WorldWideScience

Sample records for international fungus spore

  1. Fifth international fungus spore conference

    Energy Technology Data Exchange (ETDEWEB)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  2. Maternal parentage influences spore production but not spore pigmentation in the anisogamous and hermaphroditic fungus Neurospora crassa

    DEFF Research Database (Denmark)

    Zimmerman, Kolea; Levitis, Daniel; Pringle, Anne

    2014-01-01

    . In this fungus, pigmented spores are viable and unpigmented spores are inviable. These results show that while both parents influence all these traits, maternal influence is strongest on both fertility and mortality traits until the spores are physiologically independent of the maternal cytoplasm.......In this study, we tested the hypothesis that maternal effects on offspring production and quality are greater than paternal effects in both offspring number (fertility) and offspring viability (mortality). We used the model filamentous fungus Neurospora crassa. This fungus is anisogamous......, and various ascospore characteristics. Mixed effects models of these data show that the female parent accounts for the majority of variation in perithecial production, number of spores produced, and spore germination. Surprisingly, both sexes equally influence the percentage of spores that are pigmented...

  3. Fifth international fungus spore conference. [Abstracts]: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  4. Plutonium uptake by a soil fungus and transport to its spores

    International Nuclear Information System (INIS)

    Beckert, W.F.; Au, F.H.F.

    1976-01-01

    Three concentrations of plutonium-238 nitrate, citrate and dioxide were each added to separate plates of malt agar buffered to pH 2.5 and 5.5 to determine the uptake of plutonium from these chemical forms and concentrations by a common soil fungus, Aspergillus niger. After inoculation and incubation, the aerial spores of Aspergillus niger were collected using a technique that excluded the possibility of cross-contamination of the spores by the culture media or by mycelial fragments. 238 Pu was taken up from all three chemical forms and transported to the aerial spores of Aspergillus niger at each concentration and at both pH levels. The specific activities of the spores grown at pH 5.5 were generally at least twice those of the spores grown at pH 2.5. The uptake of plutonium from the dioxide form was about one-third of that from the nitrate and citrate forms at both pH levels. The term 'transport factor' is used as a means to compare the transport of plutonium from the media to the fungal spores; the concentration-independent transport factor is defined as the specific activity of the spores divided by the specific activity of the dry culture medium. Though the transport factors were less than 1, which indicates discrimination against the transport of 238 Pu from the culture media to the spores, these findings suggest that this common soil fungus may be solubilizing soil-deposited plutonium and rendering it more biologically available for higher plants and animals. (author)

  5. Computer-assisted image processing to detect spores from the fungus Pandora neoaphidis.

    Science.gov (United States)

    Korsnes, Reinert; Westrum, Karin; Fløistad, Erling; Klingen, Ingeborg

    2016-01-01

    This contribution demonstrates an example of experimental automatic image analysis to detect spores prepared on microscope slides derived from trapping. The application is to monitor aerial spore counts of the entomopathogenic fungus Pandora neoaphidis which may serve as a biological control agent for aphids. Automatic detection of such spores can therefore play a role in plant protection. The present approach for such detection is a modification of traditional manual microscopy of prepared slides, where autonomous image recording precedes computerised image analysis. The purpose of the present image analysis is to support human visual inspection of imagery data - not to replace it. The workflow has three components:•Preparation of slides for microscopy.•Image recording.•Computerised image processing where the initial part is, as usual, segmentation depending on the actual data product. Then comes identification of blobs, calculation of principal axes of blobs, symmetry operations and projection on a three parameter egg shape space.

  6. Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R

    Science.gov (United States)

    Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna

    2015-01-01

    In the space experiment `Spores in artificial meteorites' (SPORES), spores of the fungus Trichoderma longibrachiatum were exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10-7-10-4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m-2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from -25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.

  7. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2010-01-01

    Full Text Available Abstract Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density, fungus (species and concentration and environmental effects (exposure duration and food availability influence larval mortality caused by fungus, was studied. Methods Laboratory bioassays were performed on the larval stages of Anopheles gambiae and Anopheles stephensi with spores of two fungus species, Metarhizium anisopliae and Beauveria bassiana. For various larval and fungal characteristics and environmental effects the time to death was determined and survival curves established. These curves were compared by Kaplan Meier and Cox regression analyses. Results Beauveria bassiana and Metarhizium anisopliae caused high mortality of An. gambiae and An. stephensi larvae. However, Beauveria bassiana was less effective (Hazard ratio (HR Metarhizium anisopliae. Anopheles stephensi and An. gambiae were equally susceptible to each fungus. Older larvae were less likely to die than young larvae (HR Conclusions This study shows that both fungus species have potential to kill mosquitoes in the larval stage, and that mortality rate depends on fungus species itself, larval stage targeted, larval density and amount of nutrients available to the larvae. Increasing the concentration of fungal spores or reducing the exposure time to spores did not show a proportional increase and decrease in mortality rate, respectively, because the spores clumped together. As a result spores did not provide uniform coverage over space and time. It is, therefore, necessary to develop a formulation that allows the spores to spread over the water surface. Apart from formulation appropriate delivery methods are also necessary to avoid exposing non-target organisms to fungus.

  8. Ultrastructure and properties of Paecilomyces lilacinus spores

    Energy Technology Data Exchange (ETDEWEB)

    Holland, R.J.; Gunasekera, T.S. [Macquarie Univ., Dept. of Biological Sciences, Sydney (Australia); Williams, K.L. [Proteome Systems Ltd., Sydney (Australia); Nevalainen, K.M.H. [Dept. of Biological Sciences, Macquarie University, Sydney (Australia)

    2002-10-01

    Strains of the filamentous soil fungus Paecilomyces lilacinus are currently being developed for use as biological control agents against root-knot, cyst, and other plant-parasitic nematodes. The inoculum applied in the field consists mainly of spores. This study was undertaken to examine the size, ultrastructure, and rodlet layers of P. lilacinus spores and the effect of the culture method on structural and functional spore properties. A rodlet layer was identified on aerial spores only. Other differences noted between aerial spores and those produced in submerged culture included the size and appearance of spores and thickness of spore coat layers when examined with transmission electron microscopy. The two spore types differed in UV tolerance, with aerial spores being less sensitive to environmentally relevant UV radiation. Also, viability after drying and storage was better with the aerial spores. Both spore types exhibited similar nematophagous ability. (author)

  9. Ultrastructure and properties of Paecilomyces lilacinus spores

    International Nuclear Information System (INIS)

    Holland, R.J.; Gunasekera, T.S.; Williams, K.L.; Nevalainen, K.M.H.

    2002-01-01

    Strains of the filamentous soil fungus Paecilomyces lilacinus are currently being developed for use as biological control agents against root-knot, cyst, and other plant-parasitic nematodes. The inoculum applied in the field consists mainly of spores. This study was undertaken to examine the size, ultrastructure, and rodlet layers of P. lilacinus spores and the effect of the culture method on structural and functional spore properties. A rodlet layer was identified on aerial spores only. Other differences noted between aerial spores and those produced in submerged culture included the size and appearance of spores and thickness of spore coat layers when examined with transmission electron microscopy. The two spore types differed in UV tolerance, with aerial spores being less sensitive to environmentally relevant UV radiation. Also, viability after drying and storage was better with the aerial spores. Both spore types exhibited similar nematophagous ability. (author)

  10. Sorption of 241Am by Aspergillus niger spore and hyphae

    International Nuclear Information System (INIS)

    Yuanyou Yang; Ning Liu; Jiali Liao; Jiannan Jin; Shunzhong Luo; Taiming Zhang; Pengji Zhao

    2004-01-01

    Biosorption of 241 Am by a fungus A. niger, including the spore and hyphae, was investigated. The preliminary results showed that the adsorption of 241 Am by the microorganism was efficient. More than 96% of the total 241 Am could be removed from 241 Am solutions of 5.6-111 MBq/l (C 0 ) by spore and hyphae of A. niger, with adsorbed 241 Am metal (Q) of 7.2-142.4 MBq/g biomass, and 5.2-106.5 MBq/g, respectively. The biosorption equilibrium was achieved within 1 hour and the optimum pH range was pH 1-3. No obvious effects on 241 Am adsorption by the fungus were observed at 10-45 deg C, or in solutions containing Au 3+ or Ag + , even 2000 times above the 241 Am concentration. The 241 Am biosorption by the fungus obeys the Freundlich adsorption equation. There was no significant difference between the adsorption behavior of A. niger spore and hyphae. (author)

  11. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Science.gov (United States)

    2011-01-01

    Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar

  12. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Directory of Open Access Journals (Sweden)

    Wynhoven Brian

    2011-03-01

    Full Text Available Abstract Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt, we have generated Expressed Sequence Tags (ESTs by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores and asexual (germinated urediniospores stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum, 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs. Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt and stripe rust, P. striiformis f. sp

  13. Instrumental neutron activation analysis of wheat bunt spores

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y G; Schmitt, R A [Oregon State Univ., Corvallis (USA). Dept. of Chemistry; Oregon State Univ., Corvallis (USA). Radiation Center); Trione, E J [Oregon State Univ., Corvallis (USA). Dept. of Botany; Laul, J C [Battelle Pacific Northwest Labs., Richland, WA (USA)

    1982-01-01

    The concentrations of seventeen elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Zn, Br, Rb, La, Sm) in two species of fungus which cause wheat bunt disease, Tilletia caries (DC.) Tul. and Tilletia controversa Kuehn, were determined by instrumental neutron activation analysis. A standard sequential INAA procedure was used. Differences in the K and Cl concentrations between these two species of spores are large and therefore can be used as a criterion of distinguishing between the two species of fungus.

  14. UV-B-irradiation effect on growth reactions of phytopathogenic fungus fusarium solani

    International Nuclear Information System (INIS)

    Gushcha, M.Yi.; Dyachenko, A.Yi.; Dmitryijev, O.P.

    2002-01-01

    The UV-B irradiation effect on spore germination and hyphae growth of phythopathogenic fungus Fusarium solani was studied. Spores irradiation by small doses of 0,1 - 1,0 kJ/m 2 results in growth stimulation of primary hyphae. Adaptive effect of UV-B small doses for fungi was shown. Preliminary irradiation in doses of 0,1 - 0,5 kJ/m 2 increased spore radioresistance and diminished the effect of the next damaging dose

  15. Using the fungus Entomophthora muscae (chon Fresenius to eliminate some larval roles of Musca domestica

    Directory of Open Access Journals (Sweden)

    Walaa Yas Lahmood

    2017-07-01

    Full Text Available Studied effect serial concentrations from spores filtrate of fungus Entomophthora muscae on some larval roles of musca domestica in laboratory. Results were made clear that the insect roles are sensitive to fungus, and treated the food larva of musca domestica and sprinkle it by concentration 2.8×106 , 2.8×107, 2.8×108 (spore/ml has led to get rates of destruction of cumulative faculty certified on the concentration and time its magnitude 16.60 , 47.67, 53.30 % respectively , also recorded some phenotypic distortion infected dead larva represent by contraction and blackening body. The treatment of pupael by sprinkling the previous fungus concentration recorded rate of destruction of accumulative faculty its magnitude 13.33, 26.67, 33.33% respectively, also the rates emergence of adults ranged between 66.67 – 86.67 % in comparison with rates of emergence of adults in control treatment 96.67% The results are made clear that adults treatment by sprinkle with last concentration from fungus spore filtrate recorded rates of distraction its magnitude 46.61, 56.67, 70% respectively after one week from treatment .

  16. Efficacy of Entomopathogenic Fungus Beauveria Bassiana and Gamma Irradiation Against the Greater Date Moth, Arenipses Sabella

    International Nuclear Information System (INIS)

    Mikhaiel, A.A.; Abul Fadl, H.A.A.

    2011-01-01

    The fungus Beauveria bassiana (Bals.) was isolated locally from dead larvae of the greater date moth, Arenipses sabella (Hampson) (Lepidoptera: Pyralidae). The effect of three exposure methods and two environmental factors (temperature and relative humidity) on pathogenicity of the fungus with different concentrations to A. sabella second instar larvae were examined. The study demonstrated that the entomopathogenic fungus was most efficient in the control of second instar larvae at 25 degree C and 100% humidity and the percent of mortality was increased when increasing the concentration of fungus. The mode of exposure of fungus to larvae directly sprayed, larvae exposed to the treated dates or larvae both sprayed and exposed to the treated dates showed 56.66, 26.66 and 75% mortality, respectively, at concentration 1x10 10 spores/ml and three days post-treatment. The F1 larvae resulting from irradiated male pupae with 150 Gy were more susceptible to pathogenic fungus at low concentration ((1x10 8 spores/ml) than non-irradiated ones. The scanning electron microscope was used to delineate the morphological stages of fungus to the germinated conidia and the hyphae penetrating the larva cuticle.

  17. Dothistroma septosporum: spore production and weather conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, M.; Drapela, K.; Kankovsky, L.

    2012-11-01

    Dartmouth's septosporum, the causal agent of Dothistroma needle blight is a widespread fungus which infects more than 80 species of coniferous trees through the entire world. Spreading of the infection is strongly affected by climatic factors of each locality where it is recorded. We attempt to describe the concrete limiting climatic factors necessary for the releasing of conidia of D. septosporum and to find out the timing of its spore production within the year. For this purpose we used an automatic volumetric spore trap and an automatic meteorological station. We found that a minimum daily average temperature of 10 degree centigrade was necessary for any spore production, as well as a long period of high air humidity. The values obtained in the present study were a little bit higher than those previously published, which may arise questions about a possible changing trend of the behaviour in the development of the Dothistroma needle blight causal agent. We used autoregressive integrated moving average (ARIMA) models to predict the spore counts on the base of previous values of spore counts and dew point. For a locality from Hackerovka, the best ARIMA model was 1,0,0; and for a locality from Lanzhot, the best was 3,1,0. (Author) 19 refs.

  18. A Generic Method for Fungal Spore Detection: The use of a monoclonal antibody and surface plasmon resonance

    DEFF Research Database (Denmark)

    Skottrup, Peter; Hearty, Stephen; Frøkiær, Hanne

    2005-01-01

    This study describes a biosensing principle for detection of fungal spores using surface plasmon resonance (SPR). The approach involves the use of a monoclonal antibody (mab) and a SPR sensor for label-free detection of the model organism Puccinia striiformis f.sp. tritici (Pst) a biotrophic fungus...... causing wheat yellow rust. We have developed mabs towards intact whole spores and used a subtractive inhibition format for detection of spores in solution. The antibody was incubated with different spore concentrations and the remaining free antibody was quantified using a BIAcore® 3000 sensor. Decreasing...

  19. Pathogenicity of entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) to Ixodes scapularis (Acari: Ixodidae)

    Science.gov (United States)

    Zhioua, E.; Browning, M.; Johnson, P.W.; Ginsberg, H.S.; LeBrun, R.A.

    1997-01-01

    The entomopathogenic fungus Metarhizium anisopliae is highly pathogenic to the black-legged tick, Ixodes scapularis. Spore concentrations of 108/ml for engorged larvae and 107/ml for engorged females resulted in 100% tick mortality, 2 wk post-infection. The LC50 value for engorged larvae (concentration to kill 50% of ticks) was 107 spores/ml. Metarhizium anisopliae shows considerable potential as a microbial control agent for the management of Ixodes scapularis.

  20. Label-Free Detection of Soybean Rust Spores using Photonic Crystal Biosensors

    Science.gov (United States)

    Soybean rust, caused by the fungus Phakopsora pachyrhizi, is one of the most devastating foliar diseases affecting soybeans grown worldwide. The disease was reported for the first time in the United States in 2004. Early spore detection, prior to the appearance of visible symptoms, is critical to ef...

  1. Interactions between Entomopathogenic Fungus, Metarhizium Anisopliae and Sublethal Doses of Spinosad for Control of House Fly, Musca Domestica

    Directory of Open Access Journals (Sweden)

    M Sharififard

    2011-06-01

    Full Text Available Background: Metarhizium anisopliae strain IRAN 437C is one of the most virulent fungal isolates against house fly, Musca domestica. The objective of this study was to determine the interaction of this isolate with sublethal doses of spino­sad against housefly.Methods: In adult bioassay, conidia of entomopathogenic fungus were applied as inoculated bait at 105 and 107 spore per gram and spinosad at 0.5, 1 and 1.5 µg (A.I. per gram bait. In larval bioassay, conidia were applied as combina­tion of spore with larval bedding at 106 and 108 spore per gram and spinosad at sublethals of 0.002, 0.004 and 0.006 µg (AI per gram medium. Results: Adult mortality was 48% and 72% for fungus alone but ranged from 66–87% and 89–95% in combination treat­ments of 105 and 107 spore/g with sublethal doses of spinosad respectively. The interaction between 105 spore/g with sublethals exhibited synergistic effect, but in combination of 107 spore in spite of higher mortality, the interac­tion was additive. There was significant difference in LT50 among various treatments. LT50 values in all combination treat­ments were smaller than LT50 values in alone ones. Larval mortality was 36% and 69% for fungus alone but ranged from 58%–78% and 81%–100% in combination treatments of 106 and 108 spore/g medium with sublethals of spino­sad respectively. The interaction was synergistic in all combination treatments of larvae.Conclusion: The interaction between M. anispliae and spinosad indicated a synergetic effect that increased the house fly mortality as well as reduced the lethal time.

  2. Parapiptadenia rigida MYCORRHIZATION WITH SPORES OF Scleroderma citrinum

    Directory of Open Access Journals (Sweden)

    Gerusa Pauli Kist Steffen

    2017-06-01

    Full Text Available Ectomycorrhizal fungal inoculation in forestry seedlings aids plant establishment and growth in the field. The objectives of this study were: to determine the mycorrhizal capacity of the ectomycorrhizal fungus Scleroderma citrinum in Parapiptadenia rigida (red angico seedlings and to evaluate the viability of a mycorrhizal inoculation technique for forest seedlings involving the use of spores. Mature spores were inoculated in the substrate (75% soil and 25% carbonized rice husk, totaling 1.5 grams of fungal spores per liter of substrate. P. rigida seeds were sown in substrates inoculated or not inoculated with fungal spores in presence or absence of Pinus echinata and Eucalyptus citriodora essential oil: not inoculated (T1, inoculated (T2, inoculated more pine essential oil (T3, inoculated more eucalyptus essential oil (T4. Seedlings of Pinus elliottii were used for a positive control of mycorrhizal inoculation (T5 and not inoculated (T6 with fungal spores. At 90 days after sowing, the base stem diameter, height, fresh and dry weight of shoots and roots, percentage of root colonization and Dickson Index were determined. The presence of fungal structures in P. rigida and P. elliottii roots inoculated with S. citrinum spores was observed, demonstrating the occurrence of an ectomycorrhizal association. The application of pine and eucalyptus essential oils in the substrate increased the percentage of ectomycorrhizal colonization in P. rigida seedlings. The addition of S. citrinum mature spores in the substrate used for seedling production is a viable practice for ectomycorrhizal inoculation and it can be used in forest nurseries in controlled mycorrhization programs.

  3. 1-Octanol, a self-inhibitor of spore germination in Penicillium camemberti.

    Science.gov (United States)

    Gillot, Guillaume; Decourcelle, Nicolas; Dauer, Gaëlle; Barbier, Georges; Coton, Emmanuel; Delmail, David; Mounier, Jérôme

    2016-08-01

    Penicillium camemberti is a technologically relevant fungus used to manufacture mold-ripened cheeses. This fungal species produces many volatile organic compounds (VOCs) including ammonia, methyl-ketones, alcohols and esters. Although it is now well known that VOCs can act as signaling molecules, nothing is known about their involvement in P. camemberti lifecycle. In this study, spore germination was shown to be self-regulated by quorum sensing in P. camemberti. This phenomenon, also called "crowding effect", is population-dependent (i.e. observed at high population densities). After determining the volatile nature of the compounds involved in this process, 1-octanol was identified as the main compound produced at high-spore density using GC-MS. Its inhibitory effect was confirmed in vitro and 3 mM 1-octanol totally inhibited spore germination while 100 μM only transiently inhibited spore germination. This is the first time that self-inhibition of spore germination is demonstrated in P. camemberti. The obtained results provide interesting perspectives for better control of mold-ripened cheese processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Identification of a taxol-producing endophytic fungus EFY-36

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Morphological and molecular methods were used to identify the statues of an isolate, EFY-36, a taxol- ... of the spores. The analysis of endophytic fungus. 18S ribosome RNA sequence used PCR cloning technology. DNA was extracted by the CTAB method. ... of the fungal mycelium (magnification: 400 ×).

  5. Influence of industrial smoke on the germination spores of certain lichens

    Energy Technology Data Exchange (ETDEWEB)

    Kofler, L; Jacquard, F; Martin, J F

    1968-01-01

    Dust particles produced by calcium carbide and iron-alloy factories strongly inhibit the germination of the spores of Physcia pulverulenia. The spores of Xanthoria parietina and above ali of Lecanora hageni are much more resistant. This agrees with the distribution of these Lichens around the factories. The three species show the same scale of resistance with respect to town dust. The basicity of the particles plays certainly a part in the inhibition of spores, but this can not be the only active factor. Up to now attention has been drawn upon the damages caused by gaseous pollutants to Lichen gonidia. The present work shows that solid particles can sometimes be responsible for Lichen scarcity and that the Lichen fungus is also sensitive to certain pollutants. 9 references, 1 figure, 5 tables.

  6. High viscosity and anisotropy characterize the cytoplasm of fungal dormant stress resistant spores

    NARCIS (Netherlands)

    Dijksterhuis, J.; Nijsse, J.; Hoekstra, F.A.; Golovina, E.A.

    2007-01-01

    Ascospores of the fungus Talaromyces macrosporus are dormant and extremely stress resistant, whereas fungal conidia¿the main airborne vehicles of distribution¿are not. Here, physical parameters of the cytoplasm of these types of spores were compared. Cytoplasmic viscosity and level of anisotropy as

  7. Aspergillosis in the common sea fan Gorgonia ventalina: isolation of waterborne hyphae and spores.

    Science.gov (United States)

    Troeger, Victoria J; Sammarco, Paul W; Caruso, John H

    2014-07-03

    The octocoral disease aspergillosis is caused by the terrestrial fungus Aspergillus sydowii. The possibility of secondary (horizontal) transmission of aspergillosis among common sea fans Gorgonia ventalina would require waterborne transmission of hyphae and/or spores. A laboratory filtration experiment confirmed that fungal hyphae and spores were shed into the water by infected fans. This suggests that secondary infection might be possible in this species. It remains to be determined whether healthy fans actually develop aspergillosis after contact with hyphae-laden water.

  8. Malaria mosquitoes attracted by fatal fungus.

    Directory of Open Access Journals (Sweden)

    Justin George

    Full Text Available Insect-killing fungi such as Beauveria bassiana are being evaluated as possible active ingredients for use in novel biopesticides against mosquito vectors that transmit malaria. Fungal pathogens infect through contact and so applications of spores to surfaces such as walls, nets, or other resting sites provide possible routes to infect mosquitoes in and around domestic dwellings. However, some insects can detect and actively avoid fungal spores to reduce infection risk. If true for mosquitoes, such behavior could render the biopesticide approach ineffective. Here we find that the spores of B. bassiana are highly attractive to females of Anopheles stephensi, a major anopheline mosquito vector of human malaria in Asia. We further find that An. stephensi females are preferentially attracted to dead and dying caterpillars infected with B. bassiana, landing on them and subsequently becoming infected with the fungus. Females are also preferentially attracted to cloth sprayed with oil-formulated B. bassiana spores, with 95% of the attracted females becoming infected after a one-minute visit on the cloth. This is the first report of an insect being attracted to a lethal fungal pathogen. The exact mechanisms involved in this behavior remain unclear. Nonetheless, our results indicate that biopesticidal formulations comprising B. bassiana spores will be conducive to attraction and on-source visitation by malaria vectors.

  9. Spores of the mycorrhizal fungus Glomus mosseae host yeasts that solubilize phosphate and accumulate polyphosphates.

    Science.gov (United States)

    Mirabal Alonso, Loreli; Kleiner, Diethelm; Ortega, Eduardo

    2008-04-01

    The present paper reports the presence of bacteria and yeasts tightly associated with spores of an isolate of Glomus mosseae. Healthy spores were surface disinfected by combining chloramine-T 5%, Tween-40, and cephalexin 2.5 g L(-1) (CTCf). Macerates of these spores were incubated on agar media, microorganisms were isolated, and two yeasts were characterized (EndoGm1, EndoGm11). Both yeasts were able to solubilize low-soluble P sources (Ca and Fe phosphates) and accumulate polyphosphates (polyPs). Sequence analysis of 18S ribosomal deoxyribonucleic acid showed that the yeasts belong to the genera Rhodotorula or Rhodosporidium (EndoGm1) and Cryptococcus (EndoGm11). Results from inoculation experiments showed an effect of the spore-associated yeasts on the root growth of rice, suggesting potential tripartite interactions with mycorrhizal fungi and plants.

  10. Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens.

    Science.gov (United States)

    Little, Ainslie E F; Murakami, Takahiro; Mueller, Ulrich G; Currie, Cameron R

    2006-03-22

    Parasites influence host biology and population structure, and thus shape the evolution of their hosts. Parasites often accelerate the evolution of host defences, including direct defences such as evasion and sanitation and indirect defences such as the management of beneficial microbes that aid in the suppression or removal of pathogens. Fungus-growing ants are doubly burdened by parasites, needing to protect their crops as well as themselves from infection. We show that parasite removal from fungus gardens is more complex than previously realized. In response to infection of their fungal gardens by a specialized virulent parasite, ants gather and compress parasitic spores and hyphae in their infrabuccal pockets, then deposit the resulting pellet in piles near their gardens. We reveal that the ants' infrabuccal pocket functions as a specialized sterilization device, killing spores of the garden parasite Escovopsis. This is apparently achieved through a symbiotic association with actinomycetous bacteria in the infrabuccal pocket that produce antibiotics which inhibit Escovopsis. The use of the infrabuccal pocket as a receptacle to sequester Escovopsis, and as a location for antibiotic administration by the ants' bacterial mutualist, illustrates how the combination of behaviour and microbial symbionts can be a successful defence strategy for hosts.

  11. Pandora formicae, a specialist ant pathogenic fungus: New insights into biology and taxonomy.

    Science.gov (United States)

    Małagocka, Joanna; Jensen, Annette Bruun; Eilenberg, Jørgen

    2017-02-01

    Among fungi from the order Entomophthorales (Entomophthoromycota), there are many specialized, obligatory insect-killing pathogens. Pandora formicae (Humber & Bałazy) Humber is a rare example of an entomophthoralean fungus adapted to exclusively infect social insects: wood ants from the genus Formica. There is limited information available on P. formicae; many important aspects of this host-pathogen system remain hitherto unknown, and the taxonomical status of the fungus is unclear. Our study fills out some main gaps in the life history of P. formicae, such as seasonal prevalence and overwintering strategy. Field studies of infection prevalence show a disease peak in late summer and early autumn. Typical thick-walled entomophthoralean resting spores of P. formicae are documented and described for the first time. The proportion of cadavers with resting spores increased from late summer throughout autumn, suggesting that these spores are the main overwintering fungal structures. In addition, the phylogenetic status of Pandora formicae is outlined. Finally, we review the available taxonomical literature and conclude that the name P. formicae should be used rather than the name P. myrmecophaga for ant-infecting fungi displaying described morphological features. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Resting spore formation of aphid-pathogenic fungus Pandora nouryi depends on the concentration of infective inoculum.

    Science.gov (United States)

    Huang, Zhi-Hong; Feng, Ming-Guang

    2008-07-01

    Resting spore formation of some aphid-pathogenic Entomophthorales is important for the seasonal pattern of their prevalence and survival but this process is poorly understood. To explore the possible mechanism involved in the process, Pandora nouryi (obligate aphid pathogen) interacted with green peach aphid Myzus persicae on cabbage leaves under favourable conditions. Host nymphs showered with primary conidia of an isolate (LC(50): 0.9-6.7 conidia mm(-2) 4-7 days post shower) from air captures in the low-latitude plateau of China produced resting spores (azygospores), primary conidia or both spore types. Surprisingly, the proportion of mycosed cadavers forming resting spores (P(CFRS)) increased sharply within the concentrations (C) of 28-240 conidia mm(-2), retained high levels at 240-1760, but was zero or extremely low at 0.3-16. The P(CFRS)-C relationship fit well the logistic equation P(CFRS) = 0.6774/[1 + exp(3.1229-0.0270C)] (r(2) = 0.975). This clarified for the first time the dependence of in vivo resting spore formation of P. nouryi upon the concentration of infective inoculum. A hypothesis is thus proposed that some sort of biochemical signals may exist in the host-pathogen interaction so that the fungal pathogen perceives the signals for prompt response to forthcoming host-density changes by either producing conidia for infecting available hosts or forming resting spores for surviving host absence in situ.

  13. Using Spores for Fusarium spp. Classification by MALDI-Based Intact Cell/Spore Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wolfgang Winkler

    2012-01-01

    Full Text Available Fusarium is a widespread genus of filamentous fungi and a member of the soil microbial community. Certain subspecies are health threatening because of their mycotoxin production that affects the human and animal food chain. Thus, for early and effective pest control, species identification is of particular interest; however, differentiation on the subspecies level is challenging and time-consuming for this fungus. In the present study, we show the possibilities of intact cell mass spectrometry for spore analysis of 22 different Fusarium strains belonging to six Fusarium subspecies. We found that species differentiation is possible if mass spectrometric analyses are performed under well-defined conditions with fixed parameters. A critical point for analysis is a proper sample preparation of spores, which increases the quality of mass spectra with respect to signal intensity and m/z value variations. It was concluded that data acquistion has to be performed automatically; otherwise, user-specific variations are introduced generating data which cannot fit the existing datasets. Data that show clearly that matrix-assisted laser desorption ionization-based intact cell/intact spore mass spectrometry (IC/ISMS can be applied to differentiate closely related Fusarium spp. are presented. Results show a potential to build a database on Fusarium species for accurate species identification, for fast response in the case of infections in the cornfield. We furthermore demonstrate the high precision of our approach in classification of intact Fusarium species according to the location of their collection.

  14. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus.

    Directory of Open Access Journals (Sweden)

    Mingwei Huang

    2015-08-01

    Full Text Available Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote.

  15. Identification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Wright, S F; Morton, J B; Sworobuk, J E

    1987-09-01

    Spore morphology is currently used to identify species of vesicular-arbuscular mycorrhizal fungi. We report the first use of a highly specific immunological method for identification of a vesicular-arbuscular mycorrhizal fungus. Two monoclonal antibodies were produced against Glomus occultum. Monoclonal antibodies reacted strongly with both spores and hyphae in an indirect enzyme-linked immunosorbent assay. All other mycorrhizal (29 species) and nonmycorrhizal (5 species) fungi tested were nonreactive with the monoclonal antibodies. A single spore of G. occultum was detectable in the presence of high numbers of spores of other vesicular-arbuscular mycorrhizal fungi. Variation in the reaction of G. occultum isolates from West Virginia, Florida, and Colombia suggests that monoclonal antibodies may differentiate strains.

  16. Identification of a Vesicular-Arbuscular Mycorrhizal Fungus by Using Monoclonal Antibodies in an Enzyme-Linked Immunosorbent Assay †

    OpenAIRE

    Wright, Sara F.; Morton, Joseph B.; Sworobuk, Janis E.

    1987-01-01

    Spore morphology is currently used to identify species of vesicular-arbuscular mycorrhizal fungi. We report the first use of a highly specific immunological method for identification of a vesicular-arbuscular mycorrhizal fungus. Two monoclonal antibodies were produced against Glomus occultum. Monoclonal antibodies reacted strongly with both spores and hyphae in an indirect enzyme-linked immunosorbent assay. All other mycorrhizal (29 species) and nonmycorrhizal (5 species) fungi tested were no...

  17. Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission

    DEFF Research Database (Denmark)

    Malagocka, Joanna; Grell, Morten Nedergaard; Lange, Lene

    2015-01-01

    Pandora formicae is an obligate entomopathogenic fungus from the phylum Entomophthoromycota, known to infect only ants from the genus Formica. In the final stages of infection, the fungus induces the so-called summit disease syndrome, manipulating the host to climb up vegetation prior to death......, but the fungus had not grown out through the cuticle and (2) when the fungus was growing out from host cadaver and producing spores. These phases mark the switch from within-host growth to reproduction on the host surface, after fungus outgrowth through host integument. In this first de novo transcriptome...... of an entomophthoralean fungus, we detected expression of many pathogenicity-related genes, including secreted hydrolytic enzymes and genes related to morphological reorganization and nutrition uptake. Differences in expression of genes in these two infection phases were compared and showed a switch in enzyme expression...

  18. The components of rice and watermelon root exudates and their effects on pathogenic fungus and watermelon defense.

    Science.gov (United States)

    Ren, Lixuan; Huo, Hongwei; Zhang, Fang; Hao, Wenya; Xiao, Liang; Dong, Caixia; Xu, Guohua

    2016-06-02

    Watermelon (Citrullus lanatus) is susceptible to wilt disease caused by the fungus Fusarium oxysporum f. sp niveum (FON). Intercropping management of watermelon/aerobic rice (Oryza sativa) alleviates watermelon wilt disease, because some unidentified component(s) in rice root exudates suppress FON sporulation and spore germination. Here, we show that the phenolic acid p-coumaric acid is present in rice root exudates only, and it inhibits FON spore germination and sporulation. We found that exogenously applied p-coumaric acid up-regulated the expression of ClPR3 in roots, as well as increased chitinase activity in leaves. Furthermore, exogenously applied p-coumaric acid increased β-1,3-glucanase activity in watermelon roots. By contrast, we found that ferulic acid was secreted by watermelon roots, but not by rice roots, and that it stimulated spore germination and sporulation of FON. Exogenous application of ferulic acid down-regulated ClPR3 expression and inhibited chitinase activity in watermelon leaves. Salicylic acid was detected in both watermelon and rice root exudates, which stimulated FON spore germination at low concentrations and suppressed spore germination at high concentrations. Exogenously applied salicylic acid did not alter ClPR3 expression, but did increase chitinase and β-1,3-glucanase activities in watermelon leaves. Together, our results show that the root exudates of phenolic acids were different between rice and watermelon, which lead to their special ecological roles on pathogenic fungus and watermelon defense.

  19. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi.

    Science.gov (United States)

    Avery, Pasco B; Bojorque, Verónica; Gámez, Cecilia; Duncan, Rita E; Carrillo, Daniel; Cave, Ronald D

    2018-04-25

    Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF) are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus , and potential alternative vectors, Xylosandrus crassiusculus , Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae). Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus , X. volvulus and X. bispinatus. The specific objectives were to determine: (1) the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF ( Isaria fumosorosea , Metarhizium brunneum and Beauveria bassiana ); and (2) the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 10⁶ viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana , compared to the other fungal treatments. For X. volvulus , the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana . After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests) indicated an

  20. Trichoderma asperelloides Spores Downregulate dectin1/2 and TLR2 Receptors of Mice Macrophages and Decrease Candida parapsilosis Phagocytosis Independent of the M1/M2 Polarization

    Directory of Open Access Journals (Sweden)

    Andréa G. dos Santos

    2017-09-01

    Full Text Available The intensive use of pesticides to control pests in agriculture has promoted several issues relating to environment. As chemical pesticides remain controversial, biocontrol agents originating from fungi could be an alternative. Among them, we highlight biocontrol agents derived from the fungi genus Trichoderma, which have been documented in limiting the growth of other phytopathogenic fungus in the roots and leaves of several plant species. An important member of this genus is Trichoderma asperelloides, whose biocontrol agents have been used to promote plant growth while also treating soil diseases caused by microorganisms in both greenhouses and outdoor crops. To evaluate the safety of fungal biological agents for human health, tests to detect potentially adverse effects, such as allergenicity, toxicity, infectivity and pathogenicity, are crucial. In addition, identifying possible immunomodulating properties of fungal biocontrol agents merits further investigation. Thus, the aim of this study was to evaluate the effects of T. asperelloides spores in the internalization of Candida parapsilosis yeast by mice phagocytes, in order to elucidate the cellular and molecular mechanism of this interaction, as a model to understand possible in vivo effects of this fungus. For this, mice were exposed to a fungal spore suspension through-intraperitoneal injection, euthanized and cells from the peripheral blood and peritoneal cavity were collected for functional, quantitative and phenotypic analysis, throughout analysis of membrane receptors gene expression, phagocytosis ability and cells immunophenotyping M1 (CCR7 and CD86 and M2 (CCR2 and CD206. Our analyses showed that phagocytes exposed to fungal spores had reduced phagocytic capacity, as well as a decrease in the quantity of neutrophils and monocytes in the peripheral blood and peritoneal cavity. Moreover, macrophages exposed to T. asperelloides spores did not display the phenotypic profile M1/M2, and

  1. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Pasco B. Avery

    2018-04-01

    Full Text Available Laurel wilt is a disease threatening the avocado industry in Florida. The causative agent of the disease is a fungus vectored by ambrosia beetles that bore into the trees. Until recently, management strategies for the vectors of the laurel wilt fungus relied solely on chemical control and sanitation practices. Beneficial entomopathogenic fungi (EPF are the most common and prevalent natural enemies of pathogen vectors. Laboratory experiments demonstrated that commercial strains of EPF can increase the mortality of the primary vector, Xyleborus glabratus, and potential alternative vectors, Xylosandrus crassiusculus, Xyleborus volvulus and Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae. Our study provides baseline data for three formulated commercially-available entomopathogenic fungi used as potential biocontrol agents against X. crassiusculus, X. volvulus and X. bispinatus. The specific objectives were to determine: (1 the mean number of viable spores acquired per beetle species adult after being exposed to formulated fungal products containing different strains of EPF (Isaria fumosorosea, Metarhizium brunneum and Beauveria bassiana; and (2 the median and mean survival times using paper disk bioassays. Prior to being used in experiments, all fungal suspensions were adjusted to 2.4 × 106 viable spores/mL. The number of spores acquired by X. crassiusculus was significantly higher after exposure to B. bassiana, compared to the other fungal treatments. For X. volvulus, the numbers of spores acquired per beetle were significantly different amongst the different fungal treatments, and the sequence of spore acquisition rates on X. volvulus from highest to lowest was I. fumosorosea > M. brunneum > B. bassiana. After X. bispinatus beetles were exposed to the different suspensions, the rates of acquisition of spores per beetle amongst the different fungal treatments were similar. Survival estimates (data pooled across two tests indicated an

  2. A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays.

    Science.gov (United States)

    Farenhorst, Marit; Knols, Bart G J

    2010-01-20

    Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting surfaces is more realistic and representative of field settings. For this type of exposure, it is essential to apply specific amounts of fungal spores homogeneously over a surface for testing the effects of fungal dose and exposure time. Contemporary methods such as spraying or brushing spore suspensions onto substrates do not produce the uniformity and consistency that standardized laboratory assays require. Two novel fungus application methods using equipment developed in the paint industry are presented and compared. Wired, stainless steel K-bars were tested and optimized for coating fungal spore suspensions onto paper substrates. Different solvents and substrates were evaluated. Two types of coating techniques were compared, i.e. manual and automated coating. A standardized bioassay set-up was designed for testing coated spores against malaria mosquitoes. K-bar coating provided consistent applications of spore layers onto paper substrates. Viscous Ondina oil formulations were not suitable and significantly reduced spore infectivity. Evaporative Shellsol T solvent dried quickly and resulted in high spore infectivity to mosquitoes. Smooth proofing papers were the most effective substrate and showed higher infectivity than cardboard substrates. Manually and mechanically applied spore coatings showed similar and reproducible effects on mosquito survival. The standardized mosquito exposure bioassay was effective and consistent in measuring effects of fungal dose and exposure time. K-bar coating is a simple and consistent method for applying fungal spore suspensions onto paper substrates and can produce coating layers with accurate effective spore concentrations. The mosquito bioassay

  3. A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2010-01-01

    Full Text Available Abstract Background Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting surfaces is more realistic and representative of field settings. For this type of exposure, it is essential to apply specific amounts of fungal spores homogeneously over a surface for testing the effects of fungal dose and exposure time. Contemporary methods such as spraying or brushing spore suspensions onto substrates do not produce the uniformity and consistency that standardized laboratory assays require. Two novel fungus application methods using equipment developed in the paint industry are presented and compared. Methods Wired, stainless steel K-bars were tested and optimized for coating fungal spore suspensions onto paper substrates. Different solvents and substrates were evaluated. Two types of coating techniques were compared, i.e. manual and automated coating. A standardized bioassay set-up was designed for testing coated spores against malaria mosquitoes. Results K-bar coating provided consistent applications of spore layers onto paper substrates. Viscous Ondina oil formulations were not suitable and significantly reduced spore infectivity. Evaporative Shellsol T solvent dried quickly and resulted in high spore infectivity to mosquitoes. Smooth proofing papers were the most effective substrate and showed higher infectivity than cardboard substrates. Manually and mechanically applied spore coatings showed similar and reproducible effects on mosquito survival. The standardized mosquito exposure bioassay was effective and consistent in measuring effects of fungal dose and exposure time. Conclusions K-bar coating is a simple and consistent method for applying fungal spore suspensions onto paper substrates and can produce coating layers

  4. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  5. Hyphal Growth from Spores of the Mycorrhizal Fungus Glomus Caledonius: Effect of Amino Acids

    DEFF Research Database (Denmark)

    Hepper, C.M.; Jakobsen, Iver

    1983-01-01

    Hyphal growth from spores of Glomus caledonius (Nicol. and Gerd.) Trappe and Gerdemann was stimulated by cystine, glycine and lysine at optimum concentrations of 4.6, 556 and 825 mg l−1 respectively. When all three amino acids were supplied together in water agar, five times more growth...

  6. Spore Coat Architecture of Clostridium novyi-NT spores

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; McCafferey, J; Cheong, I; Huang, X; Bettegowda, C; Kinzler, K; Zhou, S; Vogelstein, B; Malkin, A

    2007-05-07

    Spores of the anaerobic bacterium Clostridium novyi-NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Towards this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of dormant as well as germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers as well as the underlying spore coat and undercoat layers sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi-NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  7. Gamma radiation effect on Bacillus cereus spores inoculated in black pepper

    International Nuclear Information System (INIS)

    Froehlich, Angela; Axeredo, Raquel M.C.; Vanetti, Maria Cristina D.

    2000-01-01

    It had been analyzed 37 samples of worn out black pepper and in 85% of these samples was observed the presence of Bacillus cereus in numbers of up to 4,6 x 10 4 UFC/g. The population of aerobic mesofilis bacteria varied of 2,8 x 10 5 the 1,9 x 10 8 UFC/g. The black pepper used during the experiment was evaluated, evidencing the aerobic presence of one aerobic mesofilis microbiota of, approximately, 2,6 x 10 6 UFC/g, consisting, mainly, for species of the Bacillus sort. It was observed that the absence of B. cereus, coliforms, filamentous fungus and leavenings. The evaluation of the irradiation of the black pepper inoculated with 10 6 UFC/g of B. cereus spores of with doses of gamma radiation varying between 2 and 10 kGy evidenced that doses up to 5 kGy had been enough to reduce the counting of, approximately, 10 6 UFC/g of aerobic mesofilis organisms and 10 4 UFC/g of B. cereus spores the not detectable numbers by the used methodology. The dose of reduction decimal (D 10 ) for the inoculated B. cereus spores in black pepper was of 1,78 kGy

  8. Interactions between the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae) and the saprobic fungus Fusarium oxysporum (Ascomycota: Hypocreales).

    Science.gov (United States)

    Navarro, P D; McMullen, J G; Stock, S P

    2014-01-01

    In this study, we assessed the effect of the saprobic fungus, Fusarium oxysporum (Ascomycota: Hypocreales) on the fitness of the entomopathogenic nematode Heterorhabditis sonorensis (Caborca strain). Sand column assays were considered to evaluate the effect of fungal mycelia on infective juvenile (IJ) movement and host access. Additionally, we investigated the effect of fungal spores on the nematodes' ability to search for a host, its virulence, penetration efficiency and reproduction. Three application timings were considered to assess interactions between the fungus and the nematodes. In vitro assays were also considered to determine the effect of fungal extracts on the nematode's symbiotic bacteria. Our observations indicate that presence and age of fungal mycelia significantly affect IJ movement in the sand columns and their ability to establish in the host. These results were also reflected in a reduced insect mortality. In particular, treatments with the 15 days old mycelia showed a significant reduction in insect mortality and penetration efficiency. Presence of fungal spores also impacted nematode virulence and reproduction. In particular, two of the application timings tested (simultaneous [EPN and fungal spores applied at the same time] and alternate I [EPN applied first, fungus applied 24h later]) resulted in antagonistic interactions. Moreover, IJ progeny was reduced to half in the simultaneous application. In vitro assays revealed that fungal extracts at the highest concentration tested (10mg/ml) inhibited the growth of the symbiotic bacteria. Overall, these results suggest that saprobic fungi may play an important role in regulating. EPN populations in the soil, and that they may be one of the factors that impact nematode survival in the soil and their access to insect hosts. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Enzyme-driven Bacillus spore coat degradation leading to spore killing.

    Science.gov (United States)

    Mundra, Ruchir V; Mehta, Krunal K; Wu, Xia; Paskaleva, Elena E; Kane, Ravi S; Dordick, Jonathan S

    2014-04-01

    The bacillus spore coat confers chemical and biological resistance, thereby protecting the core from harsh environments. The primarily protein-based coat consists of recalcitrant protein crosslinks that endow the coat with such functional protection. Proteases are present in the spore coat, which play a putative role in coat degradation in the environment. However these enzymes are poorly characterized. Nonetheless given the potential for proteases to catalyze coat degradation, we screened 10 commercially available proteases for their ability to degrade the spore coats of B. cereus and B. anthracis. Proteinase K and subtilisin Carlsberg, for B. cereus and B. anthracis spore coats, respectively, led to a morphological change in the otherwise impregnable coat structure, increasing coat permeability towards cortex lytic enzymes such as lysozyme and SleB, thereby initiating germination. Specifically in the presence of lysozyme, proteinase K resulted in 14-fold faster enzyme induced germination and exhibited significantly shorter lag times, than spores without protease pretreatment. Furthermore, the germinated spores were shown to be vulnerable to a lytic enzyme (PlyPH) resulting in effective spore killing. The spore surface in response to proteolytic degradation was probed using scanning electron microscopy (SEM), which provided key insights regarding coat degradation. The extent of coat degradation and spore killing using this enzyme-based pretreatment approach is similar to traditional, yet far harsher, chemical decoating methods that employ detergents and strong denaturants. Thus the enzymatic route reduces the environmental burden of chemically mediated spore killing, and demonstrates that a mild and environmentally benign biocatalytic spore killing is achievable. © 2013 Wiley Periodicals, Inc.

  10. Enzyme activities at different stages of plant biomass decomposition in three species of fungus-growing termites

    DEFF Research Database (Denmark)

    da Costa, Rafael R.; Hu, Haofu; Pilgaard, Bo

    2018-01-01

    contributing to the success of the termites as the main plant decomposers in the Old World. Here we evaluate which plant polymers are decomposed and which enzymes are active during the decomposition process in two major genera of fungus-growing termites. We find a diversity of active enzymes at different...... stages of decomposition and a consistent decrease in plant components during the decomposition process. Furthermore, our findings are consistent with the hypothesis that termites transport enzymes from the older mature parts of the fungus comb through young worker guts to freshly inoculated plant...... substrate. However, preliminary fungal RNAseq analyses suggest that this likely transport is supplemented with enzymes produced in situ Our findings support that the maintenance of an external fungus comb, inoculated with an optimal mix of plant material, fungal spores, and enzymes, is likely the key...

  11. High Symbiont Relatedness Stabilizes Mutualistic Cooperation in Fungus-Growing Termites

    DEFF Research Database (Denmark)

    Aanen, Duur K; de Fine Licht, Henrik H; Debets, Alfons J M

    2009-01-01

    It is unclear how mutualistic relationships can be stable when partners disperse freely and have the possibility of forming associations with many alternative genotypes. Theory predicts that high symbiont relatedness should resolve this problem, but the mechanisms to enforce this have rarely been...... of spore production in proportion to strain frequency. This positive reinforcement results in an exclusive lifetime association of each host colony with a single fungal symbiont and hinders the evolution of cheating. Our findings explain why vertical symbiont transmission in fungus-growing termites is rare...

  12. Fungal spore germination into yeast or mycelium: possible implications of dimorphism in evolution and human pathogenesis

    Science.gov (United States)

    Ghormade, Vandana; Deshpande, M. V.

    The ability of dimorphism in fungi is conventionally regarded as a reversible change between the two vegetative forms, yeast and mycelium, in response to environmental change. A zygomycetous isolate, Benjaminiella poitrasii, exhibited yeast-mycelium transition in response to the change in temperature (37-28 °C) and decrease in glucose concentration. For the first time the presence of dimorphic response during asexual and sexual spore germination is reported under the dimorphism-triggering conditions in B. poitrasii. The zygospores germinated into budding yeast when subjected to yeast-form supporting conditions. The mycelium-form favoring conditions gave rise to true mycelium. Similarly, the asexual spores displayed a dimorphic response during germination. Our observations suggest that dimorphism is an intrinsic ability present in the vegetative, asexual, and sexual forms of the fungus. As dimorphic fungi are intermediate to the unicellular yeast and the filamentous forms, understanding of the dimorphic character could be useful to trace the evolutionary relationships among taxonomically different fungi. Moreover, the implications of spore germination during the onset of pathogenesis and in drug development for human health care are discussed.

  13. Effect of the Filamentous Fungus Mucor circinelloides On The Development of Eggs of the Rumen Fluke Calicophoron daubneyi (Paramphistomidae).

    Science.gov (United States)

    Arroyo, Fabián; Hernández, José A; Cazapal-Monteiro, Cristiana F; Pedreira, José; Sanchís, Jaime; Romasanta, Ángel; Sánchez-Andrade, Rita; Paz-Silva, Adolfo; Arias, María S

    2017-06-01

    Ruminants infected by Paramphistomidae flukes shed eggs in the feces, which pass through different stages in the environment until the infective stages (metacercariae) are reached. The activity of the soil fungus Mucor circinelloides on the development of eggs of the rumen fluke Calicophoron daubneyi was presently tested with 3 probes, i.e., in petri plates, feces, and an aqueous environment (tubes). The effect of the fungus was assessed by recording the numbers of undeveloped, nonviable, and embryonated eggs. Nonviable eggs were considered when vacuolization occurred, the inner structures were not clearly observed, the eggshell was broken, or the embryo inside was destroyed. By considering the ability of hyphae of M. circinelloides to develop in the presence of C. daubneyi eggs, attach to their surface, and penetrate and destroy the inner embryo, this ovicidal effect was classified as type 3. After a period of 50 days, the percentage of undeveloped eggs in the feces of infected cattle was 40%; furthermore, 27% of the eggs were nonviable, and 33% were embryonated (1 miracidium inside). The addition of 4 doses of M. circinelloides spores directly onto the feces resulted in 9-31% undeveloped eggs, 38-60% nonviable eggs, and 9-21% embryonated eggs, and no statistical significances were obtained among the different doses. Placing the eggs of C. daubneyi into an aqueous solution containing 10 7 spores of M. circinelloides/ml for 29 days resulted in 43% undeveloped eggs, 40% nonviable eggs, and 17% embryonated eggs, whereas in the controls, the percentages were 48%, 12%, and 40%, respectively. These data demonstrate the usefulness of the spores of the fungus M. circinelloides in limiting the development of the eggs of the trematode C. daubneyi.

  14. Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane

    Directory of Open Access Journals (Sweden)

    S. E. Fiester

    2012-01-01

    Full Text Available Effective control of spore-forming bacilli begs suitable physical or chemical methods. While many spore inactivation techniques have been proven effective, electron beam (EB irradiation has been frequently chosen to eradicate Bacillus spores. Despite its widespread use, there are limited data evaluating the effects of EB irradiation on Bacillus spores. To study this, B. atrophaeus spores were purified, suspended in sterile, distilled water, and irradiated with EB (up to 20 kGy. Irradiated spores were found (1 to contain structural damage as observed by electron microscopy, (2 to have spilled cytoplasmic contents as measured by spectroscopy, (3 to have reduced membrane integrity as determined by fluorescence cytometry, and (4 to have fragmented genomic DNA as measured by gel electrophoresis, all in a dose-dependent manner. Additionally, cytometry data reveal decreased spore size, increased surface alterations, and increased uptake of propidium iodide, with increasing EB dose, suggesting spore coat alterations with membrane damage, prior to loss of spore viability. The present study suggests that EB irradiation of spores in water results in substantial structural damage of the spore coat and inner membrane, and that, along with DNA fragmentation, results in dose-dependent spore inactivation.

  15. The Ant Cardiocondyla elegans as Host of the Enigmatic Endoparasitic Fungus Myrmicinosporidium durum

    Directory of Open Access Journals (Sweden)

    Julia Giehr

    2015-01-01

    Full Text Available Data on host species and the distribution of the endoparasitic fungus Myrmicinosporidium durum increased continuously in recent decades. Here, we add the ant Cardiocondyla elegans as new host species. Colonies of the monogynous species were found infested in the region of Languedoc-Roussillon (South France. Samples from the nest indicate high infection rates. All castes and sexes were infected by the spores. Variations of infection rates between sampling methods and species are discussed.

  16. Compatibility of the entomopathogenic fungus Lecanicillium muscarium and insecticides for eradication of sweetpotato whitefly, Bemisia tabaci.

    Science.gov (United States)

    Cuthbertson, Andrew G S; Walters, Keith F A; Deppe, Carola

    2005-08-01

    The compatibility of the entomopathogenic fungus Lecanicillium muscarium and chemical insecticides used to control the second instar stages of the sweetpotato whitefly, Bemisia tabaci, was investigated. The effect on spore germination of direct exposure for 24 h to the insecticides imidacloprid, buprofezin, teflubenzuron and nicotine was determined. Only exposure to buprofezin was followed by acceptable spore germination. However, all chemicals significantly reduced spore germination when compared to a water control. Infectivity of L. muscarium in the presence of dry residues of buprofezin, teflubenzuron and nicotine (imidacloprid is a systemic pesticide) on foliage were also investigated. No significant detrimental effects on the level of control of B. tabaci was recorded when compared with fungi applied to residue free foliage on either tomato or verbena plants. Fungi in combination with imidacloprid gave higher B. tabaci mortality on verbena foliage compared to either teflubenzuron or nicotine and fungi combinations. Use of these chemical insecticides with L. muscarium in integrated control programmes for B. tabaci is discussed.

  17. Handling technique of spore-forming bacteria in radiation sterilization. 1. Preparation of spores

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko

    1994-01-01

    This paper deals with a handling technique of spore-forming bacteria in radiation sterilization. An explanation is given under three sections: (1) life cycle of spore-forming bacteria, medium to form bacterial spores, and colony and purification methods of bacterial spores; (2) methods for measuring the number of bacterial spores and resistance against gamma radiation (D values); and (3) a test method for identifying spore-forming bacteria and a simple identification method. (N.K.)

  18. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  19. Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and nontransformed tomato roots of either wild-type or AM-defective phenotypes in monoxenic cultures.

    Science.gov (United States)

    Bago, Alberto; Cano, Custodia; Toussaint, Jean-Patrick; Smith, Sally; Dickson, Sandy

    2006-09-01

    Monoxenic symbioses between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and two nontransformed tomato root organ cultures (ROCs) were established. Wild-type tomato ROC from cultivar "RioGrande 76R" was employed as a control for mycorrhizal colonization and compared with its mutant line (rmc), which exhibits a highly reduced mycorrhizal colonization (rmc) phenotype. Structural features of the two root lines were similar when grown either in soil or under in vitro conditions, indicating that neither monoxenic culturing nor the rmc mutation affected root development or behavior. Colonization by G. intraradices in monoxenic culture of the wild-type line was low (<10%) but supported extensive development of extraradical mycelium, branched absorbing structures, and spores. The reduced colonization of rmc under monoxenic conditions (0.6%) was similar to that observed previously in soil. Extraradical development of runner hyphae was low and proportional to internal colonization. Few spores were produced. These results might suggest that carbon transfer may be modified in the rmc mutant. Our results support the usefulness of monoxenically obtained mycorrhizas for investigation of AM colonization and intraradical symbiotic functioning.

  20. Spore-to-spore agar culture of the myxomycete Physarum globuliferum.

    Science.gov (United States)

    Liu, Pu; Wang, Qi; Li, Yu

    2010-02-01

    The ontogeny of the myxomycete Physarum globuliferum was observed on corn meal agar and hanging drop cultures without adding sterile oat flakes, bacteria or other microorganisms. Its complete life cycle including spore germination, myxamoebae, swarm cells, plasmodial development, and maturity of fructifications was demonstrated. Details of spore-to-spore development are described and illustrated.

  1. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    Science.gov (United States)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  2. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy.

    Science.gov (United States)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm(-1). For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host.

    Science.gov (United States)

    Selvakumar, G; Shagol, C C; Kang, Y; Chung, B N; Han, S G; Sa, T M

    2018-06-01

    The propagation of pure cultures of arbuscular mycorrhizal fungal (AMF) is an essential requirement for their large-scale agricultural application and commercialization as biofertilizers. The present study aimed to propagate AMF using the single-spore inoculation technique and compare their propagation ability with the known reference spores. Arbuscular mycorrhizal fungal spores were collected from salt-affected Saemangeum reclaimed soil in South Korea. The technique involved inoculation of sorghum-sudangrass (Sorghum bicolor L.) seedlings with single, healthy spores on filter paper followed by the transfer of successfully colonized seedlings to 1-kg capacity pots containing sterilized soil. After the first plant cycle, the contents were transferred to 2·5-kg capacity pots containing sterilized soil. Among the 150 inoculated seedlings, only 27 seedlings were colonized by AMF spores. After 240 days, among the 27 seedlings, five inoculants resulted in the production of over 500 spores. The 18S rDNA sequencing of spores revealed that the spores produced through single-spore inoculation method belonged to Gigaspora margarita, Claroideoglomus lamellosum and Funneliformis mosseae. Furthermore, indigenous spore F. mosseae M-1 reported a higher spore count than the reference spores. The AMF spores produced using the single-spore inoculation technique may serve as potential bio-inoculants with an advantage of being more readily adopted by farmers due to the lack of requirement of a skilled technique in spore propagation. The results of the current study describe the feasible and cost-effective method to mass produce AMF spores for large-scale application. The AMF spores obtained from this method can effectively colonize plant roots and may be easily introduced to the new environment. © 2018 The Society for Applied Microbiology.

  4. Immunolocalization of an alternative respiratory chain in Antonospora (Paranosema) locustae spores: mitosomes retain their role in microsporidial energy metabolism.

    Science.gov (United States)

    Dolgikh, Viacheslav V; Senderskiy, Igor V; Pavlova, Olga A; Naumov, Anton M; Beznoussenko, Galina V

    2011-04-01

    Microsporidia are a group of fungus-related intracellular parasites with severely reduced metabolic machinery. They lack canonical mitochondria, a Krebs cycle, and a respiratory chain but possess genes encoding glycolysis enzymes, a glycerol phosphate shuttle, and ATP/ADP carriers to import host ATP. The recent finding of alternative oxidase genes in two clades suggests that microsporidial mitosomes may retain an alternative respiratory pathway. We expressed the fragments of mitochondrial chaperone Hsp70 (mitHsp70), mitochondrial glycerol-3-phosphate dehydrogenase (mitG3PDH), and alternative oxidase (AOX) from the microsporidium Antonospora (Paranosema) locustae in Escherichia coli. Immunoblotting with antibodies against recombinant polypeptides demonstrated specific accumulation of both metabolic enzymes in A. locustae spores. At the same time comparable amounts of mitochondrial Hsp70 were found in spores and in stages of intracellular development as well. Immunoelectron microscopy of ultrathin cryosections of spores confirmed mitosomal localization of the studied proteins. Small amounts of enzymes of an alternative respiratory chain in merogonial and early sporogonial stages, alongside their accumulation in mature spores, suggest conspicuous changes in components and functions of mitosomes during the life cycle of microsporidia and the important role of these organelles in parasite energy metabolism, at least at the final stages of sporogenesis.

