravitational wave detections. An indefinitely growing instability usually renders a theory unphysical; hence, a desirable instability should also come with underlying physical machinery that stops the growth at finite values, i.e., regularization mechanisms. The prototypical gravity theory that presents such an instability is the spontaneous scalarization phenomena of scalar-tensor theories, which feature a tachyonic instability. We identify the regularization mechanisms in this theory and show that they can be utilized to regularize other instabilities as well. Namely, we present theories in which spontaneous growth is triggered by a ghost rather than a tachyon and numerically calculate stationary solutions of scalarized neutron stars in these theories. We speculate on the possibility of regularizing known divergent instabilities in certain gravity theories using our findings and discuss alternative theories of gravitation in which regularized instabilities may be present. Even though we study many specific examples, our main point is the recognition of regularized instabilities as a common theme and unifying mechanism in a vast array of gravity theories.
Energy Technology Data Exchange (ETDEWEB)
Ashour, Amani [Damascus University, Mathematics Department, Faculty of Science, Damascus (Syrian Arab Republic); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Ali, Ahmed Farag [Benha University, Department of Physics, Faculty of Science, Benha (Egypt); Hammad, Faycal [Bishop' s University, Physics Department and STAR Research Cluster, Sherbrooke, QC (Canada); Champlain College-Lennoxville, Physics Department, Sherbrooke, QC (Canada)
2016-05-15
In this work, we investigate the thermodynamics of black p-branes (BB) in the context of Gravity's Rainbow. We investigate this using rainbow functions that have been motivated from loop quantum gravity and κ-Minkowski non-commutative spacetime. Then for the sake of comparison, we examine a couple of other rainbow functions that have also appeared in the literature. We show that, for consistency, Gravity's Rainbow imposes a constraint on the minimum mass of the BB, a constraint that we interpret here as implying the existence of a black p-brane remnant. This interpretation is supported by the computation of the black p-brane's heat capacity that shows that the latter vanishes when the Schwarzschild radius takes on a value that is bigger than its extremal limit. We found that the same conclusion is reached for the third version of rainbow functions treated here but not with the second one for which only standard black p-brane thermodynamics is recovered. (orig.)
Specific Gravity, Dry Matter Content, and Starch Content of Potato ...
African Journals Online (AJOL)
Therefore, experiments were conducted at three locations in the region, namely, Haramaya, Hirna and Arbarakatte in eastern Ethiopia during the 2012 to 2014 main cropping season to elucidate the internal tuber quality characteristics of 17 potato varieties and prepare a specific gravity conversion chart. The treatments ...
Mars - Hellas Planitia gravity analysis
Sjogren, W. L.; Wimberley, R. N.
1981-01-01
Doppler radio tracking data from Viking Orbiter 1 has provided new detailed observations of gravity variations over Hellas Planitia. Line-of-sight Bouguer gravity definitely indicates that isostatic adjustment has occurred. Two theoretical models were tested to obtain fits to the gravity data. Results for a surface deficit model, and a model with a surface deficit and a mass excess at depth are displayed. The mass-at-depth model produced very marked improvement in the data fit as compared to the surface deficit model. The optimum depth for the mass excess is 130 km.
Compact objects in Horndeski gravity
Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele
2016-04-01
Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.
Natural inflation and quantum gravity.
de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman
2015-04-17
Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.
Cosmic string in gravity's rainbow
Momeni, Davood; Upadhyay, Sudhaker; Myrzakulov, Yerlan; Myrzakulov, Ratbay
2017-09-01
In this paper, we study the various cylindrical solutions (cosmic strings) in gravity's rainbow scenario. In particular, we calculate the gravitational field equations corresponding to energy-dependent background. Further, we discuss the possible Kasner, quasi-Kasner and non-Kasner exact solutions of the field equations. In this framework, we find that quasi-Kasner solutions cannot be realized in gravity's rainbow. Assuming only time-dependent metric functions, we also analyse the time-dependent vacuum cosmic strings in gravity's rainbow, which are completely different than the other GR solutions.
