WorldWideScience

Sample records for international criticality safety

  1. Present status of International Criticality Safety Benchmark Evaluation Project (ICSBEP)

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori

    2000-01-01

    The International Criticality Safety Evaluation Project, ICSBEP was designed to identify and evaluate a comprehensive set of critical experiment benchmark data. Compilation of the data into a standardized format are made by reviewing original and subsequently revised documentation for calculating each experiment with standard criticality safety codes. Five handbooks of evaluated criticality safety benchmark experiments have been published since 1995. (author)

  2. The International Criticality Safety Benchmark Evaluation Project (ICSBEP)

    International Nuclear Information System (INIS)

    Briggs, J.B.

    2003-01-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organisation for Economic Cooperation and Development (OECD) - Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Israel, Spain, and Brazil are now participating. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled 'International Handbook of Evaluated Criticality Safety Benchmark Experiments.' The 2003 Edition of the Handbook contains benchmark model specifications for 3070 critical or subcritical configurations that are intended for validating computer codes that calculate effective neutron multiplication and for testing basic nuclear data. (author)

  3. The International Criticality Safety Benchmark Evaluation Project on the Internet

    International Nuclear Information System (INIS)

    Briggs, J.B.; Brennan, S.A.; Scott, L.

    2000-01-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in October 1992 by the US Department of Energy's (DOE's) defense programs and is documented in the Transactions of numerous American Nuclear Society and International Criticality Safety Conferences. The work of the ICSBEP is documented as an Organization for Economic Cooperation and Development (OECD) handbook, International Handbook of Evaluated Criticality Safety Benchmark Experiments. The ICSBEP Internet site was established in 1996 and its address is http://icsbep.inel.gov/icsbep. A copy of the ICSBEP home page is shown in Fig. 1. The ICSBEP Internet site contains the five primary links. Internal sublinks to other relevant sites are also provided within the ICSBEP Internet site. A brief description of each of the five primary ICSBEP Internet site links is given

  4. International Criticality Safety Benchmark Evaluation Project (ICSBEP) - ICSBEP 2015 Handbook

    International Nuclear Information System (INIS)

    Bess, John D.

    2015-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy (DOE). The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Nuclear Energy Agency (NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculation techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirements and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross-section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span approximately 69000 pages and contain 567 evaluations with benchmark specifications for 4874 critical, near-critical or subcritical configurations, 31 criticality alarm placement/shielding configurations with multiple dose points for each, and 207 configurations that have been categorised as fundamental physics measurements that are relevant to criticality safety applications. New to the handbook are benchmark specifications for neutron activation foil and thermoluminescent dosimeter measurements performed at the SILENE critical assembly in Valduc, France as part of a joint venture in 2010 between the US DOE and the French Alternative Energies and Atomic Energy Commission (CEA). A photograph of this experiment is shown on the front cover. Experiments that are found unacceptable for use as criticality safety benchmark experiments are discussed in these

  5. Critical Ethnography, Cultural Safety, and International Nursing Research

    OpenAIRE

    Jean N. Harrowing PhD; Judy Mill PhD; Jude Spiers PhD; Judith Kulig PhD; Walter Kipp PhD

    2010-01-01

    Critical qualitative methodology provides a strategy to examine the human experience and its relationship to power and truth. Cultural safety is a concept that has been applied to nursing education and practice and refers to interactions that acknowledge and respect the unique cultural background of patients. It recognizes power inequities between caregivers who belong to dominant cultures and patients who may belong to oppressed groups. Culture is interpreted from a critical constructivist p...

  6. ICNC2003: Proceedings of the seventh international conference on nuclear criticality safety. Challenges in the pursuit of global nuclear criticality safety

    International Nuclear Information System (INIS)

    2003-10-01

    This proceedings contain (technical, oral and poster papers) presented papers at the Seventh International Conference on Nuclear Criticality Safety ICNC2003 held on 20-24 October 2003, in Tokai, Ibaraki, Japan, following ICNC'99 in Versailles, France. The theme of this conference is 'Challenges in the Pursuit of Global Nuclear Criticality Safety'. This proceedings represent the current status of nuclear criticality safety research throughout the world. The 79 of the presented papers are indexed individually. (J.P.N.)

  7. ICNC2003: Proceedings of the seventh international conference on nuclear criticality safety. Challenges in the pursuit of global nuclear criticality safety

    International Nuclear Information System (INIS)

    2003-10-01

    This proceedings contain (technical, oral and poster papers) presented papers at the Seventh International Conference on Nuclear Criticality Safety ICNC2003 held on 20-24 October 2003, in Tokai, Ibaraki, Japan, following ICNC'99 in Versailles, France. The theme of this conference is 'Challenges in the Pursuit of Global Nuclear Criticality Safety'. This proceedings represent the current status of nuclear criticality safety research throughout the world. The 81 of the presented papers are indexed individually. (J.P.N.)

  8. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and The International Reactor Reactor Physics Experiment Evaluation Project (IRPhEP)

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J.B.; Bess, J. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Gulliford, J. [Organization for Economic Cooperation and Development (OECD),Nuclear Energy Agency, Paris, (France)

    2011-07-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) are sources of evaluated integral benchmark data that may be used for validation of reactor physics / nuclear criticality safety analytical methods and data, nuclear data testing, and safety analysis licensing activities. The IRPhEP is patterned after its predecessor, the ICSBEP, but focuses on other integral measurements such as buckling, spectral characteristics, reactivity effects, reactivity coefficients, kinetics measurements, reaction-rate and power distributions, nuclide compositions and other miscellaneous types of measurements in addition to the critical configuration. Both projects will be discussed.

  9. Nuclear knowledge management experience of the International Criticality Safety Benchmark Evaluation Project

    International Nuclear Information System (INIS)

    Briggs, J.B.; Nouri, A.; Dean, V.A.F.

    2004-01-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organization for Economic Cooperation and Development (OECD) -- Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Serbia and Montenegro (formerly Yugoslavia), Kazakhstan, Spain, Israel, Brazil, Poland, and the Czech Republic are now participating. South Africa, India, China, and Germany are considering participation. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled 'International Handbook of Evaluated Criticality Safety Benchmark Experiments'. The 2004 Edition of the Handbook contains benchmark specifications for 3331 critical or subcritical configurations that are intended for use in validation efforts and for testing basic nuclear data. The Handbook is being used extensively for validation of criticality safety methodologies and nuclear data testing and is expected to be a valuable resource for code and data validation and improvement efforts for decades to come. (author)

  10. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical or subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the

  11. BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Tsibulya, Anatoly; Rozhikhin, Yevgeniy

    2012-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

  12. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Pruvost, N.L.; Paxton, H.C.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators

  13. Nuclear criticality safety guide

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; Paxton, H.C. [eds.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  14. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  15. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    International Nuclear Information System (INIS)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR-06 are highlighted, and the future of the two projects is discussed

  16. Building capacity for quality and safety in critical care: A roundtable discussion from the second international patient safety conference in April 9-11, 2013, Riyadh, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Yaseen M Arabi

    2013-01-01

    Full Text Available This paper summarizes the roundtable discussion from the Second International Patient Safety Conference held in April 9-11, 2013, Riyadh, Saudi Arabia. The objectives of the roundtable discussion were to: (1 review the conceptual framework for building capacity in quality and safety in critical care. (2 examine examples of leading international experiences in building capacity. (3 review the experience in Saudi Arabia in this area. (4 discuss the role of building capacity in simulation for patient safety in critical care and (5 review the experience in building capacity in an ongoing improvement project for severe sepsis and septic shock.

