WorldWideScience

Sample records for international electric vehicle

  1. Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?

    Directory of Open Access Journals (Sweden)

    Seiho Kim

    2017-10-01

    Full Text Available This study aims to determine the influential factors on the market share of electric vehicles through panel data analysis based on time series data from 2011 to 2015 in 31 countries. We selected five significant independent variables that are expected to affect electric vehicle adoption based on literature review. The econometric model in this study suggests that the relative price of electric vehicle compared to internal combustion engine vehicle, driving range, and number of models available in markets are correlated to the market share of electric vehicles. On the other hand, relationship between recharging infrastructure—an important factor for electric vehicle adoption in many studies—and market share of electric vehicles turned out to be insignificant in this study. From a political point of view, we argue that policy makers need to allocate more resources to research and development in order to extend driving range at the early stage of electric vehicle deployment in the markets.

  2. Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China

    International Nuclear Information System (INIS)

    Qiao, Qinyu; Zhao, Fuquan; Liu, Zongwei; Jiang, Shuhua; Hao, Han

    2017-01-01

    Highlights: •Cradle-to-gate greenhouse gas emissions of internal combustion engine and battery electric vehicles are compared. •Greenhouse gas emissions of battery electric vehicles are 50% higher than internal combustion engine vehicles. •Traction battery production causes about 20% greenhouse gas emissions increase. •10% variations of curb weight, electricity and Li-ion battery production affect the results by 7%, 4% and 2%. •Manufacturing technique improvement, vehicle recycling and energy structure optimization are major mitigation opportunities. -- Abstract: Electric drive vehicles are equipped with totally different propulsion systems compared with conventional vehicles, for which the energy consumption and cradle-to-gate greenhouse gas emissions associated with vehicle production could substantially change. In this study, the life cycle energy consumption and greenhouse gas emissions of vehicle production are compared between battery electric and internal combustion engine vehicles in China’s context. The results reveal that the energy consumption and greenhouse gas emissions of a battery electric vehicle production range from 92.4 to 94.3 GJ and 15.0 to 15.2 t CO 2 eq, which are about 50% higher than those of an internal combustion engine vehicle, 63.5 GJ and 10.0 t CO 2 eq. This substantial change can be mainly attributed to the production of traction batteries, the essential components for battery electric vehicles. Moreover, the larger weight and different weight distribution of materials used in battery electric vehicles also contribute to the larger environmental impact. This situation can be improved through the development of new traction battery production techniques, vehicle recycling and a low-carbon energy structure.

  3. Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation

    Science.gov (United States)

    Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that

  4. VIII international electric vehicle symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The proceedings from the symposium are presented. Major topics discussed include: battery technology, powertrains; hybrid vehicles, marketing and economics, propulsion, and electric vehicle design and performance. Each paper has been separately indexed for inclusion in the Energy Data Base.

  5. Conversion of Diesel Vehicles to Electric Vehicles and Controlled by PID Controller

    OpenAIRE

    Mengi, Onur Özdal

    2017-01-01

    Internal combustion engine vehicles are the most producedand sold vehicles on the market. In recent years, interest in electric vehicleshas begun to increase, especially due to the environmental problems. In thenear future, it is estimated that gasoline and diesel vehicles will becompletely electric vehicles. For this reason, many studies have been conductedon electric vehicles. Particularly the change of the engine parts, the turningof the internal combustion part to the electric motor, and ...

  6. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected......‐2013). Also the power capabilities may increase meaning that e.g. acceleration capabilities will improve as well as the top speed. This development occurs due to new battery technology that may experience substantial improvements in the coming years. When looking at plug‐in hybrid electric vehicles...... developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...

  7. Electric and hybrid electric vehicles. Report of the International Evaluation Committee. June 96

    Energy Technology Data Exchange (ETDEWEB)

    Kahlen, H [Univ. Kaiserslautern (Germany); Maggetto, G [Vrije Univ., Brussel (Belgium); Scrosati, B [Univ. di Roma (Italy); Srinivasan, S [Texas A and M Univ., College Station (United States)

    1996-11-01

    As requested by NUTEK our task was to evaluate the results and progress achieved in the electric and hybrid electric vehicles programme. This is a multidisciplinary research programme involving 12 projects at four universities and is planned to be extended over two three-year periods, i.e. 1993-1996 and 1997-1999 at a level of 8 MSKR (about USD 1,2M) per year. The programme has been launched to stimulate the development of electric vehicle technology in Sweden and is supporting projects to optimize the material processes, improve battery and engine components and promote of their production by the Swedish industry. In addition, the programme is directed to: 1. improve the knowledge and experience in the field at the academic level; 2. to support long time research on the subject and, 3. promote collaboration nationally and internationally. Our first comment is that the latter aspect appears to be satisfactorily accomplished. Most of the groups we have visited demonstrate an acquired experience in the field and presented their results with competence and enthusiasm. In many cases, we found valid interactions on ongoing projects in Swedish universities and established collaborations with high rank international groups. The programme has provided the material and the motivation for high-quality thesis work and, consequently, the formation of a class of well prepared and professionally competent students. Since electric vehicle technology is fast developing and is expected to have important fall-outs not only in the car industry but also in battery and electric engine manufacturing, the training of competent scientists and engineers in the field is of paramount relevance for Sweden where these types of industries are active and spread out. Therefore, we believe that as far as educational promotion is concerned, the funds distribution was worthwhile in all the projects which we evaluated

  8. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles

    International Nuclear Information System (INIS)

    Ma Hongrui; Balthasar, Felix; Tait, Nigel; Riera-Palou, Xavier; Harrison, Andrew

    2012-01-01

    Electric vehicles have recently been gaining increasing worldwide interest as a promising potential long-term solution to sustainable personal mobility; in particular, battery electric vehicles (BEVs) offer zero tailpipe emissions. However, their true ability to contribute to greenhouse gas (GHG) emissions reductions can only be properly assessed by comparing a life cycle assessment of their GHG emissions with a similar assessment for conventional internal combustion vehicles (ICVs). This paper presents an analysis for vehicles typically expected to be introduced in 2015 in two example markets (the UK and California), taking into account the impact of three important factors: •Like-for-like vehicle comparison and effect of real-world driving conditions. •Accounting for the GHG emissions associated with meeting the additional electricity demand for charging the batteries. •GHG emissions associated with vehicle manufacture, disposal, etc. This work demonstrates that all of these factors are important and emphasises that it is therefore crucial to clearly define the context when presenting conclusions about the relative GHG performance of BEVs and ICVs – such relative performance depends on a wide range of factors, including the marginal regional grid GHG intensity, vehicle size, driving pattern, loading, etc. - Highlights: ► Develops new insights into the life cycle GHG emissions of electric vehicles. ► Addresses like-for-like vehicle comparison and effect of real-world driving. ► Accounts for marginal GHG intensity of the electricity used to charge EVs. ► Accounts for the GHG emissions associated with vehicle manufacture and disposal.

  9. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  10. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  11. Electric machine for hybrid motor vehicle

    Science.gov (United States)

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  12. The potential of electric vehicles

    International Nuclear Information System (INIS)

    2016-04-01

    Electric vehicles can help reduce the dependence of road transport on imported oil, cut the country's energy bill, reduce greenhouse gas emissions, improve air quality in cities through zero exhaust emissions and reduce noise pollution. The economic costs and environmental impacts of electric vehicles are mostly concentrated at the manufacturing stage, whereas the costs and impacts of internal combustion vehicles are predominantly felt during usage. So we cannot simply compare vehicles as objects, we must see how they are used, which means taking a fresh look at the full potential of electric vehicles which must be used intensely to be economically and environmentally viable. The main advantage of internal combustion vehicles is their ability to carry a very large amount of energy giving them a very large range and significant versatility. However, the consequences of the use of fossil fuels on the climate and the environment today require us to look for other solutions for vehicles and mobility systems. Electric vehicles are among these: its lack of versatility, due to its still limited range, is offset by being more adaptable and optimised for the usage sought. Electric vehicles are particularly suitable for new mobility services offerings and allow the transition to new ways of travelling to be speeded up optimising the use of the vehicle and no longer requiring ownership of it. The use of digital, facilitated by the electrical engine, opens up numerous opportunities for innovations and new services (such as the autonomous vehicle for example). In addition, electric vehicles can do more than just transport. Their batteries provide useful energy storage capabilities that can help regulate the power grid and the development of renewable energy. The marketing of electric vehicles may be accompanied by energy services that can be economically viable and used to structure the electro-mobility offer in return. To minimise the impact on the electrical grid, it is

  13. Modeling of electric vehicle battery for vehicle-to-grid applications

    DEFF Research Database (Denmark)

    Pang, Ying; Brady, Cormac; Pellegrino, Giustino

    2013-01-01

    Electric vehicle battery models are essential when performing analysis of EV systems. The battery package of electric vehicles is complicated and unpredictable because of its chemical based functioning. In this paper, a battery model is presented with a number of internal and external factors taken...

  14. State-of-the-art assessment of electric vehicles and hybrid vehicles

    Science.gov (United States)

    1977-01-01

    The Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976 (PL 94-413) requires that data be developed to characterize the state of the art of vehicles powered by an electric motor and those propelled by a combination of an electric motor and an internal combustion engine or other power sources. Data obtained from controlled tests of a representative number of sample vehicles, from information supplied by manufacturers or contained in the literature, and from surveys of fleet operators of individual owners of electric vehicles is discussed. The results of track and dynamometer tests conducted by NASA on 22 electric, 2 hybrid, and 5 conventional vehicles, as well as on 5 spark-ignition-engine-powered vehicles, the conventional counterparts of 5 of the vehicles, are presented.

  15. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  16. Electric vehicle life cycle cost analysis : final research project report.

    Science.gov (United States)

    2017-02-01

    This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...

  17. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  18. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  19. What are the environmental benefits of electric vehicles? A life cycle based comparison of electric vehicles with biofuels, hydrogen and fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jungmeier, Gerfried; Canella, Lorenza; Beermann, Martin; Pucker, Johanna; Koenighofer, Kurt [JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz (Austria)

    2013-06-01

    The Renewable Energy Directive aims reaching a share of 10% of renewable fuels in Europe in 2020. These renewable fuels are transportation biofuels, renewable electricity and renewable hydrogen. In most European countries transportation biofuels are already on the transportation fuel market in significant shares, e.g. in Austria 7% by blending bioethanol to gasoline and biodiesel to diesel. Electric vehicles can significantly contribute towards creating a sustainable, intelligent mobility and intelligent transportation systems. They can open new business opportunities for the transportation engineering sector and electricity companies. But the broad market introduction of electric vehicles is only justified due to a significant improvement of the environmental impact compared to conventional vehicles. This means that in addition to highly efficient electric vehicles and renewable electricity, the overall environmental impact in the life cycle - from building the vehicles and the battery to recycling at the end of its useful life - has to be limited to an absolute minimum. There is international consensus that the environmental effects of electric vehicles (and all other fuel options) can only be analysed on the basis of life cycle assessment (LCA) including the production, operation and the end of life treatment of the vehicles. The LCA results for different environmental effects e.g. greenhouse gas emissions, primary energy consumption, eutrophication will be presented in comparison to other fuels e.g. transportation biofuels, gasoline, natural gas and the key factors to maximize the environmental benefits will be presented. The presented results are mainly based on a national research projects. These results are currently compared and discussed with international research activities within the International Energy Agency (lEA) in the Implementing Agreement on Hybrid and Electric Vehicles (IA-HEV) in Task 19 ''Life Cycle Assessment of Electric Vehicles

  20. Intelligent Control Of An Electric Vehicle ICEV

    Directory of Open Access Journals (Sweden)

    Taoufik Chaouachi

    2017-01-01

    Full Text Available The electric vehicle allows fast gentle quiet and environmentally friendly movements in industrial and urban environments. The automotive industry has seen the opportunity to revive its production by replacing existing vehicles due to the reluctance of oil reserves around the world. In order to greatly reduce countries dependence on oil strategic sectors such as transport must increasingly integrate technologies based primarily on clean and renewable energy. Governments must implement large-scale measures to equip themselves with electric vehicles and build large recharge networks. The traditional system for conversions of conventional vehicles into electric vehicles consists of replacing the internal combustion engine and the gearbox with electrical components engine and gearbox or engine and gearbox retaining the rest of the elements Transmission transmission shafts etc..

  1. International standard for the charging of electric vehicles; Internationaler Standard fuer das Laden von Elektrofahrzeugen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Mathoy, A.

    2001-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on the situation regarding the standardisation of battery charging systems for electric vehicles. The advantages of an international standard both for users and manufacturers of electrically-powered vehicles are discussed. The work done in the IEC and CENELEC technical committees is reviewed. Developments achieved since 1999 are reviewed and further developments and work to be done are examined. The most important points in the IEC standard 61851 are looked at and various connector interfaces are described. Direct and inductive charging systems according to IEC 61980 are examined and the special situation in Italy, where power available in homes for the charging of electrical vehicles is more limited, is reviewed.

  2. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  3. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  4. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  5. The Electric Vehicle Development

    DEFF Research Database (Denmark)

    Wang, Jingyu; Liu, Yingqi; Kokko, Ari

    2014-01-01

    In order to respond to the energy crisis and environment problem, countries carry out their research and promotion about electric vehicles. As the ten cities one thousand new energy buses started in 2009, the new energy vehicles have been greatly developed in China, while the development...... in three aspects-city environment, government and stakeholders. Then the paper discusses the promotion ways and role of government and consumer. Finally, the paper offers some suggestions to promote electric vehicles in China: focusing on feasibility and adaptability of electric vehicles, playing...... of electric vehicles is not that good. This paper selects four cities-Los Angeles, Kanagawa, Hamburg, Amsterdam-that promote electric vehicles successfully and deeply analyzes the development of electric vehicles in these four cities and analyzes the factors that affect the development of electric vehicles...

  6. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Mohamed [Automotive and Tractors Department, Faculty of Engineering, Minia University (Egypt)

    2011-07-01

    Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  7. Electric vehicle equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett

    2013-08-13

    Methods, systems, and apparatus for interfacing an electric vehicle with an electric power grid are disclosed. An exemplary apparatus may include a station communication port for interfacing with electric vehicle station equipment (EVSE), a vehicle communication port for interfacing with a vehicle management system (VMS), and a processor coupled to the station communication port and the vehicle communication port to establish communication with the EVSE via the station communication port, receive EVSE attributes from the EVSE, and issue commands to the VMS to manage power flow between the electric vehicle and the EVSE based on the EVSE attributes. An electric vehicle may interface with the grid by establishing communication with the EVSE, receiving the EVSE attributes, and managing power flow between the EVE and the grid based on the EVSE attributes.

  8. Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.

  9. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  10. Electric Vehicle Technician

    Science.gov (United States)

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  11. Environmental impacts of electric vehicles in South Africa

    Directory of Open Access Journals (Sweden)

    David Glasser

    2012-01-01

    Full Text Available Electric vehicles have been seen by some policymakers as a tool to target reductions in greenhouse gas emissions.1,2 Some researchers have shown that the full environmental impact of electric vehicles depends very much on the cleanliness of the electricity grid.3 In countries such as the USA and China, where coal-fired power plants still play a very important role in electricity generation, the environmental impact of electric vehicles is equivalent to, or even higher than that of cars running on internal combustion engines.4,5 In this study, the environmental impacts of electric vehicles in South Africa were investigated. We found that, as the bulk of South Africa’s electricity is generated from relatively low-quality coal and the advanced exhaust clean up technologies are not implemented in the current coal-fired power plants, the use of electric vehicles in South Africa would not help to cut greenhouse gas emissions now (2010 or in the future (in 2030 using the IRP 2010 Revision 2, policy-adjusted IRP scenario, and actually would lead to higher SOx and NOx emissions.

  12. Electric vehicle test report Cutler-Hammer Corvette

    Science.gov (United States)

    1981-01-01

    Vehicles were characterized for the state of the art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed.

  13. Electric vehicles: energy consumption and the comparision with other new vehicle technologies

    NARCIS (Netherlands)

    Weijer, C.J.T. van de; Schillemans, R.A.A.

    1996-01-01

    In the end of the 19th century the electric vehicle (EV) controlled the market for road transport. But with remarkable improvements in the performance of internal combustion engine vehicles (ICEVs), EVs had vanished from the scene by the 1930's. Since then, they have attracted interest from time to

  14. Life cycle assessment for coordination development of nuclear power and electric vehicle

    International Nuclear Information System (INIS)

    Liu Hong; Wang Yingrong

    2010-01-01

    Energy, environment and climate change have become focus political topics. In this paper, the life cycle assessment for cooperation development of nuclear power and electric vehicle were analyzed from the view of energy efficiency and pollutant emissions. The assessment results show that the pathway of nuclear power coupled with electric vehicle is better than coal electric power coupled with electric vehicle and normal gasoline coupled with internal combustion engine powered vehicle in terms of the environmental and energy characteristics. To charge the electric vehicle, instead of water power station, can safeguard the stable operation of nuclear power station. The results could provide consulted for coordination development of nuclear power, electric vehicle and brain power electric net. (authors)

  15. An electric-drive vehicle strategy for Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, D.; Lipman, T. [California Univ., Davis, CA (United States). Inst. of Transportation Studies; Lundberg, M. [Swedish Transport and Communications Research Board, Stockholm (Sweden)

    2000-07-01

    The strategy that Sweden has taken regarding the use of electric-powered vehicles (EVs) to mitigate the environmental impacts caused by the transportation sector was discussed. Sweden's unique attributes include inexpensive and clean electricity, a strong environmental ethic and a strong automotive sector. All versions of electric-drive technology are considered to be environmentally superior to internal combustion engine vehicles. While the cost of batteries is dropping, they will remain highly priced. However, manufacturers are making larger investments into hybrid EVs and fuel cell EVs. Electric drive buses are also gaining in popularity as a means by which to reduce exhaust gases in urban areas. Sweden's industrial policy is aimed at manufacturing electrically driven heavy duty vehicles such as buses and trucks. The environmental policy is aimed at deploying small EVs for on and off-road transportation use, as well as heavy duty EVs targeted by the industrial policy. refs.

  16. ELF magnetic fields in electric and gasoline-powered vehicles.

    Science.gov (United States)

    Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R

    2013-02-01

    We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. Copyright © 2012 Wiley Periodicals, Inc.

  17. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  18. A sustainability assessment of electric vehicles as a personal mobility system

    International Nuclear Information System (INIS)

    Faria, Ricardo; Moura, Pedro; Delgado, Joaquim; Almeida, Anibal T. de

    2012-01-01

    Highlights: ► Ownership cost and CO 2 emissions for electric and internal combustion engine vehicles. ► Well-to-Wheel energy assessment in electric vehicles. ► Main factors that contribute to overall energy consumption. ► Real world experiments to characterize electric vehicles energy consumption. - Abstract: This paper presents a study of the economic and environmental balances for Electric Vehicles (EVs) versus Internal Combustion Engine Vehicle (ICEV). The analyses were based on the Well-to-Wheel (WTW) methodology, a specific type of Life Cycle Assessment (LCA). WTW balances were carried out taking into account different scenarios for the primary energy supply and different vehicle technologies. The primary energy supply includes non-renewable sources (fossil fuels and nuclear) and Renewable Energy Source (RES). Vehicle technologies include Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV). The generation scenarios considered in the study include the present European Union (EU) average mix and a planned increasing contribution from RESs. For the BEV, several real world driving cycle scenarios were investigated, using a custom built data acquisition system, in order to characterize the main factors that contribute to the overall energy consumption, associated cost and emissions. In terms of environmental impact, for the average EU electricity mix, BEVs have less than a half of the emissions than an ICEV. However, the ownership costs during its life cycle (about 10 y) are similar to an equivalent ICEV, despite the lower operational costs for BEVs. The likely battery price reduction, leading to a lower investment cost, will gradually tip the balance in favour of EVs.

  19. Electric vehicle station equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett; Kiamilev, Fouad; McGee, Rodney; Waite, Nick

    2017-09-05

    Methods, systems, and apparatus transferring power between the grid and an electric vehicle are disclosed. The apparatus may include at least one vehicle communication port for interfacing with electric vehicle equipment (EVE) and a processor coupled to the at least one vehicle communication port to establish communication with the EVE, receive EVE attributes from the EVE, and transmit electric vehicle station equipment (EVSE) attributes to the EVE. Power may be transferred between the grid and the electric vehicle by maintaining EVSE attributes, establishing communication with the EVE, and transmitting the EVSE maintained attributes to the EVE.

  20. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  1. Non-exhaust PM emissions from electric vehicles

    Science.gov (United States)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  2. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  3. electric vehicle

    Directory of Open Access Journals (Sweden)

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  4. EVC EXPO 80. Proceedings of the third international electric vehicle conference, St. Louis, MO, May 20-22, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, L.

    1980-01-01

    Issues and trends in the case of electric vehicles are considered along with vehicle systems, EV fleet user experience, batteries, aspects of vehicle testing, EV commercial market and vehicle potentials, EV cost considerations, the effective utilization of EVs, and modeling, mission analysis, and impact assessment. Attention is given to EV component reliability, automatic gearshift control for an efficient battery vehicle drive system, a brushless DC motor-power conditioner unit designed and built for propulsion of electric passenger vehicles, a roadway powered electric vehicle system, inductively coupled power systems for electric vehicles, a fuel-cell-powered golf cart, electric vehicles in telephone service, electric vehicle use in the U.S. Postal Service, high performance electric commercial vehicles, nickel iron battery design and performance, the development of the nickel-iron-battery system for electric vehicle propulsion, the advancing performance threshold of the lead-acid electric vehicle battery, advances in zinc bromine batteries for motive power, some aspects of battery vehicle evaluation with particular attention to a battery model, and a generic battery model for electric and hybrid vehicle simulation performance prediction.

  5. Design study of flat belt CVT for electric vehicles

    Science.gov (United States)

    Kumm, E. L.

    1980-01-01

    A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.

  6. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  7. At A Glance: Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-07-13

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  8. Electric vehicle demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Ouellet, M. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The desirable characteristics of Canadian projects that demonstrate vehicle use in real-world operation and the appropriate mechanism to collect and disseminate the monitoring data were discussed in this presentation. The scope of the project was on passenger cars and light duty trucks operating in plug-in electric vehicle (PHEV) or battery electric vehicle modes. The presentation also discussed the funding, stakeholders involved, Canadian travel pattern analysis, regulatory framework, current and recent electric vehicle demonstration projects, and project guidelines. It was concluded that some demonstration project activities may have been duplicated as communication between the proponents was insufficient. It was recommended that data monitoring using automatic data logging with minimum reliance on logbooks and other user entry should be emphasized. figs.

  9. Adaptive powertrain control for plugin hybrid electric vehicles

    Science.gov (United States)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  10. Electric Vehicle Requirements for Operation in Smart Grids

    DEFF Research Database (Denmark)

    Marra, Francesco; Sacchetti, Dario; Træholt, Chresten

    2011-01-01

    Several European projects on smart grids are considering Electric Vehicles (EVs) as active element in future power systems. Both battery-powered vehicles and plug-in hybrid vehicles are expected to interact with the grid, sharing their energy storage capacity. Different coordination concepts...... for EVs are being investigated, in which vehicles can be intelligently charged or discharged feeding power back to the grid in vehicle-to-grid mode (V2G). To respond to such needs, EVs are required to share their battery internal data as well as respond to external control signals. In this paper...

  11. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...... in part being performed in response to a first information associated with a charging message received by the first communication unit...

  12. Electric Vehicle Interaction at the Electrical Circuit Level

    Science.gov (United States)

    2018-01-01

    The objective of the Electric Vehicle Interaction at the Electrical Circuit Level project was to investigate electric vehicle (EV) charging as a means of mitigating transient over-voltages (TOVs) on the circuit level electric utility distribution gri...

  13. Optimal control strategy design for extending all-electric driving capability of plug-in hybrid electric vehicles (PHEVs)

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, S.S [Concordia Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering, P.D Ziogas Power Electronics Laboratory

    2007-07-01

    The high voltage energy storage system in plug-in hybrid electric vehicles (PHEVs) is usually a rechargeable type that service a dual purpose, notably to supplement the power delivered by the internal combustion engine, and to provide partial propulsion energy from an off-board source of electricity. The energy storage devices in electric vehicles typically improve vehicle efficiency through engine downsizing and by recapturing braking energy. However, since PHEVs have the ability to recharge their energy storage systems directly from the power grid, the periods of all-electric operation can be extended, thereby reducing the dependence on the internal combustion engine. This is particularly useful in city driving conditions. Developers of PHEV technology are faced with the challenge of choosing the appropriate energy storage battery in order to improve the all-electric drive range. In this study, control strategies were modeled for specific driving load conditions using the Advanced Vehicle Simulator (ADVISOR) software. This paper presented specific control algorithms for PHEV operation for various city driving loads. The optimal design strategy considered the improvement of critical energy storage parameters, overall drive train efficiency, and vehicle performance characteristics. Future trends in the design and development of PHEV drive trains were also presented. 13 figs.

  14. Deploying Electric Vehicles and Electric Vehicle Supply Equipment: Tiger Teams Offer Project Assistance for Federal Fleets

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-02

    To assist federal agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory’s EVSE Tiger Teams.

  15. Solar-coupled electric vehicles

    International Nuclear Information System (INIS)

    Buchheim, R.

    1993-01-01

    Electric cars must have the same safety standards as those which are now state of the art for the compact class of car. Electric vehicles should substitute for conventional vehicles and should not lead to an increase in the stock of vehicles. The current subject of 'side impact protection' shows that design measures are necessary for this, which cannot be achieved in the smallest vehicles. (orig.) [de

  16. Control of Electric Vehicle

    OpenAIRE

    Huang, Qi; Chen, Yong; Li, Jian

    2010-01-01

    In this chapter, the modeling of electric vehicle is discussed in detail. Then, the control of electric vehicle driven by different motors is discussed. Both brushed and brushless DC (Direct Current) motors are discussed. And for AC (Alternative Current) motors, the discussion is focused on induction motor and permanent magnet synchronous motor. The design of controllers for different motor-driven electric vehicle is discussed in-depth, and the tested high-performance control strategies for d...

  17. A prospective assessment of electric vehicles

    International Nuclear Information System (INIS)

    2011-01-01

    This document proposes a synthetic version of a cost-benefit analysis study of the development of electric vehicles (all-electric vehicles and hybrid-re-chargeable vehicles) by 2020. The authors have assessed the replacement of a conventional thermal engine vehicle by an electric vehicle. They comment the results obtained for the both types of electric vehicle. They outline that costs of ownership of electric vehicles are higher in 2010 but become competitive in 2020, and that environmental benefits are already present in 2010 but depend on the electricity production mode. They observe that some other environmental impacts are not taken into account, outline that a recharge station network has to be developed, and discuss the cost of this infrastructure

  18. The aluminum-air battery for electric vehicles - An update

    Science.gov (United States)

    1980-11-01

    The development of aluminum-air batteries as mechanically rechargeable power sources to be used in electric vehicles is discussed. The chemistry of the aluminum-air battery, which has a potential for providing the range, acceleration and rapid refueling capability of contemporary automobiles and is based on the reaction of aluminum metal with atmospheric oxygen in the presence of an aqueous sodium hydroxide/sodium aluminate electrolyte, is examined, and it is pointed out that the electric vehicle would be practically emissionless. The battery development program at the Lawrence Livermore National Laboratory, which includes evaluations of electrochemical and chemical phenomena, studies of the economics and energy balance of a transportation system based on aluminum, and power cell design and performance analysis, is presented. It is concluded that although difficult problems must be overcome before the technical and economic feasibility of aluminum-air batteries for electric vehicles can be established, projections indicate that the aluminum-air vehicle is potentially competitive with internal combustion vehicles powered by synthetic liquid fuels.

  19. Electric vehicles in imperfect electricity markets: The case of Germany

    International Nuclear Information System (INIS)

    Schill, Wolf-Peter

    2011-01-01

    We use a game-theoretic model to analyze the impacts of a hypothetical fleet of plug-in electric vehicles on the imperfectly competitive German electricity market. Electric vehicles bring both additional demand and additional storage capacity to the market. We determine the effects on prices, welfare, and electricity generation for various cases with different players in charge of vehicle operations. Vehicle loading increases generator profits, but decreases consumer surplus in the power market. If excess vehicle batteries can be used for storage, welfare results are reversed: generating firms suffer from the price-smoothing effect of additional storage, whereas power consumers benefit despite increasing overall demand. Strategic players tend to under-utilize the storage capacity of the vehicle fleet, which may have negative welfare implications. In contrast, we find a market power-mitigating effect of electric vehicle recharging on oligopolistic generators. Overall, electric vehicles are unlikely to be a relevant source of market power in Germany in the foreseeable future. - Highlights: → We study the effect of electric vehicles on an imperfectly competitive electricity market. → We apply a game-theoretic model to the German market. → There is a market power-mitigating effect of vehicle loading on oligopolistic generating firms. → Consumers benefit from electric vehicles if excess battery capacity can be used for grid storage. → Electric vehicles are unlikely to be a source of market power in Germany in the near future.

  20. The electric vehicle

    International Nuclear Information System (INIS)

    Sanchez duran, R.

    2010-01-01

    The decarbonization of transport is a key element in both energy and environmental European policies as well as one of the levers that will help us achieve the goals of improving energy efficiency, reducing CO 2 emissions and energy dependence. The use of electricity compared to other low-carbon fuels such as bio fuels and hydrogen has the advantage of its existing infrastructure (power generation plants, transmission and distribution networks), being only necessary to developed recharging infrastructures. We emphasize the role of electricity networks and their evolution, which will enable to manage demand and maximise the potential of renewable energies. The idea of an electric vehicle is not a recent one but dates back to the beginning of the last century, when first units appeared. Unfortunately, technological barriers were too high at the time to let them succeed. Namely those barriers limited the range of the electric vehicle due to problems with battery recharges. Nowadays, those difficulties have almost been solved and we can state that institutional support and coordination among all actors involved have made the electric vehicle a plausible reality. While the technological improvements needed for the electric vehicle to become cost competitive are carried out, the plug-in hybrid vehicle represents the intermediate step to reach a total decarbonization of transport. Endesa is committed to this revolution in transport mobility and believes that now is the right time to focus our efforts on it. Our goal is to contribute to a more balanced and sustainable world in the near future. (Author)

  1. 26 CFR 1.30-1 - Definition of qualified electric vehicle and recapture of credit for qualified electric vehicle.

    Science.gov (United States)

    2010-04-01

    ... qualified electric vehicle. A qualified electric vehicle is a motor vehicle that meets the requirements of section 30(c). Accordingly, a qualified electric vehicle does not include any motor vehicle that has ever been used (for either personal or business use) as a non-electric vehicle. (b) Recapture of credit for...

  2. An optimal control-based algorithm for hybrid electric vehicle using preview route information

    NARCIS (Netherlands)

    Ngo, D.V.; Hofman, T.; Steinbuch, M.; Serrarens, A.F.A.

    2010-01-01

    Control strategies for Hybrid Electric Vehicles (HEVs) are generally aimed at optimally choosing the power distribution between the internal combustion engine and the electric motor in order to minimize the fuel consumption and/or emissions. Using vehicle navigation systems in combination with

  3. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development

    OpenAIRE

    Fuad Un-Noor; Sanjeevikumar Padmanaban; Lucian Mihet-Popa; Mohammad Nurunnabi Mollah; Eklas Hossain

    2017-01-01

    Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in...

  4. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  5. Virtual Power Plants of Electric Vehicles in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha)

    2017-01-01

    markdownabstractThe batteries of electric vehicles can be used as Virtual Power Plants to balance out frequency deviations in the electricity grid. Carsharing fleet owners have the options to charge an electric vehicle's battery, discharge an electric vehicle's battery, or keep an electric vehicle

  6. The Cultivation of Electric Vehicles Market in China: Dilemma and Solution

    Directory of Open Access Journals (Sweden)

    Qinliang Tan

    2014-08-01

    Full Text Available Global warming has been increasingly concerning, and international society has been taking various measures to mitigate this issue. Since the electric vehicle has important and generally beneficial impacts on environment protection, grid construction, and operation economical efficiency improvement, many countries have stressed the status of electric vehicle promotion in future planning. As China is the world’s largest carbon dioxide emitter, the Chinese government has taken various acts to reduce emissions, of which promoting electric vehicle is an effective one. This paper attempts to present a critical review of the current EV situations including the market sales, charging infrastructure, battery performances and policies in China. The survey of customer preferences and acceptance to electric vehicle indicate that purchasing behaviors are affected by four factors: charge inconvenience, short battery range, cost and psychological factors. According to the China’s situation, recommendations including diversified energy supplement approaches, time-of-use charging price mechanism, vehicle-to-grid technology and enlarge price subsidy scope are proposed to accelerate the development of the electric vehicle industry.

  7. Online forecasting of electrical load for distributed management of plug-in electric vehicles

    OpenAIRE

    Basu , Kaustav; Ovalle , Andres; Guo , Baoling; Hably , Ahmad; Bacha , Seddik; Hajar , Khaled

    2016-01-01

    International audience; The paper aims at making online forecast of electrical load at the MV-LV transformer level. Optimal management of the Plug-in Electric Vehicles (PEV) charging requires the forecast of the electrical load for future hours. The forecasting module needs to be online (i.e update and make forecast for the future hours, every hour). The inputs to the predictor are historical electrical and weather data. Various data driven machine learning algorithms are compared to derive t...

  8. Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer

    Science.gov (United States)

    Price, T. W.; Wirth, V. A., Jr.; Pompa, M. F.

    1981-01-01

    Tests were performed to characterize certain parameters of the EVA Pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller and motor. The tests included coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other electric and hybrid vehicles. The Pacer performance was approximately equal to the majority of those vehicles assessed in 1977.

  9. Plug-in electric vehicles integrating fluctuating renewable electricity

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, David

    2013-11-01

    This paper examines a method to model plug-in electric vehicles as part of the power system and presents results for the contribution of plug-in electric vehicles to balance the fluctuating electricity generation of renewable energy sources. The scientific contribution includes: - A novel approach to characterizing fluctuating generation. This allows the detailed comparison of results from energy analysis and is the basis to describe the effect of electricity from renewable energy sources and plug-in electric vehicles on the power system. - The characterization of mobile storage, which includes the description of mobility behavior using probabilities and battery discharging costs. - The introduction of an agent-based simulation approach, coupling energy markets and distributed grids using a price-based mechanism design. - The description of an agent with specific driving behavior, battery discharging costs and optimization algorithm suitable for real plug-in vehicles and simulation models. - A case study for a 2030 scenario describing the contribution of plug-in electric vehicles to balance generation from renewable energy sources in California and Germany.

  10. Impact of plug-in electric vehicles on voltage unbalance in ...

    African Journals Online (AJOL)

    DR OKE

    unbalance in the three-phase distribution system, and also leads to the ... Accounting losses, charging such batteries means even higher energy usage from distribution network. .... electric vehicles and conventional internal combustion engine vehicles. ... The summary information of EV connection are shown as Table 1.

  11. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapiro, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  12. Air-Conditioning for Electric Vehicles

    Science.gov (United States)

    Popinski, Z.

    1984-01-01

    Combination of ammonia-absorption refrigerator, roof-mounted solar collectors, and 200 degrees C service electric-vehicle motor provides evaporative space-heating/space cooling system for electric-powered and hybrid fuel/electric vehicles.

  13. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  14. Hybrid Electric Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Evaluations Hybrid Electric Vehicle Evaluations How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an is used to propel the vehicle during normal drive cycles. The batteries supply additional power for

  15. Presentation of electric motor and motor control technology for electric vehicles and hybrid vehicles; Denki jidosha hybrid sha yo motor oyobi motor seigyo gijutsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, N.; Masakik, R.; Tajima, F. [Hitachi, Ltd., Tokyo (Japan)

    1999-02-01

    The authors have developed a motor drive system for electric vehicles and hybrid vehicles. This system consists of a permanent magnet type synchronous motor, an inverter using insulated gate bipolar transistors (IGBTs) and a controller based on a single-chip microcomputer. To achieve a compact and light weight synchronous motor, an internal permanent magnet type rotor structure was designed. This paper presents motor control technology for electric vehicles, such as an optimization method of field weakening control and a new current control method. (author)

  16. Powertrain sizing of electrically supercharged internal combustion engine vehicles

    NARCIS (Netherlands)

    Murgovski, N.; Marinkov, S.; Hilgersom, D.; de Jager, B.; Steinbuch, M.; Sjöberg, J.

    2015-01-01

    We assess the concept of electrically supercharged internal combustion engines, where the supercharger, consisting of a compressor and an electric motor, draws electric power from a buffer (a battery or a supercapacitor). In particular, we investigate the scenario of downsizing the engine, while

  17. Life cycle comparison of fuel cell vehicles and internal combustion engine vehicles for Canada and the United States

    Science.gov (United States)

    Zamel, Nada; Li, Xianguo

    The objective of this study is to put forward a full analysis of the impact of the difference between the Canadian and American energy realities on the life cycle of fuel cell vehicles and internal combustion engine vehicles. Electricity is a major type of energy used in the transportation sector. Electricity is needed in the production of feedstock of fuel, the production of the fuel, the production of the vehicle material and the assembly of the vehicles. Therefore, it is necessary to investigate the impact of the electricity mix difference between Canada and the United States. In the analysis, the life cycle of the fuel consists of obtaining the raw material, extracting the fuel from the raw material, transporting and storing the fuel as well as using the fuel in the vehicle. Four different methods of obtaining hydrogen were analyzed; using coal and nuclear power to produce electricity and extract hydrogen through electrolysis and via steam reforming of natural gas in a natural gas plant and in a hydrogen refueling station. It is found that fuel cell vehicle fuelled by hydrogen has lower energy consumption and greenhouse gas emissions than internal combustion engine vehicle fuelled by conventional gasoline except for hydrogen production using coal as the primary energy source in Canada and the United States. Using the Canadian electricity mix will result in lower carbon dioxide emissions and energy consumption than using the American electricity mix. For the present vehicles, using the Canadian electricity mix will save up to 215.18 GJ of energy and 20.87 t of CO 2 on a per capita basis and 26.53 GJ of energy and 6.8 t of CO 2 on a per vehicle basis. Similarly, for the future vehicles, using the Canadian electricity mix will lower the total carbon dioxide emissions by 21.15 t and the energy consumed is reduced by 218.49 GJ on a per capita basis and 26.53 GJ of energy and 7.22 t of CO 2 on a per vehicle basis. The well-to-tank efficiencies are higher with the

  18. Energy Intensity of the Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Mieczysław Dziubiński

    2017-12-01

    Full Text Available Continuous energy intensity is a dependency between continuous energy intensity and energy intensity of movement. In the paper it is proposed analyze energy intensity of the movement, as the size specifying the power demand to the wheel drive and presented the balance of power of an electric car moving in the urban cycle. The object of the test was the hybrid vehicle with an internal combustion engine and electric motor. The measurements were carried out for 4 speeds and 2 driving profiles.

  19. Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges

    OpenAIRE

    Juan, Angel Alejandro; Mendez, Carlos Alberto; Faulin, Javier; de Armas, Jesica; Grasman, Scott

    2017-01-01

    Current logistics and transportation (L&T) systems include heterogeneous fleets consisting of common internal combustion engine vehicles as well as other types of vehicles using ?green? technologies, e.g., plug-in hybrid electric vehicles and electric vehicles (EVs). However, the incorporation of EVs in L&T activities also raise some additional challenges from the strategic, planning, and operational perspectives. For instance, smart cities are required to provide recharge stations for electr...