Shaheen, Amy W; Denton, G Dodd; Stratton, Terry D; Hoellein, Andrew R; Chretien, Katherine C
2014-08-01
End-of-life and palliative care (EOL/PC) education is a necessary component of undergraduate medical education. The extent of EOL/PC education in internal medicine (IM) clerkships is unknown. The purpose of this national study was to investigate the presence of formal EOL/PC curricula within IM clerkships; the value placed by IM clerkship directors on this type of curricula; curricular design and implementation strategies; and related barriers and resources. The Clerkship Directors in Internal Medicine conducted its annual survey of its institutional members in April 2012. The authors analyzed responses to survey items pertaining to formal EOL/PC curriculum and content using descriptive statistics. The authors used qualitative techniques to analyze free-text responses. The response rate was 77.0% (94/122). Of those responding, 75.8% (69/91) believed such training should occur in the IM clerkship, and 43.6% (41/94) reported formal curricula in EOL/PC. Multiple instructional modalities were used to deliver this content, with the majority of programs dedicating four or more hours to the curriculum. Curricula covered a wide range of topics, and student assessment tools were varied. Most felt that students valued this education. The qualitative analysis revealed differences in the values clerkship directors placed on teaching EOL/PC within the IM clerkship. Although many IM clerkship directors have implemented formal curricula in EOL/PC, a substantial gap remains between those who have implemented and those who believe it belongs in the clerkship. Time, faculty, cost, and competing demands are the main barriers to implementation.
Cutoff for extensions of massive gravity and bi-gravity
International Nuclear Information System (INIS)
Matas, Andrew
2016-01-01
Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware–Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity. (paper)
Climatology of gravity wave activity during the West African Monsoon
Kafando, P.; Chane-Ming, F.; Petitdidier, M.
2008-12-01
Gravity wave activity is analysed in the lower stratosphere using 6 year radiosonde data (2001-2006) above two meteorological stations in the West African tropical region such as Niamey (13.47° N; 2.16° E) and Ouagadougou (12.35° N; 1.51° W). Monthly total energy density of gravity waves is computed with temperature and horizontal wind perturbations to highlight the West African Monsoon period from June to September. Comparison with monthly total energy density calculated with temperature only supports that observed small-scale temperature and wind perturbations are mostly associated with gravity waves in the lower stratosphere especially for large values during the wet season. Above the two sites, monthly evolution of gravity wave total energy density reveals a maximum intensity of gravity wave activity in July during the West African Monsoon period. Indicators of convective activity such as mean Outgoing Longwave Radiation (OLR) and Tropical Rainfall Measuring Mission (TRMM) rain rates reveal to be adequate monsoon proxies to be compared to gravity wave energy intensity during the West African Monsoon.
Climatology of gravity wave activity during the West African Monsoon
Directory of Open Access Journals (Sweden)
P. Kafando
2008-12-01
Full Text Available Gravity wave activity is analysed in the lower stratosphere using 6 year radiosonde data (2001–2006 above two meteorological stations in the West African tropical region such as Niamey (13.47° N; 2.16° E and Ouagadougou (12.35° N; 1.51° W. Monthly total energy density of gravity waves is computed with temperature and horizontal wind perturbations to highlight the West African Monsoon period from June to September. Comparison with monthly total energy density calculated with temperature only supports that observed small-scale temperature and wind perturbations are mostly associated with gravity waves in the lower stratosphere especially for large values during the wet season. Above the two sites, monthly evolution of gravity wave total energy density reveals a maximum intensity of gravity wave activity in July during the West African Monsoon period. Indicators of convective activity such as mean Outgoing Longwave Radiation (OLR and Tropical Rainfall Measuring Mission (TRMM rain rates reveal to be adequate monsoon proxies to be compared to gravity wave energy intensity during the West African Monsoon.
Anisotropic phenomena in gauge/gravity duality
International Nuclear Information System (INIS)
Zeller, Hansjoerg
2014-01-01
In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the
Gravity and seismicity over the Guerrero Seismic Gap, Mexico
Kostoglodov, V.; Bandy, W.; Domínguez, J.; Mena, M.