  17. Proceedings of the international symposium NUCEF 2001. Scientific bases for criticality safety, separation process and waste disposal

    International Nuclear Information System (INIS)

    2002-03-01

    These proceedings contain 94 papers presented at NUCEF2001, that was held on October 31 - November 2, 2001, in Tokai-mura, Japan. NUCEF2001 is the 3rd international symposium of the series. The subtitle of NUCEF2001 was Scientific Bases for Criticality Safety, Separation Process and Waste Disposal'. The papers were presented in oral and poster sessions on the research fields: Criticality Safety, Separation Process, Radioactive Waste Disposal and TRU Chemistry. The 94 of the presented papers are indexed individually. (J.P.N.)

  18. Validation of the Continuous-Energy Monte Carlo Criticality-Safety Analysis System MVP and JENDL-3.2 Using the Internationally Evaluated Criticality Benchmarks

    International Nuclear Information System (INIS)

    Mitake, Susumu

    2003-01-01

    Validation of the continuous-energy Monte Carlo criticality-safety analysis system, comprising the MVP code and neutron cross sections based on JENDL-3.2, was examined using benchmarks evaluated in the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments'. Eight experiments (116 configurations) for the plutonium solution and plutonium-uranium mixture systems performed at Valduc, Battelle Pacific Northwest Laboratories, and other facilities were selected and used in the studies. The averaged multiplication factors calculated with MVP and MCNP-4B using the same neutron cross-section libraries based on JENDL-3.2 were in good agreement. Based on methods provided in the Japanese nuclear criticality-safety handbook, the estimated criticality lower-limit multiplication factors to be used as a subcriticality criterion for the criticality-safety evaluation of nuclear facilities were obtained. The analysis proved the applicability of the MVP code to the criticality-safety analysis of nuclear fuel facilities, particularly to the analysis of systems fueled with plutonium and in homogeneous and thermal-energy conditions

  19. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Ro, Seong Ki; Shin, Hee Seong; Park, Seong Won; Shin, Young Joon.

    1997-06-01

    Nuclear criticality safety guide was described for handling, transportation and storage of nuclear fissile materials in this report. The major part of the report was excerpted frp, TID-7016(revision 2) and nuclear criticality safety written by Knief. (author). 16 tabs., 44 figs., 5 refs

  20. Assessment of criticality safety

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1983-01-01

    A study was undertaken to determine concerns and possible trends in nuclear criticality safety in DOE facilities. The information gathered from specialists in the field did not indicate that serious concerns or extends exist. The program was terminated before completion

  1. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-05-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm / shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm / shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the “International Handbook of Evaluated Criticality Safety Benchmark Experiments” have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement / shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy

  2. Growth and Expansion of the International Criticality Safety Benchmark Evaluation Project and the Newly Organized International Reactor Physics Experiment Evaluation Project

    International Nuclear Information System (INIS)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-01-01

    Since ICNC 2003, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) has continued to expand its efforts and broaden its scope. Criticality-alarm/shielding type benchmarks and fundamental physics measurements that are relevant to criticality safety applications are not only included in the scope of the project, but benchmark data are also included in the latest version of the handbook. A considerable number of improvements have been made to the searchable database, DICE and the criticality-alarm/shielding benchmarks and fundamental physics measurements have been included in the database. There were 12 countries participating on the ICSBEP in 2003. That number has increased to 18 with recent contributions of data and/or resources from Brazil, Czech Republic, Poland, India, Canada, and China. South Africa, Germany, Argentina, and Australia have been invited to participate. Since ICNC 2003, the contents of the ''International Handbook of Evaluated Criticality Safety Benchmark Experiments'' have increased from 350 evaluations (28,000 pages) containing benchmark specifications for 3070 critical or subcritical configurations to 442 evaluations (over 38,000 pages) containing benchmark specifications for 3957 critical or subcritical configurations, 23 criticality-alarm-placement/shielding configurations with multiple dose points for each, and 20 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications in the 2006 Edition of the ICSBEP Handbook. Approximately 30 new evaluations and 250 additional configurations are expected to be added to the 2007 Edition of the Handbook. Since ICNC 2003, a reactor physics counterpart to the ICSBEP, The International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. Beginning in 1999, the IRPhEP was conducted as a pilot activity by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency

  3. Assessment of criticality safety

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Heaberlin, S.W.; Clayton, E.D.; Carter, R.D.

    1979-01-01

    A study was made of 100 violations of criticality safety specifications reported over a 10-y period in the operations of fuel reprocessing plants. The seriousness of each rule violation was evaluated by assigning it a severity index value. The underlying causes or reasons, for the violations were identified. A criticality event tree was constructed using the parameters, causes, and reasons found in the analysis of the infractions. The event tree provides a means for visualizing the paths to an accidental criticality. Some 65% of the violations were caused by misinterpretation on the part of the operator, being attributed to a lack of clarity in the specification and insufficient training; 33% were attributed to lack of care, whereas only 2% were caused by mechanical failure. A fault tree was constructed by assembling the events that could contribute to an accident. With suitable data on the probabilities of contributing events, the probability of the accident's occurrence can be forecast. Estimated probabilities for criticality were made, based on the limited data available, that in this case indicate a minimum time span of 244 y of plant operation per accident ranging up to approx. 3000 y subject to the various underlying assumptions made. Some general suggestions for improvement are formulated based on the cases studied. Although conclusions for other plants may differ in detail, the general method of analysis and the fault tree logic should prove applicable. 4 figures, 8 tables

  4. Autoclave nuclear criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  5. HSE's safety assessment principles for criticality safety

    International Nuclear Information System (INIS)

    Simister, D N; Finnerty, M D; Warburton, S J; Thomas, E A; Macphail, M R

    2008-01-01

    The Health and Safety Executive (HSE) published its revised Safety Assessment Principles for Nuclear Facilities (SAPs) in December 2006. The SAPs are primarily intended for use by HSE's inspectors when judging the adequacy of safety cases for nuclear facilities. The revised SAPs relate to all aspects of safety in nuclear facilities including the technical discipline of criticality safety. The purpose of this paper is to set out for the benefit of a wider audience some of the thinking behind the final published words and to provide an insight into the development of UK regulatory guidance. The paper notes that it is HSE's intention that the Safety Assessment Principles should be viewed as a reflection of good practice in the context of interpreting primary legislation such as the requirements under site licence conditions for arrangements for producing an adequate safety case and for producing a suitable and sufficient risk assessment under the Ionising Radiations Regulations 1999 (SI1999/3232 www.opsi.gov.uk/si/si1999/uksi_19993232_en.pdf). (memorandum)

  6. Nuclear criticality safety in Canada

    International Nuclear Information System (INIS)

    Shultz, K.R.

    1980-04-01

    The approach taken to nuclear criticality safety in Canada has been influenced by the historical development of participants. The roles played by governmental agencies and private industry since the Atomic Energy Control Act was passed into Canadian Law in 1946 are outlined to set the scene for the current situation and directions that may be taken in the future. Nuclear criticality safety puts emphasis on the control of materials called special fissionable material in Canada. A brief account is given of the historical development and philosophy underlying the existing regulations governing special fissionable material. Subsequent events have led to a change in emphasis in the regulatory process that has not yet been fully integrated into Canadian legislation and regulations. Current efforts towards further development of regulations governing the practice of nuclear criticality safety are described. (auth)

  7. Nuclear criticality safety in Canada

    International Nuclear Information System (INIS)

    Shultz, K.R.

    1980-01-01

    The approach taken to nuclear criticality safety in Canada has been influenced by the historical development of participants. The roles played by governmental agencies and private industry since the Atomic Energy Control Act was passed into Canadian Law in 1946 are outlined to set the scene for the current situation and directions that may be taken in the future. Nuclear criticality safety puts emphasis on the control of materials called special fissionable material in Canada. A brief account is given of the historical development and philosophy underlying the existing regulations governing special fissionable material. Subsequent events have led to a change in emphasis in the regulatory process that has not yet been fully integrated into Canadian legislation and regulations. Current efforts towards further development of regulations governing the practice of nuclear criticality safety are described

  8. Nuclear Criticality Safety Data Book

    International Nuclear Information System (INIS)

    Hollenbach, D. F.