  20. Batteries for electric road vehicles.

    Science.gov (United States)

    Goodenough, John B; Braga, M Helena

    2018-01-15

    The dependence of modern society on the energy stored in a fossil fuel is not sustainable. An immediate challenge is to eliminate the polluting gases emitted from the roads of the world by replacing road vehicles powered by the internal combustion engine with those powered by rechargeable batteries. These batteries must be safe and competitive in cost, performance, driving range between charges, and convenience. The competitive performance of an electric car has been demonstrated, but the cost of fabrication, management to ensure safety, and a short cycle life have prevented large-scale penetration of the all-electric road vehicle into the market. Low-cost, safe all-solid-state cells from which dendrite-free alkali-metal anodes can be plated are now available; they have an operating temperature range from -20 °C to 80 °C and they permit the design of novel high-capacity, high-voltage cathodes providing fast charge/discharge rates. Scale-up to large multicell batteries is feasible.

  1. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m -1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m -1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Perspectives for Electric Vehicles in Denmark

    DEFF Research Database (Denmark)

    Horstmann, Jørgen; Jørgensen, Kaj

    1997-01-01

    Review of the present knowledge on electric vehicles and analysis of the energy and environmental consequences of the introduction of electric vehicles in Denmark. The report focuses on the 10-15 year time perspective.......Review of the present knowledge on electric vehicles and analysis of the energy and environmental consequences of the introduction of electric vehicles in Denmark. The report focuses on the 10-15 year time perspective....

  3. Electric Vehicles at Kennedy Space Center

    Science.gov (United States)

    Chesson, Bruce E.

    2007-01-01

    The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.

  4. Electric vehicle - near or far

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, Y.

    1997-11-01

    Traffic is rapidly becoming the number one environmental problem, especially in metropolitan areas. Electric vehicles have many important advantages to offer. Air quality would be improved, since electric vehicles do not pollute the environment. The improvement obtained might be equated with that resulting from the introduction of district heat for the heating of residential buildings. Electric vehicles also present considerable potential for energy conservation

  5. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  6. Hybrid Electric Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Publications Hybrid Electric Vehicle Publications The following technical papers, conference papers, and fact sheets provide information about NREL's hybrid electric fleet vehicle Class 8 Hybrid Electric Delivery Trucks. Mike Lammert. (2011) FedEx Delivery Trucks In-Use and Vehicle

  7. US Department of Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The advanced vehicle testing activity (AVTA), part of the US Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modelling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full-size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and internal combustion engine vehicles powered by hydrogen. Currently, the AVTA is conducting a significant evaluation of hybrid electric vehicles (HEVs) produced by major automotive manufacturers. The results are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the 'real world' performance of their hybrid energy systems, particularly the battery. The initial fuel economy of these vehicles has typically been less than that determined by the manufacturer and also varies significantly with environmental conditions. Nevertheless, the fuel economy and, therefore, battery performance, has remained stable over the life of a given vehicle (160 000 miles).

  8. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rames, Clement [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-15

    This report addresses the fundamental question of how much plug-in electric vehicle (PEV) charging infrastructure—also known as electric vehicle supply equipment (EVSE)—is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs).

  9. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  10. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  11. Electric and Hybrid Vehicle Technology: TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  12. Electric and hybrid vehicle technology: TOPTEC

    Science.gov (United States)

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between 'refueling' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of 'Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  13. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  14. Electric Vehicle Integration into Modern Power Networks

    DEFF Research Database (Denmark)

    software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models......Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic...... and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES...

  15. Electric Vehicle Integration into Modern Power Networks

    DEFF Research Database (Denmark)

    Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic...... software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models...... and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES...

  16. Electric vehicles: The role and importance of standards in an emerging market

    International Nuclear Information System (INIS)

    Brown, Stephen; Pyke, David; Steenhof, Paul

    2010-01-01

    After nearly a century with the internal combustion engine dominating the personal transportation sector, it now appears that the electric vehicle is on the verge of experiencing rapid growth in both developed and developing vehicle markets. The broad-scale adoption of the electric vehicle could bring significant changes for society in terms of not only the technologies we use for personal transportation, but also moving our economies away from petroleum and lessoning the environmental footprint of transportation. This article investigates the role of standards, related training and certification for the electric vehicle. It is argued that the potential for the electric vehicle will be stunted without adequate attention being paid to standards, not only in terms of the speed of its uptake and smoothness of this transition, but also in terms of maintaining compatibility between jurisdictions, safety of the public, and helping to ensure environmental sustainability. We highlight a number of areas where new or adaptations of current standards, training and certification may be needed, notably in terms of batteries and charging infrastructures, electricity distribution and accounting for the environmental characteristics of this electricity, and different aspects of vehicle-to-grid and smart grid technologies.

  17. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  18. Developments in batteries and fuel cells for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ahmed, R.

    2013-01-01

    Due to ever increasing threats of climate change, urban air pollution and costly and depleting oil and gas sources a lot of work is being done for the development of electric vehicles. Hybrid electric vehicles, plug-in hybrid electric vehicles and all electric vehicles are powered by batteries or by hydrogen and fuel cells are the main types of vehicles being developed. Main types of batteries which can be used for electric vehicles are lead-acid, Ni-Cd, Nickel-Metal-Hybrid ( NiMH) and Lithium-ion (Li-ion) batteries which are discussed and compared. Lithium ion battery is the mostly used battery. Developments in the lithium ion batteries are discussed and reviewed. Redox flow batteries are also potential candidates for electric vehicles and are described. Hybrid electric vehicles can reduce fuel consumption considerably and is a good midterm solution. Electric and hybrid electric vehicles are discussed. Electric vehicles are necessary to mitigate the effects of pollution and dependence on oil. For all the electric vehicles there are two options: batteries and fuel Cells. Batteries are useful for small vehicles and shorter distances but for vehicle range greater than 150 km fuel cells are superior to batteries in terms of cost, efficiency and durability even using natural gas and other fuels in addition to hydrogen. Ultimate solution for electric vehicles are hydrogen and fuel cells and this opinion is also shared by most of the automobile manufacturers. Developments in fuel cells and their applications for automobiles are described and reviewed. Comparisons have been done in the literature between batteries and fuel cells and are described. (author)

  19. Plug-In Hybrid Electric Vehicle Basics | NREL

    Science.gov (United States)

    Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to between fill-ups) that's very similar to the range of a conventional vehicle. A plug-in hybrid vehicle's

  20. Electric vehicles, magnetic levitation and superconductive levitation in Japan

    International Nuclear Information System (INIS)

    Wyczalek, F.A.

    1988-01-01

    This is a technological assessment of electric automotive vehicles, high speed magnetic levitation trains and hyperspeed superconductive magnetic levitation trains in Japan. It includes conventional battery electric vehicles for the automotive application, conventional magnetic levitation trains with peak speeds of 300 km/h and superconductive levitation trains capable of speeds over 500 km/h in transcontinental service. These electric vehicles have been under development since 1971 and are now considered ready for introduction into intercity commercial service. Conventional magnetic levitation trains are targeted to connect New Chitose International Airport with Sapporo and shorter connections in LasVegas, Philadelphia and Miami. The first superconductive train is planned for the Osaka to Tokyo link by the year 2000, a distance of 515 km. The initial step has been taken with approval of funding for the first five year phase of construction beginning with the Kansai project near Osaka

  1. Optimal Charge control of Electric Vehicles in Electricity Markets

    DEFF Research Database (Denmark)

    Lan, Tian; Hu, Junjie; Wu, Guang

    2011-01-01

    Environment constraints, petroleum scarcity, high price on fuel resources and recent advancements in battery technology have led to emergence of Electric Vehicles (EVs). As increasing numbers of EVs enter the electricity market, these extra loads may cause peak load and need to be properly...... controlled. In this paper, an algorithm is presented for every individual vehicles to minimize the charging cost while satisfying the vehicle owner’s requirements. The algorithm is based on a given future electricity prices and uses dynamic programming. Optimization aims to find the economically optimal...... solution for each vehicle....

  2. Overview of hybrid electric vehicle trend

    Science.gov (United States)

    Wang, Haomiao; Yang, Weidong; Chen, Yingshu; Wang, Yun

    2018-04-01

    With the increase of per capita energy consumption, environmental pollution is worsening. Using new alternative sources of energy, reducing the use of conventional fuel-powered engines is imperative. Due to the short period, pure electric vehicles cannot be mass-produced and there are many problems such as imperfect charging facilities. Therefore, the development of hybrid electric vehicles is particularly important in a certain period. In this paper, the classification of hybrid vehicle, research status of hybrid vehicle and future development trends of hybrid vehicles is introduced. It is conducive to the public understanding of hybrid electric vehicles, which has a certain theoretical significance.

  3. Going Green with Electric Vehicles

    Science.gov (United States)

    Deal, Walter F., III

    2010-01-01

    There is considerable interest in electric and hybrid cars because of environmental and climate change concerns, tougher fuel efficiency standards, and increasing dependence on imported oil. In this article, the author describes the history of electric vehicles in the automotive world and discusses the components of a hybrid electric vehicle.…

  4. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    Science.gov (United States)

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  5. Electric vehicles: Technology assessment and commercialization

    International Nuclear Information System (INIS)

    Zabot, S.

    1991-01-01

    This article traces the history of commercialization efforts relative to electric vehicles, assesses the state-of-the-art of electric vehicle technology and identifies the industrial firms that are investing heavily in this field. The main design problems affecting the commercialization of these vehicles (e.g., battery weight, autonomy, operating safety and toxicity) are pointed out. Comparisons of commercialization prospects are made with those for hydrogen fuelled vehicles. With regard to investments in research programs, it is argued that, in addition to car manufacturers and oil companies, the usual active participants in the transport sector, new participants are needed to give added support to the development of electric vehicles, namely, electric utilities and battery manufacturers

  6. Electrical-Loss Analysis of Power-Split Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Andrea Bonfiglio

    2017-12-01

    Full Text Available The growing development of hybrid electric vehicles (HEVs has seen the spread of architectures with transmission based on planetary gear train, realized thanks to two electric machines. This architecture, by continuously regulating the transmission ratio, allows the internal combustion engine (ICE to work in optimal conditions. On the one hand, the average ICE efficiency is increased thanks to better loading situations, while, on the other hand, electrical losses are introduced due to the power circulation between the two electrical machines mentioned above. The aim of this study is then to accurately evaluate electrical losses and the average ICE efficiency in various operating conditions and over different road missions. The models used in this study are presented for both the Continuously Variable Transmission (CVT architecture and the Discontinuously Variable Transmission (DVT architecture. In addition, efficiency maps of the main components are shown. Finally, the simulation results are presented to point out strengths and weaknesses of the CVT architecture.

  7. The eco-driving effect of electric vehicles compared to conventional gasoline vehicles

    Directory of Open Access Journals (Sweden)

    Hideki Kato

    2016-10-01

    Full Text Available Eco-driving is attractive to the public, not only users of internal-combustion-engine vehicles (ICEVs including hybrid electric vehicles (HEVs but also users of electric vehicles (EVs have interest in eco-driving. In this context, a quantitative evaluation of eco-driving effect of EVs was conducted using a chassis dynamometer (C/D with an “eco-driving test mode.” This mode comprised four speed patterns selected from fifty-two real-world driving datasets collected during an eco-driving test-ride event. The four patterns had the same travel distance (5.2 km, but showed varying eco-driving achievement levels. Three ICEVs, one HEV and two EVs were tested using a C/D. Good linear relationships were found between the eco-driving achievement level and electric or fuel consumption rate of all vehicles. The reduction of CO2 emissions was also estimated. The CO2-reduction rates of the four conventional (including hybrid vehicles were 10.9%–12.6%, while those of two types of EVs were 11.7%–18.4%. These results indicate that the eco-driving tips for conventional vehicles are effective to not only ICEVs and HEVs but also EVs. Furthermore, EVs have a higher potential of eco-driving effect than ICEVs and HEVs if EVs could maintain high energy conversion efficiency at low load range. This study is intended to support the importance of the dissemination of tools like the intelligent speed adaptation (ISA to obey the regulation speed in real time. In the future, also in the development and dissemination of automated driving systems, the viewpoint of achieving the traveling purpose with less kinetic energy would be important.

  8. "Can Vehicle-to-Grid Revenue Help Electric Vehicles on the Market?"

    OpenAIRE

    George R. Parsons; Michael K. Hidrue; Willett Kempton; Meryl P. Gardner

    2011-01-01

    Vehicle-to-grid (V2G) electric vehicles can return power stored in their batteries back to the power grid and be programmed to do so at times when power prices are high. Since providing this service can lead to payments to owners of vehicles, it effectively reduces the cost of electric vehicles. Using data from a national stated preference survey (n = 3029), this paper presents the first study of the potential consumer demand for V2G electric vehicles. In our choice experiment, 3029 responden...

  9. Optimal Electric Vehicle Scheduling: A Co-Optimized System and Customer Perspective

    Science.gov (United States)

    Maigha

    Electric vehicles provide a two pronged solution to the problems faced by the electricity and transportation sectors. They provide a green, highly efficient alternative to the internal combustion engine vehicles, thus reducing our dependence on fossil fuels. Secondly, they bear the potential of supporting the grid as energy storage devices while incentivising the customers through their participation in energy markets. Despite these advantages, widespread adoption of electric vehicles faces socio-technical and economic bottleneck. This dissertation seeks to provide solutions that balance system and customer objectives under present technological capabilities. The research uses electric vehicles as controllable loads and resources. The idea is to provide the customers with required tools to make an informed decision while considering the system conditions. First, a genetic algorithm based optimal charging strategy to reduce the impact of aggregated electric vehicle load has been presented. A Monte Carlo based solution strategy studies change in the solution under different objective functions. This day-ahead scheduling is then extended to real-time coordination using a moving-horizon approach. Further, battery degradation costs have been explored with vehicle-to-grid implementations, thus accounting for customer net-revenue and vehicle utility for grid support. A Pareto front, thus obtained, provides the nexus between customer and system desired operating points. Finally, we propose a transactive business model for a smart airport parking facility. This model identifies various revenue streams and satisfaction indices that benefit the parking lot owner and the customer, thus adding value to the electric vehicle.

  10. Key Features of Electric Vehicle Diffusion and Its Impact on the Korean Power Market

    Directory of Open Access Journals (Sweden)

    Dongnyok Shim

    2018-06-01

    Full Text Available The market share of electric vehicles is growing and the interest in these vehicles is rapidly increasing in industrialized countries. In the light of these circumstances, this study provides an integrated policy-making package, which includes key features for electric vehicle diffusion and its impact on the Korean power market. This research is based on a quantitative analysis with the following steps: (1 it analyzes drivers’ preferences for electric or traditional internal combustion engine (ICE vehicles with respect to key automobile attributes and these key attributes indicate what policy makers should focus on; (2 it forecasts the achievable level of market share of electric vehicles in relation to improvements in their key attributes; and (3 it evaluates the impact of electric vehicle diffusion on the Korean power market based on an achievable level of market share with different charging demand profiles. Our results reveal the market share of electric vehicles can increase to around 40% of the total market share if the key features of electric vehicles reach a similar level to those of traditional vehicles. In this estimation, an increase in the power market’s system generation costs will reach around 10% of the cost in the baseline scenario, which differs slightly depending on charging demand profiles.

  11. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES

    Directory of Open Access Journals (Sweden)

    S. Selivanov

    2009-01-01

    Full Text Available The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  12. Electric vehicle data acquisition system

    DEFF Research Database (Denmark)

    Svendsen, Mathias; Winther-Jensen, Mads; Pedersen, Anders Bro

    2014-01-01

    and industrial applications, e.g. research in electric vehicle driving patterns, vehicle substitutability analysis and fleet management. The platform is based on a embedded computer running Linux, and features a high level of modularity and flexibility. The system operates independently of the make of the car......, by using the On-board Diagnostic port to identify car model and adapt its software accordingly. By utilizing on-board Global Navigation Satellite System, General Packet Radio Service, accelerometer, gyroscope and magnetometer, the system not only provides valuable data for research in the field of electric......A data acquisition system for electric vehicles is presented. The system connects to the On-board Diagnostic port of newer vehicles, and utilizes the in-vehicle sensor network, as well as auxiliary sensors, to gather data. Data is transmitted continuously to a central database for academic...

  13. A comparison of electric vehicle integration projects

    DEFF Research Database (Denmark)

    Andersen, Peter Bach; Garcia-Valle, Rodrigo; Kempton, Willett

    2012-01-01

    .g. utilization of electric vehicles for ancillary services. To arrive at standardized solutions, it is helpful to analyze the market integration and utilization concepts, architectures and technologies used in a set of state-of-the art electric vehicle demonstration projects. The goal of this paper......It is widely agreed that an intelligent integration of electric vehicles can yield benefits for electric vehicle owner, power grid, and the society as a whole. Numerous electric vehicle utilization concepts have been investigated ranging from the simple e.g. delayed charging to the more advanced e...... is to highlight different approaches to electric vehicle integration in three such projects and describe the underlying technical components which should be harmonized to support interoperability and a broad set of utilization concepts. The projects investigated are the American University of Delaware's V2G...

  14. The design of electric vehicle intelligent charger

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.

  15. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    Science.gov (United States)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine

  16. Multiple Attribute Decision Making Based Relay Vehicle Selection for Electric Vehicle Communication

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2015-01-01

    Full Text Available Large-scale electric vehicle integration into power grid and charging randomly will cause serious impacts on the normal operation of power grid. Therefore, it is necessary to control the charging behavior of electric vehicle, while information transmission for electric vehicle is significant. Due to the highly mobile characteristics of vehicle, transferring information to power grid directly might be inaccessible. Relay vehicle (RV can be used for supporting multi-hop connection between SV and power grid. This paper proposes a multiple attribute decision making (MADM-based RV selection algorithm, which considers multiple attribute, including data transfer rate, delay, route duration. It takes the characteristics of electric vehicle communication into account, which can provide protection for the communication services of electric vehicle charging and discharging. Numerical results demonstrate that compared to previous algorithm, the proposed algorithm offer better performance in terms of throughput, transmission delay.

  17. Vehicle to grid: electric vehicles as an energy storage solution

    Science.gov (United States)

    McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.

    2013-05-01

    With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.

  18. Real-Time Vehicle Energy Management System Based on Optimized Distribution of Electrical Load Power

    OpenAIRE

    Yuefei Wang; Hao Hu; Li Zhang; Nan Zhang; Xuhui Sun

    2016-01-01

    As a result of severe environmental pressure and stringent government regulations, refined energy management for vehicles has become inevitable. To improve vehicle fuel economy, this paper presents a bus-based energy management system for the electrical system of internal combustion engine vehicles. Both the model of an intelligent alternator and the model of a lead-acid battery are discussed. According to these models, the energy management for a vehicular electrical system is formulated as ...

  19. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Science.gov (United States)

    . A wide variety of hybrid electric vehicle models is currently available. Although HEVs are often -go traffic), further improving fuel economy. Mild hybrid systems cannot power the vehicle using Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric

  20. Electric vehicle utilization for ancillary grid services

    Science.gov (United States)

    Aziz, Muhammad

    2018-02-01

    Electric vehicle has been developed through several decades as transportation mean, without paying sufficient attention of its utilization for other purposes. Recently, the utilization of electric vehicle to support the grid electricity has been proposed and studied intensively. This utilization covers several possible services including electricity storage, spinning reserve, frequency and voltage regulation, and emergency energy supply. This study focuses on theoretical and experimental analysis of utilization of electric vehicles and their used batteries to support a small-scale energy management system. Charging rate of electric vehicle under different ambient temperature (seasonal condition) is initially analyzed to measure the correlation of charging rate, charging time, and state-of-charge. It is confirmed that charging under warmer condition (such as in summer or warmer region) shows higher charging rate than one in colder condition, therefore, shorter charging time can be achieved. In addition, in the demonstration test, each five electric vehicles and used batteries from the same electric vehicles are employed and controlled to support the electricity of the office building. The performance of the system is evaluated throughout a year to measure the load leveling effect during peak-load time. The results show that the targeted peak-load can be shaved well under certain calculated peak-shaving threshold. The finding confirms that the utilization of electric vehicle for supporting the electricity of grid or certain energy management system is feasible and deployable in the future.

  1. Electric Vehicle Preparedness - Implementation Approach for Electric Vehicles at Naval Air Station Whidbey Island. Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.

  2. Electric and Conventional Vehicle Driving Patterns

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Torp, Kristian

    2014-01-01

    The electric vehicle (EV) is an interesting vehicle type that can reduce the dependence on fossil fuels, e.g., by using electricity from wind turbines. A significant disadvantage of EVs is a very limited range, typically less than 200 km. This paper compares EVs to conventional vehicles (CVs...

  3. Creation of electromechanical device for electric vehicle traction

    Directory of Open Access Journals (Sweden)

    Денис Юрьевич Зубенко

    2016-10-01

    Full Text Available The problems of creation of electromechanical device for electric vehicle traction are considered in the article. The aim of creation this design are the replacement of the internal combustion engine on electromechanical device. For this electromechanical device are constructed model, which describe processes that occur in the electric drive of electromechanical device. Characteristics of the main modes of motion were recorded. The introduction of electromechanical device will reduce the level of emissions and reduce noise in the cities

  4. Electrical Vehicles Activities Around the World

    DEFF Research Database (Denmark)

    Schauer, Gerd; Garcia-Valle, Rodrigo

    2013-01-01

    engine. In the 1990s research and demonstrations intensified and built a good basis for actual development of electrical vehicles. Discussion of the results achieved and lessons learned from millions of kilometers of road testing is worthwhile but in addition to technological developments such as light...... which have jointly changed how mobility is viewed in recent years. We describe key points concerning such field testing and the renaissance in electric vehicles that occurred around 2010. We discuss progress in lithium battery technology for high power and high energy density, improvement in integrated...... business models, and the availability of high-performance electric vehicles have become key enablers of this new technology. In this regard, it is promising that electric vehicles will soon be a part of a green transport solution (green mobility) powered by renewable energy and a new smart electricity...

  5. Environmental assessment of lightweight electric vehicles

    CERN Document Server

    Egede, Patricia

    2017-01-01

    This monograph adresses the challenge of the environmental assessment of leightweight electric vehicles. It poses the question whether the use of lightweight materials in electric vehicles can reduce the vehicles’ environmental impact and compares the environmental performance of a lightweight electric vehicle (LEV) to other types of vehicles. The topical approach focuses on methods from life cycle assessment (LCA), and the book concludes with a comprehensive concept on the environmental assessment of LEVs. The target audience primarily comprises LCA practitioners from research institutes and industry, but it may also be beneficial for graduate students specializing in the field of environmental assessment.

  6. Performance tests of communal electric-powered vehicles

    International Nuclear Information System (INIS)

    Nagel, J.

    1993-01-01

    The use of electric vehicles within the service industry (such as the town's sanitation, its trash collection and horticultural authority) can lead to a visible environmental relief, particularly in the inner city. The RWE in Essen has been supporting the development and use of electric vehicles for over 20 years and introduced a program in 1990 for the communities(ProKom) which provides 5 million DM for over 5 years for the support of electric vehicles. In this article the communities' requirements for electric vehicles are discussed, the types of vehicles which are mediated by ProKom are introduced and the first practical experiences made are also reported. (BWI) [de

  7. Electric Vehicles and the Customers

    DEFF Research Database (Denmark)

    Christensen, Linda

    2011-01-01

    This report is analysing the potential travel behaviour of electric vehicles (EVs) and the need for charging infrastructure which can be derived from the behaviour.......This report is analysing the potential travel behaviour of electric vehicles (EVs) and the need for charging infrastructure which can be derived from the behaviour....

  8. State-of-the-art assessment of electric and hybrid vehicles

    Science.gov (United States)

    1978-01-01

    Data are presented that were obtained from the electric and hybrid vehicles tested, information collected from users of electric vehicles, and data and information on electric and hybrid vehicles obtained on a worldwide basis from manufacturers and available literature. The data given include: (1) information and data base (electric and hybrid vehicle systems descriptions, sources of vehicle data and information, and sources of component data); (2) electric vehicles (theoretical background, electric vehicle track tests, user experience, literature data, and summary of electric vehicle status); (3) electric vehicle components (tires, differentials, transmissions, traction motors, controllers, batteries, battery chargers, and component summary); and (4) hybrid vehicles (types of hybrid vehicles, operating modes, hybrid vehicles components, and hybrid vehicles performance characteristics).

  9. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Soares, J.

    2015-01-01

    In the smart grids context, distributed energy resources management plays an important role in the power systems' operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important...... to develop adequate methodologies to schedule the electric vehicles' charge and discharge processes, avoiding network congestions and providing ancillary services.This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed......, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting...

  10. Design of a 200kW electric powertrain for a high performance electric vehicle

    Directory of Open Access Journals (Sweden)

    Wilmar Martinez

    2016-09-01

    Full Text Available With the purpose of designing the electric powertrain of a high performance electric vehicle capable of running a quarter mile in 10 seconds, firstly it is necessary to calculate the required energy, torque, and power in order to size and select the suitable storage components and electric motors. Secondly, an assessment of the powertrain arrangement is needed to choose the best internal configuration of the vehicle and guarantee the highest efficiency possible. Finally, a design of the power conversion stages, specifically the DC-DC converter that interfaces the storage unit with the electric motors, is required as well. This paper shows the energy calculation procedure based on a longitudinal dynamic model of the vehicle and the selection method of the storage components and motors needed for this application, as well as the design of two 100kW interleaved boost converters with coupled inductors. In addition, a novel operation of the interleaved boost converter is proposed in order to increase the efficiency of the converter. As a result, the designed converter achieved a power density of 24,2kW/kg with an efficiency of 98 %, which was validated by experimental tests of a low power prototype.

  11. Pioneering driverless electric vehicles in Europe: the City Automated Transport System (CATS)

    OpenAIRE

    Christie , Derek; Koymans , Anne; Chanard , Thierry; Lasgouttes , Jean-Marc; Kaufmann , Vincent

    2016-01-01

    International audience; The City Automated Transport System (CATS) was a collaborative FP7 European project that lasted from 2010 to 2014. Its objective was to evaluate the feasibility and acceptability of driverless electric vehicles in European cities. This contribution explains how the project was implemented by 11 teams in five countries, culminating with practical trials of driverless vehicles in Strasbourg, France; Ploiesti, Romania; and Lausanne, Switzerland. The Navya vehicles used we...

  12. Crash simulation of UNS electric vehicle under frontal front impact

    Energy Technology Data Exchange (ETDEWEB)

    Susilo, D. D., E-mail: djoksus-2010@yahoo.com; Lukamana, N. I., E-mail: n.indra.lukmana@gmail.com; Budiana, E. P., E-mail: budiana.e@gmail.com; Tjahjana, D. D. D. P., E-mail: danar1405@gmail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta (Indonesia)

    2016-03-29

    Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. The purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.

  13. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  14. Motor Torque Calculations For Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Saurabh Chauhan

    2015-08-01

    Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.

  15. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  16. Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Roberta Brayer; Donald Karner; Kevin Morrow; James Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests neighborhood electric vehicles (NEVs) in both track and fleet testing environments. NEVs, which are also known as low speed vehicles, are light-duty vehicles with top speeds of between 20 and 25 mph, and total gross vehicle weights of approximately 2,000 pounds or less. NEVs have been found to be very viable alternatives to internal combustion engine vehicles based on their low operating costs. However, special charging infrastructure is usually necessary for successful NEV fleet deployment. Maintenance requirements are also unique to NEVs, especially if flooded lead acid batteries are used as they have watering requirements that require training, personnel protection equipment, and adherence to maintenance schedules. This report provides guidelines for fleet managers to follow in order to successfully introduce and operate NEVs in fleet environments. This report is based on the NEV testing and operational experience of personnel from the Advanced Vehicle Testing Activity, Electric Transportation Applications, and the Idaho National Laboratory.

  17. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles......Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...... is applied in this analysis. A typical Danish primary power distribution system is used as a test case for the studies. From the simulation results, not more than 10% of electric vehicles could be integrated in the test system for the dump charging mode. About 40% of electric vehicle loads could...

  18. Prediction on the charging demand for electric vehicles in Chengdu

    Science.gov (United States)

    yun, Cai; wanquan, Zhang; wei, You; pan, Mao

    2018-03-01

    The development of the electric vehicle charging station facilities speed directly affect the development of electric vehicle speed. And the charging demand of electric vehicles is one of the main factors influencing the electric vehicle charging facilities. The paper collected and collated car ownership in recent years, the use of elastic coefficient to predict Chengdu electric vehicle ownership, further modeling to give electric vehicle charging demand.

  19. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  20. Evaluation of the induced electric field and compliance procedure for a wireless power transfer system in an electrical vehicle

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Hirata, Akimasa

    2013-01-01

    In this study, an induced electric field in a human body is evaluated for the magnetic field leaked from a wireless power transfer system for charging an electrical vehicle. The magnetic field from the wireless power transfer system is modelled computationally, and its effectiveness is confirmed by comparison with the field measured in a previous study. The induced electric field in a human standing around the vehicle is smaller than the allowable limit prescribed in international guidelines, although the magnetic field strength in the human body is locally higher than the allowable external field strength. Correlation between the external magnetic field and the induced electric field is confirmed to be reasonable at least in the standing posture, which is the case discussed in the international standard. Based on this finding, we discussed and confirmed the applicability of a three-point magnetic field measurement at heights of 0.5, 1.0, and 1.5 m for safety compliance. (paper)

  1. Evaluation of the induced electric field and compliance procedure for a wireless power transfer system in an electrical vehicle.

    Science.gov (United States)

    Laakso, Ilkka; Hirata, Akimasa

    2013-11-07

    In this study, an induced electric field in a human body is evaluated for the magnetic field leaked from a wireless power transfer system for charging an electrical vehicle. The magnetic field from the wireless power transfer system is modelled computationally, and its effectiveness is confirmed by comparison with the field measured in a previous study. The induced electric field in a human standing around the vehicle is smaller than the allowable limit prescribed in international guidelines, although the magnetic field strength in the human body is locally higher than the allowable external field strength. Correlation between the external magnetic field and the induced electric field is confirmed to be reasonable at least in the standing posture, which is the case discussed in the international standard. Based on this finding, we discussed and confirmed the applicability of a three-point magnetic field measurement at heights of 0.5, 1.0, and 1.5 m for safety compliance.

  2. Model Design on Emergency Power Supply of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yuanliang Zhao

    2017-01-01

    Full Text Available According to the mobile storage characteristic of electric vehicles, an emergency power supply model about the electric vehicles is presented through analyzing its storage characteristic. The model can ensure important consumer loss minimization during power failure or emergency and can make electric vehicles cost minimization about running, scheduling, and vindicating. In view of the random dispersion feature in one area, an emergency power supply scheme using the electric vehicles is designed based on the K-means algorithm. The purpose is to improve the electric vehicles initiative gathering ability and reduce the electric vehicles gathering time. The study can reduce the number of other emergency power supply equipment and improve the urban electricity reliability.

  3. Price Based Electric Vehicle Charging

    DEFF Research Database (Denmark)

    Mahat, Pukar; Handl, Martin; Kanstrup, Kenneth

    2012-01-01

    It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of these EVs has the potential to complement renewable energy resources and mitigate its intermittency. However, EV charging may have negative impact on the power grid. This pa......It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of these EVs has the potential to complement renewable energy resources and mitigate its intermittency. However, EV charging may have negative impact on the power grid...... method where distribution system operator (DSO) optimizes the cost of EV charging while taking substation transformer capacity into account....

  4. A PEMFC hybrid electric vehicle real time control system

    Science.gov (United States)

    Sun, Hongqiao

    In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.

  5. Long-term impacts of battery electric vehicles on the German electricity system

    Science.gov (United States)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  6. Variable-Reluctance Motor For Electric Vehicles

    Science.gov (United States)

    Lang, Jeffrey H.

    1987-01-01

    Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.

  7. Situational analysis for the current status of the electric vehicle industry : a report for presentation to the Electric Vehicle Industry Steering Committee of Natural Resources Canada

    International Nuclear Information System (INIS)

    Fleet, B.; Li, J.K.; Gilbert, R.

    2008-01-01

    This paper outlined the status of the electric vehicle industry in Canada. While the low energy density of electric batteries has prevented the widespread adoption of electric-powered vehicles, new developments in nickel metal hydride (Ni-MH) batteries have provided a 3- to 4-fold increase in energy density than lead-acid batteries. The Ni-MH batteries have enabled the emergence of hybrid automobiles that use electric motors to supplement or provide traction with internal combustion engine (ICE) generators that power the motors or charge batteries. Plug-in hybrids use batteries that can be charged from the electricity grid or by on-board generators. Lithium-based batteries contain twice the amount of energy density as Ni-MH batteries, and are now being upscaled for use in plug-in hybrids. Canada has many assets that favour the development of electric vehicle technology as it has a high degree of urbanization, and a widely diversified electric supply. Canada is also a major player in EV technology, and a world leader in renewable electricity generation. However, considerable investment and leadership is needed in order to foster EV technology in Canada. It was concluded that an EV industry can be developed by facilitating collaboration among organizations currently promoting sustainable transportation, identifying potential centres of engineering and technological excellence, and defining markets relevant to a Canadian EV industry. 32 refs., 6 tabs., 4 figs

  8. Vehicle State Estimator based regenerative braking implementation on an electric vehicle to improve lateral vehicle stability

    NARCIS (Netherlands)

    Jansen, S.T.H.; van Boekel, J.J.P.; Iersel, van S.S.; Besselink, I.J.M.; Nijmeijer, H.

    2013-01-01

    The driving range of electric vehicles can be extended using regenerative braking. Regenerative braking uses the electric drive system, and therefore only the driven wheels, for decelerating the vehicle. Braking on one axle affects the stability of the vehicle, especially for road conditions with

  9. Protecting Public Health: Plug-In Electric Vehicle Charging and the Healthcare Industry

    Energy Technology Data Exchange (ETDEWEB)

    Ryder, Carrie; Lommele, Stephen

    2016-10-01

    In 2014, the U.S. transportation sector consumed more than 13 million barrels of petroleum a day, approximately 70% of all domestic petroleum consumption. Internal combustion engine vehicles are major sources of greenhouse gases (GHGs), smog-forming compounds, particulate matter, and other air pollutants. Widespread use of alternative fuels and advanced vehicles, including plug-in electric vehicles (PEVs), can reduce our national dependence on petroleum and decrease the emissions that impact our air quality and public health. Healthcare organizations are major employers and community leaders that are committed to public well-being and are often early adopters of employer best practices. A growing number of hospitals are offering PEV charging stations for employees to help promote driving electric vehicles, reduce their carbon footprint, and improve local air quality.

  10. CHOOSING THE POWER OF TRACTION ELECTRIC MOTORS FOR ELECTRIC VEHICLES

    OpenAIRE

    O. Smirnov; A. Borisenko

    2017-01-01

    Recommendations on choosing the power of the electric motor, depending on the weight of the vehicle, its speed and the run distance in the «only electricity» mode are developed. Based on mathematical modeling and a number of field tests of electric vehicles, a three-dimensional dependance of the power on the weight and the speed set is built and conclusions are presented.

  11. CHOOSING THE POWER OF TRACTION ELECTRIC MOTORS FOR ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    O. Smirnov

    2017-06-01

    Full Text Available Recommendations on choosing the power of the electric motor, depending on the weight of the vehicle, its speed and the run distance in the «only electricity» mode are developed. Based on mathematical modeling and a number of field tests of electric vehicles, a three-dimensional dependance of the power on the weight and the speed set is built and conclusions are presented.

  12. Plug-in Electric Vehicle Policy Effectiveness: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-05-01

    The U.S. federal government first introduced incentives for plug-in electric vehicles (PEVs) through the American Clean Energy and Security Act of 2009, which provided a tax credit of up to $7,500 for a new PEV purchase. Soon after, in December 2010, two mass-market PEVs were introduced, the plug-in hybrid electric vehicle (PHEV) Chevrolet Volt and the battery electric vehicle (BEV) Nissan LEAF. Since that time, numerous additional types of PEV incentives have been provided by federal and regional (state or city) government agencies and utility companies. These incentives cover vehicle purchases as well as the purchase and installation of electric vehicle supply equipment (EVSE) through purchase rebates, tax credits, or discounted purchase taxes or registration fees. Additional incentives, such as free high-occupancy vehicle (HOV) lane access and parking benefits, may also be offered to PEV owners. Details about these incentives, such as the extent to which each type is offered by region, can be obtained from the U.S. Department of Energy (DOE) Alternative Fuel Data Center (http://www.afdc.energy.gov/). In addition to these incentives, other policies, such as zero-emission vehicle (ZEV) mandates,1 have also been implemented, and community-scale federal incentives, such as the DOE PEV Readiness Grants, have been awarded throughout the country to improve PEV market penetration. This report reviews 18 studies that analyze the impacts of past or current incentives and policies that were designed to support PEV adoption in the U.S. These studies were selected for review after a comprehensive survey of the literature and discussion with a number of experts in the field. The report summarizes the lessons learned and best practices from the experiences of these incentive programs to date, as well as the challenges they face and barriers that inhibit further market adoption of PEVs. Studies that make projections based on future policy scenarios and those that focus solely

  13. Cost-benefit analysis of electrical vehicles. Cars

    International Nuclear Information System (INIS)

    Taszka, Stephane; Domergue, Silvano; Poret, Mathilde; Monnoyer-Smith, Laurence

    2017-07-01

    This study aims at assessing technologies of electrical or hybrid vehicle from a social-economic point of view as well as from a user's point of view by 2020 and 2030, and thus at identifying relevant fields for these technologies. After having recalled some elements of context (Paris agreement, climate change issues for which transport is an important matter of concern, necessity to reduce CO 2 emissions, atmospheric pollution, and sound pollutions), and envisaged solutions (technological advances in engines and motorizations, evolution of mobility behaviours, use of alternate fuels and more particularly of electric and hybrid vehicles), the authors report a social-economic analysis which compares costs and benefits while taking environmental externalities into account, and an analysis of consumer's or user's point of view by using a total cost of ownership (TCO) approach which takes taxation into account. Four technologies are thus studied: thermal vehicles (petrol and diesel), hybrid vehicles, reloadable hybrid vehicles, and fully electrical vehicles. The implemented methodology and general hypotheses are presented. Results are presented and discussed. They show that an electric vehicle could be already profitable in a dense urban environment in 2020, and hybrid technology in 2030. A mixed use (electric propulsion in urban environment, thermal propulsion for inter-urban trips) seems to be the best solution before these both horizons. The study also reports some elements of assessment of the 'smart grid' value of electric vehicle batteries. Appendices propose detailed assessments and indications of sources of pollutant emissions

  14. Environmental impacts of electric vehicles in South Africa

    OpenAIRE

    Liu, Xinying; Hildebrandt, Diane; Glasser, David

    2012-01-01

    Electric vehicles have been seen by some policymakers as a tool to target reductions in greenhouse gas emissions.1,2 Some researchers have shown that the full environmental impact of electric vehicles depends very much on the cleanliness of the electricity grid.3 In countries such as the USA and China, where coal-fired power plants still play a very important role in electricity generation, the environmental impact of electric vehicles is equivale...

  15. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  16. New, efficient and viable system for ethanol fuel utilization on combined electric/internal combustion engine vehicles

    Science.gov (United States)

    Sato, André G.; Silva, Gabriel C. D.; Paganin, Valdecir A.; Biancolli, Ana L. G.; Ticianelli, Edson A.