Four detailed (average station interval = 5 km) gravity transects were recently conducted in the Pacific coastal region of Mexico. A differential GPS technique was used to determine the elevation and coordinates of the gravity stations. The profiles are oriented northeast-southwest and extend from the coast up to ˜60 km inland. The Bouguer gravity anomaly is decreasing consistently along every profile from 60-80 mGal at the coast with an approximately constant regional gradient of -2.2 mGal/km normal to the trench. A plot of the gravity anomaly against the distance from the trench axis demonstrates that the regional slope in the gravity anomaly is shifting gradually (20-25 mGal) inland along the coast of Guerrero from the southeast (Atoyac) to the northwest (Petatlán - Zihuatanejo). A model cross section of the Mexican subduction zone (MSZ) based on the tomography inversion for the Guerrero region shows that the gravity anomaly values and the regional anomaly trend can be explained mostly by the effect of the density contrast between the slab and the continental crust. The upper surface of the subducted slab (USS) and the seismogenic contact zone between the upper plate and the slab is traced clearly in several seismicity cross sections based on the data of the regional seismic network in Guerrero. The depth and shape of the USS revealed from the seismicity and gravity anomaly data for the same profiles are in good agreement. This correlation may be fairly useful when applied to gravity profiles in order to estimate the depth of the USS and the seismogenic contact in other parts of the MSZ which lack reliable seismicity data.
Hoffmann, Lars; Wu, Xue; Alexander, M. Joan
2018-02-01
Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.
Miscible Viscous Gravity Currents
Sutherland, Bruce; Cote, Kristen; Hong, Youn Sub; Steverango, Luke; Surma, Chris
2017-11-01
Full- and partial-depth lock-release laboratory experiments are performed examining the evolution of a glycerol solution being released into an ambient fluid of either fresh or salty water. The advance of the current front and the depth of the current from its head back to the lock are tracked over time. While the viscosity of pure glycerol is sufficiently high to retard mixing between the current and ambient fluid, where mixing does occur the viscosity reduces significantly so permitting more turbulent mixing to occur. Meanwhile viscous stresses at the bottom of the current introduces shear within the boundary layer which extends vertically over a significant fraction of the current's depth. Thus, even though there is no evidence of a lubrication layer below the current, the current nonetheless advances initially at speeds close to those of effectively inviscid gravity currents. As the viscous boundary layer depth becomes comparable to the current depth in the tail the fluid slows dramatically while the turbulent front continues to advance, slowing as it becomes depleted of fluid. NSERC Discovery Grant.
International Nuclear Information System (INIS)
Deser, S.
1987-01-01
We obtain the Einstein action plus quadratic curvature corrections generated by closed bosonic, heterotic and supersymmetric strings by matching the four-graviton amplitude (to first order in the slope parameter and fourth power of momenta) with an effective local gravitational action. The resulting corrections are first shown to be of the Gauss-Bonnet form. It is then noted that, by the very nature of the slope expansion, the field-redefinition theorem applies. Consequently, only the curvature-squared term is determined, while squares of its contractions are explicitly seen not to contribute. This latter property has a generalization to all orders which implies that the effective gravitational action is unavoidably ghost-free. The properties of solutions to these corrected theories are then examined. First neglecting dilatons, we find the explicit 'Schwarzschild' metrics. Both asymptotically flat and de Sitter solutions are present. The latter are however shown to be unstable. The former have horizons and singularities which are respectively smaller and less violent than in Einstein gravity; the correct sign of the slope parameter also ensures absence of naked singularities. When dilatons are included, the cosmological vacua are gratifyingly excluded. (orig.)
Distinguishing modified gravity models
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif/Yvette Cedex (France); Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA (United Kingdom)
2015-10-01
Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.