    2016-01-01

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  9. Nuclear Criticality Safety Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Hollenbach, D. F. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-11-14

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  10. Software for safety critical applications

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Jurickova, M.; Chudy, R.

    2001-01-01

    The contribution gives an overview of the project of the software development for safety critical applications. This project has been carried out since 1997. The principal goal of the project was to establish a research laboratory for the development of the software with the highest requirements for quality and reliability. This laboratory was established at the department, equipped with proper hardware and software to support software development. A research team of predominantly young researchers for software development was created. The activities of the research team started with studying and proposing the software development methodology. In addition, this methodology was applied to the real software development. The verification and validation process followed the software development. The validation system for the integrated hardware and software tests was brought into being and its control software was developed. The quality of the software tools was also observed, and the SOSAT tool was used during these activities. National and international contacts were established and maintained during the project solution.(author)

  11. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  12. Tank farms criticality safety manual

    International Nuclear Information System (INIS)

    FORT, L.A.

    2003-01-01

    This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR-), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR- 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type

  13. Realism in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T. P.

    2009-01-01

    Commercial nuclear power plant operation and regulation have made remarkable progress since the Three Mile Island Accident. This is attributed largely to a heavy dose of introspection and self-regulation by the industry and to a significant infusion of risk-informed and performance-based regulation by the Nuclear Regulatory Commission. This truly represents reality in action both by the plant operators and the regulators. On the other hand, the implementation of nuclear criticality safety in ex-reactor operations involving significant quantities of fissile material has not progressed, but, tragically, it has regressed. Not only is the practice of the discipline in excess of a factor of ten more expensive than decades ago; the trend continues. This unfortunate reality is attributed to a lack of coordination within the industry (as contrasted to what occurred in the reactor operations sector), and to a lack of implementation of risk-informed and performance-based regulation by the NRC While the criticality safety discipline is orders of magnitude smaller than the reactor safety discipline, both operators and regulators must learn from the progress made in reactor safety and apply it to the former to reduce the waste, inefficiency and potentially increased accident risks associated with current practices. Only when these changes are made will there be progress made toward putting realism back into nuclear criticality safety. (authors)

  14. International critical perspectives

    NARCIS (Netherlands)

    Sambrook, S.A.; Poell, R.F.

    2014-01-01

    The Problem Critical perspectives on human resource development (HRD) have emerged, across Europe and America, hailed as the future of the field. However, we note the paucity of critical perspectives globally, the problematic dominance of critical HRD activities in Western sites of theory and

  15. Lecture notes for criticality safety

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R.

    1992-03-01

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

  16. Lecture notes for criticality safety

    International Nuclear Information System (INIS)

    Fullwood, R.

    1992-03-01

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented

  17. Lecture notes for criticality safety

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R.

    1992-03-01

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein`s mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

  18. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course

  19. Nuclear criticality safety: 2-day training course

    Energy Technology Data Exchange (ETDEWEB)

    Schlesser, J.A. [ed.] [comp.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  20. Nuclear data for criticality safety

    International Nuclear Information System (INIS)

    Westfall, R.M.

    1994-01-01

    A brief overview is presented on emerging requirements for new criticality safety analyses arising from applications involving nuclear waste management, facility remediation, and the storage of nuclear weapons components. A derivation of criticality analyses from the specifications of national consensus standards is given. These analyses, both static and dynamic, define the needs for nuclear data. Integral data, used primarily for analytical validation, and differential data, used in performing the analyses, are listed, along with desirable margins of uncertainty. Examples are given of needs for additional data to address systems having intermediate neutron energy spectra and/or containing nuclides of intermediate mass number

  1. Nuclear fuel technology - Administrative criteria related to nuclear criticality safety

    International Nuclear Information System (INIS)

    2004-01-01

    An effective nuclear criticality-safety programme includes cooperation among management, supervision, and the nuclear criticality-safety staff and, for each employee, relies upon conformance with operating procedures. Although the extent and complexity of safety-related activities may vary greatly with the size and type of operation with fissile material, certain safety elements are common. This International Standard represents a codification of such elements related to nuclear criticality safety. General guidance for nuclear criticality safety may be found in ISO 1709. The responsibilities of management, supervision, and the nuclear criticality-safety staff are addressed. The Objectives and characteristics of operating and emergency procedures are included in this International Standard. ISO 14943 was prepared by Technical Committee ISO/TC 85, Nuclear energy, Subcommittee SC 5, Nuclear fuel technology

  2. Overview of Experiments for Physics of Fast Reactors from the International Handbooks of Evaluated Criticality Safety Benchmark Experiments and Evaluated Reactor Physics Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bess, J. D.; Briggs, J. B.; Gulliford, J.; Ivanova, T.; Rozhikhin, E. V.; Semenov, M. Yu.; Tsibulya, A. M.; Koscheev, V. N.

    2017-07-01

    Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energy Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth mentioning

  3. International Conference on Durability of Critical Infrastructure

    CERN Document Server

    Cherepetskaya, Elena; Pospichal, Vaclav

    2017-01-01

    This book presents the proceedings of the International Conference on Durability of Critical Infrastructure. Monitoring and Testing held in Satov, Czech Republic from 6 to 9 December 2016. It discusses the developments in the theoretical and practical aspects in the fields of Safety, Sustainability and Durability of the Critical Infrastructure. The contributions are dealing with monitoring and testing of structural and composite materials with a new methods for their using for protection and prevention of the selected objects.

  4. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2004-01-01

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging

  5. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    Science.gov (United States)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  6. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: (1) be able to define terms commonly used in nuclear criticality safety; (2) be able to appreciate the fundamentals of nuclear criticality safety; (3) be able to identify factors which affect nuclear criticality safety; (4) be able to identify examples of criticality controls as used at Los Alamos; (5) be able to identify examples of circumstances present during criticality accidents; (6) have participated in conducting two critical experiments

  7. An international nuclear safety regime

    International Nuclear Information System (INIS)

    Rosen, M.

    1995-01-01

    For all the parties involved with safe use of nuclear energy, the opening for signature of the 'Convention on Nuclear Safety' (signed by 60 countries) and the ongoing work to prepare a 'Convention on Radioactive Waste Safety' are particularly important milestones. 'Convention on Nuclear Safety' is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The two conventions are only one facet of international cooperation to enhance safety. A review of some cooperative efforts of the past decades, and some key provisions of the new safety conventions, presented in this paper, show how international cooperation is increasing nuclear safety worldwide. The safety philosophy and practices involved with legal framework for the safe use of nuclear power will foster a collective international involvement and commitment. It will be a positive step towards increasing public confidence in nuclear power

  8. Criticality safety evaluation in Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Shirai, Nobutoshi; Nakajima, Masayoshi; Takaya, Akikazu; Ohnuma, Hideyuki; Shirouzu, Hidetomo; Hayashi, Shinichiro; Yoshikawa, Koji; Suto, Toshiyuki

    2000-04-01

    Criticality limits for equipments in Tokai Reprocessing Plant which handle fissile material solution and are under shape and dimension control were reevaluated based on the guideline No.10 'Criticality safety of single unit' in the regulatory guide for reprocessing plant safety. This report presents criticality safety evaluation of each equipment as single unit. Criticality safety of multiple units in a cell or a room was also evaluated. The evaluated equipments were ones in dissolution, separation, purification, denitration, Pu product storage, and Pu conversion processes. As a result, it was reconfirmed that the equipments were safe enough from a view point of criticality safety of single unit and multiple units. (author)

  9. International cooperation in nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1991-01-01

    The mechanisms of international co-operations, co-ordinated by International Atomic Energy Agency, are presented. These co-operations are related to international safety standards, to the safety of the four hundred existing reactors in operation, to quick help and information in case of emergency, and to the already valid international conventions. The relation between atomic energy and environmental protection is also discussed briefly. (K.A.)