  5. Genetic Factors and Host Traits Predict Spore Morphology for a Butterfly Pathogen

    Directory of Open Access Journals (Sweden)

    Jacobus C. de Roode

    2013-08-01

    Full Text Available Monarch butterflies (Danaus plexippus throughout the world are commonly infected by the specialist pathogen Ophryocystis elektroscirrha (OE. This protozoan is transmitted when larvae ingest infectious stages (spores scattered onto host plant leaves by infected adults. Parasites replicate internally during larval and pupal stages, and adult monarchs emerge covered with millions of dormant spores on the outsides of their bodies. Across multiple monarch populations, OE varies in prevalence and virulence. Here, we examined geographic and genetic variation in OE spore morphology using clonal parasite lineages derived from each of four host populations (eastern and western North America, South Florida and Hawaii. Spores were harvested from experimentally inoculated, captive-reared adult monarchs. Using light microscopy and digital image analysis, we measured the size, shape and color of 30 replicate spores per host. Analyses examined predictors of spore morphology, including parasite source population and clone, parasite load, and the following host traits: family line, sex, wing area, and wing color (orange and black pigmentation. Results showed significant differences in spore size and shape among parasite clones, suggesting genetic determinants of morphological variation. Spore size also increased with monarch wing size, and monarchs with larger and darker orange wings tended to have darker colored spores, consistent with the idea that parasite development depends on variation in host quality and resources. We found no evidence for effects of source population on variation in spore morphology. Collectively, these results provide support for heritable variation in spore morphology and a role for host traits in affecting parasite development.

  6. Pan-European distribution of white-nose syndrome fungus (Geomyces destructans not associated with mass mortality.

    Directory of Open Access Journals (Sweden)

    Sébastien J Puechmaille

    Full Text Available BACKGROUND: The dramatic mass mortalities amongst hibernating bats in Northeastern America caused by "white nose-syndrome" (WNS continue to threaten populations of different bat species. The cold-loving fungus, Geomyces destructans, is the most likely causative agent leading to extensive destruction of the skin, particularly the wing membranes. Recent investigations in Europe confirmed the presence of the fungus G. destructans without associated mass mortality in hibernating bats in six countries but its distribution remains poorly known. METHODOLOGY/PRINCIPAL FINDINGS: We collected data on the presence of bats with white fungal growth in 12 countries in Europe between 2003 and 2010 and conducted morphological and genetic analysis to confirm the identity of the fungus as Geomyces destructans. Our results demonstrate the presence of the fungus in eight countries spanning over 2000 km from West to East and provide compelling photographic evidence for its presence in another four countries including Romania, and Turkey. Furthermore, matching prevalence data of a hibernaculum monitored over two consecutive years with data from across Europe show that the temporal occurrence of the fungus, which first becomes visible around February, peaks in March but can still be seen in some torpid bats in May or June, is strikingly similar throughout Europe. Finally, we isolated and cultured G. destructans from a cave wall adjacent to a bat with fungal growth. CONCLUSIONS/SIGNIFICANCE: G. destructans is widely found over large areas of the European continent without associated mass mortalities in bats, suggesting that the fungus is native to Europe. The characterisation of the temporal variation in G. destructans growth on bats provides reference data for studying the spatio-temporal dynamic of the fungus. Finally, the presence of G. destructans spores on cave walls suggests that hibernacula could act as passive vectors and/or reservoirs for G. destructans and

  7. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species

    International Nuclear Information System (INIS)

    Hauser, P.M.; Karamata, D.

    1992-01-01

    A reliable method for measuring the spore DNA content, based on radioactive DNA labelling, spore germination in absence of DNA replication and diphenylamine assay, was developed. The accuracy of the method, within 10 - 15%, is adequate for determining the number of chromosomes per spore, provided that the genome size is known. B subtilis spores were shown to be invariably monogenomic, while those of larger bacilli Bacillus megaterium, Bacillus cereus and Bacillus thuringiensis, often, if not invariably, contain two genomes. Attempts to modify the spore DNA content of B subtilis by altering the richness of the sporulation medium, the sporulation conditions (liquid or solid medium), or by mutation, were apparently unsuccessful. An increase of spore size with medium richness, not accompanied by an increase in DNA content, was observed. The implication of the apparently species-specific spore ploidy and the influence of the sporulation conditions on spore size and shape are discussed

  8. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores.

    Science.gov (United States)

    Abhyankar, Wishwas R; Kamphorst, Kiki; Swarge, Bhagyashree N; van Veen, Henk; van der Wel, Nicole N; Brul, Stanley; de Koster, Chris G; de Koning, Leo J

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14 N spores prepared on solid Schaeffer's-glucose (SG) agar plates and 15 N metabolically labeled spores prepared in shake flasks containing 3-( N -morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14 N: 15 N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the

  9. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores

    Science.gov (United States)

    Abhyankar, Wishwas R.; Kamphorst, Kiki; Swarge, Bhagyashree N.; van Veen, Henk; van der Wel, Nicole N.; Brul, Stanley; de Koster, Chris G.; de Koning, Leo J.

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid Schaeffer’s-glucose (SG) agar plates and 15N metabolically labeled spores prepared in shake flasks containing 3-(N-morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N:15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the

  10. The influence of sporulation conditions on the spore coat protein composition of Bacillus subtilis spores.

    Directory of Open Access Journals (Sweden)

    Wishwas R. Abhyankar

    2016-10-01

    Full Text Available Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid SG agar plates and 15N metabolically labelled spores prepared in shake flasks containing MOPS buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N: 15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the differences in the coat protein composition and

  11. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation.

    Science.gov (United States)

    Ribis, John W; Ravichandran, Priyanka; Putnam, Emily E; Pishdadian, Keyan; Shen, Aimee

    2017-01-01

    The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis , only two of these morphogenetic proteins have homologs in the Clostridia : SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis . Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis , C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia , but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and

  12. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival.

    Science.gov (United States)

    Al-Laaeiby, Ayat; Kershaw, Michael J; Penn, Tina J; Thornton, Christopher R

    2016-03-24

    The dematiaceous (melanised) fungus Lomentospora (Scedosporium) prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H₂O₂), UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN)-melanin biosynthetic enzymes polyketide synthase (PKS1), tetrahydroxynapthalene reductase (4HNR) and scytalone dehydratase (SCD1). Infectious propagules (spores) of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H₂O₂ treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not

  13. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    Science.gov (United States)

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  14. Morphological, molecular and ecological aspects of the South American hypogeous fungus Alpova austroalnicola sp. nov.

    Science.gov (United States)

    Nouhra, Eduardo R; Dominguez, Laura S; Becerra, Alejandra G; Trappe, James M

    2005-01-01

    Field studies in Argentina's Yunga District revealed Alpova austroalnicola sp. nov., a hypogeous fungus associated with Alnus acuminata ssp. acuminata. Morphological and molecular studies based on amplification and sequencing of the nuclear LSU rDNA gene showed its unique identity within Alpova. Related genera included in the analyses were Boletus edulis, Rhizopogon spp., Suillus luteus and Truncocolumella citrina. Additional observations of animal diggings around the sites and microscopic examination of fecal pellets of the nine-banded armadillo (Dasypus novemcinctus novemcinctus) indicate A. austroalnicola is consumed and its spores dispersed by animals.

  15. The regulated synthesis of a Bacillus anthracis spore coat protein that affects spore surface properties.

    Science.gov (United States)

    Aronson, A; Goodman, B; Smith, Z

    2014-05-01

    Examine the regulation of a spore coat protein and the effects on spore properties. A c. 23 kDa band in coat/exosporial extracts of Bacillus anthracis Sterne spores varied in amount depending upon the conditions of sporulation. It was identified by MALDI as a likely orthologue of ExsB of Bacillus cereus. Little if any was present in an exosporial preparation with a location to the inner coat/cortex region established by spore fractionation and immunogold labelling of electron micrograph sections. Because of its predominant location in the inner coat, it has been renamed Cotγ. It was relatively deficient in spores produced at 37°C and when acidic fermentation products were produced a difference attributable to transcriptional regulation. The deficiency or absence of Cotγ resulted in a less robust exosporium positioned more closely to the coat. These spores were less hydrophobic and germinated somewhat more rapidly. Hydrophobicity and appearance were rescued in the deletion strain by introduction of the cotγ gene. The deficiency or lack of a protein largely found in the inner coat altered spore hydrophobicity and surface appearance. The regulated synthesis of Cotγ may be a paradigm for other spore coat proteins with unknown functions that modulate spore properties in response to environmental conditions. © 2014 The Society for Applied Microbiology.

  16. Photometric immersion refractometry of bacterial spores.

    Science.gov (United States)

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  17. Spore membrane(s) as the site of damage within heated Clostridium perfringens spores.

    Science.gov (United States)

    Flowers, R S; Adams, D M

    1976-02-01

    Clostridium perfringens spores were injured by ultrahigh-temperature treatment at 105 C for 5 min. Injury was manifested as an increased sensitivity to polymyxin and neomycin. Since many of the survivors could not germinate normally the ultrahigh-temperature-treated spores were sensitized to and germinated by lysozyme. Polymyxin reportedly acts upon the cell membrane. Neomycin may inhibit protein synthesis and has surface-active properties. Injured spores were increasingly sensitive to known surface-active agents, sodium lauryl sulfate, sodium deoxycholate, and Roccal, a quaternary ammonium compound. Injured spores sensitive to polymyxin and neomycin also were osmotically fragile and died during outgrowth in a liquid medium unless the medium was supplemented with 20% sucrose, 10% dextran, or 10% polyvinylpyrrolidone. The results suggested that a spore structure destined to become cell membrane or cell wall was the site of injury. Repair of injury during outgrowth in the presence of protein, deoxyribonucleic acid, ribonucleic acid and cell wall synthesis inhibitors was consistent with this hypothesis.

  18. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment.

    Directory of Open Access Journals (Sweden)

    Adrien Rieux

    Full Text Available Given its biological significance, determining the dispersal kernel (i.e., the distribution of dispersal distances of spore-producing pathogens is essential. Here, we report two field experiments designed to measure disease gradients caused by sexually- and asexually-produced spores of the wind-dispersed banana plant fungus Mycosphaerella fijiensis. Gradients were measured during a single generation and over 272 traps installed up to 1000 m along eight directions radiating from a traceable source of inoculum composed of fungicide-resistant strains. We adjusted several kernels differing in the shape of their tail and tested for two types of anisotropy. Contrasting dispersal kernels were observed between the two types of spores. For sexual spores (ascospores, we characterized both a steep gradient in the first few metres in all directions and rare long-distance dispersal (LDD events up to 1000 m from the source in two directions. A heavy-tailed kernel best fitted the disease gradient. Although ascospores distributed evenly in all directions, average dispersal distance was greater in two different directions without obvious correlation with wind patterns. For asexual spores (conidia, few dispersal events occurred outside of the source plot. A gradient up to 12.5 m from the source was observed in one direction only. Accordingly, a thin-tailed kernel best fitted the disease gradient, and anisotropy in both density and distance was correlated with averaged daily wind gust. We discuss the validity of our results as well as their implications in terms of disease diffusion and management strategy.

  19. Targeted Disruption of Melanin Biosynthesis Genes in the Human Pathogenic Fungus Lomentospora prolificans and Its Consequences for Pathogen Survival

    Directory of Open Access Journals (Sweden)

    Ayat Al-Laaeiby

    2016-03-01

    Full Text Available The dematiaceous (melanised fungus Lomentospora (Scedosporium prolificans is a life-threatening opportunistic pathogen of immunocompromised humans, resistant to anti-fungal drugs. Melanin has been shown to protect human pathogenic fungi against antifungal drugs, oxidative killing and environmental stresses. To determine the protective role of melanin in L. prolificans to oxidative killing (H2O2, UV radiation and the polyene anti-fungal drug amphotericin B, targeted gene disruption was used to generate mutants of the pathogen lacking the dihydroxynaphthalene (DHN-melanin biosynthetic enzymes polyketide synthase (PKS1, tetrahydroxynapthalene reductase (4HNR and scytalone dehydratase (SCD1. Infectious propagules (spores of the wild-type strain 3.1 were black/brown, whereas spores of the PKS-deficient mutant ΔLppks1::hph were white. Complementation of the albino mutant ΔLppks1::hph restored the black-brown spore pigmentation, while the 4HNR-deficient mutant ΔLp4hnr::hph and SCD-deficient mutant ΔLpscd1::hph both produced orange-yellow spores. The mutants ΔLppks1::hph and ΔLp4hnr::hph showed significant reductions in spore survival following H2O2 treatment, while spores of ΔLpscd1::hph and the ΔLppks1::hph complemented strain ΔLppks1::hph:PKS showed spore survivals similar to strain 3.1. Spores of the mutants ΔLp4hnr::hph and ΔLpscd1::hph and complemented strain ΔLppks1::hph:PKS showed spore survivals similar to 3.1 following exposure to UV radiation, but survival of ΔLppks1::hph spores was significantly reduced compared to the wild-type strain. Strain 3.1 and mutants ΔLp4hnr::hph and ΔLppks1::hph:PKS were resistant to amphotericin B while, paradoxically, the PKS1- and SCD1-deficient mutants showed significant increases in growth in the presence of the antifungal drug. Taken together, these results show that while melanin plays a protective role in the survival of the pathogen to oxidative killing and UV radiation, melanin does not

  20. Fighting Ebola with novel spore decontamination technologies for the military.

    Science.gov (United States)

    Doona, Christopher J; Feeherry, Florence E; Kustin, Kenneth; Olinger, Gene G; Setlow, Peter; Malkin, Alexander J; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC's novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  1. Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.

    Science.gov (United States)

    Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P

    2016-11-01

    To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.

  2. Handling technique of spore-forming bacteria in radiation sterilization. 2. Determination of numbers and radiation resistance of spores

    International Nuclear Information System (INIS)

    Koshikawa, Tomihiko

    1994-01-01

    Stepwise ten-fold dilution of bacterial solution is required in the determination of bacterial spores. For this, the selection of diluted solution is important according to the purpose of experiment. First, the preparation of suspension of bacterial spores and selection of diluted solution are presented. Then, a method for determining the number of bacterial spores in materials is outlined in terms of dilution methods of bacterial solution (shaking and homogenization) and application method of diluted solution to the plating medium. Finally, a method for determining radiation resistance of spore-forming bacteria is explained according to the measurement conditions (suspension of bacterial spores and filters applied with bacterial spores). (N.K.)

  3. Handling technique of spore-forming bacteria in radiation sterilization. 2. Determination of numbers and radiation resistance of spores

    Energy Technology Data Exchange (ETDEWEB)

    Koshikawa, Tomihiko [Japan Radioisotope Association, Shiga (Japan). Koka Laboratory

    1994-12-01

    Stepwise ten-fold dilution of bacterial solution is required in the determination of bacterial spores. For this, the selection of diluted solution is important according to the purpose of experiment. First, the preparation of suspension of bacterial spores and selection of diluted solution are presented. Then, a method for determining the number of bacterial spores in materials is outlined in terms of dilution methods of bacterial solution (shaking and homogenization) and application method of diluted solution to the plating medium. Finally, a method for determining radiation resistance of spore-forming bacteria is explained according to the measurement conditions (suspension of bacterial spores and filters applied with bacterial spores). (N.K.).

  4. Absence of transient elevated uv resistance during germination of Bacillus subtilis spores lacking small, acid-soluble spore proteins α and β

    International Nuclear Information System (INIS)

    Setlow, B.; Setlow, P.

    1988-01-01

    Dormant spores of various Bacillus species are much more resistant to UV irradiation than are the corresponding vegetative cells. This elevated spore UV resistance appears to have two causes. First, UV irradiation of spores does not produce the pyrimidine dimers formed in vegetative-cell DNA, but rather produces several other photoproducts, the most predominant of which is termed the spore photoproduct, a 5-thyminyl-5,6-dihydrothymine adduct (1, 10). Second, spores have at least two mechanisms which efficiently repair this spore photoproduct during spore germination, including one which monomerizes the adduct back to two thymines. This study shows that germinating spores of bacillus subtilis mutants which lack small, acid-soluble spore proteins α and β did not exhibit the transient elevated UV resistance seen during germination of wild-type spores

  5. Chromosome mechanics of fungi under spaceflight conditions--tetrad analysis of two-factor crosses between spore color mutants of Sordaria macrospora.

    Science.gov (United States)

    Hahn, A; Hock, B

    1999-01-01

    Spore color mutants of the fungus Sordaria macrospora Auersw. were crossed under spaceflight conditions on the space shuttle to MIR mission S/MM 05 (STS-81). The arrangement of spores of different colors in the asci allowed conclusions on the influence of spaceflight conditions on sexual recombination in fungi. Experiments on a 1-g centrifuge in space and in parallel on the ground were used for controls. The samples were analyzed microscopically on their return to earth. Each fruiting body was assessed separately. Statistical analysis of the data showed a significant increase in gene recombination frequencies caused by the heavy ion particle stream in space radiation. The lack of gravity did not influence crossing-over frequencies. Hyphae of the flown samples were assessed for DNA strand breaks. No increase in damage was found compared with the ground samples. It was shown that S. macrospora is able to repair radiation-induced DNA strand breaks within hours.

  6. Biomarkers of Aspergillus spores

    Science.gov (United States)

    Sulc, Miroslav; Peslova, Katerina; Zabka, Martin; Hajduch, Marian; Havlicek, Vladimir

    2009-02-01

    We applied both matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric and 1D sodium dodecylsulfate polyacrylamide gel electrophoretic (1D-PAGE) approaches for direct analysis of intact fungal spores of twenty four Aspergillus species. In parallel, we optimized various protocols for protein extraction from Aspergillus spores using acidic conditions, step organic gradient and variable sonication treatment. The MALDI-TOF mass spectra obtained from optimally prepared samples provided a reproducible fingerprint demonstrating the capability of the MALDI-TOF approach to type and characterize different fungal strains within the Aspergillus genus. Mass spectra of intact fungal spores provided signals mostly below 20 kDa. The minimum material amount represented 0.3 [mu]g (10,000 spores). Proteins with higher molecular weight were detected by 1D-PAGEE Eleven proteins were identified from three selected strains in the range 5-25 kDa by the proteomic approach. Hemolysin and hydrophobin have the highest relevance in host-pathogen interactions.

  7. Efficacy of the nematode-trapping fungus Duddingtonia flagrans against three species of gastro-intestinal nematodes in laboratory faecal cultures from sheep and goats.

    Science.gov (United States)

    Waghorn, T S; Leathwick, D M; Chen, L-Y; Skipp, R A

    2003-12-30

    The ability of the nematode-killing fungus Duddingtonia flagrans to reduce number of infective larvae of three species of gastro-intestinal parasitic nematodes developing in dung was investigated in both goats and sheep. Groups of lambs and kids (12-20 weeks old) were given mono-specific infections of Haemonchus contortus, Ostertagia (Teladorsagia) circumcincta or Trichostrongylus colubriformis. Following patency of the infections (t1) faecal samples were collected for determination of faecal nematode egg count (FEC) and culture of parasite larvae. Groups of animals were then dosed on 2 consecutive days with one of the two dose rates of the fungus (250,000 or 500,000 spores/kg liveweight). One (t2) and 5 (t3) days after the second dose of fungus samples were again collected for FEC and culture. The number of larvae recovered from the faecal cultures at t1 and t3 were used as controls to assess the efficacy of the experimental treatment at t2. Average efficacy was 78% with group means ranging from 40 to 93%. Dose rate of fungus appeared to influence efficacy against O. circumcincta but not against H. contortus or T. colubriformis. Overall, there were no differences in the efficacy of the fungus against any of the parasite species or in either host animal. The results of this trial indicate the potential use of this fungus as a broad spectrum anti-parasite agent for use in both goats and sheep.

  8. Imaging bacterial spores by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-01-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark

  9. Use of yeast spores for microencapsulation of enzymes.

    Science.gov (United States)

    Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.

  10. Imaging bacterial spores by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W. [Univ. of London, Surrey (United Kingdom); Judge, J. [Unilever plc, Sharnbrook (United Kingdom)] [and others

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  11. Sensitizing Clostridium difficile Spores With Germinants on Skin and Environmental Surfaces Represents a New Strategy for Reducing Spores via Ambient Mechanisms

    Directory of Open Access Journals (Sweden)

    Michelle Marie Nerandzic

    2017-10-01

    Full Text Available Background: Clostridium difficile is a leading cause of healthcare-associated infections worldwide. Prevention of C. difficile transmission is challenging because spores are not killed by alcohol-based hand sanitizers or many commonly used disinfectants. One strategy to control spores is to induce germination, thereby rendering the spores more susceptible to benign disinfection measures and ambient stressors. Methods/Results: C. difficile spores germinated on skin after a single application of cholic acid-class bile salts and co-germinants; for 4 C. difficile strains, recovery of viable spores from skin was reduced by ~0.3 log10CFU to 2 log10CFU after 2 hours and ~1 log10CFU to >2.5 log 10CFU after 24 hours. The addition of taurocholic acid to 70% and 30% ethanol significantly enhanced reduction of viable spores on skin and on surfaces. Desiccation, and to a lesser extent the presence of oxygen, were identified as the stressors responsible for reductions of germinated spores on skin and surfaces. Additionally, germinated spores became susceptible to killing by pH 1.5 hydrochloric acid, suggesting that germinated spores that remain viable on skin and surfaces might be killed by gastric acid after ingestion. Antibiotic-treated mice did not become colonized after exposure to germinated spores, whereas 100% of mice became colonized after exposure to the same quantity of dormant spores. Conclusions: Germination could provide a new approach to reduce C. difficile spores on skin and in the environment and to render surviving spores less capable of causing infection. Our findings suggest that it may be feasible to develop alcohol-based hand sanitizers containing germinants that reduce spores on hands.

  12. Development of a user-friendly delivery method for the fungus Metarhizium anisopliae to control the ectoparasitic mite Varroa destructor in honey bee, Apis mellifera, colonies.

    Science.gov (United States)

    Kanga, Lambert H B; Adamczyk, John; Patt, Joseph; Gracia, Carlos; Cascino, John

    2010-12-01

    A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducted in 2006 in Texas using freshly harvested spores indicated that patty blend formulations of 10 g of conidia per hive (applied twice) significantly reduced the numbers of mites per adult bee, mites in sealed brood cells, and residual mites at the end of the 47-day experimental period. Colony development in terms of adult bee populations and brood production also improved. Field trials conducted in 2007 in Florida using less virulent spores produced mixed results. Patty blends of 10 g of conidia per hive (applied twice) were less successful in significantly reducing the number of mites per adult bee. However, hive survivorship and colony strength were improved, and the numbers of residual mites were significantly reduced at the end of the 42-day experimental period. The overall results from 2003 to 2008 field trials indicated that it was critical to have fungal spores with good germination, pathogenicity and virulence. We determined that fungal spores (1 × 10(10) viable spores per gram) with 98% germination and high pathogenicity (95% mite mortality at day 7) provided successful control of mite populations in established honey bee colonies at 10 g of conidia per hive (applied twice). Overall, microbial control of Varroa mite with M. anisopliae is feasible and could be a useful component of an integrated pest management program.

  13. Dynamics of Spore Coat Morphogenesis in Bacillus subtilis

    Science.gov (United States)

    McKenney, Peter T.; Eichenberger, Patrick

    2011-01-01

    SUMMARY Spores of Bacillus subtilis are encased in a protective coat made up of at least 70 proteins. The structure of the spore coat has been examined using a variety of genetic, imaging and biochemical techniques, however, the majority of these studies have focused on mature spores. In this study we use a library of 41 spore coat proteins fused to the Green Fluorescent Protein (GFP) to examine spore coat morphogenesis over the time-course of sporulation. We found considerable diversity in the localization dynamics of coat proteins and were able to establish 6 classes based on localization kinetics. Localization dynamics correlate well with the known transcriptional regulators of coat gene expression. Previously, we described the existence of multiple layers in the mature spore coat. Here, we find that the spore coat initially assembles a scaffold that is organized into multiple layers on one pole of the spore. The coat then encases the spore in multiple coordinated waves. Encasement is driven, at least partially, by transcription of coat genes and deletion of sporulation transcription factors arrests encasement. We also identify the trans-compartment SpoIIIAH-SpoIIQ channel as necessary for encasement. This is the first demonstration of a forespore contribution to spore coat morphogenesis. PMID:22171814

  14. The influence of sporulation conditions on the spore coat protein composition of Bacillus subtilis spores.

    OpenAIRE

    Wishwas R. Abhyankar; Wishwas R. Abhyankar; Kiki Kamphorst; Bhagyashree N. Swarge; Bhagyashree N. Swarge; Henk van Veen; Nicole N. van der Wel; Stanley Brul; Chris G. de Koster; Leo J. de Koning

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for t...

  15. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores

    OpenAIRE

    Abhyankar, Wishwas R.; Kamphorst, Kiki; Swarge, Bhagyashree N.; van Veen, Henk; van der Wel, Nicole N.; Brul, Stanley; de Koster, Chris G.; de Koning, Leo J.

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for t...

  16. Dynamic phase microscopy, a new method to detect viable and killed spores and to estimate the heterogeneity of spore populations

    Science.gov (United States)

    Tychinsky, Vladimir P.; Mulyukin, Andrey L.; Lisovskii, Vitalii V.; Nikolaev, Yury A.; Kretushev, Aleksander V.; Vyshenskaya, Tatyana V.; Suzina, Nataliya E.; Duda, Vitalii I.; El-Registan, Galina I.

    One of the challenging tasks in monitoring studies is to estimate heterogeneity of microbial populations by the physiological state and potential viability of individual cells, especially with regard of their ability to withstand various environmental assaults. Previously, we described some approaches based on electron microscopy methods to discriminate vegetative, dormant, and dead cells in both aged microbial cultures and environmental samples, including permafrost. We propose to extend the arsenal of microscopy methods for monitoring studies by a new non-invasive and informative method - dynamic phase microscopy (DPM). The substantial advantage of DPM is that it gives quantitative (digitized) data of undestroyed (living) microscopic objects, exemplified in our work by Bacillus licheniformis spores. Using DPM made it possible to record interference images of objects (spores) and to produce picture of their "phase thickness" (PT) that is the optical path difference in nm. Thus, it was demonstrated the remarkable difference in the PT of spores at different physiological states: dormant, germinating, and heat-killed spores had PT values of 80, 40-50, and 20 nm, respectively. The other found criterion to distinguish between spores was the PT fluctuations. In contrast to dormant and killed spores, the PT of germinating spores oscillated with amplitude of up to 7 nm, with typical frequencies of 1.3 and 3.4 Hz. A combination of the recorded PT values and PT fluctuations gave a key to detect viable and dead cells. Under the conditions that did not support germination (the lack of nutrients), we were able to follow the response of a single dormant spore and a spore population to heating from 25 °C to 70 °C. Thus, a very small temperature change (from 40 °C to 42 °C) under conditions non-favorable for germination, caused a drastic decrease in the spores' PT; the second drop in the PT values was observed during heating from 60 °C to 70 °C. These changes were

  17. Clinostatic rotation decreases crossover frequencies in the fungus Sordaria macrospora Auersw.

    Science.gov (United States)

    Henkel, J; Hock, B

    1991-12-01

    Two-factor crosses between the non-allelic spore colour mutants r2 and lu of the fungus Sordaria macrospora were used to investigate the effect of clinostatic rotation (= simulated weightlessness) on crossover frequencies. The experiment was carried out with different rotary directions at a rotary rate of 4 rpm. Second-division segregations of the gene lu, which result from crossover between the gene locus and centromere, are significantly smaller in the clinostat experiments than in the static controls. No differences were found between the two rotary directions. A similar influence of clinostatic rotation was not observed for the gene r2 which in contrast to the lu locus is located very close to the centromere. The suitability of this approach for the investigation of the effect of space flight conditions on cytogenetic processes is pointed out.

  18. Sphagnum moss disperses spores with vortex rings.

    Science.gov (United States)

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  19. Adaptation of the spore discharge mechanism in the basidiomycota.

    Directory of Open Access Journals (Sweden)

    Jessica L Stolze-Rybczynski

    Full Text Available Spore discharge in the majority of the 30,000 described species of Basidiomycota is powered by the rapid motion of a fluid droplet, called Buller's drop, over the spore surface. In basidiomycete yeasts, and phytopathogenic rusts and smuts, spores are discharged directly into the airflow around the fungal colony. Maximum discharge distances of 1-2 mm have been reported for these fungi. In mushroom-forming species, however, spores are propelled over much shorter ranges. In gilled mushrooms, for example, discharge distances of <0.1 mm ensure that spores do not collide with opposing gill surfaces. The way in which the range of the mechanism is controlled has not been studied previously.In this study, we report high-speed video analysis of spore discharge in selected basidiomycetes ranging from yeasts to wood-decay fungi with poroid fruiting bodies. Analysis of these video data and mathematical modeling show that discharge distance is determined by both spore size and the size of the Buller's drop. Furthermore, because the size of Buller's drop is controlled by spore shape, these experiments suggest that seemingly minor changes in spore morphology exert major effects upon discharge distance.This biomechanical analysis of spore discharge mechanisms in mushroom-forming fungi and their relatives is the first of its kind and provides a novel view of the incredible variety of spore morphology that has been catalogued by traditional taxonomists for more than 200 years. Rather than representing non-selected variations in micromorphology, the new experiments show that changes in spore architecture have adaptive significance because they control the distance that the spores are shot through air. For this reason, evolutionary modifications to fruiting body architecture, including changes in gill separation and tube diameter in mushrooms, must be tightly linked to alterations in spore morphology.

  20. Sensitivity of thermally treated Bacillus subtilis spores to subsequent irradiation

    International Nuclear Information System (INIS)

    Mostafa, S.A.; El-Zawahry, Y.A.; Awny, N.M.

    1986-01-01

    B. subtilis spores exposed to thermal treatment at 70 or 80 0 C for 1 hr were more sensitive to subsequent radiation exposure than non-heated spores. Deactivation of previously heated spores by increasing dose of 0-radiation followed an exponential function while, for non-heated spores a shoulder followed by exponential deactivation was noticed. Combined heat-radiation treatment exhibited a synergistic effect on spore deactivation at low irradiation doses, while at high irradiation doses, the effect was more or less additive. Added values of spore injury was higher for B. subtilis spores that received heat and radiation separately than the observed injury for spores that received combined treatment (heat followed by radiation). Results of spore deactivation and injury due to heat followed by radiation treatment are discussed in comparison to those of spores that received radiation-heat sequence

  1. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores

    NARCIS (Netherlands)

    Abhyankar, Wishwas R.; Kamphorst, Kiki; Swarge, Bhagyashree N.; van Veen, Henk; van der Wel, Nicole N.; Brul, Stanley; de Koster, Chris G.; de Koning, Leo J.

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has

  2. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics

    Science.gov (United States)

    Peng, Lixin; Chen, De; Setlow, Peter; Li, Yong-qing

    2009-01-01

    Raman scattering spectroscopy and elastic light scattering intensity (ESLI) were used to simultaneously measure levels of Ca-dipicolinic acid (CaDPA) and changes in spore morphology and refractive index during germination of individual B. subtilis spores with and without the two redundant enzymes (CLEs), CwlJ and SleB, that degrade spores’ peptidoglycan cortex. Conclusions from these measurements include: 1) CaDPA release from individual wild-type germinating spores was biphasic; in a first heterogeneous slow phase, Tlag, CaDPA levels decreased ∼15% and in the second phase ending at Trelease, remaining CaDPA was released rapidly; 2) in L-alanine germination of wild-type spores and spores lacking SleB: a) the ESLI rose ∼2-fold shortly before Tlag at T1; b) following Tlag, the ESLI again rose ∼2-fold at T2 when CaDPA levels had decreased ∼50%; and c) the ESLI reached its maximum value at ∼Trelease and then decreased; 3) in CaDPA germination of wild-type spores: a) Tlag increased and the first increase in ESLI occurred well before Tlag, consistent with different pathways for CaDPA and L-alanine germination; b) at Trelease the ESLI again reached its maximum value; 4) in L-alanine germination of spores lacking both CLEs and unable to degrade their cortex, the time ΔTrelease (Trelease–Tlag) for excretion of ≥75% of CaDPA was ∼15-fold higher than that for wild-type or sleB spores; and 5) spores lacking only CwlJ exhibited a similar, but not identical ESLI pattern during L-alanine germination to that seen with cwlJ sleB spores, and the high value for ΔTrelease. PMID:19374431

  3. Fighting Ebola through Novel Spore Decontamination Technologies for the Military

    Directory of Open Access Journals (Sweden)

    Christopher J. Doona

    2015-08-01

    Full Text Available AbstractRecently, global public health organizations such as Doctors without Borders (MSF, the World Health Organization (WHO, Public Health Canada, National Institutes of Health (NIH, and the U.S. government developed and deployed Field Decontamination Kits (FDKs, a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned. The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2 produced from a patented invention developed by researchers at the US Army – Natick Soldier RD&E Center (NSRDEC and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established nonthermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers

  4. Protection of Bacillus pumilus spores by catalases.

    Science.gov (United States)

    Checinska, Aleksandra; Burbank, Malcolm; Paszczynski, Andrzej J

    2012-09-01

    Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present.

  5. [Survival of Bacillus anthracis spores in various tannery baths].

    Science.gov (United States)

    Mendrycka, M; Mierzejewski, J

    2000-01-01

    The influence of tannery baths: liming, deliming, bating, pickling, tanning, retannage on the survival and on the germination dynamism of B. anthracis spores (Sterne strain) was investigated. The periods and the conditions of this influence were established according to technological process of cow hide tannage. Practically after every bath some part of the spores remained vital. The most effective killing of spores occurred after pickling, liming and deliming. Inversely, the most viable spores remained after bating and retannage process. The lack of correlation that was observed between survival and germination of spores after retannage bath can be explained by different mechanism of spores germination inhibition and their killing.

  6. Heterologous expression of VHb can improve the yield and quality of biocontrol fungus Paecilomyces lilacinus, during submerged fermentation.

    Science.gov (United States)

    Zhang, Shumeng; Wang, Jieping; Wei, Yale; Tang, Qing; Ali, Maria Kanwal; He, Jin

    2014-10-10

    Paecilomyces lilacinus is an egg-parasitic fungus which is effective against plant-parasitic nematodes and it has been successfully commercialized for the control of many plant-parasitic nematodes. However, during the large-scale industrial fermentation process of the filamentous fungus, the dissolved oxygen supply is a limiting factor, which influences yield, product quality and production cost. To solve this problem, we intended to heterologously express VHb in P. lilacinus ACSS. After optimizing the vgb gene, we fused it with a selection marker gene nptII, a promoter PgpdA and a terminator TtrpC. The complete expression cassette PgpdA-nptII-vgb-TtrpC was transferred into P. lilacinus ACSS by Agrobacterium tumefaciens-mediated transformation. Consequently, we successfully screened an applicable fungus strain PNVT8 which efficiently expressed VHb. The submerged fermentation experiments demonstrated that the expression of VHb not only increased the production traits of P. lilacinus such as biomass and spore production, but also improved the beneficial product quality and application value, due to the secretion of more protease and chitinase. It can be speculated that the recombinant strain harboring vgb gene will have a growth advantage over the original strain under anaerobic conditions in soil and therefore will possess higher biocontrol efficiency against plant-parasitic nematodes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Ptaquiloside in bracken spores from Britain

    DEFF Research Database (Denmark)

    Rasmussen, Lars Holm; Schmidt, Bjørn; Sheffield, Elizabeth

    2013-01-01

    Secondary metabolites from bracken fern (Pteridium aquilinum (L.) Kuhn) are suspected of causing cancer in humans. The main carcinogen is the highly water-soluble norsesquiterpene glucoside ptaquiloside, which may be ingested by humans through food, e.g. via contaminated water, meat or milk. It has...... been postulated that carcinogens could also be ingested through breathing air containing bracken spores. Ptaquiloside has not previously been identified in bracken spores. The aim of the study was to determine whether ptaquiloside is present in bracken spores, and if so, to estimate its content...

  8. Asynchronous spore germination in isogenic natural isolates of Saccharomyces paradoxus.

    Science.gov (United States)

    Stelkens, Rike B; Miller, Eric L; Greig, Duncan

    2016-05-01

    Spores from wild yeast isolates often show great variation in the size of colonies they produce, for largely unknown reasons. Here we measure the colonies produced from single spores from six different wild Saccharomyces paradoxus strains. We found remarkable variation in spore colony sizes, even among spores that were genetically identical. Different strains had different amounts of variation in spore colony sizes, and variation was not affected by the number of preceding meioses, or by spore maturation time. We used time-lapse photography to show that wild strains also have high variation in spore germination timing, providing a likely mechanism for the variation in spore colony sizes. When some spores from a laboratory strain make small colonies, or no colonies, it usually indicates a genetic or meiotic fault. Here, we demonstrate that in wild strains spore colony size variation is normal. We discuss and assess potential adaptive and non-adaptive explanations for this variation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Strategy to inactivate Clostridium perfringens spores in meat products.

    Science.gov (United States)

    Akhtar, Saeed; Paredes-Sabja, Daniel; Torres, J Antonio; Sarker, Mahfuzur R

    2009-05-01

    The current study aimed to develop an inactivation strategy for Clostridium perfringens spores in meat through a combination of spore activation at low pressure (100-200 MPa, 7 min) and elevated temperature (80 degrees C, 10 min); spore germination at high temperatures (55, 60 or 65 degrees C); and inactivation of germinated spores with elevated temperatures (80 and 90 degrees C, 10 and 20 min) and high pressure (586 MPa, at 23 and 73 degrees C, 10 min). Low pressures (100-200 MPa) were insufficient to efficiently activate C. perfringens spores for germination. However, C. perfringens spores were efficiently activated with elevated temperature (80 degrees C, 10 min), and germinated at temperatures lethal for vegetative cells (>or= 55 degrees C) when incubated for 60 min with a mixture of L-asparagine and KCl (AK) in phosphate buffer (pH 7) and in poultry meat. Inactivation of spores (approximately 4 decimal reduction) in meat by elevated temperatures (80-90 degrees C for 20 min) required a long germination period (55 degrees C for 60 min). However, similar inactivation level was reached with shorter germination period (55 degrees C for 15 min) when spore contaminated-meat was treated with pressure-assisted thermal processing (568 MPa, 73 degrees C, 10 min). Therefore, the most efficient strategy to inactivate C. perfringens spores in poultry meat containing 50 mM AK consisted: (i) a primary heat treatment (80 degrees C, 10 min) to pasteurize and denature the meat proteins and to activate C. perfringens spores for germination; (ii) cooling of the product to 55 degrees C in about 20 min and further incubation at 55 degrees C for about 15 min for spore germination; and (iii) inactivation of germinated spores by pressure-assisted thermal processing (586 MPa at 73 degrees C for 10 min). Collectively, this study demonstrates the feasibility of an alternative and novel strategy to inactivate C. perfringens spores in meat products formulated with germinants specific for C

  10. Spore coat protein of Bacillus subtilis. Structure and precursor synthesis.

    Science.gov (United States)

    Munoz, L; Sadaie, Y; Doi, R H

    1978-10-10

    The coat protein of Bacillus subtilis spores comprises about 10% of the total dry weight of spores and 25% of the total spore protein. One protein with a molecular weight of 13,000 to 15,000 comprises a major portion of the spore coat. This mature spore coat protein has histidine at its NH2 terminus and is relatively rich in hydrophobic amino acids. Netropsin, and antibiotic which binds to A-T-rich regions of DNA and inhibits sporulation, but not growth, decreased the synthesis of this spore coat protein by 75%. A precursor spore coat protein with a molecular weight of 25,000 is made initially at t1 of sporulation and is converted to the mature spore coat protein with a molecular weight of 13,500 at t2 - t3. These data indicate that the spore coat protein gene is expressed very early in sporulation prior to the modifications of RNA polymerase which have been noted.

  11. Correlation study of resistance components in the selection of Capsicum genotypes resistant to the fungus Colletotrichum gloeosporioides.

    Science.gov (United States)

    Maracahipes, A C; Correa, J W S; Teodoro, P E; Araújo, K L; Barelli, M A A; Neves, L G

    2017-08-17

    Anthracnose is among the major diseases of the Capsicum culture. It is caused by different species of the genus Colletotrichum, which may result in major damages to the cultivation of this genus. Studies aiming to search for cultivars resistant to diseases are essential to reduce financial and agricultural losses. The objective of this study was to evaluate the correlation between the variables analyzed to select Capsicum genotypes resistant to the fungus Colletotrichum gloeosporioides. The experimental design was completely randomized blocks with three replications, 88 treatments, four ripe fruits, and four unripe fruits per replication. Accessions of Capsicum from the Germplasm Active Bank of Universidade do Estado de Mato Grosso (UNEMAT) were evaluated as for resistance to the fungus. Fruits were collected from each plot and taken to the laboratory for disinfestation. A lesion was performed in the middle region of the fruit using a sterile needle, where a spore suspension drop, adjusted to 10 6 spores/mL, was deposited. An ultrapure water drop was deposited into control fruits. The fruits were placed in humid chambers, and the evaluation was performed by measuring the diameter and the length of lesions using a caliper for 11 days. After data were obtained, analyses of variance, correlation, and path analysis were performed using the GENES software and R. According to the likelihood-ratio test, the effects of genotypes (G), fruit stage (F), and its interaction (G x F) were significant (P < 0.05). There were differences between the magnitudes of genotype correlations according to fruit stage. Different variables must be taken into account for an indirect selection in this culture in function of fruit stage since the variable AUDPC is an important criterion for selecting resistant accessions. We found through the path analysis that the variables DULRD and DULRL exerted the greatest effects on AUDPC.

  12. Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2011-12-01

    Full Text Available The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1 (Mstu1, an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic subunit of protein kinase A (CpkA in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1 were significantly reduced in both Δmac1 and ΔcpkA mutants, consistent with regulation by the cAMP/PKA signaling pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant infection by the rice blast fungus.

  13. New pressure and temperature effects on bacterial spores

    Science.gov (United States)

    Mathys, A.; Heinz, V.; Knorr, D.

    2008-07-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122°C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80°C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa with 37

  14. New pressure and temperature effects on bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Mathys, A; Knorr, D [Berlin University of Technology, Department of Food Biotechnology and Food Process Engineering, Koenigin-Luise-Str. 22, D-14195 Berlin (Germany); Heinz, V [German Institute of Food Technology, p. o. box 1165, D-49601, Quackenbrueck (Germany)], E-mail: alexander.mathys@tu-berlin.de

    2008-07-15

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122 deg. C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80 deg. C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa

  15. New pressure and temperature effects on bacterial spores

    International Nuclear Information System (INIS)

    Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    The mechanism of inactivation of bacterial spores by heat and pressure is still a matter of discussion. Obviously, the change of the dissociation equilibrium under pressure and temperature plays a dominant role in inactivation of microorganisms. Heat and pressure inactivation of Geobacillus. stearothermophilus spores at different initial pH-values in ACES and phosphate buffer confirmed this view. Thermal inactivation in ACES buffer at 122 deg. C resulted in higher logarithmic reductions. Contrary, after pressure treatment at 900 MPa with 80 deg. C phosphate buffer showed higher inactivation. These results indicated the different dissociation equilibrium shifts in buffer systems by heat and pressure. Due to preparation, storage and handling of highly concentrated spore suspensions the clumping and the formation of aggregates can hardly be avoided. Consequently, the impact of the agglomeration size distribution on the quantitative assessment of G. stearothermophilus spore inactivation was determined by using a three-fold dynamic optical backreflexion measurement. Two limiting cases have been discriminated in mathematical modelling: three dimensional, spherical packing for maximum spore count and two dimensional, circular packing for minimum spore count of a particular agglomerate. Thermal inactivation studies have been carried out in thin glass capillaries, where by using numerical simulations the non isothermal conditions were modelled and taken into account. It is shown that the shoulder formation often found in thermal spore inactivation can sufficiently be described by first-order inactivation kinetics when the agglomeration size is considered. In case of high pressure inactivation agglomerations could be strongly changed by high forces at compression and especially decompression phase. The physiological response of Bacillus licheniformis spores to high pressure was investigated using multiparameter flow cytometry. Spores were treated by high pressure at 150 MPa

  16. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    Science.gov (United States)

    2015-06-19

    decontamination strategies>> Maryline DEFEZ 1𔃼, Melissa HUNTER3J Susan WELKOS :~J Christopher COTE3 1 University Grenoble-Alpes, Grenoble, France. 1...inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores potential spore decontamination strategies 5a...8217 • Accidentally in Humans • Natural reservoir is soil • Anthrax Disease Cycle: - animals infected by soilborne spores in food and water or bites from certain

  17. Spore analysis and tetrad dissection of Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    Here we describe the processing of Schizosaccharomyces pombe spores in batches (random spore analysis) or through tetrad dissections. Spores are usually prepared from matings between haploid strains (producing zygotic asci) or from sporulating diploids (producing azygotic asci). In random spore...

  18. Dispersal of spores following a persistent random walk.

    Science.gov (United States)

    Bicout, D J; Sache, I

    2003-03-01

    A model of a persistent random walk is used to describe the transport and deposition of the spore dispersal process. In this model, the spore particle flies along straight line trajectories, with constant speed v, which are interrupted by scattering, originating from interaction of spores with the field and wind variations, which randomly change its direction. To characterize the spore dispersal gradients, we have derived analytical expressions of the deposition probability epsilon (r|v) of airborne spores as a function of the distance r from the spore source in an infinite free space and in a disk of radius R with an absorbing edge that mimics an agricultural field surrounded with fields of nonhost plants and bare land. It is found in the free space that epsilon (r|v) approximately e(-alphar/l), with alpha a function of l(d)/l, where l and l(d) are the scattering and deposition mean free paths, respectively. In the disk, however, epsilon (r|v) is an infinite series of Bessel functions and, exhibits three regimes: absorbing (Rl(d)).

  19. The Control of Fungus Uromycladium tepperianum on Seedling of Sengon (Falcataria moluccana (Miq. Barneby & J.W.Grimes in a nursery

    Directory of Open Access Journals (Sweden)

    Kurniawati Purwaka Putri

    2017-08-01

    Full Text Available Sengon (Falcataria moluccana (Miq. Barneby & J.W.Grimes is one of timber producing species of high economic value. Recently, sengon productivity decreases due to pests and diseases, attack is caused by the fungus Uromycladium tepperianum (SACE. McAlp. The control of gall rust disease at seedling level is important, because the stadia nursery are the most vulnerable. The aim of this research was to determine the effectiveness of the type of control in supressing the fungus of U. tepperianum and the growth of sengon in a nursery. The research design used a completely randomized design (CRD with five treatments of gall rust disease control types i.e. control ; biological fertilizer of Plant Growth Promoting Rhizobacteria (PGPR (5 g -L of water, biofungicide (5 g-L of water; chemical fungicide (2 g-L of water; and boron (300 ppm. Each treatment consisted of 20 seedlings repeated 4 times. The observed response were the number of fungal spores, diameter and height of seedlings. In addition, calculation of the effectiveness of the type of controller was counted. The results showed that after two weeks of fungal infections, the highest seedling growth was the seedling treated with fungicide (0.53 cm, while the lowest was the seedling treated with biological fungicide (0.32 cm. PGPR, fungicide biological, chemical fungicides and boron did not effective to the attack of fungus and to increase the growth of height and diameter of sengon seedling after the 4th week of the fungus infection.

  20. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    Science.gov (United States)

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective.

  1. DNA repair in ultraviolet-irradiated spores of Bacillus subtilis

    International Nuclear Information System (INIS)

    Wang, T.C.V.

    1976-01-01

    It has been shown previously by others that at least two independent repair mechanisms are present in Bacillus subtilis for removing ''spore photoproduct'' from DNA of ultraviolet (254 nm)-irradiated spores after germination. One of these, designated as ''spore repair,'' is shown in this study to restore ''spore photoproduct'' to two thymine residues, leaving the DNA backbone intact at the end of the process in vivo. The circumstances under which this repair can occur and some characteristics of its energy requirements have been clarified. The second repair process is identified as excision repair, which can excise both ''spore photoproduct'' from DNA of irradiated spores and cyclobutane-type pyrimidine dimers from DNA of irradiated vegetative cells. In this study it is shown that the gene hcr 1 affects an enzyme activity for the incision step initiating this repair, while the gene hcr 42 affects a step subsequent to incision in the mechanism. In addition a third, independent repair system, termed ''germinative excision repair,'' is discovered and shown to be specific for excising only cyclobutane-type pyrimidine dimers but not ''spore photoproduct.'' This repair system is responsible for the observed high ultraviolet-resistance and temporary capacity for host cell reactivation on recently germinated spores of Bacillus subtilis HCR - strains

  2. The Role of the Electrostatic Force in Spore Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Tsouris, Costas [ORNL

    2010-01-01

    Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces. The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0.03 {micro}C/cm{sup 2} at 20% relative humidity and decreases with increasing humidity. The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive. The Coulombic force for spore-mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive. The magnitude of both forces decreases with increasing humidity. The electrostatic forces are added to other force components, e.g., van der Waals and capillary forces, to obtain the adhesion force for each system. The adhesion forces measured by AFM are compared to the estimated values. It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces.

  3. Effect of high hydrostatic pressure on mycelial development, spore viability and enzyme activity of Penicillium Roqueforti.

    Science.gov (United States)

    Martínez-Rodríguez, Yamile; Acosta-Muñiz, Carlos; Olivas, Guadalupe I; Guerrero-Beltrán, José; Rodrigo-Aliaga, Dolores; Mujica-Paz, Hugo; Welti-Chanes, Jorge; Sepulveda, David R

    2014-01-03

    This study investigated the effect of high hydrostatic pressure treatments on mycelial development, spore viability, and total proteolytic and lipolytic activity of Penicillium roqueforti PV-LYO 10 D. Fungus growing in liquid medium was pressure-treated at 300, 400, and 500 MPa for 10 min at 20°C following seven days of incubation at 25°C and analyzed periodically up to day 9 after treatments to evaluate the effect on fungal growth. Mycelial mass of P. roqueforti was significantly affected at all pressure treatments evaluated, being 15.48%, 22.28%, 30.03%, and 12.53% lower than controls on day 1, 3, 6, and 9 after 300 MPa treatment, respectively. In a similar way, at 400 and 500 MPa, mycelial mass was 31.08% and 60.34% lower than controls one day after treatments and 49.74% and 80.85% lower on day 9, respectively. The viability of P. roqueforti spores decreased by 36.53% at 300 MPa, and complete inactivation took place at ≥400 MPa from an initial count of 7 log cfu/mL. Total proteolytic activity was not significantly affected at 300 MPa but was reduced by 18.22% at 400 MPa and by 43.18% at 500 MPa. Total lipolytic activity also decreased as the intensity of the pressure treatments increased. 21.69%, 39.12%, and 56.26% activity reductions were observed when treatments of 300, 400 and 500 MPa were applied, respectively. The results from this study show that pressure treatments are able to control growth, inactivate spores, and alter enzyme activity of P. roqueforti, which could be of interest in extending the shelf-life of blue-veined cheeses and other food products. © 2013.

  4. Decreased UV light resistance of spores of Bacillus subtilis strains deficient in pyrimidine dimer repair and small, acid-soluble spore proteins

    International Nuclear Information System (INIS)

    Setlow, B.; Setlow, P.

    1988-01-01

    Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance

  5. The cellulose-binding activity of the PsB multiprotein complex is required for proper assembly of the spore coat and spore viability in Dictyostelium discoideum.

    Science.gov (United States)

    Srinivasan, S; Griffiths, K R; McGuire, V; Champion, A; Williams, K L; Alexander, S

    2000-08-01

    The terminal event of spore differentiation in the cellular slime mould Dictyostelium discoideum is the assembly of the spore coat, which surrounds the dormant amoeba and allows the organism to survive during extended periods of environmental stress. The spore coat is a polarized extracellular matrix composed of glycoproteins and cellulose. The process of spore coat formation begins by the regulated secretion of spore coat proteins from the prespore vesicles (PSVs). Four of the major spore coat proteins (SP96, PsB/SP85, SP70 and SP60) exist as a preassembled multiprotein complex within the PSVs. This complete complex has an endogenous cellulose-binding activity. Mutant strains lacking either the SP96 or SP70 proteins produce partial complexes that do not have cellulose-binding activity, while mutants lacking SP60 produce a partial complex that retains this activity. Using a combination of immunofluorescence microscopy and biochemical methods we now show that the lack of cellulose-binding activity in the SP96 and SP70 mutants results in abnormally assembled spore coats and spores with greatly reduced viability. In contrast, the SP60 mutant, in which the PsB complex retains its cellulose-binding activity, produces spores with apparently unaltered structure and viability. Thus, it is the loss of the cellulose-binding activity of the PsB complex, rather than the mere loss of individual spore coat proteins, that results in compromised spore coat structure. These results support the idea that the cellulose-binding activity associated with the complete PsB complex plays an active role in the assembly of the spore coat.

  6. The role of heat resistance in thermorestoration of hydrated bacterial spores

    International Nuclear Information System (INIS)

    Friedman, Y.S.; Grecz, N.

    1973-01-01

    This study for the first time presents evidence of the distinct role played in thermorestoration by cellular determinants such as the resistance to heat and radiation, and the ionic state of spores. In the past only radiochemical determinants associated with radical annealment have been studied in hydrated systems. The basic heat resistance of spores plays a significant role in the precipitous drop in spore survival due to 0.45 Mrad radiation plus heat above 65-75 0 C for B.cereus and 75-95 0 C for B.stearothermophilus. The effect of the spores radiation resistance was not distinct except in the frozen state and at the saturation plateau of thermorestoration where the radiation resistant B.cereus showed ca. 1 log cycle higher survival than the radiation sensitive B.stearothermophilus. When spores are chemically converted into their H + and Ca ++ ionic forms, the H + spores are distinctly more responsive than Ca ++ spores to processes of radical annealment responsible for thermorestoration in hydrated spore systems. At temperatures of extensive thermorestoration of water radicals, H + spores showed higher survival than Ca ++ spores. (F.J.)

  7. Live cell imaging of germination and outgrowth of individual Bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker

    NARCIS (Netherlands)

    Pandey, R.; ter Beek, A.; Vischer, N.O.E.; Smelt, J.P.P.M.; Brul, S.; Manders, E.M.M.

    2013-01-01

    Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more

  8. Inhibition of spore germination of Alternaria tenuis by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Couey, H.M.

    1962-08-01

    As a part of a continuing study of SO/sub 2/ fumigation of table grapes, the effect of SO/sub 2/ on spores of an isolate of A. tenuis Auct. causing decay of table grapes was determined. The amount of SO/sub 2/ required to inhibit completely spore germination depended on availability of moisture and the temperature. At 20/sup 0/C, wet spores required 20-min exposure to 100 ppm SO/sub 2/ to prevent germination, but spores equilibrated at 90% relative humidity (RH) required 10-min exposure to 1000 ppm SO/sub 2/. Dry spores at 60% RH were unaffected by a 20-min exposure to 4000 ppm SO/sub 2/. Increasing the temperature in the range 5-20/sup 0/C increased effectiveness of the SO/sub 2/ treatment. A comparison of Alternaria with Botrytis cinerea Fr. (studied earlier) showed that wet spores of these organisms were about equally sensitive to SO/sub 2/, but that dry Alternaria spores were more resistant to SO/sub 2/ than dry Botrytis spores under comparable conditions.

  9. Macroalgal spore dysfunction: ocean acidification delays and weakens adhesion.

    Science.gov (United States)

    Guenther, Rebecca; Miklasz, Kevin; Carrington, Emily; Martone, Patrick T

    2018-04-01

    Early life stages of marine organisms are predicted to be vulnerable to ocean acidification. For macroalgae, reproduction and population persistence rely on spores to settle, adhere and continue the algal life cycle, yet the effect of ocean acidification on this critical life stage has been largely overlooked. We explicitly tested the biomechanical impact of reduced pH on early spore adhesion. We developed a shear flume to examine the effect of reduced pH on spore attachment time and strength in two intertidal rhodophyte macroalgae, one calcified (Corallina vancouveriensis) and one noncalcified (Polyostea robusta). Reduced pH delayed spore attachment of both species by 40%-52% and weakened attachment strength in C. vancouveriensis, causing spores to dislodge at lower flow-induced shear forces, but had no effect on the attachment strength of P. robusta. Results are consistent with our prediction that reduced pH disrupts proper curing and gel formation of spore adhesives (anionic polysaccharides and glycoproteins) via protonation and cation displacement, although experimental verification is needed. Our results demonstrate that ocean acidification negatively, and differentially, impacts spore adhesion in two macroalgae. If results hold in field conditions, reduced ocean pH has the potential to impact macroalgal communities via spore dysfunction, regardless of the physiological tolerance of mature thalli. © 2017 Phycological Society of America.

  10. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics

    OpenAIRE

    Peng, Lixin; Chen, De; Setlow, Peter; Li, Yong-qing

    2009-01-01

    Raman scattering spectroscopy and elastic light scattering intensity (ESLI) were used to simultaneously measure levels of Ca-dipicolinic acid (CaDPA) and changes in spore morphology and refractive index during germination of individual B. subtilis spores with and without the two redundant enzymes (CLEs), CwlJ and SleB, that degrade spores’ peptidoglycan cortex. Conclusions from these measurements include: 1) CaDPA release from individual wild-type germinating spores was biphasic; in a first h...

  11. Atmospheric mold spore counts in relation to meteorological parameters

    Science.gov (United States)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (Pmodel was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  12. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    Science.gov (United States)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  13. Validated modified Lycopodium spore method development for ...

    African Journals Online (AJOL)

    Validated modified lycopodium spore method has been developed for simple and rapid quantification of herbal powdered drugs. Lycopodium spore method was performed on ingredients of Shatavaryadi churna, an ayurvedic formulation used as immunomodulator, galactagogue, aphrodisiac and rejuvenator. Estimation of ...

  14. Fate of ingested Clostridium difficile spores in mice.

    Directory of Open Access Journals (Sweden)

    Amber Howerton

    Full Text Available Clostridium difficile infection (CDI is a leading cause of antibiotic-associated diarrhea, a major nosocomial complication. The infective form of C. difficile is the spore, a dormant and resistant structure that forms under stress. Although spore germination is the first committed step in CDI onset, the temporal and spatial distribution of ingested C. difficile spores is not clearly understood. We recently reported that CamSA, a synthetic bile salt analog, inhibits C. difficile spore germination in vitro and in vivo. In this study, we took advantage of the anti-germination activity of bile salts to determine the fate of ingested C. difficile spores. We tested four different bile salts for efficacy in preventing CDI. Since CamSA was the only anti-germinant tested able to prevent signs of CDI, we characterized CamSa's in vitro stability, distribution, and cytotoxicity. We report that CamSA is stable to simulated gastrointestinal (GI environments, but will be degraded by members of the natural microbiota found in a healthy gut. Our data suggest that CamSA will not be systemically available, but instead will be localized to the GI tract. Since in vitro pharmacological parameters were acceptable, CamSA was used to probe the mouse model of CDI. By varying the timing of CamSA dosage, we estimated that C. difficile spores germinated and established infection less than 10 hours after ingestion. We also showed that ingested C. difficile spores rapidly transited through the GI tract and accumulated in the colon and cecum of CamSA-treated mice. From there, C. difficile spores were slowly shed over a 96-hour period. To our knowledge, this is the first report of using molecular probes to obtain disease progression information for C. difficile infection.

  15. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

    Science.gov (United States)

    Friedline, Anthony W; Zachariah, Malcolm M; Middaugh, Amy N; Garimella, Ravindranath; Vaishampayan, Parag A; Rice, Charles V

    2015-11-05

    Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents.