Distinguishing modified gravity models
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine
2015-01-01
Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations
Directory of Open Access Journals (Sweden)
Bernard S. Kay
2015-12-01
Full Text Available We give a review, in the style of an essay, of the author’s 1998 matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. It also involves a radically different from usual description of black hole equilibrium states in which the total state of a black hole in a box together with its atmosphere is a pure state—entangled in just such a way that the reduced state of the black hole and of its atmosphere are each separately approximately thermal. We also briefly recall some recent work of the author which involves a reworking of the string-theory understanding of black hole entropy consistent with this alternative description of black hole equilibrium states and point out that this is free from some unsatisfactory features of the usual string theory understanding. We also recall the author’s recent arguments based on this alternative description which suggest that the Anti de Sitter space (AdS/conformal field theory (CFT correspondence is a bijection between the boundary CFT and just the matter degrees of freedom of the bulk theory.
Path integral of unimodular gravity
de León Ardón, R.; Ohta, N.; Percacci, R.
2018-01-01
We compute the one-loop effective action in unimodular gravity, starting from two different classical formulations of the theory. We find that the effective action is the same in both cases, and agrees with the one of general relativity.
Neutron stars in Horndeski gravity
Maselli, Andrea; Silva, Hector O.; Minamitsuji, Masato; Berti, Emanuele
2016-06-01
Horndeski's theory of gravity is the most general scalar-tensor theory with a single scalar whose equations of motion contain at most second-order derivatives. A subsector of Horndeski's theory known as "Fab Four" gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has received particular attention in cosmology as a possible alternative to the Λ CDM model. Here we study compact stars in Fab Four gravity, which includes as special cases general relativity ("George"), Einstein-dilaton-Gauss-Bonnet gravity ("Ringo"), theories with a nonminimal coupling with the Einstein tensor ("John"), and theories involving the double-dual of the Riemann tensor ("Paul"). We generalize and extend previous results in theories of the John class and were not able to find realistic compact stars in theories involving the Paul class.
Hall, Peter M.; Hall, David J.
1995-01-01
Discusses the effects of gravity, local density compared to the density of the earth, the mine shaft, centrifugal force, and air buoyancy on the weight of an object at the top and at the bottom of a mine shaft. (JRH)
Topological gravity with minimal matter
International Nuclear Information System (INIS)
Li Keke
1991-01-01
Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)
Some remarks about quantum gravity
International Nuclear Information System (INIS)
de Alfaro, V.; Fubini, S.; Turin Univ.; Furlan, G.; Trieste Univ.
1982-02-01
Ideas concerning the normalization of quantum gravity are set forth. The approach is to ascribe the correct dimensionality to the field gsub(μnu), to interpret Newton's constant as a vacuum effect, and to work with inverse operators
Quantum gravity and quantum cosmology
Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos
2013-01-01
Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. ...
Defying gravity using Jenga™ blocks
Tan, Yin-Soo; Yap, Kueh-Chin
2007-11-01
This paper describes how Jenga™ blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum.
Gravity Data For Colombia 1997
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (9,050 records), were observed and processed by the Instituto Geografico Agustin Codazzi(IGAC), in Colombia from 1958 to 1996. This data...
Chern-Simons-like Gravity Theories
Bergshoeff, Eric A.; Hohm, Olaf; Merbis, Wout; Routh, Alasdair J.; Townsend, Paul K.
2014-01-01
A wide class of three-dimensional gravity models can be put into "Chern-Simons-like" form. We perform a Hamiltonian analysis of the general model and then specialise to Einstein-Cartan Gravity, General Massive Gravity, the recently proposed Zwei-Dreibein Gravity and a further parity violating
Radion and holographic brane gravity
International Nuclear Information System (INIS)
Kanno, Sugumi; Soda, Jiro
2002-01-01
The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function ω(Ψ)=3Ψ/2(1-Ψ) on the positive tension brane and ω(Φ)=-3Φ/2(1+Φ) on the negative tension brane, where Ψ and Φ are nonlinear realizations of the radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Ψ and Φ couples with the sum of the traces of the energy-momentum tensor on both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk geometry can be reconstructed from the solution of quasi-scalar-tensor gravity
Energy Technology Data Exchange (ETDEWEB)
Au, G.
1995-03-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein`s classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity.
International Nuclear Information System (INIS)
Au, G.