  10. Status of criticality safety research at NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Two critical facilities, named STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility), at the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) started their hot operations in 1995. Since then, basic experimental data for criticality safety research have been accumulated using STACY, and supercritical experiments for the study of criticality accident in a reprocessing plant have been performed using TRACY. In this paper, the outline of those critical facilities and the main results of TRACY experiments are presented. (author)

  11. Fissile materials principles of criticality safety in handling and processing

    International Nuclear Information System (INIS)

    1976-01-01

    This Swedish Standard consists of the English version of the International Standard ISO 1709-1975-Nuclear energy. Fissile materials. Principles of criticality safety in handling and processing. (author)

  12. International Aspects of Nuclear Safety

    International Nuclear Information System (INIS)

    Lash, T.R.

    2000-01-01

    Even though not all the world's nations have developed a nuclear power industry, nuclear safety is unquestionably an international issue. Perhaps the most compelling proof is the 1986 accident at Chornobyl nuclear power plant in what is now Ukraine. The U.S. Department of Energy conducts a comprehensive, cooperative effort to reduce risks at Soviet-designed nuclear power plants. In the host countries : Armenia, Ukraine, Russia, Bulgaria, the Czech Republic, Hungary, Lithuania, Slovakia, and Kazakhstan joint projects are correcting major safety deficiencies and establishing nuclear safety infrastructures that will be self-sustaining.The U.S. effort has six primary goals: 1. Operational Safety - Implement the basic elements of operational safety consistent with internationally accepted practices. 2. Training - Improve operator training to internationally accepted standards. 3. Safety Maintenance - Help establish technically effective maintenance programs that can ensure the reliability of safety-related equipment. 4. Safety Systems - Implement safety system improvements consistent with remaining plant lifetimes. 5. Safety Evaluations - Transfer the capability to conduct in-depth plant safety evaluations using internationally accepted methods. 6. Legal and Regulatory Capabilities - Facilitate host-country implementation of necessary laws and regulatory policies consistent with their international treaty obligations governing the safe use of nuclear power

  13. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the

  14. Tank waste remediation system nuclear criticality safety program management review

    International Nuclear Information System (INIS)

    BRADY RAAP, M.C.

    1999-01-01

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999

  15. Radiation safety: New international standards

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    This article highlights an important result of this work for the international harmonization of radiation safety: specifically, it present an overview of the forthcoming International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources - the so-called BSS. They have been jointly developed by six organizations - the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (NEA/OECD), the Pan American Health Organization (PAHO), and the World Health Organization (WHO)

  16. Safety-Critical Java for Embedded Systems

    DEFF Research Database (Denmark)

    Rios Rivas, Juan Ricardo

    Safety-critical systems are real-time systems whose failure can have severe or catastrophic consequences, possibly endangering human life. Many safety-critical systems incorporate embedded computers used to control different tasks. Software running on safety-critical systems needs to be certified...... before its deployment and the most time-consuming step of this process is the testing and verification phase. Due to the increasing complexity in safety-critical systems there is a need for new technologies that can facilitate testing and verification activities. The safety-critical specification...... for Java aims at providing a reduced set of the Java programming language that can be used for systems that need to be certified at the highest levels of criticality. Safety-critical Java (SCJ) restricts how a developer can structure an application by providing a specific programming model...

  17. Engineering design guidelines for nuclear criticality safety

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1988-08-01

    This document provides general engineering design guidelines specific to nuclear criticality safety for a facility where the potential for a criticality accident exists. The guide is applicable to the design of new SRP/SRL facilities and to major modifications Of existing facilities. The document is intended an: A guide for persons actively engaged in the design process. A resource document for persons charged with design review for adequacy relative to criticality safety. A resource document for facility operating personnel. The guide defines six basic criticality safety design objectives and provides information to assist in accomplishing each objective. The guide in intended to supplement the design requirements relating to criticality safety contained in applicable Department of Energy (DOE) documents. The scope of the guide is limited to engineering design guidelines associated with criticality safety and does not include other areas of the design process, such as: criticality safety analytical methods and modeling, nor requirements for control of the design process

  18. Safety-critical Java for embedded systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Dalsgaard, Andreas Engelbredt; Hansen, René Rydhof

    2016-01-01

    This paper presents the motivation for and outcomes of an engineering research project on certifiable Javafor embedded systems. The project supports the upcoming standard for safety-critical Java, which defines asubset of Java and libraries aiming for development of high criticality systems....... The outcome of this projectinclude prototype safety-critical Java implementations, a time-predictable Java processor, analysis tools formemory safety, and example applications to explore the usability of safety-critical Java for this applicationarea. The text summarizes developments and key contributions...

  19. Proceedings of the Nuclear Criticality Technology Safety

    International Nuclear Information System (INIS)

    Sanchez, Renee G.

    1998-01-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons

  20. Verification of safety critical software

    International Nuclear Information System (INIS)

    Son, Ki Chang; Chun, Chong Son; Lee, Byeong Joo; Lee, Soon Sung; Lee, Byung Chai

    1996-01-01

    To assure quality of safety critical software, software should be developed in accordance with software development procedures and rigorous software verification and validation should be performed. Software verification is the formal act of reviewing, testing of checking, and documenting whether software components comply with the specified requirements for a particular stage of the development phase[1]. New software verification methodology was developed and was applied to the Shutdown System No. 1 and 2 (SDS1,2) for Wolsung 2,3 and 4 nuclear power plants by Korea Atomic Energy Research Institute(KAERI) and Atomic Energy of Canada Limited(AECL) in order to satisfy new regulation requirements of Atomic Energy Control Boars(AECB). Software verification methodology applied to SDS1 for Wolsung 2,3 and 4 project will be described in this paper. Some errors were found by this methodology during the software development for SDS1 and were corrected by software designer. Outputs from Wolsung 2,3 and 4 project have demonstrated that the use of this methodology results in a high quality, cost-effective product. 15 refs., 6 figs. (author)

  1. Criticality safety basics, a study guide

    International Nuclear Information System (INIS)

    Putman, V.L.

    1999-01-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates

  2. Criticality safety basics, a study guide

    Energy Technology Data Exchange (ETDEWEB)

    V. L. Putman

    1999-09-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

  3. University education and nuclear criticality safety professionals

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.E. [Safe Sites of Colorado, Golden, CO (United States); Stachowiak, R.V. [Kaiser-Hill Co., LLC, Golden, CO (United States); Knief, R.A. [Ogden Environmental and Energy Services, Albuquerque, NM (United States)

    1996-12-31

    The problem of developing a productive criticality safety specialist at a nuclear fuel facility has long been with us. The normal practice is to hire a recent undergraduate or graduate degree recipient and invest at least a decade in on-the-job training. In the early 1980s, the U.S. Department of Energy (DOE) developed a model intern program in an attempt to speed up the process. The program involved working at assigned projects for extended periods at a working critical mass laboratory, a methods development group, and a fuel cycle facility. This never gained support as it involved extended time away from the job. At the Rocky Flats Environmental Technology Site, the training method is currently the traditional one involving extensive experience. The flaw is that the criticality safety staff turnover has been such that few individuals continue for the decade some consider necessary for maturity in the discipline. To maintain quality evaluations and controls as well as interpretation decisions, extensive group review is used. This has proved costly to the site and professionally unsatisfying to the current staff. The site contractor has proposed a training program to remedy the basic problem.