  16. A continental view of pine-associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern.

    Science.gov (United States)

    Glassman, Sydney I; Peay, Kabir G; Talbot, Jennifer M; Smith, Dylan P; Chung, Judy A; Taylor, John W; Vilgalys, Rytas; Bruns, Thomas D

    2015-03-01

    Ecologists have long acknowledged the importance of seed banks; yet, despite the fact that many plants rely on mycorrhizal fungi for survival and growth, the structure of ectomycorrhizal (ECM) fungal spore banks remains poorly understood. The primary goal of this study was to assess the geographic structure in pine-associated ECM fungal spore banks across the North American continent. Soils were collected from 19 plots in forests across North America. Fresh soils were pyrosequenced for fungal internal transcribed spacer (ITS) amplicons. Adjacent soil cores were dried and bioassayed with pine seedlings, and colonized roots were pyrosequenced to detect resistant propagules of ECM fungi. The results showed that ECM spore banks correlated strongly with biogeographic location, but not with the identity of congeneric plant hosts. Minimal community overlap was found between resident ECM fungi vs those in spore banks, and spore bank assemblages were relatively simple and dominated by Rhizopogon, Wilcoxina, Cenococcum, Thelephora, Tuber, Laccaria and Suillus. Similar to plant seed banks, ECM fungal spore banks are, in general, depauperate, and represent a small and rare subset of the mature forest soil fungal community. Yet, they may be extremely important in fungal colonization after large-scale disturbances such as clear cuts and forest fires. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Small acid soluble proteins for rapid spore identification.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  18. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    Science.gov (United States)

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Directory of Open Access Journals (Sweden)

    Kevin eEgan

    2016-04-01

    Full Text Available Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB. Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural, approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable

  20. Spore formation and toxin production in Clostridium difficile biofilms.

    Science.gov (United States)

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  1. Spore formation and toxin production in Clostridium difficile biofilms.

    Directory of Open Access Journals (Sweden)

    Ekaterina G Semenyuk

    Full Text Available The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA, polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  2. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Science.gov (United States)

    Egan, Kevin; Field, Des; Rea, Mary C; Ross, R Paul; Hill, Colin; Cotter, Paul D

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  3. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  4. Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen.

    Directory of Open Access Journals (Sweden)

    Boris Zimmermann

    Full Text Available Fungal spores and plant pollen cause respiratory diseases in susceptible individuals, such as asthma, allergic rhinitis and hypersensitivity pneumonitis. Aeroallergen monitoring networks are an important part of treatment strategies, but unfortunately traditional analysis is time consuming and expensive. We have explored the use of infrared spectroscopy of pollen and spores for an inexpensive and rapid characterization of aeroallergens.The study is based on measurement of spore and pollen samples by single reflectance attenuated total reflectance Fourier transform infrared spectroscopy (SR-ATR FTIR. The experimental set includes 71 spore (Basidiomycota and 121 pollen (Pinales, Fagales and Poales samples. Along with fresh basidiospores, the study has been conducted on the archived samples collected within the last 50 years.The spectroscopic-based methodology enables clear spectral differentiation between pollen and spores, as well as the separation of confamiliar and congeneric species. In addition, the analysis of the scattering signals inherent in the infrared spectra indicates that the FTIR methodology offers indirect estimation of morphology of pollen and spores. The analysis of fresh and archived spores shows that chemical composition of spores is well preserved even after decades of storage, including the characteristic taxonomy-related signals. Therefore, biochemical analysis of fungal spores by FTIR could provide economical, reliable and timely methodologies for improving fungal taxonomy, as well as for fungal identification and monitoring. This proof of principle study shows the potential for using FTIR as a rapid tool in aeroallergen studies. In addition, the presented method is ready to be immediately implemented in biological and ecological studies for direct measurement of pollen and spores from flowers and sporocarps.

  5. Detection of spore coat protein of Bacillus subtilis by immunological method

    International Nuclear Information System (INIS)

    Uchida, Aritsune; Kadota, Hajime

    1976-01-01

    The spore coat protein of Bacillus subtilis was separated, and the qualitative assay for the spore coat protein was made by use of the immunological technique. The immunological method was found to be useful for judging the maturation of spore coat in the course of sporulation. The spore coat protein antigen appeared at t 2 stage of sporulation. The addition of rifampicin at the earlier stages of sporulation inhibited the increase in content of the spore coat antigen. (auth.)

  6. Biochemical Characterization of Fungus Isolated during In vitro Propagation of Bambusa balcooa.

    Science.gov (United States)

    Tyagi, Bhawna; Tewari, Salil; Dubey, Ashutosh

    2018-01-01

    Bambusa balcooa ( Poaceae: Bambusoideae ) is a multipurpose bamboo species, which is native of the Indian subcontinent. B. balcooa is regarded as one of the best species for scaffolding and building purposes because of its strong culm. Other uses include paper pulp, handicrafts, and products of the wood chip industry. Due to these various uses in industries, this species has been identified as one of the priority bamboos by the National Bamboo Mission. This study is designed to analyze the identification of fungus and develop the strategy to eliminate the contamination during in vitro establishment of B. balcooa through nodal part. Fungus contamination is a problem which is encountered during in vitro establishment of B. balcooa cultures. In the present study, fungus contamination from in vitro cultured plant has been isolated and subjected to partial sequence analysis of the 18S rRNA gene to identify the fungus strain. Experiments were designed to develop a strategy for removal of the fungus contamination with the help of antifungal compounds and commercial antimicrobial supplement supplied by HiMedia. Fusarium equiseti was identified as endophytic fungus. It was observed that antimicrobial supplement at concentration of 500 μl/l was more effective concentration to remove fungus contamination and not showed any detrimental effect on growth parameters of shoot. This experiment would help in identification and to get rid of fungal contamination and improve the in vitro establishment of B. balcooa cultures for large-scale propagation. Endogenous fungus was isolated from contaminated culture of B. balcooa , and it was identified as Fusarium equiseti and submitted to NCBI under accession no. KP274872. The endophytic fungus had shown substantial production of amylase, cellulase, and protease media. Gibberellic acid (GA 3 ) production by F. equiseti was maximum on the 7 th day on inoculation. Abbreviations used: B. balcooa : Bambusa balcooa , F. equiseti : Fusarium

  7. Effects of High Pressure on Bacillus licheniformis Spore Germination and Inactivation.

    Science.gov (United States)

    Borch-Pedersen, Kristina; Mellegård, Hilde; Reineke, Kai; Boysen, Preben; Sevenich, Robert; Lindbäck, Toril; Aspholm, Marina

    2017-07-15

    Bacillus and Clostridium species form spores, which pose a challenge to the food industry due to their ubiquitous nature and extreme resistance. Pressurization at 300 MPa likely triggers germination by opening dipicolinic acid (DPA) channels present in the inner membrane of the spores. In this work, we expose spores of Bacillus licheniformis , a species associated with food spoilage and occasionally with food poisoning, to high pressure (HP) for holding times of up to 2 h. By using mutant spores lacking one or several GRs, we dissect the roles of the GerA, Ynd, and GerK GRs in moderately HP (mHP; 150 MPa)-induced spore germination. We show that Ynd alone is sufficient for efficient mHP-induced spore germination. GerK also triggers germination with mHP, although at a reduced germination rate compared to that of Ynd. GerA stimulates mHP-induced germination but only in the presence of either the intact GerK or Ynd GR. These results suggests that the effectiveness of the individual GRs in mHP-induced germination differs from their effectiveness in nutrient-induced germination, where GerA plays an essential role. In contrast to Bacillus subtilis spores, treatment with very HP (vHP) of 550 MPa at 37°C did not promote effective germination of B. licheniformis spores. However, treatment with vHP in combination with elevated temperatures (60°C) gave a synergistic effect on spore germination and inactivation. Together, these results provide novel insights into how HP affects B. licheniformis spore germination and inactivation and the role of individual GRs in this process. IMPORTANCE Bacterial spores are inherently resistant to food-processing regimes, such as high-temperature short-time pasteurization, and may therefore compromise food durability and safety. The induction of spore germination facilitates subsequent inactivation by gentler processing conditions that maintain the sensory and nutritional qualities of the food. High-pressure (HP) processing is a nonthermal

  8. Single spore isolation and morphological characterization of local Malaysian isolates of rice blast fungus Magnoporthe grisea

    Science.gov (United States)

    Mishra, Ankitta; Ratnam, Wickneswari; Bhuiyan, Md Atiqur Rahman; Ponaya, Ariane; Jena, Khisord K.

    2015-09-01

    Rice blast is a destructive disease, caused by the fungal pathogen Magnaporthe grisea. It causes considerable damage to rice and leads to crop loss in rice growing regions worldwide. Although fungicides can be used to control rice blast, they generate additional cost in rice production and contamination of environment and food. Therefore, the use of resistant varieties is thought to be one of the most economically and environmentally efficient ways of crop protection from the disease. Six new local Malaysian isolates of M. grisea were isolated using single spore isolation method. Five isolates were from infected leaf samples collected from Kompleks Latihan MADA, Kedah and one was from Kelantan. These isolates were identified using morphological characteristics and microscopic studies and later confirmed by ITSequences. These isolates were induced to sporulate and used for greenhouse screening on two differential rice varieties: Mahsuri (susceptible) and Pongsu Seribu 2 (resistant). Among the 6 isolates, isolate number 3 was found to be the most virulent showing high sporulation while isolate number 4 was very slow growing, and the least virulent.

  9. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    Science.gov (United States)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the

  10. Enhancing Growth of Vigna radiata in the Presence of Pseudomonas aeruginosa Biopolymer and Metarhizium anisopliae Spores

    Directory of Open Access Journals (Sweden)

    Bhagwan N. Rekadwad

    2016-01-01

    Full Text Available Exopolysaccharide producing Pseudomonas aeruginosa NCIM 2945 (PANCL belonging to gamma-proteobacterium and entomopathogenic fungus Metarhizium anisopliae MCC 1129 (MAMCC belonging to Ascomycota were studied for their morphological features biochemical characteristics and plant growth promotion ability. Optimum growth of PANCL was recorded after 24 h at temperature 30°C and pH 7.0. Gram-negative PANCL appeared as white in color, one mm size, circular, opaque, and nonconsistent elevated colonies with entire margin. It has utilized dextrose, fructose, maltose, and sorbitol as carbon source and produced acid in the medium. PANCL was sensitive to Polymyxin B (300 µgm/disc followed by Neomycin (30 µgm/disc, Gentamycin (10 µgm/disc, and Chloramphenicol (30 µgm/disc. PANCL has secreted extracellular lipase, amylase, protease, and exopolysaccharides (EPS. Another fungal strain MAMCC sporulated after 168 h at temperature 30°C and pH 7.0. MAMCC has septate-white mycelium and bears dirty green colored spores. Growth of MAMCC was enhanced in the presence of Neem and Karela-Amla oil (0.1 mL each. Extracellular polysaccharide produced by PANCL and spores of MAMCC promoted growth of dicotyledon Vigna radiata (Mung individually as well as in consortium. Considerable increase in dry weight of Vigna radiata was recorded. Thus, reported PANCL and MAMCC strains have promoted growth Vigna radiata and may be a solution for sustainable agriculture.

  11. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures

    DEFF Research Database (Denmark)

    Olsson, P.A.; Bååth, E.; Jakobsen, I.

    1997-01-01

    The distribution of an arbuscular mycorrhizal (AM) fungus between soil and roots, and between mycelial and storage structures, was studied by use of the fatty acid signature 16:1 omega 5. Increasing the soil phosphorus level resulted in a decrease in the level of the fatty acid 16:1 omega 5...... in the soil and roots. A similar decrease was detected by microscopic measurements of root colonization and of the length of AM fungal hyphae in the soil. The fatty acid 16:1 omega 5 was estimated from two types of lipids, phospholipids and neutral lipids, which mainly represent membrane lipids and storage...... lipids, respectively. The numbers of spores of the AM fungus formed in the soil correlated most closely, with neutral lipid fatty acid 16:1 omega 5, whereas the hyphal length in the soil correlated most closely with phospholipid fatty acid 16:1 omega 5. The fungal neutral lipid/phospholipid ratio...

  12. Pollen and spores of terrestrial plants

    Science.gov (United States)

    Bernhardt, Christopher E.; Willard, Debra A.; Shennan, Ian; Long, Antony J.; Horton, Benjamin P.

    2015-01-01

    Pollen and spores are valuable tools in reconstructing past sea level and climate because of their ubiquity, abundance, and durability as well as their reciprocity with source vegetation to environmental change (Cronin, 1999; Traverse, 2007; Willard and Bernhardt, 2011). Pollan is found in many sedimentary environments, from freshwater to saltwater, terrestrial to marine. It can be abundant in a minimal amount of sample material, for example half a gram, as concentrations can be as high as four million grains per gram (Traverse, 2007). The abundance of pollen in a sample lends it to robust statistical analysis for the quantitative reconstruction of environments. The outer cell wall is resistant to decay in sediments and allows palynomorphs (pollen and spores) to record changes in plant communities and sea level over millions of years. These characteristics make pollen and spores a powerful tool to use in sea-level research.This chapter describes the biology of pollen and spores and how they are transported and preserved in sediments. We present a methodology for isolating pollen from sediments and a general language and framework to identify pollen as well as light micrographs of a selection of common pollen grains, We then discuss their utility in sea-level research.

  13. Expression and characterization of a novel spore wall protein from ...

    African Journals Online (AJOL)

    Microsporidia are obligate intracellular, eukaryotic, spore-forming parasites. The environmentally resistant spores, which harbor a rigid cell wall, are critical for their survival outside their host cells and host-to-host transmission. The spore wall comprises two major layers: the exospore and the endospore. In Nosema ...

  14. Survival of Bacillus anthracis spores in fruit juices and wine.

    Science.gov (United States)

    Leishman, Oriana N; Johnson, Miranda J; Labuza, Theodore P; Diez-Gonzalez, Francisco

    2010-09-01

    Foods have been identified as a potential target for bioterrorism due to their essential nature and global distribution. Foods produced in bulk have the potential to have large batches of product intentionally contaminated, which could affect hundreds or thousands of individuals. Bacillus anthracis spores are one potential bioterrorism agent that may survive pasteurization and remain viable throughout the shelf life of fruit juices and cause disease if consumed. This project examined B. anthracis spore survival in orange, apple, and grape juices, as well as wine. Samples of beverages were inoculated with spores of two nonpathogenic B. anthracis strains at approximately 10(6) CFU/ml, and the spore count was determined periodically during storage for 30 days at 4°C. After this time, the counts of survival spores never declined more than 1 log CFU/ml in any of the beverage types. These results indicate that spores can survive, with little to no loss in viability, for at least a month in fruit juices and wine.

  15. Surface tension propulsion of fungal spores by use of microdroplets

    OpenAIRE

    Noblin, Xavier; Yang, Sylvia; Dumais, Jacques

    2010-01-01

    Many edible mushrooms eject their spores (about 10 microns in size) at high speed (about 1 m/s) using surface tension forces in a few microseconds. Basically the coalescence of a droplet with the spore generates the necessary momentum to eject the spore. We have detailed this mechanism in \\cite{noblin2}. In this article, we give some details about the high speed movies (up to 250000 fps) of mushrooms' spores ejection attached to this submission. This video was submitted as part of the Gallery...

  16. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides.

    Science.gov (United States)

    Lee, Soo Chan; Li, Alicia; Calo, Silvia; Inoue, Makoto; Tonthat, Nam K; Bain, Judith M; Louw, Johanna; Shinohara, Mari L; Erwig, Lars P; Schumacher, Maria A; Ko, Dennis C; Heitman, Joseph

    2015-09-01

    Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi. © 2015 John Wiley & Sons Ltd.

  17. NanoSIMS analysis of Bacillus spores for forensics

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Davisson, M L; Velsko, S P

    2010-02-23

    The threat associated with the potential use of radiological, nuclear, chemical and biological materials in terrorist acts has resulted in new fields of forensic science requiring the application of state-of-the-science analytical techniques. Since the anthrax letter attacks in the United States in the fall of 2001, there has been increased interest in physical and chemical characterization of bacterial spores. While molecular methods are powerful tools for identifying genetic differences, other methods may be able to differentiate genetically identical samples based on physical and chemical properties, as well as provide complimentary information, such as methods of production and approximate date of production. Microanalysis has the potential to contribute significantly to microbial forensics. Bacillus spores are highly structured, consisting of a core, cortex, coat, and in some species, an exosporium. This structure provides a template for constraining elemental abundance differences at the nanometer scale. The primary controls on the distribution of major elements in spores are likely structural and physiological. For example, P and Ca are known to be abundant in the spore core because that is where P-rich nucleic acids and Cadipicolinic acid are located, respectively. Trace elements are known to bind to the spore coat but the controls on these elements are less well understood. Elemental distributions and abundances may be directly related to spore production, purification and stabilization methodologies, which are of particular interest for forensic investigation. To this end, we are developing a high-resolution secondary ion mass spectrometry method using a Cameca NanoSIMS 50 to study the distribution and abundance of trace elements in bacterial spores. In this presentation we will review and compare methods for preparing and analyzing samples, as well as review results on the distribution and abundance of elements in bacterial spores. We use NanoSIMS to

  18. Discrimination of Spore-Forming Bacilli Using spoIVA

    Science.gov (United States)

    Venkateswaran, Kasthuri; LaDuc, Myron; Stuecker, Tara

    2009-01-01

    A method of discriminating between spore-forming and non-spore-forming bacteria is based on a combination of simultaneous sporulation-specific and non-sporulation-specific quantitative polymerase chain reactions (Q-PCRs). The method was invented partly in response to the observation that for the purposes of preventing or reducing biological contamination affecting many human endeavors, ultimately, only the spore-forming portions of bacterial populations are the ones that are problematic (or, at least, more problematic than are the non-spore-forming portions). In some environments, spore-forming bacteria constitute small fractions of the total bacterial populations. The use of sporulation-specific primers in Q-PCR affords the ability to assess the spore-forming fraction of a bacterial population present in an environment of interest. This assessment can provide a more thorough and accurate understanding of the bacterial contamination in the environment, thereby making it possible to focus contamination- testing, contamination-prevention, sterilization, and decontamination resources more economically and efficiently. The method includes the use of sporulation-specific primers in the form of designed, optimized deoxyribonucleic acid (DNA) oligonucleotides specific for the bacterial spoIVA gene (see table). [In "spoIVA," "IV" signifies Roman numeral four and the entire quoted name refers to gene A for the fourth stage of sporulation.] These primers are mixed into a PCR cocktail with a given sample of bacterial cells. A control PCR cocktail into which are mixed universal 16S rRNA primers is also prepared. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] Following several cycles of heating and cooling according to the PCR protocol to amplify amounts of DNA molecules, the amplification products can be analyzed to determine the types of bacterial cells present within the samples. If the amplification product is strong

  19. Modeling Thermal Inactivation of Bacillus Spores

    Science.gov (United States)

    2009-03-01

    information is preserved and replicated by the Watson - Crick base pairing in which 4-3 complementary bases recognize each other. One incorrect amino acid can...hydrolysis reactions to take place with the spore’s DNA and other proteins. These chemical reactions degrade the DNA and proteins to such an extent that the... DNA cannot be repaired or replicated, thus causing spore death. We further assert that damage to a spore is based on a certain initial DNA information

  20. Non-Seasonal Variation of Airborne Aspergillus Spore Concentration in a Hospital Building

    Directory of Open Access Journals (Sweden)

    Michael Oberle

    2015-10-01

    Full Text Available Nosocomial fungal infections are gaining increased attention from infectiologists. An adequate investigation into the levels of airborne Aspergillus and other fungal spores in hospital settings, under normal conditions, is largely unknown. We monitored airborne spore contamination in a Swiss hospital building in order to establish a seasonally-dependent base-line level. Air was sampled using an impaction technique, twice weekly, at six different locations over one year. Specimens were seeded in duplicate on Sabouraud agar plates. Grown colonies were identified to genus levels. The airborne Aspergillus spore concentration was constantly low throughout the whole year, at a median level of 2 spores/m3 (inter-quartile range = IQR 1–4, and displayed no seasonal dependency. The median concentration of other fungal spores was higher and showed a distinct seasonal variability with the ambient temperature change during the different seasons: 82 spores/m3 (IQR 26–126 in summer and 9 spores/m3 (IQR 6–15 in winter. The spore concentration varied considerably between the six sampling sites in the building (10 to 26 spores/m3. This variability may explain the variability of study results in the literature.

  1. Antitumor effects and mechanisms of Ganoderma extracts and spores oil.

    Science.gov (United States)

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-11-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC 50 ) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC 50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle.

  2. Availability of websites offering to sell psilocybin spores and psilocybin.

    Science.gov (United States)

    Lott, Jason P; Marlowe, Douglas B; Forman, Robert F

    2009-09-01

    This study assesses the availability of websites offering to sell psilocybin spores and psilocybin, a powerful hallucinogen contained in Psilocybe mushrooms. Over a 25-month period beginning in March 2003, eight searches were conducted in Google using the term "psilocybin spores." In each search the first 100 nonsponsored links obtained were scored by two independent raters according to standardized criteria to determine whether they offered to sell psilocybin or psilocybin spores. No attempts were made to procure the products offered for sale in order to ascertain whether the marketed psilocybin was in fact "genuine" or "counterfeit." Of the 800 links examined, 58% led to websites offering to sell psilocybin spores. Additionally, evidence that whole Psilocybe mushrooms are offered for sale online was obtained. Psilocybin and psilocybin spores were found to be widely available for sale over the Internet. Online purchase of psilocybin may facilitate illicit use of this potent psychoactive substance. Additional studies are needed to assess whether websites offering to sell psilocybin and psilocybin spores actually deliver their products as advertised.

  3. Inactivation of Bacillus subtilis spores by high pressure CO2 with high temperature.

    Science.gov (United States)

    Rao, Lei; Xu, Zhenzhen; Wang, Yongtao; Zhao, Feng; Hu, Xiaosong; Liao, Xiaojun

    2015-07-16

    The objective of this study was to investigate the inactivation of the Bacillus subtilis spores by high pressure CO2 combined with high temperature (HPCD+HT) and to analyze the clumping effect of the spores on their HPCD+HT resistance. The spores of B. subtilis were subjected to heat at 0.1 MPa and HPCD at 6.5-25 MPa, and 82 °C, 86 °C, and 91 °C for 0-120 min. The spores were effectively inactivated by HPCD+HT, but a protective effect on the spores was also found, which was closely correlated to the pressure, temperature and time. The spores treated by HPCD+HT at 6.5 and 10 MPa exhibited a two-stage inactivation curve of shoulder and log-linear regions whereas the spores at 15-25 MPa exhibited a three-stage inactivation curve of shoulder, log-linear and tailing regions, and these curves were well fitted to the Geeraerd model. Approximately 90% of pyridine-2,6-dicarboxylic acid (DPA) was released after HPCD+HT and the 90% DPA release time depend on the pressure and temperature. Moreover, the spore clumping in suspensions was examined by dynamic light scattering. The particle size of the spore suspensions increased with the increase of pressure, temperature and time, indicating the spore clumping. 0.1% Tween 80 as a surfactant inhibited the spore clumping and increased the inactivation ratio of the spores by HPCD+HT. These results indicated that the spore clumping enhanced the spores' resistance to HPCD+HT and induced a protective effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. [Distribution and spatial ordering of biopolymer molecules in resting bacterial spores].

    Science.gov (United States)

    Duda, V I; Korolev, Iu N; El'-Registan, G I; Duzha, M V; Telegin, N L

    1978-01-01

    The presence, distribution and spatial arrangement of biopolymers in situ were studied in both a total intact spore and in a certain cellular layer using a spectroscopic technique of attenuated total refraction (ATR-IR) in the IR region. In contrast to vegetative cells, intact spores were characterized by isotropic distribution of protein components. This feature can be regarded as an index of the cryptobiotic state of spores. However, the distribution of protein components among individual layers of a spore was anisotropic. Bonds characterized by amide I and amide II bands were most often ordered in a layer which comprised cellular structures from the exosporium to the inner spore membrane.

  5. Micromotors to capture and destroy anthrax simulant spores.

    Science.gov (United States)

    Orozco, Jahir; Pan, Guoqing; Sattayasamitsathit, Sirilak; Galarnyk, Michael; Wang, Joseph

    2015-03-07

    Towards addressing the need for detecting and eliminating biothreats, we describe a micromotor-based approach for screening, capturing, isolating and destroying anthrax simulant spores in a simple and rapid manner with minimal sample processing. The B. globilli antibody-functionalized micromotors can recognize, capture and transport B. globigii spores in environmental matrices, while showing non-interactions with excess of non-target bacteria. Efficient destruction of the anthrax simulant spores is demonstrated via the micromotor-induced mixing of a mild oxidizing solution. The new micromotor-based approach paves a way to dynamic multifunctional systems that rapidly recognize, isolate, capture and destroy biological threats.

  6. Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice.

    Science.gov (United States)

    Peng, Jing; Mah, Jae-Hyung; Somavat, Romel; Mohamed, Hussein; Sastry, Sudhir; Tang, Juming

    2012-07-01

    The thermal characteristics of the spores and vegetative cells of three strains of Bacillus coagulans (ATCC 8038, ATCC 7050, and 185A) in tomato juice were evaluated. B. coagulans ATCC 8038 was chosen as the target microorganism for thermal processing of tomato products due to its spores having the highest thermal resistance among the three strains. The thermal inactivation kinetics of B. coagulans ATCC 8038 spores in tomato juice between 95 and 115°C were determined independently in two different laboratories using two different heating setups. The results obtained from both laboratories were in general agreement, with z-values (z-value is defined as the change in temperature required for a 10-fold reduction of the D-value, which is defined as the time required at a certain temperature for a 1-log reduction of the target microorganisms) of 8.3 and 8.7°C, respectively. The z-value of B. coagulans 185A spores in tomato juice (pH 4.3) was found to be 10.2°C. The influence of environmental factors, including cold storage time, pH, and preconditioning, upon the thermal resistance of these bacterial spores is discussed. The results obtained showed that a storage temperature of 4°C was appropriate for maintaining the viability and thermal resistance of B. coagulans ATCC 8038 spores. Acidifying the pH of tomato juice decreased the thermal resistance of these spores. A 1-h exposure at room temperature was considered optimal for preconditioning B. coagulans ATCC 8038 spores in tomato juice.

  7. Presence survival spores of Bacillus thuringiensis varieties in grain warehouse

    Directory of Open Access Journals (Sweden)

    Sánchez-Yáñez Juan Manuel

    2016-08-01

    Full Text Available Genus Bacillus thuringiensis (Bt synthesized spores and crystals toxic to pest-insects in agriculture. Bt is comospolitan then possible to isolate some subspecies or varieties from warehouse. The aims of study were: i to isolate Bt varieties from grain at werehouse ii to evaluate Bt toxicity on Spodoptera frugiperda and Shit-ophilus zeamaisese iii to analyze Bt spores persistence in Zea mays grains at werehouse compared to same Bt on grains exposed to sun radiation. Results showed that at werehouse were recovered more than one variety of Bt spores. According to each isolate Bt1 o Bt2 were toxic to S. frugiperda or S. zeamaisese. One those Bt belong to var morrisoni. At werehouse these spores on Z. mays grains surviving more time, while the same spores exposed to boicide sun radiation they died.

  8. Combination treatment of clostridium perfringens spores to freezing and/or gamma irradiation

    International Nuclear Information System (INIS)

    El-Fouly, M.Z.; El-Zawahry, Y.A.; Aziz, N.H.

    1985-01-01

    Freezing process alone caused relatively low decrease in viable count of suspended spores in minced meat while it decreased the spore numbers suspended in saline solution by more than one log cycle especially in case of the Egyptian strain. An abrupt decrease in viable counts of clostridium spores was observed by application dose of 1KGY either before or after freezing followed by gradual decrease of viable counts up to 15 KGY. The synergestic effect of combined treatment was clearly obvious for spores suspended in minced meat, which usually contains protective agents which increase the resistance of microorganisms against the separate treatment of radiation of freezing especially with spores of NCTC 8798 strain. Freezing the saline suspending medium before or after irradiation after the sensitivity of clostridium spores by only small extent and gave negative synergestic effect in some treatment. The percentages of injured spores due to the combined treatment were ranged between 15-100% of the viable counts. The percentage of injured spores tended to increase as the radiation dose levels increased

  9. THE INFLUENCE OF ULTRAVIOLET LIGHT ON PATHOGENICITY OF ENTOMOPATHOGENIC FUNGUS BEAUVERIA BASSIANA (BALSAMO VUILLEMIN TO THE EUROPEAN CORN BORER, OSTRINIA NUBILALIS HBN. (LEPIDOPTERA: CRAMBIDAE

    Directory of Open Access Journals (Sweden)

    L Cagán

    2002-05-01

    Full Text Available The influence of different doses of ultraviolet (UV light on the pathogenicity of entomopathogenic fungus Beauveria bassiana (Balsamo Vuillemin to the European corn borer, Ostrinia nubilalis Hbn., and radial growth of fungus was studied in laboratory conditions. The suspensions of B. bassiana isolate SK99 were exposed to UV light. Four different doses of UV light were used in the experiment. The distance between exposed suspensions and UV light source was 0.3 m. Exposure duration was 15, 30, 45 and 60 minutes (as A, B, C and D variants. Control variant SK99 and obtained variants SK99A, SK99B, SK99C and SK99D were cultivated 21 days on Sabourard-dextrose agar. The larvae of O. nubilalis were infected with dry powder consisted of mycelia and spores from fungus cultures. During 10 days, the mortality of infected larvae was evaluated. It was ascertained that UV light exposition significantly influenced the mortality effect of B. bassiana isolates to O. nubilalis larvae. Variant SK99C showed the highest level of infectivity. Radial growth of UV variants was slower with rising time of exposure. The best ability to grow possessed non-irradiated isolate SK99 and the worse variant SK99D. The difference between these two variants was significant.

  10. Conversion of xylan by recyclable spores of Bacillus subtilis displaying thermophilic enzymes.

    Science.gov (United States)

    Mattossovich, Rosanna; Iacono, Roberta; Cangiano, Giuseppina; Cobucci-Ponzano, Beatrice; Isticato, Rachele; Moracci, Marco; Ricca, Ezio

    2017-11-28

    The Bacillus subtilis spore has long been used to display antigens and enzymes. Spore display can be accomplished by a recombinant and a non-recombinant approach, with the latter proved more efficient than the recombinant one. We used the non-recombinant approach to independently adsorb two thermophilic enzymes, GH10-XA, an endo-1,4-β-xylanase (EC 3.2.1.8) from Alicyclobacillus acidocaldarius, and GH3-XT, a β-xylosidase (EC 3.2.1.37) from Thermotoga thermarum. These enzymes catalyze, respectively, the endohydrolysis of (1-4)-β-D-xylosidic linkages of xylans and the hydrolysis of (1-4)-β-D-xylans to remove successive D-xylose residues from the non-reducing termini. We report that both purified enzymes were independently adsorbed on purified spores of B. subtilis. The adsorption was tight and both enzymes retained part of their specific activity. When spores displaying either GH10-XA or GH3-XT were mixed together, xylan was hydrolysed more efficiently than by a mixture of the two free, not spore-adsorbed, enzymes. The high total activity of the spore-bound enzymes is most likely due to a stabilization of the enzymes that, upon adsorption on the spore, remained active at the reaction conditions for longer than the free enzymes. Spore-adsorbed enzymes, collected after the two-step reaction and incubated with fresh substrate, were still active and able to continue xylan degradation. The recycling of the mixed spore-bound enzymes allowed a strong increase of xylan degradation. Our results indicate that the two-step degradation of xylans can be accomplished by mixing spores displaying either one of two required enzymes. The two-step process occurs more efficiently than with the two un-adsorbed, free enzymes and adsorbed spores can be reused for at least one other reaction round. The efficiency of the process, the reusability of the adsorbed enzymes, and the well documented robustness of spores of B. subtilis indicate the spore as a suitable platform to display enzymes

  11. The search and identification of the new immunodiagnostic targets of bacillus anthracis spore

    International Nuclear Information System (INIS)

    Biketov, S.; Dunaytsev, I.; Baranova, E.; Marinin, L.; Dyatlov, I.

    2009-01-01

    Spores of Bacillus anthracis have been used as bio warfare agent to bio terrorize purposes. As efficiency of anti-epidemic measures included urgent prevention and treatment is determined by terms within which the bio agent is identified. Direct and rapid spore detection by antibodies based detection system is very attractive alternative to current PCR-based assays or routine phenotyping which are the most accurate but are also complex, time-consumption and expensive. The main difficulty with respect to such kind of anthrax spores detection is a cross-reaction with spores of closely related bacteria. For development of species-specific antibodies to anthrax spores recombinant scFvs or hybridoma technique were used. In both case surface spore antigens contained species-specific epitopes are need. Among exosporium proteins only ExsF(BxpB), ExsK and SoaA are specific to B.cereus group. On the surface of B. anthracis spores, a unique tetrasaccharides containing an novel monosaccharide - anthrose, was discovered. It was shown that anthrose can be serving as species-specific target for B. anthracis spores detection. We have revealed that EA1 isolated from spore of Russians strain STI-1 contain carbohydrate which formed species-specific epitopes and determine immunogenicity of this antigen. Antibodies to this antigen specifically recognized the surface target of B. anthracis spores and do not reacted with others Bacillus spore. Based on these antibodies we developed the test-systems in different formats for rapid direct detection and identification of B. anthracis spores. The results of trial these test-systems with using more than 50 different Bacillus strains were indicated that carbohydrate of EA1 isolated from spore is effective immunodiagnostic target for anthrax spores bio detection.(author)

  12. Effect of gamma irradiation on thermal inactivation and injury of Bacillus subtilis spores

    International Nuclear Information System (INIS)

    El-Zawahry, Y.A.; Mostafa, S.A.; Awny, N.M.

    1986-01-01

    Bacillus subtilis spores which received preliminary irradiation doses were more sensitive to subsequent heating than non-irradiated spores. The thermal inactivation increased by increasing any of exposure temperature, thermal exposure time or preliminary irradiation dose. The thermal (D T -) value was much higher for non-irradiated spores than the D TR value for the pre-thermal irradiated spores. The radiosensitizing effect was directly proportional to the preliminary irradiation dose. The pre-thermal irradiation treatment of B. subtilis spores resulted in a synergistic effect in spore deactivation. This synergistic effect increased gradually by increasing the preliminary irradiation dose and/or the thermal temperature from 60 to 80 0 C, but decreased for 90 0 C and for the longer exposure periods at any of the examined temperature. Thermal injury of B. subtilis spores was more for the non-irradiated than for the irradiated spores

  13. Diurnal Variations of Airborne Pollen and Spores in Taipei City, Taiwan

    Directory of Open Access Journals (Sweden)

    Yueh-Lin Yang

    2003-09-01

    Full Text Available The diurnal variation of airborne pollen and spores in Taipei City, Taiwan, was investigated during a two-year survey from 1993 to 1994. The pollen and spores were sampled using a Burkard seven-day volumetric pollen trap. The diurnal trends of the total amount of pollen and spores in 1993 and in 1994 were similar to each other, and peaked at 3 to 10 o’clock. The diurnal patterns of airborne pollen and spores of Broussonetia, Fraxinus, Cyathea and Gramineae in 1993 were similar to those in 1994. High concentrations of Broussonetia and Fraxinus were obtained from midnight to the next morning. Cyathea spores peaked from morning till noon, and Gramineae peaked in the afternoon. The diurnal patterns of airborne pollen of Bischofia, Juniperus, Mallotus, Morus, Trema and Urticaceae in 1993 were different to those in 1994. Regular diurnal patterns also associated with the taxa, which produce large pollen or spores, such as Gramineae and Cyathea. In contrast, Bischofia, Juniperus, Mallotus, Morus, Trema and Urticaceae produce relatively small pollen and the diurnal patterns of their airborne pollen were found irregular. The source plants Broussonetia and Fraxinus were close to the collection site so the diurnal patterns of their airborne pollen were regular, suggesting that the diurnal fluctuations of the pollen or spores in air might be affected by the source of plants and the sizes of pollen or spores. The transportation of the smaller pollen or spores in air is probably more easily affected by instability of air currents; they are therefore more likely to exhibit irregular diurnal patterns.

  14. Simultaneous Chronic Invasive Fungal Infection and Tracheal Fungus Ball Mimicking Cancer in an Immunocompetent Patient

    Directory of Open Access Journals (Sweden)

    Erdoğan Çetinkaya

    2016-01-01

    Full Text Available Fungal infections of the lung are uncommon and mainly affect people with immune deficiency. There are crucial problems in the diagnosis and treatment of this condition. Invasive pulmonary aspergillosis and candidiasis are the most common opportunistic fungal infections. Aspergillus species (spp. are saprophytes molds that exist in nature as spores and rarely cause disease in immunocompetent individuals. In patients with immune deficiency or chronic lung disease, such as cavitary lung disease or bronchiectasis, Aspergillus may cause a variety of aspergillosis infections. Here we present a case of a 57-year-old patient without immunodeficiency or chronic lung disease who was diagnosed with endotracheal fungus ball and chronic fungal infection, possibly due to Aspergillus. Bronchoscopic examination showed a paralyzed right vocal cord and vegetating mass that was yellow in color, at the posterior wall of tracheal lumen. After 3 months, both the parenchymal and tracheal lesions were completely resolved.

  15. Architecture and assembly of the Bacillus subtilis spore coat.

    Science.gov (United States)

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  16. Architecture and Assembly of the Bacillus subtilis Spore Coat

    Science.gov (United States)

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  17. Phosphorescence In Bacillus Spores

    National Research Council Canada - National Science Library

    Reinisch, Lou; Swartz, Barry A; Bronk, Burt V

    2003-01-01

    .... Our present work attempts to build on this approach for environmental applications. We have measured a change in the fluorescence spectra of suspensions of Bacillus bacteria between the vegetative bacteria and their spores at room temperature...

  18. Pollen and spore monitoring in the world.

    Science.gov (United States)

    Buters, J T M; Antunes, C; Galveias, A; Bergmann, K C; Thibaudon, M; Galán, C; Schmidt-Weber, C; Oteros, J

    2018-01-01

    Ambient air quality monitoring is a governmental duty that is widely carried out in order to detect non-biological ("chemical") components in ambient air, such as particles of monitoring networks are publicly funded and air quality data are open to the public. The situation for biological particles that have detrimental effects on health, as is the case of pollen and fungal spores, is however very different. Most pollen and spore monitoring networks are not publicly funded and data are not freely available. The information regarding which biological particle is being monitored, where and by whom, is consequently often not known, even by aerobiologists themselves. This is a considerable problem, as local pollen data are an important tool for the prevention of allergic symptoms. The aim of this study was to review pollen monitoring stations throughout the world and to create an interactive visualization of their distribution. The method employed to collect information was based on: (a) a review of the recent and historical bibliography related to pollen and fungal spore monitoring, and (b) personal surveys of the managers of national and regional monitoring networks. The interactive application was developed using the R programming language. We have created an inventory of the active pollen and spore monitoring stations in the world. There are at least 879 active pollen monitoring stations in the world, most of which are in Europe (> 500). The prevalent monitoring method is based on the Hirst principle (> 600 stations). The inventory is visualised as an interactive and on-line map. It can be searched, its appearance can be adjusted to the users' needs and it is updated regularly, as new stations or changes to those that already exist can be submitted online. The map shows the current situation of pollen and spore monitoring and facilitates collaboration among those individuals who are interested in pollen and spore counts. It might also help to improve the

  19. Quantification of Nonproteolytic Clostridium botulinum Spore Loads in Food Materials.

    Science.gov (United States)

    Barker, Gary C; Malakar, Pradeep K; Plowman, June; Peck, Michael W

    2016-01-04

    We have produced data and developed analysis to build representations for the concentration of spores of nonproteolytic Clostridium botulinum in materials that are used during the manufacture of minimally processed chilled foods in the United Kingdom. Food materials are categorized into homogenous groups which include meat, fish, shellfish, cereals, fresh plant material, dairy liquid, dairy nonliquid, mushroom and fungi, and dried herbs and spices. Models are constructed in a Bayesian framework and represent a combination of information from a literature survey of spore loads from positive-control experiments that establish a detection limit and from dedicated microbiological tests for real food materials. The detection of nonproteolytic C. botulinum employed an optimized protocol that combines selective enrichment culture with multiplex PCR, and the majority of tests on food materials were negative. Posterior beliefs about spore loads center on a concentration range of 1 to 10 spores kg(-1). Posterior beliefs for larger spore loads were most significant for dried herbs and spices and were most sensitive to the detailed results from control experiments. Probability distributions for spore loads are represented in a convenient form that can be used for numerical analysis and risk assessments. Copyright © 2016 Barker et al.

  20. Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites.

    Science.gov (United States)

    Auld, Stuart K J R; Hall, Spencer R; Housley Ochs, Jessica; Sebastian, Mathew; Duffy, Meghan A

    2014-08-01

    Parasite prevalence shows tremendous spatiotemporal variation. Theory indicates that this variation might stem from life-history characteristics of parasites and key ecological factors. Here, we illustrate how the interaction of an important predator and the schedule of transmission potential of two parasites can explain parasite abundance. A field survey showed that a noncastrating fungus (Metschnikowia bicuspidata) commonly infected a dominant zooplankton host (Daphnia dentifera), while a castrating bacterial parasite (Pasteuria ramosa) was rare. This result seemed surprising given that the bacterium produces many more infectious propagules (spores) than the fungus upon host death. The fungus's dominance can be explained by the schedule of within-host growth of parasites (i.e., how transmission potential changes over the course of infection) and the release of spores from "sloppy" predators (Chaoborus spp., who consume Daphnia prey whole and then later regurgitate the carapace and parasite spores). In essence, sloppy predators create a niche that the faster-schedule fungus currently occupies. However, a selection experiment showed that the slower-schedule bacterium can evolve into this faster-schedule, predator-mediated niche (but pays a cost in maximal spore yield to do so). Hence, our study shows how parasite life history can interact with predation to strongly influence the ecology, epidemiology, and evolution of infectious disease.

  1. Capability of the nematode-trapping fungus Duddingtonia flagrans to reduce infective larvae of gastrointestinal nematodes in goat feces in the southeastern United States: dose titration and dose time interval studies.

    Science.gov (United States)

    Terrill, T H; Larsen, M; Samples, O; Husted, S; Miller, J E; Kaplan, R M; Gelaye, S

    2004-04-15

    Infection with gastrointestinal nematodes, particularly Haemonchus contortus, is a major constraint to goat production in the southeastern United States. Non-anthelmintic control alternatives are needed due to increasing resistance of these nematodes to available anthelmintics. Two studies were completed in Central Georgia in August 1999, and April-May 2000, using Spanish does naturally infected with Haemonchus contortus, Trichostongylus colubriformis, and Cooperia spp. to evaluate effectiveness of nematode-trapping fungi as a biological control agent. In the first experiment, five levels of Duddingtonia flagrans spores were mixed with a complete diet and fed once daily to the does (three per treatment) in metabolism crates. The treatment concentrations were (1) 5 x 10(5), (2) 2.5 x 10(5), (3) 10(5), and (4) 5 x 10(4) spores per kilogram body weight (BW), and (5) no spores. Fungal spores were fed for the first 7 days of the 14-day trial, and fecal samples were collected daily from individual animals for analysis of fecal egg count and establishment of fecal cultures. Efficacy of the fungus at reducing development of infective larvae (L3) in the fecal cultures was evaluated. The mean reduction in L3 from day 2 of the treatment period until the day after treatment stopped (days 2-8) was 93.6, 80.2, 84.1, and 60.8% for animals given the highest to lowest spore doses, respectively. Within 3-6 days after termination of fungal spore feedings, reduction in L3 development was no longer apparent in any of the treated animals. In a second experiment, effectiveness of 2.5 x 10(5) spores of D. flagrans per kilogram BW fed to does every day, every second day, and every third day was evaluated. Reduction in L3 development by daily feeding was less in the second experiment than in the first experiment. Daily fungal spore feeding provided more consistent larval reduction than intermittant feeding (every second or third day). When fed daily under controlled conditions, D. flagrans

  2. The distribution of Paenibacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood diseased brood or spore-contaminated honey in honey bee (Apis mellifera) colonies.

    Science.gov (United States)

    Lindström, Anders; Korpela, Seppo; Fries, Ingemar

    2008-09-01

    Within colony transmission of Paenibacillus larvae spores was studied by giving spore-contaminated honey comb or comb containing 100 larvae killed by American foulbrood to five experimental colonies respectively. We registered the impact of the two treatments on P. larvae spore loads in adult bees and honey and on larval mortality by culturing for spores in samples of adult bees and honey, respectively, and by measuring larval survival. The results demonstrate a direct effect of treatment on spore levels in adult bees and honey as well as on larval mortality. Colonies treated with dead larvae showed immediate high spore levels in adult bee samples, while the colonies treated with contaminated honey showed a comparable spore load but the effect was delayed until the bees started to utilize the honey at the end of the flight season. During the winter there was a build up of spores in the adult bees, which may increase the risk for infection in spring. The results confirm that contaminated honey can act as an environmental reservoir of P. larvae spores and suggest that less spores may be needed in honey, compared to in diseased brood, to produce clinically diseased colonies. The spore load in adult bee samples was significantly related to larval mortality but the spore load of honey samples was not.

  3. Antitumor effects and mechanisms of Ganoderma extracts and spores oil

    Science.gov (United States)

    Chen, Chun; Li, Peng; Li, Ye; Yao, Guan; Xu, Jian-Hua

    2016-01-01

    Ganoderma lucidum is a popular herbal medicine used in China to promote health. Modern studies have disclosed that the active ingredients of Ganoderma can exhibit several effects, including antitumor effects and immunomodulation. The present study evaluated the antitumor effects of self-prepared Ganoderma extracts and spores oil, and investigated the possible underlying mechanisms by observing the effects of the extracts and oil on topoisomerases and the cell cycle. The results showed that Ganoderma extracts and spores oil presented dose-dependent inhibitory effects on tumor cells. The half maximal inhibitory concentration (IC50) values of Ganoderma extracts on HL60, K562 and SGC-7901 cells for 24 h were 0.44, 0.39 and 0.90 mg/ml, respectively; for Ganoderma spores oil, the IC50 values were 1.13, 2.27 and 6.29 mg/ml, respectively. In the in vivo study, the inhibitory rates of Ganoderma extracts (4 g/kg/d, intragastrically) on S180 and H22 cells were 39.1 and 44.6%, respectively, and for Ganoderma spores oil (1.2 g/kg/d, intragastrically) the inhibitory rates were 30.9 and 44.9%, respectively. Ganoderma extracts and spores oil inhibited the activities of topoisomerase I and II. Ganoderma spores oil was shown block the cell cycle at the transition between the G1 and S phases and induce a marked decrease in cyclin D1 levels in K562 cells, with no significant change in cyclin E level. These results suggest that the Ganoderma extracts and spores oil possessed antitumor effects in the in vitro and in vivo studies. The antitumor mechanisms of the extracts and spores oil were associated with inhibitory effects on topoisomerase I and II activities, and for Ganoderma spores oil, the antitumor effects may also be associated with decreased cyclin D1 levels, thus inducing G1 arrest in the cell cycle. PMID:27900038

  4. Mechanism of Bacillus subtilis spore inactivation by and resistance to supercritical CO2 plus peracetic acid.

    Science.gov (United States)

    Setlow, B; Korza, G; Blatt, K M S; Fey, J P; Setlow, P

    2016-01-01

    Determine how supercritical CO2 (scCO2 ) plus peracetic acid (PAA) inactivates Bacillus subtilis spores, factors important in spore resistance to scCO2 -PAA, and if spores inactivated by scCO2 -PAA are truly dead. Spores of wild-type B. subtilis and isogenic mutants lacking spore protective proteins were treated with scCO2 -PAA in liquid or dry at 35°C. Wild-type wet spores (aqueous suspension) were more susceptible than dry spores. Treated spores were examined for viability (and were truly dead), dipicolinic acid (DPA), mutations, permeability to nucleic acid stains, germination under different conditions, energy metabolism and outgrowth. ScCO2 -PAA-inactivated spores retained DPA, and survivors had no notable DNA damage. However, DPA was released from inactivated spores at a normally innocuous temperature (85°C), and colony formation from treated spores was salt sensitive. The inactivated spores germinated but did not outgrow, and these germinated spores had altered plasma membrane permeability and defective energy metabolism. Wet or dry coat-defective spores had increased scCO2 -PAA sensitivity, and dry spores but not wet spores lacking DNA protective proteins were more scCO2 -PAA sensitive. These findings suggest that scCO2 -PAA inactivates spores by damaging spores' inner membrane. The spore coat provided scCO2 -PAA resistance for both wet and dry spores. DNA protective proteins provided scCO2 -PAA resistance only for dry spores. These results provide information on mechanisms of spore inactivation of and resistance to scCO2 -PAA, an agent with increasing use in sterilization applications. © 2015 The Society for Applied Microbiology.

  5. A Novel Protocol for Decoating and Permeabilizing Bacterial Spores for Epifluorescent Microscopy

    Science.gov (United States)

    LaDuc, Myron T.; Mohapatra, Bidyut

    2014-01-01

    Based on previously reported procedures for permeabilizing vegetative bacterial cells, and numerous trial-and-error attempts with bacterial endospores, a protocol was developed for effectively permeabilizing bacterial spores, which facilitated the applicability of fluorescent in situ hybridization (FISH) microscopy. Bacterial endospores were first purified from overgrown, sporulated suspensions of B. pumilus SAFR-032. Purified spores at a concentration of approx equals 10 million spores/mL then underwent proteinase-K treatment, in a solution of 468.5 µL of 100 mM Tris-HCl, 30 µL of 10% SDS, and 1.5 microL of 20 mg/mL proteinase-K for ten minutes at 35 ºC. Spores were then harvested by centrifugation (15,000 g for 15 minutes) and washed twice with sterile phosphate-buffered saline (PBS) solution. This washing process consisted of resuspending the spore pellets in 0.5 mL of PBS, vortexing momentarily, and harvesting again by centrifugation. Treated and washed spore pellets were then resuspended in 0.5 mL of decoating solution, which consisted of 4.8 g urea, 3 mL Milli-Q water, 1 mL 0.5M Tris, 1 mL 1M dithiothreitol (DTT), and 2 mL 10% sodium-dodecylsulfate (SDS), and were incubated at 65 ºC for 15 minutes while being shaken at 165 rpm. Decoated spores were then, once again, washed twice with sterile PBS, and subjected to lysozyme/mutanolysin treatment (7 mg/mL lysozyme and 7U mutanolysin) for 15 minutes at 35 C. Spores were again washed twice with sterile PBS, and spore pellets were resuspended in 1-mL of 2% SDS. This treatment, facilitating inner membrane permeabilization, lasted for ten minutes at room temperature. Permeabilized spores were washed two final times with PBS, and were resuspended in 200 mkcroL of sterile PBS. At this point, the spores were permeable and ready for downstream processing, such as oligonucleotideprobe infiltration, hybridization, and microscopic evaluation. FISH-microscopic imagery confirmed the effective and efficient (˜50

  6. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  7. Detection of Bacillus spores using PCR and FTA filters.

    Science.gov (United States)

    Lampel, Keith A; Dyer, Deanne; Kornegay, Leroy; Orlandi, Palmer A

    2004-05-01

    Emphasis has been placed on developing and implementing rapid detection systems for microbial pathogens. We have explored the utility of expanding FTA filter technology for the preparation of template DNA for PCR from bacterial spores. Isolated spores from several Bacillus spp., B. subtilis, B. cereus, and B. megaterium, were applied to FTA filters, and specific DNA products were amplified by PCR. Spore preparations were examined microscopically to ensure that the presence of vegetative cells, if any, did not yield misleading results. PCR primers SRM86 and SRM87 targeted a conserved region of bacterial rRNA genes, whereas primers Bsub5F and Bsub3R amplified a product from a conserved sequence of the B. subtilis rRNA gene. With the use of the latter set of primers for nested PCR, the sensitivity of the PCR-based assay was increased. Overall, 53 spores could be detected after the first round of PCR, and the sensitivity was increased to five spores by nested PCR. FTA filters are an excellent platform to remove PCR inhibitors and have universal applications for environmental, clinical, and food samples.

  8. Removal of dissolved heavy metals and radionuclides by microbial spores

    International Nuclear Information System (INIS)

    Revis, N.W.; Hadden, C.T.; Edenborn, H.

    1997-01-01

    Microbial systems have been shown to remove specific heavy metals from contaminated aqueous waste to levels acceptable to EPA for environmental release. However, systems capable of removing a variety of heavy metals from aqueous waste to environmentally acceptable levels remain to be reported. The present studies were performed to determine the specificity of spores of the bacterium Bacillus megaterium for the adsorption of dissolved metals and radionuclides from aqueous waste. The spores effectively adsorbed eight heavy metals from a prepared metal mix and from a plating rinse waste to EPA acceptable levels for waste water. These results suggest that spores have multiple binding sites for the adsorption of heavy metals. Spores were also effective in adsorbing the radionuclides 85 strontium and 197 cesium. The presence of multiple sites in spores for the adsorption of heavy metals and radionuclides makes this biosorbent a good candidate for the treatment of aqueous wastes associated with the plating and nuclear industries. 17 refs., 4 tabs

  9. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores.

    Science.gov (United States)

    Warda, Alicja K; den Besten, Heidy M W; Sha, Na; Abee, Tjakko; Nierop Groot, Masja N

    2015-05-18

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments are widely used by food producing industries to reduce the microbial spore loads. However consumers prefer mildly processed products that have less impact on its quality and this trend steers industry towards milder preservation treatments. Such treatments may result in damaged instead of inactivated spores, and these spores may germinate, repair, and grow out, possibly leading to quality and safety issues. The ability to repair and grow out is influenced by the properties of the food matrix. In the current communication we studied the outgrowth from heat damaged Bacillus cereus ATCC 14579 spores on Anopore membrane, which allowed following outgrowth heterogeneity of individual spores on broccoli and rice-based media as well as standard and mildly acidified (pH 5.5) meat-based BHI. Rice, broccoli and BHI pH 5.5 media resulted in delayed outgrowth from untreated spores, and increased heterogeneity compared to BHI pH 7.4, with the most pronounced effect in rice media. Exposure to wet heat for 1 min at 95 °C caused 2 log inactivation and approximately 95% of the spores in the surviving fraction were damaged resulting in substantial delay in outgrowth based on the time required to reach a maximum microcolony size of 256 cells. The delay was most pronounced for heat-treated spores on broccoli medium followed by spores on rice media (both untreated and treated). Interestingly, the increase in outgrowth heterogeneity of heat treated spores on BHI pH 7.4 was more pronounced than on rice, broccoli and BHI pH 5.5 conceivably reflecting that conditions in BHI pH 7.4 better support spore damage repair. This study compares the effects of three main factors, namely heat treatment, p

  10. Isolated Bacterial Spores at High-velocity Survive Surface Impacts in Vacuum

    Science.gov (United States)

    Austin, Daniel; Barney, Brandon

    We present experiments in which bacterial spores were found to survive being accelerated in vacuum to velocities in the range 30-120 m/s and impacted on a dense target. In these experiments, spores of Bacillus subtilis spores were charged using electrospray at atmospheric pressure, dried, and then introduced into high vacuum. Through choice of skimmers and beam tubes, different velocity ranges were achieved. An image-charge detector observed the charged spores, providing total charge and velocity. The spores then impacted a glass target within a collection vessel. After the experiment, the collection vessel contents were extracted and cultured. Several positive and negative controls were used, including the use of antibiotic-resistant spores and antibiotic-containing (rifampicin) agar for culturing. These impact velocities are of particular interest for possible transport of bacterial spores from Mars to Phobos, and may have implications for planetary protection in a Phobos sample return mission. In addition, bacteria may reach similar velocities during a spacecraft crash (e.g., within components, or from spacecraft to surface materials during impact, etc.), raising concerns about forward contamination. The velocities of interest to transport of life between planets (panspermia) are somewhat higher, but these results complement shock-based experiments and contribute to the general discussion of impact survivability of organisms.

  11. RNA synthesis during germination of UV-irradiated Dictyostelium discoideum spores

    International Nuclear Information System (INIS)

    Okaichi, Kumio

    1987-01-01

    UV irradiation to the spores of Dictyostelium discoideum NC4 resulted in a more prolonged delay of amoeba-emergence from swollen spores with increasing UV fluence. During the germination, an inhibition of total RNA synthesis and a shift of stage of maximum RNA synthesis to the later period were observed. The maximum poly(A) + RNA synthetic activity was found on an early stage of amoeba-emergence prior about 1 h to the beginning of rRNA synthesis in unirradiated spore germination; but, in UV-irradiated spore germination, the stage of maximum poly(A) + RNA synthesis shifted to the later stage of germination with increasing UV fluence. A decreased synthesis of poly(A) + RNA and a severe inhibition of rRNA synthesis were observed on UV-irradiated and germinated spores, but no significant inhibition of 4 - 5 S RNA synthesis was detected. Actinomycin D suppressed almost completely the rRNA synthesis of emerged amoebae but the drug apparently did not affect the emergence of amoebae at any stage of germination. It was postulated that the delay of amoeba-emergence in UV-irradiated spore must be mainly due to the shift of the stage of maximum synthesis of poly(A) + RNA to the later stage of germination. (author)

  12. LEVELS AND TYPES OF AEROBIC SPORE FORMING BACTERIA ...

    African Journals Online (AJOL)

    The four companies whose packaged product were studied had an average plate total spore counts as follows: Company A=6.2x 103; Company B= 3.1x 104; Company C= 6.0x 104 and Company D= 3.1x102 colony forming units per gram, respectively. Identification tests showed that among the aerobic spore formers were ...

  13. Properties of spores of Bacillus subtilis strains which lack the major small, acid-soluble protein

    International Nuclear Information System (INIS)

    Hackett, R.H.; Setlow, P.

    1988-01-01

    Bacillus subtilis strains containing a deletion in the gene coding for the major small, acid-soluble, spore protein (SASP-gamma) grew and sporulated, and their spores initiated germination normally, but outgrowth of SASP-gamma- spores was significantly slower than that of wild-type spores. The absence of SASP-gamma had no effect on spore protoplast density or spore resistance to heat or radiation. Consequently, SASP-gamma has a different function in spores than do the other major small, acid-soluble proteins

  14. Live-imaging of Bacillus subtilis spore germination and outgrowth

    NARCIS (Netherlands)

    Pandey, R.

    2014-01-01

    Spores of Gram-positive bacteria such as Bacillus and Clostridium cause huge economic losses to the food industry. In food products, spores survive under food preservation conditions and subsequent germination and outgrowth eventually causes food spoilage. Therefore efforts are being made to

  15. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    National Research Council Canada - National Science Library

    Brittingham, Katherine C; Ruthel, Gordon; Panchal, Rekha G; Fuller, Claudette L; Ribot, Wilson J

    2005-01-01

    Phagocytosis of inhaled Bacillus anthracis spores and subsequent trafficking to lymph nodes are decisive events in the progression of inhaled anthrax because they initiate germination and dissemination of spores...

  16. Spore: Spawning Evolutionary Misconceptions?

    Science.gov (United States)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  17. Long-term cryopreservation of non-spore-forming fungi in Microbank™ beads for plant pathological investigations.