1995-03-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein's classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity
Astrophysical Tests of Modified Gravity
Sakstein, Jeremy
2015-01-01
Einstein's theory of general relativity has been the accepted theory of gravity for nearly a century but how well have we really tested it? The laws of gravity have been probed in our solar system to extremely high precision using several different tests and general relativity has passed each one with flying colours. Despite this, there are still some mysteries it cannot account for, one of which being the recently discovered acceleration of the universe and this has prompted a theoretical st...
An Einstein equation for discrete quantum gravity
Gudder, Stan
2012-01-01
The basic framework for this article is the causal set approach to discrete quantum gravity (DQG). Let $Q_n$ be the collection of causal sets with cardinality not greater than $n$ and let $K_n$ be the standard Hilbert space of complex-valued functions on $Q_n$. The formalism of DQG presents us with a decoherence matrix $D_n(x,y)$, $x,y\\in Q_n$. There is a growth order in $Q_n$ and a path in $Q_n$ is a maximal chain relative to this order. We denote the set of paths in $Q_n$ by $\\Omega_n$. For...
PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity
Capozziello, S.; Troisi, A.
2005-01-01
Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.
Gravity a very short introduction
Clifton, Timothy
2017-01-01
Gravity is one of the four fundamental interactions that exist in nature. It also has the distinction of being the oldest, weakest, and most difficult force to quantize. Understanding gravity is not only essential for understanding the motion of objects on Earth, but also the motion of all celestial objects, and even the expansion of the Universe itself. It was the study of gravity that led Einstein to his profound realizations about the nature of space and time. Gravity is not only universal, it is also essential for understanding the behavior of the Universe, and all astrophysical bodies within it. In this Very Short Introduction Timothy Clifton looks at the development of our understanding of gravity since the early observations of Kepler and Newtonian theory. He discusses Einstein's theory of gravity, which now supplants Newton's, showing how it allows us to understand why the frequency of light changes as it passes through a gravitational field, why GPS satellites need their clocks corrected as they orbi...
Value Based International Relationship Marketing
Dr. Ulrich Scholz
2009-01-01
The developement of a "general theory" of relationship marketing must be considered as distant vision rather than as imminent reality.We now use the existing stock of knowledge to identify some largely unexplored,yet relevant, aspects of relationship marketing and call for these issues to be
Micro-gravity Isolation using only Electro-magnetic Actuators
DEFF Research Database (Denmark)
Vinther, D.; Alminde, Lars; Bisgaard, Morten
in the Sixth Student Parabolic Flight Campaign issued by the European Space Agency (ESA). The system consists of six custom made electro magnetic actuators which acts on the isolated platform based on the designed controller and their input from six accelerometers and six infrared position sensors. From......In this paper the design, construction and test of a free floating micro-gravity isolation platform to reduce the acceleration dose on zero gravity experiments on e.g. the International Space Station (ISS) is discussed. During the project a system is specified and constructed whereupon it is tested...
Precision gravity studies at Cerro Prieto: a progress report
Energy Technology Data Exchange (ETDEWEB)
Grannell, R.B. (California State Univ., Long Beach); Kroll, R.C.; Wyman, R.M.; Aronstam, P.S.
1981-01-01
A third and fourth year of precision gravity data collection and reduction have now been completed at the Cerro Prieto geothermal field. In summary, 66 permanently monumented stations were occupied between December and April of 1979 to 1980 and 1980 to 1981 by a LaCoste and Romberg gravity meter (G300) at least twice, with a minimum of four replicate values obtained each time. Station 20 alternate, a stable base located on Cerro Prieto volcano, was used as the reference base for the third year and all the stations were tied to this base, using four to five hour loops. The field data were reduced to observed gravity values by (1) multiplication with the appropriate calibration factor; (2) removal of calculated tidal effects; (3) calculation of average values at each station, and (4) linear removal of accumulated instrumental drift which remained after carrying out the first three reductions. Following the reduction of values and calculation of gravity differences between individual stations and the base stations, standard deviations were calculated for the averaged occupation values (two to three per station). In addition, pooled variance calculations were carried out to estimate precision for the surveys as a whole.
Magnetic and Gravity Investigations At The Galapagos Rise
Dehghani, G. A.; Heinbockel, R.