    2015-10-01

    Although ethanol can be directly employed as fuel on polymer-electrolyte fuel cells (PEMFC), its low oxidation kinetics in the anode and the crossover to the cathode lead to a substantial reduction of energy conversion efficiency. However, when fuel cell driven vehicles are considered, the system may include an on board steam reformer for converting ethanol into hydrogen, but the hydrogen produced contains carbon monoxide, which limits applications in PEMFCs. Here, we present a system consisting of an ethanol dehydrogenation catalytic reactor for producing hydrogen, which is supplied to a PEMFC to generate electricity for electric motors. A liquid by-product effluent from the reactor can be used as fuel for an integrated internal combustion engine, or catalytically recycled to extract more hydrogen molecules. Power densities comparable to those of a PEMFC operating with pure hydrogen are attained by using the hydrogen rich stream produced by the ethanol dehydrogenation reactor.

  17. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  18. Manitoba plug-in hybrid electric vehicle (PHEV) demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hoemsen, R. [Red River College, Winnipeg, MB (Canada); Parsons, R. [Government of Manitoba, Winnipeg, MB (Canada). Centre for Emerging Renewable Energy

    2010-07-01

    Manitoba has low electricity rates, the highest proportion of renewables, and a legislated commitment to reduce greenhouse gases. However, the province still relies heavily on oil as everyone else. The mix of energy opportunities in Manitoba were highlighted in this presentation, with particular reference to the commercialization of electric vehicles. Several photographs were presented of the Toyota plug-in hybrid vehicle and a plug-in hybrid electric demonstration vehicle. A demonstration project overview was offered that used technology from A123 Systems Inc. The conversion module and vehicle users were profiled. Topics that were presented related to the demonstration project included monitoring; gasoline fuel economy results; fuel economy variability; cold weather operation; cold weather issues; battery upgrade solutions; and highly qualified personnel. It was concluded that in terms of follow-up, there is a need to combine findings of current plug-in hybrid electric vehicle demonstration with those for the new Toyota production plug-in hybrid vehicles. Key next steps for the demonstration are to address cabin heating requirements; better characterizing winter performance; and implementation of IPLC units on all plug-in hybrid electric vehicles for electricity consumption. figs.

  19. All Electric Passenger Vehicle Sales in India by 2030: Value proposition to Electric Utilities, Government, and Vehicle Owners

    Energy Technology Data Exchange (ETDEWEB)

    Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gopal, Anand R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sheppard, Colin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-20

    In India, there is growing interest among policymakers, planners, and regulators for aggressive electrification of passenger vehicles. For example, Piyush Goyal, the Minister of State for India’s Ministry of Coal, Power, New and Renewable Energy, announced an aspirational goal of converting all vehicle sales in India to battery electric vehicles (BEVs) by 2030 (Economic Times, 2016). In 2012, India has already announced the National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020 (DHI, 2012). A major policy motivation for transport electrification is to reduce India’s oil import dependency. The objective of this paper is to assess the effect of full electrification of vehicle sales in India by 2030 on the key stakeholders such as BEV owners, electric utilities, and the government. Specifically, we attempt to answer the following questions: (a) How does the total vehicle ownership cost of BEVs compare with the conventional vehicles? (b) What is the additional load due BEV charging? (c) What is the impact on the power sector investments, costs, and utility revenue? (d) How can smart BEV charging help renewable energy grid integration? (e) What is the impact on the crude oil imports? (f) What is the impact on the greenhouse gas (GHG) emissions?

  20. Development of quick charging system for electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Anegawa, Takafumi

    2010-09-15

    Despite low environmental impact and high energy efficiency, electric vehicles (EV) have not been widely accepted. The lack of charging infrastructure is one reason. Since lithium-ion battery has high energy density and low internal resistance that allows quick charging, the convenience of EV may be greatly improved if charging infrastructure is prepared adequately. TEPCO aims for EV spread to reduce CO2 emissions and to increase demand for electric power, and has developed quick charging system for fleet-use EV to improve the convenience of EV. And based on research results, we will propose desirable characteristics of quick charger for public use.

  1. Electric Vehicle Careers: On the Road to Change

    Science.gov (United States)

    Hamilton, James

    2012-01-01

    Many occupations related to electric vehicles are similar to those that help to make and maintain all types of automobiles. But the industry is also adding some nontraditional jobs, and workers' skill sets must evolve to keep up. This article describes careers related to electric vehicles. The first section is about the electric vehicle industry…

  2. Generator voltage stabilisation for series-hybrid electric vehicles.

    Science.gov (United States)

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  3. Real-Time Vehicle Energy Management System Based on Optimized Distribution of Electrical Load Power

    Directory of Open Access Journals (Sweden)

    Yuefei Wang

    2016-10-01

    Full Text Available As a result of severe environmental pressure and stringent government regulations, refined energy management for vehicles has become inevitable. To improve vehicle fuel economy, this paper presents a bus-based energy management system for the electrical system of internal combustion engine vehicles. Both the model of an intelligent alternator and the model of a lead-acid battery are discussed. According to these models, the energy management for a vehicular electrical system is formulated as a global optimal control problem which aims to minimize fuel consumption. Pontryagin’s minimum principle is applied to solve the optimal control problem to realize a real-time control strategy for electrical energy management in vehicles. The control strategy can change the output of the intelligent alternator and the battery with the changes of electrical load and driving conditions in real-time. Experimental results demonstrate that, compared to the traditional open-loop control strategy, the proposed control strategy for vehicle energy management can effectively reduce fuel consumption and the fuel consumption per 100 km is decreased by approximately 1.7%.

  4. Electric vehicle charge patterns and the electricity generation mix and competitiveness of next generation vehicles

    International Nuclear Information System (INIS)

    Masuta, Taisuke; Murata, Akinobu; Endo, Eiichi

    2014-01-01

    Highlights: • The energy system of whole of Japan is analyzed in this study. • An advanced model based on MARKAL is used for the energy system analysis. • The impact of charge patterns of EVs on electricity generation mix is evaluated. • Technology competitiveness of the next generation vehicles is also evaluated. - Abstract: The nuclear accident of 2011 brought about a reconsideration of the future electricity generation mix of power systems in Japan. A debate on whether to phase out nuclear power plants and replace them with renewable energy sources is taking place. Demand-side management becomes increasingly important in future Japanese power systems with a large-scale integration of renewable energy sources. This paper considers the charge control of electric vehicles (EVs) through demand-side management. There have been many studies of the control or operation methods of EVs known as vehicle-to-grid (V2G), and it is important to evaluate both their short-term and long-term operation. In this study, we employ energy system to evaluate the impact of the charge patterns of EVs on both the electricity generation mix and the technology competitiveness of the next generation vehicles. An advanced energy system model based on Market Allocation (MARKAL) is used to consider power system control in detail

  5. Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  6. Electric drive choices for light, medium, and heavy duty vehicles to reduce their climate change impact in Canada

    International Nuclear Information System (INIS)

    Fitzpatrick, N.P.

    2009-01-01

    The evolution of electric drive technologies from 1988, at the 9 th International Electric Vehicle Symposium (EVS 9) in Toronto, to 2007 at EVS 23 in Anaheim, is described. Total hybridization of Canada's fleet of light, medium and heavy duty vehicles would result in greenhouse reductions savings of 30 Mt of CO 2 E per year, similar to the saving from a 25% reduction in vehicle weight. Further savings in greenhouse reductions from plug-in hybrids require a battery cost similar to that needed for electric vehicles. Further development of both ultracapacitors and batteries is needed as is work on other parts of the electric drive supply chain. (author)

  7. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov (United States)

    . Fueling and Driving Options Plug-in hybrid electric vehicle batteries can be charged by an outside sized hybrid electric vehicle. If the vehicle is driven a shorter distance than its all-electric range drives the wheels almost all of the time, but the vehicle can switch to work like a parallel hybrid at

  8. Natural graphite demand and supply - Implications for electric vehicle battery requirements

    Science.gov (United States)

    Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.

    2016-01-01

    Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.

  9. Analysis of electric vehicles measurements

    NARCIS (Netherlands)

    Vonk, B.M.J.; Geldtmeijer, D.A.M.; Slootweg, J.G.

    2013-01-01

    Electric vehicles are expected to have a significant impact on electricity grids. Intelligent charging strategies are suggested by literature and tested in the field to prevent overloading of network assets in electricity grids by using the flexibility of electro-mobility. This paper covers an

  10. Positive impact of electric vehicle and ngv on environment

    International Nuclear Information System (INIS)

    Shahidul I Khan; Kannan, K.S.; Md Shah Majid

    1999-01-01

    Electric Vehicle uses electricity from batteries as fuel and is environment friendly with zero emission. The occurrence of haze in 1997 in Malaysia and neighbouring countries has called for new studies about motor vehicle emission as it aggravates the problem. In big cities like Kuala Lumpur, Penang and Johor Bahru where it is estimated that over 300,000 vehicles enter the city everyday, smoke pollution from vehicles is identified as the major contributor to air quality. One of the solutions to air pollution problem could be the use of Electric Vehicles (EV) and Natural Gas for Vehicle (NGV). The NGV uses compressed natural gas mainly methane, is lead free and clean burning with low emission. The electric vehicles use batteries as power source. These batteries are charged off-peak hour, specifically after mid-night when the electric load curve has its least demand period. The number of electric vehicles and NGV in future years is calculated considering the penetration level. The reduction in pollution is estimated considering the number of automobiles replaced by electric vehicles and NGV. Finally, it is concluded that EV and NGV could be the ultimate solution for pollution control and could improve the environment specifically that of congested cities of Malaysia. (Author)

  11. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Science.gov (United States)

    primary fuel or to improve the efficiency of conventional vehicle designs. Hybrid Electric Vehicles Icon cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost

  12. Performance of a Battery Electric Vehicle in the Cold Climate and Hilly Terrain of Vermont

    Science.gov (United States)

    2008-12-23

    The goal of this research project was to determine the performance of a battery electric vehicle (BEV) in the cold climate and hilly terrain of Vermont. For this study, a 2005 Toyota Echo was converted from an internal combustion engine (ICE) vehicle...

  13. A General Overview of Electric Road Vehicles

    International Nuclear Information System (INIS)

    Lamblin, Veronique

    2018-01-01

    In July 2017 Nicolas Hulot, the French Minister of Ecological and Inclusive Transition, presented a climate plan featuring an end to electricity generation from coal by 2022, a reduction in the nuclear component of electricity supply by one third, a total ban on the sale of petrol or diesel cars by 2040 and an incentive scheme designed gradually to remove polluting vehicles from the roads. Other European partners are following suit and promoting the spread of electric vehicles (Norway, Germany, Netherlands etc.). Yet is this the panacea that will meet the targets for greenhouse gas reduction in the battle against climate change? Futuribles examines the question in this issue with two articles: the first of these by Pierre Bonnaure, above, assesses the forces driving the spread of electric cars and the impediments to that process; this second article by Veronique Lamblin offers a general over - view of electric road vehicles (passenger cars, heavy good vehicles, bicycles etc.) throughout the world. (author)

  14. The multi-depot electric vehicle location routing problem with time windows

    Directory of Open Access Journals (Sweden)

    Juan Camilo Paz

    2018-01-01

    Full Text Available In this paper, the Multi-Depot Electric Vehicle Location Routing Problem with Time Windows (MDVLRP is addressed. This problem is an extension of the MDVLRP, where electric vehicles are used instead of internal combustion engine vehicles. The recent development of this model is explained by the advantages of this technology, such as the diminution of carbon dioxide emissions, and the support that they can provide to the design of the logistic and energy-support structure of electric vehicle fleets. There are many models that extend the classical VRP model to take electric vehicles into consideration, but the multi-depot case for location-routing models has not been worked out yet. Moreover, we consider the availability of two energy supply technologies: the “Plug-in” Conventional Charge technology, and Battery Swapping Stations; options in which the recharging time is a function of the amount of energy to charge and a fixed time, respectively. Three models are proposed: one for each of the technologies mentioned above, and another in which both options are taken in consideration. The models were solved for small scale instances using C++ and Cplex 12.5. The results show that the models can be used to design logistic and energy-support structures, and compare the performance of the different options of energy supply, as well as measure the impact of these decisions on the overall distance traveled or other optimization objectives that could be worked on in the future.

  15. Vehicle surge detection and pathway discrimination by pedestrians who are blind: Effect of adding an alert sound to hybrid electric vehicles on performance.

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-05-01

    This study examined the effect of adding an artificially generated alert sound to a quiet vehicle on its detectability and localizability with 15 visually impaired adults. When starting from a stationary position, the hybrid electric vehicle with an alert sound was significantly more quickly and reliably detected than either the identical vehicle without such added sound or the comparable internal combustion engine vehicle. However, no significant difference was found between the vehicles in respect to how accurately the participants could discriminate the path of a given vehicle (straight vs. right turn). These results suggest that adding an artificial sound to a hybrid electric vehicle may help reduce delay in street crossing initiation by a blind pedestrian, but the benefit of such alert sound may not be obvious in determining whether the vehicle in his near parallel lane proceeds straight through the intersection or turns right in front of him.

  16. Medium Duty Electric Vehicle Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, Robin J. D. [Smith Electric Vehicles Corporation, Kansas City, MO (United States)

    2015-05-31

    The Smith Electric Vehicle Demonstration Project (SDP) was integral to the Smith business plan to establish a manufacturing base in the United States (US) and produce a portfolio of All Electric Vehicles (AEV’s) for the medium duty commercial truck market. Smith focused on the commercial depot based logistics market, as it represented the market that was most ready for the early adoption of AEV technology. The SDP enabled Smith to accelerate its introduction of vehicles and increase the size of its US supply chain to support early market adoption of AEV’s that were cost competitive, fully met the needs of a diverse set of end users and were compliant with Federal safety and emissions requirements. The SDP accelerated the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, reduce vehicular emissions of greenhouse gases (GHG), and increase US jobs.

  17. EV City Casebook: A Look At The Global Electric Vehicle Movement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Electric vehicles (EVs) hold the potential of transforming the way the world moves. EVs can increase energy security by diversifying the fuel mix and decreasing dependence on petroleum, while also reducing emissions of greenhouse gases and other pollutants. Just as important, EVs can unlock innovation and create new advanced industries that spur job growth and enhance economic prosperity. However, the mass deployment of EVs will require transportation systems capable of integrating and fostering this new technology. To accelerate this transition, cities and metropolitan regions around the world are creating EV-friendly ecosystems and building the foundation for widespread adoption. In recognition of the importance of urban areas in the introduction and scale-up of electric vehicles, the EV City Casebook presents informative case studies on city and regional EV deployment efforts around the world. These case studies are illustrative examples of how pioneering cities are preparing the ground for mass market EV deployment. They offer both qualitative and quantitative information on cities' EV goals, progress, policies, incentives, and lessons learned to date. The purpose of the EV City Casebook is to share experiences on EV demonstration and deployment, identify challenges and opportunities, and highlight best practices for creating thriving EV ecosystems. These studies seek to enhance understanding of the most effective policy measures to foster the uptake of electric vehicles in urban areas. The cities represented here are actively engaging in a variety of initiatives that share the goal of accelerating EV adoption. This publication is the result of an effort to coordinate those initiatives and provide a global perspective on the electric vehicle movement. This international knowledge-sharing network consists of the Electric Vehicles Initiative (EVI), a multi-government initiative of the Clean Energy Ministerial; Project Get Ready, a Rocky Mountain Institute (RMI

  18. EV City Casebook: A Look At The Global Electric Vehicle Movement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Electric vehicles (EVs) hold the potential of transforming the way the world moves. EVs can increase energy security by diversifying the fuel mix and decreasing dependence on petroleum, while also reducing emissions of greenhouse gases and other pollutants. Just as important, EVs can unlock innovation and create new advanced industries that spur job growth and enhance economic prosperity. However, the mass deployment of EVs will require transportation systems capable of integrating and fostering this new technology. To accelerate this transition, cities and metropolitan regions around the world are creating EV-friendly ecosystems and building the foundation for widespread adoption. In recognition of the importance of urban areas in the introduction and scale-up of electric vehicles, the EV City Casebook presents informative case studies on city and regional EV deployment efforts around the world. These case studies are illustrative examples of how pioneering cities are preparing the ground for mass market EV deployment. They offer both qualitative and quantitative information on cities' EV goals, progress, policies, incentives, and lessons learned to date. The purpose of the EV City Casebook is to share experiences on EV demonstration and deployment, identify challenges and opportunities, and highlight best practices for creating thriving EV ecosystems. These studies seek to enhance understanding of the most effective policy measures to foster the uptake of electric vehicles in urban areas. The cities represented here are actively engaging in a variety of initiatives that share the goal of accelerating EV adoption. This publication is the result of an effort to coordinate those initiatives and provide a global perspective on the electric vehicle movement. This international knowledge-sharing network consists of the Electric Vehicles Initiative (EVI), a multi-government initiative of the Clean Energy Ministerial; Project Get Ready, a Rocky Mountain Institute

  19. Regulatory adaptation: Accommodating electric vehicles in a petroleum world

    International Nuclear Information System (INIS)

    Lutsey, Nicholas; Sperling, Daniel

    2012-01-01

    This paper addresses the policy challenges of adjusting established regulations to accommodate evolving and new technologies. We examine energy and emissions regulations for older petroleum powered vehicles and newer plug-in electric vehicles. Until now, vehicle regulations across the world have ignored energy consumption and emissions upstream of the vehicle (at refineries, pipelines, etc), largely because of the convenient fact that upstream emissions and energy use are nearly uniform across petroleum-fueled vehicles and play a relatively minor role in total lifecycle emissions. Including upstream impacts would greatly complicate the regulations. But because the vast majority of emissions and energy consumption for electric vehicles (and hydrogen and, to a lesser extent, biofuels) are upstream, the old regulatory design is no longer valid. The pressing regulatory question is whether to assign upstream GHG emissions to electric vehicles, or not, and if so, how. We find that assigning zero upstream emissions—as a way of incentivizing the production and sale of PEVs—would eventually lead to an erosion of 20% of the GHG emission benefits from new vehicles, assuming fixed vehicle standards. We suggest alternative policy mechanisms and strategies to account for upstream emissions and energy use. - Highlights: ► We quantify the effects of electric vehicles within greenhouse gas (GHG) regulation. ► Electric vehicle GHG impacts are substantial and vary greatly by grid power sources. ► Existing “zero emission” electric vehicle incentives undermine regulation benefits. ► 10% electric vehicle sales leads to 20% erosion in regulation benefits by 2020–2025. ► Lifecycle crediting improves policy cost-effectiveness and technology neutrality.

  20. Oak Ridge National Laboratory Wireless Charging of Electric Vehicles - CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Campbell, Steven L [ORNL; Seiber, Larry Eugene [ORNL; White, Cliff P [ORNL; Chinthavali, Madhu Sudhan [ORNL; Tang, Lixin [ORNL; Chambon, Paul H [ORNL; Ozpineci, Burak [ORNL; Smith, David E [ORNL

    2016-06-20

    Wireless power transfer (WPT) is a paradigm shift in electric-vehicle (EV) charging that offers the consumer an autonomous, safe, and convenient option to conductive charging and its attendant need for cables. With WPT, charging process can be fully automated due to the vehicle and grid side radio communication systems, and is non-contacting; therefore issues with leakage currents, ground faults, and touch potentials do not exist. It also eliminates the need for touching the heavy, bulky, dirty cables and plugs. It eliminates the fear of forgetting to plug-in and running out of charge the following day and eliminates the tripping hazards in public parking lots and in highly populated areas such as shopping malls, recreational areas, parking buildings, etc. Furthermore, the high-frequency magnetic fields employed in power transfer across a large air gap are focused and shielded, so that fringe fields (i.e., magnetic leakage/stray fields) attenuate rapidly over a transition region to levels well below limits set by international standards for the public zone (which starts at the perimeter of the vehicle and includes the passenger cabin). Oak Ridge National Laboratory s approach to WPT charging places strong emphasis on radio communications in the power regulation feedback channel augmented with software control algorithms. The over-arching goal for WPT is minimization of vehicle on-board complexity by keeping the secondary side content confined to coil tuning, rectification, filtering, and interfacing to the regenerative energy-storage system (RESS). This report summarizes the CRADA work between the Oak Ridge National Laboratory and the Toyota Research Institute of North America, Toyota Motor Engineering and Manufacturing North America (TEMA) on the wireless charging of electric vehicles which was funded by Department of Energy under DE-FOA-000667. In this project, ORNL is the lead agency and Toyota TEMA is one of the major partners. Over the course of the project

  1. Electric-hybrid-vehicle simulation

    Science.gov (United States)

    Pasma, D. C.

    The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.

  2. Using fleets of electric-drive vehicles for grid support

    International Nuclear Information System (INIS)

    Tomic, Jasna; Kempton, Willett

    2007-01-01

    Electric-drive vehicles can provide power to the electric grid when they are parked (vehicle-to-grid power). We evaluated the economic potential of two utility-owned fleets of battery-electric vehicles to provide power for a specific electricity market, regulation, in four US regional regulation services markets. The two battery-electric fleet cases are: (a) 100 Th.nk City vehicle and (b) 252 Toyota RAV4. Important variables are: (a) the market value of regulation services, (b) the power capacity (kW) of the electrical connections and wiring, and (c) the energy capacity (kWh) of the vehicle's battery. With a few exceptions when the annual market value of regulation was low, we find that vehicle-to-grid power for regulation services is profitable across all four markets analyzed. Assuming now more than current Level 2 charging infrastructure (6.6 kW) the annual net profit for the Th.nk City fleet is from US$ 7000 to 70,000 providing regulation down only. For the RAV4 fleet the annual net profit ranges from US$ 24,000 to 260,000 providing regulation down and up. Vehicle-to-grid power could provide a significant revenue stream that would improve the economics of grid-connected electric-drive vehicles and further encourage their adoption. It would also improve the stability of the electrical grid. (author)

  3. Electric Vehicle Service Personnel Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Gerald

    2013-06-21

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty

  4. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    OpenAIRE

    Ming Cheng; Le Sun; Giuseppe Buja; Lihua Song

    2015-01-01

    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator perm...

  5. Fast Charging Electric Vehicle Research & Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment

  6. The Federal electric and hybrid vehicle program

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The commercial development and use of electric and hybrid vehicles is discussed with respect to its application as a possible alternative transportation system. A market demonstration is described that seeks to place 10,000 electric hybrid vehicles into public and private sector demonstrations.

  7. Electric Vehicle Grid Integration | Transportation Research | NREL

    Science.gov (United States)

    Electric Vehicle Grid Integration Electric Vehicle Grid Integration Illustration of a house with a in the garage, is connected via a power cord to a household outlet. A sustainable transportation sustainable transportation technologies to increase the capacity, efficiency, and stability of the grid

  8. Grid Frequency Support by Single-Phase Electric Vehicles: Fast Primary Control Enhanced by a Stabilizer Algorithm

    DEFF Research Database (Denmark)

    Zecchino, Antonio; Rezkalla, Michel M.N.; Marinelli, Mattia

    2016-01-01

    Electric vehicles are growing in popularity as a zero emission and efficient mode of transport against traditional internal combustion engine-based vehicles. Considerable as flexible distributed energy storage systems, by adjusting the battery charging process they can potentially provide different...... ancillary services for supporting the power grid. This paper presents modeling and analysis of the benefits of primary frequency regulation by electric vehicles in a microgrid. An innovative control logic algorithm is introduced, with the purpose of curtailing the number of current set-point variations...

  9. Hybrid electric vehicles energy management strategies

    CERN Document Server

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  10. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle

    International Nuclear Information System (INIS)

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-01

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver’s seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm. (paper)

  11. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle.

    Science.gov (United States)

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-07

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.

  12. Parametric analysis of technology and policy tradeoffs for conventional and electric light-duty vehicles

    International Nuclear Information System (INIS)

    Barter, Garrett E.; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A.; West, Todd H.; Manley, Dawn K.; Guzman, Katherine D.; Edwards, Donna M.

    2012-01-01

    A parametric analysis is used to examine the supply demand interactions between the US light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through 2050. The analysis emphasizes competition between conventional internal combustion engine (ICE) vehicles, including hybrids, and electric vehicles (EVs), represented by both plug-in hybrid and battery electric vehicles. We find that EV market penetration could double relative to our baseline case with policies to extend consumers' effective payback period to 7 years. EVs can also reduce per vehicle petroleum consumption by up to 5% with opportunities to increase that fraction at higher adoption rates. However, EVs have limited ability to reduce LDV greenhouse gas (GHG) emissions with the current energy source mix. Alone, EVs cannot drive compliance with the most aggressive GHG emission reduction targets, even if the electricity grid shifts towards natural gas powered sources. Since ICEs will dominate the LDV fleet for up to 40 years, conventional vehicle efficiency improvements have the greatest potential for reductions in LDV GHG emissions and petroleum consumption over this time. Specifically, achieving fleet average efficiencies of 72 mpg or greater can reduce average GHG emissions by 70% and average petroleum consumption by 81%. - Highlights: ► Parametric analysis of the light duty vehicle fleet, its fuels, and energy sources. ► Conventional vehicles will dominate the fleet for up to 40 years. ► Improving gasoline powertrain efficiency is essential for GHG and oil use reduction. ► Electric vehicles have limited leverage over GHG emissions with the current grid mix. ► Consumer payback period extensions can double electric vehicle market share.

  13. Evaluation of Fuel-Cell Range Extender Impact on Hybrid Electrical Vehicle Performance

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Schaltz, Erik; Koustrup, Per Sune

    2013-01-01

    The use of electric vehicles (EVs) is advantageous because of zero emission, but their market penetration is limited by one disadvantage, i.e., energy storage. Battery EVs (BEVs) have a limited range, and their batteries take a long time to charge, compared with the time it takes to refuel the tank...... of a vehicle with an internal combustion engine (ICE). Fuel cells (FCs) can be added to an EV as an additional energy source. These are faster to refill and will therefore facilitate the transition from vehicles running on fossil fuel to electricity. Different EV setups with FC strategies are presented...... in start/stop city cycles. Simulations with the New European Driving Cycle (NEDC) showed that efficiency fell by at least 15% for the FC hybrid EV (FCHEV) when compared with BEVs....

  14. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  15. Analysis of Wheel Hub Motor Drive Application in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Sun Yuechao

    2017-01-01

    Full Text Available Based on the comparative analysis of the performance characteristics of centralized and distributed drive electric vehicles, we found that the wheel hub motor drive mode of the electric vehicles with distributed drive have compact structure, high utilization ratio of interior vehicle space, lower center of vehicle gravity, good driving stability, easy intelligent control and many other advantages, hence in line with the new requirements for the development of drive performance of electric vehicles, and distributed drive will be the ultimate mode of electric vehicles in the future.

  16. Electric Motor-Generator for a Hybrid Electric Vehicle

    OpenAIRE

    Odvářka, Erik; Mebarki, Abdeslam; Gerada, David; Brown, Neil; Ondrůšek, Čestmír

    2009-01-01

    Several topologies of electrical machines can be used to meet requirements for application in a hybrid electric vehicle. This paper describes process of an electric motor-generator selection, considering electromagnetic, thermal and basic control design. The requested electrical machine must develop 45 kW in continuous operation at 1300 rpm with field weakening capability up to 2500 rpm. Both radial and axial flux topologies are considered as potential candidates. A family of axial flux machi...

  17. Research and development of electric vehicles for clean transportation.

    Science.gov (United States)

    Wada, Masayoshi

    2009-01-01

    This article presents the research and development of an electric vehicle (EV) in Department of Human-Robotics Saitama Institute of Technology, Japan. Electric mobile systems developed in our laboratory include a converted electric automobile, electric wheelchair and personal mobile robot. These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles, i.e., batteries and electric motors, does not deteriorate the environment. To drive motors for vehicle traveling, robotic technologies were applied.

  18. Panorama 2017 - Development of electric vehicle: where are we now?

    International Nuclear Information System (INIS)

    Ternel, Cyprien

    2016-09-01

    Electric vehicles - a term which refers to battery electric vehicles (BEV) and plug-in hybrid vehicles (PHEV) - are regarded as one way to lower energy costs and reduce the environmental impact of transport. While mild or full hybrid vehicles are gradually becoming more widespread, the market for electric vehicles is still developing. While the symbolic threshold of one million electric vehicles in circulation worldwide was surpassed in 2015 and sales are increasing from year to year, certain limitations could nevertheless hinder this growth. High purchase prices, the need to establish incentive-based public policies to significantly increase sales, and vehicle range are challenges to overcome before electric vehicles become a sustainable part of the world's automobile fleet. This memorandum takes stock of this specific market and highlights the reasons to believe in its continued progress. It mainly discusses private vehicles (including micro-cars) and utility vehicles, but a specific section is dedicated to mopeds and motorbikes

  19. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  20. How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption

    International Nuclear Information System (INIS)

    Reynolds, C; Kandlikar, M

    2007-01-01

    An increasingly diverse set of hybrid-electric vehicles (HEVs) is now available in North America. The recent generation of HEVs have higher fuel consumption, are heavier, and are significantly more powerful than the first generation of HEVs. We compare HEVs for sale in the United States in 2007 to equivalent conventional vehicles and determine how vehicle weight and system power affects fuel consumption within each vehicle set. We find that heavier and more powerful hybrid-electric vehicles are eroding the fuel consumption benefit of this technology. Nonetheless, the weight penalty for fuel consumption in HEVs is significantly lower than in equivalent conventional internal combustion engine vehicles (ICEVs). A 100 kg change in vehicle weight increases fuel consumption by 0.7 l/100 km in ICEVs compared with 0.4 l/100 km in HEVs. When the HEVs are compared with their ICEV counterparts in an equivalence model that differentiates between cars and sports-utility vehicles, the average fuel consumption benefit was 2.7 l/100 km. This analysis further reveals that a HEV which is 100 kg heavier than an identical ICEV would have a fuel consumption penalty of 0.15 l/100 km. Likewise, an increase in the HEV's power by 10 kW results in a fuel consumption penalty of 0.27 l/100 km

  1. Towards low energy mobility using light and ultralight electric vehicles

    OpenAIRE

    Van den Bossche, Alex; Sergeant, Peter; Hofman, Isabelle

    2012-01-01

    Electrical vehicles are seriously considered today. However their energy needs depend seriously on the way how they are designed, ranging from electric bicycles to the electrical utility vehicle, it can differ from 1kWh to more than 20kWh/100km. One can look at the problem if it is better to use compressed natural gas in a vehicle directly or is it better to make electricity first and use that electricity in an electric vehicle. A special attention is given to the development of ultra-ligh...

  2. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    International Nuclear Information System (INIS)

    Morais, H.; Sousa, T.; Soares, J.; Faria, P.; Vale, Z.

    2015-01-01

    Highlights: • Definition fuel shifting demand response programs applied to the electric vehicles. • Integration of the proposed fuel shifting in energy resource management algorithm. • Analysis of fuel shifting contribution to support the consumption increasing. • Analysis of fuel shifting contribution to support the electric vehicles growing. • Sensitivity analysis considering different electric vehicles penetration levels. - Abstract: In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required

  3. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  4. The influence of battery degradation level on the selected traction parameters of a light-duty electric vehicle

    Science.gov (United States)

    Juda, Z.; Noga, M.

    2016-09-01

    The article describes results of an analysis of the impact of degradation level of battery made in lead-acid technology on selected traction parameters of an electric light duty vehicle. Lead-acid batteries are still used in these types of vehicles. They do not require complex systems of performance management and monitoring and are easy to maintaining. Despite the basic disadvantage, which is the low value of energy density, low price is a decisive factor for their use in low-speed electric vehicles. The process of aging of the battery related with an increase in internal resistance of the cells and the loss of electric capacity of the battery was considered. A simplified model of cooperation of the DC electric motor with the battery assuming increased internal resistance was presented. In the paper the results of comparative traction research of the light-duty vehicle equipped with a set of new batteries and set of batteries having a significant degradation level were showed. The analysis of obtained results showed that the correct exploitation of the battery can slow down the processes of degradation and, thus, extend battery life cycle.

  5. Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple

    Science.gov (United States)

    Gutmann, Günter

    In the advance of fuel cell electric vehicles (EV), hybrid electric vehicles (HEV) can contribute to reduced emissions and energy consumption of personal cars as a short term solution. Trade-offs reveal better emission control for series hybrid vehicles, while parallel hybrid vehicles with different drive trains may significantly reduce fuel consumption as well. At present, costs and marketing considerations favor parallel hybrid vehicles making use of small, high power batteries. With ultra high power density cells in development, exceeding 1 kW/kg, high power batteries can be provided by adapting a technology closely related to consumer cell production. Energy consumption and emissions may benefit from regenerative braking and smoothing of the internal combustion engine (ICE) response as well, with limited additional battery weight. High power supercapacitors may assist the achievement of this goal. Problems to be solved in practice comprise battery management to assure equilibration of individual cell state-of-charge for long battery life without maintenance, and efficient strategies for low energy consumption.

  6. Electric vehicle speed control

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W.R.; Mc Auliffe, G.N.; Schlageter, G.A.

    1987-06-23

    This patent describes an electric vehicle driven by a DC motor. The vehicle has a field winding, an electric resistance element in circuit with the field winding, a switch in the circuit operative when closed to place. The element in parallel with the field winding weakens the field and increases potential motor speed. Also are relay means for operating the switch, means to determine motor speed, computer means for determining whether the motor speed is increasing or decreasing, and means for operating the relay means to close the switch at a first speed. If the motor speed is increased, it actuates the switch at a second speed lower than the first speed but only if switch has been closed previously and motor speed is decreasing.

  7. OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2016-01-01

    Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.

  8. 0-6763 : accounting for electric vehicles in air quality conformity.

    Science.gov (United States)

    2014-08-01

    Electric vehicles (EVs) are broadly defined as : vehicles that obtain at least a part of the energy : required for their propulsion from electricity. This : research focused on the three main types of EVs: : Hybrid electric vehicles. : Plug-i...

  9. Alkaline batteries for hybrid and electric vehicles

    Science.gov (United States)

    Haschka, F.; Warthmann, W.; Benczúr-Ürmössy, G.

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g., nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries.

  10. Alkaline batteries for hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Haschka, F.; Warthmann, W.; Benczur-Uermoessy, G. [DAUG Deutsche Automobilgesellschaft, Esslingen (Germany)

    1998-03-30

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g. nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries. (orig.)

  11. Scheduling and location issues in transforming service fleet vehicles to electric vehicles

    DEFF Research Database (Denmark)

    Mirchandani, Pitu; Madsen, Oli B.G.; Adler, Jonathan

    There is much reason to believe that fleets of service vehicles of many organizations will transform their vehicles that utilize alternative fuels which are more sustainable. The electric vehicle is a good candidate for this transformation, especially which “refuels” by exchanging its spent...... batteries with charged ones. This paper discusses the issues that must be addressed if a transit service were to use electric vehicles, principally the issues related to the limited driving range of each electric vehicle’s set of charged batteries and the possible detouring for battery exchanges....... In particular, the paper addresses the optimization and analysis of infrastructure design alternatives dealing with (1) the number of battery-exchange stations, (2) their locations, (3) the recharging capacity and inventory management of batteries at each facility, and (4) routing and scheduling of the fleet...

  12. China’s electric vehicle subsidy scheme: Rationale and impacts

    International Nuclear Information System (INIS)

    Hao, Han; Ou, Xunmin; Du, Jiuyu; Wang, Hewu; Ouyang, Minggao

    2014-01-01

    To promote the market penetration of electric vehicles (EV), China launched the Electric Vehicle Subsidy Scheme (EVSS) in Jan 2009, followed by an update in Sep 2013, which we named phase I and phase II EVSS, respectively. In this paper, we presented the rationale of China’s two-phase EVSS and estimated their impacts on EV market penetration, with a focus on the ownership cost analysis of battery electric passenger vehicles (BEPV). Based on the ownership cost comparison of five defining BEPV models and their counterpart conventional passenger vehicle (CPV) models, we concluded that in the short term, especially before 2015, China’s EVSS is very necessary for BEPVs to be cost competitive compared with CPVs. The transition from phase I to phase II EVSS will generally reduce subsidy intensity, thus resulting in temporary rise of BEPV ownership cost. However, with the decrease of BEPV manufacturing cost, the ownership cost of BEPV is projected to decrease despite of the phase-out mechanism under phase II EVSS. In the mid term of around 2015–2020, BEPV could become less or not reliant on subsidy to maintain cost competitiveness. However, given the performance disadvantages of BEPV, especially the limited electric range, China’s current EVSS is not sufficient for the BEPV market to take off. Technology improvement associated with battery cost reduction has to play an essential role in starting up China’s BEPV market. - Highlights: • China’s phase I and phase II electric vehicle subsidy schemes were reviewed. • Major electric vehicle models in China’s vehicle market were reviewed. • The ownership costs of five defining electric passenger vehicle models were compared. • Policies to promote electric vehicle deployment in China were discussed

  13. Modular Electric Vehicle Program (MEVP). Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  14. Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT)

    Science.gov (United States)

    Consortium and Partners | Transportation Research | NREL Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) Consortium and Partners Computer-Aided Engineering for Electric -Drive Vehicle Batteries (CAEBAT) Consortium and Partners The Computer-Aided Engineering for Electric

  15. Comparison of Different Battery Types for Electric Vehicles

    Science.gov (United States)

    Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchiş, B.

    2017-10-01

    Battery powered Electric Vehicles are starting to play a significant role in today’s automotive industry. There are many types of batteries found in the construction of today’s Electric Vehicles, being hard to decide which one fulfils best all the most important characteristics, from different viewpoints, such as energy storage efficiency, constructive characteristics, cost price, safety and utilization life. This study presents the autonomy of an Electric Vehicle that utilizes four different types of batteries: Lithium Ion (Li-Ion), Molten Salt (Na-NiCl2), Nickel Metal Hydride (Ni-MH) and Lithium Sulphur (Li-S), all of them having the same electric energy storage capacity. The novelty of this scientific work is the implementation of four different types of batteries for Electric Vehicles on the same model to evaluate the vehicle’s autonomy and the efficiency of these battery types on a driving cycle, in real time, digitized by computer simulation.

  16. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  17. Near-term electric vehicle program: Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Rowlett, B. H.; Murry, R.

    1977-08-01

    A final report is given for an Energy Research and Development Administration effort aimed at a preliminary design of an energy-efficient electric commuter car. An electric-powered passenger vehicle using a regenerative power system was designed to meet the near-term ERDA electric automobile goals. The program objectives were to (1) study the parameters that affect vehicle performance, range, and cost; (2) design an entirely new electric vehicle that meets performance and economic requirements; and (3) define a program to develop this vehicle design for production in the early 1980's. The design and performance features of the preliminary (baseline) electric-powered passenger vehicle design are described, including the baseline power system, system performance, economic analysis, reliability and safety, alternate designs and options, development plan, and conclusions and recommendations. All aspects of the baseline design were defined in sufficient detail to verify performance expectations and system feasibility.

  18. Frequency-Control Reserves and Voltage Support from Electric Vehicles

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2013-01-01

    The increasing penetration of variable wind power generation units and electricity consumption in power systems demands additional ancillary services for its reliable operation. The battery storages of electric vehicles are one of the substitute solutions for replacing conventional fossil......-fuelled generators to supply future grid support functions. The quick start and fast response characteristics of battery storages enable the electric vehicles to provide most of the power system auxiliary tasks. This chapter discusses key ancillary services that could be supplied by electric vehicles to maintain...... the system balance in power systems with high volumes of wind power generation. To analyse the applications and performance of electric vehicles in supplying active power balancing services, the case studies simulated in wind-power-dominated Danish power systems are also presented....