  4. International cooperation for operating safety

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    1989-03-01

    The international-cooperation organization in nuclear safety domain is discussed. The nuclear energy Direction Committee is helped by the Security Committee for Nuclear Power Plants in the cooperation between security organizations of member countries and in the safety and nuclear activity regulations. The importance of the cooperation between experts in human being and engine problems is underlined. The applied methods, exchange activities and activity analysis, and the cooperation of the Nuclear Energy Agency and international organizations is analysed [fr

  5. 2011 Annual Criticality Safety Program Performance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Hoffman

    2011-12-01

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The

  6. Review of studies on criticality safety evaluation and criticality experiment methods

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Yamamoto, Toshihiro; Misawa, Tsuyoshi; Yamane, Yuichi

    2013-01-01

    Since the early 1960s, many studies on criticality safety evaluation have been conducted in Japan. Computer code systems were developed initially by employing finite difference methods, and more recently by using Monte Carlo methods. Criticality experiments have also been carried out in many laboratories in Japan as well as overseas. By effectively using these study results, the Japanese Criticality Safety Handbook was published in 1988, almost the intermediate point of the last 50 years. An increased interest has been shown in criticality safety studies, and a Working Party on Nuclear Criticality Safety (WPNCS) was set up by the Nuclear Science Committee of Organisation Economic Co-operation and Development in 1997. WPNCS has several task forces in charge of each of the International Criticality Safety Benchmark Evaluation Program (ICSBEP), Subcritical Measurement, Experimental Needs, Burn-up Credit Studies and Minimum Critical Values. Criticality safety studies in Japan have been carried out in cooperation with WPNCS. This paper describes criticality safety study activities in Japan along with the contents of the Japanese Criticality Safety Handbook and the tasks of WPNCS. (author)

  7. The International Technical Safety Forum

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    The International Technical Safety Forum is a meeting of safety experts from several physics labs in Europe and the US. Since 1998 participants have been meeting every couple of years to discuss common challenges in safety matters. The Forum helps them define best practices and learn from the important lessons learned by others.   The Forum's participants in front of building 40. This year, the meeting took place at CERN from 12 to 16 April. “This year's meeting covered subjects ranging from communication and training in matters of safety, to cryogenic safety, emergency preparedness and risk analysis”, explains Ralf Trant, head of the CERN Safety Commission and organiser of this year’s Forum. Radiation protection issues are not discussed at the meeting since they involve different expertise. The goal of the Forum is to allow participants to share experience, learn lessons and acquire specific knowledge in a very open way. Round-table discussions, dedicated time for ...

  8. ALARP considerations in criticality safety assessments

    International Nuclear Information System (INIS)

    Bowden, Russell L.; Barnes, Andrew; Thorne, Peter R.; Venner, Jack

    2003-01-01

    Demonstrating that the risk to the public and workers is As Low As Reasonably Practicable (ALARP) is a fundamental requirement of safety cases for nuclear facilities in the United Kingdom. This is embodied in the Safety Assessment Principles (SAPs) published by the Regulator, the essence of which is incorporated within the safety assessment processes of the various nuclear site licensees. The concept of ALARP within criticality safety assessments has taken some time to establish in the United Kingdom. In principle, the licensee is obliged to search for a deterministic criticality safety solution, such as safe geometry vessels and passive control features, rather than placing reliance on active measurement devices and plant administrative controls. This paper presents a consideration of some ALARP issues in relation to the development of criticality safety cases. The paper utilises some idealised examples covering a range of issues facing the criticality safety assessor, including new plant design, operational plant and decommissioning activities. These examples are used to outline the elements of the criticality safety cases and present a discussion of ALARP in the context of criticality safety assessments. (author)

  9. Outline of criticality safety research project

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Suzaki, Takenori; Takeshita, Isao; Miyoshi, Yoshinori; Nakajima, Ken; Sakurai, Satoshi; Yanagisawa, Hiroshi

    1987-01-01

    As the power generation capacity of LWRs in Japan increased, the establishment and development of nuclear fuel cycle have become the important subject. Conforming to the safety research project of the nation, the Japan Atomic Energy Research Institute has advanced the project of constructing a new research facility, that is, Nuclear Fuel Cycle Engineering Research Facility (NUCEF). In this facility, it is planned to carry out the research on criticality safety, upgraded reprocessing techniques, and the treatment and disposal of transuranium element wastes. In this paper, the subjects of criticality safety research and the research carried out with a criticality safety experiment facility which is expected to be installed in the NUCEF are briefly reported. The experimental data obtained from the criticality safety handbooks and published literatures in foreign countries are short of the data on the mixture of low enriched uranium and plutonium which is treated in the reprocessing of spent fuel from LWRs. The acquisition of the criticality data for various forms of fuel, the elucidation of the scenario of criticality accidents, and the soundness of the confinement system for gaseous fission products and plutonium are the main subjects. The Static Criticality Safety Facility, Transient Criticality Safety Facility and pulse column system are the main facilities. (Kako, I.)

  10. Software Safety Risk in Legacy Safety-Critical Computer Systems

    Science.gov (United States)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  11. Nuclear criticality safety handbook. Version 2

    International Nuclear Information System (INIS)

    1999-03-01

    The Nuclear Criticality Safety Handbook, Version 2 essentially includes the description of the Supplement Report to the Nuclear Criticality Safety Handbook, released in 1995, into the first version of Nuclear Criticality Safety Handbook, published in 1988. The following two points are new: (1) exemplifying safety margins related to modelled dissolution and extraction processes, (2) describing evaluation methods and alarm system for criticality accidents. Revision is made based on previous studies for the chapter that treats modelling the fuel system: e.g., the fuel grain size that the system can be regarded as homogeneous, non-uniformity effect of fuel solution, and burnup credit. This revision solves the inconsistencies found in the first version between the evaluation of errors found in JACS code system and criticality condition data that were calculated based on the evaluation. (author)

  12. Reusable libraries for safety-critical Java

    DEFF Research Database (Denmark)

    Rios Rivas, Juan Ricardo; Schoeberl, Martin

    2014-01-01

    The large collection of Java class libraries is a main factor of the success of Java. However, these libraries assume that a garbage-collected heap is used. Safety-critical Java uses scope-based memory areas instead of a garbage-collected heap. Therefore, the Java class libraries are problematic...... to use in safety-critical Java. We have identified common programming patterns in the Java class libraries that make them unsuitable for safety-critical Java. We propose ways to improve the libraries to avoid the impact of the identified problematic patterns. We illustrate these changes by implementing...

  13. A Profile for Safety Critical Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Søndergaard, Hans; Thomsen, Bent

    2007-01-01

    We propose a new, minimal specification for real-time Java for safety critical applications. The intention is to provide a profile that supports programming of applications that can be validated against safety critical standards such as DO-178B [15]. The proposed profile is in line with the Java...... specification request JSR-302: Safety Critical Java Technology, which is still under discussion. In contrast to the current direction of the expert group for the JSR-302 we do not subset the rather complex Real-Time Specification for Java (RTSJ). Nevertheless, our profile can be implemented on top of an RTSJ...

  14. Nuclear Criticality Safety Department Qualification Program

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document

  15. Nuclear criticality safety: 3-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1993-06-01

    The open-quotes 3-Day Training Courseclose quotes is an intensive course in criticality safety consisting of lectures and laboratory sessions, including active student participation in actual critical experiments, a visit to a plutonium processing facility, and in-depth discussions on safety philosophy. The program is directed toward personnel who currently have criticality safety responsibilities in the capacity of supervisory staff and/or line management. This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. It should be noted that when chapters were extracted, an attempt was made to maintain footnotes and references as originally written. Photographs and illustrations are numbered sequentially

  16. Software reliability for safety-critical applications

    International Nuclear Information System (INIS)

    Everett, B.; Musa, J.