    Science.gov (United States)

    Lakshman, Dilip K; Singh, Vimla; Camacho, Manuel E

    2018-05-01

    Long-term preservation of experimental fungi without genetic, morphological, and pathogenic changes is of paramount importance in mycological and plant pathological investigations. Several cryogenic and non-cryogenic methods are available for the preservation of fungi, but the methods can be cumbersome, hazardous, expensive, and often not suitable for long-term storage of non-spore-forming (sterile) fungi. A method of preservation of spore-forming fungi in commercially available porous beads (Micrbank™) under cryogenic condition was successfully tested for three non-spore-forming basidiomycetes genera: Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) (n = 19), Ceratobasidium species (n = 1), and Waitea circinata (n = 3), and a non-spore forming ascomycetes, Sclerotinia sclerotiorum (n = 1). For comparison, spore-forming ascomycetous fungi, Alternaria alternata (n = 1), Bauveria basiana (n = 2), Botrytis cinerea (n = 1), Fusarium oxysporum f.sp. gladiolii (n = 1), Trichoderma spp. (n = 3), and Thielaviopsis basicola (n = 2) were also cryopreserved in Microbank beads. Viable fungal isolates of all test species were retrieved after five years of storage at -80 °C, which was longer than the viabilities of the corresponding isolates cryopreserved in agar plugs or colonized wheat seeds. Fungi revived from the Microbank beads maintained identical morphology and cultural characteristics of the parent isolates. Randomly selected Rhizoctonia isolates revived from the Microbank beads maintained respective pathological properties of the parent isolates; also, no mutation was detected in the internal transcribed spacer (ITS) ribosomal DNA when compared with respective cultures maintained at ambient temperature. This finding demonstrated the utility of cryopreservation in Microbank beads as a convenient alternative to conventional long-term preservation of a wide group of fungal cultures for plant pathological investigations

  18. Contribución al conocimiento de la morfología y taxonomía de un hongo del genero Prototrichia aislado de un cultivo de rosas

    Directory of Open Access Journals (Sweden)

    Raúl Hernado Posada Almanza

    1996-01-01

    Full Text Available The macroscopic and microscopic morfology of an isolated fungus of rose cultivation were studied. It to find in fructification tipic form by half direct observation of macroscopic reproduction structure, this factor assign high stetic inconvenience for products commercial presentation and accept. After a review of the taxonomic literature, we placed it in the Prototrichia genus, of class mixomycetes, but not a particular species, for absence of necesary support to moment. We used the spore to spore technique add the nutritions cover-glass technique to secure the spore transfer and germination, and fungus development for the morfologic description; and by mounting in cover-glass of microscopic structure to study.

  19. Significance of air humidity and air velocity for fungal spore release into the air

    Science.gov (United States)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  20. Rapid Detection of Bacillus anthracis Spores Using Immunomagnetic Separation and Amperometry

    Directory of Open Access Journals (Sweden)

    David F. Waller

    2016-12-01

    Full Text Available Portable detection and quantitation methods for Bacillus anthracis (anthrax spores in pure culture or in environmental samples are lacking. Here, an amperometric immunoassay has been developed utilizing immunomagnetic separation to capture the spores and remove potential interferents from test samples followed by amperometric measurement on a field-portable instrument. Antibody-conjugated magnetic beads and antibody-conjugated glucose oxidase were used in a sandwich format for the capture and detection of target spores. Glucose oxidase activity of spore pellets was measured indirectly via amperometry by applying a bias voltage after incubation with glucose, horseradish peroxidase, and the electron mediator 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid. Target capture was mediated by polyclonal antisera, whereas monoclonal antibodies were used for signal generation. This strategy maximized sensitivity (500 target spores, 5000 cfu/mL, while also providing a good specificity for Bacillus anthracis spores. Minimal signal deviation occurs in the presence of environmental interferents including soil and modified pH conditions, demonstrating the strengths of immunomagnetic separation. The simultaneous incubation of capture and detection antibodies and rapid substrate development (5 min result in short sample-to-signal times (less than an hour. With attributes comparable or exceeding that of ELISA and LFDs, amperometry is a low-cost, low-weight, and practical method for detecting anthrax spores in the field.

  1. A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination

    Directory of Open Access Journals (Sweden)

    M. Lauren Donnelly

    2017-01-01

    Full Text Available Clostridium difficile is a Gram-positive spore-forming obligate anaerobe that is a leading cause of antibiotic-associated diarrhea worldwide. In order for C. difficile to initiate infection, its aerotolerant spore form must germinate in the gut of mammalian hosts. While almost all spore-forming organisms use transmembrane germinant receptors to trigger germination, C. difficile uses the pseudoprotease CspC to sense bile salt germinants. CspC activates the related subtilisin-like protease CspB, which then proteolytically activates the cortex hydrolase SleC. Activated SleC degrades the protective spore cortex layer, a step that is essential for germination to proceed. Since CspC incorporation into spores also depends on CspA, a related pseudoprotease domain, Csp family proteins play a critical role in germination. However, how Csps are incorporated into spores remains unknown. In this study, we demonstrate that incorporation of the CspC, CspB, and CspA germination regulators into spores depends on CD0311 (renamed GerG, a previously uncharacterized hypothetical protein. The reduced levels of Csps in gerG spores correlate with reduced responsiveness to bile salt germinants and increased germination heterogeneity in single-spore germination assays. Interestingly, asparagine-rich repeat sequences in GerG’s central region facilitate spontaneous gel formation in vitro even though they are dispensable for GerG-mediated control of germination. Since GerG is found exclusively in C. difficile, our results suggest that exploiting GerG function could represent a promising avenue for developing C. difficile-specific anti-infective therapies.

  2. Contamination pathways of spore-forming bacteria in a vegetable cannery.

    Science.gov (United States)

    Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; André, Stéphane; Carlin, Frédéric; Remize, Fabienne

    2015-06-02

    Spoilage of low-acid canned food during prolonged storage at high temperatures is caused by heat resistant thermophilic spores of strict or facultative bacteria. Here, we performed a bacterial survey over two consecutive years on the processing line of a French company manufacturing canned mixed green peas and carrots. In total, 341 samples were collected, including raw vegetables, green peas and carrots at different steps of processing, cover brine, and process environment samples. Thermophilic and highly-heat-resistant thermophilic spores growing anaerobically were counted. During vegetable preparation, anaerobic spore counts were significantly decreased, and tended to remain unchanged further downstream in the process. Large variation of spore levels in products immediately before the sterilization process could be explained by occasionally high spore levels on surfaces and in debris of vegetable combined with long residence times in conditions suitable for growth and sporulation. Vegetable processing was also associated with an increase in the prevalence of highly-heat-resistant species, probably due to cross-contamination of peas via blanching water. Geobacillus stearothermophilus M13-PCR genotypic profiling on 112 isolates determined 23 profile-types and confirmed process-driven cross-contamination. Taken together, these findings clarify the scheme of contamination pathway by thermophilic spore-forming bacteria in a vegetable cannery. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Size matters for violent discharge height and settling speed of Sphagnum spores: important attributes for dispersal potential.

    Science.gov (United States)

    Sundberg, Sebastian

    2010-02-01

    Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores. Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube. The maximum discharge speed measured was 3.6 m s(-1). Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R(2) = 0.58-0.65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0.84-1.86 cm s(-1), about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats. The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.

  4. Microsatellite primers for fungus-growing ants

    DEFF Research Database (Denmark)

    Villesen, Palle; Gertsch, P J; Boomsma, JJ

    2002-01-01

    We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus-growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly...... developed primers and earlier published primers that were developed for fungus-growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus-growing ants, are now available for studying the population genetics and colony kin-structure of these ants....

  5. Microsatellite Primers for Fungus-Growing Ants

    DEFF Research Database (Denmark)

    Villesen Fredsted, Palle; Gertsch, Pia J.; Boomsma, Jacobus Jan (Koos)

    2002-01-01

    We isolated five polymorphic microsatellite loci from a library of two thousand recombinant clones of two fungus-growing ant species, Cyphomyrmex longiscapus and Trachymyrmex cf. zeteki. Amplification and heterozygosity were tested in five species of higher attine ants using both the newly...... developed primers and earlier published primers that were developed for fungus-growing ants. A total of 20 variable microsatellite loci, developed for six different species of fungus-growing ants, are now available for studying the population genetics and colony kin-structure of these ants....

  6. Airway inflammation among compost workers exposed to actinomycetes spores

    Directory of Open Access Journals (Sweden)

    Kari Kulvik Heldal

    2015-05-01

    Full Text Available Objectives. To study the associations between exposure to bioaerosols and work-related symptoms, lung function and biomarkers of airway inflammation in compost workers. Materials and method. Personal full-shift exposure measurements were performed on 47 workers employed at five windrow plants (n=20 and five reactor plants (n=27. Samples were analyzed for endotoxins, bacteria, fungal and actinomycetes spores. Health examinations were performed on workers and 37 controls before and after work on the day exposure was measured. The examinations included symptoms recorded by questionnaire, lung function by spirometry and nasal dimensions by acoustic rhinometry (AR. The pneumoproteins CC16, SP-D and SP-A were measured in a blood sample drawn at the end of the day. Results. The levels of endotoxins (median 3 EU/m[sup]3[/sup] , range 0–730 EU/m[sup]3[/sup] and actinomycetes spores (median 0.2 × 10[sup]6[/sup] spores/m[sup]3[/sup] , range 0–590 × 10[sup]6[/sup] spores/m[sup]3[/sup] were significantly higher in reactor plants compared to windrow plants. However, windrow composting workers reported more symptoms than reactor composting workers, probably due to use of respiratory protection. Exposure-response relationships between actinomycetes spores exposure and respiratory effects, found as cough and nose irritation during a shift, was significantly increased (OR 4.3, 95% CI 1.1–16, OR 6.1, 95% CI 1.5–25, respectively, p<0.05 among workers exposed to 0.02–0.3 × 10[sup]6[/sup] actinomycetes spores/m 3 , and FEV1/FVC% decreased cross shift (b=–3.2, SE=1.5%, p<0.01. Effects were weaker in the highest exposed group, but these workers used respiratory protection, frequently limiting their actual exposure. No relationships were found between exposure and pneumoprotein concentrations. Conclusions. The major agent in the aerosol generated at compost plants was actinomycetes spores which was associated with work related cough symptoms and work

  7. Architecture and Assembly of the Bacillus subtilis Spore Coat

    Science.gov (United States)

    2014-09-26

    with chromosomal DNA was as described [32]. Table 1. 8. subtifis strains used in this study. Stra in Genotype Phenotype• PS832 wild type PS3394...of the morphology of fully hydrated and air dried spores demonstrate that surface ridges on dehydrated spores mostly disappear or decrease in size

  8. Diurnal variations of airborne fungal spores concentration in the town and rural area

    Directory of Open Access Journals (Sweden)

    Idalia Kasprzyk

    2012-12-01

    Full Text Available Airborne fungal spores were monitored in 2001-2002 in Rzeszów (town and its neighborhood. The aim of investigations was to ascertain if there were differences in diurnal variations of airborne fungal spores concentration between town and rural area. The sampling was carried out using volumetric method. Traps were located at the same heights - app. 12 m. Airborne spores were sampled continuously. Microscopical slides were prepared for each day. Analysis was carried out on one longitudinal band of 48 mm long divided into 24 segments corresponding following hours of day. The results were expressed as mean number of fungal spores per cubic meter per 24 hours. For this survey, five geni of allergenic fungi were selected: Alternaria, Botrytis, Cladosporium, Epicoccum, Ganoderma. The concentrations of their airborne spores were high or very high. It was calculated theoretical day, where the hourly count was the percentage mean of number of spores at that time every chosen day without rainfall from 2001 and 2001 years. The diurnal periodicity of Alternaria, Cladosporium, Epicoccum and Ganoderma showed one peak, while Botrytis two. Anamorphic spores peaked in the afternoon, while their minima occurred in the morning. The highest concentrations of Ganoderma basidiospores were at down or at night, but minima during the day. There were no clear differences in the peak values between two studied sites. The results indicate that maximum concentrations of all spores generally occurred a few hour earlier in the rural area than in the town. Probably, in the rural area airborne spores came from many local sources and their diurnal periodicity reflected rhythm of spore liberation. Towns are characterized by specific microclimate with higher temperature and wind blowing to the centre. In Rzeszów fungal spores could be transported outside and carried out by wind from distant sources. This study showed, among others, that habitat conditions are an important factors

  9. Lethality of chlorine, chlorine dioxide, and a commercial fruit and vegetable sanitizer to vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis.

    Science.gov (United States)

    Beuchat, Larry R; Pettigrew, Charles A; Tremblay, Mario E; Roselle, Brian J; Scouten, Alan J

    2004-08-01

    Chlorine, ClO2, and a commercial raw fruit and vegetable sanitizer were evaluated for their effectiveness in killing vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. The ultimate goal was to use one or both species as a potential surrogate(s) for Bacillus anthracis in studies that focus on determining the efficacy of sanitizers in killing the pathogen on food contact surfaces and foods. Treatment with alkaline (pH 10.5 to 11.0) ClO2 (200 microg/ml) produced by electrochemical technologies reduced populations of a five-strain mixture of vegetative cells and a five-strain mixture of spores of B. cereus by more than 5.4 and more than 6.4 log CFU/ml respectively, within 5 min. This finding compares with respective reductions of 4.5 and 1.8 log CFU/ml resulting from treatment with 200 microg/ml of chlorine. Treatment with a 1.5% acidified (pH 3.0) solution of Fit powder product was less effective, causing 2.5- and 0.4-log CFU/ml reductions in the number of B. cereus cells and spores, respectively. Treatment with alkaline ClO2 (85 microg/ml), acidified (pH 3.4) ClO2 (85 microg/ml), and a mixture of ClO2 (85 microg/ml) and Fit powder product (0.5%) (pH 3.5) caused reductions in vegetative cell/spore populations of more than 5.3/5.6, 5.3/5.7, and 5.3/6.0 log CFU/ml, respectively. Treatment of B. cereus and B. thuringiensis spores in a medium (3.4 mg/ml of organic and inorganic solids) in which cells had grown and produced spores with an equal volume of alkaline (pH 12.1) ClO2 (400 microg/ml) for 30 min reduced populations by 4.6 and 5.2 log CFU/ml, respectively, indicating high lethality in the presence of materials other than spores that would potentially react with and neutralize the sporicidal activity of ClO2.

  10. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future.

    Science.gov (United States)

    Wang, He; Wang, Yunxiang; Yang, Ruijin

    2017-02-01

    With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.

  11. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms.

    Science.gov (United States)

    Bressuire-Isoard, Christelle; Broussolle, Véronique; Carlin, Frédéric

    2018-05-17

    Bacterial spores are resistant to physical and chemical insults, which make them a major concern for public health and for industry. Spores help bacteria to survive extreme environmental conditions that vegetative cells cannot tolerate. Spore resistance and dormancy are important properties for applications in medicine, veterinary health, food safety, crop protection, and other domains. The resistance of bacterial spores results from a protective multilayered structure and from the unique composition of the spore core. The mechanisms of sporulation and germination, the first stage after breaking of dormancy, and organization of spore structure have been extensively studied in Bacillus species. This review aims to illustrate how far the structure, composition and properties of spores are shaped by the environmental conditions in which spores form. We look at the physiological and molecular mechanisms underpinning how sporulation media and environment deeply affect spore yield, spore properties like resistance to wet heat and physical and chemical agents, germination, and further growth. For example, spore core water content decreases as sporulation temperature increases, and resistance to wet heat increases. Controlling the fate of Bacillus spores is pivotal to controlling bacterial risks and process efficiencies in, for example, the food industry, and better control hinges on better understanding how sporulation conditions influence spore properties.

  12. Breaking the spores of Ganoderma lucidum by fermentation with ...

    African Journals Online (AJOL)

    In this paper, fermentation of G. lucidum with Lactobacillus plantarum was applied to break down the sporoderm. Scanning electron microscope (SEM) was used to characterize the spores. The broken spores were found on the 3rd day and complete breaking on the 5th day of fermentation. Lactic acid, acetic acid and ...

  13. Bacillus subtilis spores as vaccine adjuvants: further insights into the mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Renata Damásio de Souza

    Full Text Available Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains.

  14. Resistance and recovery studies on ultraviolet-irradiated spores of Bacillus pumilus

    International Nuclear Information System (INIS)

    Abshire, R.L.; Bain, B.; Williams, T.

    1980-01-01

    A spore suspension model and a procedure for recovering ultraviolet (uv)-irradiated spores of Bacillus pumilus were investigated. A most-probable-number tube dilution method using double-strength Trypticase soy broth was found to be superior to the agar plate method for recovering optimal numbers of spores irradiated with sublethal doses of uv energy. Aqueous suspensions of B. pumilus survived uv doses up to 108,000 ergs/mm 2 as determined by a most-probable-number recovery and estimation procedure. Resistance and stability data were consistent and reproducible, indicating the dependability of this method for recovering uv-damaged spores. The procedures used to collect information concerning resistance characteristics for two strains of B. pumilus are discussed

  15. Stingless bees (Hymenoptera, Meliponini feeding on stinkhorn spores (Fungi, Phallales: robbery or dispersal?

    Directory of Open Access Journals (Sweden)

    Marcio L. Oliveira

    2000-09-01

    Full Text Available Records about stingless bee-fungi interaction are very rare. In Brazilian Amazonia, workers of Trigona crassipes (Fabricius, 1793 and Trigona fulviventris Guérin, 1835 visiting two stinkhorn species, Dictyophora sp. and Phallus sp., respectively, were observed. The workers licked the fungi gleba, a mucilaginous mass of spores covering the pileum. Neither gleba residue nor spores were found on the body surface of these bee workers. These observations indicate that these bee species include spores as a complement in their diet. On the other hand, they also suggest that these stingless bees can, at times, facilitale spore dispersal, in case intact spores are eliminated with the feces.

  16. Effect of individual or combined treatment of heat or radiation on clostridium perfringens spores

    Energy Technology Data Exchange (ETDEWEB)

    El-Zawahry, Y A; El-Fouly, M Z; Aziz, N H

    1986-01-01

    Separate treatments of high temperature had considerable effect on Cl.perfrigens spores suspended in saline solution especially at 90 and 100[sup 0]C, while 70 and 80[sup 0]C had only slight effect on the spores viabilty. The decimal reduction times (D[sub T]) were 33.7, 26, 4, 10.7 and 2.8 at 70, 80, 90 and 100[sup 0]C for NCTC 8798 strain and were 45.1, 27.1, 10.2 and 4.0 for the Egyptian strain at the same degrees of temperature respectively. Heat treatment pre-irradiation at 70 and 80[sup 0]C for 30 and 60 min decreased the viable spore numbers by about 0.5 to 3.0 log cycles, but the treatment had no effect on increasing the sensitivity of the rest spores to radiation. The decimal reduction dose (D[sub 10]-value) for the spores was almost the same as the control but there was a tendency to reduce the shoulder part in the radiation response curve especially when the spores were subjected to 80[sup 0]C for 60 min. On the other hand, irradiation pre-heat treatment with doses from 1-10 KGY was sufficient to decrease the spore numbers from 0.2 to 5.0 log cycles and had a sensitizing effect on subsequently heated spores especially those exposed to 90 and 100[sup 0]C. Meanwhile the rate of inactivation for spores exposed to 70 and 80[sup 0]C after irradiation increased only during the first ten minutes. Thereafter, the rate of inactivation was almost the same for the non-irradiated spores. The D[sub 10]-values for the spores irradiated with 10 KGY were 0.77 and 0.84 minutes for NCTC 8798 strain and Egyptian strain at 100[sup 0]C respectively and the spores were completely destroyed before 5 minutes.

  17. Proteomic Analysis of Bacillus cereus Spores

    National Research Council Canada - National Science Library

    Schwandt, Kerrie

    2002-01-01

    .... All of the identified proteins were plausible spore components, and included chaperonins, sporulation regulators, ribosomal proteins, proteases, and metabolic enzymes involved in energy production...

  18. Reinforcement of Bacillus subtilis spores by cross-linking of outer coat proteins during maturation.

    Science.gov (United States)

    Abhyankar, Wishwas; Pandey, Rachna; Ter Beek, Alexander; Brul, Stanley; de Koning, Leo J; de Koster, Chris G

    2015-02-01

    Resistance characteristics of bacterial endospores towards various environmental stresses such as chemicals and heat are in part attributed to their coat proteins. Heat resistance is developed in a late stage of sporulation and during maturation of released spores. Using our gel-free proteomic approach and LC-FT-ICR-MS/MS analysis we have monitored the efficiency of the tryptic digestion of proteins in the coat during spore maturation over a period of eight days, using metabolically (15)N labeled mature spores as reference. The results showed that during spore maturation the loss of digestion efficiency of outer coat and crust proteins synchronized with the increase in heat resistance. This implicates that spore maturation involves chemical cross-linking of outer coat and crust layer proteins leaving the inner coat layer proteins unmodified. It appears that digestion efficiencies of spore surface proteins can be linked to their location within the coat and crust layers. We also attempted to study a possible link between spore maturation and the observed heterogeneity in spore germination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Demulsification of crude oil-in-water emulsions by means of fungal spores.

    Directory of Open Access Journals (Sweden)

    Alba Adriana Vallejo-Cardona

    Full Text Available The present feature describes for the first time the application of spores from Aspergillus sp. IMPMS7 to break out crude oil-in-water emulsions (O/W. The fungal spores were isolated from marine sediments polluted with petroleum hydrocarbons. The spores exhibited the ability to destabilize different O/W emulsions prepared with medium, heavy or extra-heavy Mexican crude oils with specific gravities between 10.1 and 21.2°API. The isolated fungal spores showed a high hydrophobic power of 89.3 ± 1.9% and with 2 g of spores per liter of emulsion, the half-life for emulsion destabilization was roughly 3.5 and 0.7 h for extra-heavy and medium crude oil, respectively. Then, the kinetics of water separation and the breaking of the O/W emulsion prepared with heavy oil through a spectrofluorometric technique were studied. A decrease in the fluorescence ratio at 339 and 326 nm (I339/I326 was observed in emulsions treated with spores, which is similar to previously reported results using chemical demulsifiers.

  20. Mechanism and site of inhibition of Bacillus cereus spore outgrowth by nitrosothiols

    International Nuclear Information System (INIS)

    Morris, S.L.

    1982-01-01

    Structure vs. activity studies demonstrate that nitrosothiols inhibit outgrowth of B. cereus spores by reversible covalent bond formation with sensitive spore components. Kinetic studies of the binding of nitrosothiols and iodoacetate, a known sulfhydryl reagent, show that they complete for the same spore sites. Since two other nitrite derivatives, the Perigo factor and the transferrin inhibitor, interfere with iodoacetate label uptake in a kinetically similar fashion, all of these compounds may inhibit spore outgrowth by interacting with the same spore thiol groups. Disruption of spores which have been inhibited by radioactive iodoacetate demonstrates that much of the label is incorporated into a membrane-rich fraction that sediments as a single peak on a sucrose density gradient. SDS gel electrophoresis and autofluorography allows the identification of four intensely labelled proteins with molecular weights of 13,000, 28,000, 29,000, and 30,000. If the iodoacetate labelling is carried out in the presence of nitrosothiol, incorporation is greatly reduced into all components. When germinating spores are labelled with succinate or the lactose analog, o-nitrophenylgalactopyranoside, a significant reduction in the amount of label bound is also observed suggesting that two iodoacetate-reactive sites may be the succinate and lactose permease systems. Severe decreases in the transport of succinate and lactose into iodoacetate and nitrosothiol inhibited spores further implicates a nitrosothiol (iodoacetate) permease interaction. Iodoacetate and nitrosothiols therefore may exert their inhibitory effects by interfering with critical membrane protein sulfhydryl groups, possibly by a a covalent modification mechanism. Some of these sensitive thiols may be involved in active transport processes

  1. A Novel Spectroscopic Methodology for the Investigation of Individual Bacillus Spores

    National Research Council Canada - National Science Library

    Alexander, Troy A; Pellegrino, Paul; Gillespie, James B

    2005-01-01

    A methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants...

  2. Fungal spores as potential ice nuclei in fog/cloud water and snow

    Science.gov (United States)

    Bauer, Heidi; Goncalves, Fabio L. T.; Schueller, Elisabeth; Puxbaum, Hans

    2010-05-01

    INTRODUCTION: In discussions about climate change and precipitation frequency biological ice nucleation has become an issue. While bacterial ice nucleation (IN) is already well characterized and even utilized in industrial processes such as the production of artificial snow or to improve freezing processes in food industry, less is known about the IN potential of fungal spores which are also ubiquitous in the atmosphere. A recent study performed at a mountain top in the Rocky Mountains suggests that fungal spores and/or pollen might play a role in increased IN abundance during periods of cloud cover (Bowers et al. 2009). In the present work concentrations of fungal spores in fog/cloud water and snow were determined. EXPERIMENTAL: Fog samples were taken with an active fog sampler in 2008 in a traffic dominated area and in a national park in São Paulo, Brazil. The number concentrations of fungal spores were determined by microscopic by direct enumeration by epifluorescence microscopy after staining with SYBR Gold nucleic acid gel stain (Bauer et al. 2008). RESULTS: In the fog water collected in the polluted area at a junction of two highly frequented highways around 22,000 fungal spores mL-1 were counted. Fog in the national park contained 35,000 spores mL-1. These results were compared with cloud water and snow samples from Mt. Rax, situated at the eastern rim of the Austrian Alps. Clouds contained on average 5,900 fungal spores mL-1 cloud water (1,300 - 11,000) or 2,200 spores m-3 (304 - 5,000). In freshly fallen snow spore concentrations were lower than in cloud water, around 1,000 fungal spores mL-1 were counted (Bauer et al. 2002). In both sets of samples representatives of the ice nucleating genus Fusarium could be observed. REFERENCES: Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols

  3. Absorption edge imaging of sporocide-treated and non-treated bacterial spores

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.; Tortora, G.T.; Warren, J.B.

    1987-01-01

    When deprived of nutrients, spore forming bacilli produce endospores which are remarkably resistant to chemical sterilization. Little is known about the morphology and response fo these spores following exposure to sporocidal agents. Light microscopy does not provide sufficient resolution for studying the rupture of the spore coat and fate of intracellular material. Transmission and scanning electron microscopy offer superior resolution but require specimen preparation methods that induce physiologic as well as morphologic changes in the spores, thereby making accurate interpretation of micrographs difficult. To eliminate the possible artifacts induced by chemical fixation, dehydration, embeddment, staining and sectioning, treated and non-sporocide-treated endospores of B. thuringiensis and B. subtilis were imaged by x-ray contact microscopy using monochromatic x-rays. 6 refs., 2 figs

  4. Germination and Inactivation of Alicyclobacillus acidoterrestris Spores Induced by Moderate Hydrostatic Pressure.

    Science.gov (United States)

    Sokołowska, Barbara; Skapska, Sylwia; Fonberg-Broczek, Monika; Niezgoda, Jolanta; Porebska, Izabela; Dekowska, Agnieszka; Rzoska, Sylwester J

    2015-01-01

    Given the importance of spoilage caused by Alicyclobacillus acidoterrestris for the fruit juice industry, the objective of this work was to study the germination and inactivation of A. acidoterrestris spores induced by moderate hydrostatic pressure. Hydrostatic pressure treatment can induce the germination and inactivation of A. acidoterrestris spores. At low pH, spore germination of up to 3.59-3.75 log and inactivation of 1.85-2.04 log was observed in a low pressure window (200-300 MPa) applied at 50 degrees C for 20 min. Neutral pH suppressed inactivation, the number of spores inactivated at pH 7.0 was only 0.24-1.06 log. The pressurization temperature significantly affected spore germination and inactivation. The degree of germination in apple juice after pressurization for 30 min with 200 MPa at 20 degrees C was 2.04 log, with only 0.61 log of spores being inactivated, while at 70 degrees C spore germination was 5.94 log and inactivation 4.72 log. This temperature strongly stimulated germination and inactivation under higher (500 MPa) than lower (200 MPa) pressure. When the oscillatory mode was used, the degree of germination and inactivation was slightly higher than at continuous mode. The degree of germination and inactivation was inversely proportional to the soluble solids content and was lowest in concentrated apple juice.

  5. Mushroom's spore size and time of fruiting are strongly related: is moisture important?

    Science.gov (United States)

    Kauserud, Håvard; Heegaard, Einar; Halvorsen, Rune; Boddy, Lynne; Høiland, Klaus; Stenseth, Nils Chr

    2011-04-23

    Most basidiomycete fungi produce annual short-lived sexual fruit bodies from which billions of microscopic spores are spread into the air during a short time period. However, little is known about the selective forces that have resulted in some species fruiting early and others later in the fruiting season. This study of relationships between morphological and ecological characteristics, climate factors and time of fruiting are based upon thorough statistical analyses of 66 520 mapped records from Norway, representing 271 species of autumnal fruiting mushroom species. We found a strong relationship between spore size and time of fruiting; on average, a doubling of spore size (volume) corresponded to 3 days earlier fruiting. Small-spored species dominate in the oceanic parts of Norway, whereas large-spored species are typical of more continental parts. In separate analyses, significant relationships were observed between spore size and climate factors. We hypothesize that these relationships are owing to water balance optimization, driven by water storage in spores as a critical factor for successful germination of primary mycelia in the drier micro-environments found earlier in the fruiting season and/or in continental climates.

  6. Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice.

    Directory of Open Access Journals (Sweden)

    Jyh-Hwa Kau

    Full Text Available BACKGROUND: Photocatalysis of titanium dioxide (TiO(2 substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO(2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. CONCLUSION/SIGNIFICANCE: Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host.

  7. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores

    NARCIS (Netherlands)

    Warda, A.K.; Besten, den H.M.W.; Sha, N.; Abee, T.; Nierop Groot, M.N.

    2015-01-01

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments

  8. Pathogenicity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotisipsilon (Hufn.)

    International Nuclear Information System (INIS)

    Fouda, M.A.; Abas, A.A.; Ibrahium, A.A.; Salem, H.; Gabarty, A.

    2012-01-01

    Scanning electron microscopy (SEM) allowed to observe B. bassiana and M. anisopliae adhesion and penetration structure on A. ipsilon larvae treated with the Lc 50 of the fungus, B. bassiana revealed adhesion and penetration structures in the infected larvae. Growth of the fungus on the infected larvae and signs of hyphal penetration of insect cuticle as well as proliferation of the cuticle were also appeared. On the other hand, the fungus, M. anisopliaeas declared by SEM showed a dense network together and caused the green spores on the insect cuticle. Also, SEM allowed observing the spores and hyphae of the fungus in the body cavity of infected larvae. Scanning electron microscopy is convenient tools to observe the mode of action of entomopathogenic fungi and to observe how they are able to colonize and infect the host.

  9. Measurement and analysis on optical characteristics of Aspergillus oryzae spores in infrared band

    Science.gov (United States)

    Li, Le; Hu, Yihua; Gu, Youlin; Chen, Wei; Xu, Shilong; Zhao, Xinying

    2015-10-01

    Spore is an important part of bioaerosols. The optical characteristics of spore is a crucial parameter for study on bioaerosols. The reflection within the waveband of 2.5 to15μm were measured by squash method. Based on the measured data, Complex refractive index of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14 μm were calculated by using Krames-Kronig (K-K) relationship. Then,the mass extinction coefficient of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14μm were obtained by utilizing Mie scattering theory, and the results were analyzed and discussed. The average mass extinction coefficient of Aspergillus oryzae spores is 0.51 m2/g in the range of 3 to 5μm and 0.48m2/g in the range of 8 to 14μm. Compared with common inorganic compounds, Aspergillus oryzae spores possesses a good extinction performance in infrared band.

  10. Evidence for the monomerization of spore photoproduct to two thymines by the light-independent 'spore repair' process in Bacillus subtilis

    International Nuclear Information System (INIS)

    Van Wang, T.-C.; Rupert, C.S.

    1977-01-01

    Ultraviolet irradiation of bacterial spores induces a unique DNA photoproduct, which yields mostly 5-thyminyl-5,6-dihydrothymine (Thy(α-5)hThy, or TDHT) on acid hydrolysis. One of the possible mechanisms for the observed removal of the photoproduct on spore germination ivolves its direct conversion back to two adjacent thymine residues, and additional evidence is presented in support of this theory. Studies were made of the fate of the TDHT radioactivity in irradiated, germinated B. subtilis spores labelled with 3 H-thymine or 14 C-thymine, and of the homogeneity of the thymine-peak radioactivity. The radioactivity disappearing from the TDHT peak on germination seemed to be stoichiometrically recovered in the thymine peak, and no new materials were detected under the thymine-peak radioactivity. No intermediates were detected in B. subtilis mutant 25D4 (hcr 42 - recA 1 - ), a strain which had given some promise of accumulating intermediates from an incomplete repair process. (U.K.)

  11. The nature of water within bacterial spores: protecting life in extreme environments

    Science.gov (United States)

    Rice, Charles V.; Friedline, Anthony; Johnson, Karen; Zachariah, Malcolm M.; Thomas, Kieth J., III

    2011-10-01

    The bacterial spore is a formidable container of life, protecting the vital contents from chemical attack, antimicrobial agents, heat damage, UV light degradation, and water dehydration. The exact role of the spore components remains in dispute. Nevertheless, water molecules are important in each of these processes. The physical state of water within the bacterial spore has been investigated since the early 1930's. The water is found two states, free or bound, in two different areas, core and non-core. It is established that free water is accessible to diffuse and exchange with deuterated water and that the diffusible water can access all areas of the spore. The presence of bound water has come under recent scrutiny and has been suggested the water within the core is mobile, rather than bound, based on the analysis of deuterium relaxation rates. Using an alternate method, deuterium quadrupole-echo spectroscopy, we are able to distinguish between mobile and immobile water molecules. In the absence of rapid motion, the deuterium spectrum of D2O is dominated by a broad line, whose line shape is used as a characteristic descriptor of molecular motion. The deuterium spectrum of bacterial spores reveals three distinct features: the broad peak of immobilized water, a narrow line of water in rapid motion, and a signal of intermediate width. This third signal is assigned this peak from partially deuterated proteins with the spore in which N-H groups have undergone exchange with water deuterons to form N-D species. As a result of these observations, the nature of water within the spore requires additional explanation to understand how the spore and its water preserve life.

  12. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate.

    Science.gov (United States)

    Shrestha, Ritu; Lockless, Steve W; Sorg, Joseph A

    2017-06-23

    Clostridium difficile has become one of the most common bacterial pathogens in hospital-acquired infections in the United States. Although C. difficile is strictly anaerobic, it survives in aerobic environments and transmits between hosts via spores. C. difficile spore germination is triggered in response to certain bile acids and glycine. Although glycine is the most effective co-germinant, other amino acids can substitute with varying efficiencies. Of these, l-alanine is an effective co-germinant and is also a germinant for most bacterial spores. Many endospore-forming bacteria embed alanine racemases into their spore coats, and these enzymes are thought to convert the l-alanine germinant into d-alanine, a spore germination inhibitor. Although the C. difficile Alr2 racemase is the sixth most highly expressed gene during C. difficile spore formation, a previous study reported that Alr2 has little to no role in germination of C. difficile spores in rich medium. Here, we hypothesized that Alr2 could affect C. difficile l-alanine-induced spore germination in a defined medium. We found that alr2 mutant spores more readily germinate in response to l-alanine as a co-germinant. Surprisingly, d-alanine also functioned as a co-germinant. Moreover, we found that Alr2 could interconvert l- and d-serine and that Alr2 bound to l- and d-serine with ∼2-fold weaker affinity to that of l- and d-alanine. Finally, we demonstrate that l- and d-serine are also co-germinants for C. difficile spores. These results suggest that C. difficile spores can respond to a diverse set of amino acid co-germinants and reveal that Alr2 can accommodate serine as a substrate. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Spore inactivation and DPA release in Alicyclobacillus acidoterrestris under different stress conditions.

    Science.gov (United States)

    Bevilacqua, Antonio; Ciuffreda, Emanuela; Sinigaglia, Milena; Corbo, Maria Rosaria

    2015-04-01

    This paper reports on the inactivation of spores of 5 strains of Alicyclobacillus acidoterrestris under different stress conditions (acidic and alkaline pH, high temperature, addition of lysozyme, hydrogen peroxide and p-coumaric acid). The research was divided into two different steps; first, each stress was studied alone, thus pointing out a partial uncoupling between spore inactivation and DPA release, as H2O2 reduced spore level below the detection but it did not cause the release of DPA. A partial correlation was found only for acidic and alkaline pH. 2nd step was focused on the combination of pH, temperature and H2O2 through a factorial design; experiments were performed on both fresh and 4 month-old spores and pinpointed a different trend for DPA release as a function of spore age. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Thermal Inactivation of Bacillus anthracis Spores Using Rapid Resistive Heating

    Science.gov (United States)

    2016-03-24

    agents. There is motivation for using thermal decontamination of B.a. spores for agent defeat scenarios. Spore-forming microorganisms are much...the top soil on Gruinard Island for over 40 years after the British detonated experimental anthrax bombs on the island during World War II (U.S

  15. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Sirec Teja

    2012-08-01

    Full Text Available Abstract Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure

  16. Fluorescence-based methods for the detection of pressure-induced spore germination and inactivation

    Science.gov (United States)

    Baier, Daniel; Reineke, Kai; Doehner, Isabel; Mathys, Alexander; Knorr, Dietrich

    2011-03-01

    The application of high pressure (HP) provides an opportunity for the non-thermal preservation of high-quality foods, whereas highly resistant bacterial endospores play an important role. It is known that the germination of spores can be initiated by the application of HP. Moreover, the resistance properties of spores are highly dependent on their physiological states, which are passed through during the germination. To distinguish between different physiological states and to detect the amount of germinated spores after HP treatments, two fluorescence-based methods were applied. A flow cytometric method using a double staining with SYTO 16 as an indicator for germination and propidium iodide as an indicator for membrane damage was used to detect different physiological states of the spores. During the first step of germination, the spore-specific dipicolinic acid (DPA) is released [P. Setlow, Spore germination, Curr. Opin. Microbiol. 6 (2003), pp. 550-556]. DPA reacts with added terbium to form a distinctive fluorescent complex. After measuring the fluorescence intensity at 270 nm excitation wavelength in a fluorescence spectrophotometer, the amount of germinated spores can be determined. Spores of Bacillus subtilis were treated at pressures from 150 to 600 MPa and temperatures from 37 °C to 60 °C in 0.05 M ACES buffer solution (pH 7) for dwell times of up to 2 h. During the HP treatments, inactivation up to 2log 10 cycles and thermal sensitive populations up to 4log 10 cycles could be detected by plate counts. With an increasing number of thermal sensitive spores, an increased proportion of spores in germinated states was detected by flow cytometry. Also the released amount of DPA increased during the dwell times. Moreover, a clear pressure-temperature-time-dependency was shown by screening different conditions. The fluorescence-based measurement of the released DPA can provide the opportunity of an online monitoring of the germination of spores under HP inside

  17. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis

    DEFF Research Database (Denmark)

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R

    2009-01-01

    Fungus-growing ants engage in mutualistic associations with both the fungus they cultivate for food and actinobacteria (Pseudonocardia spp.) that produce selective antibiotics to defend that fungus from specialized fungal parasites. We have analyzed one such system at the molecular level and found...

  18. Genotoxic action of sunlight upon Bacillus subtilis spores

    International Nuclear Information System (INIS)

    Munakata, Nobuo

    1989-01-01

    Samples of Bacillus subtilis spores dried on membrane filter were exposed to natural sunlight from solar-noon time at Tokyo. The survival and mutation induction of wild-type (UVR) and repair-deficient (UVS) spores were determined on 66 occasions since 1979. Two of the values were considered to be useful in monitoring solar UV intensity; the inverse of the time (in minutes) of exposure to kill 63% of the UVS spores ('sporocidal index') and the induced mutation frequency at 60 minutes of exposure of the UVR spores ('mutagenic index'). Both values were varied greatly due to time of a year, weather and other conditions. Estimates of year-round changes under clear skies were obtained by connecting the maximum values attained in these years. In these curves, there are more than 7-fold differences in the genotoxicity between winter and summer months, with major increases observed in early spring and decreases through autumn. Using a series of UV cut-off filters, the wavelengths most effective for the sporocidal actions were estimated to be in the range of 308 - 325 nm, shorter wavelengths being effective when the genotoxicity was higher. Sunburn meter of Robertson-Berger type seems to respond to slightly longer wavelength components of the solar spectrum. However, a reasonable correlation was obtained between the reading of the meter and the sporocidal index. (author)

  19. Influence of heat and radiation on the germinability and viability of B. cereus BIS-59 spores

    International Nuclear Information System (INIS)

    Kamat, A.S.; Lewis, N.F.

    1983-01-01

    Spores of Bicillus cereus BIS-59, isolated in this laboratory from shrimps, exhibited an exponential gamma radiation survival curve with a d 10 value of 400 krad as compared with a D 10 value of 30 krad for the vegetative cells. The D 10 value of DPA-depleted spores was also 400 krad indicating that DPA does not influence the radiation response of these spores. Maximum germination monitored with irradiated spores was 60 percent as compared with 80 percent in case of unirradiated spores. Radiation-induced inhibition of the germination processes was not dose dependent. Heat treatment (15 min at 80 C) to spores resulted in activation of the germination process; however, increase in heating time (30 min and 60 min) increased the germination lag period. DPA-depleted spores were less heat resistant than normal spores and exhibited biphasic exponential inactivation. (author)

  20. Inactivation of Bacillus anthracis Spores during Laboratory-Scale Composting of Feedlot Cattle Manure

    Science.gov (United States)

    Xu, Shanwei; Harvey, Amanda; Barbieri, Ruth; Reuter, Tim; Stanford, Kim; Amoako, Kingsley K.; Selinger, Leonard B.; McAllister, Tim A.

    2016-01-01

    Anthrax outbreaks in livestock have social, economic and health implications, altering farmer’s livelihoods, impacting trade and posing a zoonotic risk. Our study investigated the survival of Bacillus thuringiensis and B. anthracis spores sporulated at 15, 20, or 37°C, over 33 days of composting. Spores (∼7.5 log10 CFU g-1) were mixed with manure and composted in laboratory scale composters. After 15 days, the compost was mixed and returned to the composter for a second cycle. Temperatures peaked at 71°C on day 2 and remained ≥55°C for an average of 7 days in the first cycle, but did not exceed 55°C in the second. For B. thuringiensis, spores generated at 15 and 21°C exhibited reduced (P composting for spores generated at 15, 21, and 37°C, respectively. For both species, spore viability declined more rapidly (P composting cycle. Our findings suggest that the duration of thermophilic exposure (≥55°C) is the main factor influencing survival of B. anthracis spores in compost. As sporulation temperature did not influence survival of B. anthracis, composting may lower the viability of spores associated with carcasses infected with B. anthracis over a range of sporulation temperatures. PMID:27303388

  1. Sporangium Exposure and Spore Release in the Peruvian Maidenhair Fern (Adiantum peruvianum, Pteridaceae.

    Directory of Open Access Journals (Sweden)

    Simon Poppinga

    Full Text Available We investigated the different processes involved in spore liberation in the polypod fern Adiantum peruvianum (Pteridaceae. Sporangia are being produced on the undersides of so-called false indusia, which are situated at the abaxial surface of the pinnule margins, and become exposed by a desiccation-induced movement of these pinnule flaps. The complex folding kinematics and functional morphology of false indusia are being described, and we discuss scenarios of movement initiation and passive hydraulic actuation of these structures. High-speed cinematography allowed for analyses of fast sporangium motion and for tracking ejected spores. Separation and liberation of spores from the sporangia are induced by relaxation of the annulus (the 'throwing arm' of the sporangium catapult and conservation of momentum generated during this process, which leads to sporangium bouncing. The ultra-lightweight spores travel through air with a maximum velocity of ~5 m s(-1, and a launch acceleration of ~6300 g is measured. In some cases, the whole sporangium, or parts of it, together with contained spores break away from the false indusium and are shed as a whole. Also, spores can stick together and form spore clumps. Both findings are discussed in the context of wind dispersal.

  2. Esterase activity as a novel parameter of spore germination in Bacillus anthracis

    International Nuclear Information System (INIS)

    Ferencko, Linda; Cote, Mindy A.; Rotman, Boris

    2004-01-01

    Spores of Bacillus anthracis were shown to produce esterase activity about 4 min after exposure to conventional germinants such as combinations of amino acids and purine ribosides. Neither amino acids nor ribosides alone induce germination and esterase activity. Expression of esterase activity was chloramphenicol resistant, and correlated with loss of spore refractivity, a traditional parameter of early germination. Based on these observations, we hypothesized that esterase activity could be used as a novel parameter for quantifying early events during spore germination. To test this hypothesis, we measured expression of esterase activity under a variety of germinating conditions. Using diacetyl fluorescein as fluorogenic substrate of esterases, we demonstrated that esterase activity was invariably induced whenever spores were triggered by known germinants. Moreover, D-alanine, an inhibitor of L-alanine-mediated germination, was found to significantly inhibit expression of esterase activity. In terms of molecular mechanisms, esterase expression could represent activation of proteases at the onset of spore germination

  3. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta.

    Directory of Open Access Journals (Sweden)

    Liliana M Cano

    Full Text Available Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments and terpenoid biosynthesis (major floral volatile compounds were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.

  4. New insights in the bacterial spore resistance to extreme terrestrial and extraterrestrial factors

    Science.gov (United States)

    Moeller, Ralf; Horneck, Gerda; Reitz, Guenther

    Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. The extremely high resistance of bacterial endospores to environmental stress factors has intrigued researchers since long time and many characteristic spore features, especially those involved in the protection of spore DNA, have already been uncovered. The disclosure of the complete genomic sequence of Bacillus subtilis 168, one of the often used astrobiological model system, and the rapid development of tran-scriptional microarray techniques have opened new opportunities of gaining further insights in the enigma of spore resistance. Spores of B. subtilis were exposed to various extreme ter-restrial and extraterrestrial stressors to reach a better understanding of the DNA protection and repair strategies, which them to cope with the induced DNA damage. Following physical stress factors of environmental importance -either on Earth or in space -were selected for this thesis: (i) mono-and polychromatic UV radiation, (ii) ionizing radiation, (iii) exposure to ultrahigh vacuum; and (iv) high shock pressures simulating meteorite impacts. To reach a most comprehensive understanding of spore resistance to those harsh terrestrial or simulated extraterrestrial conditions, a standardized experimental protocol of the preparation and ana-lyzing methods was established including the determination of the following spore responses: (i) survival, (ii) induced mutations, (iii) DNA damage, (iv) role of different repair pathways by use of a set of repair deficient mutants, and (v) transcriptional responses during spore germi-nation by use of genome-wide transcriptome analyses and confirmation by RT-PCR. From this comprehensive set of data on spore resistance to a variety of environmental stress parameters a model of a "built-in" transcriptional program of bacterial spores in response to DNA damaging treatments to ensure DNA restoration

  5. Antiangiogenic, wound healing and antioxidant activity of Cladosporium cladosporioides (Endophytic Fungus isolated from seaweed (Sargassum wightii

    Directory of Open Access Journals (Sweden)

    Manjunath M. Hulikere

    2016-10-01

    Full Text Available Endophytic fungi from marine seaweeds are the less studied group of organisms with vast medical applications. The aim of the present study was to evaluate antioxidant, antiangiogenic as well as wound healing potential of the endophytic fungus isolated from the seaweed Sargassum wightii. The morphological characters and the rDNA internal transcribed spacer sequence analysis (BLAST search in Gen Bank database was used for the identification of endophytic fungus. The antioxidant potential of the ethyl acetate extract of endophytic fungus was assessed by, 1,1-diphenyl-2-picryl-hydrazyl radical scavenging method. The fungal extract was also analysed for reducing power, total phenolic and flavonoid content. Antiangiogenic activity of the fungal extract was studied in vitro by inhibition of wound healing scratch assay and in vivo by Chick chorioallantoic membrane assay. The endophytic fungus was identified as Cladosporium cladosporioides (Gen Bank ID – KT384175. The ethyl acetate extract of C. cladosporioides showed a significant antioxidant and angiosuppressive activity. The ESI-LC-MS analysis of the extract revealed the presence of wide range of secondary metabolites. Results suggest that C. cladosporioides extract could be exploited as a potential source for angiogenic modulators.

  6. Biosorption of radionuclide Americium-241 by A. niger spore and hyphae

    International Nuclear Information System (INIS)

    Yang Yuanyou; Liu Ning; Jin Jiannan; Hua Xinfeng; Zhang Taiming; Luo Shunzhong; Sun Qiling

    2002-01-01

    The biosorption of radionuclide 241 Am from solution was studied by a. niger spore and hyphae, and the effects of the operational conditions on the treatment were investigated. The results showed the treatment by A. niger spore and hyphae were very efficient. An average of 96% of the total 241 Am was removed from 241 Am solutions of 5.6-111 MBq/L (C 0 ), with adsorption capacities (W) of 7.2-142.4 MBq/g biomass, 5.2-106.5 MBq/g, respectively. The biosorption equilibrium was achieved within 1 h and the optimum pH value ranged 3-0.1 mol/L HNO 3 and 3-2 for spore and hyphae of A. niger, respectively. No significant effects on 241 Am biosorption were observed at 15 degree C-45 degree C, or challenged with containing Au 3+ or Ag + , even 2000 times above 241 Am amount. the index relationship between concentrations and adsorption capacities of 241 Am indicated that the 241 Am biosorption by A. niger spore and hyphae obey to Freundlich adsorption equation. The adsorption behavior of A. niger spore and hyphae were basically coincident

  7. Inoculation of sphagnum-based soil substrate with entomopathogenic fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae)

    Science.gov (United States)

    Zemek, Rostislav; Konopická, Jana; Bohatá, Andrea

    2018-04-01

    Convenient ecological alternative to broad-spectrum chemical pesticides is the utilization of natural enemies, like predators, parasitoids and microorganisms. A substantial number of microbial biopesticides based on entomopathogenic fungi have been developed worldwide since 1960s. Beauveria bassiana (Balsamo-Crivelli) Vuillemin, Metarhizium anisopliae (Metchnikoff) Sorokin, Isaria fumosorosea (Wize), and B. brongniartii (Saccardo) Petch are the most common species used in commercially produced mycopesticides. Besides direct biological pest control, these fungi could be also used in preventive application programs, particularly in ornamental or nursery plants to provide better control against pests. The aim of the present study was to investigate potential of pre-colonization of sphagnum-based soil substrate with I. fumosorosea strain CCM 8367 which was found earlier to be highly virulent against several pest species. We developed simple laboratory apparatus for application of fungal spore suspension into the substrate. Suspension was prepared from blastospores obtained by submerged cultivation on potato dextrose broth (PDB) medium using an orbital shaker. Inoculated substrate was placed into plastic bags and stored at constant temperature for six months. Every month, samples were analyzed for concentration of colony forming units (CFU) by elution and selective medium technique. The results showed that at 20°C the fungus successfully colonized the soil substrate and persisted there although the mean concentration slightly decreased from 5.89×104 to 2.76×104 CFU per milliliter of substrate during the experiment. Temperature 30°C had negative effect on survival of the fungus and is not recommended for long-term storage of pre-inoculated substrate. We can conclude that I. fumosorosea-colonized substrate can be convenient for preventive and permanent protection of various plants against soil-dwelling pests.

  8. Carbon dioxide sensing in an obligate insect-fungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus.

    Directory of Open Access Journals (Sweden)

    Daniela Römer

    Full Text Available Defense against biotic or abiotic stresses is one of the benefits of living in symbiosis. Leaf-cutting ants, which live in an obligate mutualism with a fungus, attenuate thermal and desiccation stress of their partner through behavioral responses, by choosing suitable places for fungus-rearing across the soil profile. The underground environment also presents hypoxic (low oxygen and hypercapnic (high carbon dioxide conditions, which can negatively influence the symbiont. Here, we investigated whether workers of the leaf-cutting ant Acromyrmex lundii use the CO2 concentration as an orientation cue when selecting a place to locate their fungus garden, and whether they show preferences for specific CO2 concentrations. We also evaluated whether levels preferred by workers for fungus-rearing differ from those selected for themselves. In the laboratory, CO2 preferences were assessed in binary choices between chambers with different CO2 concentrations, by quantifying number of workers in each chamber and amount of relocated fungus. Leaf-cutting ants used the CO2 concentration as a spatial cue when selecting places for fungus-rearing. A. lundii preferred intermediate CO2 levels, between 1 and 3%, as they would encounter at soil depths where their nest chambers are located. In addition, workers avoided both atmospheric and high CO2 levels as they would occur outside the nest and at deeper soil layers, respectively. In order to prevent fungus desiccation, however, workers relocated fungus to high CO2 levels, which were otherwise avoided. Workers' CO2 preferences for themselves showed no clear-cut pattern. We suggest that workers avoid both atmospheric and high CO2 concentrations not because they are detrimental for themselves, but because of their consequences for the symbiotic partner. Whether the preferred CO2 concentrations are beneficial for symbiont growth remains to be investigated, as well as whether the observed preferences for fungus

  9. Production of vesicular-arbuscular mycorrhizal fungus inoculum in aeroponic culture.

    Science.gov (United States)

    Hung, L L; Sylvia, D M

    1988-02-01

    Bahia grass (Paspalum notatum) and industrial sweet potato (Ipomoea batatas) colonized by Glomus deserticola, G. etunicatum, and G. intraradices were grown in aeroponic cultures. After 12 to 14 weeks, all roots were colonized by the inoculated vesicular-arbuscular mycorrhizal fungi. Abundant vesicles and arbuscules formed in the roots, and profuse sporulation was detected intra-and extraradically. Within each fungal species, industrial sweet potato contained significantly more roots and spores per plant than bahia grass did, although the percent root colonization was similar for both hosts. Mean percent root colonization and sporulation per centimeter of colonized root generally increased with time, although with some treatments colonization declined by week 14. Spore production ranged from 4 spores per cm of colonized root for G. etunicatum to 51 spores per cm for G. intraradices. Infectivity trials with root inocula resulted in a mean of 38, 45, and 28% of bahia grass roots colonized by G. deserticola, G. etunicatum, and G. intraradices, respectively. The germination rate of G. etunicatum spores produced in soil was significantly higher than that produced in aeroponic cultures (64% versus 46%) after a 2-week incubation at 28 degrees C. However, infectivity studies comparing G. etunicatum spores from soil and aeroponic culture indicated no biological differences between the spore sources. Aeroponically produced G. deserticola and G. etunicatum inocula retained their infectivity after cold storage (4 degrees C) in either sterile water or moist vermiculite for at least 4 and 9 months, respectively.

  10. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations

    Science.gov (United States)

    Sadyś, Magdalena; Skjøth, Carsten Ambelas; Kennedy, Roy

    2016-04-01

    High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m-3), moderate (50-99 s m-3), high (100-149 s m-3) and very high (150 < n s m-3), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68).

  11. Physical determinants of radiation sensitivity in bacterial spores

    International Nuclear Information System (INIS)

    Powers, E.L.

    1982-01-01

    Several factors modifying radiation sensitivity in dry bacterial spores are described and discussed. Vacuum inducing the loss of critical structural water, very low dose rates of radiation from which the cell may recover, radiations of high linear energy transfer, and the action of temperature over long periods of time on previously irradiated cells are recognized from extensive laboratory work as important in determining survival of spores exposed to low radiation doses at low temperatures for long periods of time. Some extensions of laboratory work are proposed

  12. The role of water radicals in thermorestoration of bacterial spores

    International Nuclear Information System (INIS)

    Friedman, Y.S.; Grecz, N.

    1974-01-01

    Fully hydrated bacterial spores exposed to 0.45 Mrad showed a characteristic pattern of survival associated with thermorestoration. When temperature during radiation was controlled at -15 0 to +120 0 C, the lowest viable cell counts were at 0 0 C. Above 0 0 C radiosurvival gradually increased by 2 to 3 log cycles reaching peak at 75 0 C (Bacillus cereus T heat sensitive spores) and at 95 0 C (B.stearothermophilus, heat resistant spores). Simultaneously high survival was observed in the solidly frozen state at -15 0 C to -5 0 C since harmful radicals produced by radiation were trapped in ice. Radiation modifying effects, i.e., protection by 2M ethanol (a scavenger of OH radicals) and sensitization by 1M sodium nitrate (a scavenger of H radicals and hydrated electrons), were studied. The results with ethanol and nitrate confirm the idea that in aqueous sytems below 50 0 C the lethal action is due to oxidizing OH radicals known to attack cell DNA. However, the reversal of scavenger actions above 50 0 C indicates that at those high temperatures lethal effects may also involve the reducing H and esub(aq), which at lower temperatures appear not to affect spore survival though they are known to attack proteins. In this case, it is proposed that radiation inactivation of spores at temperatures below 50 0 C is due to DNA damage inflicted by OH radicals whereas spore death above 50 0 C seems to involve protein /enzyme/ inactivation due to a combined action of heat plus reducing (H, esub(aq)) as well as oxidizing (OH) radical species. From the practical point of view it is important that normally radioprotective effects of such substances as ethanol or ground beef are progressively lost when radiation is carried out at temperatures above 50 0 C. (F.J.)

  13. A new chytridiomycete fungus intermixed with crustacean resting eggs in a 407-million-year-old continental freshwater environment

    DEFF Research Database (Denmark)

    Strullu-Derrien, Christine; Gora, Tomasz; Longcore, Joyce E.

    2016-01-01

    interpreted as branchiopod resting eggs. Confocal laser scanning microscopy enabled us to reconstruct the fungus and its possible mode of nutrition, the affinity of the resting eggs, and their spatial associations. The new fungus (Cultoraquaticus trewini gen. et sp. nov) is attributed to Chytridiomycota based...... on its size, consistent formation of papillae, and the presence of an internal rhizoidal system. It is the most pristine fossil Chytridiomycota known, especially in terms of rhizoidal development and closely resembles living species in the Rhizophydiales. The spiny resting eggs are attributed...

  14. Mutation Induction with UV- and X-radiations in spores and vegetative cells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Tanooka, H.; Munakata, N.; Kitahara, S.

    1978-01-01

    Spores and vegetative cells of Bacillus subtilis strains with various defects in DNA-repair capacities (hcr - , ssp - , hcr - ssp - ) were irradiated with UV radiation or X-rays. Induced mutation frequency was determined from the observed frequency of prototrophic reversion of a suppressible auxotropic mutation. At equal physical dose, after either UV- or X-irradiation, spores were more resistant to mutations as well as to killing than were vegetative cells. However, quantitative comparison revealed that, at equally lethal doses, spores and vegetative cells were almost equally mutable by X-rays whereas spores were considerably less mutable by UV than were vegetative cells. Thus, as judged from their mutagenic efficiency relative to the lethality, X-ray-induced damage in the spore DNA and the vegetative DNA were equally mutagenic, while UV-induced DNA photoproducts in the spore were less mutagenic than those in vegetative cells. Post-treatment of UV-irradiated cells with caffeine decreased the survival and the induced mutation frequency for either spores or vegetative cells for all the strains. In X-irradiated spores however, a similar suppressing effect of caffeine was observed only for mutability of a strain lacking DNA polymerase I activity

  15. Pathogencity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotis ipsilon (Hufn.

    Directory of Open Access Journals (Sweden)

    A. Gabarty

    2014-01-01

    Full Text Available Scanning electron microscopy (SEM allowed observing Beauveria bassiana and Metarhizium anisopliae adhesion and penetration structure on Agrotis ipsilon larvae. SEM of A. ipsilon larvae treated with the Lc50 of the fungus, B. bassiana revealed adhesion and penetration structures in the infected larvae. Growth of the fungus on the infected larvae and signs of hyphal penetration of insect cuticle as well as proliferation of the cuticle were also appearing. On the other hand, the fungus, M. anisopliae as declared by SEM showed a dense network together and cause the green spores on the insect cuticle. Also, SEM allowed observing the spores and hyphae of the fungus in the body cavity of infected larvae. Scanning electron microscopy is allowed tool to observe the mode of action of entomopathogenic fungi and to observe how they are able to colonize and infect the host.

  16. Combination Treatment of Spores of Cl. Botulinum with Heat plus Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N.; Upadhyay, J.; Tang, T. C.; Lin, C. A. [Illinois Institute of Technology, Chicago, IL (United States)

    1967-11-15

    Radiation resistance of spores of Cl. botulinum is strongly affected by the temperature during irradiation. Very low radiation resistance was consistently observed at 0 Degree-Sign C when samples were in the liquid state. Below 0 Degree-Sign C, the resistance of spores increased because the solidly frozen medium presumably decreased the diffusion of free radicals. As temperature increased above 0 Degree-Sign C processes of radiation protection occurred. When spores were subjected to low levels of radiation (0.6-0.8 Mrad) the heat resistance of the surviving spores was very remarkedly decreased. Experiments were designed to study what kind of radiation damage, i.e. direct hit or indirect action, is responsible for the loss of heat resistance of spores. Indirect effects were reduced by freezing the medium and lowering the temperature during irradiation down to -196 Degree-Sign C. Spores of Cl. botulinum 33A in phosphate buffer were irradiated to 0.6, 0.8 and 1.0 Mrad at irradiation temperatures ranging from +25 to -196 Degree-Sign C and subsequently heated at 99 Degree-Sign C. Survival curves revealed that all spores irradiated at +25 and 0 Degree-Sign C were highly sensitive to heat with D{sub 10} = 5.5 min (after 0.6 Mrad), D{sub 10} = 3.0 min (after 0.8 Mrad) and D{sub 10} = 2.3 min (after 1.0 Mrad). For nonTirradiated controls D10 was 23 min. Pre-irradiation at -25 through -196 Degree-Sign C resulted in a much smaller loss of heat resistance with D{sub 10} clustering around 17.4 min (after 0.6 Mrad), 13. 5 min (after 0.8 Mrad) and 11.5 min (after 1.0 Mrad). Loss of heat resistance after pre-irradiation at +25 and 0 Degree-Sign C was highly influenced by the liquid state of suspending medium whereas at -25 through -196 Degree-Sign C it depended primarily on radiation dose. The mechanism of heat sensitization of spores seems to be related primarily to migrating active free radicals at +25 and 0 Degree-Sign C and to random splitting of molecular bonds at -25 to -196

  17. Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties.