  19. Canadians' perceptions of electric vehicle technology : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-03-15

    While Canadians seem to appreciate some of the possible benefits of electric vehicle technology (EVT), they generally lack knowledge or understanding of EVTs, in terms of how they operate and what types of EVT vehicles are currently available. This paper described the challenges associated with the adoption of EVT in Canada. In particular, it described a research program that was designed to assess Canadians' attitudes towards electric vehicle technology, in order to provide input into the development of a technology roadmap and its implementation plan, to provide input into communications plans and strategies to promote greater awareness and acceptance of the technology, and to establish baseline attitudinal indicators that could be tracked over time. Specifically, the objectives of the paper were to measure the Canadian public's levels of awareness, knowledge and comfort with EVTs; determine the motivators to adoption of EVT; determine the barriers to broader acceptance and market diffusion of EVT; and identify key group differences. Topics that were discussed included public awareness and knowledge of electric vehicle technology; and interest in plug-in hybrid vehicles and battery-electric vehicles, including perceived advantages and barriers. A profile of drivers consisted of a review of vehicle type; vehicle use profile; size of vehicle; considerations when choosing a vehicle; personal orientation to vehicle ownership; attitudes about vehicle choice; and attitudes about vehicles and air quality. Descriptions of the quantitative and qualitative methods employed in conducting the research, as well as the survey questionnaire and discussion guide were included as appendices. It was concluded that the small proportion of Canadian drivers who see vehicles as a form of personal expression are more likely to be interested in a future plug-in hybrid electric vehicles purchase or rental. tabs., figs., appendices.

  20. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Science.gov (United States)

    Conversions Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative

  1. The efficiency of direct torque control for electric vehicle behavior improvement

    Directory of Open Access Journals (Sweden)

    Gasbaoui Brahim

    2011-01-01

    Full Text Available Nowadays the electric vehicle motorization control takes a great interest of industrials for commercialized electric vehicles. This paper is one example of the proposed control methods that ensure both safety and stability the electric vehicle by the means of Direct Torque Control (DTC. For motion of the vehicle the electric drive consists of four wheels: two front ones for steering and two rear ones for propulsion equipped with two induction motors, due to their lightweight simplicity and high performance. Acceleration and steering are ensured by the electronic differential, permitting safe and reliable steering at any curve. The direct torque control ensures efficiently controlled vehicle. Electric vehicle direct torque control is simulated in MATLAB SIMULINK environment. Electric vehicle (EV demonstrated satisfactory results in all type of roads constraints: straight, ramp, downhill and bends.

  2. Assessing the cost-effectiveness of electric vehicles in European countries using integrated modeling

    International Nuclear Information System (INIS)

    Seixas, J.; Simões, S.; Dias, L.; Kanudia, A.; Fortes, P.; Gargiulo, M.

    2015-01-01

    Electric vehicles (EVs) are considered alternatives to internal combustion engines due to their energy efficiency and contribution to CO 2 mitigation. The adoption of EVs depends on consumer preferences, including cost, social status and driving habits, although it is agreed that current and expected costs play a major role. We use a partial equilibrium model that minimizes total energy system costs to assess whether EVs can be a cost-effective option for the consumers of each EU27 member state up to 2050, focusing on the impact of different vehicle investment costs and CO 2 mitigation targets. We found that for an EU-wide greenhouse gas emission reduction cap of 40% and 70% by 2050 vis-à-vis 1990 emissions, battery electric vehicles (BEVs) are cost-effective in the EU only by 2030 and only if their costs are 30% lower than currently expected. At the EU level, vehicle costs and the capability to deliver both short- and long-distance mobility are the main drivers of BEV deployment. Other drivers include each state’s national mobility patterns and the cost-effectiveness of alternative mitigation options, both in the transport sector, such as plug-in hybrid electric vehicles (PHEVs) or biofuels, and in other sectors, such as renewable electricity. - Highlights: • Electric vehicles were assessed through the minimization of the total energy systems costs. • EU climate policy targets could act as a major driver for PHEV adoption. • Battery EV is an option before 2030 if costs will drop by 30% from expected costs. • EV deployment varies per country depending on each energy system configuration. • Incentives at the country level should consider specific cost-effectiveness factors

  3. Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas

    International Nuclear Information System (INIS)

    Brady, John; O’Mahony, Margaret

    2016-01-01

    Highlights: • Development of a driving cycle to evaluate energy economy of electric vehicles. • Improves on existing driving cycles by using real world data from electric vehicles. • Driving data from different road types and traffic conditions included. - Abstract: Understanding real-world driving conditions in the form of driving cycles is instrumental in the design of efficient powertrains and energy storage systems for electric vehicles. In addition, driving cycles serve as a standardised measurement procedure for the certification of a vehicle’s fuel economy and driving range. They also facilitate the evaluation of the economic and lifecycle costs of emerging vehicular technologies. However, discrepancies between existing driving cycles and real-world driving conditions exist due to a number of factors such as insufficient data, inadequate driving cycle development methodologies and methods to assess the representativeness of developed driving cycles. The novel aspect of the work presented here is the use of real-world data from electric vehicles, over a six month period, to derive a driving cycle appropriate for their assessment. A stochastic and statistical methodology is used to develop and assess the representativeness of the driving cycle against a separate set of real world electric vehicle driving data and the developed cycle performs well in that comparison. Although direct comparisons with internal combustion engine driving cycles are not that informative or relevant due to the marked differences between how they and electric vehicles operate, some discussion around how the developed electric vehicle cycle relates to them is also included.

  4. A Comprehensive Study of Key Electric Vehicle (EV Components, Technologies, Challenges, Impacts, and Future Direction of Development

    Directory of Open Access Journals (Sweden)

    Fuad Un-Noor

    2017-08-01

    Full Text Available Electric vehicles (EV, including Battery Electric Vehicle (BEV, Hybrid Electric Vehicle (HEV, Plug-in Hybrid Electric Vehicle (PHEV, Fuel Cell Electric Vehicle (FCEV, are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in the future. EVs can cause significant impacts on the environment, power system, and other related sectors. The present power system could face huge instabilities with enough EV penetration, but with proper management and coordination, EVs can be turned into a major contributor to the successful implementation of the smart grid concept. There are possibilities of immense environmental benefits as well, as the EVs can extensively reduce the greenhouse gas emissions produced by the transportation sector. However, there are some major obstacles for EVs to overcome before totally replacing ICE vehicles. This paper is focused on reviewing all the useful data available on EV configurations, battery energy sources, electrical machines, charging techniques, optimization techniques, impacts, trends, and possible directions of future developments. Its objective is to provide an overall picture of the current EV technology and ways of future development to assist in future researches in this sector.

  5. Testing and development of electric vehicle batteries for EPRI Electric Transportation Program

    Science.gov (United States)

    1985-11-01

    Argonne National Laboratory conducted an electric-vehicle battery testing and development program for the Electric Power Research Institute. As part of this program, eighteen battery modules previously developed by Johnson Controls, Inc. were tested. This type of battery (EV-2300 - an improved state-of-the-art lead-acid battery) was designed specifically for improved performance, range, and life in electric vehicles. In order to obtain necessary performance data, the batteries were tested under various duty cycles typical of normal service. This program, supported by the Electric Power Research Institute, consisted of three tasks: determination of the effect of cycle life vs peak power and rest period, determination of the impact of charge method on cycle life, and evaluation of the EV-2300 battery system. Two supporting studies were also carried out: one on thermal management of electric-vehicle batteries and one on enhanced utilization of active material in lead-acid batteries.

  6. Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

    Science.gov (United States)

    Send a link to Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

  7. Review of the business possibilities in the electric vehicle cluster. Final report; Hypaetaeaen kyytiin - keskittaemaellae tuloksia. Selvitys saehkoeajoneuvoklusterin liiketoimintamahdollisuuksista. Loppuraportti 6.8.2010

    Energy Technology Data Exchange (ETDEWEB)

    Antikainen, M.; Hertzen, M. von; Salonen, T.; Sjoeholm, H. (Oy Swot Consulting Finland Ltd, Helsinki (Finland)); Jaervinen, J. (Nikola Communications Ltd, Helsinki (Finland))

    2010-08-15

    There are about 40 Finnish companies that have the necessary expertise for electronic vehicle cluster. A few companies involved in the automotive industry and the development of charging infrastructure have done development and manufacturing related directly to electric vehicles. Globally significant Finnish mobile machinery and equipment manufacturers are also developing battery technology and the utilisation of electric applications. The actors interviewed for this report perceived diverse business possibilities in electric vehicles and their infrastructure also for Finnish companies. Finland is not at the forefront in electric vehicle related research. However, Finland has reacted to the global attention of the subject and has launched in national scale significant projects in this area of research. Electric vehicle cluster research can be improved, for example by centralising the national research funding allocation, targeting national research focus to i.e. charging and infrastructure, emphasising commercialising possibilities and creating effective contacts to international research projects. For Finnish electric vehicle cluster development, it is essential e.g. to collaborate in the value chain and with competitors also internationally, develop networks between flagship companies and SMEs, coordinate national projects centrally and develop cooperation also with the authorities. Internationally governments are promoting the development of electric vehicles and related infrastructure with billions of euros. In big development-leading automotive industry countries the subsidiaries are typically targeted to develop the industry's competitiveness, often even targeting to reach the leading role. Germany - the example country in this report - is promoting electric vehicle and related infrastructure technology and business development with 500 million euros in the few forthcoming years. China is estimated to be a major trailblazer in the industry in coming

  8. Analysis for Large Scale Integration of Electric Vehicles into Power Grids

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Xiaoru

    2011-01-01

    Electric Vehicles (EVs) provide a significant opportunity for reducing the consumption of fossil energies and the emission of carbon dioxide. With more and more electric vehicles integrated in the power systems, it becomes important to study the effects of EV integration on the power systems......, especially the low and middle voltage level networks. In the paper, the basic structure and characteristics of the electric vehicles are introduced. The possible impacts of large scale integration of electric vehicles on the power systems especially the advantage to the integration of the renewable energies...... are discussed. Finally, the research projects related to the large scale integration of electric vehicles into the power systems are introduced, it will provide reference for large scale integration of Electric Vehicles into power grids....

  9. Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kanghyun Nam

    2015-07-01

    Full Text Available In this paper, a robust wheel slip control system based on a sliding mode controller is proposed for improving traction-ability and reducing energy consumption during sudden acceleration for a personal electric vehicle. Sliding mode control techniques have been employed widely in the development of a robust wheel slip controller of conventional internal combustion engine vehicles due to their application effectiveness in nonlinear systems and robustness against model uncertainties and disturbances. A practical slip control system which takes advantage of the features of electric motors is proposed and an algorithm for vehicle velocity estimation is also introduced. The vehicle velocity estimator was designed based on rotational wheel dynamics, measurable motor torque, and wheel velocity as well as rule-based logic. The simulations and experiments were carried out using both CarSim software and an experimental electric vehicle equipped with in-wheel-motors. Through field tests, traction performance and effectiveness in terms of energy saving were all verified. Comparative experiments with variations of control variables proved the effectiveness and practicality of the proposed control design.

  10. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    Science.gov (United States)

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  11. Electric vehicle energy impacts.

    Science.gov (United States)

    2017-05-01

    The objective of this research project was to evaluate the impacts of electric vehicles (EVs) and : renewable wind and solar photovoltaic (PV) power generation on reducing petroleum imports : and greenhouse gas emissions to Hawaii. In 2015, the state...

  12. A Comprehensive Analysis for Widespread use of Electric Vehicles

    OpenAIRE

    Yu Zhou; Zhaoyang Dong; Xiaomei Zhao

    2011-01-01

    This paper mainly investigates the environmental and economic impacts of worldwide use of electric vehicles. It can be concluded that governments have good reason to promote the use of electric vehicles. First, the global vehicles population is evaluated with the help of grey forecasting model and the amount of oil saving is estimated through approximate calculation. After that, based on the game theory, the amount and types of electricity generation needed by electronic ...

  13. Network Constrained Transactive Control for Electric Vehicles Integration

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Bindner, Henrik W.

    2015-01-01

    . This paper applies the transactive control concept to integrate electric vehicles into the power distribution system with the purpose of minimizing the charging cost of electric vehicles as well as preventing grid congestions and voltage violations. A hierarchical EV management system is proposed where three...

  14. Concerning the debate on electric-powered-vehicle emissions

    International Nuclear Information System (INIS)

    Sporckmann, B.

    1994-01-01

    The fact that electric-powered vehicles do not emit pollutants locally is obvious and must be considered as the main motive for their use. The global air pollution situation can only be of secondary importance because within the foreseeable future emissions linked to the use of electric-powered vehicles will remain within the variation width of power generation emissions that is not to be influenced. All the same, it is indispensable to consider the global situation. The author compares electric-powered vehicles with conventional ones by referring to the power generation of all federal German states. (orig.) [de

  15. Electric vehicles: Market survey. Marktuebersicht Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Baur, A.

    1993-01-01

    In the context of this article a tabular list of electric vehicles is shown, which are licensed and available on the German market. This contains one- to two-seated light-weight vehicles with ordinary serial bodyworks as well as transporters and busses. (BWI)

  16. A comparative, simulation supported study on the diffusion of battery electric vehicles in Norway and Sweden

    OpenAIRE

    Testa, Ginevra

    2017-01-01

    We are living at a point in history where global cost dynamics and specific political choices may lead to an integral transformation of the mobility system as we know it. After a century where the internal combustion engine vehicle dominated the scene, the battery electric vehicle (BEV) is making its way into the market- and in giant steps. The world’s transition to electricity and thereby a lower carbon future, depends heavily on electrifying road transportation. Norway and Sweden’s differen...

  17. New TA Index-Based Rollover Prevention System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiang Liu

    2015-03-01

    Full Text Available In addition to clean transportation and energy savings, electric vehicles can inherently offer better performance in the field of active safety and dynamic stability control, thanks to the superior fast and accurate control characteristics of electric motors. With the novel wheel status parameter TA for electric vehicles proposed by the authors in an earlier publication, a new TA index (TAI-based rollover prevention method is presented in this paper to improve the driving performance of EVs equipped with in-wheel motors. A three-level electric vehicle control structure is used to analyze the effective control steps for rollover prevention with the newly proposed TAI method. The simulation is conducted using an in-house developed electric vehicle dynamic model. The simulation results prove the feasibility of using TAI to detect rollover. The experiment uses an electric vehicle equipped with four in-wheel motors in the authors’ research lab. The vehicle parameter and performance data are imported to CarSim, which is industrial standard vehicle dynamic analysis software to run the rollover test. The experimental results also demonstrate that TAI is an effective method of rollover prevention.

  18. Environmental implication of electric vehicles in China.

    Science.gov (United States)

    Huo, Hong; Zhang, Qiang; Wang, Michael Q; Streets, David G; He, Kebin

    2010-07-01

    Today, electric vehicles (EVs) are being proposed in China as one of the potential options to address the dramatically increasing energy demand from on-road transport. However, the mass use of EVs could involve multiple environmental issues, because EVs use electricity that is generated primarily from coal in China. We examined the fuel-cycle CO(2), SO(2), and NO(x) emissions of EVs in China in both current (2008) and future (2030) periods and compared them with those of conventional gasoline vehicles and gasoline hybrids. EVs do not promise much benefit in reducing CO(2) emissions currently, but greater CO(2) reduction could be expected in future if coal combustion technologies improve and the share of nonfossil electricity increases significantly. EVs could increase SO(2) emissions by 3-10 times and also double NO(x) emissions compared to gasoline vehicles if charged using the current electricity grid. In the future, EVs would be able to reach the NO(x) emission level of gasoline vehicles with advanced emission control devices equipped in thermal power plants but still increase SO(2). EVs do represent an effective solution to issues in China such as oil shortage, but critical policy support is urgently needed to address the environmental issues caused by the use of EVs to make EVs competitive with other vehicle alternatives.

  19. S/EV 92 (Solar and Electric Vehicles): Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Volume I of these proceedings presents current research on solar and electric powered vehicles. Both fundamental and advanced concepts concerning electric vehicles are presented. The use of photovoltaic cells in electric vehicles and in a broader sense as a means of power generation are discussed. Information on electric powered fleets and races is included. And policy and regulations, especially pertaining to air quality and air pollution abatement are presented.

  20. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  1. Bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Veen, W.R. ter; Raadschelders, J.W.; Have, P.T.J.H. ten

    2000-01-01

    In hybrid electric vehicles (HEV) the requirements on batteries are very different from those for battery electric vehicles (BEV). A high power (bipolar) lead-acid battery could be a good alternative for other types of batteries under development for this application. It is potentially cheap and

  2. Possibilities for increasing the use of electric vehicles in Switzerland

    International Nuclear Information System (INIS)

    Dijamatovic, Y.

    1996-01-01

    In the towns, it is becoming urgent to define an environment friendly mobility and transport strategy for medium and long distance transportation. Electrical vehicle, whether dependent on an electrical system or battery powered, must be supported as the only solution capable of efficiently fighting against the concentration of chemical and especially noise pollution. By replacing 10% of the Swiss vehicles on the road with electrical vehicles, the electricity consumption in Switzerland would increase by 1.1%. The effects of a massive introduction of electrical vehicles can be beneficial in various sectors of activity. The Swiss confederation has invested money in this sector and the EV promotion is carried out by the electrical utilities, associations, clubs, publications, automobile fairs. These different aspects are discussed in further details. (author)

  3. Vehicle state estimator based regenerative braking implementation on an electric vehicle to improve lateral vehicle stability

    NARCIS (Netherlands)

    Jansen, S.T.H.; Boekel, J.J.P. van; Iersel, S.S. van; Besselink, I.J.M.; Nijmeijer, H.

    2013-01-01

    The driving range of electric vehicles can be extended using regenerative braking. Regenerative braking uses the elctric drive system, and therefore only the driven wheels, for decelerating the vehicle. Braking on one axle affects the stability of the vehicle, especially for road conditions with

  4. System and method for charging a plug-in electric vehicle

    Science.gov (United States)

    Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.; Newhouse, Vernon L.

    2017-05-02

    A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate the charging settings every time they charge the plug-in electric vehicle in a new location.

  5. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  6. A brief review on key technologies in the battery management system of electric vehicles

    Science.gov (United States)

    Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng

    2018-04-01

    Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

  7. Batteries and fuel cells for emerging electric vehicle markets

    Science.gov (United States)

    Cano, Zachary P.; Banham, Dustin; Ye, Siyu; Hintennach, Andreas; Lu, Jun; Fowler, Michael; Chen, Zhongwei

    2018-04-01

    Today's electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome.

  8. Integrated powertrain control for hybrid electric vehicles with electric variable transmission

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Foster, D.L.; Bosch, van den P.P.J.

    2009-01-01

    The electric variable transmission (EVT) offers a powersplit for hybrid electric vehicles by integrating two motor/ generator sets into one electric machine. This double rotor concept implements a continuously variable transmission between the engine and the driveline, including the possibility for

  9. Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges

    Directory of Open Access Journals (Sweden)

    Angel Alejandro Juan

    2016-01-01

    Full Text Available Current logistics and transportation (L&T systems include heterogeneous fleets consisting of common internal combustion engine vehicles as well as other types of vehicles using “green” technologies, e.g., plug-in hybrid electric vehicles and electric vehicles (EVs. However, the incorporation of EVs in L&T activities also raise some additional challenges from the strategic, planning, and operational perspectives. For instance, smart cities are required to provide recharge stations for electric-based vehicles, meaning that investment decisions need to be made about the number, location, and capacity of these stations. Similarly, the limited driving-range capabilities of EVs, which are restricted by the amount of electricity stored in their batteries, impose non-trivial additional constraints when designing efficient distribution routes. Accordingly, this paper identifies and reviews several open research challenges related to the introduction of EVs in L&T activities, including: (a environmental-related issues; and (b strategic, planning and operational issues associated with “standard” EVs and with hydrogen-based EVs. The paper also analyzes how the introduction of EVs in L&T systems generates new variants of the well-known Vehicle Routing Problem, one of the most studied optimization problems in the L&T field, and proposes the use of metaheuristics and simheuristics as the most efficient way to deal with these complex optimization problems.

  10. Summary Report on the SAE 2016 Range Extenders for Electric Vehicles Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Curran, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wagner, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Campbell, Russ [SRA International, Inc., Arlington, VA (United States)

    2017-03-01

    The SAE 2016 Range Extenders for Electric Vehicles Symposium was a 2-day technical meeting focused on the role of advanced internal combustion engines (ICEs) and other novel energy converter technologies for extending the range of electric vehicles (EVs). The first-of-its-kind symposium was notable for focusing solely on the range extender (REx) technologies and not the EVs. The technical program featured presentations from international leaders from industry, government, national laboratories, and academia. The opening keynote presentations covered a broad range of topics including consumer behavior, policy implications, regulatory considerations, and REx architectures as enablers for advanced technologies. The technical sessions focused on an array of REx technologies including conventional ICEs, as well as less conventional or emerging technologies such as microturbines, fuel cells, low-temperature combustion engines, and aluminum-air batteries. The symposium included two panel sessions. The trend toward increasing vehicle electrification and the changing role of ICEs and other auxiliary power unit technologies for use as REx’s is leading to new research and design development needs. The symposium captured the interest of the industry and research communities in exploring the opportunities and challenges associated with REx’s for EVs. This report includes key takeaways, summarized below, and draft notes for each presentation and panel discussion.

  11. Power electronics and electric machinery challenges and opportunities in electric and hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.J.; Hsu, J.S.; Young, R.W. [Oak Ridge National Lab., TN (United States); Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-06-01

    The development of power electronics and electric machinery presents significant challenges to the advancement of electric and hybrid vehicles. Electronic components and systems development for vehicle applications have progressed from the replacement of mechanical systems to the availability of features that can only be realized through interacting electronic controls and devices. Near-term applications of power electronics in vehicles will enable integrated powertrain controls, integrated chassis system controls, and navigation and communications systems. Future applications of optimized electric machinery will enable highly efficient and lightweight systems. This paper will explore the areas where research and development is required to ensure the continued development of power electronics and electric machines to meet the rigorous demands of automotive applications. Additionally, recent advances in automotive related power electronics and electric machinery at Oak Ridge National Laboratory will be explained. 3 refs., 5 figs.

  12. Test and evaluation of Chrysler T115 electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    Three Chrysler T115 mini vans were converted to electric drive in the spring of 1984 and tested in test track, chassis dynamometer, and urban road settings. Vehicle dc energy consumption and driving range were measured on the Society of Automotive Engineers J227a C schedule driving cycle, and at constant speed at the Blainville, Quebec test track. Other tests measured top speed, maximum acceleration, hill climbing, and braking performance of the vehicle. The vehicle's performance achieved the expected results. Net energy consumption, when compared to gasoline powered vehicles, was very favourable. The test program showed that the vehicle electrics and drive system are reliable. However, the acceleration and maximum speed were limited by the voltage output of the lead acid battery. The performance of the vehicle was not adversely affected by wide range as in ambient temperature, due to the thermal management battery system in the vehicle. The range of the vehicle was limited to 80 km due to the power output of the lead acid battery. When tested with the prototype sodium sulphur battery the range exceeded 200 km. With this range, market acceptance of this vehicle will be significantly enhanced. The overall vehicle efficiency of the T115 electric van was calculated to be 58%. This compared very favourably to the gasoline-powered vehicle which has an efficiency of approximately 17%. Results of this program confirmed the fact that until suitable advanced batteries are available, commercial applications of electric vehicles will be limited. 8 refs., 18 figs., 20 tabs.

  13. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  14. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  15. Model Predictive Control for Connected Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Kaijiang Yu

    2015-01-01

    Full Text Available This paper presents a new model predictive control system for connected hybrid electric vehicles to improve fuel economy. The new features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously optimized. One is energy management for HEV for Pbatt; the other is for the energy consumption minimizing problem of acc control of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients and the road gradients. Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc. are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results reveal improvements in fuel economy using the proposed control method.

  16. 78 FR 2797 - Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and Electric Vehicles

    Science.gov (United States)

    2013-01-14

    ... Sound Requirements for Hybrid and Electric Vehicles; Draft Environmental Assessment for Rulemaking To Establish Minimum Sound Requirements for Hybrid and Electric Vehicles; Proposed Rules #0;#0;Federal Register...-0148] RIN 2127-AK93 Federal Motor Vehicle Safety Standards; Minimum Sound Requirements for Hybrid and...

  17. Inductively coupled power systems for electric vehicles: a fourth dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bolger, J G

    1980-09-01

    There are three traditional methods of supplying energy to electric vehicles. The inductively coupled roadway power system is a fourth method that adds important new dimensions to electric-vehicle capabilities. It efficiently transfers power to moving vehicles without physical contact, freeing the electric vehicle from most of the applicational constraints imposed by the other three methods. The single power conductor in the roadway carries several hundred amperes of alternating current. The current causes a weak magnetic flux to circulate through the air above it when a vehicle's power pickup is not present. When a vehicle's pickup is suported over the inductor, a more intense flux circulates through the steel cores in the road and in the pickup. Applications, electrical safety, and present status of the technology are discussed in the paper presented at the St. Louis EXPO '80.

  18. Effects of electric vehicles on power systems in Northern Europe

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Ravn, Hans; Juul, Nina

    2012-01-01

    In this study, it is analysed how a large-scale implementation of plug-in hybrid electric vehicles and battery electric vehicles towards 2030 would influence the power systems of five Northern European countries, Denmark, Finland, Germany, Norway, and Sweden. Increasing shares of electric vehicles...... (EVs) are assumed; comprising 2.5%, 15%, 34%, and 53% of the private passenger vehicle fleet in 2015, 2020, 2025, and 2030, respectively. Results show that when charged/discharged intelligently, EVs can facilitate significantly increased wind power investments already at low vehicle fleet shares....... Moreover, due to vehicle-to-grid capability, EVs can reduce the need for new coal/natural gas power capacities. Wind power can be expected to provide a large share of the electricity for EVs in several of the countries. However, if EVs are not followed up by economic support for renewable energy...

  19. Vehicles under electricity. Result booklet; Autos unter Strom. Ergebnisbroschuere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    The booklet under consideration reports on the environmental relief of electric-driven vehicles by means of the research project OPTUM 'Potentials of environmental relief of electric driven vehicles - Integrated analysis of vehicle usage and energy economy'. Experts from the Institute for Applied Ecology (Freiburg, Federal Republic of Germany) and the Institute for Social-Ecological Research (Frankfurt (Main), Federal Republic of Germany) are devoted to the following issues: (1) What is the acceptance for electric-driven vehicles?; (2) What is their future market potential?; (3) What are the advantages of electromobility with respect to the climate?; (4) Are their supply shortages concerning major raw materials?.

  20. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States

    International Nuclear Information System (INIS)

    Onat, Nuri Cihat; Kucukvar, Murat; Tatari, Omer

    2015-01-01

    Highlights: • Driving patterns and electricity generation mix influence vehicle preferences. • EVs are found to be least carbon-intensive vehicle option in 24 states. • HEVs are found to be the most energy-efficient option in 45 states. • EVs across the board are unfavorable in the marginal electricity mix scenario. • Use of renewable energy to power EVs/PHEVs is crucial. - Abstract: Electric vehicles (EVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs) are often considered as better options in terms of greenhouse gas emissions and energy consumption compared to internal combustion vehicles. However, making any decision among these vehicle options is not a straightforward process due to temporal and spatial variations, such as the sources of the electricity used and regional driving patterns. In this study, we compared these vehicle options across 50 states, taking into account state-specific average and marginal electricity generation mixes, regional driving patterns, and vehicle and battery manufacturing impacts. Furthermore, a policy scenario proposing the widespread use of solar energy to charge EVs and PHEVs is evaluated. Based on the average electricity generation mix scenario, EVs are found to be least carbon-intensive vehicle option in 24 states, while HEVs are found to be the most energy-efficient option in 45 states. In the marginal electricity mix scenario, widespread adoption of EVs is found to be an unwise strategy given the existing and near-future marginal electricity generation mix. On the other hand, EVs can be superior to other alternatives in terms of energy-consumption, if the required energy to generate 1 kW h of electricity is below 1.25 kW h

  1. Determining an energy-optimal thermal management strategy for electric driven vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Suchaneck, Andre; Probst, Tobias; Puente Leon, Fernando [Karlsruher Institut fuer Technology (KIT), Karlsruhe (Germany). Inst. of Industrial Information Technology (IIIT)

    2012-11-01

    In electric, hybrid electric and fuel cell vehicles, thermal management may have a significant impact on vehicle range. Therefore, optimal thermal management strategies are required. In this paper a method for determining an energy-optimal control strategy for thermal power generation in electric driven vehicles is presented considering all controlled devices (pumps, valves, fans, and the like) as well as influences like ambient temperature, vehicle speed, motor and battery and cooling cycle temperatures. The method is designed to be generic to increase the thermal management development process speed and to achieve the maximal energy reduction for any electric driven vehicle (e.g., by waste heat utilization). Based on simulations of a prototype electric vehicle with an advanced cooling cycle structure, the potential of the method is shown. (orig.)

  2. Can Electricity Powered Vehicles Serve Traveler Needs?

    Directory of Open Access Journals (Sweden)

    Jianhe Du

    2013-06-01

    Full Text Available Electric vehicles (EV, Hybrid Electric Vehicles (HEV or Plug-in Hybrid Electric Vehicles (PHEV are believed to be a promising substitute for current gas-propelled vehicles. Previous research studied the attributes of different types of EVs and confirmed their advantages. The feasibility of EVs has also been explored using simulation, retrospective survey data, or a limited size of field travel data. In this study, naturalistic driving data collected from more than 100 drivers during one year are used to explore naturalistic driver travel patterns. Typical travel distance and time and qualified dwell times (i.e., the typical required EV battery recharging time between travels as based on most literature findings are investigated in this study. The viability of electric cars is discussed from a pragmatic perspective. The results of this research show that 90 percent of single trips are less than 25 miles; approximately 70 percent of the average annual daily travel is less than 60 miles. On average there are 3.62 trips made between four-hour dwell times as aggregated to 60 minutes and 50 miles of travel. Therefore, majority of trips are within the travel range provided by most of the currently available EVs. A well-organized schedule of recharging will be capable of covering even more daily travels.

  3. Advanced continuously variable transmissions for electric and hybrid vehicles

    Science.gov (United States)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  4. Electric Vehicle Smart Charging using Dynamic Price Signal

    DEFF Research Database (Denmark)

    Martinenas, Sergejus; Pedersen, Anders Bro; Marinelli, Mattia

    2014-01-01

    , however, be resolved by using intelligent EV charging strategies, commonly referred to as ”Smart Charging”. The basic approach involves modifying the default vehicle charging scheme of ”immediate charging”, to a more optimal one that is derived from insight into the current state of the grid. This work......With yearly increases in Electric Vehicle (EV) sales, the future for electric mobility continues to brighten, and with more vehicles hitting the roads every day, the energy requirements on the grid will increase, potentially causing low-voltage distribution grid congestion. This problem can...... proposed in this paper, involves a real-time control strategy for charging the EV using a dynamic price tariff, with the objective of minimizing the charging cost. Two different charging scenario are investigated, and the results are verified by experiments on a real Electric Vehicle. Finally, the costs...

  5. Comparison of electric drives for road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bader, C; Stephan, W [Deutsche Automobilgesellschaft m.b.H., Esslingen (Germany, F.R.)

    1977-01-01

    The low energy-storage capacity of the electrolytic energy-storage apparatus available at the moment limits the practical use of electric vehicles to meeting the requirements for restricted areas. But in this field of application, conversion from drive with internal combustion engine to electric drive can be considered only if a reduction of costs is achieved with electric drive. From the wide range of possible drive units the most suitable is found to be the dc squirrelcage motor the speed of which is controlled by field weakening. In the case of a motor with conventional design, the controllable drive range is limited to about 1 : 3, so that generally additional measures are required for extending the drive range. But if the motor is fitted with a compensation winding, field weakening to give a controlled speed range of 1 : 8 can be obtained. To evaluate the different drive units under consideration use is made of the acceleration when, according to the drive system, advantages are obtained from the point of view of energy consumption with disadvantages in acceleration time, and vice versa. By using vehicles proven in practice with different drive systems, either with hydrodynamic transducer and battery switchover, or else with changeover gear and mechanical clutch, the overall construction of the different control and protective arrangements are demonstrated. It is then found that the extra cost of regulation in the case of automatic drive operation is partly compensated by the additional protective devices which are required to limit the effects of any incorrect operations with a manually-operated drive.

  6. Batteries for electric and hybrid-electric vehicles.

    Science.gov (United States)

    Cairns, Elton J; Albertus, Paul

    2010-01-01

    Batteries have powered vehicles for more than a century, but recent advances, especially in lithium-ion (Li-ion) batteries, are bringing a new generation of electric-powered vehicles to the market. Key barriers to progress include system cost and lifetime, and derive from the difficulty of making a high-energy, high-power, and reversible electrochemical system. Indeed, although humans produce many mechanical and electrical systems, the number of reversible electrochemical systems is very limited. System costs may be brought down by using cathode materials less expensive than those presently employed (e.g., sulfur or air), but reversibility will remain a key challenge. Continued improvements in the ability to synthesize and characterize materials at desired length scales, as well as to use computations to predict new structures and their properties, are facilitating the development of a better understanding and improved systems. Battery research is a fascinating area for development as well as a key enabler for future technologies, including advanced transportation systems with minimal environmental impact.

  7. 75 FR 49945 - In the Matter of Certain Hybrid Electric Vehicles and Components Thereof; Notice of Commission...

    Science.gov (United States)

    2010-08-16

    ... Toyota hybrid vehicles of claims of U.S. Patent No. 5,343,970. On July 19, 2010, Paice and Toyota moved... INTERNATIONAL TRADE COMMISSION [ Inv. No. 337-TA-688] In the Matter of Certain Hybrid Electric Vehicles and Components Thereof; Notice of Commission Determination Not To Review an Initial Determination...

  8. Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to

    Science.gov (United States)

    Coast Hybrid and Electric Vehicles Boom Coast to Coast to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Twitter Bookmark Alternative

  9. Connecting plug-in vehicles with green electricity through consumer demand

    Science.gov (United States)

    Axsen, Jonn; Kurani, Kenneth S.

    2013-03-01

    The environmental benefits of plug-in electric vehicles (PEVs) increase if the vehicles are powered by electricity from ‘green’ sources such as solar, wind or small-scale hydroelectricity. Here, we explore the potential to build a market that pairs consumer purchases of PEVs with purchases of green electricity. We implement a web-based survey with three US samples defined by vehicle purchases: conventional new vehicle buyers (n = 1064), hybrid vehicle buyers (n = 364) and PEV buyers (n = 74). Respondents state their interest in a PEV as their next vehicle, in purchasing green electricity in one of three ways, i.e., monthly subscription, two-year lease or solar panel purchase, and in combining the two products. Although we find that a link between PEVs and green electricity is not presently strong in the consciousness of most consumers, the combination is attractive to some consumers when presented. Across all three respondent segments, pairing a PEV with a green electricity program increased interest in PEVs—with a 23% demand increase among buyers of conventional vehicles. Overall, about one-third of respondents presently value the combination of a PEV with green electricity; the proportion is much higher among previous HEV and PEV buyers. Respondents’ reported motives for interest in both products and their combination include financial savings (particularly among conventional buyers), concerns about air pollution and the environment, and interest in new technology (particularly among PEV buyers). The results provide guidance regarding policy and marketing strategies to advance PEVs and green electricity demand.

  10. Connecting plug-in vehicles with green electricity through consumer demand

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S

    2013-01-01

    The environmental benefits of plug-in electric vehicles (PEVs) increase if the vehicles are powered by electricity from ‘green’ sources such as solar, wind or small-scale hydroelectricity. Here, we explore the potential to build a market that pairs consumer purchases of PEVs with purchases of green electricity. We implement a web-based survey with three US samples defined by vehicle purchases: conventional new vehicle buyers (n = 1064), hybrid vehicle buyers (n = 364) and PEV buyers (n = 74). Respondents state their interest in a PEV as their next vehicle, in purchasing green electricity in one of three ways, i.e., monthly subscription, two-year lease or solar panel purchase, and in combining the two products. Although we find that a link between PEVs and green electricity is not presently strong in the consciousness of most consumers, the combination is attractive to some consumers when presented. Across all three respondent segments, pairing a PEV with a green electricity program increased interest in PEVs—with a 23% demand increase among buyers of conventional vehicles. Overall, about one-third of respondents presently value the combination of a PEV with green electricity; the proportion is much higher among previous HEV and PEV buyers. Respondents’ reported motives for interest in both products and their combination include financial savings (particularly among conventional buyers), concerns about air pollution and the environment, and interest in new technology (particularly among PEV buyers). The results provide guidance regarding policy and marketing strategies to advance PEVs and green electricity demand. (letter)

  11. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.

    Science.gov (United States)

    Delucchi, M A; Yang, C; Burke, A F; Ogden, J M; Kurani, K; Kessler, J; Sperling, D

    2014-01-13

    Concerns about climate change, urban air pollution and dependence on unstable and expensive supplies of foreign oil have led policy-makers and researchers to investigate alternatives to conventional petroleum-fuelled internal-combustion-engine vehicles in transportation. Because vehicles that get some or all of their power from an electric drivetrain can have low or even zero emissions of greenhouse gases (GHGs) and urban air pollutants, and can consume little or no petroleum, there is considerable interest in developing and evaluating advanced electric vehicles (EVs), including pure battery-electric vehicles, plug-in hybrid electric vehicles and hydrogen fuel-cell electric vehicles. To help researchers and policy-makers assess the potential of EVs to mitigate climate change and reduce petroleum use, this paper discusses the technology of EVs, the infrastructure needed for their development, impacts on emissions of GHGs, petroleum use, materials use, lifetime costs, consumer acceptance and policy considerations.

  12. Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity

    International Nuclear Information System (INIS)

    Wolfram, Paul; Wiedmann, Thomas

    2017-01-01

    Highlights: •This research assesses life-cycle carbon impacts of different powertrains. •We illustrate a transition to low-carbon vehicles in a hybrid IO-LCA model. •Different electricity and transport scenarios are integrated in the model. •With Australia’s current grid-mix, electric vehicles offer no mitigation potential. •Using renewable energy, electric vehicle carbon footprints can be cut by 66%. -- Abstract: Recent life cycle assessments confirmed the greenhouse gas emission reduction potential of renewable electricity and electric vehicle technologies. However, each technology is usually assessed separately and not within a consistent macro-economic, multi-sectoral framework. Here we present a multi-regional input-output based hybrid approach with integrated scenarios to facilitate the carbon footprint assessment of all direct and indirect effects of a transition to low-emission transportation and electricity generation technologies in Australia. The work takes into account on-road energy consumption values that are more realistic than official drive-cycle energy consumption figures used in previous work. Accounting for these factors as well as for Australia’s grid electricity, which heavily relies on coal power, electric vehicles are found to have a higher carbon footprint than conventional vehicles, whereas hybrid electric vehicles have the lowest. This means that – from a carbon footprint perspective – powertrain electrification is beneficial only to a certain degree at the current stage. This situation can be changed by increasing shares of renewable electricity in the grid. In our best-case scenario, where renewable energy accounts for 96% of the electricity mix in 2050, electric vehicle carbon footprints can be cut by 66% by 2050 relative to 2009. In the business-as-usual scenario (36% renewable electricity share by 2050), electric vehicles can reach a 56% reduction if fossil fuel power plants significantly increase their efficiencies

  13. DEVELOPING CONVENIENT MOTOR SELECTION ALGORITHM ACCORDING TO ROAD CONDITIONS IN ELECTRIC VEHICLES

    OpenAIRE

    BAŞER, EKREM; ALTUN, YUSUF

    2016-01-01

    Nowadays, automotive industry is tending to electric vehicles due to reduction of fuel reserves in order to save energy, reduce air pollution and carbon emission. With the impact of technological advencements on battery and power electronics, the studies on electric vehicles have been gradually increased and many of automobile manifacturers have produced new electric vehicles. Different type of electric motors has been tried on electric vehicles until today. This motors have difference feautu...