    1994-01-01

    In this talk, the authors address the question open-quotes Can Software Reliability Engineering measurement and modeling techniques be applied to safety-critical applications?close quotes Quantitative techniques have long been applied in engineering hardware components of safety-critical applications. The authors have seen a growing acceptance and use of quantitative techniques in engineering software systems but a continuing reluctance in using such techniques in safety-critical applications. The general case posed against using quantitative techniques for software components runs along the following lines: safety-critical applications should be engineered such that catastrophic failures occur less frequently than one in a billion hours of operation; current software measurement/modeling techniques rely on using failure history data collected during testing; one would have to accumulate over a billion operational hours to verify failure rate objectives of about one per billion hours

  17. Nuclear criticality safety department training implementation

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document

  18. Present status of Japanese Criticality Safety Handbook

    International Nuclear Information System (INIS)

    Okuno, Hiroshi

    1999-01-01

    A draft of the second edition of Nuclear Criticality Safety Handbook has been finalized, and it is under examination by reviewing committee for JAERI Report. Working Group designated for revising the Japanese Criticality Safety Handbook, which is chaired by Prof. Yamane, is now preparing for 'Guide on Burnup Credit for Storage and Transport of Spent Nuclear Fuel' and second edition of 'Data Collection' part of Handbook. Activities related to revising the Handbook might give a hint for a future experiment at STACY. (author)

  19. Criticality safety studies at VTT Energy

    International Nuclear Information System (INIS)

    Roine, T.; Anttila, M.

    1995-01-01

    At VTT Energy a compact reactor physics calculation system is applied in many kind of problems. Generation of group constants for static and dynamic core calculations, flux and dose rate calculations as well as criticality safety studies are performed basically with the same codes. In the presentation a short overview of the wide variety of criticality safety problems analyzed at VTT Energy is given. The calculation system with some illustrative examples is also described. (12 refs., 1 tab.)

  20. Design aspects of safety critical instrumentation of nuclear installations

    International Nuclear Information System (INIS)

    Swaminathan, P.

    2005-01-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  1. Design aspects of safety critical instrumentation of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, P. [Electronics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)]. E-mail: swamy@igcar.ernet.in

    2005-07-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  2. International safeguards for critical facilities

    International Nuclear Information System (INIS)

    Ney, J.F.; Todd, J.L.

    1979-01-01

    A study was undertaken to investigate various approaches to provide international safeguards for critical facilities and to select an optimized system. Only high-inventory critical facilities were considered. The goal of the study was to detect and confirm the protracted or abrupt diversion of 8kg of plutonium or 25kg of the uranium isotope 235 within approximately a week of the diversion. The general safeguards alternatives considered were (1) continuous inspections by resident inspectors, with varying degrees of comprehensiveness, (2) periodic inspections by regional inspectors at varying time intervals, (3) unattended containment/surveillance measures, and (4) various combinations of the above. It was concluded that a practical and effective international safeguards system can be achieved by employing a method of continuously monitoring facility activities which could lead to diversion. This is in addition to the routine inspections typical of current international safeguards. Monitoring detects inventory discrepancies and violations of agreed-upon procedural restrictions, as well as unauthorized removal of Special Nuclear Materials (SNM). A special inventory is used following detection to confirm any suspected diversion. Comparison of 28 safeguards options led to the selection of a system for further development which uses a combination of surveillance and inspection by resident IAEA personnel, containment/surveillance by unattended equipment, and routine inventory sampling. A development programme is described which is intended to demonstrate the feasibility of several containment and surveillance measures proposed in the study. Included are a personnel portal and an instrument/material pass-through as well as associated recording and tamper-protection features. (author)

  3. Nuclear Criticality Safety Handbook (English translation)

    International Nuclear Information System (INIS)

    1995-09-01

    This is an English translation of 'Nuclear Criticality Safety Handbook' compiled by Nuclear Materials Regulation Division in Nuclear Safety Bureau of Science and Technology Agency of Japan and published by Nikkan Shobo in 1988, which was originally written in Japanese. (author)

  4. International consensus on safety principles

    International Nuclear Information System (INIS)

    Warnecke, E.

    1993-01-01

    The International Atomic Energy Agency (IAEA) has been regularly requested by its Member States to provide evidence that radioactive waste can be managed safely and to help demonstrate a harmonization of approach at the international level by providing safety documents. In response, IAEA established a special series of safety documents devoted to radioactive waste management. These documents will be elaborated within the Radioactive Waste Safety Standards (RADWASS) programme [1,2] which covers all aspects of radioactive waste management. The RADWASS programme develops a series of international consensus documents on all parts of the safe management of radioactive waste, including disposal. The purpose of the RADWASS programme is to (i) document existing international consensus in the approaches and methodologies for safe radioactive waste management, (ii) create a mechanism to establish consensus where it does not exist and (iii) provide Member States with a comprehensive series of internationally agreed upon documents to complement national standards and criteria. This paper describes the RADWASS programme, and covers the structure, implementation plans and status of documents under preparation

  5. Nuclear Safety through International Cooperation

    International Nuclear Information System (INIS)

    Flory, Denis

    2013-01-01

    The Fukushima Daiichi nuclear accident was the worst at a nuclear facility since the Chernobyl accident in 1986. It caused deep public anxiety and damaged confidence in nuclear power. Following this accident, strengthening nuclear safety standards and emergency response has become an imperative at the global level. The IAEA is leading in developing a global approach, and the IAEA Action Plan on Nuclear Safety is providing a comprehensive framework and acting as a significant driving force to identify lessons learned and to implement safety improvements. Strengthening nuclear safety is addressed through a number of measures proposed in the Action Plan including 12 main actions focusing on safety assessments in the light of the accident. Significant progress has been made in assessing safety vulnerabilities of nuclear power plants, strengthening the IAEA's peer review services, improvements in emergency preparedness and response capabilities, strengthening and maintaining capacity building, as well as widening the scope and enhancing communication and information sharing with Member States, international organizations and the public. Progress has also been made in reviewing the IAEA's safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on accident prevention, in particular severe accidents, and emergency preparedness and response.

  6. Anatomy of safety-critical computing problems

    International Nuclear Information System (INIS)

    Swu Yih; Fan Chinfeng; Shirazi, Behrooz

    1995-01-01

    This paper analyzes the obstacles faced by current safety-critical computing applications. The major problem lies in the difficulty to provide complete and convincing safety evidence to prove that the software is safe. We explain this problem from a fundamental perspective by analyzing the essence of safety analysis against that of software developed by current practice. Our basic belief is that in order to perform a successful safety analysis, the state space structure of the analyzed system must have some properties as prerequisites. We propose the concept of safety analyzability, and derive its necessary and sufficient conditions; namely, definability, finiteness, commensurability, and tractability. We then examine software state space structures against these conditions, and affirm that the safety analyzability of safety-critical software developed by current practice is severely restricted by its state space structure and by the problem of exponential growth cost. Thus, except for small and simple systems, the safety evidence may not be complete and convincing. Our concepts and arguments successfully explain the current problematic situation faced by the safety-critical computing domain. The implications are also discussed

  7. SCALE criticality safety verification and validation package

    International Nuclear Information System (INIS)

    Bowman, S.M.; Emmett, M.B.; Jordan, W.C.

    1998-01-01

    Verification and validation (V and V) are essential elements of software quality assurance (QA) for computer codes that are used for performing scientific calculations. V and V provides a means to ensure the reliability and accuracy of such software. As part of the SCALE QA and V and V plans, a general V and V package for the SCALE criticality safety codes has been assembled, tested and documented. The SCALE criticality safety V and V package is being made available to SCALE users through the Radiation Safety Information Computational Center (RSICC) to assist them in performing adequate V and V for their SCALE applications

  8. Criticality safety and facility design considerations

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1991-06-01

    Operations with fissile material introduce the risk of a criticality accident that may be lethal to nearby personnel. In addition, concerns over criticality safety can result in substantial delays and shutdown of facility operations. For these reasons, it is clear that the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The emphasis of this report will be placed on engineering design considerations in the prevention of criticality. The discussion will not include other important aspects, such as the physics of calculating limits nor criticality alarm systems

  9. Criticality safety engineer training at WSRC

    International Nuclear Information System (INIS)

    Williamson, T.G.; Mincey, J.F.