    Science.gov (United States)

    Berendsen, Erwin M; Zwietering, Marcel H; Kuipers, Oscar P; Wells-Bennik, Marjon H J

    2015-02-01

    The survival of bacterial spores after heat treatment and the subsequent germination and outgrowth in a food product can lead to spoilage of the food product and economical losses. Prediction of time-temperature conditions that lead to sufficient inactivation requires access to detailed spore thermal inactivation kinetics of relevant model strains. In this study, the thermal inactivation kinetics of spores of fourteen strains belonging to the Bacillus subtilis group were determined in detail, using both batch heating in capillary tubes and continuous flow heating in a micro heater. The inactivation data were fitted using a log linear model. Based on the spore heat resistance data, two distinct groups (p subtilis group could be identified. One group of strains had spores with an average D120 °C of 0.33 s, while the spores of the other group displayed significantly higher heat resistances, with an average D120 °C of 45.7 s. When comparing spore inactivation data obtained using batch- and continuous flow heating, the z-values were significantly different, hence extrapolation from one system to the other was not justified. This study clearly shows that heat resistances of spores from different strains in the B. subtilis group can vary greatly. Strains can be separated into two groups, to which different spore heat inactivation kinetics apply. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of irradiation of bacteria on the formation of spores

    International Nuclear Information System (INIS)

    Szulc, M.; Tropilo, J.; Olszewski, G.

    1980-01-01

    Studies were carried out on bacteria: Bac. subtilis, Bac. cereus, Cl. perfringens, Cl. botulinum which were irradiated in two media (PBS and broth containing 1% of protein) with 100, 1000, 5000 and 10 000 X-radiation doses. The results obtained show that: all bacteria species studied (vegetative forms) are characterized by a high sensitivity to X-radiation, though distinctly lower than the species of Enterobacteriaceae family; the bacteria species studied are characterized by various sporing rate. The highest sporing rate was shown by Bac. cereus, the following: Bac. subtilis, Cl. perfringens and Cl. botulinum; increased X-radiation doses weaken sporing of Bac. subtilis and Bac. cereus. This effect could not be observed in Cl. perfringens and Cl. botulinum. (author)

  19. Effect of irradiation of bacteria on the formation of spores

    Energy Technology Data Exchange (ETDEWEB)

    Szulc, M.; Tropilo, J.; Olszewski, G.

    1980-01-01

    Studies were carried out on bacteria: Bac. subtilis, Bac. cereus, Cl. perfringens, Cl. botulinum which were irradiated in two media (PBS and broth containing 1% of protein) with 100, 1000, 5000 and 10 000 X-radiation doses. The results obtained show that: all bacteria species studied (vegetative forms) are characterized by a high sensitivity to X-radiation, though distinctly lower than the species of Enterobacteriaceae family; the bacteria species studied are characterized by various sporing rate. The highest sporing rate was shown by Bac. cereus, the following: Bac. subtilis, Cl. perfringens and Cl. botulinum; increased X-radiation doses weaken sporing of Bac. subtilis and Bac. cereus. This effect could not be observed in Cl. perfringens and Cl. botulinum.

  20. Phylogenetic placement of two species known only from resting spores

    DEFF Research Database (Denmark)

    Hajek, Ann E; Gryganskyi, Andrii; Bittner, Tonya

    2016-01-01

    resting spores, Zoophthora independentia, infecting Tipula (Lunatipula) submaculata in New York State, is now described as a new species and Tarichium porteri, described in 1942, which infects Tipula (Triplicitipula) colei in Tennessee, is transferred to the genus Zoophthora. We have shown that use......Molecular methods were used to determine the generic placement of two species of Entomophthorales known only from resting spores. Historically, these species would belong in the form-genus Tarichium, but this classification provides no information about phylogenetic relationships. Using DNA from...... of molecular methods can assist with determination of the phylogenetic relations of specimens within the form-genus Tarichium for an already described species and a new species for which only resting spores are available....

  1. White-Nose Syndrome Fungus (Geomyces destructans) in Bat, France

    Science.gov (United States)

    Puechmaille, Sébastien J.; Verdeyroux, Pascal; Fuller, Hubert; Gouilh, Meriadeg Ar; Bekaert, Michaël

    2010-01-01

    White-nose syndrome is caused by the fungus Geomyces destructans and is responsible for the deaths of >1,000,000 bats since 2006. This disease and fungus had been restricted to the northeastern United States. We detected this fungus in a bat in France and assessed the implications of this finding. PMID:20113562

  2. Fate of pathogenic Bacillus cereus spores after ingestion by protist grazers

    DEFF Research Database (Denmark)

    Winding, Anne; Santos, Susana; Hendriksen, Niels Bohse

    The aim of this study is to understand the symbiosis between bacterivorous protists and pathogenic bacterial spores, in order to gain insight on survival and dispersal of pathogenic bacteria in the environment. It is generally accepted that resistance to grazing by protists has contributed...... to the evolution of Bacillus cereus group bacteria (e.g. B. cereus, B. anthracis, B. thuringiensis) as a pathogen. It has been hypothesized that the spore stage protects against digestion by predating protists. Indeed, B. thuringiensis spores have been shown to be readily ingested by ciliated protists but failed...... to be digested (Manasherob et al 1998 AEM 64:1750-). Here we report how diverse protist grazers grow on both vegetative cells and spores of B. cereus and how the bacteria survive ingestion and digestion, and even proliferate inside the digestive vacuoles of ciliated protists. The survival ability of B. cereus...

  3. Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993-2009.

    Science.gov (United States)

    Aira, María-Jesús; Rodríguez-Rajo, Francisco-Javier; Fernández-González, María; Seijo, Carmen; Elvira-Rendueles, Belén; Abreu, Ilda; Gutiérrez-Bustillo, Montserrat; Pérez-Sánchez, Elena; Oliveira, Manuela; Recio, Marta; Tormo, Rafael; Morales, Julia

    2013-03-01

    This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m(-3); Mérida 53 spores m(-3) and Málaga 35 spores m(-3)) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.

  4. Effects of produced water discharges on the colonization potential of Macrocystis pyrifera spores

    International Nuclear Information System (INIS)

    Lewis, R.J.; Reed, D.C.

    1993-01-01

    Point sources of pollution (e.g. industrial outfalls) may produce ecological impacts at distant locations if pollutants affect dispersive propagules. The authors used laboratory experiments to determine how exposure to produced water (PW; aqueous fraction of petroleum production that is typically discharged into coastal waters) in the water column influences the colonization potential of giant kelp (Macrocystis pyrifera) spores on the bottom. Spores were maintained in suspension in 18 L containers and exposed to one of five concentrations of PW (0 to 10%) for varying amounts of time. Spore swimming generally decreased with increasing PW concentration and exposure duration, with the specific pattern of decrease differing between experimental trials done at different dates. The effect of exposure duration in the water column on the ability of swimming spores to attach to plastic dishes placed the bottom varied with PW concentration. Spores placed in 1 and 10% PW showed a steady decline in their ability to attach with increased exposure; lower concentrations of PW had no such effects. The proportion of spores that germinated after attachment varied tremendously with exposure duration and date of experimental trial. A low proportion of spores that settled during the first 12 h germinated, indicative of a short period of precompetency. Surprisingly, water column exposure to high concentrations of PW during the first 12 h reduced this precompetent period and greatly improved germination success. The magnitude of this enhancement, however, varied among dates. Delayed expression of PW effects were not observed in developing gametophytes; survival of individuals that successfully germinated and gamete production was not affected by previous exposure to PW as a spore

  5. The Role of Aquaporins in pH-Dependent Germination of Rhizopus delemar Spores.

    Directory of Open Access Journals (Sweden)

    Tidhar Turgeman

    Full Text Available Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an up to 3-fold increase in spore diameter, whereas spore diameter was smaller in a neutral environment. When suspended in an acidic environment, the spores started to float, indicating a change in their density. Treatment of the spores with HgCl2, an aquaporin blocker, prevented floating and inhibited spore swelling and germ-tube emergence, indicating the importance of water uptake at the early stages of germination. Two putative candidate aquaporin-encoding genes-RdAQP1 and RdAQP2-were identified in the R. delemar genome. Both presented the conserved NPA motif and six-transmembrane domain topology. Expressing RdAQP1 and RdAQP2 in Arabidopsis protoplasts increased the cells' osmotic water permeability coefficient (Pf compared to controls, indicating their role as water channels. A decrease in R. delemar aquaporin activity with increasing external pH suggested pH regulation of these proteins. Substitution of two histidine (His residues, positioned on two loops facing the outer side of the cell, with alanine eliminated the pH sensing resulting in similar Pf values under acidic and basic conditions. Since hydration is critical for spore switching from the resting to activate state, we suggest that pH regulation of the aquaporins can regulate the initial phase of R. delemar spore germination, followed by germ-tube elongation and host-tissue infection.

  6. Preferential inclusion of extrachromosomal genetic elements in yeast meiotic spores.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1980-09-01

    During meiosis and sporulation in the yeast Saccharomyces cerevisiae, extrachromosomal traits are efficiently transmitted to haploid spores. Although the pattern of inheritance of chromosomal traits reflects the mechanism of regular chromosomal segregation in meiosis, it is not known what processes are reflected by the efficient inheritance of extrachromosomal traits. Because extrachromosomal genetic elements in yeast are present in multiple copies, perpetuation of an extrachromosomal trait could occur by the passive envelopment of a subset of copies or by an active sequestering of all or a subset of copies within the four spores. We show that only subsets of the four extrachromosomal nucleic acids commonly found in yeast are transmitted through meiosis--55% of mitochondrial DNA copies, 82% of the 2-micron DNA plasmids, and about 70% of the L and M double-stranded RNAs. However, electron micrographs of serial sections through yeast asci indicate that the four spore enclose only 30% of the total ascus material. Thus these extrachromosomal elements are preferentially included within the spores, indicating that their inheritance is not a random process. Transmission of mitochondrial DNA can be accounted for by the observed enclosure of 52% of the mitochondrial volume within the spores. The high transmission frequencies of the double-stranded RNAs (which exist as virus-like particles in the cytoplasm) and 2-micron DNA must indicate that either these nucleic acids are actively recruited from the cytoplasm by some mechanism or they are associated in some way with the nucleus during meiosis.

  7. Radiosensitivity of spores of Paenibacillus larvae ssp. larvae in honey

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Wanderley Mendes de [Ministerio da Agricultura, Pecuaria e Abastecimento, Rio de Janeiro, RJ (Brazil). Servico de Inspecao de Produtos de Origem Animal]. E-mail: sipa-rj@agricultura.gov.br; Vital, Helio de Carvalho [Centro Tecnologico do Exercito CTEx, Rio de Janeiro, RJ (Brazil). Div. de Defesa Quimica, Biologica e Nuclear]. E-mail: vital@ctex.eb.br; Schuch, Dulce Maria Tocchetto [Ministerio da Agricultura, Pecuaria e Abastecimento, Porto Alegre, RS (Brazil)]. E-mail: micro-lara-rs@agricultura.gov.br

    2007-07-01

    Irradiation, usually used in combination with other conventional methods of conservation, has been proven to be an efficient tool to ensure the safety of many types of foods by destroying pathogenic microorganisms and extending their shelf-lives. This work has investigated the efficacy of gamma irradiation to inactivate spores of the bacterium Paenibacillus larvae that causes the 'American foulbrood', a highly contagious disease still exotic in Brazil that kills bees and contaminates honey, preventing its commercialization and causing great economical losses. In this study, 60 g samples of two types of honey inoculated with 3.5x10{sup 3} spores/mL of that bacterium were irradiated with doses of 0, 5, 7.5, 10, 12.5 and 15 kGy and counted. The analyses indicated a mean reduction of 97.5{+-}0.7% in the number of viable spores exposed to 5 kGy. The application of doses of 7.5 kGy or higher yielded no viable spores above the detection threshold (10/mL). In addition the value of D{sub 10} (3.1{+-}0.3 kGy) was estimated and the logarithm of the population of viable spores of Paenibacillus larvae subsp. larvae was determined as linear and quadratic polynomial functions of the radiation dose. The results indicated that the dose of 10 kGy could be insufficient to assure complete sterilization of honey in some cases while suggesting that 25 kGy would perform such task adequately. (author)

  8. The effect of growth medium on B. anthracis Sterne spore carbohydrate content.

    Science.gov (United States)

    Colburn, Heather A; Wunschel, David S; Antolick, Kathryn C; Melville, Angela M; Valentine, Nancy B

    2011-06-01

    The expressed characteristics of biothreat agents may be impacted by variations in the culture environment, including growth medium formulation. The carbohydrate composition of B. anthracis spores has been well studied, particularly for the exosporium, which is the outermost spore structure. The carbohydrate composition of the exosporium has been demonstrated to be distinct from the vegetative form containing unique monosaccharides. We have investigated the carbohydrate composition of B. anthracis Sterne spores produced using four different medium types formulated with different sources of medium components. The amount of rhamnose, 3-O-methyl rhamnose and galactosamine was found to vary significantly between spores cultured using different medium formulations. The relative abundance of these monosaccharides compared to other monosaccharides such as mannosamine was also found to vary with medium type. Specific medium components were also found to impact the carbohydrate profile. Xylose has not been previously described in B. anthracis spores but was detected at low levels in two media. This may represent residual material from the brewery yeast extract used to formulate these two media. These results illustrate the utility of this method to capture the impact of growth medium on carbohydrate variation in spores. Detecting carbohydrate profiles in B. anthracis evidentiary material may provide useful forensic information on the growth medium used for sporulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Synthesis of a Bacillus subtilis small, acid-soluble spore protein in Escherichia coli causes cell DNA to assume some characteristics of spore DNA

    International Nuclear Information System (INIS)

    Setlow, B.; Hand, A.R.; Setlow, P.

    1991-01-01

    Small, acid-soluble proteins (SASP) of the alpha/beta-type are associated with DNA in spores of Bacillus subtilis. Induction of synthesis of alpha/beta-type SASP in Escherichia coli resulted in rapid cessation of DNA synthesis, followed by a halt in RNA and then protein accumulation, although significant mRNA and protein synthesis continued. There was a significant loss in viability associated with SASP synthesis in E. coli: recA+ cells became extremely long filaments, whereas recA mutant cells became less filamentous. The nucleoids of cells with alpha/beta-type SASP were extremely condensed, as viewed in both light and electron microscopes, and immunoelectron microscopy showed that the alpha/beta-type SASP were associated with the cell DNA. Induction of alpha/beta-type SASP synthesis in E. coli increased the negative superhelical density of plasmid DNA by approximately 20%; UV irradiation of E. coli with alpha/beta-type SASP gave reduced yields of thymine dimers but significant amounts of the spore photoproduct. These changes in E. coli DNA topology and photochemistry due to alpha/beta-type SASP are similar to the effects of alpha/beta-type SASP on the DNA in Bacillus spores, further suggesting that alpha/beta-type SASP are a major factor determining DNA properties in bacterial spores

  10. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  11. Feasibility of flotation concentration of fungal spores as a method to identify toxigenic mushrooms

    Directory of Open Access Journals (Sweden)

    Bazzle LJ

    2014-12-01

    Full Text Available Lisa J Bazzle,1 Marc A Cubeta,2 Steven L Marks,1 David C Dorman3 1Department of Clinical Sciences, College of Veterinary Medicine, 2Department of Plant Pathology, College of Agriculture and Life Sciences, Center for Integrated Fungal Research, 3Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA Purpose: Mushroom poisoning is a recurring and challenging problem in veterinary medicine. Diagnosis of mushroom exposure in animals is hampered by the lack of rapid diagnostic tests. Our study evaluated the feasibility of using flotation concentration and microscopic evaluation of spores for mushroom identification. Evaluation of this method in living animals exposed to toxigenic mushrooms is limited by ethical constraints; therefore, we relied upon the use of an in vitro model that mimics the oral and gastric phases of digestion. Methods: In our study, mycologist-identified toxigenic (poisonous and nontoxigenic fresh mushrooms were collected in North Carolina, USA. In phase 1, quantitative spore recovery rates were determined following magnesium sulfate, modified Sheather's sugar solution, and zinc sulfate flotation (n=16 fungal species. In phase 2, mushrooms (n=40 fungal species were macerated and digested for up to 2 hours in a salivary and gastric juice simulant. The partially digested material was acid neutralized, filtered, and spores concentrated using zinc sulfate flotation followed by microscopic evaluation of spore morphology. Results: Mean spore recovery rates for the three flotation fluids ranged from 32.5% to 41.0% (P=0.82. Mean (± standard error of the mean Amanita spp. spore recovery rates were 38.1%±3.4%, 36.9%±8.6%, and 74.5%±1.6% (P=0.0012 for the magnesium sulfate, Sheather's sugar, and zinc sulfate solutions, respectively. Zinc sulfate flotation following in vitro acid digestion (phase 2 yielded spore numbers adequate for microscopic visualization in

  12. Fungus-insect gall of Phlebopus portentosus.

    Science.gov (United States)

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods. © 2015 by The Mycological Society of America.

  13. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    Science.gov (United States)

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska

    2015-10-01

    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production.

  14. Caenorhabditis elegans Predation on Bacillus anthracis: Decontamination of Spore Contaminated Soil with Germinants and Nematodes.

    Science.gov (United States)

    Schelkle, Bettina; Choi, Young; Baillie, Leslie W; Richter, William; Buyuk, Fatih; Celik, Elif; Wendling, Morgan; Sahin, Mitat; Gallagher, Theresa

    2017-01-01

    Remediation of Bacillus anthracis -contaminated soil is challenging and approaches to reduce overall spore levels in environmentally contaminated soil or after intentional release of the infectious disease agent in a safe, low-cost manner are needed. B. anthracis spores are highly resistant to biocides, but once germinated they become susceptible to traditional biocides or potentially even natural predators such as nematodes in the soil environment. Here, we describe a two-step approach to reducing B. anthracis spore load in soil during laboratory trials, whereby germinants and Caenorhabditis elegans nematodes are applied concurrently. While the application of germinants reduced B. anthracis spore load by up to four logs depending on soil type, the addition of nematodes achieved a further log reduction in spore count. These laboratory based results suggest that the combined use of nematodes and germinants could represent a promising approach for the remediation of B. anthracis spore contaminated soil. Originality-Significance Statement: This study demonstrates for the first time the successful use of environmentally friendly decontamination methods to inactivate Bacillus anthracis spores in soil using natural predators of the bacterium, nematode worms.

  15. Effect of Coat Layers in Bacillus Subtilis Spores Resistance to Photo-Catalytic Inactivation

    Directory of Open Access Journals (Sweden)

    Luz del Carmen Huesca-Espitia

    2017-10-01

    Full Text Available Different water treatment processes (physical and chemical exist to obtain safe water for human or food industry supply. The advanced oxidation technologies are rising as a new alternative to eliminate undesirable chemicals and waterborne diseases. In this work, we analyze the power of the photo-assisted Fenton process using Fe(II/H2O2 and UV radiation (365 nm to inactivate Bacillus subtilis spores, considered among the most resistant biological structures known. Different concentrations of Fe(II, H2O2 and UV radiation (365 nm were used to inactivate wt and some coat spore mutants of B. subtilis. Wt spores of B. subtilis were inactivated after 60 min using this process. In general, all defective coat mutants were more sensitive than the wt spores and, particularly, the double mutant was 10 folds more sensitive than others being inactivated during the first 10 minutes using soft reaction conditions. Presence of Fe(II ions was found essential for spore inactivating process and, for those spores inactivated using the Fe(II/H2O2 under UV radiation process, it is suggested that coat structures are important to their resistance to the treatment process. The photo-assisted Fenton process using Fe(II, H2O2 and UV radiation (365 nm can be used to inactivate any water microorganisms with the same or less resistance that B. subtilis spores to produce safe drinking water in relatively short treatment time.

  16. Image Cytometric Analysis of Algal Spores for Evaluation of Antifouling Activities of Biocidal Agents.

    Science.gov (United States)

    Il Koo, Bon; Lee, Yun-Soo; Seo, Mintae; Seok Choi, Hyung; Leng Seah, Geok; Nam, Taegu; Nam, Yoon Sung

    2017-07-31

    Chemical biocides have been widely used as marine antifouling agents, but their environmental toxicity impose regulatory restriction on their use. Although various surrogate antifouling biocides have been introduced, their comparative effectiveness has not been well investigated partly due to the difficulty of quantitative evaluation of their antifouling activity. Here we report an image cytometric method to quantitatively analyze the antifouling activities of seven commercial biocides using Ulva prolifera as a target organism, which is known to be a dominant marine species causing soft fouling. The number of spores settled on a substrate is determined through image analysis using the intrinsic fluorescence of chlorophylls in the spores. Pre-determined sets of size and shape of spores allow for the precise determination of the number of settled spores. The effects of biocide concentration and combination of different biocides on the spore settlement are examined. No significant morphological changes of Ulva spores are observed, but the amount of adhesive pad materials is appreciably decreased in the presence of biocides. It is revealed that the growth rate of Ulva is not directly correlated with the antifouling activities against the settlement of Ulva spores. This work suggests that image cytometric analysis is a very convenient, fast-processable method to directly analyze the antifouling effects of biocides and coating materials.

  17. Spore coat protein synthesis in cell-free systems from sporulating cells of Bacillus subtilis.

    Science.gov (United States)

    Nakayama, T; Munoz, L E; Sadaie, Y; Doi, R H

    1978-09-01

    Cell-free systems for protein synthesis were prepared from Bacillus subtilis 168 cells at several stages of sporulation. Immunological methods were used to determine whether spore coat protein could be synthesized in the cell-free systems prepared from sporulating cells. Spore coat protein synthesis first occurred in extracts from stage t2 cells. The proportion of spore coat protein to total proteins synthesized in the cell-free systems was 2.4 and 3.9% at stages t2 and t4, respectively. The sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis patterns of immunoprecipitates from the cell-free systems showed the complete synthesis of an apparent spore coat protein precursor (molecular weight, 25,000). A polypeptide of this weight was previously identified in studies in vivo (L.E. Munoz, Y. Sadaie, and R.H. Doi, J. Biol. Chem., in press). The synthesis in vitro of polysome-associated nascent spore coat polypeptides with varying molecular weights up to 23,000 was also detected. These results indicate that the spore coat protein may be synthesized as a precursor protein. The removal of proteases in the crude extracts by treatment with hemoglobin-Sepharose affinity techniques may be preventing the conversion of the large 25,000-dalton precursor to the 12,500-dalton mature spore coat protein.

  18. Mutagenic effect of tritated water on spores of Bacillus subtilis

    International Nuclear Information System (INIS)

    Tanooka, H.; Munakata, N.

    1978-01-01

    The mutagenic effect of tritiated water was observed with spores of Bacillus subtilis polA strain suspended in 50 mCi/ml of tritiated water for various intervals. Dose rate given by tritium beta particles to spore core was estimated to be 400 rad/hr from some assumptions and E. coli data computed by Bockrath et al. and Sands et al. The initial mutation rate was 4.2 x 10 -9 mutants/rad, as compared with 2.4 x 10 -9 mutants/rad for 60 Co γ rays and 3.3 x 10 -9 mutants/rad for 30-kVp x rays. The mutagenic effect of tritiated water on spores is most likely due to beta particle ionizing radiation damage

  19. Optimized integration of T-DNA in the taxol-producing fungus ...

    African Journals Online (AJOL)

    We previously reported a taxol-producing fungus Pestalotiopsis malicola. There, we described the transformation of the fungus mediated by Agrobacterium tumefaciens. T-DNA carrying the selection marker was transferred into the fungus and randomly integrated into the genome as shown by Southern blotting.

  20. β-1,6-glucan synthesis-associated genes are required for proper spore wall formation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Pan, Hua-Ping; Wang, Ning; Tachikawa, Hiroyuki; Nakanishi, Hideki; Gao, Xiao-Dong

    2017-11-01

    The yeast spore wall is an excellent model to study the assembly of an extracellular macromolecule structure. In the present study, mutants defective in β-1,6-glucan synthesis, including kre1∆, kre6∆, kre9∆ and big1∆, were sporulated to analyse the effect of β-1,6-glucan defects on the spore wall. Except for kre6∆, these mutant spores were sensitive to treatment with ether, suggesting that the mutations perturb the integrity of the spore wall. Morphologically, the mutant spores were indistinguishable from wild-type spores. They lacked significant sporulation defects partly because the chitosan layer, which covers the glucan layer, compensated for the damage. The proof for this model was obtained from the effect of the additional deletion of CHS3 that resulted in the absence of the chitosan layer. Among the double mutants, the most severe spore wall deficiency was observed in big1∆ spores. The majority of the big1∆chs3∆ mutants failed to form visible spores at a higher temperature. Given that the big1∆ mutation caused a failure to attach a GPI-anchored reporter, Cwp2-GFP, to the spore wall, β-1,6-glucan is involved in tethering of GPI-anchored proteins in the spore wall as well as in the vegetative cell wall. Thus, β-1,6-glucan is required for proper organization of the spore wall. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits.

    Science.gov (United States)

    Ouf, Salama A; Basher, Abdulrahman H; Mohamed, Abdel-Aleam H

    2015-12-01

    Aspergillus niger has been reported as a potentially dangerous pathogen of date-palm fruits in Saudi Arabia due to the production of fumonisin B2 (FB2 ) and ochratoxin A (OTA). In a trial to disinfect this product, a double atmospheric pressure argon cold plasma (DAPACP) jet system was set up and evaluated against spore germination and mycotoxin production of the pathogen. The plasma jets were characterised photographically, electrically and spectroscopically. DAPACP jet length increases with the increase of argon flow rate, with optimum rate at 3.5 L min(-1) . The viability of A. niger spores, inoculated onto sterilised date palm fruit discs, progressively decreases with extension of the exposure time of DAPACP due to the more quantitative amount of OH and O radicals interacting with the examined samples. There was a progressive reduction of the amount of FB2 and OTA detected in date palm discs on extension of the exposure time of the plasma-treated inoculums at flow rate of 3.5 L min(-1) . FB2 was not detected in the discs inoculated with 6-min plasma-treated A. niger, while OTA was completely absent when the fungus was treated for 7.5 min. DAPACP showed promising results in dry fruit decontamination and in inhibition of mycotoxin release by A. niger contaminating the fruits. The progress in the commercial application of cold plasma needs further investigation concerning the ideal width of the plasma output to enable it to cover wider surfaces of the sample and consequently inducing greater plasma performance. © 2014 Society of Chemical Industry.

  2. The influence of lime and nitrogen fertilisers on spore counts of Pithomyces chartarum in pasture.

    Science.gov (United States)

    Cuttance, E L; Laven, R A; Mason, W A; Stevenson, M

    2016-11-01

    To determine whether the application of lime or nitrogen to pasture affected the spore counts of Pithomyces chartarum. The lime application studies were undertaken on a spring-calving, pasture-based, commercial dairy farm near Te Awamutu, New Zealand. On 6 November 2012, five randomly selected paddocks were split into three equal sections. In two of the sections, lime was applied at either 1.5 or 2.5 t/ha, and the central section was left as an untreated control. Each section was sampled for spore counting weekly from 16 January to 15 May 2013. Starting in January 2013, five other randomly selected paddocks were monitored for spore counts. On 20 March 2013 the average spore counts in three paddocks were >100,000 spores/g of pasture. These paddocks were then divided into three equal sections and lime was applied as described above. Spore counting in each section continued weekly until 15 May 2013. The nitrogen application study was carried out on three commercial dairy farms near Te Awamutu, New Zealand. Two randomly selected paddocks on each farm were divided into three equal sections and, on 20 December 2012, nitrogen in the form of urea was applied at either 50 or 80 kg urea/ha to two of the sections; the central section remained as an untreated control. Each section was sampled for spore counting weekly from 16 January to 15 May 2013. Following pre-summer lime application, treatment at 1.5 or 2.5 t/ha did not affect spore counts over time compared with the control section (p>0.26). Similarly following autumn lime application, treatment at 1.5 or 2.5 t/ha did not affect spore counts over time compared with the control section (p>0.11). Following nitrogen application median spore counts remained 0.49). This study found that application of lime before the risk period for facial eczema, in November, application of lime after a spore count rise, in March, or urea application in December did not affect changes in number of spores produced by P. chartarum. This

  3. Does methyl salicylate, a component of herbivore-induced plant odour, promote sporulation of the mite-pathogenic fungus Neozygites tanajoae?

    Science.gov (United States)

    Hountondji, Fabien C C; Hanna, Rachid; Sabelis, Maurice W

    2006-01-01

    Blends of volatile chemicals emanating from cassava leaves infested by the cassava green mite were found to promote conidiation of Neozygites tanajoae, an entomopathogenic fungus specific to this mite. Methyl salicylate (MeSA) is one compound frequently present in blends of herbivore-induced plant volatiles (HIPV) as well as that of mite-infested cassava. Here, we investigated the effect of methyl salicylate in its pure form on the production of pre-infective spores (conidia), and the germination of these spores into infective spores (capilliconidia), by a Brazilian isolate and a Beninese isolate of N. tanajoae. Mummified mites previously infected by the fungal isolates were screened under optimal abiotic conditions for sporulation inside tightly closed boxes with or without methyl salicylate diffusing from a capillary tube. Production of conidia was consistently higher (37%) when the Beninese isolate was exposed to MeSA than when not exposed to it (305.5 +/- 52.62 and 223.2 +/- 38.13 conidia per mummy with and without MeSA, respectively). MeSA, however, did not promote conidia production by the Brazilian isolate (387.4 +/- 44.74 and 415.8 +/- 57.95 conidia per mummy with and without MeSA, respectively). Germination of the conidia into capilliconidia was not affected by MeSA for either isolate (0.2%, 252.6 +/- 31.80 vs. 253.0 +/- 36.65 for the Beninese isolate and 4.2%, 268.5 +/- 37.90 vs. 280.2 +/- 29.43 for the Brazilian isolate). The effects of MeSA on the production of conidia were similar to those obtained under exposure to the complete blends of HIPV for the case of the Beninese isolate, but dissimilar (no promoting effect of MeSA) for the case of the Brazilian isolate. This shows that MeSA, being one compound out of many HIPV, can be a factor promoting sporulation of N. tanajoae, but it may not be the only factor as its effect varies with the fungal isolate under study.

  4. The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm

    Science.gov (United States)

    Zhao, Xinying; Hu, Yihua; Gu, Youlin; Li, Le

    2015-10-01

    Microorganism aggregated particle swarm, which is quite an important composition of complex media environment, can be developed as a new kind of infrared functional materials. Current researches mainly focus on the optical properties of single microorganism particle. As for the swarm, especially the microorganism aggregated particle swarm, a more accurate simulation model should be proposed to calculate its extinction effect. At the same time, certain parameters deserve to be discussed, which helps to better develop the microorganism aggregated particle swarm as a new kind of infrared functional materials. In this paper, take Aspergillus Niger spore as an example. On the one hand, a new calculation model is established. Firstly, the cluster-cluster aggregation (CCA) model is used to simulate the structure of Aspergillus Niger spore aggregated particle. Secondly, the single scattering extinction parameters for Aspergillus Niger spore aggregated particle are calculated by using the discrete dipole approximation (DDA) method. Thirdly, the transmittance of Aspergillus Niger spore aggregated particle swarm is simulated by using Monte Carlo method. On the other hand, based on the model proposed above, what influences can wavelength causes has been studied, including the spectral distribution of scattering intensity of Aspergillus Niger spore aggregated particle and the infrared spectral transmittance of the aggregated particle swarm within the range of 8-14μm incident infrared wavelengths. Numerical results indicate that the scattering intensity of Aspergillus Niger spore aggregated particle reduces with the increase of incident wavelengths at each scattering angle. Scattering energy mainly concentrates on the scattering angle between 0-40°, forward scattering has an obvious effect. In addition, the infrared transmittance of Aspergillus Niger spore aggregated particle swarm goes up with the increase of incident wavelengths. However, some turning points of the trend are

  5. Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota

    DEFF Research Database (Denmark)

    Thomas-Poulsen, Michael

    2015-01-01

    Approximately 30 million years ago (MYA), the subfamily of higher termites Macrotermitinae domesticated a fungus, Termitomyces, as the main plant decomposer and food source for the termite host. The origin of fungiculture shifted the composition of the termite gut microbiota, and some of the func......Approximately 30 million years ago (MYA), the subfamily of higher termites Macrotermitinae domesticated a fungus, Termitomyces, as the main plant decomposer and food source for the termite host. The origin of fungiculture shifted the composition of the termite gut microbiota, and some...... will be powerful, particularly if executed in comparative analyses across the well-established congruent termite-fungus phylogenies. This will allow for testing if gut communities have evolved in parallel with their hosts, with implications for our general understanding of the evolution of gut symbiont communities...

  6. [Study the rudimentary immunoregulatory mechanisms of Ganoderma Spore oil on immunocompromized mice].

    Science.gov (United States)

    Yi, Youjin; Hu, Shun; Xiong, Xingyao; Liu, Dongbo; Zhong, Yingli

    2012-09-01

    To study the rudimentary immunoregulatory mechanisms of Ganoderma spore oil on immunocompromized mice model. Thrity KM mice were randomly selected and assigned into three groups (ten animals per group): the model control group, Ganoderma Lucidum spores oil group and the normal control group. The model control group and Ganoderma Lucidum spores oil group were injected intraperitoneally with cyclophosphamide at 40 mg x kg(-1) d to generate a immunocompromized mice model. The normal control group were administered with 0.9% NaCl solution 0.1 ml/10 g BW as placebo. All agents were given orally once a day, given for consecutive 30 days, Ganoderma Lucidum spores oil group 150 mg/kg, the others given maize 0.1 ml/10 g BW. The serum TNF-alpha , IFN-gamma content of the mice through ELISA kit and the expression levels of IL-2, IL-10, IL-12, IL-4, IFN-gamma, TNF-alpha mRNA in mouse spleen and thymus were examined by RT-PCR to rudimentary study its immunoregulatory mechanisms. Ganoderma spore oil can significantly increased the content of TNF-alpha and IFN-gamma in the serum and the expression levels of IL-2, IL-10, IL-12, IL-4, IFN-gamma, TNF-alpha mRNA in spleen and thymus, with obvious difference from the model control (P Ganoderma spore oil can be able to improve the above cytokine ion expression to immunoregulate the immunocompromized mice.

  7. Use of aerobic spores as a surrogate for cryptosporidium oocysts in drinking water supplies.

    Science.gov (United States)

    Headd, Brendan; Bradford, Scott A

    2016-03-01

    Waterborne illnesses are a growing concern among health and regulatory agencies worldwide. The United States Environmental Protection Agency has established several rules to combat the contamination of water supplies by cryptosporidium oocysts, however, the detection and study of cryptosporidium oocysts is hampered by methodological and financial constraints. As a result, numerous surrogates for cryptosporidium oocysts have been proposed by the scientific community and efforts are underway to evaluate many of the proposed surrogates. The purpose of this review is to evaluate the suitability of aerobic bacterial spores to serve as a surrogate for cryptosporidium oocysts in identifying contaminated drinking waters. To accomplish this we present a comparison of the biology and life cycles of aerobic spores and oocysts and compare their physical properties. An analysis of their surface properties is presented along with a review of the literature in regards to the transport, survival, and prevalence of aerobic spores and oocysts in the saturated subsurface environment. Aerobic spores and oocysts share many commonalities with regard to biology and survivability, and the environmental prevalence and ease of detection make aerobic spores a promising surrogate for cryptosporidium oocysts in surface and groundwater. However, the long-term transport and release of aerobic spores still needs to be further studied, and compared with available oocyst information. In addition, the surface properties and environmental interactions of spores are known to be highly dependent on the spore taxa and purification procedures, and additional research is needed to address these issues in the context of transport. Published by Elsevier Ltd.

  8. Assessing the cleanliness of surfaces: Innovative molecular approaches vs. standard spore assays

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.; Duc, M.T. La; Probst, A.; Vaishampayan, P.; Stam, C.; Benardini, J.N.; Piceno, Y.M.; Andersen, G.L.; Venkateswaran, K.

    2011-04-01

    A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces.

  9. The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level

    Science.gov (United States)

    Oliveira, M.; Ribeiro, H.; Delgado, J. L.; Abreu, I.

    2009-01-01

    Although fungal spores are an ever-present component of the atmosphere throughout the year, their concentration oscillates widely. This work aims to establish correlations between fungal spore concentrations in Porto and Amares and meteorological data. The seasonal distribution of fungal spores was studied continuously (2005-2007) using volumetric spore traps. To determine the effect of meteorological factors (temperature, relative humidity and rainfall) on spore concentration, the Spearman rank correlation test was used. In both locations, the most abundant fungal spores were Cladosporium, Agaricus, Agrocybe, Alternaria and Aspergillus/Penicillium, the highest concentrations being found during summer and autumn. In the present study, with the exception of Coprinus and Pleospora, spore concentrations were higher in the rural area than in the urban location. Among the selected spore types, spring-autumn spores ( Coprinus, Didymella, Leptosphaeria and Pleospora) exhibited negative correlations with temperature and positive correlations both with relative humidity and rainfall level. On the contrary, late spring-early summer (Smuts) and summer spores ( Alternaria, Cladosporium, Epicoccum, Ganoderma, Stemphylium and Ustilago) exhibited positive correlations with temperature and negative correlations both with relative humidity and rainfall level. Rust, a frequent spore type during summer, had a positive correlation with temperature. Aspergillus/Penicillium, showed no correlation with the meteorological factors analysed. This knowledge can be useful for agriculture, allowing more efficient and reliable application of pesticides, and for human health, by improving the diagnosis and treatment of respiratory allergic disease.

  10. Detecting bacterial spores in soup manufacturing

    NARCIS (Netherlands)

    van Zuijlen, A.C.M.; Oomes, S.J.C.M.; Vos, P.; Brul, S.

    2009-01-01

    Spores from mesophilic aerobic sporeforming bacteria (Bacillus) are sometimes able to survive the thermal process of commercial sterile products and sporadically cause spoilage or food poisoning. Because of an increasing demand for more fresh products, ideally the processing temperatures should be

  11. PHYLOGENETIC ANALYSIS AND AUTECOLOGY OF SPORE-FORMING BACTERIA FROM HYPERSALINE ENVIRONMENTS.

    Science.gov (United States)

    Gladka, G V; Romanovskaya, V A; Tashyreva, H O; Tashyrev, O B

    2015-01-01

    Multi-resistant to extreme factors spore-forming bacteria of Bacillus genus are isolated from hypersaline environments of the Crimea (Ukraine) and the Dead Sea (Israel). Phylogenetic analysis showed distinction of dominating extremophilic culturable species in studied regions. In Crimean environments they are B. mojavensis and B. simplex, in the Dead Sea ecosystem--B. subtilis subsp. spizizenii, B. subtilis subsp. subtilis, B. licheniformis and B. simplex. Isolates are simultaneously halotolerant and resistant to UV radiation. Strains isolated from the Dead Sea and the Crimea environments were resistant to UV: LD90 and LD99.99 made 100-170 J/m2 and 750-1500 J/m2 respectively. Spores showed higher UV-resistance (LD99.99-2500 J/m2) than the vegetative cells. However the number of spores made 0.02-0.007% of the whole cell population, and should not significantly affect the UV LD99.99 value. Isolates of both environments were halotolerant in the range of 0.1-10% NaCl and thermotolerant in the range of 20-50 °C, and didn't grow at 15 °C. Survival strategy of spore-forming bacteria from hypersaline environments under high UV radiation level can be performed by spore formation which minimize cell damage as well as efficient DNA-repair systems that remove damages.

  12. Allergenic pollens and spores in the working environment of Japanese pear farmers.

    Science.gov (United States)

    Teranishi, H; Uchida, M; Hayashi, S; Yamada, N

    2007-01-01

    Occupational allergies such as pollinosis are reported in several agricultural works in Japan. Many pollens and spores were observed in Japanese pear orchard during the artificial pollination season. By the study on daily symptoms in an allergic farmer, we confirmed that the pollinosis symptoms were most common and most severe during the artificial pollination. These results suggest that the exposure to allergenic pollens and spores induces allergic symptoms. Thus, caution should be paid for the avoidance of the exposure to these allergenic pollens and spores to prevent the allergy.

  13. The role of water radicals in thermorestoration of bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Y S; Grecz, N [Illinois Inst. of Tech., Chicago (USA). Dept. of Biology

    1974-01-01

    Fully hydrated bacterial spores exposed to 0.45 Mrad showed a characteristic pattern of survival associated with thermorestoration. When temperature during radiation was controlled at -15/sup 0/ to +120/sup 0/C, the lowest viable cell counts were at 0/sup 0/C. Above 0/sup 0/C radiosurvival gradually increased by 2 to 3 log cycles reaching peak at 75/sup 0/C (Bacillus cereus T heat sensitive spores) and at 95/sup 0/C (B.stearothermophilus, heat resistant spores). Simultaneously high survival was observed in the solidly frozen state at -15/sup 0/C to -5/sup 0/C since harmful radicals produced by radiation were trapped in ice. Radiation modifying effects, i.e., protection by 2M ethanol (a scavenger of OH radicals) and sensitization by 1M sodium nitrate (a scavenger of H radicals and hydrated electrons), were studied. The results with ethanol and nitrate confirm the idea that in aqueous sytems below 50/sup 0/C the lethal action is due to oxidizing OH radicals known to attack cell DNA. However, the reversal of scavenger actions above 50/sup 0/C indicates that at those high temperatures lethal effects may also involve the reducing H and esub(aq), which at lower temperatures appear not to affect spore survival though they are known to attack proteins. In this case, it is proposed that radiation inactivation of spores at temperatures below 50/sup 0/C is due to DNA damage inflicted by OH radicals whereas spore death above 50/sup 0/C seems to involve protein /enzyme/ inactivation due to a combined action of heat plus reducing (H, esub(aq)) as well as oxidizing (OH) radical species. From the practical point of view it is important that normally radioprotective effects of such substances as ethanol or ground beef are progressively lost when radiation is carried out at temperatures above 50/sup 0/C.

  14. The Fungal Spores Survival Under the Low-Temperature Plasma

    Science.gov (United States)

    Soušková, Hana; Scholtz, V.; Julák, J.; Savická, D.

    This paper presents an experimental apparatus for the decontamination and sterilization of water suspension of fungal spores. The fungicidal effect of stabilized positive and negative corona discharges on four fungal species Aspergillus oryzae, Clacosporium sphaerospermum, Penicillium crustosum and Alternaria sp. was studied. Simultaneously, the slower growing of exposed fungal spores was observed. The obtained results are substantially different in comparison with those of the analogous experiments performed with bacteria. It may be concluded that fungi are more resistant to the low-temperature plasma.

  15. Proteomic analysis of Aspergillus fumigatus - clinical implications.

    Science.gov (United States)

    Moloney, Nicola M; Owens, Rebecca A; Doyle, Sean

    2016-07-01

    Aspergillus fumigatus is a ubiquitous saprophytic fungus capable of producing small airborne spores, which are frequently inhaled by humans. In healthy individuals, the fungus is rapidly cleared by innate mechanisms, including immune cells. However, in individuals with impaired lung function or immunosuppression the spores can germinate and prompt severe allergic responses, and disease with limited or extensive invasiveness. The traits that make A. fumigatus a successful colonizer and pathogen of humans are multi-factorial. Thus, a global investigative approach is required to elucidate the mechanisms utilized by the fungus to cause disease. Expert commentary: In doing so, a better understanding of disease pathology can be achieved with improved therapeutic/diagnostic solutions, thereby improving patient outcome. Proteomic analysis permits such investigations and recent work has yielded insight into these mechanisms.

  16. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  17. Using Thermal Inactivation Kinetics to Calculate the Probability of Extreme Spore Longevity: Implications for Paleomicrobiology and Lithopanspermia

    Science.gov (United States)

    Nicholson, Wayne L.

    2003-12-01

    Thermal inactivation kinetics with extrapolation were used to model the survival probabilities of spores of various Bacillus species over time periods of millions of years at the historical ambient temperatures (25-40 °) encountered within the 250 million-year-old Salado formation, from which the putative ancient spore-forming bacterium Salibacillus marismortui strain 2-9-3 was recovered. The model indicated extremely low-to-moderate survival probabilities for spores of mesophiles, but surprisingly high survival probabilities for thermophilic spores. The significance of the results are discussed in terms of the survival probabilities of (i) terrestrial spores in ancient geologic samples and (ii) spores transported between planets within impact ejecta.

  18. Characterization of single spore isolates of Agaricus bisporus (Lange) Imbach using conventional and molecular methods.

    Science.gov (United States)

    Sharma, Manju; Suman, B C; Gupta, Dharmesh

    2014-10-01

    Strains A-15, S11, S-140, and U3 of Agaricus bisporus (Lange) Imbach, were used as parent strains for raising single spore homokaryotic isolates. Out of total 1,642 single spore isolates, only 36 single spore isolates were homokaryons and exhibited slow mycelial growth rate (≤2.0 mm/day) and appressed colony morphology. All these SSIs failed to produce pinheads in Petri plates even after 65 days of incubation, whereas the strandy slow growing SSIs along with parent strains were able to form the fructification in petriplates after 30 days. Out of 24, six ISSR primers, exhibited scorable bands. In the ISSR fingerprints, single spore isolates, homokaryons, lacked amplification products at multiple loci; they grow slowly and all of them had appressed types of colony morphology. The study revealed losses of ISSR polymorphic patterns in non-fertile homokaryotic single spore isolates compared to the parental control or fertile heterokaryotic single spore isolates.

  19. Optimisation of a direct plating method for the detection and enumeration of Alicyclobacillus acidoterrestris spores.

    Science.gov (United States)

    Henczka, Marek; Djas, Małgorzata; Filipek, Katarzyna

    2013-01-01

    A direct plating method for the detection and enumeration of Alicyclobacillus acidoterrestris spores has been optimised. The results of the application of four types of growth media (BAT agar, YSG agar, K agar and SK agar) regarding the recovery and enumeration of A. acidoterrestris spores were compared. The influence of the type of applied growth medium, heat shock conditions, incubation temperature, incubation time, plating technique and the presence of apple juice in the sample on the accuracy of the detection and enumeration of A. acidoterrestris spores was investigated. Among the investigated media, YSG agar was the most sensitive medium, and its application resulted in the highest recovery of A. acidoterrestris spores, while K agar and BAT agar were the least suitable media. The effect of the heat shock time on the recovery of spores was negligible. When there was a low concentration of spores in a sample, the membrane filtration method was superior to the spread plating method. The obtained results show that heat shock carried out at 80°C for 10 min and plating samples in combination with membrane filtration on YSG agar, followed by incubation at 46°C for 3 days provided the optimal conditions for the detection and enumeration of A. acidoterrestris spores. Application of the presented method allows highly efficient, fast and sensitive identification and enumeration of A. acidoterrestris spores in food products. This methodology will be useful for the fruit juice industry for identifying products contaminated with A. acidoterrestris spores, and its practical application may prevent economic losses for manufacturers. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A new and efficient approach for construction of uridine/uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation.

    Science.gov (United States)

    Nguyen, Khuyen Thi; Ho, Quynh Ngoc; Do, Loc Thi Binh Xuan; Mai, Linh Thi Dam; Pham, Duc-Ngoc; Tran, Huyen Thi Thanh; Le, Diep Hong; Nguyen, Huy Quang; Tran, Van-Tuan

    2017-06-01

    Aspergillus oryzae is a filamentous fungus widely used in food industry and as a microbial cell factory for recombinant protein production. Due to the inherent resistance of A. oryzae to common antifungal compounds, genetic transformation of this mold usually requires auxotrophic mutants. In this study, we show that Agrobacterium tumefaciens-mediated transformation (ATMT) method is very efficient for deletion of the pyrG gene in different Aspergillus oryzae wild-type strains to generate uridine/uracil auxotrophic mutants. Our data indicated that all the obtained uridine/uracil auxotrophic transformants, which are 5- fluoroorotic acid (5-FOA) resistant, exist as the pyrG deletion mutants. Using these auxotrophic mutants and the pyrG selectable marker for genetic transformation via A. tumefaciens, we could get about 1060 transformants per 10 6 fungal spores. In addition, these A. oryzae mutants were also used successfully for expression of the DsRed fluorescent reporter gene under control of the A. oryzae amyB promoter by the ATMT method, which resulted in obvious red transformants on agar plates. Our work provides a new and effective approach for constructing the uridine/uracil auxotrophic mutants in the importantly industrial fungus A. oryzae. This strategy appears to be applicable to other filamentous fungi to develop similar genetic transformation systems based on auxotrophic/nutritional markers for food-grade recombinant applications.

  1. Assembly of an Oxalate Decarboxylase Produced under σK Control into the Bacillus subtilis Spore Coat

    Science.gov (United States)

    Costa, Teresa; Steil, Leif; Martins, Lígia O.; Völker, Uwe; Henriques, Adriano O.

    2004-01-01

    Over 30 polypeptides are synthesized at various times during sporulation in Bacillus subtilis, and they are assembled at the surface of the developing spore to form a multilayer protein structure called the coat. The coat consists of three main layers, an amorphous undercoat close to the underlying spore cortex peptidoglycan, a lamellar inner layer, and an electron-dense striated outer layer. The product of the B. subtilis oxdD gene was previously shown to have oxalate decarboxylase activity when it was produced in Escherichia coli and to be a spore constituent. In this study, we found that OxdD specifically associates with the spore coat structure, and in this paper we describe regulation of its synthesis and assembly. We found that transcription of oxdD is induced during sporulation as a monocistronic unit under the control of σK and is negatively regulated by GerE. We also found that localization of a functional OxdD-green fluorescent protein (GFP) at the surface of the developing spore depends on the SafA morphogenetic protein, which localizes at the interface between the spore cortex and coat layers. OxdD-GFP localizes around the developing spore in a cotE mutant, which does not assemble the spore outer coat layer, but it does not persist in spores produced by the mutant. Together, the data suggest that OxdD-GFP is targeted to the interior layers of the coat. Additionally, we found that expression of a multicopy allele of oxdD resulted in production of spores with increased levels of OxdD that were able to degrade oxalate but were sensitive to lysozyme. PMID:14973022

  2. CHARACTERIZATION OF AN ANAEROBIC FUNGUS FROM LLAMA FECES

    NARCIS (Netherlands)

    MARVINSIKKEMA, FD; LAHPOR, GA; KRAAK, MN; GOTTSCHAL, JC; PRINS, RA

    1992-01-01

    An anaerobic fungus was isolated from Hama faeces. Based on its morphological characteristics, polyflagellated zoospores, extensive rhizoid system and the formation of monocentric colonies, the fungus is assigned to the genus Neocallimastix. Neocallimastix sp. L2 is able to grow on several poly-,

  3. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices.

    Science.gov (United States)

    Hariram, Upasana; Labbé, Ronald

    2015-03-01

    Recent incidents of foodborne illness associated with spices as the vehicle of transmission prompted this examination of U.S. retail spices with regard to Bacillus cereus. This study focused on the levels of aerobic-mesophilic spore-forming bacteria and B cereus spores associated with 247 retail spices purchased from five states in the United States. Samples contained a wide range of aerobic-mesophilic bacterial spore counts (spices had high levels of aerobic spores (> 10(7) CFU/g). Using a novel chromogenic agar, B. cereus and B. thuringiensis spores were isolated from 77 (31%) and 11 (4%) samples, respectively. Levels of B. cereus were spice isolates to form spores, produce diarrheal toxins, and grow at moderately abusive temperatures makes retail spices an important potential vehicle for foodborne illness caused by B. cereus strains, in particular those that produce diarrheal toxins.

  4. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  5. The Luna stain, an improved selective stain for detection of microsporidian spores in histologic sections

    Science.gov (United States)

    Peterson, Tracy S.; Spitsbergen, Jan M.; Feist, Stephen W.; Kent, Michael L.

    2014-01-01

    Microsporidia in histologic sections are most often diagnosed by observing spores in host tissues. Spores are easy to identify if they occur in large aggregates or xenomas when sections are stained with hematoxylin and eosin (H&E). However, individual spores are not frequently detected in host tissues with conventional H&E staining, particularly if spores are scattered within the tissues, areas of inflammation or small spores in nuclei (i.e., Nucleospora salmonis). Hence, a variety of selective stains that enhance visualization of spores are recommended. We discovered that the Luna stain, used to highlight eosinophils, red blood cells and chitin in arthropods and other invertebrates, also stains spores of Pseudoloma neurophilia. We compared this stain to the Gram, Fite’s acid fast, Giemsa, and H&E stains on eight aquatic microsporidian organisms that were readily available in our two laboratories: Loma salmonae, Glugea anomala, Pseudoloma neurophilia, Pleistophora hyphessobryconis, Pleistophora vermiformis, Glugea sp., Steinhausia mytilovum and an unidentified microsporidian from E. sinensis, UK. Based on tinctorial properties and background staining, the Luna stain performed better for detection of 6 of the 8 microsporidia. Gram stain was superior for the two microsporidia from invertebrates, Steinhausia mytilovum and the unidentified microsporidian from E. sinensis. PMID:21848126

  6. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.

    Science.gov (United States)

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-05-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires.

  7. Universal nucleic acids sample preparation method for cells, spores and their mixture

    Science.gov (United States)

    Bavykin, Sergei [Darien, IL

    2011-01-18

    The present invention relates to a method for extracting nucleic acids from biological samples. More specifically the invention relates to a universal method for extracting nucleic acids from unidentified biological samples. An advantage of the presently invented method is its ability to effectively and efficiently extract nucleic acids from a variety of different cell types including but not limited to prokaryotic or eukaryotic cells and/or recalcitrant organisms (i.e. spores). Unlike prior art methods which are focused on extracting nucleic acids from vegetative cell or spores, the present invention effectively extracts nucleic acids from spores, multiple cell types or mixtures thereof using a single method. Important that the invented method has demonstrated an ability to extract nucleic acids from spores and vegetative bacterial cells with similar levels effectiveness. The invented method employs a multi-step protocol which erodes the cell structure of the biological sample, isolates, labels, fragments nucleic acids and purifies labeled samples from the excess of dye.

  8. Termite-egg mimicry by a sclerotium-forming fungus.

    Science.gov (United States)

    Matsuura, Kenji

    2006-05-22

    Mimicry has evolved in a wide range of organisms and encompasses diverse tactics for defence, foraging, pollination and social parasitism. Here, I report an extraordinary case of egg mimicry by a fungus, whereby the fungus gains competitor-free habitat in termite nests. Brown fungal balls, called 'termite balls', are frequently found in egg piles of Reticulitermes termites. Phylogenetic analysis illustrated that termite-ball fungi isolated from different hosts (Reticulitermes speratus, Reticulitermes flavipes and Reticulitermes virginicus) were all very similar, with no significant molecular differences among host species or geographical locations. I found no significant effect of termite balls on egg survivorship. The termite-ball fungus rarely kills termite eggs in natural colonies. Even a termite species (Reticulitermes okinawanus) with no natural association with the fungus tended termite balls along with its eggs when it was experimentally provided with termite balls. Dummy-egg bioassays using glass beads showed that both morphological and chemical camouflage were necessary to induce tending by termites. Termites almost exclusively tended termite balls with diameters that exactly matched their egg size. Moreover, scanning electron microscopic observations revealed sophisticated mimicry of the smooth surface texture of eggs. These results provide clear evidence that this interaction is beneficial only for the fungus, i.e. termite balls parasitically mimic termite eggs.

  9. Laboratory Investigations on the Survival of Bacillus subtilis Spores in Deliquescent Salt Mars Analog Environments

    Science.gov (United States)

    Nuding, Danielle L.; Gough, Raina V.; Venkateswaran, Kasthuri J.; Spry, James A.; Tolbert, Margaret A.

    2017-10-01

    Observed features such as recurring slope lineae suggest that liquid water may exist on the surface and near-subsurface of Mars today. The presence of this liquid water, likely in the form of a brine, has important implications for the present-day water cycle, habitability, and planetary protection policies. It is possible that this water is formed, at least partially, by deliquescence of salts, a process during which hygroscopic salts absorb water vapor from the atmosphere and form a saturated liquid brine. We performed laboratory experiments to examine the ability of Bacillus subtilis (B-168) spores, alone or mixed with calcium perchlorate salt (Ca(ClO4)2), to form liquid water via deliquescence under Mars-relevant conditions. Spore survival after exposure to these conditions was examined. An environmental chamber was used to expose the samples to temperature and relative humidity (RH) values similar to those found on Mars, and Raman microscopy was used to identify the phases of water and salt that were present and to confirm the presence of spores. We found that B-168 spores did not condense any detectable water vapor on their own during the diurnal cycle, even at 100% RH. However, when spores were mixed with perchlorate salt, the entire sample deliquesced at low RH values, immersing the spores in a brine solution during the majority of the simulated martian temperature and humidity cycle. After exposure to the simulated diurnal cycles and, in some cases, perchlorate brine, the impact of each environmental scenario on spore survival was estimated by standard plate assay. We found that, if there are deliquescent salts in contact with spores, there is a mechanism for the spores to acquire liquid water starting with only atmospheric water vapor as the H2O source. Also, neither crystalline nor liquid Ca(ClO4)2 is sporicidal despite the low water activity.

  10. The Use of Germinants to Potentiate the Sensitivity of Bacillus anthracis Spores to Peracetic Acid.

    Science.gov (United States)

    Celebi, Ozgur; Buyuk, Fatih; Pottage, Tom; Crook, Ant; Hawkey, Suzanna; Cooper, Callum; Bennett, Allan; Sahin, Mitat; Baillie, Leslie

    2016-01-01

    Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 10(4) spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites.

  11. The use of germinants to potentiate the sensitivity of Bacillus anthracis spores to peracetic acid

    Directory of Open Access Journals (Sweden)

    Ozgur eCelebi

    2016-01-01

    Full Text Available Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM and inosine (5 mM to reduce the concentration of peracetic acid (PAA required to inactivate B.anthracis spores. While L-alanine significantly enhanced (p=0.0085 the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p=0.0009. To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B.anthracis to increase the level of contamination to 104 spores/g. Treatment with germinants followed one hour later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B.anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p<0.0001 in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B.anthracis spores contaminated sites.

  12. Comparison of fungal spores concentrations measured with wideband integrated bioaerosol sensor and Hirst methodology

    Science.gov (United States)

    Fernández-Rodríguez, S.; Tormo-Molina, R.; Lemonis, N.; Clot, B.; O'Connor, D. J.; Sodeau, John R.

    2018-02-01

    The aim of this work was to provide both a comparison of traditional and novel methodologies for airborne spores detection (i.e. the Hirst Burkard trap and WIBS-4) and the first quantitative study of airborne fungal concentrations in Payerne (Western Switzerland) as well as their relation to meteorological parameters. From the traditional method -Hirst trap and microscope analysis-, sixty-three propagule types (spores, sporangia and hyphae) were identified and the average spore concentrations measured over the full period amounted to 4145 ± 263.0 spores/m3. Maximum values were reached on July 19th and on August 6th. Twenty-six spore types reached average levels above 10 spores/m3. Airborne fungal propagules in Payerne showed a clear seasonal pattern, increasing from low values in early spring to maxima in summer. Daily average concentrations above 5000 spores/m3 were almost constant in summer from mid-June onwards. Weather parameters showed a relevant role for determining the observed spore concentrations. Coniferous forest, dominant in the surroundings, may be a relevant source for airborne fungal propagules as their distribution and predominant wind directions are consistent with the origin. The comparison between the two methodologies used in this campaign showed remarkably consistent patterns throughout the campaign. A correlation coefficient of 0.9 (CI 0.76-0.96) was seen between the two over the time period for daily resolutions (Hirst trap and WIBS-4). This apparent co-linearity was seen to fall away once increased resolution was employed. However at higher resolutions upon removal of Cladosporium species from the total fungal concentrations (Hirst trap), an increased correlation coefficient was again noted between the two instruments (R = 0.81 with confidence intervals of 0.74 and 0.86).