  14. Substantial improvements of fuel economy. Potentials of electric and hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, K [Technical Univ. of Denmark (Denmark); Nielsen, L H [Forskningscenter Risoe (Denmark)

    1996-12-01

    This paper evaluates the scope for improvement of the energy and environmental impacts of road traffic by means of electrical and hybrid electric propulsion. These technologies promise considerable improvements of the fuel economy of vehicles compared to the present vehicle types as well as beneficial effects for the energy and traffic system. The paper - based on work carried out in the project `Transportation fuel based on renewable energy`, funded by the National Energy Agency of Denmark and carried out by Department of Buildings and Energy, Technical University of Denmark and System Analysis Department, Risoe National Laboratory - assesses the potentials for reduction of the primary energy consumption and emissions, and points to the necessary technical development to reap these benefits. A case study concerning passenger cars is analysed by means of computer simulations, comparing electric and hybrid electric passenger car to an equivalent reference vehicle (a conventional gasoline passenger car). (au) 10 refs.

  15. Intelligent Electric Vehicle Integration - Domain Interfaces and Supporting Informatics

    DEFF Research Database (Denmark)

    Andersen, Peter Bach

    This thesis seeks to apply the field of informatics to the intelligent integration of electric vehicles into the power system. The main goal is to release the potential of electric vehicles in relation to a reliable, economically efficient power system based on renewables. To make intelligent EV...... and services in which the electric vehicle may be best suited to participate. The next stakeholder investigated is the distribution system operator representing the low voltage grid. The challenge is assessed by considering a number of grid impacts studies. Next, a set of grid congestion mitigation strategies...

  16. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults......Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...

  17. Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work

    Science.gov (United States)

    vehicles. Hydrogen car image Key Components of a Hydrogen Fuel Cell Electric Car Battery (auxiliary): In an Using Hydrogen? Fuel Cell Electric Vehicles Work Using Hydrogen? to someone by E-mail Share Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work Using Hydrogen? on Facebook Tweet about

  18. Three perspectives on the evolving electric vehicles innovation network of Finland

    Energy Technology Data Exchange (ETDEWEB)

    Rasanen, R.-S.; Temmes, A.; Lovio, R.

    2013-06-01

    This report compiles the electric vehicle related work done in 2012 in the project: Future innovation and technology policy for sustainable system-level transitions: the case of transport (FIP-Trans). The project focuses on researching alternative and complementary socio-technical pathways and related policy options for sustainable transition in the Finnish transport sector. The project is financed by Tekes - the Finnish Funding Agency for Technology and Innovation. Analysis is continued in 2013. In this paper we study the evolving electric vehicle innovation network of Finland. The analysis is built on combining the theoretical aspects of Strategic Niche Management and Technology Innovation Systems. Based on the literature we develop a framework for analyzing the development of innovation networks. The framework contains four steps. The first step is the identification and analysis of the main actors and their activities. The second step is the identification and analysis of the main events affecting the development of the industry. This step is based on the use of event structure analysis. The third step consists of the analysis of development of the architecture of the system while the fourth step deals with the description and analysis of the niche and innovation system development processes in a combined manner. The data consists of interviews, policy and consultation papers, newspaper articles, press releases and other enterprise publications and of private databases containing financial information of the enterprises. Based on the theoretical framework, the four separate, but complementing qualitative analyses were made. The electric vehicle niche has evolved through the interaction of private and public sector actors. The involvement of public sector affected strongly on the evolution of the system arenas and was an important event for the resource mobilization of the industry. As with other Finnish industries, the importance of the international dimension

  19. Electric passenger and goods vehicles: A review of UK activities

    International Nuclear Information System (INIS)

    Escombe, F.; Rawnsley, A.

    1993-01-01

    The production of electric-powered vehicles has been reduced to only a few hundred, after several thousand had been produced in Great Britain during the past five years. In the framework of this article, the different components of electric-powered vehicles are being examined regarding the economical situation: such as the vehicle itself, the batteries, the motor and the vehicle control. (BWI) [de

  20. The hybrid electric vehicle revolution, off road

    Energy Technology Data Exchange (ETDEWEB)

    Wood, B.E. [ePower Technologies (United States)

    2004-07-01

    In this presentation the author presents concepts and details of hybrid vehicles in general, including their benefits, then describes off-road hybrid vehicles. Hybrid vehicles have been experimented with for over a century. Demonstrator vehicles include a diesel-electric tractor, an electric lawn tractor, a hybrid snow thrower, and a hybrid wheel loader. A duty cycle for the loader is shown with battery-assisted acceleration, and regenerative braking. Both of these keep the size of the engine small, the loads on it less variable, thus improving fuel economy. A hybrid excavator and its duty cycle is shown. A fuel cell lift truck that is currently in design is illustrated. The author then describes the possibilities of the hydrogen economy where sourcing and infrastructure are yet to be demonstrated on a commercial scale. The author predicts that off-road hydrogen fuel cell vehicles will be commercially viable five years before on-road applications. The author predicts hydrogen sourced from biogas, photovoltaics, and wind power. tabs, figs.

  1. Electric vehicles, primary energy sources and CO2 emissions: Romanian case study

    International Nuclear Information System (INIS)

    Varga, Bogdan Ovidiu

    2013-01-01

    Starting on the 24th of April, 2011, the Romanian government offered to subsidize all potential buyers of electric vehicles, both private and corporate, offering 25% off of the retail price up to 5000 euros with no pollution tax. The Romanian government encourages all governmental institutions to consider buying electric vehicles when deciding to change their existing vehicles stock. This decision is strictly related to the Romanian government's approval of a long-term Energy Strategy, building on the National Energy Strategy for the Medium Term. The government's strategy emphasizes increasing energy efficiency and boosting renewable energy use. The first electric vehicles distributed in the Romanian market are the Citroen-C-Zero, the Mitsubishi i-MiEV, the Renault Kangoo Z.E. and the Renault Fluence Z.E. The energy consumption of these vehicles was analyzed, considering the CO 2 generation characteristics of a Romanian electric power plant. -- Highlights: ► Tax and governmental support for electrical vehicles in Romania. ► Evaluate the CO 2 pollution of the electrical vehicles in Romania's case. ► Comprehensive understanding of the influence of primary energy source over the pollution of an electrical vehicle. ► Approach to decrees the pollution of the electrical vehicles.

  2. Research on the Applicable Method of Valuation of Pure Electric Used vehicles

    Science.gov (United States)

    Cai, yun; Tan, zhengping; Wang, yidong; Mao, pan

    2018-03-01

    With the rapid growth in the ownership of pure electric vehicles, the research on the valuation of used electric vehicles has become the key to the development of the pure electric used vehicle market. The paper analyzed the application of the three value assessment methods, current market price method, capitalized earning method and replacement cost method, in pure electric used vehicles, and draws a conclusion that the replacement cost method is more suitable for pure electric used car. At the same time, the article also conducted a parametric correction exploration research, aiming at the characteristics of pure electric vehicles and replacement cost of the constituent factors. Through the analysis of the applicability parameters of physical devaluation, functional devaluation and economic devaluation, the revised replacement cost method can be used for the valuation of purely used electric vehicles for private use.

  3. Fuel Cell Electric Vehicle Composite Data Products | Hydrogen and Fuel

    Science.gov (United States)

    Cells | NREL Vehicle Composite Data Products Fuel Cell Electric Vehicle Composite Data Products The following composite data products (CDPs) focus on current fuel cell electric vehicle evaluations Cell Operation Hour Groups CDP FCEV 39, 2/19/16 Comparison of Fuel Cell Stack Operation Hours and Miles

  4. Battery prices and capacity sensitivity: Electric drive vehicles

    DEFF Research Database (Denmark)

    Juul, Nina

    2012-01-01

    , the prices at which the electric drive vehicles become of interest to the power system are found. Smart charge, including the opportunity to discharge (vehicle-to-grid) is used in all scenarios. Analyses show that the marginal benefits decrease the larger the battery. For very high battery prices, large......The increase in fluctuating power production requires an increase in flexibility in the system as well. Flexibility can be found in generation technologies with fast response times or in storage options. In the transport sector, the proportion of electric drive vehicles is expected to increase over...... the next decade or two. These vehicles can provide some of the flexibility needed in the power system, in terms of both flexible demand and electricity storage. However, what are the batteries worth to the power system? And does the value depend on battery capacity? This article presents an analysis...

  5. Adoption barriers for electric vehicles: Experiences from early adopters in Sweden

    International Nuclear Information System (INIS)

    Vassileva, Iana; Campillo, Javier

    2017-01-01

    Electric vehicles are considered as one of the most effective technologies for reducing current greenhouse gas emissions from the transport sector. Although in many countries, local and national governments have introduced incentives and subsidies to facilitate the electric vehicle market penetration, in Sweden, such benefits have been limited. Results from a survey carried out among private owners of electric vehicles are presented in this paper, including the analysis of the respondents socio-demographic characteristics, reasons for choosing an electric vehicle, charging locations and driving preferences, among others. The main results characterize current electric vehicle drivers as male, well-educated, with medium-high income; electric vehicles are used mainly for private purposes and charged at home during night time. Furthermore, the paper presents an analysis of the impact of large-scale penetration of electric vehicles on existing power distribution systems. The findings presented in this paper provide important insights for assuring a sustainable large-scale penetration of electric vehicles by learning from the experiences of early adopters of the technology and by analyzing the impact of different EV penetration scenarios on the power distribution grid. - Highlights: • A survey was conducted on EV owners' experience and characteristics. • Impact on the power system of large-scale EV adoption was analyzed. • Feedback from EV owners should be used to engage potential users. • Coordinated smart charging is needed to reduce power grid impact. • Coordinated smart charging is required to minimize disturbances on the power grid.

  6. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

  7. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  8. The use of electric vehicles: A case study on adding an electric car to a household

    DEFF Research Database (Denmark)

    Jensen, Anders Fjendbo; Mabit, Stefan Lindhard

    2017-01-01

    The market share of battery electric vehicles (EVs) is expected to increase in the near future, but so far little is known about the actual usage of this emergent technology. Consumer preference studies have indicated that the current limitation on driving distance is important. At the same time...... studies on the actual use of household vehicles indicate modest requirements for daily travel. An unresolved issue is to what extent these range limitations affect daily travel in EVs. In this study, we use real electric vehicle trip data to study the distribution of daily use and types of home......-based journeys where a household decides to use an electric vehicle instead of their conventional vehicle. The results show how several factors related to distance and number of necessary charging events have plausible effects on electric vehicle travel behaviour. Further, the modelling indicates that the EV...

  9. Reference architecture for interoperability testing of Electric Vehicle charging

    NARCIS (Netherlands)

    Lehfuss, F.; Nohrer, M.; Werkmany, E.; Lopezz, J.A.; Zabalaz, E.

    2015-01-01

    This paper presents a reference architecture for interoperability testing of electric vehicles as well as their support equipment with the smart grid and the e-Mobility environment. Pan-European Electric Vehicle (EV)-charging is currently problematic as there are compliance and interoperability

  10. Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) |

    Science.gov (United States)

    Transportation Research | NREL Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) Graphic of a 24-cell (bottom). Images: Courtesy of EC Power NREL's work on the U.S. Department of Energy Computer-Aided

  11. Integration of electric drive vehicles in the Danish electricity network with high wind power penetration

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob; Larsen, Esben

    2010-01-01

    /conventional) which are likely to fuel these cars. The study was carried out considering the Danish electricity network state around 2025, when the EDV penetration levels would be significant enough to have an impact on the power system. Some of the interesting findings of this study are - EDV have the potential......This paper presents the results of a study carried out to examine the feasibility of integrating electric drive vehicles (EDV) in the Danish electricity network which is characterised by high wind power penetration. One of the main aims of this study was to examine the effect of electric drive...... vehicles on the Danish electricity network, wind power penetration and electricity market. In particular the study examined the effect of electric drive vehicles on the generation capacity constraints, load curve, cross border transmission capacity and the type of generating sources (renewable...

  12. Predictive cruise control in hybrid electric vehicles

    NARCIS (Netherlands)

    Keulen, T. van; Naus, M.J.G.; Jager, B. de; Molengraft, G.J.L. van de; Steinbuch, M.; Aneke, N.P.I.

    2009-01-01

    Deceleration rates have considerable influence on the fuel economy of hybrid electric vehicles. Given the vehicle characteristics and actual/measured operating conditions, as well as upcoming route information, optimal velocity trajectories can be constructed that maximize energy recovery. To

  13. A perspective on electric vehicles: cost-benefit analysis and potential demand

    International Nuclear Information System (INIS)

    2011-01-01

    This report proposes some quantitative elements to assess the large scale diffusion of electric vehicles and analyse the potential demand for such vehicles. The first part proposes a cost-benefit analysis of the development of electric vehicles based on estimated costs and expected benefits by 2020. It addresses the following issues: framework and hypothesis, total cost of ownership, costs related to the deployment of a network of recharging infrastructures, assessment of external costs, and comparative cost-benefit analysis of electric vehicles. In the second part, the authors aim at identifying a potential demand for electric vehicles from the 2008 French national transport displacement survey (ENTD 2008) which provides recent data on the mobility of the French population

  14. Simulating demand for electric vehicles using revealed preference data

    International Nuclear Information System (INIS)

    Driscoll, Áine; Lyons, Seán; Mariuzzo, Franco; Tol, Richard S.J.

    2013-01-01

    We have modelled the market for new cars in Ireland with the aim of quantifying the values placed on a range of observable car characteristics. Mid-sized petrol cars with a manual transmission sell best. Price and perhaps fuel cost are negatively associated with sales, and acceleration and perhaps range are positively associated. Hybrid cars are popular. The values of car characteristics are then used to simulate the likely market shares of three new electric vehicles. Electric vehicles tend to be more expensive even after tax breaks and subsidies are applied, but we assume their market shares would benefit from an “environmental” premium similar to those of hybrid cars. The “environmental” premium and the level of subsidies would need to be raised to incredible levels to reach the government target of 10% market penetration of all-electric vehicles. -- Highlights: •Market values placed on a range of observable car characteristics are quantified. •We simulate market shares of electrical vehicles from values of car characteristics. •We assume electric vehicles will benefit from an “environmental” premium. •Large premium not enough to reach government targets for market penetration. •Very high subsidies required to reach government targets for market penetration

  15. Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Longden, Thomas

    2013-01-01

    With a focus on the interaction between long-term climate targets and personal transport we review the electrification of light duty vehicles (LDVs) within a model that utilizes a learning-by-researching structure. By modeling the demand of vehicles, the use of fuels and emissions implied, the model solves for the optimum RD and D investments that decrease the cost of hybrid, plug-in hybrid and electric vehicles. A range of technology and climate policy scenarios provide long term projections of vehicle use that highlight the potential synergies between innovation in the transportation sector and the energy sector. We find that even when the capital cost of electric drive vehicles (EDVs) remains higher than that of traditional combustion engine alternatives, EDVs are likely to play a key role in the decarbonisation implied by stringent climate policy. Limited innovation in batteries results in notable increases in policy costs consistent with a two degree climate policy target. - Highlights: • Significant increase in vehicles across regions in the medium to long term future. • Climate policy costs are sensitive to a lack of electric drive vehicles (EDVs). • Achieving 450ppm with no change in battery costs has a policy cost that is 2.86 percentage points higher than the base 450ppm scenario. • Climate policy hastens the introduction of electrified vehicles, however EDVs do not become the dominant vehicle of choice before the middle of the century

  16. Electric Vehicles in Colorado: Anticipating Consumer Demand for Direct Current Fast Charging

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-01

    To support the State of Colorado in planning for growth in direct current fast charging (DCFC) for electric vehicles, the National Renewable Energy Laboratory (NREL) has partnered with the Regional Air Quality Council (RAQC) and the Colorado Department of Transportation (CDOT) to analyze a number of DCFC investment scenarios. NREL analyzed existing electric vehicle registration data from IHS Markit (IHS) to highlight early trends in the electric vehicle market, which were compared with sales forecasts predicting large growth in the Colorado electric vehicle market. Electric vehicle forecasts were then used to develop future DCFC scenarios to be evaluated in a simulation environment to estimate consumer benefits of the hypothetical DCFC networks in terms of increased driving range and electric vehicle miles traveled (eVMT). Simulated utilization of the hypothetical DCFC networks was analyzed for geographic trends, particularly for correlations with vehicle electric range. Finally, a subset of simulations is presented for consumers with potentially inconsistent access to charging at their home location and presumably greater reliance on public DCFC infrastructure.

  17. Fuel Cell Electric Vehicles: Paving the Way to Commercial Success -

    Science.gov (United States)

    Continuum Magazine | NREL Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Powered by a fuel cell system with light-weight, high-pressure hydrogen tanks, an electric motor, a nickel -metal-hydride battery, and a power-control unit, the Toyota fuel cell electric vehicle has zero tailpipe

  18. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  19. Torque vectoring for improving stability of small electric vehicles

    Science.gov (United States)

    Grzegożek, W.; Weigel-Milleret, K.

    2016-09-01

    The electric vehicles solutions based on the individually controlled electric motors propel a single wheel allow to improve the dynamic properties of the vehicle by varying the distribution of the driving torque. Most of the literature refer to the vehicles with a track typical for passenger cars. This paper examines whether the narrow vehicle (with a very small track) torque vectoring bring a noticeable change of the understeer characteristics and whether torque vectoring is possible to use in securing a narrow vehicle from roll over (roll mitigation). The paper contains road tests of the steering characteristics (steady state understeer characteristic quasi-static acceleration with a fixed steering wheel (SH = const) and on the constant radius track (R = const)) of the narrow vehicle. The vehicle understeer characteristic as a function of a power distribution is presented.

  20. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  1. The economic competitiveness and emissions of battery electric vehicles in China

    International Nuclear Information System (INIS)

    Zhao, Xin; Doering, Otto C.; Tyner, Wallace E.

    2015-01-01

    Highlights: • We evaluate the life-cycle cost and emissions of BEVs in China. • BEVs are not economically competitive compared with ICEVs in the Chinese market. • The value of emission reductions is small compared with the subsidy on BEVs. • The CO 2 emission reduction from BEVs is relatively constant over the time. • BEVs likely will not be economically competitive in China before 2031. - Abstract: Electric vehicles (EVs) have high energy efficiency and low pollutant and greenhouse gas (GHG) emissions compared with conventional internal combustion engine vehicles (ICEVs). This study examines the economic competitiveness of battery electric vehicles (BEVs) in the Chinese market. BEVs are compared with ICEVs using benefit-cost analyses from the perspectives of consumers, society and GHG emissions. A life-cycle cost model is developed to evaluate the lifetime cost of a vehicle. The results show that, with central government subsidies, the BEV life-cycle private cost (LCPC) is about 1.4 times higher than comparable ICEVs. Central government subsidies on BEVs will not be cost effective and efficient unless the annual external cost reduction from using BEV reaches $2500 for a compact vehicle or $3600 for a multi-purpose vehicle. That total cost level would imply a carbon cost of more than $2100 per ton. The current life-cycle external cost reductions from using BEV are around $2000–$2300, which are smaller than government subsidies or LCPC differences between BEV and ICEV. Further projections show that BEVs likely will not be economically competitive in the Chinese market before 2031

  2. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  3. 77 FR 24560 - National Highway Traffic Safety Administration Electric Vehicle Safety Technical Symposium

    Science.gov (United States)

    2012-04-24

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Electric Vehicle... discuss safety considerations for electric vehicles powered by lithium-ion (Li-ion) batteries. The... vehicles. Electric vehicles show great promise as an innovative and fuel- efficient option for American...

  4. Measurement of power loss during electric vehicle charging and discharging

    International Nuclear Information System (INIS)

    Apostolaki-Iosifidou, Elpiniki; Codani, Paul; Kempton, Willett

    2017-01-01

    When charging or discharging electric vehicles, power losses occur in the vehicle and the building systems supplying the vehicle. A new use case for electric vehicles, grid services, has recently begun commercial operation. Vehicles capable of such application, called Grid-Integrated Vehicles, may have use cases with charging and discharging summing up to much more energy transfer than the charging only use case, so measuring and reducing electrical losses is even more important. In this study, the authors experimentally measure and analyze the power losses of a Grid-Integrated Vehicle system, via detailed measurement of the building circuits, power feed components, and of sample electric vehicle components. Under the conditions studied, measured total one-way losses vary from 12% to 36%, so understanding loss factors is important to efficient design and use. Predominant losses occur in the power electronics used for AC-DC conversion. The electronics efficiency is lowest at low power transfer and low state-of-charge, and is lower during discharging than charging. Based on these findings, two engineering design approaches are proposed. First, optimal sizing of charging stations is analyzed. Second, a dispatch algorithm for grid services operating at highest efficiency is developed, showing 7.0% to 9.7% less losses than the simple equal dispatch algorithm. - Highlights: • Grid-to-battery-to-grid comprehensive power loss measurement and analysis. • No previous experimental measurements of Grid-Integrated Vehicle system power loss. • Electric vehicle loss analyzed as a factor of state of charge and charging rate. • Power loss in the building components less than 3%. • Largest losses found in Power Electronics (typical round-trip loss 20%).

  5. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Tribioli, L., E-mail: laura.tribioli@unicusano.it; Cozzolino, R. [Dept. of Industrial Engineering, University of Rome Niccolo’ Cusano (Italy); Barbieri, M. [Engineering Dept., University of Naples Parthenope, Centro Direzionale-Isola C4, 80143 Naples (Italy)

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  6. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    International Nuclear Information System (INIS)

    Tribioli, L.; Cozzolino, R.; Barbieri, M.

    2015-01-01

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared

  7. Electricity/electronics in electric-powered vehicles and electric management III; Elektrik/Elektronik in Hybrid- und Elektrofahrzeugen und elektrisches Energiemanagement III

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Carsten; Sirch, Ottmar

    2012-07-01

    The concept of e-Mobility currently is on everyone's lips. Worldwide, manufacturers and suppliers work with high pressure on new concepts and vehicles. Hybrid vehicles pave the way for pure electric-powered vehicles. Due to the problems of energy saving, electric-powered vehicles will take a long time for an extensively utilization. In the book underconsideration, experts from research and practice report on the latest technologies.

  8. Tanadgusix Foundation Hydrogen / Plug In Electric Vehicle Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Martin [TDX Power Inc., Anchorage, AK (United States)

    2013-09-27

    TDX Foundation undertook this project in an effort to evaluate alternative transportation options and their application in the community of Saint Paul, Alaska an isolated island community in the Bering Sea. Both hydrogen and electric vehicle technology was evaluated for technical and economic feasibility. Hydrogen technology was found to be cost prohibitive. TDX demonstrated the implementation of various types of electric vehicles on St. Paul Island, including side-by-side all terrain vehicles, a Chevrolet Volt (sedan), and a Ford Transit Connect (small van). Results show that electric vehicles are a promising solution for transportation needs on St. Paul Island. Limited battery range and high charging time requirements result in decreased usability, even on a small, isolated island. These limitations were minimized by the installation of enhanced charging stations for the car and van. In collaboration with the University of Alaska Fairbanks (UAF), TDX was able to identify suitable technologies and demonstrate their applicability in the rural Alaskan environment. TDX and UAF partnered to engage and educate the entire community of Saint Paul – fom school children to elders – through presentation of research, findings, demonstrations, first hand operation of alternative fuel vehicles.

  9. Research procedure for buck-boost converter for small electric vehicles

    Science.gov (United States)

    Vacheva, Gergana; Hinov, Nikolay; Penev, Dimitar

    2017-12-01

    In the current paper is developed a mathematical model realized in Matlab for describing a buck-boost converter for control of small electric vehicle. The model is presented with differential equations which describes the processes in the converter. Through the research of this model it can be accomplished the optimal work mode of a small electric vehicles. The proposed converter can be used in a wide range of applications like small electric vehicles, smart grids and different systems for energy storage.

  10. Demand Profile Study of Battery Electric Vehicle under Different Charging Options

    DEFF Research Database (Denmark)

    Marra, Francesco; Yang, Guang Ya; Træholt, Chresten

    2012-01-01

    An increased research on electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) deals with their flexible use in electric power grids. Several research projects on smart grids and electric mobility are now looking into realistic models representing the behavior of an EV during charging...

  11. Prospects for Chinese electric vehicle technologies in 2016–2020: Ambition and rationality

    International Nuclear Information System (INIS)

    Du, Jiuyu; Ouyang, Minggao; Chen, Jingfu

    2017-01-01

    As the world's largest market for vehicles, China is facing challenges related to energy security and urban air pollution. The development of electric vehicles has been determined to be the national strategy for solving these problems. By the end of 2015, China had become the world's largest electric vehicles market, but its core technologies are still less competitive in the global marketplace. A scientific national strategy for 2016 to 2020 is expected to play a critical role in China becoming the global leader in the electric vehicle industry. The research process for this strategy includes a review of the technologies for electric vehicles, market analyses, benchmarking of the top levels in the field, and expert interviews. By these approaches, the strengths and weaknesses of China's electric vehicle technologies and industry are assessed. Competitive and feasible quantitative goals for key components and powertrains are proposed by this paper, and a core issue has been determined to be the need to improve the safety of high-energy density traction batteries. Improving the power density of electric control units is expected to the core for electric vehicles' electronics and control systems. Key problems for the fuel cell stacks used in cars and buses have been identified by this paper to be, respectively, power density and durability. Long-range plug-in hybrid electric powertrains are the optimal candidate for Chinese plug-in hybrid electric vehicles. Lightweight material, intelligent driving technologies and special electric chassis are set to be the focus for improving the energy efficiency of battery electric vehicles. Comprehensive safety and recyclable electric vehicle technologies are set to become key issues in the future, and the Chinese government should research and develop these in advance. - Highlights: • The key technologies of new energy vehicles are comprehensively reviewed. • The global technical status of key components is reviewed.

  12. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  13. Electric Vehicles--A Historical Snapshot

    Science.gov (United States)

    Kraft, Thomas E.

    2012-01-01

    Most people don't realize that the history of electric vehicles (EVs) predates the Civil War. This article provides a historical snapshot of EVs to spark the interest of both teachers and students in this important transportation technology.

  14. 77 FR 47043 - Work Group on Measuring Systems for Electric Vehicle Fueling

    Science.gov (United States)

    2012-08-07

    ... Systems for Electric Vehicle Fueling AGENCY: National Institute of Standards and Technology, Commerce... electric vehicle fuel. There is no cost for participating in the Work Group. No proprietary information... and sell electricity dispensed as a vehicle fuel) and to ensure that the prescribed methodologies and...

  15. Global EV Outlook: Understanding the Electric Vehicle Landscape to 2020

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The Global EV Outlook represents the collective efforts of two years of primary data gathering and analysis from the Electric Vehicles Initiative (EVI) and IEA. Key takeaways and insights include landscape analysis of electric vehicle (EV) stock/sales and charging station deployment. Existing policy initiatives are delineated and future opportunities highlighted in an ''Opportunity Matrix: Pathways to 2020''. Together EVI countries accounted for more than 90% of world EV stock at the end of 2012. Strong government support in EVI countries on both the supply and demand sides are contributing to rising market penetration. 12 out of 15 EVI countries offer financial support for vehicle purchases, and most employ a mix of financial and non-financial incentives (such as access to restricted highway lanes) to help drive adoption. The Global EV Outlook is a unique and data-rich overview of the state of electric vehicles today, and offers an understanding of the electric vehicle landscape to 2020.

  16. Global EV Outlook: Understanding the Electric Vehicle Landscape to 2020

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The Global EV Outlook represents the collective efforts of two years of primary data gathering and analysis from the Electric Vehicles Initiative (EVI) and IEA. Key takeaways and insights include landscape analysis of electric vehicle (EV) stock/sales and charging station deployment. Existing policy initiatives are delineated and future opportunities highlighted in an ''Opportunity Matrix: Pathways to 2020''. Together EVI countries accounted for more than 90% of world EV stock at the end of 2012. Strong government support in EVI countries on both the supply and demand sides are contributing to rising market penetration. 12 out of 15 EVI countries offer financial support for vehicle purchases, and most employ a mix of financial and non-financial incentives (such as access to restricted highway lanes) to help drive adoption. The Global EV Outlook is a unique and data-rich overview of the state of electric vehicles today, and offers an understanding of the electric vehicle landscape to 2020.

  17. Proceedings of the PHEV09 conference : plug-in hybrid and electric vehicles

    International Nuclear Information System (INIS)

    2009-01-01

    The commercialization of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) will require careful consideration of the electric grid's generation and distribution capacities as well as new developments in electric drives and other PHEV and EV technologies. A greater understanding of the policy initiatives needed to develop and promote the use of PHEVs and EVs is also needed in Canada. With 344 delegates, this conference provided a forum for the discussion of issues related to the current PHEV and EV market in Canada. The first day of the conference focused on emerging battery technologies, while the second and third days discussed PHEV and EV technologies, markets, policies and regulations. Presentations at the conference were divided into 18 sessions: (1) performance of batteries in extreme conditions; (2) grid integration; (3) customer perspectives; (4) public and private support programs for the Canadian EV industry; (5) grid-vehicle interface; (6) standards, regulations and safety issues now and in the foreseeable future; (7) an overview of key initiatives in Canada; (8) applications in defence and space; (9) international perspectives on market issues and supportive policies; (10) power management; (11) applications in northern and remote communities; (12) emerging business models to accelerate electric drive; (13) power management; (14) renewable and zero GHG energy opportunities; (15) human resources implications; (16) OEM perspectives; (17) OEM perspectives part 2; and (18) a closing plenary session. The conference featured 64 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs.

  18. Design of an axial-flux permanent magnet machine for a solar-powered electric vehicle

    NARCIS (Netherlands)

    Friedrich, L.A.J.; Bastiaens, K.; Gysen, B.L.J.; Krop, D.C.J.; Lomonova, E.A.

    2018-01-01

    This paper concerns the design optimization of two axial-flux permanent magnet (AFPM) machines, aimed to be used as a direct drive in-wheel motor for the propulsion of a solar-powered electric vehicle. The internal stator twin external rotor AFPM machine topology having either a distributed or

  19. CALCULATION OF A MECHANICAL CHARACTERISTIC OF ELECTRIC TRACTION MOTOR OF ELECTRIC VEHICLE

    Directory of Open Access Journals (Sweden)

    Phuong Le Ngo

    2017-01-01

    Full Text Available The traction characteristic of an electric vehicle is the main characteristic of mechanical system that reflects its key performance indicators. Implementation of the traction characteristic is based on controlling angular speed and torque of electric traction motor in an automatic control system. The static mechanical characteristic of an electric traction motor in an automatic control system is the most important characteristic that determines weight, size and operating characteristics of an electric traction motor and serves as the basis for design. The most common variants of constructive implementation of a traction electric drive are analyzed, and a scheme is chosen for further design. Lagrange’s equation for electric mechanical system with one degree of freedom is written in generalized coordinates. In order to determine the generalized forces, elementary operation of all moments influencing on a moving car has been calculated. The resulting equation of motion of the electric vehicle corresponding to the design scheme, as well as the expressions for calculation of characteristic points of static mechanical characteristics of traction motor (i.e. the maximum and minimum time, minimum power are obtained. In order to determine the nominal values of the angular velocity and the power of electric traction motor, a method based on ensuring the movement of the vehicle in the standard cycle has been developed. The method makes it possible to calculate characteristic points of the mechanical characteristic with the lowest possible power rating. The algorithm for calculation of mechanical characteristics of the motor is presented. The method was applied to calculate static mechanical characteristic of an electric traction motor for a small urban electric truck.

  20. Development of an International Electric Cooperative Initiative on Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Paul Clark; David South

    2004-05-01

    NRECA conceived of the International Electric Cooperative Initiative on Energy Efficiency (IECIEE) in order to provide an ongoing means of contributing voluntary actions on greenhouse gas emissions mitigation as an integral component of its international programs and projects. This required designing the IECIEE to be integrated directly with the core interests and attributes of participating cooperatives in the U.S. and Latin America, which was the initial focus area selected for the IECIEE. In the case of NRECA International, the core interests related to promoting and strengthening the electric cooperative model, which has proved highly successful in maximizing operational efficiencies in electric power generation, distribution and retailing, as compared to government-owned entities. The approach involved three basic components: (i) establishing the IECIEE mechanism, which involved setting up a functioning organizational vehicle providing for investment, management, and emissions credit accounting; (ii) developing a portfolio of projects in countries where NRECA International could effectively implement the broader mandate of cooperative development as energy efficient suppliers and distributors of electrical energy; and (iii) conducting outreach to obtain the commitment of participants and resources from U.S. and Latin American cooperatives and partnering agencies in the development financing community.

  1. Impact of Electric Vehicles as Distributed Energy Storage in Isolated Systems: The Case of Tenerife

    Directory of Open Access Journals (Sweden)

    Alfredo Ramírez Díaz

    2015-11-01

    Full Text Available Isolated regions are highly dependent on fossil fuels. The use of endogenous sources and the improvement in energy efficiency in all of the consumption activities are the two main ways to reduce the dependence of petroleum-derived fuels. Tenerife offers an excellent renewable resource (hours of sun and wind. However, the massive development of these technologies could cause important operational problems within the electric power grids, because of the small size of the system. In this paper, we explore the option of coupling an electric vehicle fleet as a distributed energy storage system to increase the participation of renewables in an isolated power system, i.e., Tenerife Island. A model simulator has been used to evaluate five key outputs, that is the renewable share, the energy spilled, the CO2 emissions, the levelized cost of generating electricity and fuel dependence, under alternative scenarios. Comparing to the current situation, combining a gradual renewable installed capacity and the introduction of an electric vehicle fleet using alternative charging strategies, a total of 30 different scenarios have been evaluated. Results shows that the impact of 50,000 electric vehicles would increase the renewable share in the electricity mix of the island up to 30%, reduce CO2 emissions by 27%, the total cost of electric generation by 6% and the oil internal market by 16%.

  2. Optimal charging of electric drive vehicles in a market environment

    DEFF Research Database (Denmark)

    Kristoffersen, Trine Krogh; Capion, Karsten Emil; Meibom, Peter

    2011-01-01

    With a potential to facilitate the integration of renewable energy into the electricity system, electric drive vehicles may offer a considerable flexibility by allowing for charging and discharging when desired. This paper takes the perspective of an aggregator that manages the electricity market...... participation of a vehicle fleet and presents a framework for optimizing charging and discharging of the electric drive vehicles, given the driving patterns of the fleet and the variations in market prices of electricity. When the aggregator is a price-taker the optimization can be stated in terms of linear...... programming whereas a quadratic programming formulation is required when he/she has market power. A Danish case study illustrates the construction of representative driving patterns through clustering of survey data from Western Denmark and the prediction of electricity price variations through regression...

  3. Highway vehicle electric drive in the United States : 2009 status and issues.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drive are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.

  4. Thermoelectrics as elements of hybrid-electric vehicle thermal energy systems

    Science.gov (United States)

    Headings, Leon; Washington, Gregory; Jaworski, Christopher M.

    2008-03-01

    Despite vast technological improvements, the traditional internal combustion powered vehicle still achieves only 25- 30% efficiency, with the remainder lost primarily as heat. While the load leveling offered by hybrid-electric vehicle technology helps to improve this overall efficiency, part of the efficiency gains are achieved by making new systems such as regenerative braking viable. In a similar fashion, thermoelectric (TE) energy recovery has long been considered for traditional vehicles with mixed results, but little has been done to consider thermoelectrics in the framework of the unique energy systems of hybrid vehicles. Systems that may not have been viable or even possible with traditional vehicles may offer improvements to system efficiency as well as emissions, vehicle durability, passenger comfort, and cost. This research describes a simulation developed for evaluating and optimizing thermoelectric energy recovery systems and results for four different system configurations. Two novel system configurations are presented which offer the potential for additional benefits such as emissions reduction that will soon be quantified. In addition, a test setup is presented which was constructed for the testing and validation of various thermoelectric recovery systems. Actual test performance was near the expected theoretical performance and supported the conclusions reached from the computer simulations.

  5. Simulating the value of electric-vehicle-grid integration using a behaviourally realistic model

    Science.gov (United States)

    Wolinetz, Michael; Axsen, Jonn; Peters, Jotham; Crawford, Curran

    2018-02-01

    Vehicle-grid integration (VGI) uses the interaction between electric vehicles and the electrical grid to provide benefits that may include reducing the cost of using intermittent renwable electricity or providing a financial incentive for electric vehicle ownerhip. However, studies that estimate the value of VGI benefits have largely ignored how consumer behaviour will affect the magnitude of the impact. Here, we simulate the long-term impact of VGI using behaviourally realistic and empirically derived models of vehicle adoption and charging combined with an electricity system model. We focus on the case where a central entity manages the charging rate and timing for participating electric vehicles. VGI is found not to increase the adoption of electric vehicles, but does have a a small beneficial impact on electricity prices. By 2050, VGI reduces wholesale electricity prices by 0.6-0.7% (0.7 MWh-1, 2010 CAD) relative to an equivalent scenario without VGI. Excluding consumer behaviour from the analysis inflates the value of VGI.

  6. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  7. Electric vehicle machines and drives design, analysis and application

    CERN Document Server

    Chau, K

    2015-01-01

    A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material

  8. Near-Term Electric Vehicle Program. Phase II: Mid-Term Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-01

    The Near Term Electric Vehicle (NTEV) Program is a constituent elements of the overall national Electric and Hybrid Vehicle Program that is being implemented by the Department of Energy in accordance with the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. Phase II of the NTEV Program is focused on the detailed design and development, of complete electric integrated test vehicles that incorporate current and near-term technology, and meet specified DOE objectives. The activities described in this Mid-Term Summary Report are being carried out by two contractor teams. The prime contractors for these contractor teams are the General Electric Company and the Garrett Corporation. This report is divided into two discrete parts. Part 1 describes the progress of the General Electric team and Part 2 describes the progress of the Garrett team.

  9. Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec)

    Energy Technology Data Exchange (ETDEWEB)

    Caruthers, James; Dietz, J.; Pelter, Libby; Chen, Jie; Roberson, Glen; McGinn, Paul; Kizhanipuram, Vinodegopal

    2013-01-31

    The Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) is an educational partnership between six universities and colleges in Indiana focused on developing the education materials needed to support electric vehicle technology. The I-AEVtec has developed and delivered a number of degree and certificate programs that address various aspects of electric vehicle technology, including over 30 new or significantly modified courses to support these programs. These courses were shared on the SmartEnergyHub. The I-AEVtec program also had a significant outreach to the community with particular focus on K12 students. Finally, the evGrandPrix was established which is a university/college student electric go-kart race, where the students get hands-on experience in designing, building and racing electric vehicles. The evGrandPrix now includes student teams from across the US as well as from Europe and it is currently being held on Opening Day weekend for the Indy500 at the Indianapolis Motor Speedway.