    1993-01-01

    Two programs designed to prepare engineers for certification as criticality safety engineers are offered at Westinghouse Savannah River Company (WSRC). One program, Student On Loan Criticality Engineer Training (SOLCET), is an intensive 2-yr course involving lectures, rigorous problem assignments, and mentoring. The other program, In-Field Criticality Engineer Training (IN-FIELD), is a less intensive series of lectures and problem assignments. Both courses are conducted by members of the Applied Physics Group (APG) of the Savannah River Technical Center, the organization at WSRC responsible for the operation and maintenance of criticality codes and for training of code users

  10. Critical experiments facility and criticality safety programs at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Miyoshi, Yoshinori; Nomura, Yasushi

    1985-10-01

    The nuclear criticality safety is becoming a key point in Japan in the safety considerations for nuclear installations outside reactors such as spent fuel reprocessing facilities, plutonium fuel fabrication facilities, large scale hot alboratories, and so on. Especially a large scale spent fuel reprocessing facility is being designed and would be constructed in near future, therefore extensive experimental studies are needed for compilation of our own technical standards and also for verification of safety in a potential criticality accident to obtain public acceptance. Japan Atomic Energy Research Institute is proceeding a construction program of a new criticality safety experimental facility where criticality data can be obtained for such solution fuels as mainly handled in a reprocessing facility and also chemical process experiments can be performed to investigate abnormal phenomena, e.g. plutonium behavior in solvent extraction process by using pulsed colums. In FY 1985 detail design of the facility will be completed and licensing review by the government would start in FY 1986. Experiments would start in FY 1990. Research subjects and main specifications of the facility are described. (author)

  11. The Health and Safety Executive's regulatory framework for control of nuclear criticality safety

    International Nuclear Information System (INIS)

    Smith, K.; Simister, D.N.

    1991-01-01

    In the United Kingdom the Health and Safety at Work Act, 1974 is the main legal instrument under which risks to people from work activities are controlled. Certain sections of the Nuclear Installations Act, 1965 which deal with the licensing of nuclear sites and the regulatory control of risks arising from them, including the risk from accidental criticality, are relevant statutory provisions of the Health and Safety at Work Act. The responsibility for safety rests with the operator who has to make and implement arrangements to prevent accidental criticality. The adequacy of these arrangements must be demonstrated in a safety case to the regulatory authorities. Operators are encouraged to treat each plant on its own merits and develop the safety case accordingly. The Nuclear Installations Inspectorate (NII), for its part, assesses the adequacy of the operator's safety case against the industry's own standards and criteria, but more particularly against the NII's safety assessment principles and guides, and international standards. Risks should be made as low as reasonably practicable. Generally, the NII seeks improvements in safety using an enforcement policy which operates at a number of levels, ranging from persuasion through discussion to the ultimate deterrent of withdrawal of a site licence. This paper describes the role of the NII, which includes a specialist criticality expertise, within the Health and Safety Executive, in regulating the nuclear sites from the criticality safety viewpoint. (Author)

  12. Criticality safety (prospect of study in NUCEF)

    International Nuclear Information System (INIS)

    Itagaki, Masafumi

    1996-01-01

    Experimental studies of criticality safety are under way using STACY and TRACY in NUCEF. Collection of fundamental data on criticality in a solution system is undergoing with STACY to confirm that the likelihood of criticality safety in the system constructed on the assumption of apparatuses in a reprocessing plant is enough large. Whereas some experiments simulating criticality accidents in a reprocessing plant using TRACY were designed to investigate the behaviors of fuel solution and radioactive matters in order to clarify whether it is possible to safely shut them in the facility even if a critical accident occurs. Both STACY and TRACY reached the criticality in 1995. Up to now a series of criticality experiments have been done using STACY with a core tank φ60 cm and the first periodical examination is now under way. On the other hand, we have a plan using TRACY to investigate the behaviors of nuclear heat solution at a criticality accident, and the releasing, transfer and deposition of radioactive materials. After reaching the criticality for the first, the performance verification test has been conducted. The full-scale study using TRACY is planned to begin in the second half of 1996. (M.N.)

  13. Prerequisites of ideal safety-critical organizations

    International Nuclear Information System (INIS)

    Takeuchi, Michiru; Hikono, Masaru; Matsui, Yuko; Goto, Manabu; Sakuda, Hiroshi

    2013-01-01

    This study explores the prerequisites of ideal safety-critical organizations, marshalling arguments of 4 areas of organizational research on safety, each of which has overlap: a safety culture, high reliability organizations (HROs), organizational resilience, and leadership especially in safety-critical organizations. The approach taken in this study was to retrieve questionnaire items or items on checklists of the 4 research areas and use them as materials of abduction (as referred to in the KJ method). The results showed that the prerequisites of ideal safety-oriented organizations consist of 9 factors as follows: (1) The organization provides resources and infrastructure to ensure safety. (2) The organization has a sharable vision. (3) Management attaches importance to safety. (4) Employees openly communicate issues and share wide-ranging information with each other. (5) Adjustments and improvements are made as the organization's situation changes. (6) Learning activities from mistakes and failures are performed. (7) Management creates a positive work environment and promotes good relations in the workplace. (8) Workers have good relations in the workplace. (9) Employees have all the necessary requirements to undertake their own functions, and act conservatively. (author)

  14. International Symposium on Nuclear Safety

    International Nuclear Information System (INIS)

    2013-03-01

    Nuclear Regulatory Authority of the Slovak Republic and the Embassy of Japan in the Slovak Republic, under the auspices of the Deputy Prime Minister and Minister of Foreign and European Affairs Mr Lajcak organized International Symposium on Nuclear Safety on 14 and 15 March 2013. The symposium took place almost exactly two years after the occurrence of accidents at the Japanese nuclear power plant Fukushima Daichi. The main mission of the symposium was an attempt to contribute to the improvement of nuclear safety by sharing information and lessons presented by Japanese experts with experts from the region, the International Atomic Energy Agency (IAEA) and the European Commission. The aim of the symposium, unlike many other events organized in connection with the events in Fukushima Daichi NPP, was a summary of the results of stress tests and measures update adopted by the international community, especially within Europe. Panel discussion was included to the program of the symposium for this aim was, mainly focused on the current state of implementation of the National Action Plan of the Slovak Republic, the Czech Republic, Poland, Ukraine and Switzerland and the IAEA Action Plan.

  15. Safety Critical Java for Robotics Programming

    DEFF Research Database (Denmark)

    Thomsen, Bent; Luckow, Kasper Søe; Bøgholm, Thomas

    2015-01-01

    This paper introduces Safety Critical Java (SCJ) and argues its readiness for robotics programming. We give an overview of the work done at Aalborg University and elsewhere on SCJl, some of its implementations in the form of the JOP, FijiVM and HVM and some of the tools, especially WCA, Teta...

  16. Proceedings of KURRI symposium on criticality safety

    International Nuclear Information System (INIS)

    Nishina, Kojiro; Kanda, Keiji

    1984-01-01

    On August 8, 1984, at the Reactor Application Center of the Research Reactor Institute, Kyoto University, the symposium on criticality safety was held, and 81 participants from various fields of reactor physics, nuclear fuel cycle engineering, reactor chemistry, nuclear chemistry, health physics and so on discussed the problem. The gists of the presentation are collected in this report. The contents are the techniques of evaluating criticality safety in respective fuel facilities, the system of control and its concept, the course and plan of the research on criticality safety in Japan and foreign countries, the techniques of determining multiplication factor and so on, and the review of present status, the pointing-out of problems and the report of new techniques were made. The measures coping with criticality safety have been mostly to meet urgent demand, but its fundamental examination and long term research should be carried out. This symposium was planned as the preparation for such research project, and favorable comment was given by the participants. In the next symposium, it is considered better to limit the themes and to allot more time to respective lectures. (Kako, I.)