  13. Observations on the migration of bacillus spores outside a contaminated facility during a decontamination efficacy study

    Science.gov (United States)

    Silvestri, Erin E.; Perkins, Sarah; Lordo, Robert; Kovacik, William; Nichols, Tonya L.; Bowling, Charlena Yoder; Griffin, Dale W.; Schaefer, Frank W.

    2015-01-01

    The potential for an intentional wide-area or indoor release of Bacillus anthracis spores remains a concern, but the fate and transport of B. anthracis spores in indoor and outdoor environments are not well understood. Some studies have examined the possibility of spore transport within ventilation systems and in buildings and transport into a building following an outdoor release. Little research exists regarding the potential for spores to migrate to the outside of a building following an indoor release.

  14. Cryopreservation of spores of Dicksonia sellowiana: an endangered tree fern indigenous to South and Central America.

    Science.gov (United States)

    Rogge, G D; Viana, A M; Randi, A M

    2000-01-01

    Spores of Dicksonia sellowiana (Presl.) Hook., an endangered tree fern, were stored in liquid nitrogen. Surface sterilized spores were placed in 1 ml sterile polypropylene cryotubes and were plunged into liquid nitrogen cryo-cans for 15 minutes, 15 days, 1 month and 3 months. In all, of the treatments the percentage of germination was higher than the control (fresh spores). Germination in Dyer and MS media supplement with 10 (-7) M and 5 x 10(-7) M BA was also promoted as comparing to control. There was no difference between the germination of spores thawed rapidly in a water bath at 45 degree C during 5 minutes or slowly at room temperature. Cryopreservation seems to promote germination of some dormant spores of D. sellowiana. The pre-treatment in cryoprotective solution of dimethyl sulphoxide 15%(v/v) in 1 M glycerol inhibited the germination of cryopreserved spores

  15. Seasonal variation of Ganoderma spore concentrations in urban and suburban districts of the city of Szczecin, Poland.

    Science.gov (United States)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka; Przestrzelska, Katarzyna

    2015-01-01

    According to recent studies, Ganoderma may be the third genus, after Alternaria and Cladosporium, the spores of which cause symptoms of allergy, and concentration is related to meteorological factors. The aerobiology of Ganoderma spores in Szczecin in urban and suburban districts was examined using Lanzoni Volumetric Spore Traps in 2008-2010. Ganoderma spores were present in the atmosphere on more than 90% of the days from June through September with peak concentrations in June, July and September. The number of days with spores was lower in the suburban district, while the total number of spores collected was higher there than in the urban district. Correlation and multiple regression analyses revealed weak relationships between Ganoderma and meteorological conditions, while testing the significance of differences between the districts showed that urban development did not have a clear impact on the values of meteorological parameters. A significantly higher abundance of spores in the suburbs of Szczecin seemed to be conditioned by the closeness of potential area sources. This study indicates that a single measuring site in the city centre insufficiently reflected the dynamics and level of Ganoderma spore concentration in peripheral districts.

  16. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.

    2016-09-01

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

  17. Mucormycosis (Mucor fungus ball) of the maxillary sinus.

    Science.gov (United States)

    Cho, Hang Sun; Yang, Hoon Shik; Kim, Kyung Soo

    2014-01-01

    A fungus ball is an extramucosal fungal proliferation that completely fills one or more paranasal sinuses and usually occurs as a unilateral infection. It is mainly caused by Aspergillus spp in an immunocompetent host, but some cases of paranasal fungal balls reportedly have been caused by Mucor spp. A Mucor fungus ball is usually found in the maxillary sinus and/or the sphenoid sinus and may be black in color. Patients with mucormycosis, or a Mucor fungal ball infection, usually present with facial pain or headache. On computed tomography, there are no pathognomonic findings that are conclusive for a diagnosis of mucormycosis. In this article we report a case of mucormycosis in a 56-year-old woman and provide a comprehensive review of the literature on the "Mucor fungus ball." To the best of our knowledge, 5 case reports (8 patients) have been published in which the fungus ball was thought to be caused by Mucor spp.

  18. Solubilization of diabase and phonolite dust by filamentous fungus

    Directory of Open Access Journals (Sweden)

    Juliana Andréia Vrba Brandão

    2014-10-01

    Full Text Available The objective of this study was to evaluate the effect of the fungus Aspergillus niger strain CCT4355 in the release of nutrients contained in two types of rock powder (diabase and phonolite by means of in vitro solubilization trials. The experimental design was completely randomized in a 5 x 4 factorial design with three replications. It was evaluated five treatments (phonolite dust + culture medium; phonolite dust + fungus + culture medium; diabase powder + culture medium; diabase powder + fungus + culture medium and fungus + culture medium and four sampling dates (0, 10, 20 and 30 days. Rock dust (0.4% w/v was added to 125 mL Erlenmeyer flasks containing 50 mL of liquid culture medium adapted to A. niger. The flasks were incubated at 30°C for 30 days, and analysis of pH (in water, titratable acidity, and concentrations of soluble potassium, calcium, magnesium, zinc, iron and manganese were made. The fungus A. niger was able to produce organic acids that solubilized ions. This result indicates its potential to alter minerals contained in rock dust, with the ability to interact in different ways with the nutrients. A significant increase in the amount of K was found in the treatment with phonolite dust in the presence of the fungus. The strain CCT4355 of A. niger can solubilize minerals contained in these rocks dust.

  19. CONTROL OF POSTHARVEST TOMATO ROT BY SPORE SUSPENSION AND ANTIFUNGAL METABOLITES OF TRICHODERMA HARZIANUM

    Directory of Open Access Journals (Sweden)

    Momein H. El-Katatny

    2012-06-01

    Full Text Available Rot of cherry tomato (Lycopersicon esculentum fruits caused by several fungal pathogens is a detrimental disease leading to substantial yield loses worldwide. Alternaria isolates were the most common fungal species isolated from healthy or rotten fruits. Trichoderma harzianum spore suspension and culture filtrate were tested for their antagonistic activity on controlling tomato fruit rot. T. harzianum isolates suppressed or interfered with the growth of different postharvest tomato fungal pathogens albeit at different degrees. Their culture filtrate inhibited pathogen spore germination possibly due to the released extracellular diffusible metabolite(s. Besides, aberrant morphology of conidia was observed with deformation of hyphal tips. Furthermore, the resulting mycelia appeared desiccated with coagulated protoplasm leading to complete collapse of protoplasm in presence of T. harzianum culture filtrate. Application of T. harzianum spores to tomato fruits decreased disease severity significantly with the most profound effect at higher spore concentrations (108 cells per ml. Similarly, culture filtrate of T. harzianum prevented pathogen spore germination on the surface of tomato fruits leading to decreased incidence of rot symptoms at high culture filtrate concentrations. This work provides strong evidence that T. harzianum is a competent antagonist and its spore suspension and culture filtrate can be used efficiently to control postharvest tomato rot.

  20. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    Science.gov (United States)

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores

    Science.gov (United States)

    Deng, X. T.; Shi, J. J.; Shama, G.; Kong, M. G.

    2005-10-01

    Current inactivation studies of Bacillus subtilis spores using atmospheric-pressure glow discharges (APGD) do not consider two important factors, namely microbial loading at the surface of a substrate and sporulation temperature. Yet these are known to affect significantly microbial resistance to heat and hydrogen peroxide. This letter investigates effects of microbial loading and sporulation temperature on spore resistance to APGD. It is shown that microbial loading can lead to a stacking structure as a protective shield against APGD treatment and that high sporulation temperature increases spore resistance by altering core water content and cross-linked muramic acid content of B. subtilis spores.

  2. Heat and UV light resistance of vegetative cells and spores of Bacillus subtilis rec-mutants

    International Nuclear Information System (INIS)

    Hanlin, J.H.; Lombardi, S.J.; Slepecky, R.A.

    1985-01-01

    The heat and UV light resistance of spores and vegetative cells of Bacillus subtilis BD170 (rec+) were greater than those of B. subtilis BD224 (recE4). Strain BD170 can repair DNA whereas BD224 is repair deficient due to the presence of the recE4 allele. Spores of a GSY Rec+ strain were more heat resistant than spores of GSY Rec- and Uvr- mutants. The overall level of heat and UV light resistance attained by spores may in part be determined by their ability to repair deoxyribonucleic acid after exposure to these two physical mutagens

  3. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces

    Directory of Open Access Journals (Sweden)

    Jan Bobek

    2017-11-01

    Full Text Available The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life – connected with spore formation and antibiotic production – is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1 Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2 Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3 Still not fully unveiled are the strategies that enable the process, including a single cell’s signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces, while focusing on the aforementioned points.

  4. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces.

    Science.gov (United States)

    Bobek, Jan; Šmídová, Klára; Čihák, Matouš

    2017-01-01

    The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life - connected with spore formation and antibiotic production - is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1) Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2) Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3) Still not fully unveiled are the strategies that enable the process, including a single cell's signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces , while focusing on the aforementioned points.

  5. Pollen and spores as a passive monitor of ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    Wesley Toby Fraser

    2014-04-01

    Full Text Available Sporopollenin is the primary component of the outer walls of pollen and spores. The chemical composition of sporopollenin is responsive to levels of ultraviolet (UV radiation exposure, via a concomitant change in the concentration of phenolic compounds. This relationship offers the possibility of using fossil pollen and spore chemistry as a novel proxy for past UV flux. Phenolic compounds in sporopollenin can be quantified using Fourier Transform infrared spectroscopy. The high potential for preservation of pollen and spores in the geologic record, and the conservative nature of sporopollenin chemistry across the land plant phylogeny, means that this new proxy has the potential to reconstruct UV flux over much longer timescales than has previously been possible. This new tool has important implications for understanding the relationship between UV flux, solar insolation and climate in the past, as well as providing a possible means of assessing paleoaltitude, and ozone thickness.

  6. Ascospores of large-spored Metschnikowia species are genuine meiotic products of these yeasts

    DEFF Research Database (Denmark)

    Marinoni, G.; Piskur, Jure; Lachance, M.A.

    2003-01-01

    continentalis var. continentalis, and M. continentalis var. borealis. Asci were dissected and the segregation patterns for various phenotypes analyzed. In all cases (n = 47) both mating types (h(+) and h(-)) were recovered in pairs of sister spores, casting further uncertainty as to whether normal meiosis takes...... place. However, the segregation patterns for cycloheximide resistance and several auxotrophic markers were random, suggesting that normal meiosis indeed occurs. To explain the lack of second-division segregation of mating types, we concluded that crossing-over does not occur between the mating......-type locus and the centromere, and that meiosis I is tied to spore formation, which explains why the number of spores is limited to two. The latter assumption was also supported by fluorescence microscopy. The second meiotic division takes place inside the spores and is followed by the resorption of two...

  7. Influence of selected variables on transport of plutonium to spores of Aspergillus niger

    International Nuclear Information System (INIS)

    Au, F.H.F.; Beckert, W.F.

    1975-01-01

    Studies were carried out on the influences of different chemical forms and concentrations of Pu at two hydrogen ion concentrations of the culture medium on uptake and transport of 238 Pu to the spores of Aspergillus niger. Results indicated that Pu, when added to the culture medium as dioxide microspheres, nitrate, or citrate complex, was transported to the spores, and that an almost linear relationship existed between transport and concentration. Raising the pH of the culture medium from 2.5 to 5.5 generally increased transport of Pu to spores for all three chemical forms. At Pu concentrations of 224 pCi/g in the culture media, and for both pH 2.5 and 5.5, transport of Pu to spores was approximately three times as high from the nitrate or citrate form as from the dioxide microspheres. (auth)

  8. Hydroxylation of a hederagenin derived saponin by a Xylareaceous fungus found in fruits of Sapindus saponaria

    Energy Technology Data Exchange (ETDEWEB)

    Murgu, Michael; Santos, Luiz F. Arruda; Souza, Gezimar D. de; Daolio, Cristina; Ferreira, Antonio Gilberto; Rodrigues-Filho, Edson [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Schneider, Bernd [Max Planck Institute for Chemical Ecology, Beutenberg Campus, Jena (Germany)

    2008-07-01

    During our screening of tropical plants for endophyte microorganisms, a Xylareaceous fungus was found living on the internal part of Sapindus saponaria fruits. The fruits of S. saponaria accumulate great amounts of triterpenoidal and sesquiterpenoidal saponins. The saponin 3-O-({beta}-D-xylopyranosyl)-(1{yields}3)-{alpha}-L -rhamnopyranosyl-(1{yields}2)-{alpha}-L-arabinopyranosyl-hederagenin was isolated using chromatographic methods, after alkaline hydrolysis of the crude extract obtained from S. saponaria fruits and added to the culture medium used to grows the fungus. A new saponin was isolated from this experiment by preparative scale HPLC and characterized as a 22{alpha}-hydroxy derivative. The structure of this hydroxylated saponin was elucidated based on interpretation of MS/MS data and NMR spectra. (author)

  9. Hydroxylation of a hederagenin derived saponin by a Xylareaceous fungus found in fruits of Sapindus saponaria

    International Nuclear Information System (INIS)

    Murgu, Michael; Santos, Luiz F. Arruda; Souza, Gezimar D. de; Daolio, Cristina; Ferreira, Antonio Gilberto; Rodrigues-Filho, Edson

    2008-01-01

    During our screening of tropical plants for endophyte microorganisms, a Xylareaceous fungus was found living on the internal part of Sapindus saponaria fruits. The fruits of S. saponaria accumulate great amounts of triterpenoidal and sesquiterpenoidal saponins. The saponin 3-O-(β-D-xylopyranosyl)-(1→3)-α-L -rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl-hederagenin was isolated using chromatographic methods, after alkaline hydrolysis of the crude extract obtained from S. saponaria fruits and added to the culture medium used to grows the fungus. A new saponin was isolated from this experiment by preparative scale HPLC and characterized as a 22α-hydroxy derivative. The structure of this hydroxylated saponin was elucidated based on interpretation of MS/MS data and NMR spectra. (author)

  10. A quantum dot-spore nanocomposite pH sensor.

    Science.gov (United States)

    Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang

    2016-04-01

    A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of pre-irradiation on thermal inactivation of B. pumilus E 601 dry spores irradiated with EB and. gamma. -rays

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yuhei; Ito, Hitoshi; Ishigaki, Isao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1989-11-01

    The survival fraction of B. pumilus spores irradiated with {gamma} -rays and electron beams in vacuum were increased when the spores were heated or allowed to stand in vacuum for a long time at room temperature. The survival curves of the spores thus treated after irradiation might give apparent radiation sensitivities which were lower than true ones obtained just after irradiation. On the contrary, the radiation sensitivities of the spores irradiated in dry air and then heated or allowed to stand in dry air became high. To elucidate the characteristics of th spores, the effect of heating on the radiation sensitivity of the B. pumilus spores has been studied. By heating the pre-irradiated spores in vacuum, its survival fraction was increased, in other words, the spores inactivated with radiation were recovered. However, the thermal sensitivity of the recovered spores was found to be high compared with that of the original spores. On the other hand, when B. pumilus spores were irradiated in dry air and then heated in dry air, the survival curves of the spores were found to be composed of two exponential curves, suggesting that two kinds of thermal inactivation mechanism existed. From Arrhenius plots of unirradiated B. pumilus spores, the activation energies of the thermal inactivation in the range of 90degC to 120degC in vacuum and in air were found to be about 38 kcal/mol and 29 kcal/mol, respectively. The activation energy of the spores at a temperature of higher than 120degC, however increased to give the same value (about 38 kcal/mol) as found in vacuum. This fact suggests the main mechanism of the thermal inactivation of the spores varies near 120degC. Arrhenius plots of irradiated spores in vacuum was similar to that of unirradiated ones. Thermal inactivation rates of the irradiated spores in the presence of air will also be discussed as compared with those of unirradiated ones. (author).

  12. Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination.

    Directory of Open Access Journals (Sweden)

    Kelly A Fimlaid

    2015-10-01

    Full Text Available Clostridium difficile is a Gram-positive spore-forming pathogen and a leading cause of nosocomial diarrhea. C. difficile infections are transmitted when ingested spores germinate in the gastrointestinal tract and transform into vegetative cells. Germination begins when the germinant receptor CspC detects bile salts in the gut. CspC is a subtilisin-like serine pseudoprotease that activates the related CspB serine protease through an unknown mechanism. Activated CspB cleaves the pro-SleC zymogen, which allows the activated SleC cortex hydrolase to degrade the protective cortex layer. While these regulators are essential for C. difficile spores to outgrow and form toxin-secreting vegetative cells, the mechanisms controlling their function have only been partially characterized. In this study, we identify the lipoprotein GerS as a novel regulator of C. difficile spore germination using targeted mutagenesis. A gerS mutant has a severe germination defect and fails to degrade cortex even though it processes SleC at wildtype levels. Using complementation analyses, we demonstrate that GerS secretion, but not lipidation, is necessary for GerS to activate SleC. Importantly, loss of GerS attenuates the virulence of C. difficile in a hamster model of infection. Since GerS appears to be conserved exclusively in related Peptostreptococcaeace family members, our results contribute to a growing body of work indicating that C. difficile has evolved distinct mechanisms for controlling the exit from dormancy relative to B. subtilis and other spore-forming organisms.

  13. Mechanism of the hydrolysis of 4-methylumbelliferyl-beta-D-glucoside by germinating and outgrowing spores of Bacillus species.

    Science.gov (United States)

    Setlow, B; Cabrera-Martinez, R-M; Setlow, P

    2004-01-01

    To determine the mechanism of the hydrolysis of 4-methylumbelliferyl-beta-D-glucopyranoside (beta-MUG) by germinating and outgrowing spores of Bacillus species. Spores of B. atrophaeus (formerly B. subtilis var. niger, Fritze and Pukall 2001) are used as biological indicators of the efficacy of ethylene oxide sterilization by measurement of beta-MUG hydrolysis during spore germination and outgrowth. It was previously shown that beta-MUG is hydrolysed to 4-methylumbelliferone (MU) during the germination and outgrowth of B. atrophaeus spores (Chandrapati and Woodson 2003), and this was also the case with spores of B. subtilis 168. Germination of spores of either B. atrophaeus or B. subtilis with chloramphenicol reduced beta-MUG hydrolysis by almost 99%, indicating that proteins needed for rapid beta-MUG hydrolysis are synthesized during spore outgrowth. However, the residual beta-MUG hydrolysis during spore germination with chloramphenicol indicated that dormant spores contain low levels of proteins needed for beta-MUG uptake and hydrolysis. With B. subtilis 168 spores that lacked several general proteins of the phosphotransferase system (PTS) for sugar uptake, beta-MUG hydrolysis during spore germination and outgrowth was decreased >99.9%. This indicated that beta-MUG is taken up by the PTS, resulting in the intracellular accumulation of the phosphorylated form of beta-MUG, beta-MUG-6-phosphate (beta-MUG-P). This was further demonstrated by the lack of detectable glucosidase activity on beta-MUG in dormant, germinated and outgrowing spore extracts, while phosphoglucosidase active on beta-MUG-P was readily detected. Dormant B. subtilis 168 spores had low levels of at least four phosphoglucosidases active on beta-MUG-P: BglA, BglH, BglC (originally called YckE) and BglD (originally called YdhP). These enzymes were also detected in spores germinating and outgrowing with beta-MUG, but levels of BglH were the highest, as this enzyme's synthesis was induced ca 100-fold

  14. Chlorine inactivation of fungal spores on cereal grains.

    Science.gov (United States)

    Andrews, S; Pardoel, D; Harun, A; Treloar, T

    1997-04-01

    Although 0.4% chlorine for 2 min has been recommended for surface disinfection of food samples before direct plating for fungal enumeration, this procedure may not be adequate for highly contaminated products. The effectiveness of a range of chlorine solutions was investigated using barley samples artificially contaminated with four different concentrations of Aspergillus flavus. A. niger, A. ochraceus, Eurotium repens, Penicillium brevicompactum P. chrysogenum and Cladosporium cladosporioides. At initial contamination levels greater than 10(4)/g, 0.4% chlorine did not inactivate sufficient spores to produce less than 20% contamination. Of the test fungi, ascospores of E. repens were the most resistant to chlorine inactivation, whereas the conidia of C. cladosporioides were the most sensitive. Rinsing the samples with 70% ethanol improved the effectiveness of the recommended surface disinfection procedure. However, some ethanol appears to permeate into the grains and may inactivate sensitive internal fungi, although a minimal effect only was observed on wheat infected with Alternaria.

  15. 14C Analysis of protein extracts from Bacillus spores.

    Science.gov (United States)

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. In vitro mutagenesis of commercial fern, Asplenium nidus from spores

    International Nuclear Information System (INIS)

    Norazlina Noordin

    2004-01-01

    Asplenium is a largest, most diverse fern genera. One of the common species is Asplenium nidus, well known as Bird's-nest fern, a medium to large fern with erect, stout, unbranched rhizomes. In creating variability of ferns for the benefit of the ornamental plant industry, in vitro mutagenesis is used. In this study, spores of Asplenium nidus were collected from frond bearing mature sporangia. Spores were cultured in modified 1/2 MS basal medium supplemented with various combinations of 6-Benzylaminopurine (BAP) and Naphtalene Acetic Acid (NAA). Spore cultures were incubated in incubation room at 24 degree C with 16 hours photoperiod (3500 lux). It was found that, the most effective combinations were 1 mg/1 BAP + 0. 1 mg/1 NAA and 2mg/1 BAP + 0. 1 mg/1 NAA. Prothallus was formed after 10 days of cultures and gametophytes were formed 1 month later. These gametophytes were irradiated with Gamma ray at doses of 0, 20, 90, 120, 150 and 180 Gy. From the preliminary result obtained from this study, for generating variations and desired phenotypic expression for Asplenium nidus, recommended doses for in vitro mutagenesis using spores are between 90 Gy to 150 Gy. Gametophytes were subcultured at monthly interval to ensure further development and propagation. Frequent monitoring for any changes in the morphology of the irradiated Asplenium nidus plants were carried out. (Author)

  17. The occurrence of Ganoderma spores in the air and its relationships with meteorological factors

    Directory of Open Access Journals (Sweden)

    Agnieszka Grinn-Gofroń

    2012-12-01

    Full Text Available According to a recent study, Ganoderma may be the third genus, after Alternaria and Cladosporium, whose spores cause symptoms of allergy and whose levels are directly related to meteorological factors. There are only few articles from different parts of the world about the relationships between Ganoderma spore count and meteorological factors. The aim of the study was to review all available publications about airborne Ganoderma spores and to compare the results in a short useful form.

  18. Arthropods associated with fungal galls: do large galls support more abundant and diverse inhabitants?

    Science.gov (United States)

    Funamoto, Daichi; Sugiura, Shinji

    2017-02-01

    Fungus-induced galls can attract spore-feeding arthropods as well as gall-feeding ones, resulting in diverse communities. Do large fungal galls support more abundant and diverse arthropod communities than small fungal galls? To address this question, we investigated the structure of the arthropod community associated with bud galls induced by the fungus Melanopsichium onumae on the tree species Cinnamomum yabunikkei (Lauraceae) in central Japan. Thirteen species of arthropods were associated with M. onumae galls. Dominant arthropod species were represented by the larvae of a salpingid beetle (a spore feeder), a nitidulid beetle (a spore feeder), a cosmopterigid moth (a spore feeder), an unidentified moth (a gall tissue feeder), and a drosophilid species (a gall tissue feeder). Arthropod abundance and species richness were positively correlated with gall diameter. The majority of the most abundant species were more frequently found in large galls than in small ones, indicating that large fungal galls, which have more food and/or space for arthropods, could support a more abundant and diverse arthropod community.

  19. The immunological characteristics and probiotic function of recombinant Bacillus subtilis spore expressing Clonorchis sinensis cysteine protease.

    Science.gov (United States)

    Tang, Zeli; Shang, Mei; Chen, Tingjin; Ren, Pengli; Sun, Hengchang; Qu, Hongling; Lin, Zhipeng; Zhou, Lina; Yu, Jinyun; Jiang, Hongye; Zhou, Xinyi; Li, Xuerong; Huang, Yan; Xu, Jin; Yu, Xinbing

    2016-12-19

    Clonorchiasis, a food-borne zoonosis, is caused by Clonorchis sinensis. The intestinal tract and bile ducts are crucial places for C. sinensis metacercariae to develop into adult worms. The endospore of Bacillus subtilis is an ideal oral immunization vehicle for delivery of heterologous antigens to intestine. Cysteine protease of C. sinensis (CsCP) is an endogenous key component in the excystment of metacercariae and other physiological or pathological processes. We constructed a fusion gene of CotC (a coat protein)-CsCP and obtained B. subtilis spores with recombinant plasmid of pEB03-CotC-CsCP (B.s-CotC-CsCP). CotC-CsCP expressed on spores' surface was detected by Western blotting and immunofluorescence. Immunological characteristics of recombinant spore coat protein were evaluated in a mouse model. The levels of CsCP-specific antibodies were detected by ELISA. Effects of recombinant spores on mouse intestine were evaluated by histological staining. The activities of biochemical enzymes in serum were assayed by microplate. Liver sections of infected mice were evaluated by Ishak score after Masson's trichrome. The B.s-CotC-CsCP spores displayed CsCP on their coat. Specific IgG and isotypes were significantly induced by coat proteins of B.s-CotC-CsCP spores after subcutaneous immunization. IgA levels in intestinal mucus and bile of B.s-CotC-CsCP orally treated mice significantly increased. Additionally, more IgA-secreting cells were observed in enteraden and lamina propria regions of the mouse jejunum, and an increased amount of acidic mucins in intestines were also observed. There were no significant differences in enzyme levels of serum among groups. No inflammatory injury was observed in the intestinal tissues of each group. The degree of liver fibrosis was significantly reduced after oral immunization with B.s-CotC-CsCP spores. Bacillus subtilis spores maintained the original excellent immunogenicity of CsCP expressed on their surface. Both local and systemic

  20. The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air

    Science.gov (United States)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2011-03-01

    Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004-2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors.

  1. Determination of fungal spore release from wet building materials

    DEFF Research Database (Denmark)

    Kildesø, J.; Wurtz, H.; Nielsen, Kristian Fog

    2003-01-01

    The release and transport of fungal spores from water-damaged building materials is a key factor for understanding the exposure to particles of fungal origin as a possible cause of adverse health effects associated to growth of fungi indoors. In this study, the release of spores from nine species...... of typical indoor fungi has been measured under controlled conditions. The fungi were cultivated for a period of 4-6 weeks on sterilized wet wallpapered gypsum boards at a relative humidity (RH) of approximately 97%. A specially designed small chamber (P-FLEC) was placed on the gypsum board. The release...

  2. Spores of most common airborne fungi reveal no ice nucleation activity

    Science.gov (United States)

    Pummer, B. G.; Atanasova, L.; Bauer, H.; Bernardi, J.; Druzhinina, I. S.; Grothe, H.

    2013-06-01

    Fungal spores are ubiquitous biological aerosols, which are considered to show ice nucleation (IN) activity. In this study the respective IN activity was tested in oil emulsion in the immersion freezing mode. The focus was laid on species of economical, ecological or sanitary significance. For the first time, not only common moulds, but also edible mushrooms (Basidiomycota, Agaricomycetes) were investigated, as they contribute massively to the total amount of fungal spores in the atmosphere. Only Fusarium avenaceum showed freezing events at low subzero-temperatures, while the other investigated fungal spores showed no significant IN activity. Furthermore, we selected a set of fungal strains from different sites and exposed them to occasional freezing stress during cultivation. Although the total protein expression was altered by this treatment, it had no significant impact on the IN activity.

  3. Effect of the presence of brood and fungus on the nest architecture and digging activity of Acromyrmex subterraneus Forel (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    Carlos Magno dos Santos

    Full Text Available ABSTRACT This study investigated the stimuli that trigger digging behavior in Acromyrmex subterraneus during nest building. The hypothesis was that the presence of the fungus garden and/or brood triggers the excavation of tunnels and chambers. For the experiment, the excavation rate of individually marked workers kept in plastic cylinders filled with soil was recorded. Four treatments were applied: (1 30 medium-sized workers, 5 g fungus garden and 30 brood items (larvae and pupae; (2 30 medium-sized workers and 5 g fungus garden; (3 30 medium-sized workers and 30 brood items; (4 30 medium-sized workers without fungus and brood. After 24 h, morphological parameters of nest structure (length and width of the chambers and tunnels in cm and the volume of excavated soil were recorded. In contrast to the expected findings, no change in morphological structure, rate of excavation by workers, or volume of excavated soil was observed between treatments, except for tunnel width, which was greater, when no brood or fungus garden was present. Thus, the results do not support the hypothesis that the fungus garden and/or brood are local stimuli for nest excavation or that they mold the internal architecture of the nest. Although this hypothesis was confirmed for Acromyrmex lundii and Atta sexdens rubropilosa, the same does not apply to A. subterraneus. The digging behavior of workers is probably the result of adaptation during nest building in different habitats.

  4. Changes in ultraviolet resistance and photoproduct formation as early events in spore germination of Bacillus cereus T

    International Nuclear Information System (INIS)

    Irie, R.

    1978-01-01

    In order to determine the timing of the change in the state of DNA in bacterial spores during the course of germination, L-alanine-induced germination of Bacillus cereus spores was interrupted by 0.3M CaCl 2 as an inhibitor, and the resulting semi-refractive spores (spores at the end of the first phase of germination) were examined for UV-resistance and photoproduct formation. Upon UV-irradiation, these spores, still having a semi-refractile core as observed under a phase-contrast microscope, gave rise to mainly the cyclobutane-type thymine dimer. It was concluded that change in the stats of the spore DNA occurs early in the process of germination, i.e. before the refractility of the core is lost. It was also found that CaCl 2 markedly prolonged the duration of the transient UV-resistant stage. (author)

  5. Induction of prophages in spores of Bacillus subtilis by ultraviolet irradiation from synchrotron orbital radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sadaie, Y.; Kada, T.; Ohta, Y. (National Inst. of Genetics, Mishima, Shizuoka (Japan)); Kobayashi, K.; Hieda, K.; Ito, T.

    1984-06-01

    Prophages were induced from Bacillus subtilis spores lysogenic with SP02 by ultraviolet (160 nm to 240 nm) irradiation from synchrotron orbital radiation (SR UV). SR UV at around 220 nm was most effective in the inactivation of spores and prophage induction from lysogenic spores, suggesting that the lesions are produced on the DNA molecule which eventually induces signals to inactivate the phage repressor.

  6. Evaluation of the Performance of Iodine-Treated Biocide Filters Challenged with Bacterial Spores and Viruses

    Science.gov (United States)

    2006-11-01

    the iodine-treated media. D. METHODOLOGY: The iodine-treated filter media were challenged by Bacillus subtilis spores and MS2 bacteriophage...reentrainment into the air [8]. Even though HVAC prevents the contamination of indoor air from environmental bacteria and spores entering from outdoors...of iodine with Bacillus metiens spores showed that the decrease of germicidal activity is due to increased iodine decomposition [39]. Studies on the

  7. Induction of prophages in spores of Bacillus subtilis by ultraviolet irradiation from synchrotron orbital radiation

    International Nuclear Information System (INIS)

    Sadaie, Y.; Kada, T.; Ohta, Y.; Kobayashi, K.; Hieda, K.; Ito, T.

    1984-01-01

    Prophages were induced from Bacillus subtilis spores lysogenic with SP02 by ultraviolet (160 nm to 240 nm) irradiation from synchrotron orbital radiation (SR UV). SR UV at around 220 nm was most effective in the inactivation of spores and prophage induction from lysogenic spores, suggesting that the lesions are produced on the DNA molecule which eventually induces signals to inactivate the phage repressor. (author)

  8. Laboratory Investigations on the Survival of Bacillus subtilis Spores in Deliquescent Salt Mars Analog Environments.

    Science.gov (United States)

    Nuding, Danielle L; Gough, Raina V; Venkateswaran, Kasthuri J; Spry, James A; Tolbert, Margaret A

    2017-10-01

    Observed features such as recurring slope lineae suggest that liquid water may exist on the surface and near-subsurface of Mars today. The presence of this liquid water, likely in the form of a brine, has important implications for the present-day water cycle, habitability, and planetary protection policies. It is possible that this water is formed, at least partially, by deliquescence of salts, a process during which hygroscopic salts absorb water vapor from the atmosphere and form a saturated liquid brine. We performed laboratory experiments to examine the ability of Bacillus subtilis (B-168) spores, alone or mixed with calcium perchlorate salt (Ca(ClO 4 ) 2 ), to form liquid water via deliquescence under Mars-relevant conditions. Spore survival after exposure to these conditions was examined. An environmental chamber was used to expose the samples to temperature and relative humidity (RH) values similar to those found on Mars, and Raman microscopy was used to identify the phases of water and salt that were present and to confirm the presence of spores. We found that B-168 spores did not condense any detectable water vapor on their own during the diurnal cycle, even at 100% RH. However, when spores were mixed with perchlorate salt, the entire sample deliquesced at low RH values, immersing the spores in a brine solution during the majority of the simulated martian temperature and humidity cycle. After exposure to the simulated diurnal cycles and, in some cases, perchlorate brine, the impact of each environmental scenario on spore survival was estimated by standard plate assay. We found that, if there are deliquescent salts in contact with spores, there is a mechanism for the spores to acquire liquid water starting with only atmospheric water vapor as the H 2 O source. Also, neither crystalline nor liquid Ca(ClO 4 ) 2 is sporicidal despite the low water activity. Key Words: Raman microscopy-Mars-Planetary protection-Salts-Water activity. Astrobiology 17, 997-1008.

  9. Factors influencing the inactivation of Alicyclobacillus acidoterrestris spores exposed to high hydrostatic pressure in apple juice

    Science.gov (United States)

    Sokołowska, B.; Skąpska, S.; Fonberg-Broczek, M.; Niezgoda, J.; Chotkiewicz, M.; Dekowska, A.; Rzoska, S. J.

    2013-03-01

    Alicyclobacillus acidoterrestris, a thermoacidophilic and spore-forming bacterium, survives the typical pasteurization process and can cause the spoilage of juices, producing compounds associated with disinfectant-like odour (guaiacol, 2,6 - dibromophenol, 2,6 - dichlorophenol). Therefore, the use of other more effective techniques such as high hydrostatic pressure (HHP) is considered for preserving juices. The aim of this study was to search for factors affecting the resistance of A. acidoterrestris spores to HHP. The baroprotective effect of increased solute concentration in apple juice on A. acidoterrestris spores during high pressure processing was observed. During the 45 min pressurization (200 MPa, 50°C) of the spores in concentrated apple juice (71.1°Bx), no significant changes were observed in their number. However, in the juices with a soluble solids content of 35.7, 23.6 and 11.2°Bx, the reduction in spores was 1.3-2.4 log, 2.6-3.3 log and 2.8-4.0 log, respectively. No clear effect of age of spores on the survival under high pressure conditions was found. Spores surviving pressurization and subjected to subsequent HHP treatment showed increased resistance to pressure, by even as much as 2.0 log.

  10. Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests.

    Science.gov (United States)

    Wen, Zhugui; Shi, Liang; Tang, Yangze; Hong, Lizhou; Xue, Jiawang; Xing, Jincheng; Chen, Yahua; Nara, Kazuhide

    2018-01-01

    Chinese Douglas-fir (Pseudotsuga sinensis) is an endangered Pinaceae species found in several isolated regions of China. Although soil spore banks of ectomycorrhizal (ECM) fungi can play an important role in seedling establishment after disturbance, such as in the well-known North American relative (Pseudotsuga menziesii), we have no information about soil spore bank communities in relict forests of Chinese Douglas-fir. We conducted bioassays of 73 soil samples collected from three Chinese Douglas-fir forests, using North American Douglas-fir as bait seedlings, and identified 19 species of ECM fungi. The observed spore bank communities were significantly different from those found in ECM fungi on the roots of resident trees at the same sites (p = 0.02). The levels of potassium (K), nitrogen (N), organic matter, and the pH of soil were the dominant factors shaping spore bank community structure. A new Rhizopogon species was the most dominant species in the spore banks. Specifically, at a site on Sanqing Mountain, 22 of the 57 surviving bioassay seedlings (representing 21 of the 23 soil samples) were colonized by this species. ECM fungal richness significantly affected the growth of bioassay seedlings (R 2  = 0.20, p = 0.007). Growth was significantly improved in seedlings colonized by Rhizopogon or Meliniomyces species compared with uncolonized seedlings. Considering its specificity to Chinese Douglas-fir, predominance in the soil spore banks, and positive effect on host growth, this new Rhizopogon species could play critical roles in seedling establishment and forest regeneration of endangered Chinese Douglas-fir.

  11. Isolation and identification of iron ore-solubilising fungus

    Directory of Open Access Journals (Sweden)

    Damase Khasa

    2010-09-01

    Full Text Available Potential mineral-solubilising fungi were successfully isolated from the surfaces of iron ore minerals. Four isolates were obtained and identified by molecular and phylogenetic methods as close relatives of three different genera, namely Penicillium (for isolate FO, Alternaria (for isolates SFC2 and KFC1 and Epicoccum (for isolate SFC2B. The use of tricalcium phosphate (Ca3(PO42in phosphate-solubilising experiments confirmed isolate FO as the only phosphate solubiliser among the isolated fungi. The bioleaching capabilities of both the fungus and its spent liquid medium were tested and compared using two types of iron ore materials, conglomerate and shale, from the Sishen Iron Ore Mine as sources of potassium (K and phosphorus (P. The spent liquid medium removed more K (a maximum of 32.94% removal, from conglomerate, than the fungus (a maximum of 21.36% removal, from shale. However, the fungus removed more P (a maximum of 58.33% removal, from conglomerate than the spent liquid medium (a maximum of 29.25% removal, from conglomerate. The results also indicated a potential relationship between the removal of K or P and the production of organic acids by the fungus. A high production of gluconic acid could be related to the ability of the fungus to reduce K and P. Acetic, citric and maleic acids were also produced by the fungus, but in lower quantities. In addition, particle size and iron ore type were also shown to have significant effects on the removal of potassium and phosphorus from the iron ore minerals. We therefore conclude that the spent liquid medium from the fungal isolate FO can potentially be used for biobeneficiation of iron ore minerals.

  12. Formation and characterization of non-growth states in Clostridium thermocellum: spores and L-forms

    Directory of Open Access Journals (Sweden)

    Mearls Elizabeth B

    2012-08-01

    Full Text Available Abstract Background Clostridium thermocellum is an anaerobic thermophilic bacterium that exhibits high levels of cellulose solublization and produces ethanol as an end product of its metabolism. Using cellulosic biomass as a feedstock for fuel production is an attractive prospect, however, growth arrest can negatively impact ethanol production by fermentative microorganisms such as C. thermocellum. Understanding conditions that lead to non-growth states in C. thermocellum can positively influence process design and culturing conditions in order to optimize ethanol production in an industrial setting. Results We report here that Clostridium thermocellum ATCC 27405 enters non-growth states in response to specific growth conditions. Non-growth states include the formation of spores and a L-form-like state in which the cells cease to grow or produce the normal end products of metabolism. Unlike other sporulating organisms, we did not observe sporulation of C. thermocellum in low carbon or nitrogen environments. However, sporulation did occur in response to transfers between soluble and insoluble substrates, resulting in approximately 7% mature spores. Exposure to oxygen caused a similar sporulation response. Starvation conditions during continuous culture did not result in spore formation, but caused the majority of cells to transition to a L-form state. Both spores and L-forms were determined to be viable. Spores exhibited enhanced survival in response to high temperature and prolonged storage compared to L-forms and vegetative cells. However, L-forms exhibited faster recovery compared to both spores and stationary phase cells when cultured in rich media. Conclusions Both spores and L-forms cease to produce ethanol, but provide other advantages for C. thermocellum including enhanced survival for spores and faster recovery for L-forms. Understanding the conditions that give rise to these two different non-growth states, and the implications that

  13. DISTRIBUTION ET ABONDANCE DE SPORES DE CHAMPIGNONS ...

    African Journals Online (AJOL)

    AISA

    (PCR) des racines échantillonnées et le comptage directe des spores des sols échantillonnés ont permis ... cowpea, sing the PCR technique, reveal that this plant was an efficient host for ..... genes from vesicular-arbuscular endomy- ...

  14. Evaluation of the efficacy of beauveria bassiana for the control of the invasive fruit fly bactrocera invadens (Diptera: Tephritidae)

    International Nuclear Information System (INIS)

    Marri, D.

    2013-07-01

    Mango production plays an important role in Africa’s economy. However, the African invader fly, Bactrocera invadens is causing high yield losses as an important quarantine pest. Suppression of fruit flies for increased mango production will increasingly rely on management methods which exert low negative environmental impact. Beauveria bassiana is an insect pathogenic fungus used as microbial insecticide because it leaves produce to their fresh state, flavor, colour and texture with no change in the chemical composition of the product and is environmentally friendly. Evaluation of the efficacy of Beauveria bassiana for the control of the invasive Fruit Fly, Bactrocera invadens (Diptera: Tephriitidae) was carried out. The fungus B. bassiana (Botanigard® ES) containing 11.3% Beauveria bassiana GHA strain was applied at concentrations of 106, 53.0, 26.5, 13.3 and 6.65(x 10 6 spores/ml). When three developmental stages of the fruit fly (larvae, puparia and adults) were treated with Beauveria bassiana, the severity of the damage caused by the fungus increased with increasing fungal concentration. The results show lethal time (LT 50 ) that ranged from 2.8 to 3.6 days for a dose of 106 x 10 6 spores/ml. Comparing methods of fungal application in the field, the result indicated that applying the fungus in fruit fly traps in mango canopies is the better method for fruit flies control in the field as compared to the soil surface spray method. However, both methods could be employed for better results The study of gamma radiation on the virulence of the fungus showed that the combined effect of the fungus and gamma irradiation gave better result by increasing adult mortality to 100 % within three days at 106 x10 6 spores/ml irradiated at 150 Gy than applying fungal treatment only. (author)

  15. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores

    Directory of Open Access Journals (Sweden)

    De Felice Maurilio

    2010-01-01

    Full Text Available Abstract Background The bacterial endospore (spore has recently been proposed as a new surface display system. Antigens and enzymes have been successfully exposed on the surface layers of the Bacillus subtilis spore, but only in a few cases the efficiency of expression and the effective surface display and have been determined. We used this heterologous expression system to produce the A subunit of the urease of the animal pathogen Helicobater acinonychis. Ureases are multi-subunit enzymes with a central role in the virulence of various bacterial pathogens and necessary for colonization of the gastric mucosa by the human pathogen H. pylori. The urease subunit UreA has been recognized as a major antigen, able to induce high levels of protection against challenge infections. Results We expressed UreA from H. acinonychis on the B. subtilis spore coat by using three different spore coat proteins as carriers and compared the efficiency of surface expression and surface display obtained with the three carriers. A combination of western-, dot-blot and immunofluorescence microscopy allowed us to conclude that, when fused to CotB, UreA is displayed on the spore surface (ca. 1 × 103 recombinant molecules per spore, whereas when fused to CotC, although most efficiently expressed (7-15 × 103 recombinant molecules per spore and located in the coat layer, it is not displayed on the surface. Experiments with CotG gave results similar to those with CotC, but the CotG-UreA recombinant protein appeared to be partially processed. Conclusion UreA was efficiently expressed on the spore coat of B. subtilis when fused to CotB, CotC or CotG. Of these three coat proteins CotC allows the highest efficiency of expression, whereas CotB is the most appropriate for the display of heterologous proteins on the spore surface.

  16. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores.

    Science.gov (United States)

    Hinc, Krzysztof; Isticato, Rachele; Dembek, Marcin; Karczewska, Joanna; Iwanicki, Adam; Peszyńska-Sularz, Grazyna; De Felice, Maurilio; Obuchowski, Michał; Ricca, Ezio

    2010-01-18

    The bacterial endospore (spore) has recently been proposed as a new surface display system. Antigens and enzymes have been successfully exposed on the surface layers of the Bacillus subtilis spore, but only in a few cases the efficiency of expression and the effective surface display and have been determined. We used this heterologous expression system to produce the A subunit of the urease of the animal pathogen Helicobater acinonychis. Ureases are multi-subunit enzymes with a central role in the virulence of various bacterial pathogens and necessary for colonization of the gastric mucosa by the human pathogen H. pylori. The urease subunit UreA has been recognized as a major antigen, able to induce high levels of protection against challenge infections. We expressed UreA from H. acinonychis on the B. subtilis spore coat by using three different spore coat proteins as carriers and compared the efficiency of surface expression and surface display obtained with the three carriers. A combination of western-, dot-blot and immunofluorescence microscopy allowed us to conclude that, when fused to CotB, UreA is displayed on the spore surface (ca. 1 x 10(3) recombinant molecules per spore), whereas when fused to CotC, although most efficiently expressed (7-15 x 10(3) recombinant molecules per spore) and located in the coat layer, it is not displayed on the surface. Experiments with CotG gave results similar to those with CotC, but the CotG-UreA recombinant protein appeared to be partially processed. UreA was efficiently expressed on the spore coat of B. subtilis when fused to CotB, CotC or CotG. Of these three coat proteins CotC allows the highest efficiency of expression, whereas CotB is the most appropriate for the display of heterologous proteins on the spore surface.

  17. Deposition of Bacillus subtilis spores using an airbrush-spray or spots to study surface decontamination by pulsed light.

    Science.gov (United States)

    Levy, Caroline; Bornard, Isabelle; Carlin, Frédéric

    2011-02-01

    Microbial contamination on surfaces of food processing equipment is a major concern in industries. A new method to inoculate a single-cell layer (monolayer) of microorganisms onto polystyrene was developed, using a deposition with an airbrush. A homogeneous dispersion of Bacillus subtilis DSM 402 spores sprayed on the surface was observed using both plate count and scanning electron microscopy. No clusters were found, even with high spore concentrations (10(7) spores/inoculated surface). A monolayer of microorganisms was also obtained after deposition of 10 μL droplets containing 3×10(4) spores/spot on polystyrene disks, but not with a higher spore concentration. Pulsed light (PL) applied to monolayers of B. subtilis spores allowed log reductions higher than 6. As a consequence of clusters formation in spots of 10 μL containing more than 3×10(5) spores, log reductions obtained by PL were significantly lower. The comparative advantages of spot and spray depositions were discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Decontamination Of Bacterial Spores by a Peptide-Mimic

    National Research Council Canada - National Science Library

    Nagarajan, R; Muller, Wayne S; Ashley, Rebekah; Mello, Charlene M

    2006-01-01

    .... In this work, we demonstrate that a peptide-mimic (cationic, amphiphilic) chemical agent, dodecylamine is capable of performing the dual functions of germinating the dormant spore as well as deactivating...

  19. Contribution of fungal spores to particulate matter in a tropical rainforest

    International Nuclear Information System (INIS)

    Zhang Ting; Chan Chuenyu; Zhang Yinan; Zhang Zhisheng; Lin Mang; Sang Xuefang; Engling, Guenter; Li, Y D; Li, Yok-Sheung

    2010-01-01

    The polyols arabitol and mannitol, recently proposed as source tracers for fungal spores, were used in this study to estimate fungal contributions to atmospheric aerosol. Airborne particulate matter (PM 2.5 and PM 10 ) was collected at Jianfengling Mountain, a tropical rainforest on Hainan Island situated off the south China coast, during spring and analyzed for arabitol and mannitol by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The average concentrations of arabitol and mannitol exhibited high values with averages of 7.0 and 16.0 ng m -3 respectively in PM 2.5 and 44.0 and 71.0 ng m -3 in PM 10 . The two tracers correlated well with each other, especially in the coarse mode aerosol (PM 2.5-10 ), indicating they were mainly associated with coarse aerosol particles and had common sources. Arabitol and mannitol in PM 10 showed significant positive correlations with relative humidity, as well as positive correlations with average temperature, suggesting a wet emissions mechanism of biogenic aerosol in the form of fungal spores. We made estimations of the contribution of fungal spores to ambient PM mass and to organic carbon, based on the observed ambient concentrations of these two tracers. The relative contributions of fungal spores to the PM 10 mass were estimated to range from 1.6 to 18.2%, with a rather high mean value of 7.9%, and the contribution of fungal spores to organic carbon in PM 10 ranged from 4.64 to 26.1%, with a mean value of 12.1%, implying that biological processes are important sources of atmospheric aerosol.

  20. The Survival and Recovery of Irradiated Bacterial Spores as Affected by Population Density and Some External Factors

    International Nuclear Information System (INIS)

    Farkas, J.; Kiss, I.; Andrássy, E.

    1967-01-01

    The radiation resistance of Bacillus cereus spores as affected by the pH-value and cell density of the irradiated spore suspensions was investigated. The portions of the survival curves of suspensions of 10 8 , 4 x 10 3 and 5 x 10 1 per millilitre viable cell counts, respectively, were compared for a three-orders-of-magnitude decrease in viable cell count. It was established that the initial cell density did not affect radiation resistance of spores. Radiation resistance as affected by pH-value in the range of 3 to 8 was investigated. In the range of pH 5 to 8, the radiation resistance of B. cereus spores was not affected. By lowering the pH-value to below 5, the radiation resistance decreased below that observed in the neutral region. The colony-forming capacity of B. cereus, B. coagulans and B. pumilus as a function of the pH-value in the nutrient medium, and the pH-sensitivity of bacterial spores as affected by radiation, were also investigated. It was established that irradiation increased the pH-sensitivity of surviving bacterial spores in all three strains. The initial phase of spore germination (the phase accompanied by decrease of refractivity of the spores) and the division stage of vegetative cells proved to be the most sensitive to the value of the hydrogen ion concentration. (author)

  1. Pathogenicity of Metarhizium anisopliae (Deuteromycetes) and permethrin to Ixodes scapularis (Acari: Ixodidae) nymphs

    Science.gov (United States)

    Hornbostel, V.L.; Zhioua, Elyes; Benjamin, Michael A.; Ginsberg, Howard S.; Ostfeld, Richard S.

    2005-01-01

    Effectiveness of the entomopathogenic fungus Metarhizium anisopliae, for controlling nymphal Ixodes scapularis, was tested in laboratory and field trials. In the laboratory, M. anisopliae (Metschnikoff) Sorokin strain ESC1 was moderately pathogenic, with an LC50 of 107 spores/ml and induced 70% mortality at 109 spores/ml. In a field study, however, 109 spores/ml M. anisopliae did not effectively control questing I. scapularis nymphs, and significant differences were not detected in pre- and post-treatment densities. For nymphs collected and returned to the laboratory for observation, mortality was low in treatment groups, ranging from 20 to 36%. To assess whether a chemical acaricide would synergistically enhance pathogenicity of the fungus, we challenged unfed nymphal I. scapularis with combinations of M. anisopliae and permethrin, a relatively safe pyrethroid acaricide, in two separate bioassays. Significant interactions between M. anisopliae and permethrin were not observed, supporting neither synergism nor antagonism.

  2. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    Science.gov (United States)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  3. Waterline ATS B. globigii spore water disinfection data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Disinfection of B. globigii spores (a non-pathogenic surrogate for B. anthracis) in clean and dirty water using the ATS-Waterline system, which uses ultraviolet...

  4. Various Stages of Pink Fungus (Upasia salmonicolor in Java

    Directory of Open Access Journals (Sweden)

    Ambarwati Harsojo Tjokrosoedarmo

    1995-12-01

    Full Text Available Pink fungus in Java is classified as Upasia salmonicolor (Basidiomycetes: Corticiaceae and its anamorph is Necator decretus. This fungus is a serious pathogen which attacks many woody plants. The pink fungus in Java exhibits five developmental stages on the surface of the host bark: I. An initial cobweb stage as thin, white, cobweb-like hyphal layer, which creeps over the surface of the bark, during which penetration of the host occurs; II. Pseudonodular stage, as conical white pustules occurring only on lenticels or cracks, and only on shady side of branches; III. Teleomorph, occurs as pink incrustation and pink pustules on shady side of branches; IV. Nodular stages, as globose white pustules occurring chiefly on intact bark, but also on the lenticels or cracks, on exposed side of branches; V. Anamorph, as small orange-red sporodochium, on exposed side of branches. Key words: pink fungus, Corticiaceae, Basidiomycetes, Necator

  5. DNA methyltransferases contribute to the fungal development, stress tolerance and virulence of the entomopathogenic fungus Metarhizium robertsii.

    Science.gov (United States)

    Wang, Yulong; Wang, Tiantian; Qiao, Lintao; Zhu, Jianyu; Fan, Jinrui; Zhang, Tingting; Wang, Zhang-Xun; Li, Wanzhen; Chen, Anhui; Huang, Bo

    2017-05-01

    DNA methylation is an important epigenetic mark in mammals, plants, and fungi and depends on multiple genetic pathways involving de novo and maintenance DNA methyltransferases (DNMTases). Metarhizium robertsii, a model system for investigating insect-fungus interactions, has been used as an environmentally friendly alternative to chemical insecticides. However, little is known concerning the molecular basis for DNA methylation. Here, we report on the roles of two DNMTases (MrRID and MrDIM-2) by characterizing ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 mutants. The results showed that approximately 71, 10, and 8% of m C sites remained in the ΔMrRID, ΔMrDIM-2, and ΔRID/ΔDIM-2 strains, respectively, compared with the wild-type (WT) strain. Further analysis showed that MrRID regulates the specificity of DNA methylation and MrDIM-2 is responsible for most DNA methylation, implying an interaction or cooperation between MrRID and MrDIM-2 for DNA methylation. Moreover, the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains showed more defects in radial growth and conidial production compared to the WT. Under ultraviolet (UV) irradiation or heat stress, an obvious reduction in spore viability was observed for all the mutant strains compared to the WT. The spore median lethal times (LT 50 s) for the ΔMrDIM-2 and ΔRID/ΔDIM-2 strains in the greater wax moth, Galleria mellonella, were decreased by 47.7 and 65.9%, respectively, which showed that MrDIM-2 is required for full fungal virulence. Our data advances the understanding of the function of DNMTase in entomopathogenic fungi, which should contribute to future epigenetic investigations in fungi.

  6. Hexane abatement and spore emission control in a fungal biofilter-photoreactor hybrid unit

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Lucero, J.O. [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid (Spain); IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Ciencias Ambientales, Camino a la Presa San José No. 2055, C.P., 78216 San Luis Potosí (Mexico); Quijano, G. [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid (Spain); Arriaga, S. [IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Ciencias Ambientales, Camino a la Presa San José No. 2055, C.P., 78216 San Luis Potosí (Mexico); Muñoz, R., E-mail: mutora@iq.uva.es [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid (Spain)

    2014-07-15

    Highlights: • A fungal biofilter/photoreactor was evaluated in terms of hexane and spore removal. • Biofilter supported elimination capacities of ≈35 g m{sup −3} h{sup −1} and CO{sub 2} yields of ≈75%. • The photocatalytic process slightly boosted the hexane abatement performance. • Biofilter emitted fungal spores at concentrations of 2.4 × 10{sup 3}–9.0 × 10{sup 4} CFU m{sup −3}. • Photo-assisted post-treatments resulted in spore deactivation efficiencies of 98%. - Abstract: The performance of a fungal perlite-based biofilter coupled to a post-treatment photoreactor was evaluated over 234 days in terms of n-hexane removal, emission and deactivation of fungal spores. The biofilter and photoreactor were operated at gas residence times of 1.20 and 0.14 min, respectively, and a hexane loading rate of 115 ± 5 g m{sup −3} h{sup −1}. Steady n-hexane elimination capacities of 30–40 g m{sup −3} h{sup −1} were achieved, concomitantly with pollutant mineralization efficiencies of 60–90%. No significant influence of biofilter irrigation frequency or irrigation nitrogen concentration on hexane abatement was recorded. Photolysis did not support an efficient hexane post-treatment likely due to the short EBRT applied in the photoreactor, while overall hexane removal and mineralization enhancements of 25% were recorded when the irradiated photoreactor was packed with ZnO-impregnated perlite. However, a rapid catalyst deactivation was observed, which required a periodic reactivation every 48 h. Biofilter irrigation every 3 days supported fungal spore emissions at concentrations ranging from 2.4 × 10{sup 3} to 9.0 × 10{sup 4} CFU m{sup −3}. Finally, spore deactivation efficiencies of ≈98% were recorded for the photolytic and photocatalytic post-treatment processes. This study confirmed the potential of photo-assisted post-treatment processes to mitigate the emission of hazardous fungal spores and boost the abatement performance of

  7. Chemical composition of metapleural gland secretions of fungus-growing and non-fungus-growing ants.

    Science.gov (United States)

    Vieira, Alexsandro S; Morgan, E David; Drijfhout, Falko P; Camargo-Mathias, Maria I

    2012-10-01

    The metapleural gland is exclusive to ants, and unusual among exocrine glands in having no mechanism for closure and retention of secretion. As yet, no clear conclusion has been reached as to the function of metapleural gland secretion. Metapleural gland secretions were investigated for fungus-growing ants representing the derived attines Trachymyrmex fuscus, Atta laevigata, and Acromyrmex coronatus, the basal attines Apterostigma pilosum and Mycetarotes parallelus, and non-fungus-growing ants of the tribes Ectatommini (Ectatomma brunneum) and Myrmicini (Pogonomyrmex naegeli). Our results showed that the secretions of leaf-cutting ants (A. laevigata and A. coronatus) and the derived attine, T. fuscus, contain a greater variety and larger quantities of volatile compounds than those of myrmicine and ectatommine ants. The most abundant compounds found in the metapleural glands of A. laevigata and A. coronatus were hydroxyacids, and phenylacetic acid (only in A. laevigata). Indole was present in all groups examined, while skatole was found in large quantities only in attines. Ketones and aldehydes are present in the secretion of some attines. Esters are present in the metapleural gland secretion of all species examined, although mainly in A. laevigata, A. coronatus, and T. fuscus. Compared with basal attines and non-fungus-growing ants, the metapleural glands of leaf-cutting ants produce more acidic compounds that may have an antibiotic or antifungal function.

  8. Inactivation of Clostridium perfringens spores adhered onto stainless steel surface by agents used in a clean-in-place procedure.

    Science.gov (United States)

    Alzubeidi, Yasmeen S; Udompijitkul, Pathima; Talukdar, Prabhat K; Sarker, Mahfuzur R

    2018-07-20

    Enterotoxigenic Clostridium perfringens, a leading foodborne pathogen can be cross-contaminated from food processing stainless steel (SS) surfaces to the finished food products. This is mostly due to the high resistance of C. perfringens spores adhered onto SS surfaces to various disinfectants commonly used in food industries. In this study, we aimed to investigate the survivability and adherence of C. perfringens spores onto SS surfaces and then validate the effectiveness of a simulated Clean-in-Place (CIP) regime on inactivation of spores adhered onto SS surfaces. Our results demonstrated that, 1) C. perfringens spores adhered firmly onto SS surfaces and survived for at-least 48 h, unlike their vegetative cells who died within 30 min, after aerobic incubation at refrigerated and ambient temperatures; 2) Spores exhibited higher levels of hydrophobicity than vegetative cells, suggesting a correlation between cell surface hydrophobicity and adhesion to solid surfaces; 3) Intact spores were more hydrophobic than the decoated spores, suggesting a positive role of spore coat components on spores' hydrophobicity and thus adhesion onto SS surfaces; and finally 4) The CIP regime (NaOH + HNO 3 ) successfully inactivated C. perfringens spores adhered onto SS surfaces, and most of the effect of CIP regime appeared to be due to the NaOH. Collectively, our current findings may well contribute towards developing a strategy to control cross-contamination of C. perfringens spores into food products, which should help reducing the risk of C. perfringens-associated food poisoning outbreaks. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Pilot-scale crossflow-microfiltration and pasteurization to remove spores of Bacillus anthracis (Sterne) from milk.