  10. The Electric Vehicle Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article describes a design activity that provides students with a solid understanding of the many issues involved with alternate energy system design. In this activity, students will be able to learn about electric vehicles and have the opportunity to design a way to recharge the batteries while the cars are parked in a commuter garage. The…

  11. Cooling system and climate control of fuel cell electric vehicle (FCEV)

    Energy Technology Data Exchange (ETDEWEB)

    Ap, N.S. [Valeo Engine Cooling, La Varriere (France); Cloarec, M.; Rouveyre, L. [PSA-Renault, Trappes (France)

    2000-07-01

    This paper described the special thermal aspects of the fuel cell electric vehicle (FCEV) program established in 1999 by the combined efforts of the two French car manufacturers PSA and Renault. One of the objectives of the program was to examine the climate control and particularly the air conditioning in the passenger compartment which had not been previously studied. The heat dissipation of FCEV is in the order of 2.5 to 3 times higher than that of a comparable internal combustion engine vehicle (ICEV). In addition, the fuel cell powertrain has two temperature levels. The first level is high for the fuel cell stack and the second is low for the electrical, electronic components and other auxiliaries. This paper presented and described each component of two cooling loops along with the heat performance of each type. The first cooling loop used de-ionized water as a coolant, and the second made use of an ethylene-glycol-water mixture as a coolant. The air conditioning capability is a major aspect of the FCEV thermal management. The electrical source availability creates the condition to introduce an enhanced comfort level. Both winter preheating and summer precooling are possible. refs., figs.

  12. Integration of regenerative shock absorber into vehicle electric system

    Science.gov (United States)

    Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-03-01

    Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.

  13. A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis

    International Nuclear Information System (INIS)

    Li, Mengyu; Zhang, Xiongwen; Li, Guojun

    2016-01-01

    Battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) are increasingly prevalent in the transportation sector due to growing concerns about climate change, urban air pollution and oil dependence. This theoretical study reports the results of well-to-wheel (WTW) analyses for BEVs and FCEVs in different energy resource and technology pathways in China in terms of fossil energy use, total energy use and greenhouse gas (GHG) emissions. The energy types include coal, natural gas, renewable energy and nuclear energy resources. Special attention is given to the effects of vehicle heating loads on the WTW performances of BEVs and FCEVs. Energy use and GHG emissions reductions from BEVs and FCEVs in different pathways are examined and compared to those of gasoline-based internal engine vehicles (ICEVs). When considering the cabin heating load in vehicles, FCEVs using natural gas as the energy source outperformed all the BEVs in terms of total energy use and GHG emissions. FCEVs adopting new energy-based pathways can achieve the same WTW efficiencies as BEVs, and these efficiencies may be even higher if the hydrogen used by FCEVs is produced by the pathways of solar-solid oxide electrolysis cell (SOEC) systems, solar-thermochemical systems or nuclear-SOEC systems. - Highlights: • A well-to-wheel analysis is performed for electric vehicle technologies in China. • The effects of cabin heating on well-to-wheel performances are investigated. • The performances of different electric vehicle pathways are presented in detail. • FCEVs with natural gas pathways outperformed BEVs.

  14. Acoustic Data for Hybrid and Electric Heavy-Duty Vehicles and Electric Motorcycles

    Science.gov (United States)

    2015-12-01

    The Pedestrian Safety Enhancement Act (PSEA) of 2010 requires NHTSA to conduct a rulemaking to establish a Federal Motor Vehicle Safety Standard requiring an alert sound for pedestrians to be emitted by all types of motor vehicles that are electric o...

  15. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles

    International Nuclear Information System (INIS)

    Tarroja, Brian; Zhang, Li; Wifvat, Van; Shaffer, Brendan; Samuelsen, Scott

    2016-01-01

    A study has been performed to understand the quantitative impact of key differences between vehicle-to-grid and stationary energy storage systems on renewable utilization, greenhouse gas emissions, and balancing fleet operation, using California as the example. To simulate the combined electricity and light-duty transportation system, a detailed electric grid dispatch model (including stationary energy storage systems) was combined with an electric vehicle charging dispatch model that incorporates conventional smart and vehicle-to-grid capabilities. By subjecting smaller amounts of renewable energy to round-trip efficiency losses and thereby increasing the efficiency of renewable utilization, it was found that vehicle-to-grid energy storage can achieve higher renewable utilization levels and reduced greenhouse gas emissions compared to stationary energy storage systems. Vehicle-to-grid energy storage, however, is not as capable of balancing the power plant fleet compared to stationary energy storage systems due to the constraints of consumer travel patterns. The potential benefits of vehicle-to-grid are strongly dependent on the availability of charging infrastructure at both home and workplaces, with potential benefits being compromised with residential charging availability only. Overall, vehicle-to-grid energy storage can provide benefits over stationary energy storage depending on the system attribute selected for improvement, a finding amenable to managing through policy. - Highlights: • Using vehicle-to-grid-based storage increases the efficiency of renewable energy utilization. • Vehicle-to-grid-based energy storage has less overall flexibility compared to stationary energy storage. • The discharge ability of vehicle-to-grid-based provides a significant benefit over one-way smart charging. • Both workplace and home charging are critical for providing vehicle-to-grid-related benefits. • Increasing charging intelligence reduces stationary energy

  16. Smart Electric Vehicle Charging Infrastructure Overview

    Energy Technology Data Exchange (ETDEWEB)

    Chynoweth, Joshua; Chung, Ching-Yen; Qiu, Charlie; Chu, Peter; Gadh, Rajit

    2014-02-19

    WINSmartEV™ is a smart electric vehicle charging system that has been built and is currently in operation. It is a software and network based EV charging system designed and built around the ideas of intelligent charge scheduling, multiplexing (connecting multiple vehicles to each circuit) and flexibility. This paper gives an overview of this smart charging system with an eye toward its unique features and capabilities.

  17. Methodology for assessing electric vehicle charging infrastructure business models

    International Nuclear Information System (INIS)

    Madina, Carlos; Zamora, Inmaculada; Zabala, Eduardo

    2016-01-01

    The analysis of economic implications of innovative business models in networked environments, as electro-mobility is, requires a global approach to ensure that all the involved actors obtain a benefit. Although electric vehicles (EVs) provide benefits for the society as a whole, there are a number of hurdles for their widespread adoption, mainly the high investment cost for the EV and for the infrastructure. Therefore, a sound business model must be built up for charging service operators, which allows them to recover their costs while, at the same time, offer EV users a charging price which makes electro-mobility comparable to internal combustion engine vehicles. For that purpose, three scenarios are defined, which present different EV charging alternatives, in terms of charging power and charging station ownership and accessibility. A case study is presented for each scenario and the required charging station usage to have a profitable business model is calculated. We demonstrate that private home charging is likely to be the preferred option for EV users who can charge at home, as it offers a lower total cost of ownership under certain conditions, even today. On the contrary, finding a profitable business case for fast charging requires more intensive infrastructure usage. - Highlights: • Ecosystem is a network of actors who collaborate to create a positive business case. • Electro-mobility (electricity-powered road vehicles and ICT) is a complex ecosystem. • Methodological analysis to ensure that all actors benefit from electro-mobility. • Economic analysis of charging infrastructure deployment linked to its usage. • Comparison of EV ownership cost vs. ICE for vehicle users.

  18. Prognostics and Health Monitoring: Application to Electric Vehicles

    Science.gov (United States)

    Kulkarni, Chetan S.

    2017-01-01

    As more and more autonomous electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of remaining useful life of the systemssubsystems, specifically the electrical powertrain. In case of electric aircrafts, computing remaining flying time is safety-critical, since an aircraft that runs out of power (battery charge) while in the air will eventually lose control leading to catastrophe. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle.Our research approach is to develop a system level health monitoring safety indicator either to the pilotautopilot for the electric vehicles which runs estimation and prediction algorithms to estimate remaining useful life of the vehicle e.g. determine state-of-charge in batteries. Given models of the current and future system behavior, a general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.

  19. Utilization of the Flexibility Potential of Electric Vehicles - an Alternative to Distribution Grid Reinforcements.

    OpenAIRE

    Ager-Hanssen, Siri Bruskeland; Myhre, Siri Olimb

    2015-01-01

    Today, the transport sector accounts for a large share of global emissions. Electric vehicles have many environmental advantages compared to conventional petrol vehicles. Hence, if electric vehicles can replace petrol vehicles, the transportation sector's total emissions can be significantly reduced. In Norway, due to policy incentives, it is expected that the number of electric vehicles will increase considerably in the near future. Despite the great advantages of electric vehicles, large pe...

  20. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Directory of Open Access Journals (Sweden)

    Philippe Lebeau

    2015-01-01

    Full Text Available Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks and vehicle technology (petrol, hybrid, diesel, and electric vehicles. Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  1. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.

  2. Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?

    Science.gov (United States)

    Lebeau, Philippe; De Cauwer, Cedric; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry

    2015-01-01

    Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile. PMID:26236769

  3. Plug-in electric vehicle (PEV) smart charging module

    Science.gov (United States)

    Harper, Jason; Dobrzynski, Daniel S.

    2017-09-12

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. The smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.

  4. Harmonic Analysis of Electric Vehicle Loadings on Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yijun A [University of Southern California, Department of Electrical Engineering; Xu, Yunshan [University of Southern California, Department of Electrical Engineering; Chen, Zimin [University of Southern California, Department of Electrical Engineering; Peng, Fei [University of Southern California, Department of Electrical Engineering; Beshir, Mohammed [University of Southern California, Department of Electrical Engineering

    2014-12-01

    With the increasing number of Electric Vehicles (EV) in this age, the power system is facing huge challenges of the high penetration rates of EVs charging stations. Therefore, a technical study of the impact of EVs charging on the distribution system is required. This paper is applied with PSCAD software and aimed to analyzing the Total Harmonic Distortion (THD) brought by Electric Vehicles charging stations in power systems. The paper starts with choosing IEEE34 node test feeder as the distribution system, building electric vehicle level two charging battery model and other four different testing scenarios: overhead transmission line and underground cable, industrial area, transformer and photovoltaic (PV) system. Then the statistic method is used to analyze different characteristics of THD in the plug-in transient, plug-out transient and steady-state charging conditions associated with these four scenarios are taken into the analysis. Finally, the factors influencing the THD in different scenarios are found. The analyzing results lead the conclusion of this paper to have constructive suggestions for both Electric Vehicle charging station construction and customers' charging habits.

  5. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  6. Onboard power line conditioning system for an electric or hybrid vehicle

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  7. Reference-dependent electric vehicle production strategy considering subsidies and consumer trade-offs

    International Nuclear Information System (INIS)

    Zhang, Xiang

    2014-01-01

    In this paper, we extend previous reference-dependence newsvendor research by incorporating both consumer trade-offs and government subsidies to evaluate the relevant influences on the optimal electric vehicle (EV) production decisions. We present the properties of the model, derive the closed-form solutions for the model given the relevant constraints, and use numerical experiments to illustrate the results. We find that subsidies, loss aversion, the performance of both EVs and internal combustion engine-powered vehicles (ICEVs), and the coefficient of variation of demand are significant factors influencing the optimal production quantity and the expected utilities of EV production. The high selling price and other high costs of ICEVs help offset the influence of loss aversion, whereas the high costs of EV enhance loss aversion. Our study enriches the literature on subsidies for EVs by establishing a behavioral model to incorporate the decision bias in terms of loss aversion at the firm level. These findings provide guiding principles for both policymakers and EV managers for making better strategies to promote EVs in the early immature market. - Highlights: • The performance of both electric vehicles (EVs) and internal combustion engine-power vehicles (ICEVs) influences the EV production decisions. • A loss averse EV manager produces less and obtains less the expected utility than a risk neutral one. • Subsidies help decrease the EV breakeven quantity, increase the optimal quantity, offset the influence of loss aversion. • Subsidies should be adjusted according to the performance of both EVs and the ICEVs, demand heterogeneity, and local conditions. • The high ICEVs costs help offset the influence of loss aversion, whereas the high EV costs enhance loss aversion

  8. Plug-in hybrid electric vehicle R&D plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  9. Sustainable Electric Vehicle Management using Coordinated Machine Learning

    NARCIS (Netherlands)

    K. Valogianni (Konstantina)

    2016-01-01

    markdownabstractThe purpose of this dissertation is to investigate how intelligent algorithms can support electricity customers in their complex decisions within the electricity grid. In particular, we focus on how electric vehicle (EV) owners can be supported in their charging and discharging

  10. Two wheel speed robust sliding mode control for electric vehicle drive

    Directory of Open Access Journals (Sweden)

    Abdelfatah Nasri

    2008-01-01

    Full Text Available Nowadays the uses of electrical power resources are integrated in the modern vehicle motion traction chain so new technologies allow the development of electric vehicles (EV by means of static converters-related electric motors. All mechanical transmission devices are eliminated and vehicle wheel motion can be controlled by means of power electronics. The proposed propulsing system consists of two induction motors (IM that ensure the drive of the two back driving wheels. The proposed control structure-called independent machines- for speed control permit the achievement of an electronic differential. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling independently, every driving wheel to turn at different speeds in any curve. This paper presents the study and the sliding mode control strategy of the electric vehicle driving wheels.

  11. Charging Schedule for Electric Vehicles in Danish Residential Distribution Grids

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Huang, Shaojun; Bak-Jensen, Birgitte

    2015-01-01

    energy sources like wind in power systems. The EV batteries could be used to charge during periods of excess electricity production from wind power and reduce the charging rate or discharge on deficit of power in the grid, supporting system stability and reliability. By providing such grid services......The prospects of Electric Vehicles (EVs) in providing clean transportation and supporting renewable electricity is widely discussed in sustainable energy forums worldwide. The battery storage of EVs could be used to address the variability and unpredictability of electricity produced from renewable......, the vehicle owner, vehicle fleet operator and other parties involved in the process could economically benefit from the process. This paper investigates an optimal EV charging plan in Danish residential distribution grids in view of supporting high volumes of wind power in electricity grids. The results...

  12. Eaton launches EV certification for fast-growing electric vehicle market

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2011-11-15

    This paper presents Electrical Line magazine's industry news, where it covers the launch by Eaton Corporation of electric vehicle (EV) certification for the fast-growing electric vehicle market. The aim of the certification is to help homeowners locate electricians specializing in electric vehicle support. Eaton certified EV contractors will visit the residence of people interested in an EV and determine if it can support a charging station. These contractors are trained, qualified and members of Eaton's certified contractor network. The residential power stations come in a wall-mount or pedestal model that can fully charge an electric car in 6 to 24 hours, depending on the model. The article also covers a new venture by Powercheck, a Vancouver-based company, which ensures that electrical wiring in older homes is safe and complies with their insurance company's safety requirements. Powercheck examines the entire house for electrical fire hazards and produces a detailed report listing the corrective actions needed.

  13. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  14. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  15. Bidirectional DC-DC converter fed drive for electric vehicle system ...

    African Journals Online (AJOL)

    Batteries are the primary energy-storage devices in ground vehicles. Now days battery fed electric drives are commonly being used for electric vehicles applications, due to various advantages, such as: nearly zero emission, guaranteed load leveling, good transient operation and energy recovery during braking operation.

  16. Battery- and aging-aware embedded control systems for electric vehicles

    NARCIS (Netherlands)

    Chang, W.; Probstl, A.; Goswami, D.; Zamani, M.; Chakraborty, S.

    2014-01-01

    In this paper, for the first time, we propose a battery- and aging-aware optimization framework for embedded control systems design in electric vehicles (EVs). Performance and reliability of an EV are influenced by feedback control loops implemented into in-vehicle electrical/electronic (E/E)

  17. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  18. Prediction of electric vehicle penetration.

    Science.gov (United States)

    2017-05-01

    The object of this report is to present the current market status of plug-in-electric : vehicles (PEVs) and to predict their future penetration within the world and U.S. : markets. The sales values for 2016 show a strong year of PEV sales both in the...

  19. Analyzing The Impacts of the Biogas-to-Electricity Purchase Incentives on Electric Vehicle Deployment with the MA3T Vehicle Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Podkaminer, Kara [U.S. Department of Energy (DOE); Xie, Fei [ORNL; Lin, Zhenhong [ORNL

    2017-01-01

    This analysis represents the biogas-to-electricity pathway under the Renewable Fuel Standard (RFS) as a point of purchase incentive and tests the impact of this incentive on EV deployment using a vehicle consumer choice model. The credit value generated under this policy was calculated in a number of scenarios based on electricity use of each power train choice on a yearly basis over the 15 year vehicle lifetime, accounting for the average electric vehicle miles travelled and vehicle efficiency, competition for biogas-derived electricity among electric vehicles (EVs), the RIN equivalence value and the time value of money. The credit value calculation in each of these scenarios is offered upfront as a point of purchase incentive for EVs using the Market Acceptance of Advanced Automotive Technologies (MA3T) vehicle choice model, which tracks sales, fleet size and energy use over time. The majority of the scenarios use a proposed RIN equivalence value, which increases the credit value as a way to explore the analysis space. Additional model runs show the relative impact of the equivalence value on EV deployment. The MA3T model output shows that a consumer incentive accelerates the deployment of EVs for all scenarios relative to the baseline (no policy) case. In the scenario modeled to represent the current biogas-to-electricity generation capacity (15 TWh/year) with a 5.24kWh/RIN equivalence value, the policy leads to an additional 1.4 million plug-in hybrid electric vehicles (PHEVs) and 3.5 million battery electric vehicles (BEVs) in 2025 beyond the no-policy case of 1.3 million PHEVs and 2.1 million BEVs when the full value of the credit is passed on to the consumer. In 2030, this increases to 2.4 million PHEVs and 7.3 million BEVs beyond the baseline. This larger impact on BEVs relative to PHEVs is due in part to the larger credit that BEVs receive in the model based on the greater percentage of electric vehicle miles traveled by BEVs relative to PHEVs. In this

  20. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  1. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  2. Definition and verification of a set of reusable reference architectures for hybrid vehicle development

    OpenAIRE

    Harrington, Cian

    2012-01-01

    Current concerns regarding climate change and energy security have resulted in an increasing demand for low carbon vehicles, including: more efficient internal combustion engine vehicles, alternative fuel vehicles, electric vehicles and hybrid vehicles. Unlike traditional internal combustion engine vehicles and electric vehicles, hybrid vehicles contain a m...

  3. Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips

    International Nuclear Information System (INIS)

    Robinson, A.P.; Blythe, P.T.; Bell, M.C.; Hübner, Y.; Hill, G.A.

    2013-01-01

    This paper quantifies the recharging behaviour of a sample of electric vehicle (EV) drivers and evaluates the impact of current policy in the north east of England on EV driver recharging demand profiles. An analysis of 31,765 EV trips and 7704 EV recharging events, constituting 23,805 h of recharging, were recorded from in-vehicle loggers as part of the Switch EV trials is presented. Altogether 12 private users, 21 organisation individuals and 32 organisation pool vehicles were tracked over two successive six month trial periods. It was found that recharging profiles varied between the different user types and locations. Private users peak demand was in the evening at home recharging points. Organisation individual vehicles were recharged primarily upon arrival at work. Organisation pool users recharged at work and public recharging points throughout the working day. It is recommended that pay-as-you-go recharging be implemented at all public recharging locations, and smart meters be used to delay recharging at home and work locations until after 23:00 h to reduce peak demand on local power grids and reduce carbon emissions associated with EV recharging. - Highlights: • Study of EV driver recharging habits in the north east of England. • 7704 electric vehicle recharging events, comprising 23,805 h were collected. • There was minimal recharging during off- peak hours. • Free parking and electricity at point of use encouraged daytime recharging. • Need for financial incentives and smart solutions to better manage recharging demand peaks

  4. Research on the impacts of large-scale electric vehicles integration into power grid

    Science.gov (United States)

    Su, Chuankun; Zhang, Jian

    2018-06-01

    Because of its special energy driving mode, electric vehicles can improve the efficiency of energy utilization and reduce the pollution to the environment, which is being paid more and more attention. But the charging behavior of electric vehicles is random and intermittent. If the electric vehicle is disordered charging in a large scale, it causes great pressure on the structure and operation of the power grid and affects the safety and economic operation of the power grid. With the development of V2G technology in electric vehicle, the study of the charging and discharging characteristics of electric vehicles is of great significance for improving the safe operation of the power grid and the efficiency of energy utilization.

  5. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  6. Isolated step-down DC -DC converter for electric vehicles

    Science.gov (United States)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  7. Response of lead-acid batteries to chopper-controlled discharge. [for electric vehicles

    Science.gov (United States)

    Cataldo, R. L.

    1978-01-01

    The results of tests on an electric vehicle battery, using a simulated electric vehicle chopper-speed controller, show energy output losses up to 25 percent compared to constant current discharges at the same average current of 100 A. However, an energy output increase of 22 percent is noticed at the 200 A average level and 44 percent increase at the 300 A level using pulse discharging. Because of these complex results, electric vehicle battery/speed controller interactions must be considered in vehicle design.

  8. Prediction and optimization methods for electric vehicle charging schedules in the EDISON project

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Andersen, Peter Bach; Pedersen, Anders Bro

    2012-01-01

    project has been launched to investigate various areas relevant to electric vehicle integration. As part of EDISON an electric vehicle aggregator has been developed to demonstrate smart charging of electric vehicles. The emphasis of this paper is the mathematical methods on which the EDISON aggregator...

  9. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  10. The Legal Status of Low Speed, Electric, Automated Vehicles in Texas : Policy Brief

    Science.gov (United States)

    2018-01-01

    This report explores whether vehicles that are both Neighborhood Electric Vehicles (NEVs) and Automated Vehicles (AVs) may operate legally on public roads in Texas. First is an examination of Neighborhood Electric Vehicles and how they are governed i...

  11. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    Science.gov (United States)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  12. Restoring a Classic Electric Car

    Science.gov (United States)

    Kraft, Thomas E.

    2012-01-01

    One hundred years ago, automobiles were powered by steam, electricity, or internal combustion. Female drivers favored electric cars because, unlike early internal-combustion vehicles, they did not require a crank for starting. Nonetheless, internal-combustion vehicles came to dominate the industry and it's only in recent years that the electrics…

  13. Impact of plug-in electric vehicles on voltage unbalance in ...

    African Journals Online (AJOL)

    Plug-in electric vehicle (PEV) will soon be connected to residential distribution networks. ... generation units which transfer the energy stored in their battery into grid. ... electric vehicles on voltage imbalance in distribution system is presented. ... and other types of distribution generator such as solar photovoltaic and wind ...

  14. Dynamic simulation of urban hybrid electric vehicles; Dynamische Simulation von Stadthybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Winke, Florian; Bargende, Michael [Stuttgart Univ. (Germany). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)

    2013-09-15

    As a result of the rising requirements on the development process of modern vehicles, simulation models for the prediction of fuel efficiency have become an irreplaceable tool in the automotive industry. Especially for the design of hybrid electric drivetrains, the increasingly short development cycles can only be met by the use of efficient simulation models. At the IVK of the University of Stuttgart, different approaches to simulating the longitudinal dynamics of hybrid electric vehicles were analysed and compared within the presented project. The focus of the investigations was on urban operation. The objective was to develop a hybrid vehicle concept that allows an equitable comparison with pure battery electric vehicles. (orig.)

  15. Electric vehicle market penetration in Switzerland by 2020 - We cannot forecast the future but we can prepare for it

    International Nuclear Information System (INIS)

    2009-07-01

    The road transportation sector in Switzerland accounts for 44% of the whole greenhouse gas emissions of the country (around 52 million tons of CO 2 equivalent, of which around 44 million tons of CO 2 ). The share of private cars is 72% of the road transportation emissions. The efficiency of electric vehicles is near 40% (useful energy/primary energy) in comparison to that of fossil fuel vehicles (15-20%). The European Union (EU) market average of CO 2 emissions from passenger cars was about 160 g CO 2 /km in 2005 and the average EU mix of electricity production had specific emissions of 410 g CO 2 /kWh in the same year. In comparison the Swiss production mix was 34 CO 2 /kWh in 2005, but the relevant Swiss consumption mix was 112 g CO 2 /kWh, due to imports of electricity (with around 21% of the demand covered by imports). Hence a typical electric car will produce CO 2 emissions of around 80 g CO 2 /km in Europe, what is already twice better (in Switzerland: 23 g CO 2 /km with the present consumption mix). By 2030 it is assumed that the EU electricity production mix will diminish to 130 g CO 2 /kWh, and in Switzerland the consumption mix would be around 55 g CO 2 /kWh (still calculated with 21% imports and with the same Swiss production mix), resulting in emissions from electric car in Europe of less than 30 g CO 2 /km, and in Switzerland less than 13 g CO 2 /km (all calculations made with a specific electric demand of 18-20 kWh/100 km). In summary, electrical vehicles retain a tremendous comparative advantage with respect to internal combustion engine vehicles. If 15% of the Swiss cars (i.e. 720,000 units) would be replaced by electrical vehicles, yearly CO 2 emissions would decrease by about 1.2 million tons. This figure must be compared with the international commitment of Switzerland concerning its reduction of the global greenhouse gas emissions by 20%, i.e. 10.5 million tons of CO 2 equivalent a year. These 720,000 electrical vehicles would increase the

  16. Scenario generation for electric vehicles' uncertain behavior in a smart city environment

    International Nuclear Information System (INIS)

    Soares, João; Borges, Nuno; Fotouhi Ghazvini, Mohammad Ali; Vale, Zita; Moura Oliveira, P.B. de

    2016-01-01

    This paper presents a framework and methods to estimate electric vehicles' possible states, regarding their demand, location and grid connection periods. The proposed methods use the Monte Carlo simulation to estimate the probability of occurrence for each state and a fuzzy logic probabilistic approach to characterize the uncertainty of electric vehicles' demand. Day-ahead and hour-ahead methodologies are proposed to support the smart grids' operational decisions. A numerical example is presented using an electric vehicles fleet in a smart city environment to obtain each electric vehicle possible states regarding their grid location. - Highlights: • New concept/framework in smart cities context to estimate the states of electric vehicles and energy demand. • Monte Carlo Simulation and fuzzy logic probabilistic approach to support the envisaged concept. • A day-ahead and an hour-ahead stochastic scenarios generation to support the smart grid's operational decisions.

  17. Advancing electric-vehicle development with pure-lead-tin battery technology

    Science.gov (United States)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  18. Online prediction of battery electric vehicle energy consumption

    NARCIS (Netherlands)

    Wang, Jiquan; Besselink, Igo; Nijmeijer, Henk

    2016-01-01

    The energy consumption of battery electric vehicles (BEVs) depends on a number of factors, such as vehicle characteristics, driving behavior, route information, traffic states and weather conditions. The variance of these factors and the correlation among each other make the energy consumption

  19. Low-CO(2) electricity and hydrogen: a help or hindrance for electric and hydrogen vehicles?

    Science.gov (United States)

    Wallington, T J; Grahn, M; Anderson, J E; Mueller, S A; Williander, M I; Lindgren, K

    2010-04-01

    The title question was addressed using an energy model that accounts for projected global energy use in all sectors (transportation, heat, and power) of the global economy. Global CO(2) emissions were constrained to achieve stabilization at 400-550 ppm by 2100 at the lowest total system cost (equivalent to perfect CO(2) cap-and-trade regime). For future scenarios where vehicle technology costs were sufficiently competitive to advantage either hydrogen or electric vehicles, increased availability of low-cost, low-CO(2) electricity/hydrogen delayed (but did not prevent) the use of electric/hydrogen-powered vehicles in the model. This occurs when low-CO(2) electricity/hydrogen provides more cost-effective CO(2) mitigation opportunities in the heat and power energy sectors than in transportation. Connections between the sectors leading to this counterintuitive result need consideration in policy and technology planning.

  20. Letter to the Editor: Electric Vehicle Demand Model for Load Flow Studies

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; Vlachogiannis, Ioannis (John)

    2009-01-01

    This paper introduces specific and simple model for electric vehicles suitable for load flow studies. The electric vehicles demand system is modelled as PQ bus with stochastic characteristics based on the concept of queuing theory. All appropriate variables of stochastic PQ buses are given...... with closed formulae as a function of charging time. Specific manufacturer model of electric vehicles is used as study case....

  1. THE CONTENT MODEL AND THE EQUATIONS OF MOTION OF ELECTRIC VEHICLE

    Directory of Open Access Journals (Sweden)

    K. O. Soroka

    2015-06-01

    Full Text Available Purpose. The calculation methods improvement of the electric vehicle curve movement and the cost of electricity with the aim of performance and accuracy of calculations improving are considered in the paper. Methodology. The method is based upon the general principles of mathematical simulation, when a conceptual model of problem domain is created and then a mathematic model is formulated according to the conceptual model. Development of an improved conceptual model of electric vehicles motion is proposed and a corresponding mathematical model is studied. Findings. The authors proposed model in which the vehicle considers as a system of interacting point-like particles with defined interactions under the influence of external forces. As a mathematical model the Euler-Lagrange equation of the second kind is used. Conservative and dissipative forces affecting the system dynamics are considered. Equations for calculating motion of electric vehicles with taking into account the energy consumption are proposed. Originality. In the paper the conceptual model of motion for electric vehicles with distributed masses has been developed as a system of interacting point-like particles. In the easiest case the system has only one degree of freedom. The mathematical model is based on Lagrange equations. The shown approach allows a detailed and physically based description of the electric vehicles dynamics. The derived motion equations for public electric transport are substantially more precise than the equations recommended in textbooks and the reference documentation. The motion equations and energy consumption calculations for transportation of one passenger with a trolleybus are developed. It is shown that the energy consumption depends on the data of vehicle and can increase when the manload is above the certain level. Practical value. The authors received the equations of motion and labour costs in the calculations focused on the use of computer methods

  2. The influence of financial incentives and other socio-economic factors on electric vehicle adoption

    International Nuclear Information System (INIS)

    Sierzchula, William; Bakker, Sjoerd; Maat, Kees; Wee, Bert van

    2014-01-01

    Electric vehicles represent an innovation with the potential to lower greenhouse gas emissions and help mitigate the causes of climate change. However, externalities including the appropriability of knowledge and pollution abatement result in societal/economic benefits that are not incorporated in electric vehicle prices. In order to address resulting market failures, governments have employed a number of policies. We seek to determine the relationship of one such policy instrument (consumer financial incentives) to electric vehicle adoption. Based on existing literature, we identified several additional socio-economic factors that are expected to be influential in determining electric vehicle adoption rates. Using multiple linear regression analysis, we examined the relationship between those variables and 30 national electric vehicle market shares for the year 2012. The model found financial incentives, charging infrastructure, and local presence of production facilities to be significant and positively correlated to a country's electric vehicle market share. Results suggest that of those factors, charging infrastructure was most strongly related to electric vehicle adoption. However, descriptive analysis suggests that neither financial incentives nor charging infrastructure ensure high electric vehicle adoption rates. - Highlights: • This research analyzes electric vehicle adoption of 30 countries in 2012. • Financial incentives and charging infrastructure were statistically significant factors. • Country-specific factors help to explain diversity in national adoption rates. • Socio-demographic variables e.g., income and education level were not significant

  3. Electric and hydrogen consumption analysis in plug-in road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ribau, Joao P.; Silva, Carla M.; Faria, Tiago L. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Department of Mechanical Engineering, Av. Rovisco Pais, 1 Pav. Mecanica I, 2 andar, 1049-001 Lisboa (Portugal)

    2010-07-01

    The main goal of the present study is to analyze some of the capabilities and behavior of two types of plug-in cars: battery electric and hydrogen fuel cell hybrid electric, facing different driving styles, different road gradients, different occupation rates, different electrical loads, and different battery's initial state of charge. In order to do that, four vehicles with different power/weight (kW/kg) ratio (0.044 to 0.150) were simulated in the software ADVISOR, which gives predictions of energy consumption, and behavior of vehicle's power train components (including energy regeneration) along specified driving cycles. The required energy, electricity and/or hydrogen, to overcome the specified driving schedules, allowed to estimate fuel life cycle's CO2 emissions and primary energy. A vehicle with higher power/weight ratio (kW/kg) demonstrated to be less affected in operation and in variation of the energy consumption, facing the different case studies, however may have higher consumptions in some cases. The autonomy, besides depending on the fuel consumption, is directly associated with the type and capacity (kWh) of the chosen battery, plus the stored hydrogen (if fuel cell vehicles are considered, PHEV-FC). The PHEV-FC showed to have higher autonomy than the battery vehicles, but higher energy consumption which is extremely dependent on the type and ratio of energy used, hydrogen or electricity. An aggressive driving style, higher road gradient and increase of weight, required more energy and power to the vehicle and presented consumption increases near to 77%, 621%, 19% respectively. Higher electrical load and battery's initial state of charge, didn't affect directly vehicle's dynamic. The first one drained energy directly from the battery plus demanded a fraction of its power, with energy consumption maximum increasing near 71%. The second one restricted the autonomy without influence directly the energy consumption per

  4. Urban electric vehicles: a contemporary business case

    Directory of Open Access Journals (Sweden)

    Noha SADEK

    2012-01-01

    Full Text Available In a world where energy supply security and environmental protection are major concerns, the development of green vehicles is becoming a necessity. The Electric vehicle (EV is one of the most promising technologies that will make the “green dream” come true. This paper is a contemporary business case that encourages the immediate deployment of urban EVs. It proposes a model in which we can profit from the benefits of urban EVs namely, high energy efficiency, emissions reduction, small size and noise reduction. The model mitigates the EV potential limitations such as energy source, charging infrastructure, impact on electrical power system and cost issues. It also provides ideas to overcome the barriers of the technology application in order to speed up their commercialization. This study reveals that having an environmentally friendly vehicle can soon become a reality if our collaborative efforts are properly directed.

  5. Grid Integration of Electric Vehicles in Open Electricity Markets

    DEFF Research Database (Denmark)

    congestion management scenario within electric distribution networks •optimal EV charging management with the fleet operator concept and smart charging management •EV battery technology, modelling and tests •the use of EVs for balancing power fluctuations from renewable energy sources, looking at power......Presenting the policy drivers, benefits and challenges for grid integration of electric vehicles (EVs) in the open electricity market environment, this book provides a comprehensive overview of existing electricity markets and demonstrates how EVs are integrated into these different markets...... of the technologies for EV integration, this volume is informative for research professors and graduate students in power systems; it will also appeal to EV manufacturers, regulators, EV market professionals, energy providers and traders, mobility providers, EV charging station companies, and policy makers....

  6. Aggregation of Single-phase Electric Vehicles for Frequency Control Provision Based on Unidirectional Charging

    DEFF Research Database (Denmark)

    Sæmundsson, Valgeir Thor; Rezkalla, Michel M.N.; Zecchino, Antonio

    2017-01-01

    As the use of electric vehicles grows there is a greater possibility of using aggregated sets of electric vehicles as a large flexible unit to assist with the control of the power system. In this paper, the possibility of using electric vehicles as a flexible load for frequency control...... is investigated. The investigations are performed in a Pan-European interconnected grid with varying wind power penetration and different operational scenarios. Within this grid, the paper focuses on primary frequency control provision from electric vehicles and how the system behaves as the vehicles are being...... controlled within their respective areas. The investigations show that electric vehicles can be used for primary frequency control with different wind power penetration. By controlling the vehicles, the steady state frequency is improved and, since the vehicles react fast enough to the frequency changes...

  7. Electric vehicle battery reuse: Preparing for a second life

    Energy Technology Data Exchange (ETDEWEB)

    Casals, Lluc Canals; García, Beatriz Amante; Cremades, Lázaro V.

    2017-07-01

    Purpose: On pursue of economic revenue, the second life of electric vehicle batteries is closer to reality. Common electric vehicles reach the end of life when batteries loss between a 20 or 30% of its capacity. However, battery technology is evolving fast and the next generation of electric vehicles will have between 300 and 400 km range. This study will analyze different End of Life scenarios according to battery capacity and their possible second life’s opportunities. Additionally, an analysis of the electric vehicle market will define possible locations for battery repurposing or remanufacturing plants. Design/methodology/approach: Calculating the barycenter of the electric vehicle market offers an optimal location to settle the battery repurposing plant from a logistic and environmental perspective. This paper presents several possible applications and remanufacture processes of EV batteries according to the state of health after their collection, analyzing both the direct reuse of the battery and the module dismantling strategy. Findings: The study presents that Netherlands is the best location for installing a battery repurposing plant because of its closeness to EV manufacturers and the potential European EV markets, observing a strong relation between the EV market share and the income per capita. 15% of the batteries may be send back to the an EV as a reposition battery, 60% will be prepared for stationary or high capacity installations such as grid services, residential use, Hybrid trucks or electric boats, and finally, the remaining 25% is to be dismantled into modules or cells for smaller applications, such as bicycles or assisting robots. Originality/value: Most of studies related to the EV battery reuse take for granted that they will all have an 80% of its capacity. This study analyzes and proposes a distribution of battery reception and presents different 2nd life alternatives according to their state of health.

  8. Electric vehicle battery reuse: Preparing for a second life

    Directory of Open Access Journals (Sweden)

    Lluc Canals Casals

    2017-05-01

    Full Text Available Purpose: On pursue of economic revenue, the second life of electric vehicle batteries is closer to reality. Common electric vehicles reach the end of life when batteries loss between a 20 or 30% of its capacity. However, battery technology is evolving fast and the next generation of electric vehicles will have between 300 and 400 km range. This study will analyze different End of Life scenarios according to battery capacity and their possible second life’s opportunities. Additionally, an analysis of the electric vehicle market will define possible locations for battery repurposing or remanufacturing plants. Design/methodology/approach: Calculating the barycenter of the electric vehicle market offers an optimal location to settle the battery repurposing plant from a logistic and environmental perspective. This paper presents several possible applications and remanufacture processes of EV batteries according to the state of health after their collection, analyzing both the direct reuse of the battery and the module dismantling strategy. Findings: The study presents that Netherlands is the best location for installing a battery repurposing plant because of its closeness to EV manufacturers and the potential European EV markets, observing a strong relation between the EV market share and the income per capita. 15% of the batteries may be send back to the an EV as a reposition battery, 60% will be prepared for stationary or high capacity installations such as grid services, residential use, Hybrid trucks or electric boats, and finally, the remaining 25% is to be dismantled into modules or cells for smaller applications, such as bicycles or assisting robots. Originality/value: Most of studies related to the EV battery reuse take for granted that they will all have an 80% of its capacity. This study analyzes and proposes a distribution of battery reception and presents different 2nd life alternatives according to their state of health.

  9. Electric vehicle battery reuse: Preparing for a second life

    International Nuclear Information System (INIS)

    Casals, Lluc Canals; García, Beatriz Amante; Cremades, Lázaro V.