In the course of the GARIMAG expedition (Galapagos Rise Magnetism) magnetic and gravity data were collected. The Galapagos Rise is located between 13 S, 95.5 W and 9.5 S, 94 W. It is believed to be an extinct spreading centre that was active between approximately 18.5 to 6.5 Ma. The aim of the gravity and magnetic investi- gations was to locate the exact position of the old spreading ridge. By interpreting the magnetic data, the age of the here created oceanic litho sphere as well as the direction of plate movement can be determined. The gravity data are used to resolve the density contrasts, the depths and the orientation of the underlying structures. The gravity meter was continuously recording data both in the research area and on the transit profiles from Guayquil in Ecuador as well as to Antofagasta in Chile. To gain as much infor mation as possible the magnetic profiles were oriented predominantly perpendicular to the pre sumed spreading axis. The magnetic data were collected using a gradiometer and, together with the gravity data, the magnetic values were recorded every ten seconds. The gravity and the mag netic data proved to be of very good quality. The long gravity profiles during transit enable the calibration of preexisting ship- and satellite-data. On the Galapagos Rise the free-air anomaly increases to -100 mGal. In the surround- ing, undis turbed area the free-air anomaly shows values of -210 mGal. Along the Galapagos Rise the Bou guer anomaly predominantly varies between -20 mGal and - 60 mGal indicating rocks that are less dense than usual. The magnetic anomalies show the pattern of typical oceanic lineations. Maps of all of these anomalies are presented and a first interpretation is given.
Gravity in minesmdashAn investigation of Newton's law
International Nuclear Information System (INIS)
Holding, S.C.; Stacey, F.D.; Tuck, G.J.
1986-01-01
The evidence that the value of the Newtonian gravitational constant G inferred from measurements of gravity g in mines and boreholes is of order 1% higher than the laboratory value is hardened with new and improved data from two mines in northwest Queensland. Surface-gravity surveys and more than 14 000 bore-core density values have been used to establish density structures for the mines, permitting full three-dimensional inversion to obtain G. Further constraint is imposed by requiring that the density structure give the same value of G for several vertical profiles of g, separated by hundreds of meters. The only residual doubt arises from the possibility of bias by an anomalous regional gravity gradient. Neither measurements of gravity gradient above ground level (in tall chimneys) nor surface surveys are yet adequate to remove this doubt, but the coincidence of conclusions derived from mine data obtained in different parts of the world makes such an anomaly appear an improbable explanation. If Newton's law is modified by adding a Yukawa term to the gravitational potential of a point mass m at distance r, V = -(G/sub infinity/m/r)(1+αe/sup -r/lambda/), then the mine data provide a mutual constraint on the values of α and lambda, although they cannot be determined independently. Our results give αroughly-equal-0.0075 if lambda or =10 4 m, with intermediate values of α between these ranges, but values greater than α = -0.010, lambda = 800 m appear to be disallowed by a comparison of satellite and land-surface estimates of gravity
Baccouche, H; Chakroun, A; Zoghlami, A; Mahjoub, S; Ben Romdhane, N
2018-02-01
The international normalized ratio (INR) is widely used to monitor patients on vitamin K antagonists. This study aimed to assess the agreement of INR values obtained with different thromboplastin/instrument combinations. International normalized ratio was determined on plasmas from 330 patients undergoing antivitamin K treatment (with acenocoumarol), using two calibration methods and four reagent/instrument combinations: Both Neoplastine CI and Neoplastine CI Plus on STA-R instrument from Diagnostica STAGO, Asnières, France; and both Thromborel S and Innovin on SYSMEX 2100i instrument from Siemens Health Care Diagnostics, Marbung, Germany. The agreement analysis was done using the Bland-Altman plot and the Cohen Kappa coefficient. The mean of the differences between the INR values and the limits of agreement were -0.07 [-0.51 to 0.38] for the Neoplastine CI plus and Neoplastine CI reagents, -0.08 [-1.18 to 1.03] for the Thromborel S and Innovin reagents when the INR was calculated, -0.1 [-1.15 to 0.95] for the Thromborel S and Innovin reagents when the INR was directly calibrated and -0.1 [-0.7 to 0.5] for the Neoplastine CI plus and Thromborel S. Cohen's kappa coefficients were 0.94, 0.76, 0.85 and 0.82, respectively. The agreement between the four reagent/instrument combinations was high enough to classify patients as inefficaciously or efficaciously anticoagulated. The data interpretation should always be related to the clinical purpose. © 2017 John Wiley & Sons Ltd.