    Science.gov (United States)

    Tomasula, P M; Mukhopadhyay, S; Datta, N; Porto-Fett, A; Call, J E; Luchansky, J B; Renye, J; Tunick, M

    2011-09-01

    High-temperature, short-time pasteurization of milk is ineffective against spore-forming bacteria such as Bacillus anthracis (BA), but is lethal to its vegetative cells. Crossflow microfiltration (MF) using ceramic membranes with a pore size of 1.4 μm has been shown to reject most microorganisms from skim milk; and, in combination with pasteurization, has been shown to extend its shelf life. The objectives of this study were to evaluate MF for its efficiency in removing spores of the attenuated Sterne strain of BA from milk; to evaluate the combined efficiency of MF using a 0.8-μm ceramic membrane, followed by pasteurization (72°C, 18.6s); and to monitor any residual BA in the permeates when stored at temperatures of 4, 10, and 25°C for up to 28 d. In each trial, 95 L of raw skim milk was inoculated with about 6.5 log(10) BA spores/mL of milk. It was then microfiltered in total recycle mode at 50°C using ceramic membranes with pore sizes of either 0.8 μm or 1.4 μm, at crossflow velocity of 6.2 m/s and transmembrane pressure of 127.6 kPa, conditions selected to exploit the selectivity of the membrane. Microfiltration using the 0.8-μm membrane removed 5.91±0.05 log(10) BA spores/mL of milk and the 1.4-μm membrane removed 4.50±0.35 log(10) BA spores/mL of milk. The 0.8-μm membrane showed efficient removal of the native microflora and both membranes showed near complete transmission of the casein proteins. Spore germination was evident in the permeates obtained at 10, 30, and 120 min of MF time (0.8-μm membrane) but when stored at 4 or 10°C, spore levels were decreased to below detection levels (≤0.3 log(10) spores/mL) by d 7 or 3 of storage, respectively. Permeates stored at 25°C showed coagulation and were not evaluated further. Pasteurization of the permeate samples immediately after MF resulted in additional spore germination that was related to the length of MF time. Pasteurized permeates obtained at 10 min of MF and stored at 4 or 10°C showed no

  10. A Generic Method for Fungal Spore Detection: The use of a monoclonal antibody and surface plasmon resonance

    DEFF Research Database (Denmark)

    Skottrup, Peter; Hearty, Stephen; Frøkiær, Hanne

    causing wheat yellow rust. We have developed mabs towards intact whole spores and used a subtractive inhibition format for detection of spores in solution. The antibody was incubated with different spore concentrations and the remaining free antibody was quantified using a BIAcore® 3000 sensor. Decreasing...

  11. Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spores with increased core water content and with or without major DNA-binding proteins

    International Nuclear Information System (INIS)

    Popham, D.L.; Sengupta, S.; Setlow, P.

    1995-01-01

    Spores of a Bacillus subtilis strain with an insertion mutation in the dacB gene, which codes for an enzyme involved in spore cortex biosynthesis, have a higher core water content than wild-type spores. Spores lacking the two major α/β-type small, acid-soluble proteins (SASP) (termed a α - β - spores) have the same core water content as do wild-type spores, but α - β - dacB spores had more core water than did dacB spores. The resistance of α - β - , α - β - dacB, dacB, and wild-type spores to dry and moist heat, hydrogen peroxide, and UV radiation has been determined, as has the role of DNA damage in spore killing by moist heat and hydrogen peroxide. These data (1) suggest that core water content has little if any role in spore UV resistance and are consistent with binding of α/β-type SASP to DNA being the major mechanism providing protection to spores from UV radiation; (2) suggest that binding of αβ-type SASP to DNA is the major mechanism unique to spores providing protection from dry heat; (3) suggest that spore resistance to moist heat and hydrogen peroxide is affected to a large degree by the core water content, as increased core water resulted in large decreases in spore resistance to these agents; and (4) indicate that since this decreased resistance (i.e., in dacB spores) is not associated with increased spore killing by DNA damage, spore DNA must normally be extremely well protected against such damage, presumably by the saturation of spore DNA by α/β-type SASP. 19 refs., 2 figs., 5 tabs

  12. Dynamic predictive model for growth of Bacillus cereus from spores in cooked beans

    Science.gov (United States)

    Kinetic growth data of Bacillus cereus from spores in cooked beans at several isothermal conditions (between 10 to 49C) were collected. Samples were inoculated with approximately 2 log CFU/g of heat-shocked (80C/10 min) spores and stored at isothermal temperatures. B. cereus populations were deter...

  13. Tracking the footsteps of an invasive plant pathogen: Intercontinental phylogeographic structure of the white-pine-blister-rust fungus, Cronartium ribicola

    Science.gov (United States)

    Bryce A. Richardson; Mee-Sook Kim; Ned B. Klopfenstein; Yuko Ota; Kwan Soo Woo; Richard C. Hamelin

    2009-01-01

    Presently, little is known about the worldwide genetic structure, diversity, or evolutionary relationships of the white-pineblister-rust fungus, Cronartium ribicola. A collaborative international effort is underway to determine the phylogeographic relationships among Asian, European, and North American sources of C. ribicola and...

  14. Reciprocal genomic evolution in the ant-fungus agricultural symbiosis

    DEFF Research Database (Denmark)

    Nygaard, Sanne; Hu, Haofu; Li, Cai

    2016-01-01

    The attine ant-fungus agricultural symbiosis evolved over tens of millions of years, producing complex societies with industrial-scale farming analogous to that of humans. Here we document reciprocal shifts in the genomes and transcriptomes of seven fungus-farming ant species and their fungal...

  15. Enhanced Antifungal Effect of Chitosan/Pepper Tree (Schinus molle Essential Oil Bionanocomposites on the Viability of Aspergillus parasiticus Spores

    Directory of Open Access Journals (Sweden)

    Ana Guadalupe Luque-Alcaraz

    2016-01-01

    Full Text Available Chitosan nanoparticles (CS and chitosan/pepper tree (Schinus molle essential oil (CS-EO bionanocomposites were synthesized by nanoprecipitation method and the in vitro antifungal activity against Aspergillus parasiticus spores was evaluated. The shape and size were evaluated by scanning electron microscopy (SEM and dynamic light scattering (DLS. The surface charge was determined by assessing the zeta potential and the inclusion of essential oil in bionanocomposites using Fourier transform infrared spectroscopy (FT-IR. The effect on cell viability of the fungus was evaluated using the XTT technique and morphometric analysis by image processing. SEM and DLS analysis indicated that spherical particles with larger diameters for CS-EO biocomposites were observed. Zeta potential values were higher (+11.1 ± 1.60 mV for CS nanoparticles. Results suggest a chemical interaction between chitosan and pepper tree essential oil. The highest concentration of CS-EO complex caused a larger (40–50% decrease in A. parasiticus viability. The inclusion of pepper tree oil in CS nanoparticles is a feasible alternative to obtain antifungal biocomposites, where the activity that each compound presents individually is strengthened.

  16. Comparative studies of the secretome of fungus-growing ants

    DEFF Research Database (Denmark)

    Linde, Tore; Grell, Morten Nedergaard; Schiøtt, Morten

    2009-01-01

    Leafcutter ants of the species Acromyrmex echinatior live in symbiosis with the fungus Leucoagaricus gongylophorus. The ants harvest fragments of leaves and carry them to the nest where they place the material on the fungal colony. The fungus secretes a wide array of proteins to degrade the leaves...... into nutrients that the ants can feed on. The focus of this study is to discover, characterize and compare the secreted proteins. In order to do so cDNA libraries are constructed from mRNA extracted from the fungus material. The most efficient technology to screen cDNA libraries selectively for secreted...

  17. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  18. Particle size distribution of airborne Aspergillus fumigatus spores emitted from compost using membrane filtration

    Science.gov (United States)

    Deacon, L. J.; Pankhurst, L. J.; Drew, G. H.; Hayes, E. T.; Jackson, S.; Longhurst, P. J.; Longhurst, J. W. S.; Liu, J.; Pollard, S. J. T.; Tyrrel, S. F.

    Information on the particle size distribution of bioaerosols emitted from open air composting operations is valuable in evaluating potential health impacts and is a requirement for improved dispersion simulation modelling. The membrane filter method was used to study the particle size distribution of Aspergillus fumigatus spores in air 50 m downwind of a green waste compost screening operation at a commercial facility. The highest concentrations (approximately 8 × 10 4 CFU m -3) of culturable spores were found on filters with pore diameters in the range 1-2 μm which suggests that the majority of spores are emitted as single cells. The findings were compared to published data collected using an Andersen sampler. Results were significantly correlated ( p < 0.01) indicating that the two methods are directly comparable across all particles sizes for Aspergillus spores.

  19. Single Spore Isolation as a Simple and Efficient Technique to obtain fungal pure culture

    Science.gov (United States)

    Noman, E.; Al-Gheethi, AA; Rahman, N. K.; Talip, B.; Mohamed, R.; H, N.; Kadir, O. A.

    2018-04-01

    The successful identification of fungi by phenotypic methods or molecular technique depends mainly on the using an advanced technique for purifying the isolates. The most efficient is the single spore technique due to the simple requirements and the efficiency in preventing the contamination by yeast, mites or bacteria. The method described in the present work is depends on the using of a light microscope to transfer one spore into a new culture medium. The present work describes a simple and efficient procedure for single spore isolation to purify of fungi recovered from the clinical wastes.

  20. Phospholipase Cδ regulates germination of Dictyostelium spores

    NARCIS (Netherlands)

    Dijken, Peter van; Haastert, Peter J.M. van

    2001-01-01

    Background: Many eukaryotes, including plants and fungi make spores that resist severe environmental stress. The micro-organism Dictyostelium contains a single phospholipase C gene (PLC); deletion of the gene has no effect on growth, cell movement and differentiation. In this report we show that PLC

  1. Laboratory and Field Evaluation of the Entomopathogenic Fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for Population Management of Spruce Beetle, Dendroctonus rufipennis (Coleoptera: Scolytinae), in Felled Trees and Factors Limiting Pathogen Success.

    Science.gov (United States)

    Davis, Thomas Seth; Mann, Andrew J; Malesky, Danielle; Jankowski, Egan; Bradley, Clifford

    2018-03-24

    An isolate of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) was tested for its ability to reduce survival and reproduction of spruce beetle, Dendroctonus rufipennis (Kirby) (Coleoptera: Scolytinae), under laboratory and field conditions. Conidial suspension applied directly to adults or to filter papers that adults contacted had a median survival time of 3-4 d in laboratory assays and beetles died more rapidly when exposed to conidial suspension than when treated with surfactant solution only. In the field, conidial suspension was applied to the surface of felled and pheromone-baited Engelmann spruce (Picea engelmannii) trees using a backpack sprayer. Mortality of colonizing parent beetles (F0), reproduction (abundance of F1 offspring in logs), and emergence of F1 beetles from logs was compared between treated and nontreated logs. Application of spore suspension increased mortality of F0 adults by 36% on average. Total F1 reproduction was reduced by 17% and emergence from logs was reduced by 13% in treated logs, but considerable variability in reproduction and emergence was observed. Viable spores were re-isolated from treated logs up to 90 d after application, indicating that spores are capable of long-term persistence on the tree bole microhabitat. Subsequent in vitro tests revealed that temperatures below 15°C and exposure to spruce monoterpenes likely limit performance of B. bassiana under field conditions, but exposure to low-intensity light or interactions with spruce beetle symbiotic fungi were not strongly inhibitory. It is concluded that matching environmental tolerances of biocontrol fungi to field conditions can likely improve their usefulness for control of spruce beetle in windthrown trees.

  2. Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH.

    Science.gov (United States)

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; Leguérinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-05-01

    Although sporulation environmental factors are known to impact on Bacillus spore heat resistance, they are not integrated into predictive models used to calculate the efficiency of heating processes. This work reports the influence of temperature and pH encountered during sporulation on heat resistance of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 spores. A decrease in heat resistance (δ) was observed for spores produced either at low temperature, at high temperature or at acidic pH. Sporulation temperature and pH maximizing the spore heat resistance were identified. Heat sensitivity (z) was not modified whatever the sporulation environmental factors were. A resistance secondary model inspired by the Rosso model was proposed. Sporulation temperatures and pHs minimizing or maximizing the spore heat resistance (T(min(R)), T(opt(R)), T(max(R)), pH(min(R)) and pH(opt(R))) were estimated. The goodness of the model fit was assessed for both studied strains and literature data. The estimation of the sporulation temperature and pH maximizing the spore heat resistance is of great interest to produce spores assessing the spore inactivation in the heating processes applied by the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Direct high-pressure NMR observation of dipicolinic acid leaking from bacterial spore: A crucial step for thermal inactivation.

    Science.gov (United States)

    Akasaka, Kazuyuki; Maeno, Akihiro; Yamazaki, Akira

    2017-12-01

    A bacterial spore protects itself with an unusually high concentration (~10% in dry weight of spore) of dipicolinic acid (DPA), the release of which is considered the crucial step for inactivating it under mild pressure and temperature conditions. However, the process of how the spore releases DPA in response to pressure remains obscure. Here we apply 1 H high-resolution high-pressure NMR spectroscopy, for the first time, to the spore suspension of Bacillus subtilis natto and monitor directly and in real-time the leaking process of DPA in response to pressure of 200MPa at 20°C. We find that about one third of the total DPA leaks immediately upon applying pressure, but that the rest leaks slowly in hrs upon decreasing the pressure. Once DPA is fully released from the spore, the proteins of the spore become easily denatured at a mild temperature, e.g., 80°C, much below the temperature commonly used to inactivate spores (121°C). The success of the present experiment opens a new avenue for studying bacterial spores and cells at the molecular level in response to pressure, temperature and other perturbations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Magnetic Ganoderma lucidum spore microspheres: A novel material to immobilize CotA multicopper oxidase for dye decolorization

    International Nuclear Information System (INIS)

    Fan, Lili; Wang, Yan; Zhao, Min; Song, Jinzhu; Wang, Jueyu; Jin, Zijing

    2016-01-01

    Highlights: • Hollow microspheres were obtained from Ganoderma lucidum spores. • Novel magnetic microspheres were prepared by load hollow spore microspheres with Fe_3O_4 nanoparticles. • CotA multicopper oxidase was immobilized on the magnetic spore microspheres for indigo carmine decolorization. • The immobilized CotA displayed higher decolorization capability and reusability. - Abstract: In this study, hollow microspheres were obtained from Ganoderma lucidum spores. Then the hollow microspheres were loaded with Fe_3O_4 nanoparticles to prepare novel magnetic spore microspheres. TEM images and X-ray diffractometry demonstrated that the Fe_3O_4 nanoparticles were incorporated throughout the spore microsphere. CotA multicopper oxidase was chosen as biomacromolecule to study the loading ability of the magnetic spore microspheres. The combination of the CotA enzyme with the microsphere was observed by laser scanning confocal microscope. The loaded amount of CotA on the microspheres was 75 mg/g when the CotA concentration was 1.2 mg/mL and the activity recovery of the immobilized CotA was 81%. The magnetic microspheres loaded with CotA, which can be easily and quickly recovered by an external magnetic field, were used for dye decolorization. After 1 h decolorization, 99% of the indigo carmine has been removed by 10 mg microspheres. In addition, the immobilized CotA retained 75% of activity after 10 consecutive cycles, which indicated that the magnetic spore microspheres are good support material for immobilization of the enzyme.

  5. Antibiotic Resistance and Fungus

    Centers for Disease Control (CDC) Podcasts

    2017-02-28

    Dr. David Denning, President of the Global Action Fund for Fungal Infections and an infectious diseases clinician, discusses antimicrobial resistance and fungus.  Created: 2/28/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/28/2017.

  6. The development and structure of thick-walled, multicellular, aerial spores in Diheterospora chlamydosporia (=Verticillium chlamydosporium).

    Science.gov (United States)

    Cambell, W P; Griffiths, D A

    1975-07-01

    The aerial, thick-walled spores in Diheterospara chlamydosporia arose as terminal swellings on erect hyphae. Repeated septation of the continuously swelling spore resulted in a multicellular structure. Immediately after the onset of septation secondary wall material was laid down between the two-layered primary wall and the plasmalemma. The presence of secondary wall material indicates that the multicellular spore is a dictyochlamydospore and not an aleuriospore. The relationship between chlamydospores and aleuriospores in other fungi is discussed.

  7. Effect of Ultrasonic Waves on the Heat Resistance of Bacillus cereus and Bacillus licheniformis Spores

    Science.gov (United States)

    Burgos, J.; Ordóñez, J. A.; Sala, F.

    1972-01-01

    Heat resistance of Bacillus cereus and Bacillus licheniformis spores in quarter-strength Ringer solution decreases markedly after ultrasonic treatments which are unable to kill a significant proportion of the spore population. This effect does not seem to be caused by a loss of Ca2+ or dipicolinic acid. The use of ultrasonics to eliminate vegetative cells or to break aggregates in Bacillus spore suspensions to be used subsequently in heat resistance experiments appears to be unadvisable. PMID:4627969

  8. U.S. National Fungus Collections

    Data.gov (United States)

    Department of Agriculture — The U.S. National Fungus Collections (BPI) are the “Smithsonian for fungi” and are the repository for over one million fungal specimens worldwide - the largest such...

  9. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    DEFF Research Database (Denmark)

    Semenova, Tatyana; Hughes, David Peter; Boomsma, Jacobus Jan

    2011-01-01

    hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results: We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing...... classes. Remarkably, the single symbiont that is shared by species of the crown group of Atta and Acromyrmex leaf-cutting ants mostly showed metalloproteinase activity, suggesting that recurrent changes in enzyme production may have occurred throughout the domestication history of fungus-garden symbionts......Background: Attine ants live in symbiosis with a basidiomycetous fungus that they rear on a substrate of plant material. This indirect herbivory implies that the symbiosis is likely to be nitrogen deprived, so that specific mechanisms may have evolved to enhance protein availability. We therefore...

  10. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites

    DEFF Research Database (Denmark)

    Visser, Anna A.; Nobre, Tânia; Currie, Cameron R.

    2012-01-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play...... a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets...... for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus...

  11. Inactivation of B. Pumilus spores by combination hydrostatic pressure-radiation treatment of parenteral solutions

    International Nuclear Information System (INIS)

    Wills, P.A.

    1975-01-01

    Bacterial spores are inactivated by moderate hydrostatic pressures. The radiation dose required to sterilize radiation sensitive pharmaceuticals can be considerably reduced using a combination hydrostatic pressure-radiation treatment. This paper describes a combination pressure-radiation sterilization process using Bacillus pumilus spores suspended in water, 0.9% saline, and 5% dextrose solutions. The optimum temperatures for spore inactivation at 35 MPa and the degree of inactivation at 35, 70 and 105 MPa applied for times up to 100 min have been determined. Inactivation was greatest in saline and least in dextrose. Spores in dextrose were only slightly less radiation resistant than in saline or water. It was calculated that the radiation dose required for sterilization could be halved with appropriate compression treatment. Examples of combinations of pressure-radiation suitable for sterilization are given. One combination is compression at 105 MPa for 18 min for a dose of 1.25 Mrad. (author)

  12. Can spores survive in interstellar space

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P.; Greenberg, J.M.

    1985-08-01

    Inactivation of spores (Bacillus subtilis) has been investigated in the laboratory by vacuum ultraviolet radiation in simulated interstellar conditions. Damage produced at the normal interstellar particle temperature of 10 K is less than at higher temperatures: the major damage being produced by radiation in the 2,000-3,000 A range. The results place constraints on the panspermia hypothesis. (author).

  13. Spore communities of arbuscular mycorrhizal fungi and mycorrhizal associations in different ecosystems, south Australia

    Directory of Open Access Journals (Sweden)

    Z. I. Antoniolli

    2002-09-01

    Full Text Available Communities of arbuscular mycorrhizal fungi (AMF were surveyed in different South Australian ecosystems. The soil was wet-sieved for spore extraction, followed by the determination of presence and abundance of AMF species as well as the percentage of root colonization. Mycorrhizal associations were common and there was substantial fungal diversity in different ecosystems. Spores were most abundant in the permanent pasture system and less abundant under continuous wheat. The incidence of mycorrhizal associations in different plant species and the occurrence of Arum and Paris type colonization generally conformed with previous information. Spores of seventeen AMF were verified throughout seasonal changes in 1996 and 1997 in the permanent pasture and on four host species (Lolium perenne, Plantago lanceolata, Sorghum sp. and Trifolium subterraneum , set up with the same soils under greenhouse conditions. Glomus mosseae was the dominant spore type at all sampling times and in all trap cultures. Mycorrhizal diversity was significantly affected by different sampling times in trap cultures but not in field-collected soil. P. lanceolata, Sorghum sp. and T. subterraneum as hosts for trap cultures showed no differences in richness and diversity of AMF spores that developed in association with their roots. Abundance and diversity were lowest, however, in association with L. perenne , particularly in December 1996. Results show that the combination of spore identification from field-collected soil and trap cultures is essential to study population and diversity of AMF. The study provides baseline data for ongoing monitoring of mycorrhizal populations using conventional methods and material for the determination of the symbiotic effectiveness of AMF key members.

  14. Effect of artificial UV irradiation on spore content of stall air and fattening pig breeding

    International Nuclear Information System (INIS)

    Kalich, J.; Blendl, H.M.

    1978-01-01

    The influence of a continuous UV irradiation (emitter NN 33/89 original Hanau) during the fattening periods primarily in the bactericide region of 253.7 nm of various intensities on the spore content of air, on the state of health and on the fattening breeding of pigs was tested in two fattening procedures. The high spore number per m 3 air of over 700 000 upon occupying the stall in the first fattening procedure was reduced by 90.5% to about 70 000 after 1 week of UV irradiation, and in the second procedure, from 111 500 to 16 000, i.e. a reduction of 85.5%. The spore content of the stall air then exhibited large deviations reducing and increasing. The same deviations were recorded for dust content. There was no absolute correlation between dust and spore content of the air until the 11th week after starting UV irradiation in either test. The spore content sank in the reference stalls also without UV irradiation, by 29.9% in the first fattening procedure 1 week after occupying the stall and even by 75% in the second procedure. The spore content of the air in the reference stalls also then exhibited deviations sinking and rising as in the test stalls with UV irradiation. Here too, there was no correlation between dust and spore content of the air. The spore content in the air was 2 to 7 times higher in the reference stalls than in the test stalls. One may conclude from the tests that the promoting irradiation strength is between 15 and 20 μW/cm 2 and that short-term stool production in danish stalling, 60 μW/cm 2 are not harmful. Air disinfection with UV irradiation, can only be part of the total hygiene measures taken in veterinary medicine and may only be considered as an important link in the chain of the health promoting and increased efficient hygiene measures in the intensification of aggriculturally useful animals. (orig./AJ) [de

  15. Regurgitated pellets of Merops apiaster as fomites of infective Nosema ceranae (Microsporidia) spores.

    Science.gov (United States)

    Higes, Mariano; Martín-Hernández, Raquel; Garrido-Bailón, Encarna; Botías, Cristina; García-Palencia, Pilar; Meana, Aránzazu

    2008-05-01

    The importance of transmission factor identification is of great epidemiological significance. The bee-eater (Merops apiaster) is a widely distributed insectivorous bird, locally abundant mainly in arid and semi-arid areas of southern Europe, northern Africa and western Asia but recently has been seen breeding in central Europe and Great Britain. Bee-eaters predominantly eat insects, especially bees, wasps and hornets. On the other hand, Nosema ceranae is a Microsporidia recently described as a parasite in Apis mellifera honeybees in Europe. Due to the short time since its description scarce epidemiological data are available. In this study we investigate the role of the regurgitated pellets of the European bee-eater as fomites of infective spores of N. ceranae. Spore detection in regurgitated pellets of M. apiaster is described [phase-contrast microscopy (PCM) and polymerase chain reaction (PCR) methods]. Eighteen days after collection N. ceranae spores still remain viable and their infectivity is shown after artificial infection of Nosema-free 8-day-old adult bees. The epidemiological consequences of the presence of Nosema spores in this fomites are discussed.

  16. Beetroot-pigment-derived colorimetric sensor for detection of calcium dipicolinate in bacterial spores.

    Directory of Open Access Journals (Sweden)

    Letícia Christina Pires Gonçalves

    Full Text Available In this proof-of-concept study, we describe the use of the main red beet pigment betanin for the quantification of calcium dipicolinate in bacterial spores, including Bacillus anthracis. In the presence of europium(III ions, betanin is converted to a water-soluble, non-luminescent orange 1∶1 complex with a stability constant of 1.4 × 10(5 L mol(-1. The addition of calcium dipicolinate, largely found in bacterial spores, changes the color of the aqueous solution of [Eu(Bn(+] from orange to magenta. The limit of detection (LOD of calcium dipicolinate is around 2.0 × 10(-6 mol L(-1 and the LOD determined for both spores, B. cereus and B. anthracis, is (1.1 ± 0.3× 10(6 spores mL(-1. This simple, green, fast and low cost colorimetric assay was selective for calcium dipicolinate when compared to several analogous compounds. The importance of this work relies on the potential use of betalains, raw natural pigments, as colorimetric sensors for biological applications.

  17. Purine and its analogues and radiation damage in Bacillus megaterium spores

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.

    1986-12-01

    As an extension of results obtained from radiation studies on caffeine both in other laboratories and more recently in this laboratory using the bacterial spore as the test system, six compounds with chemical structures closely resembling that of caffeine were tested as radiation modifiers. Of these compounds, purine, adenine and hypoxanthine resembled caffeine in sensitizing spores to radiation, while theobromine, xanthine and theophylline did not. These responses are discussed in relation to the electron sequestration hypothesis of cellular sensitization to high-energy radiation.

  18. Traumatic cerrebral fungus: Experience from an institution in North East India

    Directory of Open Access Journals (Sweden)

    Binoy Kumar Singh

    2017-01-01

    Full Text Available Background: Traumatic brain fungus is manifestation of neglected head injury. Although rare it is not uncommon. The patients are usually intact with good Glasgow coma (GCS score inspite of complex injuries and exposed brain parenchyma but morbidity and mortality is very high with time if no proper and timely management is offered. There is very less study on traumatic brain fungus with no defined management protocols. So an attempt was made to explain in details the surgical strategies and other management techniques in patients with traumatic brain fungus. Aims: To study and evaluate the pattern of causation, clinical presentations, modalities of management of traumatic brain fungus and outcome after treatment. Methods: All patients with fungus cerebri, admitted to our centre from January 2012 to December 2015 were studied prospectively. All the patients were examined clinically and triaged urgently for surgery. CT head was done in all patients to look for any brain parenchymal injury. All patients were managed surgically. Outcome was assessed as per the Glassgow Outcome Score. Results: Total 10 patients were included in the study. 8 were men and 2 women. The patients' ages ranged from 3-48 years (mean 31.6 years. The interval between initial injury and protrusion ranged from 3 days to 6 days (mean 4.1 days. Mean GCS at the time of presentation was 13.2.60% of the patients (n = 6 sustained moderate head injury. (GCS-9-13. Size of the fungus ranged from 5cm×3cm to 8cm×10cm. Conclusion: Early and proper local wound treatment prevents fungus formation. Pre-emptive antibiotics, AEDs and cerebral decongestants are recommended. Loose water-tight duroplasty prevents CSF leak. But mortality and morbidity can be reduced significantly if brain fungus is managed properly by applying basic surgical principles and antibiotic protocols combined with newer surgical modalities.

  19. The characterisation of Bacillus spores occurring in the manufacturing of (low acid) canned products

    NARCIS (Netherlands)

    Oomes, S.J.C.M.; Zuijlen, A.C.M. van; Hehenkamp, J.O.; Witsenboer, H.; Vossen, J.M.B.M. van der; Brul, S.

    2007-01-01

    Spore-forming bacteria can be a problem in the food industry, especially in the canning industry. Spores present in ingredients or present in the processing environment severely challenge the preservation process since their thermal resistance may be very high. We therefore asked the question which

  20. Decontamination of materials contaminated with Bacillus anthracis and Bacillus thuringiensis Al Hakam spores using PES-Solid, a solid source of peracetic acid.

    Science.gov (United States)

    Buhr, T L; Wells, C M; Young, A A; Minter, Z A; Johnson, C A; Payne, A N; McPherson, D C

    2013-08-01

    To develop test methods and evaluate survival of Bacillus anthracis Ames, B. anthracis ∆Sterne and B. thuringiensis Al Hakam spores after exposure to PES-Solid (a solid source of peracetic acid), including PES-Solid formulations with bacteriostatic surfactants. Spores (≥ 7 logs) were dried on seven different test materials and treated with three different PES-Solid formulations (or preneutralized controls) at room temperature for 15 min. There was either no spore survival or less than 1 log (<10 spores) of spore survival in 56 of 63 test combinations (strain, formulation and substrate). Less than 2.7 logs (<180 spores) survived in the remaining seven test combinations. The highest spore survival rates were seen on water-dispersible chemical agent resistant coating (CARC-W) and Naval ship topcoat (NTC). Electron microscopy and Coulter analysis showed that all spore structures were intact after spore inactivation with PES-Solid. Three PES-Solid formulations inactivated Bacillus spores that were dried on seven different materials. A test method was developed to show that PES-Solid formulations effectively inactivate Bacillus spores on different materials. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  1. Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Hyojin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-11-07

    The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. In conclusion, the poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

  2. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    Energy Technology Data Exchange (ETDEWEB)

    Tuleta, M.; Gabla, L. [Jagiellonian Univ., Institute of Physics, Cracow (Poland); Szkarlat, A. [Clinical Children' s Hospital of the Jagiellonian Univ., Medical College, Lab. of Microbiology, Cracow (Poland)

    2005-04-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  3. Low-energy ion bombardment of frozen bacterial spores and its relevance to interplanetary space

    International Nuclear Information System (INIS)

    Tuleta, M.; Gabla, L.; Szkarlat, A.

    2005-01-01

    The panspermia hypothesis is concerned with the dissemination of life in space in the form of simple micro-organisms. During an interplanetary journey the micro-organisms are subjected to the action of, among others, the solar wind. We have simulated experimentally such conditions bombarding frozen bacterial spores with low-energy hydrogen ions. On the basis of the results obtained and our earlier research, a new look at the panspermia hypothesis is discussed. The general conclusion is that unprotected naked spores, their conglomerates and protected spores can survive attack of the solar wind, although to various degrees. (authors)

  4. Paleozoic in situ spores and pollen. Lycopsida

    Czech Academy of Sciences Publication Activity Database

    Bek, Jiří

    2017-01-01

    Roč. 296, 1/6 (2017), s. 1-111 ISSN 0375-0299 R&D Projects: GA ČR GAP210/12/2053 Institutional support: RVO:67985831 Keywords : in situ spores * reproductive organs * Lycopsida * Paleozoic Sub ject RIV: DB - Geology ; Mineralogy OBOR OECD: Paleontology Impact factor: 1.333, year: 2016

  5. Modeling to control spores in raw milk

    NARCIS (Netherlands)

    Vissers, M.

    2007-01-01

    A modeling approach was used to identify measures at the farm that reduce transmission of microorganisms to raw milk. Butyric acid bacteria (BAB) and Bacillus cereus were used as case-studies. Minimizing the concentration of BAB spores in raw milk is important to prevent late-blowing of Gouda-type

  6. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    Science.gov (United States)

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  7. Magnetic Ganoderma lucidum spore microspheres: A novel material to immobilize CotA multicopper oxidase for dye decolorization

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lili [School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yan, E-mail: wangy_msn@hit.edu.cn [School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhao, Min [College of Life Science, Northeast Forestry University, Harbin 150040 (China); Song, Jinzhu [School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wang, Jueyu; Jin, Zijing [College of Life Science, Northeast Forestry University, Harbin 150040 (China)

    2016-08-05

    Highlights: • Hollow microspheres were obtained from Ganoderma lucidum spores. • Novel magnetic microspheres were prepared by load hollow spore microspheres with Fe{sub 3}O{sub 4} nanoparticles. • CotA multicopper oxidase was immobilized on the magnetic spore microspheres for indigo carmine decolorization. • The immobilized CotA displayed higher decolorization capability and reusability. - Abstract: In this study, hollow microspheres were obtained from Ganoderma lucidum spores. Then the hollow microspheres were loaded with Fe{sub 3}O{sub 4} nanoparticles to prepare novel magnetic spore microspheres. TEM images and X-ray diffractometry demonstrated that the Fe{sub 3}O{sub 4} nanoparticles were incorporated throughout the spore microsphere. CotA multicopper oxidase was chosen as biomacromolecule to study the loading ability of the magnetic spore microspheres. The combination of the CotA enzyme with the microsphere was observed by laser scanning confocal microscope. The loaded amount of CotA on the microspheres was 75 mg/g when the CotA concentration was 1.2 mg/mL and the activity recovery of the immobilized CotA was 81%. The magnetic microspheres loaded with CotA, which can be easily and quickly recovered by an external magnetic field, were used for dye decolorization. After 1 h decolorization, 99% of the indigo carmine has been removed by 10 mg microspheres. In addition, the immobilized CotA retained 75% of activity after 10 consecutive cycles, which indicated that the magnetic spore microspheres are good support material for immobilization of the enzyme.

  8. Arrhenius reconsidered: astrophysical jets and the spread of spores

    Science.gov (United States)

    Sheldon, Malkah I.; Sheldon, Robert B.

    2015-09-01

    In 1871, Lord Kelvin suggested that the fossil record could be an account of bacterial arrivals on comets. In 1903, Svante Arrhenius suggested that spores could be transported on stellar winds without comets. In 1984, Sir Fred Hoyle claimed to see the infrared signature of vast clouds of dried bacteria and diatoms. In 2012, the Polonnaruwa carbonaceous chondrite revealed fossilized diatoms apparently living on a comet. However, Arrhenius' spores were thought to perish in the long transit between stars. Those calculations, however, assume that maximum velocities are limited by solar winds to ~5 km/s. Herbig-Haro objects and T-Tauri stars, however, are young stars with jets of several 100 km/s that might provide the necessary propulsion. The central engine of bipolar astrophysical jets is not presently understood, but we argue it is a kinetic plasma instability of a charged central magnetic body. We show how to make a bipolar jet in a belljar. The instability is non-linear, and thus very robust to scaling laws that map from microquasars to active galactic nuclei. We scale up to stellar sizes and recalculate the viability/transit-time for spores carried by supersonic jets, to show the viability of the Arrhenius mechanism.

  9. Muricholic acids inhibit Clostridium difficile spore germination and growth.

    Directory of Open Access Journals (Sweden)

    Michael B Francis

    Full Text Available Infections caused by Clostridium difficile have increased steadily over the past several years. While studies on C. difficile virulence and physiology have been hindered, in the past, by lack of genetic approaches and suitable animal models, newly developed technologies and animal models allow these processes to be studied in detail. One such advance is the generation of a mouse-model of C. difficile infection. The development of this system is a major step forward in analyzing the genetic requirements for colonization and infection. While important, it is equally as important in understanding what differences exist between mice and humans. One of these differences is the natural bile acid composition. Bile acid-mediated spore germination is an important step in C. difficile colonization. Mice produce several different bile acids that are not found in humans. These muricholic acids have the potential to impact C. difficile spore germination. Here we find that the three muricholic acids (α-muricholic acid, β-muricholic acid and ω-muricholic acid inhibit C. difficile spore germination and can impact the growth of vegetative cells. These results highlight an important difference between humans and mice and may have an impact on C. difficile virulence in the mouse-model of C. difficile infection.

  10. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    Science.gov (United States)

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J

    2016-01-01

    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin.

  11. Clostridium botulinum Spores Found in Honey from Small Apiaries in Poland

    Directory of Open Access Journals (Sweden)

    Wojtacka Joanna

    2016-12-01

    Full Text Available A total of 102 honey samples collected from small apiaries (≤ 20 hives in Poland were analysed for the presence of Clostridium botulinum spores. The samples were prepared using the dilution centrifugation method and cultured in parallel in cooked meat medium (CMM and tripticase peptone glucose yeast (TPGY enrichment broths. Identification of toxin types A, B, and E of Clostridium botulinum strains was performed with the use of the multiplex PCR method. Positive samples were also subjected to quantitative analysis with the use of Clostridium botulinum Isolation Agar Base (CBAB. The prevalence analysis showed 22 (21.6% samples contaminated with C. botulinum spores. The major serotype detected was botulin neurotoxin type A – 16 (72.7% whereas type B was found in 3 (13.6% honey samples and type E also only in 3 (13.6% honey samples. Dual-toxin-producing strains were noted. The average quantity of spores in PCR - C. botulinum positive samples was 190 in 1 gram of honey.

  12. Radiobiology of Bacillus megaterium spores: physicochemical events involving oxygen and caffeine

    International Nuclear Information System (INIS)

    Raghu, B.; Kesavan, P.C.

    1986-01-01

    Caffeine which is now known to react with the radiolytically produced electrons and hydroxyl radicals, is a radioprotector against the oxic, but a radiosensitizer of the anoxic component of the gamma-ray-induced damage to B. megaterium spores. A specific scavenger of hydroxyl radicals, t-butanol, also affords partial protection to spores irradiated in O 2 , thus revealing an 'OH-component' within the oxygen-dependent damage. Based on the data on inactivation constant (k) and H 2 O 2 yields of spores irradiated in O 2 or N 2 with a mixture of caffeine and t-butanol, it is suggested that radioprotection against oxic damage accrues from the competition of the former with oxygen for electrons. The simplest interpretation of radioprotection, therefore, is the substantial reduction in the formation of oxygen-electron adducts (HO 2 , O 2 , RO 2 ). The hypothesis of 'electron sequestration' satisfactorily accounts for the anoxic radiosensitization by caffeine. (author)

  13. ADR: An atypical presentation of rare dematiaceous fungus

    Directory of Open Access Journals (Sweden)

    J Karthika

    2014-01-01

    Full Text Available The association of fungus in allergic fungal rhino sinusitis has been around 200 times in the world literature. As per the available literature, the most common agent identified so far appears to be ASPERGILLUS, though the condition is increasingly associated with Dematiaceous fungi. Here we report for the first time the presence of unusual fungus in allergic rhino sinusitis, which has not been reported so far.

  14. Detection of Phakopsora pachyrhizi fungus by Polymerase Chain Reaction technique (PCR) after soy grains treatment by electron beams

    International Nuclear Information System (INIS)

    Fanaro, G.B.; Aquino, S.; Guedes, R.L.; Crede, R.G.; Sabundjian, I.T.; Ruiz, M.O.; Villavicencio, A.L.C.H.

    2005-01-01

    Today Brazil, as the largest soy exporter in the world, has undergone the consequences of the contamination of these crops by the Asian dust fungus, being harmed since the plantation up to the harvest, with losses in its productivity ranging 10-80%. As it is a new disease in the Americas, there are not any resistant species to this fungus attack. The grains contamination harms the exportation for countries which do not want to have their crops contaminated, affecting therefore the international commerce and agro-business relationship with those countries Brazil has trade with. The Asian dust is caused by the fungus Phakopsora pachyrhizi and its dissemination is of difficult control, since occurs through the wind dispersion. The P. pachyrhizi is an Asian fungus and was recently found in South Africa, Paraguay, Argentina and Brazil. As an alternative process to minimize these losses is the process to preserve the grains by radiation, the use of the electron accelerator was indicated, since its advantage for the grains exportation industry is fundamental. Besides the possibility of being disconnected when not in use, this source does not need to be recharged, is easily available and has high dose rate, streamlining the process and reducing logistics costs. The present work aims to identify, by the Polymerase Chain Reaction technique (PCR), the P. pachyrhizi fungus presence in the irradiated soy grains, at doses 1 and 2 kGy, at the IPEN-CNEN electron Accelerator, a Dynamitron Machine (Radiation Dynamics Co. model JOB, New York, USA), with 1.5 MeV power and 2.5 mA electrical current. (author)

  15. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    Science.gov (United States)

    Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  16. Degradation of Phenanthrene by a chilean white rot fungus Anthracophyllum discolor

    International Nuclear Information System (INIS)

    Acevedo, F.; Cuevas, R.; Rubilar, O.; Tortella, G.; Diez, M. C.

    2009-01-01

    Anthracophyllum discolor, a white rot fungus of southern Chile, has been an efficient degrader of clorophenols and azo dyes. This fungus produces ligninolytic enzymes being manganese peroxidase (Mn)) the major one produced. The main purpose of this study was to evaluate the effect of phenanthrene concentration of ligninolytic activity of A. Discolor measured by poly R-478 decolorazation, and to evaluate the potential of this fungus for degrading phenanthrene in liquid media. (Author)

  17. Degradation of Phenanthrene by a chilean white rot fungus Anthracophyllum discolor

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, F.; Cuevas, R.; Rubilar, O.; Tortella, G.; Diez, M. C.

    2009-07-01

    Anthracophyllum discolor, a white rot fungus of southern Chile, has been an efficient degrader of clorophenols and azo dyes. This fungus produces ligninolytic enzymes being manganese peroxidase (Mn) the major one produced. The main purpose of this study was to evaluate the effect of phenanthrene concentration of ligninolytic activity of A. Discolor measured by poly R-478 decolorazation, and to evaluate the potential of this fungus for degrading phenanthrene in liquid media. (Author)

  18. Purine and its analogues and radiation damage in Bacillus megaterium spores

    International Nuclear Information System (INIS)

    Powers, E.L.

    1986-01-01

    As an extension of results obtained from radiation studies on caffeine both in other laboratories and more recently in this laboratory using the bacterial spore as the test system, six compounds with chemical structures closely resembling that of caffeine were tested as radiation modifiers. Of these compounds, purine, adenine and hypoxanthine resembled caffeine in sensitizing spores to radiation, while theobromine, xanthine and theophylline did not. These responses are discussed in relation to the electron sequestration hypothesis of cellular sensitization to high-energy radiation. (author)

  19. Seasonal variation of [i]Ganoderma[/i] spore concentrations in urban and suburban districts of the city of Szczecin, Poland

    Directory of Open Access Journals (Sweden)

    Agnieszka Grinn-Gofroń

    2015-02-01

    Full Text Available According to recent studies,[i] Ganoderma[/i] may be the third genus, after [i]Alternaria[/i] and [i]Cladosporium[/i], the spores of which cause symptoms of allergy, and concentration is related to meteorological factors. The aerobiology of [i]Ganoderma[/i] spores in Szczecin in urban and suburban districts was examined using Lanzoni Volumetric Spore Traps in 2008–2010. [i]Ganoderma[/i] spores were present in the atmosphere on more than 90% of the days from June through September with peak concentrations in June, July and September. The number of days with spores was lower in the suburban district, while the total number of spores collected was higher there than in the urban district. Correlation and multiple regression analyses revealed weak relationships between [i]Ganoderma[/i] and meteorological conditions, while testing the significance of differences between the districts showed that urban development did not have a clear impact on the values of meteorological parameters. A significantly higher abundance of spores in the suburbs of Szczecin seemed to be conditioned by the closeness of potential area sources. This study indicates that a single measuring site in the city centre insufficiently reflected the dynamics and level of [i]Ganoderma[/i] spore concentration in peripheral districts.

  20. Specialized proteinine rove beetles shed light on insect-fungal associations in the Cretaceous.

    Science.gov (United States)

    Cai, Chenyang; Newton, Alfred F; Thayer, Margaret K; Leschen, Richard A B; Huang, Diying

    2016-12-28

    Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up. © 2016 The Author(s).

  1. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on "Road Closure".

    Science.gov (United States)

    Wang, Dian-Bing; Tian, Bo; Zhang, Zhi-Ping; Wang, Xu-Ying; Fleming, Joy; Bi, Li-Jun; Yang, Rui-Fu; Zhang, Xian-En

    2015-05-15

    Detection of Bacillus anthracis in the field, whether as a natural infection or as a biothreat remains challenging. Here we have developed a new lateral-flow immunochromatographic assay (LFIA) for B. anthracis spore detection based on the fact that conjugates of B. anthracis spores and super-paramagnetic particles labeled with antibodies will block the pores of chromatographic strips and form retention lines on the strips, instead of the conventionally reported test lines and control lines in classic LFIA. As a result, this new LFIA can simultaneously realize optical, magnetic and naked-eye detection by analyzing signals from the retention lines. As few as 500-700 pure B. anthracis spores can be recognized with CV values less than 8.31% within 5 min of chromatography and a total time of 20 min. For powdery sample tests, this LFIA can endure interference from 25% (w/v) milk, 10% (w/v) baking soda and 10% (w/v) starch without any sample pre-treatment, and has a corresponding detection limit of 6×10(4) spores/g milk powder, 2×10(5) spores/g starch and 5×10(5) spores/g baking soda. Compared with existing methods, this new approach is very competitive in terms of sensitivity, specificity, cost and ease of operation. This proof-of-concept study can also be extended for detection of many other large-sized analytes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Mortality and repellent effects of microbial pathogens on Coptotermes formosanus (Isoptera: Rhinotermitidae

    Directory of Open Access Journals (Sweden)

    Wright Maureen S

    2012-12-01

    Full Text Available Abstract Background Two entomopathogenic fungi, Isaria fumosorosea and Metarhizium anisopliae, and one bacterium, Bacillus thuringiensis, were tested for their ability to cause mortality of Formosan subterranean termites (FST, Coptotermes formosanus (Shiraki, after liquid exposure, and for their lack of propensity to repel FST. Results The fungus Isaria fumosorosea at 108 spores/ml caused 72.5% mortality on day 7, significantly higher than the control and 106 spores/ml treatment. On day 14, the 106 and 108 concentrations caused 38.8% and 92.5% mortality, respectively, significantly higher than the control. On day 21, 82.5% and 100% of the termites were killed by the 106 and 108 treatments, respectively. I. fumosorosea did not repel termites at 106 nor 108 spores/g in sand, soil or sawdust. The fungus Metarhizium anisopliae at 108 spores/ml caused 57.5% mortality on day 7, 77.5% mortality on day 14 and 100% mortality on day 21. Conclusions On all three days the rate of mortality was significantly higher than that of the control and 106 spores/ml treatment with I. fumosorosea. Neither I. fumosorosea nor M. anisopliae caused repellency of FST in sand, soil or sawdust. The bacterium Bacillus thuringiensis did not cause significant mortality on days 7, 14 or 21. When termites were exposed to cells of B. thuringiensis in sawdust and when termites were exposed to a mixture of spores and cells in sand, a significantly higher number remained in the control tubes. Repellency was not seen with B. thuringiensis spores alone, nor with the above treatments in the other substrates.

  3. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    Science.gov (United States)

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  4. Radial dependence of biological response of spores of Bacillus subtilis around tracks of heavy ions

    International Nuclear Information System (INIS)

    Facius, R.; Buecker, H.; Reitz, G.; Schaefer, M.

    1978-01-01

    Results on the biological action of heavy cosmic particles from the Biostack I and II experiments had been reported at the two preceeding symposia on microdosimetry. Analysis of these results with respect to spores of Bacillus subtilis indicated that the range of inactivation by a single heavy ion extended to larger impact parameters than to be expected from delta-ray dose only. Improved experimental techniques, as described at the last symposium, were successfully applied for the evaluation of the latest Biostack III experiment during the Apollo-Soyuz Test Project (ASTP). These techniques allowed the determination of the impact parameters with an accuracy of down to +-0.2 μm, which is well below the size of a spore. Results of the ASTP experiment will be presented concerning the physical composition of the radiation field and the biological response of the spores in dependence on the impact parameter. These results confirm the previous findings insofar as inactivation of spores reaches out to about 4-5 μm. This finding will be discussed together with results from other Biostack test objects. Comparative accelerator experiments with Bacillus subtilis spores are presented in an additional paper

  5. The Cooperative and Interdependent Roles of GerA, GerK, and Ynd in Germination of Bacillus licheniformis Spores.

    Science.gov (United States)

    Borch-Pedersen, Kristina; Lindbäck, Toril; Madslien, Elisabeth H; Kidd, Shani W; O'Sullivan, Kristin; Granum, Per Einar; Aspholm, Marina

    2016-07-15

    When nutrients are scarce, Bacillus species form metabolically dormant and extremely resistant spores that enable survival over long periods of time under conditions not permitting growth. The presence of specific nutrients triggers spore germination through interaction with germinant receptors located in the spore's inner membrane. Bacillus licheniformis is a biotechnologically important species, but it is also associated with food spoilage and food-borne disease. The B. licheniformis ATCC 14580/DSM13 genome exhibits three gerA family operons (gerA, gerK, and ynd) encoding germinant receptors. We show that spores of B. licheniformis germinate efficiently in response to a range of different single l-amino acid germinants, in addition to a weak germination response seen with d-glucose. Mutational analyses revealed that the GerA and Ynd germination receptors function cooperatively in triggering an efficient germination response with single l-amino acid germinants, whereas the GerK germination receptor is essential for germination with d-glucose. Mutant spores expressing only GerA and GerK or only Ynd and GerK show reduced or severely impaired germination responses, respectively, with single l-amino acid germinants. Neither GerA nor Ynd could function alone in stimulating spore germination. Together, these results functionally characterize the germination receptor operons present in B. licheniformis We demonstrate the overlapping germinant recognition patterns of the GerA and Ynd germination receptors and the cooperative functionalities between GerA, Ynd, and GerK in inducing germination. To ensure safe food production and durable foods, there is an obvious need for more knowledge on spore-forming bacteria. It is the process of spore germination that ultimately leads to food spoilage and food poisoning. Bacillus licheniformis is a biotechnologically important species that is also associated with food spoilage and food-borne disease. Despite its importance, the

  6. Selection of inactivation medium for fungal spores in clinical wastes by supercritical carbon dioxide.

    Science.gov (United States)

    Noman, Efaq; Norulaini Nik Ab Rahman, Nik; Al-Gheethi, Adel; Nagao, Hideyuki; Talip, Balkis A; Ab Kadir, Omar

    2018-05-21

    The present study aimed to select the best medium for inactivation of Aspergillus fumigatus, Aspergillus spp. in section Nigri, A. niger, A. terreus var. terreus, A. tubingensis, Penicillium waksmanii, P. simplicissimum, and Aspergillus sp. strain no. 145 spores in clinical wastes by using supercritical carbon dioxide (SC-CO 2 ). There were three types of solutions used including normal saline, seawater, distilled water, and physiological saline with 1% of methanol; each solution was tested at 5, 10, and 20 mL of the water contents. The experiments were conducted at the optimum operating parameters of supercritical carbon dioxide (30 MPa, 75 °C, 90 min). The results showed that the inactivation rate was more effective in distilled water with the presence of 1% methanol (6 log reductions). Meanwhile, the seawater decreases inactivation rate more than normal saline (4.5 vs. 5.1 log reduction). On the other hand, the experiments performed with different volumes of distilled water (5, 10, and 20 mL) indicated that A. niger spores were completely inactivated with 10 mL of distilled water. The inactivation rate of fungal spores decreased from 6 to 4.5 log as the amount of distilled water increased from 10 to 20 mL. The analysis for the spore morphology of A. fumigatus and Aspergillus spp. in section Nigri using scanning electron microscopy (SEM) has revealed the role of temperature and pressure in the SC-CO 2 in the destruction of the cell walls of the spores. It can be concluded that the distilled water represent the best medium for inactivation of fungal spores in the clinical solid wastes by SC-CO 2 .

  7. Mutation induction in spores of Bacillus subtilis by accelerated very heavy ions

    International Nuclear Information System (INIS)

    Baltschukat, K.; Horneck, G.; Buecker, H.; Facius, R.; Schaefer, M.

    1986-01-01

    Mutation induction (resistance to sodium azide) in spores of Bacillus subtilis was investigated after irradiation with heavy ions from Neon to Uranium with specific particle energies between 0.17 and 18.6 MeV/u. A strong dependence of the mutation induction cross section on particle charge and energy was observed. From the results it was concluded that mutation induction in bacterial spores by very heavy ions is mainly caused by secondary electrons. (orig.)

  8. Ganoderin A, a novel 9,11-secosterol from Ganoderma lucidum spores oil.

    Science.gov (United States)

    Ge, Fa-Huan; Duan, Ming-Hui; Li, Jing; Shi, Qing-Long

    2017-12-01

    In this study, four sterols were isolated from the Ganoderma lucidum spores oil obtained via supercritical CO 2 extraction. Four chemical constituents were ganoderin A (1), chaxine B (2), ergosterol, (3) and stellasterol (4). All the separated ingredients were characterized using spectral data interpretation and by comparing with reported data. Noticeably, stellasterol and chaxine B were both firstly isolated from Ganoderma lucidum spores oil and ganoderin A was shown to bear an unprecedented skeleton.

  9. Bacillus subtilis spore with surface display of paramyosin from Clonorchis sinensis potentializes a promising oral vaccine candidate.

    Science.gov (United States)

    Sun, Hengchang; Lin, Zhipeng; Zhao, Lu; Chen, Tingjin; Shang, Mei; Jiang, Hongye; Tang, Zeli; Zhou, Xinyi; Shi, Mengchen; Zhou, Lina; Ren, Pengli; Qu, Honglin; Lin, Jinsi; Li, Xuerong; Xu, Jin; Huang, Yan; Yu, Xinbing

    2018-03-07

    Clonorchiasis caused by Clonorchis sinensis has become increasingly prevalent in recent years. Effective prevention strategies are urgently needed to control this food-borne infectious disease. Previous studies indicated that paramyosin of C. sinensis (CsPmy) is a potential vaccine candidate. We constructed a recombinant plasmid of PEB03-CotC-CsPmy, transformed it into Bacillus subtilis WB600 strain (B.s-CotC-CsPmy), and confirmed CsPmy expression on the spore surface by SDS-PAGE, Western blotting and immunofluorescence assay. The immune response and protective efficacy of the recombinant spore were investigated in BALB/c mice after intragastrical or intraperitoneal immunization. Additionally, biochemical enzyme activities in sera, the intestinal histopathology and gut microflora of spore-treated mice were investigated. CsPmy was successfully expressed on the spore surface and the fusion protein on the spore surface with thermostability. Specific IgG in sera and intestinal mucus were increased after intraperitoneal and intragastrical immunization. The sIgA level in intestinal mucus, feces and bile of B.s-CotC-CsPmy orally treated mice were also significantly raised. Furthermore, numerous IgA-secreting cells were detected in intestinal mucosa of intragastrically immunized mice. No inflammatory injury was observed in the intestinal tissues and there was no significant difference in levels of enzyme-indicated liver function among the groups. Additionally, the diversity and abundance of gut microbiota were not changed after oral immunization. Intragastric and intraperitoneal immunization of B.s-CotC-CsPmy spores in mice resulted in egg reduction rates of 48.3 and 51.2% after challenge infection, respectively. Liver fibrosis degree in B.s-CotC-CsPmy spores treated groups was also significantly reduced. CsPmy expressed on the spore surface maintained its immunogenicity. Both intragastrical and intraperitoneal immunization with B.s-CotC-CsPmy spores induced systemic and

  10. Effect of sporulation medium on wet-heat resistance and structure of Alicyclobacillus acidoterrestris DSM 3922-type strain spores and modeling of the inactivation kinetics in apple juice.

    Science.gov (United States)

    Molva, Celenk; Baysal, Ayse Handan

    2014-10-17

    Alicyclobacillus acidoterrestris is a spoilage bacterium in fruit juices leading to high economic losses. The present study evaluated the effect of sporulation medium on the thermal inactivation kinetics of A. acidoterrestris DSM 3922 spores in apple juice (pH3.82±0.01; 11.3±0.1 °Brix). Bacillus acidocaldarius agar (BAA), Bacillus acidoterrestris agar (BATA), malt extract agar (MEA), potato dextrose agar (PDA) and B. acidoterrestris broth (BATB) were used for sporulation. Inactivation kinetic parameters at 85, 87.5 and 90°C were obtained using the log-linear model. The decimal reduction times at 85°C (D85°C) were 41.7, 57.6, 76.8, 76.8 and 67.2min; D87.5°C-values were 22.4, 26.7, 32.9, 31.5, and 32.9min; and D90°C-values were 11.6, 9.9, 14.7, 11.9 and 14.1min for spores produced on PDA, MEA, BATA, BAA and BATB, respectively. The estimated z-values were 9.05, 6.60, 6.96, 6.15, and 7.46, respectively. The present study suggests that the sporulation medium affects the wet-heat resistance of A. acidoterrestris DSM 3922 spores. Also, the dipicolinic acid content (DPA) was found highest in heat resistant spores formed on mineral containing media. After wet-heat treatment, loss of internal volume due to the release of DPA from spore core was observed by scanning electron microscopy. Since, there is no standardized media for the sporulation of A. acidoterrestris, the results obtained from this study might be useful to determine and compare the thermal resistance characteristics of A. acidoterrestris spores in fruit juices. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Structural Characterization of Lipopeptides Isolated from Bacillus Globigii Spores

    National Research Council Canada - National Science Library

    Williams, Bruce

    2001-01-01

    .... Bacillus globigil spores, grown in new sporulation media (NSM), were suspended and then analyzed using a MALDI-TOF mass spectrometer to screen for biomarkers with 4-methoxycinnamic acid as matrix...

  12. Analysis of Bacillus Globigii Spores Using the BioDetector

    National Research Council Canada - National Science Library

    Lee, William

    1999-01-01

    .... An automated immunoassay instrument capable of providing rapid identification of biological agents was used to analyses laboratory and field trial samples containing the field trial simulants Bacillus globigii (BG) spores...

  13. Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei

    Directory of Open Access Journals (Sweden)

    Cho Moo

    2011-05-01

    Full Text Available Abstract Background Bacteria use diverse signaling molecules to ensure the survival of the species in environmental niches. A variety of both Gram-positive and Gram-negative bacteria produce large quantities of indole that functions as an intercellular signal controlling diverse aspects of bacterial physiology. Results In this study, we sought a novel role of indole in a Gram-positive bacteria Paenibacillus alvei that can produce extracellular indole at a concentration of up to 300 μM in the stationary phase in Luria-Bertani medium. Unlike previous studies, our data show that the production of indole in P. alvei is strictly controlled by catabolite repression since the addition of glucose and glycerol completely turns off the indole production. The addition of exogenous indole markedly inhibits the heat resistance of P. alvei without affecting cell growth. Observation of cell morphology with electron microscopy shows that indole inhibits the development of spore coats and cortex in P. alvei. As a result of the immature spore formation of P. alvei, indole also decreases P. alvei survival when exposed to antibiotics, low pH, and ethanol. Additionally, indole derivatives also influence the heat resistance; for example, a plant auxin, 3-indolylacetonitrile dramatically (2900-fold decreased the heat resistance of P. alvei, while another auxin 3-indoleacetic acid had a less significant influence on the heat resistance of P. alvei. Conclusions Together, our results demonstrate that indole and plant auxin 3-indolylacetonitrile inhibit spore maturation of P. alvei and that 3-indolylacetonitrile presents an opportunity for the control of heat and antimicrobial resistant spores of Gram-positive bacteria.

  14. High Pressure Germination of Bacillus subtilis Spores with Alterations in Levels and Types of Germination Proteins

    Science.gov (United States)

    2014-01-01

    1ITLE AND SUBTITLE 5a CONTRACTNUMBER High pressure germination of Bacillus subtilis spores with W911NF-09-l-0286 alterations in levels and types of...A moderate high pressure (mHP) of 150 megaPascals (MPa) triggers germination of Bacillus subtilis spores via germinant receptors (GRs), while...germination by a very high pressure (vHP) of550 MPa is GR-independent. The mHP and vHP germination of Bacillus subtilis spores with different levels ofGRs

  15. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest

    Directory of Open Access Journals (Sweden)

    C. Zhu

    2016-06-01

    Full Text Available Both primary biological aerosol particles (PBAPs and oxidation products of biogenic volatile organic compounds (BVOCs contribute significantly to organic aerosols (OAs in forested regions. However, little is known about their relative importance in diurnal timescales. Here, we report biomarkers of PBAP and secondary organic aerosols (SOAs for their diurnal variability in a temperate coniferous forest in Wakayama, Japan. Tracers of fungal spores, trehalose, arabitol and mannitol, showed significantly higher levels in nighttime than daytime (p < 0.05, resulting from the nocturnal sporulation under near-saturated relative humidity. On the contrary, BVOC oxidation products showed higher levels in daytime than nighttime, indicating substantial photochemical SOA formation. Using tracer-based methods, we estimated that fungal spores account for 45 % of organic carbon (OC in nighttime and 22 % in daytime, whereas BVOC oxidation products account for 15 and 19 %, respectively. To our knowledge, we present for the first time highly time-resolved results that fungal spores overwhelmed BVOC oxidation products in contributing to OA especially in nighttime. This study emphasizes the importance of both PBAPs and SOAs in forming forest organic aerosols.