    2017-01-01

    Purpose: On pursue of economic revenue, the second life of electric vehicle batteries is closer to reality. Common electric vehicles reach the end of life when batteries loss between a 20 or 30% of its capacity. However, battery technology is evolving fast and the next generation of electric vehicles will have between 300 and 400 km range. This study will analyze different End of Life scenarios according to battery capacity and their possible second life’s opportunities. Additionally, an analysis of the electric vehicle market will define possible locations for battery repurposing or remanufacturing plants. Design/methodology/approach: Calculating the barycenter of the electric vehicle market offers an optimal location to settle the battery repurposing plant from a logistic and environmental perspective. This paper presents several possible applications and remanufacture processes of EV batteries according to the state of health after their collection, analyzing both the direct reuse of the battery and the module dismantling strategy. Findings: The study presents that Netherlands is the best location for installing a battery repurposing plant because of its closeness to EV manufacturers and the potential European EV markets, observing a strong relation between the EV market share and the income per capita. 15% of the batteries may be send back to the an EV as a reposition battery, 60% will be prepared for stationary or high capacity installations such as grid services, residential use, Hybrid trucks or electric boats, and finally, the remaining 25% is to be dismantled into modules or cells for smaller applications, such as bicycles or assisting robots. Originality/value: Most of studies related to the EV battery reuse take for granted that they will all have an 80% of its capacity. This study analyzes and proposes a distribution of battery reception and presents different 2nd life alternatives according to their state of health.

  10. Position error compensation via a variable reluctance sensor applied to a Hybrid Vehicle Electric machine.

    Science.gov (United States)

    Bucak, Ihsan Ömür

    2010-01-01

    In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  11. Position Error Compensation via a Variable Reluctance Sensor Applied to a Hybrid Vehicle Electric Machine

    Directory of Open Access Journals (Sweden)

    İhsan Ömür Bucak

    2010-03-01

    Full Text Available In the automotive industry, electromagnetic variable reluctance (VR sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  12. On electric vehicle battery charger modeling

    OpenAIRE

    Sainz Sapera, Luis; Mesas García, Juan José; Balcells Sendra, Josep

    2011-01-01

    The increase of electric vehicle (EV) battery chargers connected to electric networks could lead to future harmonic problems in power systems. These loads are nonlinear devices that inject harmonic currents and pollute network voltages. Thus, battery charger modeling must be studied in detail to determine their harmonic emissions and prevent future problems. This paper investigates EV battery charger behavior, analyzes its equivalent circuit and reports a model for each ...

  13. A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India

    Directory of Open Access Journals (Sweden)

    Rachana Vidhi

    2018-02-01

    Full Text Available Electric vehicles reduce pollution only if a high percentage of the electricity mix comes from renewable sources and if the battery manufacturing takes place at a site far from the vehicle use region. Industries developed due to increased electric vehicle adoption may also cause additional air pollution. The Indian government has committed to solving New Delhi’s air pollution issues through an ambitious policy of switching 100% of the light duty consumer vehicles to electric vehicles by 2030. This policy is based on vehicle grid interaction and relies on shared mobility through the electric vehicle fleet. There are several human behavioral changes necessary to achieve 100% adoption of electric vehicles. This paper reviews different steps in the lifecycle of an electric vehicle (EV, their impact on environmental emissions, and recommends policies suitable for different socio-economic group that are relevant to the Indian market. To reduce air pollution through adoption of electric vehicles, the Indian government needs to adopt policies that increase sale of electric vehicles, increase percentage of renewable energy in the electricity mix, and prevent air pollution caused from battery manufacturing. The recommended policies can be customized for any market globally for reducing air pollution through increased adoption of electric vehicles.

  14. Merging mobility and energy vision with hybrid electric vehicles and vehicle infrastructure integration

    International Nuclear Information System (INIS)

    He Yiming; Chowdhury, Mashrur; Ma Yongchang; Pisu, Pierluigi

    2012-01-01

    As the U.S. federal government is seeking useful applications of Vehicle-Infrastructure Integration (VII) and encouraging a greener and more efficient automobile industry, this paper demonstrated a path to meet the national transportation goal via VII. An impact study was conducted in a midsize U.S. metropolitan area on the potential of utilizing VII communication in Hybrid Electric Vehicle (HEV) operations by simulating a VII-enabled vehicle framework for both conventional HEV and Plug-in Hybrid Electric Vehicles (PHEV). The data collection and communication capability of the VII system allowed the prediction of speed profiles at the vehicle level with an average error rate of 13.2%. With the prediction, at the individual vehicle level, VII technology allowed PHEV and HEV to achieve additional benefits with an approximately 3% decrease in total energy consumption and emission. At the network level, the benefit–cost analysis indicated that the benefit–cost ratios for PHEV and HEV of the VII vehicle network exceed one at the fleet penetration rate of 20% and 30%, respectively. Our findings encourage to support public and private investments in VII infrastructure and its integration with HEV and PHEV in order to reap the increased energy savings from these vehicles. - Highlights: ► A VII-HEV/PHEV framework was simulated for a midsized U.S. metropolitan area. ► A VII-based prediction algorithm was developed for the framework. ► Significant improvement in energy efficiency and emission was achieved at single vehicle level. ► Network analysis was conducted to show cost-effectiveness of this framework.

  15. Always on the starting line: ELCAT 200 - the new-generation electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, K.; Leisio, C. [ed.

    1997-11-01

    The Elcat 200 electric van can always be left charging. With most other electric van models, the situation is different. They run the risk of overcharging, which prevents continual `refuelling` of their batteries and thus considerably reduces the performance of the vehicles. The Elcat electric vehicle project has so far manufactured over 160 electric vans. Of these, the Elcat Cityvan accounts for 130, and the state-of-the-art Elcat 200 just over 30. The greatest single Elcat user is Finland Post, with 50 electric vehicles. Fifty Elcats have been sold abroad, most of them to Sweden

  16. A comprehensive overview of hybrid electric vehicle: Powertrain configurations, powertrain control techniques and electronic control units

    Energy Technology Data Exchange (ETDEWEB)

    Cagatay Bayindir, Kamil; Goezuekuecuek, Mehmet Ali; Teke, Ahmet [Cukurova University, Department of Electrical and Electronics Engineering, Balcali, Saricam, Adana (Turkey)

    2011-02-15

    The studies for hybrid electrical vehicle (HEV) have attracted considerable attention because of the necessity of developing alternative methods to generate energy for vehicles due to limited fuel based energy, global warming and exhaust emission limits in the last century. HEV incorporates internal composition engine, electric machines and power electronic equipments. In this study, overview of HEVs with a focus on hybrid configurations, energy management strategies and electronic control units are presented. Advantages and disadvantages of each configuration are clearly emphasized. The existing powertrain control techniques for HEVs are classified and comprehensively described. Electronic control units used in HEV configuration are also elaborated. The latest trends and technological challenges in the near future for HEVs are discussed. (author)

  17. Dynamic electricity pricing for electric vehicles using stochastic programming

    International Nuclear Information System (INIS)

    Soares, João; Ghazvini, Mohammad Ali Fotouhi; Borges, Nuno; Vale, Zita

    2017-01-01

    Electric Vehicles (EVs) are an important source of uncertainty, due to their variable demand, departure time and location. In smart grids, the electricity demand can be controlled via Demand Response (DR) programs. Smart charging and vehicle-to-grid seem highly promising methods for EVs control. However, high capital costs remain a barrier to implementation. Meanwhile, incentive and price-based schemes that do not require high level of control can be implemented to influence the EVs' demand. Having effective tools to deal with the increasing level of uncertainty is increasingly important for players, such as energy aggregators. This paper formulates a stochastic model for day-ahead energy resource scheduling, integrated with the dynamic electricity pricing for EVs, to address the challenges brought by the demand and renewable sources uncertainty. The two-stage stochastic programming approach is used to obtain the optimal electricity pricing for EVs. A realistic case study projected for 2030 is presented based on Zaragoza network. The results demonstrate that it is more effective than the deterministic model and that the optimal pricing is preferable. This study indicates that adequate DR schemes like the proposed one are promising to increase the customers' satisfaction in addition to improve the profitability of the energy aggregation business. - Highlights: • A stochastic model for energy scheduling tackling several uncertainty sources. • A two-stage stochastic programming is used to tackle the developed model. • Optimal EV electricity pricing seems to improve the profits. • The propose results suggest to increase the customers' satisfaction.

  18. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  19. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Science.gov (United States)

    2010-10-01

    ... and vehicles with certain electronic equipment when transported by aircraft or vessel. When an... vehicles, mechanical equipment containing internal combustion engines, and battery powered vehicles or... Than Class 1 and Class 7 § 173.220 Internal combustion engines, self-propelled vehicles, mechanical...

  20. Influence of plug-in hybrid electric vehicles on smart grids; Management der Trendwatching Group. Einfluss von Plug-In Hybrid Vehicles auf intelligente Verteilnetze (Smart Grids) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R. [ENCO Energie Consulting AG, Bubendorf (Switzerland); Strub, P. [Pierre Strub, Basel (Switzerland)

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of plug-in hybrid vehicles on intelligent electricity distribution grids. The work of a trend-watching group which examined the regulatory services at the interface between such 'smart' grids and electrically powered vehicles is reported on. The trend-watching group includes research institutes, energy suppliers, NGOs, the automobile industry and technology companies. Vehicle-to-grid concepts and innovative developments in the Swiss market are commented on and the group's own activities (research, business models, technological development and politics) are discussed. The group will accompany relevant research programs and the implementation of measures as well as accompanying feasibility evaluations concerning current market developments. The Swiss federal strategy is to be discussed and international co-operation (with the IEA) is to be further strengthened.

  1. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  2. Vehicle electrification. Quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, N. [GM Global Research and Development, Warren, MI (United States); Eberle, U.; Formanski, V.; Grebe, U.D.; Matthe, R. [General Motors Europe, Ruesselsheim (Germany)

    2012-11-01

    This publication describes the development of electrified propulsion systems from the invention of the automobile to the present and then provides an outlook on expected technology progress. Vehicle application areas for the various systems are identified based on a range of energy supply chains and the technological limits of electric powertrain components. GM anticipates that vehicle electrification will increase in the future. Battery-electric vehicles will become competitive for some applications, especially intra-urban, short-distance driving. Range-extended electric vehicles provide longer driving range and offer full capability; with this technology, electric vehicles can serve as the prime vehicle for many customers. Hydrogen-powered fuel cell-electric powertrains have potential for application across most of the vehicle segments. They produce zero emissions during all phases of operation, offer short refueling times, but have powertrain cooling and hydrogen storage packaging constraints. While the market share of electrified vehicles is expected to increase significantly, GM expects conventional powertrains with internal combustion engines to also have a long future - however, a lot of them will be supported by various levels of electrification. (orig.)

  3. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.

    Science.gov (United States)

    Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  4. Converted vehicle for battery electric drive. Aspects on the design of the software-driven vehicle control unit

    Energy Technology Data Exchange (ETDEWEB)

    Giessler, Martin; Paul, Jens; Gauterin, Frank [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Fahrzeugsystemtechnik (FAST); Fritz, Alexander; Sander, Oliver; Mueller-Glaser, Klaus D. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technik der Informationsverarbeitung (ITIV)

    2012-11-01

    At the Karlsruher Institute of Technology (KIT) a vehicle was converted for full battery electric drive within a cooperation of several faculties under the direction of the chair of vehicle technology. Within this paper the developed software to control the main functions of the vehicle will be presented and potentials to increase the energy efficiency will be discussed. The software based vehicle control unit is the central control unit to realize drivers command with respect to the system parameters, which are important for safety, dynamics, range and comfort of the vehicle. The structure of the software architecture, the interaction with the main electric vehicle specific control units and components and the main implemented functions will be described within this paper. The converted vehicle consists mainly of one electric motor with water cooled power electronics that drives the front axle, 21 battery modules controlled and managed by the battery management system, one on board charging device and an universal control unit. Not only strategies for power recovery while braking, but also strategies for driving and operation can help increase the energy efficiency. Select measures to recover and safe energy are also shown. (orig.)

  5. Electric Vehicle and Wireless Charging Laboratory

    Science.gov (United States)

    2018-03-23

    Wireless charging tests of electric vehicles (EV) have been conducted at the EVTC Wireless Laboratory located at the Florida Solar Energy Center, Cocoa, FL. These tests were performed to document testing protocols, evaluate standards and evaluate ope...

  6. An international perspective on electric transportation. Survey on electric road transport 2012

    Energy Technology Data Exchange (ETDEWEB)

    Weeda, M; Kroon, P [ECN Policy Studies, Petten (Netherlands); Appels, D [Agentschap NL, Utrecht (Netherlands)

    2012-09-15

    To compare the Dutch governmental efforts and developments in the field of electric road transport, the Ministry of Economic Affairs, Agriculture and Innovation has asked ECN Policy Studies and NL Agency to conduct an international assessment on electric mobility. The countries that have been considered are: Austria, Belgium, Denmark, France, Germany, the Netherlands, Norway, Portugal, Spain, UK, China, USA and South Korea. The Netherlands has a high ambition level with regard to the number of electric vehicles and is one of the leaders as for the envisaged number of charging points. In the field of R and D, Germany, South Korea and China take the lead, followed by France, the UK, the USA and Austria. However, the assessment has only looked at specific funds for electric mobility, and has not looked at general R and D and innovation funds. The Netherlands has several electro-mobility field tests, but is not leading in number. Norway and Austria are leading countries when it comes to implementation of public charging infrastructure.

  7. Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Zhou, Guanghui; Ou, Xunmin; Zhang, Xiliang

    2013-01-01

    China has promoted the use of electric vehicles vigorously since 2009; the program is still in its pilot phase. This study investigates the development of electric vehicle use in China from the perspectives of energy consumption and greenhouse-gas (GHG) emissions. Energy consumption and GHG emissions of plug-in hybrid electric vehicles (PHEVs) and pure battery electric vehicles (BEVs) are examined on the level of the regional power grid in 2009 through comparison with the energy consumption and GHG emissions of conventional gasoline internal combustion engine vehicles. The life-cycle analysis module in Tsinghua-LCAM, which is based on the GREET platform, is adopted and adapted to the life-cycle analysis of automotive energy pathways in China. Moreover, medium term (2015) and long term (2020) energy consumption and greenhouse-gas emissions of PHEVs and BEVs are projected, in accordance with the expected development target in the Energy Efficient and Alternative Energy Vehicles Industry Development Plan (2012–2020) for China. Finally, policy recommendations are provided for the proper development of electric vehicle use in China. - Highlights: • There was a marked difference in energy saving and GHG emission reduction for EVs powered by regional grids in China. • Energy saving and GHG emission reduction from EVs development will be more obvious in China in future. • EVs development will benefit the strategy of oil/ petroleum substitute in China

  8. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J.; Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ (United Kingdom); Howey, D. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom)

    2010-01-15

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV. (author)

  9. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    International Nuclear Information System (INIS)

    Offer, G.J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N.P.

    2010-01-01

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV.

  10. Impact of the electric vehicles on the air pollution from a highway

    International Nuclear Information System (INIS)

    Ferrero, Enrico; Alessandrini, Stefano; Balanzino, Alessia

    2016-01-01

    Highlights: • A numerical chemical-dispersion model is applied to compute air pollution generated by traffic. • A measurements campaign is carried out collecting meteorological and chemical variables. • Measurement of traffic flows and related pollution emissions make the work original. • New fleet scenarios based on electric vehicle introduction are considered. • The benefits on air quality and human health due to electric vehicles are evaluated. - Abstract: We have quantified the impact that an introduction of electric vehicles into the car fleet has on air quality (regarding NO and NO_2) using a numerical dispersion model. An experimental campaign is conducted close to a highway in Milan, Italy. Meteorological parameters and chemical concentrations are measured along with the traffic emissions. We use a Lagrangian Stochastic Dispersion Model to create numerical simulations of the chemical reactions and dispersion involving pollutants from the highway. To evaluate the air pollution reductions, emission scenarios with different rates of electric vehicles introduction are simulated. We have found that only a significant replacement (50%) of non-electric vehicles with electric ones yields a remarkable reduction of the pollutant concentrations. However, even with lower electric vehicles introduction rates, the air quality improvements may be relevant during intense pollution episodes. The results provide useful information to decision makers and public administrators for planning measures to modify the car fleet composition aiming to improve the urban air quality.

  11. Electric vehicle system for charging and supplying electrical power

    Science.gov (United States)

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  12. Climate control loads prediction of electric vehicles

    International Nuclear Information System (INIS)

    Zhang, Ziqi; Li, Wanyong; Zhang, Chengquan; Chen, Jiangping

    2017-01-01

    Highlights: • A model of vehicle climate control loads is proposed based on experiments. • Main climate control loads of the modeled vehicle are quantitatively analyzed. • Range reductions of the modeled vehicle under different conditions are simulated. - Abstract: A new model of electric vehicle climate control loads is provided in this paper. The mathematical formulations of the major climate control loads are developed, and the coefficients of the formulations are experimentally determined. Then, the detailed climate control loads are analyzed, and the New European Driving Cycle (NEDC) range reductions due to these loads are calculated under different conditions. It is found that in an electric vehicle, the total climate control loads vary with the vehicle speed, HVAC mode and blower level. The ventilation load is the largest climate control load, followed by the solar radiation load. These two add up to more than 80% of total climate control load in summer. The ventilation load accounts for 70.7–83.9% of total heating load under the winter condition. The climate control loads will cause a 17.2–37.1% reduction of NEDC range in summer, and a 17.1–54.1% reduction in winter, compared to the AC off condition. The heat pump system has an advantage in range extension. A heat pump system with an average heating COP of 1.7 will extend the range by 7.6–21.1% based on the simulation conditions.

  13. Battery electric vehicles - implications for the driver interface.

    Science.gov (United States)

    Neumann, Isabel; Krems, Josef F

    2016-03-01

    The current study examines the human-machine interface of a battery electric vehicle (BEV) from a user-perspective, focussing on the evaluation of BEV-specific displays, the relevance of provided information and challenges for drivers due to the concept of electricity in a road vehicle. A sample of 40 users drove a BEV for 6 months. Data were gathered at three points of data collection. Participants perceived the BEV-specific displays as only moderately reliable and helpful for estimating the displayed parameters. This was even less the case after driving the BEV for 3 months. A taxonomy of user requirements was compiled revealing the need for improved and additional information, especially regarding energy consumption and efficiency. Drivers had difficulty understanding electrical units and the energy consumption of the BEV. On the background of general principles for display design, results provide implications how to display relevant information and how to facilitate drivers' understanding of energy consumption in BEVs. Practitioner Summary: Battery electric vehicle (BEV) displays need to incorporate new information. A taxonomy of user requirements was compiled revealing the need for improved and additional information in the BEV interface. Furthermore, drivers had trouble understanding electrical units and energy consumption; therefore, appropriate assistance is required. Design principles which are specifically important in the BEV context are discussed.

  14. Anaheim electric vehicle car-sharing project

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, D. [City of Anaheim Transportation Programs Planner, Anaheim, CA (United States); Chase, B. [Costa Mesa Planning Center, Costa Mesa, CA (United States)

    2000-07-01

    This paper described how the city of Anaheim in California is looking into a variety of clean transportation options for visitors, employees and residents in an effort to minimize air quality and congestion impacts. The city, which attracts approximately 24 million visitors annually, is looking into an electric vehicle (EV) car-sharing program that promotes EV use in multiple applications for both short- and long-term rental opportunities. There are two components to the program which provides eight 5-passenger electric Toyota RAV4 vehicles to both local employees and visitors. The electric RAV4s include nickel-hydride batteries which provide a range of 120 miles per charge. The city has already developed a network of public accessible EV charging stations and this project is a perfect extension of the city's continued efforts to seek opportunities to apply EV technologies within its jurisdictions. The Station Car Program provides flexibility for rail commuters to get from the rail station to their place of employment. On weekdays, the EVs are available to registered commuters at two rail stations to drive to and from work. A total of 32 commuters can benefit from the program at a cost of $40 per month. On weekends, the EVs are offered to visitors through Budget Rent-a-Car Agency at a rate comparable to gasoline-fueled vehicles. So far, participant feedback has been positive and the city is looking into expanding its efforts to provide clean transportation options. tab.

  15. Strategies for Charging Electric Vehicles in the Electricity Market

    DEFF Research Database (Denmark)

    Juul, Nina; Pantuso, Giovanni; Iversen, Jan Emil Banning

    2015-01-01

    . We show that all vehicle owners will benefit from acting more intelligently on the energy market. Furthermore, the high value of the stochastic solution shows that, in case the regulating price differs from the expected, the solution to the deterministic problem becomes infeasible.......This paper analyses different charging strategies for a fleet of electric vehicles. Along with increasing the realism of the strategies, the opportunity for acting on the regulating market is also included. We test the value of a vehicle owner that can choose when and how to charge; by presenting...... optimally in response to predicted spot prices, and – in some settings – additional gains from using the up and down regulating prices. Particularly, strategies are chosen from uncontrolled charging through deterministic optimization, to modelling the charging and bidding problem with stochastic programming...

  16. Economic Analysis of Different Electric Vehicle Charging Scenarios

    Science.gov (United States)

    Ying, Li; Haiming, Zhou; Xiufan, Ma; Hao, Wang

    2017-05-01

    Influence of electric vehicles (EV) to grid cannot be ignored. Research on the economy analysis of different charging scenarios is helpful to guide the user to charge or discharge orderly. EV charging models are built such as disordered charging, valley charging, intelligent charging, and V2G (Vehicle to Grid), by which changes of charging load in different scenarios can be seen to analyze the influence to initial load curve, and comparison can be done about user’s average cost. Monte Carlo method is used to simulate the electric vehicle charging behavior, cost in different charging scenarios are compared, social cost is introduced in V2G scene, and the relationship between user’s average cost and social cost is analyzed. By test, it is proved that user’s cost is the lowest in V2G scenario, and the larger the scale of vehicles is, the more the social cost can save.

  17. New TA Index-Based Rollover Prevention System for Electric Vehicles

    OpenAIRE

    Xiang Liu; Min Xu; Mian Li

    2015-01-01

    In addition to clean transportation and energy savings, electric vehicles can inherently offer better performance in the field of active safety and dynamic stability control, thanks to the superior fast and accurate control characteristics of electric motors. With the novel wheel status parameter TA for electric vehicles proposed by the authors in an earlier publication, a new TA index (TAI)-based rollover prevention method is presented in this paper to improve the driving performance of EV...

  18. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

    Science.gov (United States)

    Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

    For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

  19. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...

  20. Impacts of plug-in electric vehicles in a balancing area

    International Nuclear Information System (INIS)

    Razeghi, Ghazal; Samuelsen, Scott

    2016-01-01

    Highlights: • Unit commitment methodology is used to determine BEV impact on electricity market. • Roles of charging profile, dispatch strategy and interconnecting area are assessed. • Results show that impact of BEV on cost of electricity generation is small. • Controlled BEV charging can lower emissions intensity of the grid and MCP. • BEV deployment helps reduce overall criteria pollutant emissions. - Abstract: High contributions of the electricity generation and transportation sectors to criteria pollutant and greenhouse gas emissions have resulted in an increased interest and shift towards low to non-carbon generation options such as renewable wind and solar, and alternative transportation options including plug-in electric vehicles. Since plug-in electric vehicles transfer the tailpipe emissions to the electric grid, it is important to study the interaction between the two sectors. In this paper, a previously developed spatially and temporally resolved unit commitment model is used to determine the dispatch schedule of resources with and without battery electric vehicles for 2050 in a fictitious balancing area located within the South Coast Air Basin of California. Cases studied include various charging profiles, penetration in light-duty fleet, imports mix, and grid dispatch strategies. Results of the analysis include average cost of electricity production, market clearing price, temporal production of individual generators, and emissions from electricity generation and the transportation sectors. The results show that deploying battery electric vehicles (1) has little impact on the average cost of electricity generation-maximum of $2.5 per MW h for the cases studied with 40% penetration in the light-duty fleet, (2) reduces the overall criteria pollutant emissions except for one case, and (3) results in a smoother load profile, reduces the use of peaking units, and reduces the average emission intensity of the grid through controlled off

  1. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  2. Near-term electric test vehicle ETV-2. Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

  3. Designing Light Electric Vehicles for urban freight transport

    NARCIS (Netherlands)

    Balm, S.H.; Hogt, Roeland

    2017-01-01

    The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the livability of cities. Freight vehicles are large contributors to polluting air and CO2 emissions and generate problems in terms of safety, noise and loss of public space. Small electric freight

  4. Designing Light Electric Vehicles for urban freight transport

    NARCIS (Netherlands)

    Hogt, Roeland; Balm, S.H.; Warmerdam, J.M.

    2017-01-01

    The number of light commercial vehicles (LCV) in cities is growing, which puts increasing pressure on the liveability of cities. Small electric freight vehicles and cargo bikes can offer a solution, as they take less space, can manoeuvre easily and free from polluting emissions. Within the two-year

  5. Auditory detectability of hybrid electric vehicles by pedestrians who are blind

    Science.gov (United States)

    2010-11-15

    Quieter cars such as electric vehicles (EVs) and hybrid electric vehicles (HEVs) may reduce auditory cues used by pedestrians to assess the state of nearby traffic and, as a result, their use may have an adverse impact on pedestrian safety. In order ...

  6. Baseline tests of the C. H. Waterman DAF electric passenger vehicle

    Science.gov (United States)

    Sargent, N. B.; Maslowski, E. A.; Soltis, R. F.; Schuh, R. M.

    1977-01-01

    An electric vehicle was tested as part of an Energy Research Development Administration (ERDA) project to characterize the state-of-the-art of electric vehicles. The Waterman vehicle performance test results are presented in this report. The vehicle is a converted four-passenger DAF 46 sedan. It is powered by sixteen 6-volt traction batteries through a three-step contactor controller actuated by a foot throttle to change the voltage applied to the 6.7 kW motor. The braking system is a conventional hydraulic braking system.

  7. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jenn-Jiang Hwang

    2015-01-01

    Full Text Available The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery’s state of charge (SOC. This approach improves the quick loss problem of the system’s SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  8. Coupling mechanism of electric vehicle and grid under the background of smart grid

    Science.gov (United States)

    Dong, Mingyu; Li, Dezhi; Chen, Rongjun; Shu, Han; He, Yongxiu

    2018-02-01

    With the development of smart distribution technology in the future, electric vehicle users can not only charge reasonably based on peak-valley price, they can also discharge electricity into the power grid to realize their economic benefit when it’s necessary and thus promote peak load shifting. According to the characteristic that future electric vehicles can discharge, this paper studies the interaction effect between electric vehicles and the grid based on TOU (time of use) Price Strategy. In this paper, four scenarios are used to compare the change of grid load after implementing TOU Price Strategy. The results show that the wide access of electric vehicles can effectively reduce peak and valley difference.

  9. Dynamic motion stabilization for front-wheel drive in-wheel motor electric vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Hu

    2015-12-01

    Full Text Available This article presents a new dynamic motion stabilization approach to front-wheel drive in-wheel motor electric vehicles. The approach includes functions such as traction control system, electronic differential system, and electronic stability control. The presented electric vehicle was endowed with anti-skid performance in longitudinal accelerated start; smooth turning with less tire scrubbing; and safe driving experience in two-dimensional steering. The analysis of the presented system is given in numerical derivations. For practical verifications, this article employed a hands-on electric vehicle named Corsa-electric vehicle to carry out the tests. The presented approach contains an integrated scheme which can achieve the mentioned functions in a single microprocessor. The experimental results demonstrated the effectiveness and feasibility of the presented methodology.

  10. Affordability of electric vehicles for a sustainable transport system: An economic and environmental analysis

    International Nuclear Information System (INIS)

    Tseng, Hui-Kuan; Wu, Jy S.; Liu, Xiaoshuai

    2013-01-01

    This paper compares the economic and environmental benefits of electric and hybrid electric vehicles with that of conventional vehicles. Without tax credits, only the hybrids without plug-in incur lifetime total costs equivalent to a conventional vehicle whereas the consumer affordability for all other vehicles is less encouraging and depends on changes in gasoline prices. With the provision of federal tax incentives, the lifetime total cost for all electric vehicle types that are driven for 120,000 miles over 12 years was found to be generally affordable with no more than 5% higher in lifetime total cost than a conventional vehicle, except the hybrid electric plug-in equipped with a 35-mile electric driving range. Results of sensitivity analysis reveal that a greater lifetime driven mileage would promote further overall cost savings even at a greenhouse gas abatement cost as low as $42 per ton. Our study has demonstrated the importance of an energy policy that includes tax credits to address the inadequacy of cost differentials and consumer affordability. The environmental benefits provided by the electric and hybrid electric vehicles should satisfy consumers' interest in protecting the environment, reducing the dependence on imported fossil fuels, and switching from traditional to alternative fuel vehicles. - Highlights: • Electric/hybrid vehicles exhibit at least 27% lower in lifetime energy cost. • Electric/hybrid cars with tax credits are <5% higher in lifetime ownership cost, except PHEV35. • Hybrid electric vehicles provide more than 28% reduction in GHG tailpipe emission, as compared with a CV. • Upstream energy production elevates the lifetime emission cost at high gas prices. • The lifetime total cost with tax credits are affordably <5% higher than CVs, except PHEV35

  11. The Electric Vehicle in the Climate Change Race. Tortoise, Hare or Both?

    International Nuclear Information System (INIS)

    Boncourt, Maite de

    2011-01-01

    Europe is seeking ways to decrease the growing negative impact of passenger cars on climate, currently responsible for up to 12% of total EU CO 2 emissions. After biofuels in the nineties and hydrogen in 2000, the new answer to climate change appears to be electric. But contrary to many marketing messages, electric cars are not zero emissions cars. They will not necessarily contribute to actual CO 2 emission reductions before 2020 and even then, not in every country. In EU Member States where the power sector is based on coal, they could actually make things worse. In others, bad management of the charging function could increase peak load requirements and cause investments in fossil-fuel-fired power plants. Finally, electric vehicles and related costs are very high. Not only does this cast doubts on the extent and timing of their eventual market breakthrough, but it may also mean that their CO 2 tone abatement cost is high. Nonetheless, for the longer term, CO 2 emissions from conventional vehicles can only be reduced to a certain extent whereas the potential for electric vehicles plugged into a de-carbonised electricity grid approaches zero. If electric cars are to help to reduce CO 2 emissions significantly in the future, Europe needs to start now to develop this promising mitigation tool. There is in theory almost no constraint on the electric vehicle becoming a 'zero emission vehicle', while conventional car will always have to burn fuel. This paper finds that drawing firm conclusions on the real CO 2 savings potential of electric vehicles belongs to the myth of Sisyphus. We roll the heavy ball of electric vehicle technology work up the hill, only to have lack of progress in power generation, infrastructures, batteries, prices all or individually send it rolling back down: the number of variables bearing on the CO 2 abatement outcome is impressive, statistics often incomplete, methodologies for assessing net CO 2 emissions unclear, and circumstances vary

  12. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  13. Effective business models for electric vehicles

    Directory of Open Access Journals (Sweden)

    Gavrilescu Ileana

    2017-07-01

    Full Text Available The proposed study aims to use asyncretic and synthetic approach of two elements that have an intrinsic efficiency value: business models and electric vehicles. Our approach seeks to circumscribe more widespread concerns globally - on the one hand, to oil shortages and climate change - and on the other hand, economic efficiency to business models customized to new types of mobility. New “electric” cars projects besiege the traditional position of the conventional car. In the current economy context the concept of efficiency of business models is quite different from what it meant in a traditional sense, particularly because of new technological fields. The arguments put forward by us will be both factual and emotional. Therefore, we rely on interviews and questionnaires designed to fit significantly to the point of the study. Research in the field of new propulsion systems for vehicles has been exploring various possibilities lately, such as: electricity, hydrogen, compressed air, biogas, etc. Theoretically or in principle, it is possible for tomorrow’s vehicles to be driven by the widest variety if resources. A primary goal of our study would be to theoretically reconsider some of the contemporary entrepreneurship coordinates and secondly to provide minimum guidance for decision-making of businesses that will operate in the field of electric mobility. To achieve this, we shall specifically analyze an electric mobility system but in parallel we will address business models that lend themselves effectively on aspects of this field. With a methodology based on questionnaires that had to overcome the conventional mechanism using some of the most unusual ingredients, we hope that the results of our research will successfully constitute a contribution to the goals and especially as a means of managerial orientation for entrepreneurs in the Romanian market.

  14. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  15. Solar-coupled electric vehicles

    International Nuclear Information System (INIS)

    Willer, B.

    1993-01-01

    An electrical drive is an alternative to the present internal combustion engines. The electric car produces no exhaust gas where it is used and drives practically noiselessly. The energy required for driving is usually taken from an electro-chemical battery. The necessary electricity generation generates emission and CO 2 , depending on the primary energy used. An alternative is provided by electricity generation with the aid of regenerative energy. Apart from hydroelectric and wind energy, solar energy can make a considerable contribution in the future. (orig.) [de

  16. Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels

    International Nuclear Information System (INIS)

    Ramos Muñoz, Edgar; Razeghi, Ghazal; Zhang, Li; Jabbari, Faryar

    2016-01-01

    The need to reduce greenhouse gas emissions and fossil fuel consumption has increased the popularity of plug-in electric vehicles. However, a large penetration of plug-in electric vehicles can pose challenges at the grid and local distribution levels. Various charging strategies have been proposed to address such challenges, often separately. In this paper, it is shown that, with uncoordinated charging, distribution transformers and the grid can operate under highly undesirable conditions. Next, several strategies that require modest communication efforts are proposed to mitigate the burden created by high concentrations of plug-in electric vehicles, at the grid and local levels. Existing transformer and battery electric vehicle characteristics are used along with the National Household Travel Survey to simulate various charging strategies. It is shown through the analysis of hot spot temperature and equivalent aging factor that the coordinated strategies proposed here reduce the chances of transformer failure with the addition of plug-in electric vehicle loads, even for an under-designed transformer while uncontrolled and uncoordinated plug-in electric vehicle charging results in increased risk of transformer failure. - Highlights: • Charging algorithm for battery electric vehicles, for high penetration levels. • Algorithm reduces transformer overloading, for grid level valley filling. • Computation and communication requirements are minimal. • The distributed algorithm is implemented without large scale iterations. • Hot spot temperature and loss of life for transformers are evaluated.

  17. Electric and hybrid vehicle program. Quarterly report, January-February-March 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Highlights of program developments are discussed, and ETV-1 test results are described. The temperature effects on lead-acid battery performance from 27 to 55/sup 0/C are reported, and the status of demonstration electric vehicle orders and deliveries is summarized. The certification and testing status of demonstration project vehicles is outlined, and a personnel directory for the DOE Electric and Hybrid Vehicle Program is included. (WHK)

  18. Electric Vehicles - Promoting Fuel Efficiency and Renewable Energy in Danish Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1997-01-01

    Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)......Analysis of electric vehicles as energy carrier for renewable energy and fossil fuels, including comparisons with other energy carriers (hydrogen, bio-fuels)...

  19. How to electrify more of the public to lease electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Huestis, E.P. [City of Vacaville, CA (United States)

    2000-07-01

    The City of Vacaville, in Northern California, aims to become the city which boast the highest number of electric vehicles per capita (residential) in both California and the United States. To that effect, it secured a $300,000 grant from the Congestion Mitigation and Air Quality Improvement Program in order to provide an incentive of $6,000 to 35 customers over the life of the three-year lease of a qualifying electric vehicle. Additional electric charging infrastructure throughout the Vacaville and the replacement of some aging City fleet vehicles with electric vehicles will be possible using the remainder of the grant money. The incentive program proved so popular, through word of mouth and positive press coverage, that 75 customers expressed an interest in the program. Several of the customers had just taken delivery of an electric vehicle from General Motors or Ford. Unable to provide the same incentive to all customers from the original grant, the City of Vacaville applied for a $600,000 additional grant from the Congestion Mitigation and Air Quality to serve 50 more customers, as well as for the provision of additional charging stations at strategic locations. The expansion of the program has received preliminary approval for its second grant application.

  20. Rare-earth-free propulsion motors for electric vehicles: a technology review

    OpenAIRE

    Riba Ruiz, Jordi-Roger; Lopez Torres, Carlos; Romeral Martínez, José Luis; García Espinosa, Antonio

    2016-01-01

    Several factors including fossil fuels scarcity, prices volatility, greenhouse gas emissions or current pollution levels in metropolitan areas are forcing the development of greener transportation systems based on more efficient electric and hybrid vehicles. Most of the current hybrid electric vehicles use electric motors containing powerful rare-earth permanent magnets. However, both private companies and estates are aware of possible future shortages, price uncertainty and geographical conc...

  1. Exergy analysis of thermal management system for range-extended electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hamut, H. S.; Dincer, I.; Naterer, G. F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: Ibrahim.Dincer@uoit.ca

    2011-07-01

    In the last few decades, the energy crisis, increasing gas prices and concerns over environmental pollution have encouraged the development of electric vehicle (EV) and hybrid electric vehicle (HEV) technologies. In this paper, a thermal management system (TMS) installed in a range-extended electric vehicle is examined and is found to have a substantial impact on battery efficiency and vehicle performance. An exergy analysis was conducted on the refrigeration and coolant circuits and the Coefficient of Performance (COP) of the baseline system was determined to be 2.0 with a range of 1.8 to 2.4. The overall exergy was found to be 32% with a range of 26% to 39%. Ambient temperature had the largest impact on overall exergy efficiency but there is a need to further investigate temperature effects on battery efficiency, since the battery's performance has such a high impact on vehicle performance overall.

  2. Wireless power transfer for electric vehicle

    OpenAIRE

    Mude, Kishore Naik

    2015-01-01

    Wireless Power Transfer (WPT) systems transfer electric energy from a source to a load without any wired connection. WPTs are attractive for many industrial applications because of their advantages compared to the wired counterpart, such as no exposed wires, ease of charging, and fearless transmission of power in adverse environmental conditions. Adoption of WPTs to charge the on-board batteries of an electric vehicle (EV) has got attention from some companies, and efforts are being made for ...

  3. Analysis of four-stroke, Wankel, and microturbine based range extenders for electric vehicles

    International Nuclear Information System (INIS)

    Ribau, João; Silva, Carla; Brito, Francisco P.; Martins, Jorge

    2012-01-01

    Highlights: ► VSP correlates well with the engine use, regenerative braking and boost setting. ► Wankel engine vehicle is the most efficient in urban driving. ► Over-expanded engine vehicle is the most efficient in annual combined use. ► The higher the annual urban commuting driving the lower is energy consumption. ► Over-expanded solution has 5.7% WTW less energy usage and 8.8% less CO 2 emissions. - Abstract: This paper aims to compare the energy efficiency and CO 2 emissions of four different range extender engine solutions deployed in the same baseline series hybrid vehicle, under a combination of driving scenarios aiming to be representative of typical driving instead of standard cycles. Baseline vehicle is roughly based on Chevy VOLT/Opel Ampera. The baseline internal combustion engine is replaced by an over-expanded cycle engine, Wankel engine and microturbine, with respective generator and exhaust after treatment. Weight savings are compensated by introducing additional battery modules, maintaining the original baseline vehicle curb weight. Vehicle Specific Power (VSP) is used for driving cycle analysis and as explanatory variable for energy consumption and CO 2 emissions variations. Upstream fuel energy and CO 2 emissions of gasoline/diesel and electricity are regarded. Average VSP correlates with variation of the percentage of engine off, potential regenerative braking energy and eco/boost operation. Positive wheel energy correlates with energy consumption and electric autonomy adequately. The vehicle with the lightest engine (Wankel) and largest battery shows to be the most efficient in urban driving (when the engine does not have to work), while the vehicle with the highest efficient engine (over-expanded) and with dual eco/boost setting is the most efficient during the charge sustaining operation and in annual combined use.