Relativistic theory of gravity
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1985-01-01
This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes
Nonperturbative models of quark stars in f(R gravity
Directory of Open Access Journals (Sweden)
Artyom V. Astashenok
2015-03-01
Full Text Available Quark star models with realistic equation of state in nonperturbative f(R gravity are considered. The mass-radius relation for f(R=R+αR2 model is obtained. Considering scalar curvature R as an independent function, one can find out, for each value of central density, the unique value of central curvature for which one has solutions with the required asymptotic R→0 for r→∞. In other words, one needs a fine-tuning for R to achieve quark stars in f(R gravity. We consider also the analogue description in corresponding scalar-tensor gravity. The fine-tuning on R is equivalent to the fine-tuning on the scalar field ϕ in this description. For distant observers, the gravitational mass of the star increases with increasing α (α>0 but the interpretation of this fact depends on frame where we work. Considering directly f(R gravity, one can say that increasing of mass occurs by the “gravitational sphere” outside the star with some “effective mass”. On the other hand, in conformal scalar-tensor theory, we also have a dilaton sphere (or “disphere” outside the star but its contribution to gravitational mass for distant observer is negligible. We show that it is possible to discriminate modified theories of gravity from General Relativity due to the gravitational redshift of the thermal spectrum emerging from the surface of the star.
Steinmetz, J; Caces, E; Couderc, R; Beucler, I; Legrand, A; Henny, J
1997-01-01
The utilization of two WHO reference materials, liquid and lyophilized, permitted international standardization of apolipoprotein measurements. We report here the results of a collaborative study between Arcol, SFBC and SFRL in order to establish reference ranges for apo A1 and B on nine standardized systems. A population of 1027 men and women supposed healthy, 4 to 60 year old, have been selected in two Centers for Preventive Medicine. The serum samples were aliquoted frozen at -20 degrees C the day of sampling and analysed by the manufacturers with IFCC standardized calibrants. A specific quality control was performed using a frozen pool of sera. For apo A1, the centile 2.5 of the reference population varies from 1.04 to 1.16 g/l. The range values for the centile 97.5 varies from 1.87 to 2.24 g/l. For apoB, the centile 2.5 varies from 0.43 to 0.57 g/l, and the centile 97.5 from 1.30 to 1.39 g/l. Only one system has a problem of dispersion with an upper limit equal to 1.20 g/l. These results improve that international standardization allowed actually a good comparability of the results, especially for apoB.
Absolute gravity change in Taiwan: Present result of geodynamic process investigation
Directory of Open Access Journals (Sweden)
Ricky Kao
2017-01-01
Full Text Available Gravity values at 24 sites over 2004 - 2016 measured with absolute gravimeters are used to study geodynamic processes in Taiwan. We model rain-induced gravity effects and other temporal effects of non-geodynamic origins to obtain residual gravity, which cannot be fully explained by GPS-derived vertical displacements. We explain the gravity changes associated with deposited debris, earthquake, volcanism and Moho deepening. Gravity changes of 53.37 and 23.38 μGal near Sinwulyu and Laonong Rivers are caused by typhoon Morakot, leading to estimated volumes of 6.0 × 105 and 3.6 × 105 m3 in deposited debris. The observed co-seismic gravity change near the epicenter of the M 6.9 Pingtung earthquake (26 December 2006 is 3.12 ± 0.99 μGal, consistent with a dislocation-based gravity change at the μGal level, thereby supplying a gravity constraint on the modeled fault parameters. The AG record at the Tatun Volcano Group is the longest, but large temporal gravity effects here has led to a current gravity signal-to-noise ratio of less than one, which cannot convince a sinking magma chamber, but supply an error bound for gravity detections of long-term or transient magma movements. The gravity values at Ludao and Lanyu decline steadily at the rates of -2.20 and -0.50 μGal yr-1, consistent with the expected magma states of the two extinct volcanoes. The gravity rates at an uplifting site in central Taiwan and three subsiding sites in eastern Taiwan are negative, and are potentially caused by Moho deepening at a rate of -3.34 cm yr-1 and a combined Moho deepening and plate subduction at the rates of -0.18, -2.03, and -1.34 cm yr-1.