  16. Metacridamides A and B from the biocontrol fungus metarhizium acridum

    Science.gov (United States)

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. As part of an effort to catalog the secondary metabolites of this fungus we discovered that its conidia produce two novel 17-membered macrocycl...

  17. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    Science.gov (United States)

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-03-16

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities' fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

  18. An insight into spore dispersal of Ganoderma boninense on oil palm.

    Science.gov (United States)

    Sanderson, F R

    2005-01-01

    The disease of oil palm caused by Ganoderma boninense, although universally referred to as Ganoderma basal stem rot, occurs in three very distinct phases, with basal stem rot only part of the disease cycle. G. boninense also causes a seedling disease and an upper stem rot. An understanding of spore dispersal provides an insight into where spores of G. boninense have a role in the infection process. This role will be discussed in relation to each of these three infection phases. This understanding is a critical component of developing a successful disease control strategy.

  19. In vitro propagation of Cyathea atrovirens (Cyatheaceae): spore storage and sterilization conditions.

    Science.gov (United States)

    Vargas, Isabel Beatriz de; Droste, Annette

    2014-03-01

    Cyathea atrovirens occurs in a wide range of habitats in Brazil, Paraguay, Uruguay and Argentina. In the Brazilian State of Rio Grande do Sul, this commonly found species is a target of intense exploitation, because of its ornamental characteristics. The in vitro culture is an important tool for propagation which may contribute toward the reduction of extractivism. However, exogenous contamination of spores is an obstacle for the success of aseptic long-term cultures. This study evaluated the influence of different sterilization methods combined with storage conditions on the contamination of the in vitro cultures and the gametophytic development of C. atrovirens, in order to establish an efficient propagation protocol. Spores were obtained from plants collected in Novo Hamburgo, State of Rio Grande do Sul, Brazil. In the first experiment, spores stored at 7 degrees C were surface sterilized with 0.5, 0.8 and 2% of sodium hypochlorite (NaClO) for 15 minutes and sown in Meyer's culture medium. The cultures were maintained in a growth room at 26 +/- 1 degrees C for a 12-h photoperiod and photon flux density of 100 micromol/m2/s provided by cool white fluorescent light. Contamination was assessed at 60 days, and gametophytic development was scored at 30, 60, 120 and 130 days of in vitro culture, analyzing 300 individuals for each treatment. There was no significant difference in culture contamination among the different sodium hypochlorite concentrations tested, and all treatments allowed for the development of cordiform gametophytes at 130 days of culture. In the second experiment, spores stored at 7 and -20 degrees C were divided into two groups. Half of the spores were surface sterilized with 2% of NaClO for 15 minutes and the other half was not sterilized. All spores were sown in Meyer's medium supplemented with one of the following antibiotics: nystatin, Micostatin and actidione. The culture conditions and the procedures used for evaluating contamination and

  20. Ontogenetic characterization of sporangium and spore of Huperzia serrata: an anti-aging disease fern.

    Science.gov (United States)

    Long, Hua; Li, Jing; Li, You-You; Xie, De-Yu; Peng, Qing-Zhong; Li, Li

    2016-12-01

    Huperzia serrata is a medicinal plant used in Traditional Chinese Medicine, which has been used to prevent against aging diseases. It is mainly propagated by spores and grows extremely slowly. Due to severe harvest, it is a highly endangered species. In this report, we characterize ontogenesis of sporangia and spores that are associated with propagation. A wild population of H. serrata plants is localized in western Hunan province, China and protected by Chinese Government to study its development (e.g. sporangia and spores) and ecology. Both field and microscopic observations were conducted for a few of years. The development of sporangia from their initiation to maturation took nearly 1 year. Microscopic observations showed that the sporangial walls were developed from epidermal cells via initiation, cell division, and maturation. The structure of the mature sporangial wall is composed of one layer of epidermis, two middle layers of cells, and one layer of tapetum. Therefore, the sporangium is the eusporangium type. Spore development is characterized into six stages, initiation from epidermal cell and formation of sporogenous cells, primary sporogenous cell, secondary sporogenous cell, spore mother cell, tetrad, and maturation. The sporangial development of H. serrata belongs to the eusporangium type. The development takes approximately 1 year period from the initiation to the maturation. These data are useful for improving propagation of this medicinal plant in the future.

  1. VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture.

    Science.gov (United States)

    Wang, Fengfeng; Dijksterhuis, Jan; Wyatt, Timon; Wösten, Han A B; Bleichrodt, Robert-Jan

    2015-01-01

    Aspergillus species are highly abundant fungi worldwide. Their conidia are among the most dominant fungal spores in the air. Conidia are formed in chains on the vesicle of the asexual reproductive structure called the conidiophore. Here, it is shown that the velvet protein VeA of Aspergillus niger maximizes the diameter of the vesicle and the spore chain length. The length and width of the conidiophore stalk and vesicle were reduced nearly twofold in a ΔveA strain. The latter implies a fourfold reduced surface area to develop chains of spores. Over and above this, the conidial chain length was approximately fivefold reduced. The calculated 20-fold reduction in formation of conidia by ΔveA fits the 8- to 17-fold decrease in counted spore numbers. Notably, morphology of the ΔveA conidiophores of A. niger was very similar to that of wild-type Aspergillus sydowii. This suggests that VeA is key in conidiophore architecture diversity in the fungal kingdom. The finding that biomass formation of the A. niger ΔveA strain was reduced twofold shows that VeA not only impacts dispersion capacity but also colonization capacity of A. niger.

  2. The effects of salinity and temperature shock on Kappaphycus alvarezii seaweed spores release

    Science.gov (United States)

    Harwinda, F. K.; Satyantini, W. H.; Masithah, E. W.

    2018-04-01

    One of the reproductive aspects of development step that is considered as the solution of this issue is seaweed sporulation technique through which is induced through salinity and temperature shock. This study aims to determine the effect of combination and interaction of salinity and temperature shock on the release of K. alvarezii spores in order to produce superior seeds. This research was conducted using Complete Randomized Design Factorial which consists of nine combinations of treatments and three replications. The used treatment in this study is the combination of different environmental factors such as salinity shock and temperature shock. The data were analyzed using ANOVA (Analysis of Variance) followed by Duncan Multiple Range Test. The results showed that salinity (31 ppt, 33 ppt, and 35 ppt) and temperature (30°C, 32°C, and 34°C). shock affected the osmoregulation system and the release of K. alvarezii spores. The salinity shock and temperature shock had interaction with K. alvarezii spore release on the sixth and seventh day with the best treatment at 32°C temperature and 31 ppt salinity and released 5413 cells/ml spores on the seventh day.

  3. Proteins YlaJ and YhcN contribute to the efficiency of spore germination in Bacillus subtilis.

    Science.gov (United States)

    Johnson, Christian L; Moir, Anne

    2017-04-01

    The YlaJ and YhcN spore lipoproteins of Bacillus subtilis contain a common domain, and are of unknown function. Homologues of YlaJ or YhcN are widespread in Bacilli and are also encoded in those Clostridia that use cortex lytic enzymes SleB and CwlJ for cortex hydrolysis during germination. In B. subtilis, we report that single and double mutants lacking YlaJ and/or YhcN show a reduced rate of spore germination in L-alanine, with a delay in loss of heat resistance, release of dipicolinic acid and OD fall. If B. subtilis spores lack the cortex lytic enzyme CwlJ, spore cortex degradation and subsequent outgrowth to form colonies is strictly dependent on the other cortex lytic enzyme SleB, allowing a test of SleB function; in a cwlJ mutant background, the combined loss of both ylaJ and yhcN genes resulted in a spore population in which only 20% of spores germinated and outgrew to form colonies, suggesting that SleB activity is compromised. YlaJ and YhcN have a role in germination that is not yet well defined, but these proteins are likely to contribute, directly or indirectly, to early events in germination, including effective SleB function. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Characterization of Wet-Heat Inactivation of Single Spores of Bacillus Species by Dual-Trap Raman Spectroscopy and Elastic Light Scattering▿

    Science.gov (United States)

    Zhang, Pengfei; Kong, Lingbo; Setlow, Peter; Li, Yong-qing

    2010-01-01

    Dual-trap laser tweezers Raman spectroscopy (LTRS) and elastic light scattering (ELS) were used to investigate dynamic processes during high-temperature treatment of individual spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis in water. Major conclusions from these studies included the following. (i) After spores of all three species were added to water at 80 to 90°C, the level of the 1:1 complex of Ca2+ and dipicolinic acid (CaDPA; ∼25% of the dry weight of the spore core) in individual spores remained relatively constant during a highly variable lag time (Tlag), and then CaDPA was released within 1 to 2 min. (ii) The Tlag values prior to rapid CaDPA release and thus the times for wet-heat killing of individual spores of all three species were very heterogeneous. (iii) The heterogeneity in kinetics of wet-heat killing of individual spores was not due to differences in the microscopic physical environments during heat treatment. (iv) During the wet-heat treatment of spores of all three species, spore protein denaturation largely but not completely accompanied rapid CaDPA release, as some changes in protein structure preceded rapid CaDPA release. (v) Changes in the ELS from individual spores of all three species were strongly correlated with the release of CaDPA. The ELS intensities of B. cereus and B. megaterium spores decreased gradually and reached minima at T1 when ∼80% of spore CaDPA was released, then increased rapidly until T2 when full CaDPA release was complete, and then remained nearly constant. The ELS intensity of B. subtilis spores showed similar features, although the intensity changed minimally, if at all, prior to T1. (vi) Carotenoids in B. megaterium spores' inner membranes exhibited two changes during heat treatment. First, the carotenoid's two Raman bands at 1,155 and 1,516 cm−1 decreased rapidly to a low value and to zero, respectively, well before Tlag, and then the residual 1,155-cm−1 band disappeared, in parallel

  5. Bringing Evolution to a Technological Generation: A Case Study with the Video Game SPORE

    Science.gov (United States)

    Poli, DorothyBelle; Berenotto, Christopher; Blankenship, Sara; Piatkowski, Bryan; Bader, Geoffrey A.; Poore, Mark

    2012-01-01

    The video game SPORE was found to hold characteristics that stimulate higher-order thinking even though it rated poorly for accurate science. Interested in evaluating whether a scientifically inaccurate video game could be used effectively, we exposed students to SPORE during an evolution course. Students that played the game reported that they…

  6. Evaluating the transport of bacillus subtilis spores as a potential surrogate for Cryptosporidium parvum Oocysts

    Science.gov (United States)

    The USEPA has recommended the use of aerobic spores as an indicator for Cryptosporidium oocysts when determining groundwater under the direct influence of surface water. Surface properties, interaction energies, transport, retention, and release behavior of B. subtilis spores were measured over a r...

  7. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Tomasz Łęga

    Full Text Available Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human-avian-swine-human M2e (M2eH-A-S-H peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system.

  8. ( Azadirachta Indica ) Leaf Extracts on the Rot Fungus ( Fusarium ...

    African Journals Online (AJOL)

    The storage lifespan of kola nuts is challenged by the problem of decay of nuts in storage as a result of the attack by the rot fungus (Fusarium spp). The effect of the neem leaf (Azadirachta indica) extracts on the rot fungus was investigated in order to aid extended kola nuts storage. The aqueous and ethanolic leaf extracts of ...

  9. Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp.

    Science.gov (United States)

    Zhang, Xiaorong; He, Xiaoxiao; Wang, Kemin; Wang, Yonghong; Li, Huimin; Tan, Weihong

    2009-10-01

    The unique optoelectronic and physicochemical properties of gold nanoparticles are significantly dependent on the particle size, shape and structure. In this paper, biosynthesis of size-controlled gold nanoparticles using fungus Penicillium sp. is reported. Fungus Penicillium sp. could successfully bioreduce and nucleate AuCl4(-) ions, and lead to the assembly and formation of intracellular Au nanoparticles with spherical morphology and good monodispersity after exposure to HAuCl4 solution. Reaction temperature, as an important physiological parameter for fungus Penicillium sp. growth, could significantly control the size of the biosynthesized Au nanoparticles. The biological compositions and FTIR spectra analysis of fungus Penicillium sp. exposed to HAuCl4 solution indicated the intracellular reducing sugar played an important role in the occurrence of intracellular reduction of AuCl4(-) ions and the growth of gold nanoparticles. Furthermore, the intracellular gold nanoparticles could be easily separated from the fungal cell lysate by ultrasonication and centrifugation.

  10. Viability of Clostridium sporogenes spores after CaO hygienization of meat waste

    Directory of Open Access Journals (Sweden)

    Justyna Bauza-Kaszewska

    2014-09-01

    Full Text Available The occurrence of the pathogenic species [i]C. perfringens[/i] and [i]C. botulinum spores[/i] in animal by-products poses a potential epidemiological hazard. Strong entero- and neurotoxins produced by these bacteria adversely affect human health. To inactivate pathogens present in animal by-products, waste must be subjected to various methods of sanitization. The aim of the presented study was to estimate the effect of different doses of CaO on the viability of spores [i] Clostridium sporogenes[/i] in meat wastes category 3. During the research, two doses of burnt lime were added to the poultry mince meat and meat mixed with swine blood contaminated with [i]Clostridium sporogenes[/i] spore suspension. Half of the samples collected for microbiological analyses were buffered to achieve the pH level ~7, the other were examined without pH neutralization. To estimate the spore number, 10-fold dilution series in peptone water was prepared and heat-treated at 80 °C for 10 min. After cooling-down, one milliliter of each dilution was pour-plated onto DRCM medium solidified with agar. Statistical analysis were performed using the Statistica software. Application of 70% CaO caused complete inactivation of [i]Clostridium spores[/i] in meat wastes after 48 hours. The highest temperature achieved during the experiment was 67 °C. Rapid alkalization of the biomass resulted in increasing pH to values exceeding 12. The effect of liming was not dependent on the meat wastes composition nor CaO dose. The experiment proved the efficiency of liming as a method of animal by-products sanitization. Application of the obtained results may help reduce the epidemiological risk and ensure safety to people handling meat wastes at each stage of their processing and utilization.

  11. Isolation, identification, and culture optimization of a novel glycinonitrile-hydrolyzing fungus-Fusarium oxysporum H3.

    Science.gov (United States)

    Gong, Jin-Song; Lu, Zhen-Ming; Shi, Jing-Song; Dou, Wen-Fang; Xu, Hong-Yu; Zhou, Zhe-Min; Xu, Zheng-Hong

    2011-10-01

    Microbial transformation of glycinonitrile into glycine by nitrile hydrolase is of considerable interest to green chemistry. A novel fungus with high nitrile hydrolase was newly isolated from soil samples and identified as Fusarium oxysporum H3 through 18S ribosomal DNA, 28S ribosomal DNA, and the internal transcribed spacer sequence analysis, together with morphology characteristics. After primary optimization of culture conditions including pH, temperature, carbon/nitrogen sources, inducers, and metal ions, the enzyme activity was greatly increased from 326 to 4,313 U/L. The preferred carbon/nitrogen sources, inducer, and metal ions were glucose and yeast extract, caprolactam, and Cu(2+), Mn(2+), and Fe(2+), respectively. The maximum enzyme formation was obtained when F. oxysporum H3 was cultivated at 30 °C for 54 h with the initial pH of 7.2. There is scanty report about the optimization of nitrile hydrolase production from nitrile-converting fungus.

  12. Analysis of the Effects of a gerP Mutation on the Germination of Spores of Bacillus subtilis

    Science.gov (United States)

    2012-11-01

    REPORT Analysis of the effects of a gerP mutation on the germination of spores of Bacillus subtilis 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Bacillus subtilis spores with a gerP mutation triggered spore germination via nutrient germinant receptors (GRs) slowly, although this defect was...gerP, Bacillus subtilis , dipicolinic acid Xuan Y. Butzin, Anthony J. Troiano, William H. Coleman, Keren K. Griffiths, Christopher J. Doona, Florence E

  13. Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9-5.

    Science.gov (United States)

    DeFilippi, Stefanie; Groulx, Emma; Megalla, Merna; Mohamed, Rowida; Avis, Tyler J

    2018-04-01

    Bacillus subtilis has shown success in antagonizing plant pathogens where strains of the bacterium produce antimicrobial cyclic lipopeptides (CLPs) in response to microbial competitors in their ecological niche. To gain insight into the inhibitory role of these CLPs, B. subtilis strain B9-5 was co-cultured with three pathogenic fungi. Inhibition of mycelial growth and spore germination was assessed and CLPs produced by B. subtilis B9-5 were quantified over the entire period of microbial interaction. B. subtilis B9-5 significantly inhibited mycelial growth and spore germination of Fusarium sambucinum and Verticillium dahliae, but not Rhizopus stolonifer. LC-MS analysis revealed that B. subtilis differentially produced fengycin and surfactin homologs depending on the competitor. CLP quantification suggested that the presence of Verticillium dahliae, a fungus highly sensitive to the compounds, caused an increase followed by a decrease in CLP production by the bacterium. In co-cultures with Fusarium sambucinum, a moderately sensitive fungus, CLP production increased more gradually, possibly because of its slower rate of spore germination. With co-cultures of the tolerant fungus Rhizopus stolonifer, B. subtilis produced high amounts of CLPs (per bacterial cell) for the duration of the interaction. Variations in CLP production could be explained, in part, by the pathogens' overall sensitivities to the bacterial lipopeptides and/or the relative growth rates between the plant pathogen and B. subtilis. CLP production varied substantially temporally depending on the targeted fungus, which provides valuable insight concerning the effectiveness of B. subtilis B9-5 protecting its ecological niche against the ingress of these pathogens.

  14. Inactivation of Ichthyophonus spores using sodium hypochlorite and polyvinyl pyrrolidone iodine.

    Science.gov (United States)

    Hershberger, P K; Pacheco, C A; Gregg, J L

    2008-11-01

    Chlorine and iodine solutions were effective at inactivating Ichthyophonus spores in vitro. Inactivation in sea water increased directly with halogen concentration and exposure duration, with significant differences (P < 0.05) from controls occurring at all chlorine concentrations and exposure durations tested (1.5-13.3 ppm for 1-60 min) and at most iodine concentrations and exposure durations tested (1.2 ppm for 60 min and 5.9-10.7 ppm for 1-60 min). However, 10-fold reductions in spore viability occurred only after exposure to halogen solutions at higher concentrations and/or longer durations (13 ppm total chlorine for 1-60 min, 5.9 ppm total iodine for 60 min, and 10.7 ppm total iodine for 1-60 min). Inactivation efficacy was greater when halogen solutions were prepared in fresh water, presumably because of combined effects of halogen-induced inactivation and general spore instability in fresh water. The results have practical implications for disinfection and biocontainment in research laboratories and other facilities that handle live Ichthyophonus cultures and/or infected fish.

  15. Effect of pH on Thermoanaerobacterium thermosaccharolyticum DSM 571 growth, spore heat resistance and recovery.

    Science.gov (United States)

    Mtimet, Narjes; Guégan, Stéphanie; Durand, Lucile; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-05-01

    Thermophilic spore-forming bacteria are potential contaminants in several industrial sectors involving high temperatures (40-65 °C) in the manufacturing process. Among those thermophilic spore-forming bacteria, Thermoanaerobacterium thermosaccharolyticum, called "the swelling canned food spoiler", has generated interest over the last decade in the food sector. The aim of this study was to investigate and to model pH effect on growth, heat resistance and recovery abilities after a heat-treatment of T. thermosaccharolyticum DSM 571. Growth and sporulation were conducted on reinforced clostridium media and liver broth respectively. The highest spore heat resistances and the greatest recovery ability after a heat-treatment were obtained at pH condition allowing maximal growth rate. Growth and sporulation boundaries were estimated, then models using growth limits as main parameters were extended to describe and quantify the effect of pH on recovery of injured spores after a heat-treatment. So, cardinal values were used as a single set of parameters to describe growth, sporulation and recovery abilities. Besides, this work suggests that T. thermosaccharolyticum preserve its ability for germination and outgrowth after a heat-treatment at a low pH where other high resistant spore-forming bacteria like Geobacillus stearothermophilus are unable to grow. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ascoaphaera osmophila sp.nov. An Australian Spore Cyst

    DEFF Research Database (Denmark)

    Skou, Jens-Peder; King, , J.

    1984-01-01

    Ascosphaera osmophila sp. nov. is described. Septa occur often close together and remain intact when the mycelium disintegrates. A fairly good production of mature spore cysts occurs only on media containing 10% sugar or more. A. osmophila lives in association with the mason bee, Chalicodoma...

  17. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites.

    Science.gov (United States)

    Visser, Anna A; Nobre, Tânia; Currie, Cameron R; Aanen, Duur K; Poulsen, Michael

    2012-05-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus-growing termites, indicating lack of specificity. Antibiotic-activity screening of 288 isolates against the fungal cultivar and competitor revealed that most of the Actinobacteria-produced molecules with antifungal activity. A more detailed bioassay on 53 isolates, to test the specificity of antibiotics, showed that many Actinobacteria inhibit both Pseudoxylaria and Termitomyces, and that the cultivar fungus generally is more susceptible to inhibition than the competitor. This suggests that either defensive symbionts are not present in the system or that they, if present, represent a subset of the community isolated. If so, the antibiotics must be used in a targeted fashion, being applied to specific areas by the termites. We describe the first discovery of an assembly of antibiotic-producing Actinobacteria occurring in fungus-growing termite nests. However, due to the diversity found, and the lack of both phylogenetic and bioactivity specificity, further work is necessary for a better understanding of the putative role of antibiotic-producing bacteria in the fungus

  18. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    Science.gov (United States)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-01

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300-2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%-1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  19. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    International Nuclear Information System (INIS)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-01-01

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine

  20. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Pantoya, M. L. [Mechanical Engineering Department, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-12-21

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  1. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    Directory of Open Access Journals (Sweden)

    De Fine Licht Henrik H

    2012-06-01

    Full Text Available Abstract Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae, wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily

  2. A Spore Counting Method and Cell Culture Model for Chlorine Disinfection Studies of Encephalitozoon syn. Septata intestinalis

    OpenAIRE

    Wolk, D. M.; Johnson, C. H.; Rice, E. W.; Marshall, M. M.; Grahn, K. F.; Plummer, C. B.; Sterling, C. R.

    2000-01-01

    The microsporidia have recently been recognized as a group of pathogens that have potential for waterborne transmission; however, little is known about the effects of routine disinfection on microsporidian spore viability. In this study, in vitro growth of Encephalitozoon syn. Septata intestinalis, a microsporidium found in the human gut, was used as a model to assess the effect of chlorine on the infectivity and viability of microsporidian spores. Spore inoculum concentrations were determine...

  3. Noninvasive medical management of fungus ball uropathy in a premature infant.

    Science.gov (United States)

    Alkalay, A L; Srugo, I; Blifeld, C; Komaiko, M S; Pomerance, J J

    1991-09-01

    Unilateral renal obstruction secondary to fungus balls is described in a premature infant. Noninvasive medical management, which included amphotericin B and 5-flucytosine therapy and forced diuresis, resulted in disappearance of fungus balls and resolution of the obstruction.

  4. Insect symbioses: a case study of past, present, and future fungus-growing ant research

    DEFF Research Database (Denmark)

    Caldera, Eric J; Poulsen, Michael; Suen, Garret

    2009-01-01

    's fungus garden, antibiotic-producing actinobacteria that help protect the fungus garden from the parasite, and a black yeast that parasitizes the ant-actinobacteria mutualism. The fungus-growing ant symbiosis serves as a particularly useful model system for studying insect-microbe symbioses, because...

  5. Identification and characterization of a spore-like morphotype in chronically starved Mycobacterium avium subsp. paratuberculosis cultures.

    Directory of Open Access Journals (Sweden)

    Elise A Lamont

    Full Text Available Mycobacteria are able to enter into a state of non-replication or dormancy, which may result in their chronic persistence in soil, aquatic environments, and permissive hosts. Stresses such as nutrient deprivation and hypoxia provide environmental cues to enter a persistent state; however, a clear definition of the mechanism that mycobacteria employ to achieve this remains elusive. While the concept of sporulation in mycobacteria is not novel, it continues to spark controversy and challenges our perceptions of a non-replication. We investigated the potential role of sporulation in one-year old broth cultures of Mycobacterium subsp. paratuberculosis (MAP. We show that dormant cultures of MAP contain a mix of vegetative cells and a previously unknown morphotype resembling a spore. These spore-like structures can be enriched for using sporulating media. Furthermore, purified MAP spore forms survive exposure to heat, lysozyme and proteinase K. Heat-treated spores are positive for MAP 16SrRNA and IS900. MAP spores display enhanced infectivity as well as maintain acid-fast characteristics upon germination in a well-established bovine macrophage model. This is the first study to demonstrate a new MAP morphotype possessing spore-like qualities. Data suggest that sporulation may be a viable mechanism by which MAP accomplishes persistence in the host and/or environment. Thus, our current understanding of mycobacterial persistence, pathogenesis, epidemiology and rational drug and vaccine design may need to be reevaluated.

  6. Efeito in vitro de compostos de plantas sobre o fungo Colletotrichum gloeosporioides Penz: isolado do maracujazeiro In vitro effect of plant compounds on the fungus Colletotrichum gloeosporioides Penz: isolated from passion fruit

    Directory of Open Access Journals (Sweden)

    André Costa da Silva

    2009-01-01

    Gerais, on the germination of spores and the mycelial growth of Colletotrichum gloeosporioides fungus. The following were used in the mycelial growth inhibition test: the watery extracts of rosemary (Rosmarinus officinalis, Cordia verbenacea, Solanum sisymbriifolium, Phyllanthus corcovadensis, Eclipta alba, and Curcuma longa obtained through the infusion process; essential oils of "alecrim de vargem" (Lamiaceae Family, Lippia sidoides, Ocimum gratissimum, Lippia citriodora, white guava (Psidium guajava, lemongrass (Cymbopogon citratus; copaíba oil resin (Copaifera langsdorffi as well as hydrolates of "alecrim de vargem", red guava (Psidium guajava, Lippia citriodora, lemongrass, white guava, Ocimum gratissimum; and cassava manipueira (Manihot esculenta. The same hydrolates and essential oils were also tested on the germination of the fungus spores. All the treatments were carried out in vitro, cultivating the fungus in PDA supplemented with 100μL of the vegetal compounds. In the germination inhibition test, all the essential oils prevented the germination of the fungus. However, the hydrolates did not have this effect. In the mycelial growth test, the essential oils of all of the plants completely inhibited the fungus growth, except the white guava oil. The watery extracts, the cassava manipueira, the oil resin and hydrolates were also not efficient in preventing the growth of the pathogen. These results indicate the fungitoxic potential of some essential oils of medicinal plants.

  7. Rarely reported fungal spores and structures: An overlooked source of probative trace evidence in criminal investigations.

    Science.gov (United States)

    Hawksworth, David L; Wiltshire, Patricia E J; Webb, Judith A

    2016-07-01

    The value of pollen and plant spores as trace evidence has long been established, but it is only in the last eight years that fungal spores have been analysed routinely from the same palynological samples. They have greatly enhanced the specificity of links between people, objects, and places. Most fungal species occupy restricted ecological niches and their distributions can be limited both spatially and geographically. Spores may be dispersed over very short distances from the fungal sporophore,(1) and their presence in any palynological assemblage may indicate a restricted area of ground, or the presence of particular plants (even specific dead plant material). Fungal spores can represent primary, secondary, or even tertiary proxy evidence of a location, and can indicate the presence of a plant even though the plant is not obvious at a crime scene. In some cases, spores from fungi which have rarely been reported, and are considered to be rare, have been of particular value in providing intelligence or evidence of contact. Ten examples are given from case work in which rarely reported or unusual fungi have proved to be important in criminal investigations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Mucorales spores induce a proinflammatory cytokine response in human mononuclear phagocytes and harbor no rodlet hydrophobins.

    Science.gov (United States)

    Wurster, Sebastian; Thielen, Vanessa; Weis, Philipp; Walther, Paul; Elias, Johannes; Waaga-Gasser, Ana Maria; Dragan, Mariola; Dandekar, Thomas; Einsele, Hermann; Löffler, Jürgen; Ullmann, Andrew J

    2017-11-17

    Mucormycoses are life-threatening infections in immunocompromised patients. This study characterizes the response of human mononuclear cells to different Mucorales and Ascomycota. PBMC, monocytes, and monocyte derived dendritic cells (moDCs) from healthy donors were stimulated with resting and germinated stages of Mucorales and Ascomycota. Cytokine response and expression of activation markers were studied. Both inactivated germ tubes and resting spores of Rhizopus arrhizus and other human pathogenic Mucorales species significantly stimulated mRNA synthesis and secretion of proinflammatory cytokines. Moreover, R. arrhizus spores induced the upregulation of co-stimulatory molecules on moDCs and a specific T-helper cell response. Removal of rodlet hydrophobins by hydrofluoric acid treatment of A. fumigatus conidia resulted in enhanced immunogenicity, whereas the cytokine response of PBMCs to dormant R. arrhizus spores was not influenced by hydrofluoric acid. Scanning electron micrographs of Mucorales spores did not exhibit any morphological correlates of rodlet hydrophobins. Taken together, this study revealed striking differences in the response of human mononuclear cells to resting stages of Ascomycota and Mucorales, which may be explained by absence of an immunoprotective hydrophobin layer in Mucorales spores.

  9. Phomalactone from a phytopathogenic fungus infecting Zinnia elegans (Asteraceae) leaves

    Science.gov (United States)

    Zinnia elegans plants are infected by a fungus that causes necrosis with dark red spots particularly in late spring to the middle of summer in the Mid-South part of the United States. This fungal disease when untreated causes the leaves to wilt and eventually kills the plant. The fungus was isolated...

  10. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  11. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1011 Viable spores of the... characteristics of the parent strain or contamination by other microorganisms. (3) Each lot of spore preparation... production is a Bacillus thuringiensis strain which does not produce β-exotoxin under standard manufacturing...

  12. High fungal spore burden with predominance of Aspergillus in hospital air of a tertiary care hospital in Chandigarh

    Directory of Open Access Journals (Sweden)

    S M Rudramurthy

    2016-01-01

    Full Text Available The prevalence of fungal spores in the hospital air is essential to understand the hospital-acquired fungal infections. Air conditioners (ACs used in hospitals may either reduce spores in air or be colonised by fungi and aid in its dissemination. The present study was conducted to assess the fungal spore burden in AC and non-AC areas. We found a high fungal spore count in air irrespective of whether the area was AC or non-AC. The most predominant species isolated were Aspergillus flavus and Aspergillus fumigatus. Such high concentrations of pathogenic fungi in air may predispose individuals to develop disease.

  13. A spore counting method and cell culture model for chlorine disinfection studies of Encephalitozoon syn. Septata intestinalis.

    Science.gov (United States)

    Wolk, D M; Johnson, C H; Rice, E W; Marshall, M M; Grahn, K F; Plummer, C B; Sterling, C R

    2000-04-01

    The microsporidia have recently been recognized as a group of pathogens that have potential for waterborne transmission; however, little is known about the effects of routine disinfection on microsporidian spore viability. In this study, in vitro growth of Encephalitozoon syn. Septata intestinalis, a microsporidium found in the human gut, was used as a model to assess the effect of chlorine on the infectivity and viability of microsporidian spores. Spore inoculum concentrations were determined by using spectrophotometric measurements (percent transmittance at 625 nm) and by traditional hemacytometer counting. To determine quantitative dose-response data for spore infectivity, we optimized a rabbit kidney cell culture system in 24-well plates, which facilitated calculation of a 50% tissue culture infective dose (TCID(50)) and a minimal infective dose (MID) for E. intestinalis. The TCID(50) is a quantitative measure of infectivity and growth and is the number of organisms that must be present to infect 50% of the cell culture wells tested. The MID is as a measure of a system's permissiveness to infection and a measure of spore infectivity. A standardized MID and a standardized TCID(50) have not been reported previously for any microsporidian species. Both types of doses are reported in this paper, and the values were used to evaluate the effects of chlorine disinfection on the in vitro growth of microsporidia. Spores were treated with chlorine at concentrations of 0, 1, 2, 5, and 10 mg/liter. The exposure times ranged from 0 to 80 min at 25 degrees C and pH 7. MID data for E. intestinalis were compared before and after chlorine disinfection. A 3-log reduction (99.9% inhibition) in the E. intestinalis MID was observed at a chlorine concentration of 2 mg/liter after a minimum exposure time of 16 min. The log(10) reduction results based on percent transmittance-derived spore counts were equivalent to the results based on hemacytometer-derived spore counts. Our data

  14. In vitro propagation of Cyathea atrovirens (Cyatheaceae: spore storage and sterilization conditions

    Directory of Open Access Journals (Sweden)

    Isabel Beatriz de Vargas

    2014-03-01

    Full Text Available Cyathea atrovirens occurs in a wide range of habitats in Brazil, Paraguay, Uruguay and Argentina. In the Brazilian State of Rio Grande do Sul, this commonly found species is a target of intense exploitation, because of its ornamental characteristics. The in vitro cultura is an important tool for propagation which may contribute toward the reduction of extractivism. However, exogenous contamination of spores is an obstacle for the success of aseptic long-term cultures. This study evaluated the influence of different sterilization methods combined with storage conditions on the contamination of the in vitro cultures and the gametophytic development of C. atrovirens, in order to establish an efficient propagation protocol. Spores were obtained from plants collected in Novo Hamburgo, State of Rio Grande do Sul, Brazil. In the first experiment, spores stored at 7oC were surface sterilized with 0.5, 0.8 and 2% of sodium hypochlorite (NaClO for 15 minutes and sown in Meyer’s culture medium. The cultures were maintained in a growth room at 26±1ºC for a 12-h photoperiod and photon flux density of 100μmol/m²/s provided by cool white fluorescent light. Contamination was assessed at 60 days, and gametophytic development was scored at 30, 60, 120 and 130 days of in vitro culture, analyzing 300 individuals for each treatment. There was no significant difference in culture contamination among the different sodium hypochlorite concentrations tested, and all treatments allowed for the development of cordiform gametophytes at 130 days of culture. In the second experiment, spores stored at 7 and -20°C were divided into two groups. Half of the spores were surface sterilized with 2% of NaClO for 15 minutes and the other half was not sterilized. All spores were sown in Meyer’s medium supplemented with one of the following antibiotics: nystatin, Micostatin® and actidione. The culture conditions and the procedures used for evaluating contamination and

  15. New Approach of Beauveria bassiana to Control the Red Palm Weevil (Coleoptera: Curculionidae) by Trapping Technique.

    Science.gov (United States)

    Hajjar, M J; Ajlan, A M; Al-Ahmad, M H

    2015-04-01

    This work is the first study to investigate the efficacy of the commercial formulation of Beauveria bassiana (Broadband) to control adults of red palm weevil (Rhynchophorus ferrugineus (Olivier)). This fungus could be applied as one of the biological tactics in controlling red palm weevil. Bioassay experiments for medium lethal concentrate and medium time to cause death of 50% of red palm weevil adults were carried out. The result showed that the LC50 of B. bassiana (Broadband) was 2.19×10(7) and 2.76×10(6) spores/ml at 9 and 23 d of treatment, respectively. The LT50 was 13.95 and 4.15 d for concentration of 1×10(7) and 1×10(8) spores/ml, respectively, whereas 1×10(9) spores/ml caused 100% mortality after 24 h. Additionally, a red palm weevil pheromone trap was designed to attract the adults to be contaminated with spores of Broadband, which was applied to the sackcloth fabric that coated the internal surfaces of the bucket trap. The mating behavior was studied to determine direct and indirect infection of the spores from male to female and vice versa. The results showed a high efficacy of Broadband suspension at 1×10(9) spores/ml; 40 ml of suspension at this concentration treated to cloth in a trap caused death of contaminated adults with B. bassiana spores directly and indirectly. The 100% mortality was obtained even after 13 d of traps treatment with 40 ml of the suspension at 1×10(9) spores/ml. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Detection and differentiation of bacterial spores in a mineral matrix by Fourier transform infrared spectroscopy (FTIR and chemometrical data treatment

    Directory of Open Access Journals (Sweden)

    Brandes Ammann Andrea

    2011-07-01

    Full Text Available Abstract Background Fourier transform infrared spectroscopy (FTIR has been used as analytical tool in chemistry for many years. In addition, FTIR can also be applied as a rapid and non-invasive method to detect and identify microorganisms. The specific and fingerprint-like spectra allow - under optimal conditions - discrimination down to the species level. The aim of this study was to develop a fast and reproducible non-molecular method to differentiate pure samples of Bacillus spores originating from different species as well as to identify spores in a simple matrix, such as the clay mineral, bentonite. Results We investigated spores from pure cultures of seven different Bacillus species by FTIR in reflection or transmission mode followed by chemometrical data treatment. All species investigated (B. atrophaeus, B. brevis, B. circulans, B. lentus, B. megaterium, B. subtilis, B. thuringiensis are typical aerobic soil-borne spore formers. Additionally, a solid matrix (bentonite and mixtures of benonite with spores of B. megaterium at various wt/wt ratios were included in the study. Both hierarchical cluster analysis and principal component analysis of the spectra along with multidimensional scaling allowed the discrimination of different species and spore-matrix-mixtures. Conclusions Our results show that FTIR spectroscopy is a fast method for species-level discrimination of Bacillus spores. Spores were still detectable in the presence of the clay mineral bentonite. Even a tenfold excess of bentonite (corresponding to 2.1 × 1010 colony forming units per gram of mineral matrix still resulted in an unambiguous identification of B. megaterium spores.

  17. The PsB glycoprotein complex is secreted as a preassembled precursor of the spore coat in Dictyostelium discoideum.

    Science.gov (United States)

    Watson, N; McGuire, V; Alexander, S

    1994-09-01

    The PsB glycoprotein in Dictyostelium discoideum is one of a diverse group of developmentally regulated, prespore-cell-specific proteins, that contain a common O-linked oligosaccharide. This post-translational modification is dependent on the wild-type modB allele. The PsB protein exists as part of a multiprotein complex of six different proteins, which have different post-translational modifications and are held together by both covalent and non-covalent interactions (Watson et al. (1993). J. Biol. Chem. 268, 22634-22641). In this study we have used microscopic and biochemical analyses to examine the cellular localization and function of the PsB complex during development. We found that the PsB complex first accumulates in prespore vesicles in slug cells and is secreted later during culmination and becomes localized to both the extracellular matrix of the apical spore mass of mature fruiting bodies and to the inner layer of the spore coat. The PsB associated with the spore coat is covalently bound by disulfide bridges. The PsB protein always exists in a multiprotein complex, but the composition of the PsB complex changes during secretion and spore maturation. Some of the PsB complex proteins have been identified as spore coat proteins. These data demonstrate that some of the proteins that form the spore coat exist as a preassembled precursor complex. The PsB complex is secreted in a developmentally regulated manner during the process of spore differentiation, at which time proteins of the complex, as well as additional spore coat proteins, become covalently associated in at least two forms of extracellular matrix: the interspore matrix and the spore coat. These and other studies show that proteins with modB dependent O-linked oligosaccharides are involved in a wide variety of processes underlying morphogenesis in this organism. These developmental processes are the direct result of cellular mechanisms regulating protein targeting, assembly and secretion, and the

  18. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  19. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes.

    Science.gov (United States)

    Wilde, Petra; Manal, Astrid; Stodden, Marc; Sieverding, Ewald; Hildebrandt, Ulrich; Bothe, Hermann

    2009-06-01

    The occurrence of arbuscular mycorrhizal fungi (AMF) was assessed by both morphological and molecular criteria in two salt marshes: (i) a NaCl site of the island Terschelling, Atlantic Coast, the Netherlands and (ii) a K(2)CO(3) marsh at Schreyahn, Northern Germany. The overall biodiversity of AMF, based on sequence analysis, was comparably low in roots at both sites. However, the morphological spore analyses from soil samples of both sites exhibited a higher AMF biodiversity. Glomus geosporum was the only fungus of the Glomerales that was detected both as spores in soil samples and in roots of the AMF-colonized salt plants Aster tripolium and Puccinellia sp. at both saline sites and on all sampling dates (one exception). In roots, sequences of Glomus intraradices prevailed, but this fungus could not be identified unambiguously from DNA of soil spores. Likewise, Glomus sp. uncultured, only deposited as sequence in the database, was widely detected by DNA sequencing in root samples. All attempts to obtain the corresponding sequences from spores isolated from soil samples failed consistently. A small sized Archaeospora sp. was detected, either/or by morphological and molecular analyses, in roots or soil spores, in dead AMF spores or orobatid mites. The study noted inconsistencies between morphological characterization and identification by DNA sequencing of the 5.8S rDNA-ITS2 region or part of the 18S rDNA gene. The distribution of AMF unlikely followed the salt gradient at both sites, in contrast to the zone formation of plant species. Zygotes of the alga Vaucheria erythrospora (Xanthophyceae) were retrieved and should not be misidentified with AMF spores.

  20. Removal of phenanthrene in contaminated soil by combination of alfalfa, white-rot fungus, and earthworms.

    Science.gov (United States)

    Deng, Shuguang; Zeng, Defang

    2017-03-01

    The aim of this study was to investigate the removal of phenanthrene by combination of alfalfa, white-rot fungus, and earthworms in soil. A 60-day experiment was conducted. Inoculation with earthworms and/or white-rot fungus increased alfalfa biomass and phenanthrene accumulation in alfalfa. However, inoculations of alfalfa and white-rot fungus can significantly decrease the accumulation of phenanthrene in earthworms. The removal rates for phenanthrene in soil were 33, 48, 66, 74, 85, and 93% under treatments control, only earthworms, only alfalfa, earthworms + alfalfa, alfalfa + white-rot fungus, and alfalfa + earthworms + white-rot fungus, respectively. The present study demonstrated that the combination of alfalfa, earthworms, and white-rot fungus is an effective way to remove phenanthrene in the soil. The removal is mainly via stimulating both microbial development and soil enzyme activity.

  1. Ultra high pressure homogenization (UHPH inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS and milk

    Directory of Open Access Journals (Sweden)

    Peng eDong

    2015-07-01

    Full Text Available Ultra high pressure homogenization (UHPH opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0, low fat milk (1.5%, pH 6.7 and whole milk (3.5%, pH 6.7 at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300 and 350 MPa with an inlet temperature at ~80 °C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using mechanistic linear first order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125 °C caused no reduction of spores. A reduction of 3.5 log10 CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150 °C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation.

  2. Microbial transformation of (-)-isolongifolol by plant pathogenic fungus Glomerella cingulata.

    Science.gov (United States)

    Miyazawa, Mitsuo; Sakata, Kazuki; Ueda, Masashi

    2010-01-01

    The biotransformation of terpenoids using the plant pathogenic fungus as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpen alcohol, (-)-isolongifolol (1) was investigated using plant pathogenic fungus Glomerella cingulata as a biocatalyst. Compound 1 was converted to (-)-(3R)-3-hydroxy-isolongifolol and (-)-(9R)-9-hydroxy-isolongifolol by G. cingulata.

  3. Efforts to identify spore forming bacillus

    Energy Technology Data Exchange (ETDEWEB)

    Zuleiha, M.S.; Hilmy, N. (National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre)

    1982-04-01

    Efforts to identify 47 species of radioresistant spore forming bacillus sp. isolated from locally produced medical devices have been carried out. The identifications was conducted using 19 kinds of biochemical tests and compared to species to bacillus subtilis W. T.; bacillus pumilus E 601 and bacillus sphaericus Csub(I)A. The results showed that bacillus sp. examined could be divided into 6 groups, i.e. bacillus cereus; bacillus subtilis; bacillus stearothermophylus; bacillus coagulans; bacillus sphaericus and bacillus circulans.

  4. Efforts to identify spore forming bacillus

    International Nuclear Information System (INIS)

    Zuleiha, M.S.; Hilmy, Nazly

    1982-01-01

    Efforts to identify 47 species of radioresistant spore forming bacillus sp. isolated from locally produced medical devices have been carried out. The identifications was conducted using 19 kinds of biochemical tests and compared to species to bacillus subtilis W. T.; bacillus pumilus E 601 and bacillus sphaericus Csub(I)A. The results showed that bacillus sp. examined could be divided into 6 groups, i.e. bacillus cereus; bacillus subtilis; bacillus stearothermophylus; bacillus coagulans; bacillus sphaericus and bacillus circulans. (author)

  5. The Physiology of Microbial Symbionts in Fungus-Farming Termites

    DEFF Research Database (Denmark)

    Rodrigues da Costa, Rafael

    . The termites provide the fungus with optimal growth conditions (e.g., stable temperature and humidity), as well as with constant inoculation of growth substrate and protection against alien fungi. In reward, the fungus provides the termites with a protein-rich fungal biomass based diet. In addition...... with their symbionts are main decomposer of organic matter in Africa, and this is reflect of a metabolic complementarity to decompose plant biomass in the genome of the three organisms involved in this symbiosis. Many of the physiological aspects of this symbiosis remain obscure, and here I focus on physiology...... of microbial symbionts associated with fungus-growing termites. Firstly, by using a set of enzyme assays, plant biomass compositional analyses, and RNA sequencing we gained deeper understanding on what enzymes are produced and active at different times of the decomposition process. Our results show that enzyme...

  6. Growth and sporulation of a pyrimidine spore color mutant of Sordaria fimicola.

    Science.gov (United States)

    el-Ani, A S

    1967-04-07

    A nonautonomous spore color mutant of Sordaria fimicola is a pyrimidine auxotroph that produces hyaline nonviable ascospores. Uracil, uridine, and cytidine are more effective growth factors than cytosine and thymine and, in high concentrations, render the mutant self-fertile by inducing the ascospores to resume development and maturation. Crosses with the unlinked arginine non-autonomus spore color mutant st-59 yielded the double mutant st-59 pyr that requires both arginine and a pyrimidine for growth, which indicates a lack of suppression of the pyrimidine requirement by the arginine locus.

  7. Fungus-Growing Termites Originated in African Rain Forest

    DEFF Research Database (Denmark)

    Aanen, Duur Kornelis; Eggleton, Paul

    2005-01-01

    are consumed (cf. [ [1] and [2] ]). Fungus-growing termites are found throughout the Old World tropics, in rain forests and savannas, but are ecologically dominant in savannas [ 3 ]. Here, we reconstruct the ancestral habitat and geographical origin of fungus-growing termites. We used a statistical model...... of habitat switching [ 4 ] repeated over all phylogenetic trees sampled in a Bayesian analysis of molecular data [ 5 ]. Our reconstructions provide strong evidence that termite agriculture originated in African rain forest and that the main radiation leading to the extant genera occurred there. Because...

  8. Evaluation of Simultaneous Exposure to Flour Dust and Airborne Fungal Spores in Milling Plant

    Directory of Open Access Journals (Sweden)

    Alireza Dehdashti

    2016-01-01

    Full Text Available Background and Objectives: Wheat flour as an organic allergen particle has an extensive respiratory exposure in milling industry and related industries. Simultaneous exposure to flour dust and fungal spores causes infectious disease, cancers, and impaired pulmonary function tests. This research was carried out with the aim of assessing the concentration of respirable flour particles, determining the type, and concentration of fungal spores in breathing air of workers in milling industries. Methods: In this descriptive cross-sectional study, 42 area samples were collected on filter and analyzed gravimetrically. Using a specific sampling pump, sampling of bioaerosols and sabro dextrose agar medium of fungal spores, was performed. Microscopic analysis was applied to detect and quantify microorganisms as colony per cubic meter. Results: The mean and standard deviation of total respirable particles in the breathing air of workers was 6/57±1/69mg/m3, which exceeded occupational exposure limit. The concentration of fungal spores in workers’ breathing air ranged from 42 to 310 colony per cubic meter. The percentage of respirable to total dust particles produced in sieve vibration, bagging, and milling sections, were determined 67.83%, 32%, and 62.2%, respectively. Conclusion: The results of this study revealed that the concentration of respirable particles in wheat milling process exceeded the recommended level and the concentration of fungal spores was at the average level of occupational exposure according to ACGIH recommendation. Therefore, engineering controls are required in flour milling process to reduce the exposure of workers.

  9. Influence of Long-Term Fertilization on Spore Density and Colonization of Arbuscular Mycorrhizal Fungi in a Brown Soil

    Science.gov (United States)

    Li, Dongdong; Luo, Peiyu; Yang, Jinfeng

    2017-12-01

    This study aims to explore changes of long-term fertilization on spore density and colonization of AMF (Arbuscular mycorrhizal fungi) under a 38-y long-term fertilization in a brown soil. Soil samples (0-20 cm,20-40cm,40-60cm)were taken from the six treatments of the long-term fertilization trial in October 2016:no fertilizer (CK), N1(mineral nitrogen fertilizer), N1P (mineral nitrogen and phosphate fertilizer), N1PK (mineral nitrogen, phosphate and potassic fertilizer), pig manure (M2), M2N1P (pig manure, mineral nitrogen andphosphate fertilizer).Spores were isolated from soils by wet sieving and sucrose density gradient centrifugation; mycorrhizal colonization levels were determined by the gridline intersect. The spore density was highest in the topsoils (0-20 cm), and was decreased with increasing of soil depth in each treatment. The spores density of M2N1P treatment was significantly higher than that of other treatments in each soil layer. Application of inorganic fertilizer (especially inorganic with organic fertilizer) can greatly improve the level of colonization. Our results suggested that long-term fertilization significantly affects spore density and colonization of AMF, however, spore density is not related to colonization rate.

  10. Early quantitative method for measuring germination in non-green spores of Dryopteris paleacea using an epifluorescence-microscope technique

    Science.gov (United States)

    Scheuerlein, R.; Wayne, R.; Roux, S. J.

    1988-01-01

    A method is described to determine germination by blue-light excited red fluorescence in the positively photoblastic spores of Dryopteris paleacea Sw. This fluorescence is due to chlorophyll as evidenced from 1) a fluorescence-emission spectrum in vivo, where a bright fluorescence around 675 nm is obtained only in red light (R)-irradiated spores and 2) in vitro measurements with acetone extracts prepared from homogenized spores. Significant amounts of chlorophyll can be found only in R-treated spores; this chlorophyll exhibits an emission band around 668 nm, when irradiated with 430 nm light at 21 degrees C. Compared to other criteria for germination, such as swelling of the cell, coat splitting, greening, and rhizoid formation, which require longer periods after induction for their expression, chlorophyll fluorescence can be used to quantify germination after two days. This result is confirmed by fluence-response curves for R-induced spore germination; the same relationship between applied R and germination is obtained by the evaluation with the epifluorescence method 2 days after the light treatment as compared with the evaluation with bright-field microscopy 5 days after the inducing R. Using this technique we show for the first time that Ca2+ contributes to the signal-transduction chain in phytochrome-mediated chlorophyll synthesis in spores of Dryopteris paleacea.

  11. DNA fingerprinting of spore-forming bacterial isolates, using Bacillus ...

    African Journals Online (AJOL)

    Bc-repetitive extragenic palindromic polymerase chain reaction (Bc-Rep PCR) analysis was conducted on seven Bacillus thuringiensis isolates accessed from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) culture collection and on five local isolates of entomopathogenic spore-forming bacteria.

  12. Flavonoids released naturally from alfalfa promote development of symbiotic glomus spores in vitro.

    Science.gov (United States)

    Tsai, S M; Phillips, D A

    1991-05-01

    Because flavonoids from legumes induce transcription of nodulation genes in symbiotic rhizobial bacteria, it is reasonable to test whether these compounds alter the development of vesicular-arbuscular mycorrhizal (VAM) fungi that infect those plants. Quercetin-3-O-galactoside, the dominant flavonoid released naturally from alfalfa (Medicago sativa L.) seeds, promoted spore germination of Glomus etunicatum and Glomus macrocarpum in vitro. Quercetin produced the maximum increases in spore germination, hyphal elongation, and hyphal branching in G. etunicatum at 1 to 2.5 muM concentrations. Two flavonoids exuded from alfalfa roots, 4',7-dihydroxyflavone and 4',7-dihydroxyflavanone, also enhanced spore germination of this fungal species. Formononetin, an isoflavone that is released from stressed alfalfa roots, inhibited germination of both Glomus species. These in vitro results suggest that plant flavonoids may facilitate or regulate the development of VAM symbioses and offer new hope for developing pure, plant-free cultures of VAM fungi.

  13. A four-gene operon in Bacillus cereus produces two rare spore-decorating sugars.

    Science.gov (United States)

    Li, Zi; Mukherjee, Thiya; Bowler, Kyle; Namdari, Sholeh; Snow, Zachary; Prestridge, Sarah; Carlton, Alexandra; Bar-Peled, Maor

    2017-05-05

    Bacterial glycan structures on cell surfaces are critical for cell-cell recognition and adhesion and in host-pathogen interactions. Accordingly, unraveling the sugar composition of bacterial cell surfaces can shed light on bacterial growth and pathogenesis. Here, we found that two rare sugars with a 3- C -methyl-6-deoxyhexose structure were linked to spore glycans in Bacillus cereus ATCC 14579 and ATCC 10876. Moreover, we identified a four-gene operon in B. cereus ATCC 14579 that encodes proteins with the following sequential enzyme activities as determined by mass spectrometry and one- and two-dimensional NMR methods: CTP:glucose-1-phosphate cytidylyltransferase, CDP-Glc 4,6-dehydratase, NADH-dependent SAM: C -methyltransferase, and NADPH-dependent CDP-3- C -methyl-6-deoxyhexose 4-reductase. The last enzyme predominantly yielded CDP-3- C -methyl-6-deoxygulose (CDP-cereose) and likely generated a 4-epimer CDP-3- C -methyl-6-deoxyallose (CDP-cillose). Some members of the B. cereus sensu lato group produce CDP-3- C -methyl-6-deoxy sugars for the formation of cereose-containing glycans on spores, whereas others such as Bacillus anthracis do not. Gene knockouts of the Bacillus C -methyltransferase and the 4-reductase confirmed their involvement in the formation of cereose-containing glycan on B. cereus spores. We also found that cereose represented 0.2-1% spore dry weight. Moreover, mutants lacking cereose germinated faster than the wild type, yet the mutants exhibited no changes in sporulation or spore resistance to heat. The findings reported here may provide new insights into the roles of the uncommon 3- C -methyl-6-deoxy sugars in cell-surface recognition and host-pathogen interactions of the genus Bacillus . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. A large gene family in fission yeast encodes spore killers that subvert Mendel’s law

    Science.gov (United States)

    Hu, Wen; Jiang, Zhao-Di; Suo, Fang; Zheng, Jin-Xin; He, Wan-Zhong; Du, Li-Lin

    2017-01-01

    Spore killers in fungi are selfish genetic elements that distort Mendelian segregation in their favor. It remains unclear how many species harbor them and how diverse their mechanisms are. Here, we discover two spore killers from a natural isolate of the fission yeast Schizosaccharomyces pombe. Both killers belong to the previously uncharacterized wtf gene family with 25 members in the reference genome. These two killers act in strain-background-independent and genome-location-independent manners to perturb the maturation of spores not inheriting them. Spores carrying one killer are protected from its killing effect but not that of the other killer. The killing and protecting activities can be uncoupled by mutation. The numbers and sequences of wtf genes vary considerably between S. pombe isolates, indicating rapid divergence. We propose that wtf genes contribute to the extensive intraspecific reproductive isolation in S. pombe, and represent ideal models for understanding how segregation-distorting elements act and evolve. DOI: http://dx.doi.org/10.7554/eLife.26057.001 PMID:28631610

  15. DESTRUCTION OF ASPERGILLUS VERSICOLOR, PENICILLIUM CRYSOGENUM, STACHYBOTRYS CHARTARUM, AND CLADOSPORIUM CLADOSPORIDES SPORES USING CHEMICAL OXIDATION TREATMENT PROCESS

    Science.gov (United States)

    The survival of aqueous suspensions of Penicillium chrysogenum, Stachybotrys chartarum, Aspergillus versicolor, and Cladosporium cladosporioides spores was evaluated using various combinations of hydrogen peroxide and iron (II) as catalyst. Spores were suspended in water and trea...

  16. Co-evolution of enzyme function in the attine ant-fungus symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    Introduction: Fungus-growing ants cultivate specialized fungi in the tribe Leucocoprineae (Lepiotaceae: Basidiomycota) inside their nests. The conspicuous leaf-cutting ants in the genus Atta build huge nests displacing several cubic meters of soil, whereas lower attine genera such as Cyphomyrmex ...... garden. This system can be viewed as ant induced crop optimization similar to human agricultural practices....... have small nests with a fungus garden the size of a table-tennis ball. Only the leaf-cutting ants are specialized on using fresh leaves as substrate for their fungus gardens, whereas the more basal attine genera use substrates such as dry plant material (leaf litter and small twigs) and also insect...... feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide or different efficiencies of enzyme function. Methods: (1.) We made a literature survey...

  17. Metabolites from marine fungus Aspergillus sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; Rajmanickam, R.; DeSouza, L.

    Chemical examination of a methanolic extract of the marine fungus, Aspergillus sp., isolated from marine grass environment, yielded a steroid, ergosterol peroxide (1), and a mixture of known glyceride esters (2,3) of unsaturated fatty acids...

  18. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    Science.gov (United States)

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.

    2016-06-01

    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  19. Reduced spore germination explains sensitivity of reef-building algae to climate change stressors.

    Directory of Open Access Journals (Sweden)

    Alexandra Ordoñez

    Full Text Available Reduced seawater pH and changes in carbonate chemistry associated with ocean acidification (OA decrease the recruitment of crustose coralline algae (CCAcf., an important coral-reef builder. However, it is unclear whether the observed decline in recruitment is driven by impairment of spore germination, or post-settlement processes (e.g. space competition. To address this, we conducted an experiment using a dominant CCA, Porolithon cf. onkodes to test the independent and combined effects of OA, warming, and irradiance on its germination success and early development. Elevated CO2 negatively affected several processes of spore germination, including formation of the germination disc, initial growth, and germling survival. The magnitude of these effects varied depending on the levels of temperature and irradiance. For example, the combination of high CO2 and high temperature reduced formation of the germination disc, but this effect was independent of irradiance levels, while spore abnormalities increased under high CO2 and high temperature particularly in combination with low irradiance intensity. This study demonstrates that spore germination of CCA is impacted by the independent and interactive effects of OA, increasing seawater temperature and irradiance intensity. For the first time, this provides a mechanism for how the sensitivity of critical early life history processes to global change may drive declines of adult populations of key marine calcifiers.

  20. Regulation of expression of a select group of Bacillus anthracis spore coat proteins.

    Science.gov (United States)

    Aronson, Arthur

    2018-04-01

    The spore coat of Bacilli is a relatively complex structure comprised of about 70 species of proteins in 2 or 3 layers. While some are involved in assembly or protection, the regulation of many are not well defined so lacZ transcriptional fusions were constructed to six Bacillus anthracis spore coat genes in order to gain insight into their possible functions. The genes were selected on the basis of the location of the encoded proteins within the coat and distribution among spore forming species. Conditions tested were temperature and media either as solid or liquid. The most extensive differences were for the relatively well expressed fusions to the cotH and cotM genes, which were greatest at 30°C on plates of a nutrient rich medium. The cotJ operon was moderately expressed under all conditions although somewhat higher on enriched plates at 30°C. Cot S was low under all conditions except for a substantial increase in biofilm medium. Cot∝ and cotF were essentially invariant with a somewhat greater expression in the more enriched medium. The capacity of a subset of coat genes to respond to various conditions reflects a flexibility in spore coat structure that may be necessary for adaptation to environmental challenges. This could account, at least in part, for the complexity of this structure.