  4. Microgrid and Plug in Electric Vehicle (PEV) with Vehicle to Grid (V2G) Power Services Capability (Briefing Charts)

    Science.gov (United States)

    2015-09-01

    for public release Microgrid and Plug in Electric Vehicle (PEV) with Vehicle to Grid (V2G) Power Services Capability Shukri Kazbour PEV Lead Engineer...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 01 SEP 2015 2. REPORT TYPE 3. DATES COVERED...00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Microgrid and Plug in Electric Vehicle (PEV) with Vehicle to Grid (V2G) Power Services Capability

  5. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin

    2014-07-01

    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  6. Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects

    DEFF Research Database (Denmark)

    Hu, Junjie; Morais, Hugo; Sousa, Tiago

    2016-01-01

    Electric vehicles can become integral parts of a smart grid, since they are capable of providing valuable services to power systems other than just consuming power. On the transmission system level, electric vehicles are regarded as an important means of balancing the intermittent renewable energy...... resources such as wind power. This is because electric vehicles can be used to absorb the energy during the period of high electricity penetration and feed the electricity back into the grid when the demand is high or in situations of insufficient electricity generation. However, on the distribution system...... and industries. This paper presents a review and classification of methods for smart charging (including power to vehicle and vehicle-to-grid) of electric vehicles for fleet operators. The study firstly presents service relationships between fleet operators and other four actors in smart grids; then, modeling...

  7. The effects of electric vehicles on residential households in the city of Indianapolis

    International Nuclear Information System (INIS)

    Huang Shisheng; Safiullah, Hameed; Xiao Jingjie; Hodge, Bri-Mathias S.; Hoffman, Ray; Soller, Joan; Jones, Doug; Dininger, Dennis; Tyner, Wallace E.; Liu, Andrew; Pekny, Joseph F.

    2012-01-01

    There is an increasing impetus to transform the U.S transportation sector and transition away from the uncertainties of oil supply. One of the most viable current solutions is the adoption of electric vehicles (EVs). These vehicles allow for a transportation system that would be flexible in its fuel demands. However, utilities may need to address questions such as distribution constraints, electricity tariffs and incentives and public charging locations before large scale electric vehicle adoption can be realized. In this study, the effect of electric vehicles on households in Indianapolis is examined. A four-step traffic flow model is used to characterize the usage characteristics of vehicles in the Indianapolis metropolitan area. This data is then used to simulate EV usage patterns which can be used to determine household electricity usage characteristics. These results are differentiated by the zones with which the households are associated. Economic costs are then calculated for the individual households. Finally, possible public charging locations are examined. - Highlights: ► Traffic flow modeling is used to accurately characterize EV usage in Indianapolis. ► EV usage patterns are simulated to determine household electricity usage patterns. ► Economic costs are calculated for the households for electric vehicles. ► Possible public charging locations are examined.

  8. Design and development of electric vehicle charging station equipped with RFID

    Science.gov (United States)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  9. Factors Influencing the Behavioural Intention towards Full Electric Vehicles: An Empirical Study in Macau

    Directory of Open Access Journals (Sweden)

    Ivan K. W. Lai

    2015-09-01

    Full Text Available This study examines the factors that influence individual intentions towards the adoption of full electric vehicles. A sample including 308 respondents was collected on the streets of Macau. The collected data were analysed by confirmatory factor analysis and structural equation modelling. The results demonstrate that environmental concerns and the perception of environmental policy are antecedent factors of the perception of full electric vehicles, which influences the behavioural intention to purchase full electric vehicles. This study also finds that the perception of economic benefit is one of the key factors influencing the adoption of full electric vehicles. Vehicle operators seek economic benefits from future long-term fuel savings, high energy efficiency, and cheap electricity. Thus, a government striving to promote low-carbon transportation needs to scale up its efforts to enhance citizens’ environmental concerns and to establish proper environmental policy as well as to provide long-term financial and strategic support for electric vehicles.

  10. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  11. Baseline test data for the EVA electric vehicle. [low energy consumption automobiles

    Science.gov (United States)

    Harhay, W. C.; Bozek, J.

    1976-01-01

    Two electric vehicles from Electric Vehicle Associates were evaluated for ERDA at the Transportation Research Center of Ohio. The vehicles, loaded to a gross vehicle weight of 3750 pounds, had a range of 56.3 miles at a steady speed of 25 mph and a 27.4 miles range during acceleration-deceleration tests to a top speed of 30 mph. Energy consumption varied from 0.48 kw-hr/mi. to 0.59 kw-hr/mi.

  12. Research of Charging(Discharging Orderly and Optimizing Load Curve for Electric Vehicles Based on Dynamic Electric Price and V2G

    Directory of Open Access Journals (Sweden)

    Yang Shuai

    2016-01-01

    Full Text Available Firstly, using the Monte Carlo method and simulation analysis, this paper builds models for the behaviour of electric vehicles, the conventional charging model and the fast charging model. Secondly, this paper studies the impact that the number of electric vehicles which get access to power grid has on the daily load curve. Then, the paper put forwards a dynamic pricing mechanism of electricity, and studies how this dynamic pricing mechanism guides the electric vehicles to charge orderly. Last but not the least, the paper presents a V2G mechanism. Under this mechanism, electric vehicles can charge orderly and take part in the peak shaving. Research finds that massive electric vehicles’ access to the power grid will increase the peak-valley difference of daily load curve. Dynamic pricing mechanism and V2G mechanism can effectively lead the electric vehicles to take part in peak-shaving, and optimize the daily load curve.

  13. DIAGNOSTICS CONCEPTION OF ELECTRICAL DRIVE OF A HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    Y. Borodenko

    2012-01-01

    Full Text Available Conceptual approach to creat the diagnostic system of the power elements of the electric drive of the hybrid vehicle has been considered. Approbation of the imitation model of electric drive with brushless DC electric motor as a diagnostic object has been carried out.

  14. Predicting the market potential of plug-in electric vehicles using multiday GPS data

    International Nuclear Information System (INIS)

    Khan, Mobashwir; Kockelman, Kara M.

    2012-01-01

    GPS data for a year's worth of travel by 255 Seattle households illuminate how plug-in electric vehicles can match household needs. The results suggest that a battery-electric vehicle (BEV) with 100 mi of range should meet the needs of 50% of one-vehicle households and 80% of multiple-vehicle households, when charging once a day and relying on another vehicle or mode just 4 days a year. Moreover, the average one-vehicle Seattle household uses each vehicle 23 mi per day and should be able to electrify close to 80% of its miles, while meeting all its travel needs, using a plug-in hybrid electric vehicle (PHEV) with 40-mile all-electric range. Households owning two or more vehicles can electrify 50 to 70% of their total household miles using a PHEV40, depending on how they assign the vehicle across drivers each day. Cost comparisons between the average single-vehicle household owning a Chevrolet Cruze versus a Volt PHEV suggest that, when gas prices are $3.50 per gallon and electricity rates are at 11.2 ct/kWh, the Volt will save the household $535 per year in operating costs. Similarly, the Toyota Prius PHEV will provide an annual savings of $538 per year over the Corolla. - Highlights: ► Daily travel distances over a year were obtained for 255 Seattle households. ► 100-mi-range BEVs can meet 99% of daily needs for 50% of one-vehicle households. ► 100-mi-range BEVs can meet 99% of needs for 80% of multi-vehicle households. ► One-vehicle households will electrify close to 80% of their miles using a PHEV40 while meeting all trip-distance needs. ► Two-vehicle households can electrify 50 to 70% of household miles using a PHEV40 while meeting all trip-distance needs.

  15. Electric Vehicle Preparedness Task 3: Detailed Assessment of Target Electrification Vehicles at Joint Base Lewis McChord Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.

  16. 3 tons pure electric vehicles power system design based on Cruise

    Directory of Open Access Journals (Sweden)

    Xinyu Liu

    2017-01-01

    Full Text Available The pure electric minivan is different from electric car. Combined with a given vehicle, vehicle simulation model established in Cruise software, complete simulation by setting tasks for the selected models designed drivetrain. Simulation results show that: The design of the transmission ratio can best meet the performance requirements of the matching target power analysis and simulation of electric minivan provides a new way, with practical guidance.

  17. Energy management for vehicle power net with flexible electric load demand

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, van den P.P.J.; Koot, M.W.T.; Jager, de A.G.

    2005-01-01

    The electric power demand in road vehicles increases rapidly and to supply all electric loads efficiently, energy management (EM) turns out to be a necessity. In general, EM exploits the storage capacity of a buffer connected to the vehicle's power net, such that energy is stored or retrieved at

  18. ENERGY STAR Certified Electric Vehicle Supply Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Electric Vehicle Supply Equipment that are...

  19. Electric vehicle market penetration in Switzerland by 2020 - We cannot forecast the future but we can prepare for it

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    The road transportation sector in Switzerland accounts for 44% of the whole greenhouse gas emissions of the country (around 52 million tons of CO{sub 2} equivalent, of which around 44 million tons of CO{sub 2}). The share of private cars is 72% of the road transportation emissions. The efficiency of electric vehicles is near 40% (useful energy/primary energy) in comparison to that of fossil fuel vehicles (15-20%). The European Union (EU) market average of CO{sub 2} emissions from passenger cars was about 160 g CO{sub 2}/km in 2005 and the average EU mix of electricity production had specific emissions of 410 g CO{sub 2}/kWh in the same year. In comparison the Swiss production mix was 34 CO{sub 2}/kWh in 2005, but the relevant Swiss consumption mix was 112 g CO{sub 2}/kWh, due to imports of electricity (with around 21% of the demand covered by imports). Hence a typical electric car will produce CO{sub 2} emissions of around 80 g CO{sub 2}/km in Europe, what is already twice better (in Switzerland: 23 g CO{sub 2}/km with the present consumption mix). By 2030 it is assumed that the EU electricity production mix will diminish to 130 g CO{sub 2}/kWh, and in Switzerland the consumption mix would be around 55 g CO{sub 2}/kWh (still calculated with 21% imports and with the same Swiss production mix), resulting in emissions from electric car in Europe of less than 30 g CO{sub 2}/km, and in Switzerland less than 13 g CO{sub 2}/km (all calculations made with a specific electric demand of 18-20 kWh/100 km). In summary, electrical vehicles retain a tremendous comparative advantage with respect to internal combustion engine vehicles. If 15% of the Swiss cars (i.e. 720,000 units) would be replaced by electrical vehicles, yearly CO{sub 2} emissions would decrease by about 1.2 million tons. This figure must be compared with the international commitment of Switzerland concerning its reduction of the global greenhouse gas emissions by 20%, i.e. 10.5 million tons of CO{sub 2

  20. Accounting for electric vehicles in air quality conformity \\0x2012 final report.

    Science.gov (United States)

    2014-12-01

    Electric vehicles (EVs) obtain at least a part of the energy required for their propulsion from electricity. The : market for EVs, including hybrid, plug-in hybrid, and battery electric vehicles continues to grow, as many : new and affordable models ...

  1. On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles

    International Nuclear Information System (INIS)

    Weiss, Martin; Patel, Martin K.; Junginger, Martin; Perujo, Adolfo; Bonnel, Pierre; Grootveld, Geert van

    2012-01-01

    Hybrid-electric vehicles (HEVs) and battery-electric vehicles (BEVs) are currently more expensive than conventional passenger cars but may become cheaper due to technological learning. Here, we obtain insight into the prospects of future price decline by establishing ex-post learning rates for HEVs and ex-ante price forecasts for HEVs and BEVs. Since 1997, HEVs have shown a robust decline in their price and price differential at learning rates of 7±2% and 23±5%, respectively. By 2010, HEVs were only 31±22 € 2010 kW −1 more expensive than conventional cars. Mass-produced BEVs are currently introduced into the market at prices of 479±171 € 2010 kW −1 , which is 285±213 € 2010 kW −1 and 316±209 € 2010 kW −1 more expensive than HEVs and conventional cars. Our forecast suggests that price breakeven with these vehicles may only be achieved by 2026 and 2032, when 50 and 80 million BEVs, respectively, would have been produced worldwide. We estimate that BEVs may require until then global learning investments of 100–150 billion € which is less than the global subsidies for fossil fuel consumption paid in 2009. These findings suggest that HEVs, including plug-in HEVs, could become the dominant vehicle technology in the next two decades, while BEVs may require long-term policy support. - Highlights: ► Learning rates for hybrid-electric and battery-electric vehicles. ► Prices and price differentials of hybrid-electric vehicles show a robust decline. ► Battery-electric vehicles may require policy support for decades.

  2. Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan

    International Nuclear Information System (INIS)

    Yabe, Kuniaki; Shinoda, Yukio; Seki, Tomomichi; Tanaka, Hideo; Akisawa, Atsushi

    2012-01-01

    Abstarct: In order to reduce CO 2 emissions in the passenger vehicle sector, mass introduction of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is required despite their high battery costs. This paper forecasts the rate at which EV/PHEV will penetrate into the market in the future and the effects of that spread on CO 2 reduction by using a learning curve for lithium-ion batteries, distribution of daily travel distance for each vehicle, and an optimal power generation planning model for charging vehicles. Taking into consideration each driver's economical viewpoint, the speed at which the EV/PHEV share of the new passenger vehicle market grows is fairly slow. The optimum calculation in our base case shows that the share of EV/PHEV is only a quarter even in 2050. However, the initial price and progress rate of batteries have a great effect on this share. Therefore, long-term economic support from the government and significant R and D innovation are required to reduce CO 2 drastically through cutting down battery price. The results also show how much the CO 2 emission intensity of power generation affects the CO 2 reduction rate by introducing EV/PHEV. - Highlights: ► Authors minimized the total cost of vehicle and power supply sectors until 2050. ► Simulation results show the penetration speed of PHEVs/EVs is not so fast. ► To accelerate it and reduce CO 2 , subsidies and innovations are required. ► The introduction of PHEVs/EVs is still reasonable even after the nuclear accident.

  3. Modelling Load Shifing Using Electric Vehicles in a Smart Grid Environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Electric vehicles (EVs) represent both a new demand for electricity and a possible storage medium that could supply power to utilities. The 'load shifting' and 'vehicle-to-grid' concepts could help cut electricity demand during peak periods and prove especially helpful in smoothing variations in power generation introduced to the grid by variable renewable resources such as wind and solar power. This paper proposes a method for simulating the potential benefits of using EVs in load shifting and 'vehicle-to-grid' applications for four different regions -- the United States, Western Europe, China and Japan -- that are expected to have large numbers of EVs by 2050.

  4. A model-based eco-routing strategy for electric vehicles in large urban networks

    OpenAIRE

    De Nunzio , Giovanni; Thibault , Laurent; Sciarretta , Antonio

    2016-01-01

    International audience; A novel eco-routing navigation strategy and energy consumption modeling approach for electric vehicles are presented in this work. Speed fluctuations and road network infrastructure have a large impact on vehicular energy consumption. Neglecting these effects may lead to large errors in eco-routing navigation, which could trivially select the route with the lowest average speed. We propose an energy consumption model that considers both accelerations and impact of the ...

  5. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  6. Near-term electric-vehicle program. Phase II. Mid-term review summary report

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-27

    The general objective of the Near-Term Electric Vehicle Program is to confirm that, in fact, the complete spectrum of requirements placed on the automobile (e.g., safety, producibility, utility, etc.) can still be satisfied if electric power train concepts are incorporated in lieu of contemporary power train concepts, and that the resultant set of vehicle characteristics are mutually compatible, technologically achievable, and economically achievable. The focus of the approach to meeting this general objective involves the design, development, and fabrication of complete electric vehicles incorporating, where necessary, extensive technological advancements. A mid-term summary is presented of Phase II which is a continuation of the preliminary design study conducted in Phase I of the program. Information is included on vehicle performance and performance simulation models; battery subsystems; control equipment; power systems; vehicle design and components for suspension, steering, and braking; scale model testing; structural analysis; and vehicle dynamics analysis. (LCL)

  7. Energy Management System Optimization for Battery-Ultracapacitor Powered Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Selim Koroglu

    2017-03-01

    Full Text Available Energy usage and environment pollution in the transportation are major problems of today’s world. Although electric vehicles are promising solutions to these problems, their energy management methods are complicated and need to be improved for the extensive usage. In this work, the heuristic optimization methods; Differential Evolution Algorithm, Genetic Algorithm and Particle Swarm Optimization, are used to provide an optimal energy management system for a battery/ultracapacitor powered electric vehicle without prior knowledge of the drive cycle. The proposed scheme has been simulated in Matlab and applied on the ECE driving cycle. The differences between optimization methods are compared with reproducible and measurable error criteria. Results and the comparisons show the effectiveness and the practicality of the applied methods for the energy management problem of the multi-source electric vehicles.

  8. Comparing the Mass, Energy, and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Johannes Hofer

    2014-09-01

    Full Text Available In this work the effect of weight reduction using advanced lightweight materials on the mass, energy use, and cost of conventional and battery electric passenger vehicles is compared. Analytic vehicle simulation is coupled with cost assessment to find the optimal degree of weight reduction minimizing manufacturing and total costs. The results show a strong secondary weight and cost saving potential for the battery electric vehicles, but a higher sensitivity of vehicle energy use to mass reduction for the conventional vehicle. Generally, light weighting has the potential to lower vehicle costs, however, the results are very sensitive to parameters affecting lifetime fuel costs for conventional and battery costs for electric vehicles. Based on current technology cost estimates it is shown that the optimal amount of primary mass reduction minimizing total costs is similar for conventional and electric vehicles and ranges from 22% to 39%, depending on vehicle range and overall use patterns. The difference between the optimal solutions minimizing manufacturing versus total costs is higher for conventional than battery electric vehicles.

  9. Research on charging and discharging control strategy for electric vehicles as distributed energy storage devices

    Science.gov (United States)

    Zhang, Min; Yang, Feng; Zhang, Dongqing; Tang, Pengcheng

    2018-02-01

    A large number of electric vehicles are connected to the family micro grid will affect the operation safety of the power grid and the quality of power. Considering the factors of family micro grid price and electric vehicle as a distributed energy storage device, a two stage optimization model is established, and the improved discrete binary particle swarm optimization algorithm is used to optimize the parameters in the model. The proposed control strategy of electric vehicle charging and discharging is of practical significance for the rational control of electric vehicle as a distributed energy storage device and electric vehicle participating in the peak load regulation of power consumption.

  10. Gelled-electrolyte batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tuphorn, H. (Accumulatorenfabrik Sonnenschein GmbH, Buedingen (Germany))

    1992-09-15

    Increasing problems of air pollution have pushed activities of electric vehicle projects world-wide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles. (orig.).

  11. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  12. Policies for Promotion of Electric Vehicles and Factors Influencing Consumers’ Purchasing Decisions of Low Emission Vehicles

    Directory of Open Access Journals (Sweden)

    Matjaz Knez

    2017-06-01

    Full Text Available Recently different studies of green transport have become interesting for policy makers,car manufacturers, customers and energy suppliers. Many stakeholders from the publicand private sectors are investing a lot of effort to identify consumer behaviour for futureimprovements in development of green products and effective strategies, which couldaccelerate the transition to sustainable future. This paper presents the effects of electricvehicle promotional policies and customer preferences about alternative fuel vehicles.This study has shown that the electric vehicle promotional policies adopted in Sloveniahave been unsuccessful, as the share of first-time registered electric vehicles in 2013 wasbelow 1%. For different segments of people whose opinions about low emission vehiclesdiffer, different measures must be adopted. When designing promotional policies focusmust be on the most relevant factors such as the total vehicle price and fuel economy.

  13. Evaluation of sounds for hybrid and electric vehicles operating at low speed

    Science.gov (United States)

    2012-10-22

    Electric vehicles (EV) and hybrid electric vehicles (HEVs), operated at low speeds may reduce auditory cues used by pedestrians to assess the state of nearby traffic creating a safety issue. This field study compares the auditory detectability of num...

  14. The impact of electric vehicles on CO2 emissions

    International Nuclear Information System (INIS)

    Bentley, J.M.; Teagan, P.; Walls, D.; Balles, E.; Parish, T.

    1992-05-01

    A number of recent studies have examined the greenhouse gas emissions of various light duty vehicle alternatives in some detail. These studies have highlighted the extreme range of predicted net greenhouse gas emissions depending on scenarios for fuel types, vehicle and power generation efficiencies, the relative greenhouse contributions of emitted gases and a number of uncertainties in fuel chain efficiencies. Despite the potential range of results, most studies have confirmed that electric vehicles generally have significant potential for reducing greenhouse gas emissions relative to gasoline and most alternative fuels under consideration. This report summarizes the results of a study which builds on previous efforts with a particular emphasis on: (1) A detailed analysis of ICEV, FCV, and EV vehicle technology and electric power generation technology. Most previous transportation greenhouse studies have focused on characterization of fuel chains that have relatively high efficiency (65--85%) when compared with power generation (30--40%) and vehicle driveline (13--16%) efficiencies. (2) A direct comparison of EVs, FCVs with gasoline and dedicated alternative fuel, ICEVs using equivalent vehicle technology assumptions with careful attention to likely technology improvements in both types of vehicles. (3) Consideration of fuel cell vehicles and associated hydrogen infrastructure. (4) Extension of analyses for several decades to assess the prospects for EVs with a longer term prospective

  15. Assessment of renewable energy technologies for charging electric vehicles in Canada

    International Nuclear Information System (INIS)

    Verma, Aman; Raj, Ratan; Kumar, Mayank; Ghandehariun, Samane; Kumar, Amit

    2015-01-01

    Electric vehicle charging by renewable energy can help reduce greenhouse gas emissions. This paper presents a data-intensive techno-economic model to estimate the cost of charging an electric vehicle with a battery capacity of 16 kW h for an average travel distance of 65 km from small-scale renewable electricity in various jurisdictions in Canada. Six scenarios were developed that encompass scale of operation, charging time, and type of renewable energy system. The costs of charging an electric vehicle from an off-grid wind energy system at a charging time of 8 h is 56.8–58.5 cents/km in Montreal, Quebec, and 58.5–60.0 cents/km in Ottawa, Ontario. However, on integration with a small-scale hydro, the charging costs are 9.4–11.2 cents/km in Montreal, 9.5–11.1 cents/km in Ottawa and 10.2–12.2 cents/km in Vancouver, British Columbia. The results show that electric vehicle charging from small-scale hydro energy integration is cost competitive compared charging from conventional grid electricity in all the chosen jurisdictions. Furthermore, when the electric vehicle charging time decreases from 8 to 4 h, the cost of charging increases by 83% and 11% from wind and hydro energy systems, respectively. - Highlights: • Techno-economic analysis conducted for EV charging from wind and hydro. • EV charging from hydro energy is cost competitive than from wind energy. • GHG mitigation estimated from operation of EV charged from renewable energy. • Sensitivity of key parameters on cost of charging considered

  16. Performance of electric and hybrid vehicles at the 1995 American Tour de Sol

    Energy Technology Data Exchange (ETDEWEB)

    Quong, S.; LeBlanc, N.; Buitrago, C.; Duoba, M.; Larsen, R.

    1995-12-31

    Energy consumption and performance data were collected on more than 40 electric and hybrid vehicles during the 1995 American Tour de Sol. At this competition, one electric vehicle drove 229 miles on one charge using nickel metalhydride batteries. The results obtained from the data show that electric vehicle efficiencies reached 9.07 mi./kWh or 70 equivalent mpg of gasoline when compared to the total energy cycle efficiency of electricity and gasoline. A gasoline-fueled 1995 Geo Metro that drove the same route attained 36.4 mpg.

  17. 77 FR 73039 - Notice of Issuance of Final Determination Concerning Vantage Electric Vehicles

    Science.gov (United States)

    2012-12-07

    ... Determination Concerning Vantage Electric Vehicles AGENCY: U.S. Customs and Border Protection, Department of... of Vantage Vehicle electric trucks and vans. Based upon the facts presented, CBP has concluded in the final determination that the United States is the country of origin of the Vantage Vehicle EVX1000 and...

  18. Concept of intellectual charging system for electrical and plug-in hybrid vehicles in Russian Federation

    Science.gov (United States)

    Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.

    2018-02-01

    Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.

  19. The new car market for electric vehicles and the potential for fuel substitution

    International Nuclear Information System (INIS)

    Kihm, Alexander; Trommer, Stefan

    2014-01-01

    Electric vehicles are expected to significantly reduce road transport emissions, given an increasingly renewable power generation. While technological issues are more and more being overcome, the economic viability and thus possible adoption is still constrained, mainly by higher prices than for conventional vehicles. In our work we analyze possible market developments for electric vehicles with an application to Germany. We develop a drivetrain choice model with economical, technical and social constraints on the current vehicle registrations and inventory. It estimates the demand for electric vehicles until 2030 for private and commercially registered cars as well as light commercial vehicles. The results show a replacement potential of almost one third of the total German annual mileage for these vehicles. The result has a high granularity to allow for detailed emission calculation along different spatial areas as well as vehicle and engine types. Besides a baseline forecast, our method allows for calculating different scenarios regarding policy actions or the future development of important parameters such as energy prices. The results provide insights for policy measures as well as for transport and environmental modeling. - Highlights: • We model the potential German market for electric vehicles using total cost of ownership. • The results show a substitution potential of one third of the total German annual mileage. • Plug-in hybrid drivetrains outperform battery electric ones due to their cost advantages. • Suburbia around large cities is the largest market for EVs. • The first main vehicle categories for EVs are large and medium-sized company cars

  20. Hybrid Electric Vehicle Control Strategy Based on Power Loss Calculations

    OpenAIRE

    Boyd, Steven J

    2006-01-01

    Defining an operation strategy for a Split Parallel Architecture (SPA) Hybrid Electric Vehicle (HEV) is accomplished through calculating powertrain component losses. The results of these calculations define how the vehicle can decrease fuel consumption while maintaining low vehicle emissions. For a HEV, simply operating the vehicle's engine in its regions of high efficiency does not guarantee the most efficient vehicle operation. The results presented are meant only to define a literal str...

  1. Mobility in Turkey. Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Yazgan, M. [Embassy of the Kingdom of the Netherlands, Turan Gunes Bulvari, Hollanda Caddesi, No.5,06550 Yildiz-Ankara (Turkey)

    2013-01-15

    The purpose of this report is to provide information about electric vehicles (EVs) and e-mobility as an emerging market in Turkey. EVs receive attention from the Turkish government for a number of reasons: Turkey has a strong automotive industry and needs to follow the technological developments taking place regarding intelligent vehicles and intelligent transport systems, as well as electric transportation technologies. Secondly, a considerable amount of carbon emissions from motor vehicles is of great concern in relation to climate change. EVs might be an alternative which can break the dependence of Turkey on imported fuel that has a negative influence on its current account deficit (CAD). On top of these factors, the Prime Minister of Turkey has a desire to have a 'Local Brand Vehicle' before the 100th year of the establishment of the Republic in 2023 and preferably an 'EV'. EVs are included in the strategy documents and action plans of almost all ministries and public institutions. Among all ministries, the Ministry of Science, Industry and Technology (MoSI and T) takes a leading position. It holds bi-annual meetings with stakeholders to monitor and evaluate progress about the level of actualization of the identified policies on e-mobility. MoSI and T's related institution of the Scientific and Technological Research Council of Turkey (TUBITAK) co-ordinates the R and D activities and provides generous R and D incentives. EVs have been put on sale in Turkey in 2012 and are still very limited in number. Public institutions are taking the lead by converting their vehicle fleet to EVs. EVs are also more suitable for businesses/ duties with a fixed/short route; therefore it is expected that the growth of the sector will mainly come from the vehicle fleet of the public organisations and institutions, followed by the private vehicle fleet of companies, e.g. freight companies. Although there are some on-going test drives, it is not yet proven

  2. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  3. An SCR inverter for electric vehicles

    Science.gov (United States)

    Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.

    1980-01-01

    An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.

  4. Use of electric vehicles or hydrogen in the Danish transport sector

    DEFF Research Database (Denmark)

    Skytte, Klaus; Pizarro Alonso, Amalia Rosa; Karlsson, Kenneth Bernard

    2015-01-01

    of the energy system in 2050. Electricity demand for H2 generation via electrolysis is more flexible than EV charging and the production can therefore, to a larger degree be used to out-balance variable electricity surplus from a high share of wind and solar energy in the power system. H2 production may...... compares a likely scenario with two alternative ways to achieve the goal - either with a high percentage of electric vehicles (EV) or with a high percentage of hydrogen (H2) use in the transport sector. The STREAM model - an energy scenario simulating tool - provides insight into different potential energy...... cost of the energy system than a lower level of electrolyser capital cost. Therefore, the major driver of a successful H2 scenario is a high efficient and flexible H2 production in 2050. In other words, from a socio-economic view point this paper International Conference on Energy, Environment...

  5. Electric Vehicle Communications Standards Testing and Validation - Phase II: SAE J2931/1

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gowri, Krishnan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-01-15

    Vehicle to grid communication standards enable interoperability among vehicles, charging stations and utility providers and provide the capability to implement charge management. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee/HomePlug Alliance are developing requirements for communication messages and protocols. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified vehicle to grid communication performance requirements and developed a test plan as part of SAE J2931/1 committee work. This laboratory test plan was approved by the SAE J2931/1 committee and included test configurations, test methods, and performance requirements to verify reliability, robustness, repeatability, maximum communication distance, and authentication features of power line carrier (PLC) communication modules at the internet protocol layer level. The goal of the testing effort was to select a communication technology that would enable automobile manufacturers to begin the development and implementation process. The EPRI/Argonne National Laboratory (ANL)/Pacific Northwest National Laboratory (PNNL) testing teams divided the testing so that results for each test could be presented by two teams, performing the tests independently. The PNNL team performed narrowband PLC testing including the Texas Instruments (TI) Concerto, Ariane Controls AC-CPM1, and the MAXIM Tahoe 2 evaluation boards. The scope of testing was limited to measuring the vendor systems communication performance between Electric Vehicle Support Equipment (EVSE) and plug-in electric vehicles (PEV). The testing scope did not address PEV’s CAN bus to PLC or PLC to EVSE (Wi-Fi, cellular, PLC Mains, etc.) communication integration. In particular, no evaluation was performed to delineate the effort needed to translate the IPv6

  6. Electric Vehicles. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John E., Comp.

    This document reviews the literature in the collections of the Library of Congress on electric vehicles. Not intended as a comprehensive bibliography, this guide is designed as the title implies, to put the reader "on target." This is of greatest utility to the beginning student of the topic. (AA)

  7. The impact of electric vehicles on the outlook of future energy system

    Science.gov (United States)

    Zhuk, A.; Buzoverov, E.

    2018-02-01

    Active promotion of electric vehicles (EVs) and technology of fast EV charging in the medium term may cause significant peak loads on the energy system, what necessitates making strategic decisions related to the development of generating capacities, distribution networks with EV charging infrastructure, and priorities in the development of battery electric vehicles and vehicles with electrochemical generators. The paper analyses one of the most significant aspects of joint development of electric transport system and energy system in the conditions of substantial growth of energy consumption by EVs. The assessments of per-unit-costs of operation and depreciation of EV power unit were made, taking into consideration the expenses of electric power supply. The calculations show that the choice of electricity buffering method for EV fast charging depends on the character of electricity infrastructure in the region where the electric transport is operating. In the conditions of high density of electricity network and a large number of EVs, the stationary storage facilities or the technology of distributed energy storage in EV batteries - vehicle-to-grid (V2G) technology may be used for buffering. In the conditions of low density and low capacity of electricity networks, the most economical solution could be usage of EVs with traction power units based on the combination of air-aluminum electrochemical generator and a buffer battery of small capacity.

  8. Design of synchromesh mechanism to optimization manual transmission's electric vehicle

    Science.gov (United States)

    Zainuri, Fuad; Sumarsono, Danardono A.; Adhitya, Muhammad; Siregar, Rolan

    2017-03-01

    Significant research has been attempted on a vehicle that lead to the development of transmission that can reduce energy consumption and improve vehicle efficiency. Consumers also expect safety, convenience, and competitive prices. Automatic transmission (AT), continuously variable transmission (CVT), and dual clutch transmission (DCT) is the latest transmission developed for road vehicle. From literature reviews that have been done that this transmission is less effective on electric cars which use batteries as a power source compared to type manual transmission, this is due to the large power losses when making gear changes. Zeroshift system is the transmission can do shift gears with no time (zero time). It was developed for the automatic manual transmission, and this transmission has been used on racing vehicles to eliminate deceleration when gear shift. Zeroshift transmission still use the clutch to change gear in which electromechanical be used to replace the clutch pedal. Therefore, the transmission is too complex for the transmission of electric vehicles, but its mechanism is considered very suitable to increase the transmission efficiency. From this idea, a new innovation design transmission will be created to electric car. The combination synchromesh with zeroshift mechanism for the manual transmission is a transmission that is ideal for improving the transmission efficiency. Installation synchromesh on zeroshift mechanism is expected to replace the function of the clutch MT, and assisted with the motor torque setting when to change gear. Additionally to consider is the weight of the transmission, ease of manufacturing, ease of installation with an electric motor, as well as ease of use by drivers is a matter that must be done to obtain a new transmission system that is suitable for electric cars.

  9. Energy and environmental impacts of electric vehicle battery production and recycling

    International Nuclear Information System (INIS)

    Gaines, L.; Singh, M.

    1995-01-01

    Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydride electrodes, but the latter may be more difficult to recycle

  10. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  11. A Review of Electric Vehicle Lifecycle Emissions and Policy Recommendations to Increase EV Penetration in India

    OpenAIRE

    Rachana Vidhi; Prasanna Shrivastava

    2018-01-01

    Electric vehicles reduce pollution only if a high percentage of the electricity mix comes from renewable sources and if the battery manufacturing takes place at a site far from the vehicle use region. Industries developed due to increased electric vehicle adoption may also cause additional air pollution. The Indian government has committed to solving New Delhi’s air pollution issues through an ambitious policy of switching 100% of the light duty consumer vehicles to electric vehicles by 2030....

  12. Battery electric vehicle energy consumption modelling for range estimation

    NARCIS (Netherlands)

    Wang, J.; Besselink, I.J.M.; Nijmeijer, H.

    2017-01-01

    Range anxiety is considered as one of the major barriers to the mass adoption of battery electric vehicles (BEVs). One method to solve this problem is to provide accurate range estimation to the driver. This paper describes a vehicle energy consumption model considering the influence of weather

  13. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    OpenAIRE

    Fu, Zhumu; Gao, Aiyun; Wang, Xiaohong; Song, Xiaona

    2014-01-01

    This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV) by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE) with the state of charge (SOC) of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified I...

  14. Multi-Objective Scheduling of Electric Vehicles in Smart Distribution Network

    Directory of Open Access Journals (Sweden)

    Changhong Deng

    2016-11-01

    Full Text Available Due to the energy savings and environmental protection they provide, plug-in electric vehicles (PEVs are increasing in number quickly. Rapid development of PEVs brings new opportunities and challenges to the electricity distribution network’s dispatching. A high number of uncoordinated charging PEVs has significant negative impacts on the secure and economic operation of a distribution network. In this paper, a bi-level programming approach that coordinates PEVs’ charging with the network load and electricity price of the open market is presented. The major objective of the upper level model is to minimize the total network costs and the deviation of electric vehicle aggregators’ charging power and the equivalent power. The subsequent objective of the lower level model after the upper level decision is to minimize the dispatching deviation of the sum of PEVs’ charging power and their optimization charging power under the upper level model. An improved particle swarm optimization algorithm is used to solve the bi-level programming. Numerical studies using a modified IEEE 69-bus distribution test system including six electric vehicle aggregators verify the efficiency of the proposed model.

  15. The advancement of electric vehicles - case: Tesla Motors. Disruptive technology requiring systemic innovating

    OpenAIRE

    Lehtinen, Petri

    2015-01-01

    Electric vehicles have existed for over 100 years as a disruptive innovation. Even though they have always been easier to use, quieter and cleaner, gasoline cars have beaten it in price, range and faster fueling. As gasoline cars have been the technological standard for the past 150 years there has been no motivation by car manufacturers to advance electric vehicles. By producing electric vehicles Tesla Motors has appropriately become the first successful startup car manufacturer in over 100 ...

  16. Panorama 2011: The development of hybrid and electric vehicles

    International Nuclear Information System (INIS)

    Vinot, S.

    2011-01-01

    Car manufacturers are having to deal with increasingly stringent norms and customers who are increasingly demanding with respect to fuel savings. As a result, large numbers of them are now looking into solutions that involve electrifying their vehicles. Hybrid vehicles, some of which can be recharged, and electric vehicles are the new stars of the auto trade shows. But not all manufacturers are necessarily using the same strategies. (author)

  17. Plug-In Electric Vehicle Handbook for Consumers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-02-09

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  18. Power quality issues into a Danish low-voltage grid with electric vehicles

    DEFF Research Database (Denmark)

    Marra, Francesco; Jensen, Morten M.; Garcia-Valle, Rodrigo

    2011-01-01

    An increased interest on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is dealing with their introduction into low voltage (LV) distribution grids. Lately, analysis on power quality issues has received attention when considering EVs as additional load. The charging of EVs...

  19. Performance of an all-electric vehicle under UN ECE R101 test conditions: A feasibility study for the city of Kaunas, Lithuania

    International Nuclear Information System (INIS)

    Raslavičius, Laurencas; Starevičius, Martynas; Keršys, Artūras; Pilkauskas, Kęstutis; Vilkauskas, Andrius

    2013-01-01

    Transport activity has been a key facilitator and driver of economic prosperity in Lithuanian (hereinafter LIT) and it is likely to continue to grow. It can produce both positive and negative effects on the quality of life and the environment depending on country-specific circumstances. This research paper sets the stage for a look at the LIT passenger vehicle fleet and its transition towards sustainable mobility through the use of all-electric vehicles. The large multi purpose vehicle from French car-maker Renault, model Renault Espace, was used for test drives, according ECE R101 (urban cycle) requirements. The conventional spark ignited internal combustion engine of the vehicle was replaced by the electric one and equipped with the new generation LiFePO 4 Lithium-ion rechargeable batteries. Three streets of Kaunas city (LIT) with different categories B1, B2 and C2 were selected for the test procedure. Estimation of the power demand (depending on displacement and daytime) and evaluation of battery performance characteristics were discussed in detail. Calculation of the driving distance of the one charge of the traction battery estimates several driving conditions and variation of the mass of the investigated vehicle. Comparison of consumption of different fuel grades for 1 km showed that costs of electric power driven vehicle is 4 times as low as with A95 grade petrol and 2.4 times as low as with diesel fuel. - Highlights: • This paper examines the perspectives for electric vehicles use in Lithuania. • We used standardized test procedure UN ECE R101 (urban cycle). • The study found that the BEVs (battery-only electric vehicles) can cover approximately 75% of all daily driving. • Inspection of the results highlights the importance of BEVs introduction. • We have shown that battery-only electric vehicles are economically rational

  20. The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations

    DEFF Research Database (Denmark)

    Hiermann, Gerhard; Puchinger, Jakob; Røpke, Stefan

    2016-01-01

    Due to new regulations and further technological progress in the field of electric vehicles, the research community faces the new challenge of incorporating the electric energy based restrictions into vehicle routing problems. One of these restrictions is the limited battery capacity which makes...... detours to recharging stations necessary, thus requiring efficient tour planning mechanisms in order to sustain the competitiveness of electric vehicles compared to conventional vehicles. We introduce the Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations (E......-FSMFTW) to model decisions to be made with regards to fleet composition and the actual vehicle routes including the choice of recharging times and locations. The available vehicle types differ in their transport capacity, battery size and acquisition cost. Furthermore, we consider time windows at customer...