DEFF Research Database (Denmark)
Sørensen, Olav Jull
The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool......The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool...
Superconducting gravity gradiometer for sensitive gravity measurements. II. Experiment
International Nuclear Information System (INIS)
Chan, H.A.; Moody, M.V.; Paik, H.J.
1987-01-01
A sensitive superconducting gravity gradiometer has been constructed and tested. Coupling to gravity signals is obtained by having two superconducting proof masses modulate magnetic fields produced by persistent currents. The induced electrical currents are differenced by a passive superconducting circuit coupled to a superconducting quantum interference device. The experimental behavior of this device has been shown to follow the theoretical model closely in both signal transfer and noise characteristics. While its intrinsic noise level is shown to be 0.07 E Hz/sup -1/2/ (1 Eequivalent10/sup -9/ sec/sup -2/), the actual performance of the gravity gradiometer on a passive platform has been limited to 0.3--0.7 E Hz/sup -1/2/ due to its coupling to the environmental noise. The detailed structure of this excess noise is understood in terms of an analytical error model of the instrument. The calibration of the gradiometer has been obtained by two independent methods: by applying a linear acceleration and a gravity signal in two different operational modes of the instrument. This device has been successfully operated as a detector in a new null experiment for the gravitational inverse-square law. In this paper we report the design, fabrication, and detailed test results of the superconducting gravity gradiometer. We also present additional theoretical analyses which predict the specific dynamic behavior of the gradiometer and of the test
Gravity Variations Related to Earthquakes in the BTTZ Region in China
Zheng, J.; Liu, K.; Lu, H.; Liu, D.; Chen, Y.; Kuo, J. T.
2006-05-01
Temporal variations of gravity before and after earthquakes have been observed since 1960s, but a definitive conclusion has not been reached concerning the relationship between the gravity variation and earthquake occurrence. Since 1980, the first US/China joint scientific research project has been monitoring micro-gravity variations related to earthquakes in the Beijing-Tianjin-Tangshan-Zhangjiekou (BTTZ) region in China through the establishment of a network of spatially and temporally continuous and discrete gravity stations. With the data of both temporally continuous and discrete data of gravity variations accumulated and analyzed, a general picture of gravity variation associated with the seismogenesis and occurrence of earthquakes in the BTTZ region has been emerged clearly. Some of the major findings are 1. Gravity variations before and after earthquakes exist spatially and temporally; 2. Gravity variation data of temporally continuous measurements are essential to monitor the variations of gravity related to earthquakes unless temporally discrete gravity data are made in very close time intervals. 3. Concept of epicentroid and hypocentroid with respect to the maximum values of gravity variation is valid and has been experimentally verified; 4. The gravity variations related to the occurrence of earthquakes in the BTTZ region for the magnitudes of 4-5 earthquakes support the proposed "combined dilatation model", i.e., a dual-dilatancy of diffusion dilatancy (D/D) and the fault zone dilatancy (FZD) models; 5. Although the temporally discrete gravity variation data were collected in a larger time interval of about six months in the BTTZ region, these gravity variation data, in some cases, indicate that these variations are related to the occurrence of earthquakes; 7. Subsurface fluids do play a very important role in the gravity variations that have not been recognized and emphasized previously; 7. With the temporally continuous gravity variation data, the
Geometric constructions for repulsive gravity and quantization
Energy Technology Data Exchange (ETDEWEB)
Hohmann, Manuel
2010-11-15
-dimensional manifold through the topological identification of all quantum points with identical position expectation value. We speculate on the possible relevance of this geometry to quantum field theory and gravity. (orig.)