  17. Applications of PRA in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1992-01-01

    Traditionally, criticality accident prevention at Los Alamos has been based on a thorough review and understanding of proposed operations of changes to operations, involving both process supervision and criticality safety staff. The outcome of this communication was usually an agreement, based on professional judgement, that certain accident sequences were credible and had to be reduced in likelihood either by administrative controls or by equipment design and others were not credible, and thus did not warrant expenditures to further reduce their likelihood. The extent of analysis and documentation was generally in proportion to the complexity of the operation but did not include quantified risk assessments. During the last three years nuclear criticality safety related Probabilistic Risk Assessments (PRAs) have been preformed on operations in two Los Alamos facilities. Both of these were conducted in order to better understand the cost/benefit aspects of PRA's as they apply to largely ''hands-on'' operations with fissile material for which human errors or equipment failures significant to criticality safety are both rare and unique. Based on these two applications and an appreciation of the historical criticality accident record (frequency and consequences) it is apparent that quantified risk assessments should be performed very selectively

  18. Computational methods for nuclear criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.

    1992-01-01

    Nuclear criticality safety analyses require the utilization of methods which have been tested and verified against benchmarks results. In this work, criticality calculations based on the KENO-IV and MCNP codes are studied aiming the qualification of these methods at the IPEN-CNEN/SP and COPESP. The utilization of variance reduction techniques is important to reduce the computer execution time, and several of them are analysed. As practical example of the above methods, a criticality safety analysis for the storage tubes for irradiated fuel elements from the IEA-R1 research has been carried out. This analysis showed that the MCNP code is more adequate for problems with complex geometries, and the KENO-IV code shows conservative results when it is not used the generalized geometry option. (author)

  19. Criticality Safety Code Validation with LWBR’s SB Cores

    Energy Technology Data Exchange (ETDEWEB)

    Putman, Valerie Lee

    2003-01-01

    The first set of critical experiments from the Shippingport Light Water Breeder Reactor Program included eight, simple geometry critical cores built with 233UO2-ZrO2, 235UO2-ZrO2, ThO2, and ThO2-233UO2 nuclear materials. These cores are evaluated, described, and modeled to provide benchmarks and validation information for INEEL criticality safety calculation methodology. In addition to consistency with INEEL methodology, benchmark development and nuclear data are consistent with International Criticality Safety Benchmark Evaluation Project methodology.Section 1 of this report introduces the experiments and the reason they are useful for validating some INEEL criticality safety calculations. Section 2 provides detailed experiment descriptions based on currently available experiment reports. Section 3 identifies criticality safety validation requirement sources and summarizes requirements that most affect this report. Section 4 identifies relevant hand calculation and computer code calculation methodologies used in the experiment evaluation, benchmark development, and validation calculations. Section 5 provides a detailed experiment evaluation. This section identifies resolutions for currently unavailable and discrepant information. Section 5 also reports calculated experiment uncertainty effects. Section 6 describes the developed benchmarks. Section 6 includes calculated sensitivities to various benchmark features and parameters. Section 7 summarizes validation results. Appendices describe various assumptions and their bases, list experimenter calculations results for items that were independently calculated for this validation work, report other information gathered and developed by SCIENTEC personnel while evaluating these same experiments, and list benchmark sample input and miscellaneous supplementary data.

  20. ACRR fuel storage racks criticality safety analysis

    International Nuclear Information System (INIS)

    Bodette, D.E.; Naegeli, R.E.

    1997-10-01

    This document presents the criticality safety analysis for a new fuel storage rack to support modification of the Annular Core Research Reactor for production of molybdenum-99 at Sandia National Laboratories, Technical Area V facilities. Criticality calculations with the MCNP code investigated various contingencies for the criticality control parameters. Important contingencies included mix of fuel element types stored, water density due to air bubbles or water level for the over-moderated racks, interaction with existing fuel storage racks and fuel storage holsters in the fuel storage pool, neutron absorption of planned rack design and materials, and criticality changes due to manufacturing tolerances or damage. Some limitations or restrictions on use of the new fuel storage rack for storage operations were developed through the criticality analysis and are required to meet the double contingency requirements of criticality safety. As shown in the analysis, this system will remain subcritical under all credible upset conditions. Administrative controls are necessary for loading, moving, and handling the storage rack as well as for control of operations around it. 21 refs., 16 figs., 4 tabs

  1. Standards: An international framework for nuclear safety

    International Nuclear Information System (INIS)

    Versteeg, J.

    2000-01-01

    The IAEA, uniquely among international organizations concerned with the use of radiation, radioactive materials and nuclear energy, has statutory functions to establish safety standards and to provide for their application in Member States. The IAEA also contributes towards another major element of the 'global safety culture', namely the establishment of legally binding international agreements on safety related issues. (author)

  2. Architecture Level Safety Analyses for Safety-Critical Systems

    Directory of Open Access Journals (Sweden)

    K. S. Kushal

    2017-01-01

    Full Text Available The dependency of complex embedded Safety-Critical Systems across Avionics and Aerospace domains on their underlying software and hardware components has gradually increased with progression in time. Such application domain systems are developed based on a complex integrated architecture, which is modular in nature. Engineering practices assured with system safety standards to manage the failure, faulty, and unsafe operational conditions are very much necessary. System safety analyses involve the analysis of complex software architecture of the system, a major aspect in leading to fatal consequences in the behaviour of Safety-Critical Systems, and provide high reliability and dependability factors during their development. In this paper, we propose an architecture fault modeling and the safety analyses approach that will aid in identifying and eliminating the design flaws. The formal foundations of SAE Architecture Analysis & Design Language (AADL augmented with the Error Model Annex (EMV are discussed. The fault propagation, failure behaviour, and the composite behaviour of the design flaws/failures are considered for architecture safety analysis. The illustration of the proposed approach is validated by implementing the Speed Control Unit of Power-Boat Autopilot (PBA system. The Error Model Annex (EMV is guided with the pattern of consideration and inclusion of probable failure scenarios and propagation of fault conditions in the Speed Control Unit of Power-Boat Autopilot (PBA. This helps in validating the system architecture with the detection of the error event in the model and its impact in the operational environment. This also provides an insight of the certification impact that these exceptional conditions pose at various criticality levels and design assurance levels and its implications in verifying and validating the designs.

  3. Criticality Safety Basics for INL Emergency Responders

    Energy Technology Data Exchange (ETDEWEB)

    Valerie L. Putman

    2012-08-01

    This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

    This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

    For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

    INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

  4. Study of criticality safety of fresh fuel

    International Nuclear Information System (INIS)

    Pesic, M.; Dasic, N.

    1998-01-01

    A study on criticality safety of fresh low and high enriched uranium (LEU and HEU) fuel elements, in the original metal containers (OMC) placed in the special metal protection 'cage' and in a designed wooden storage case (WSC), at the RB research reactor is carried out by using the well-known MCNP TM computer code. It is shown for the first time that these HEU and LEU fresh fuel elements, stored in the WSC or in the OMCs, are far away from criticality, even in a case of unexpected flooding of the storage by light water. (author)

  5. New developments enhancing MCNP for criticality safety

    International Nuclear Information System (INIS)

    Hendricks, J.S.; McKinney, G.W.; Forster, R.A.

    1993-01-01

    Since the early 80's MCNP has had three estimates of k eff : collision, absorption, and track length. MCNP has also had collision and absorption estimators of removal lifetime. These are calculated for every cycle and are averaged over the cycles as simple averages and covariance weighted averages. Correlation coefficients between estimators are also calculated. These criticality estimators are all in addition to the extensive summary information and tally edits used in shielding and other problems. A number of significant new developments have been made to enhance the MCNP Monte Carlo radiation transport code for criticality safety applications. These are available in the newly released MCNP4A version of the code

  6. Criticality safety calculations of storage canisters

    International Nuclear Information System (INIS)

    Agrenius, L.

    2002-04-01

    In the planned Swedish repository for deep disposal of spent nuclear fuel the fuel assemblies will be stored in storage canisters made of cast iron and copper. To assure safe storage of the fuel the requirement is that the normal criticality safety criteria have to be met. The effective neutron multiplication factor must not exceed 0.95 in the most reactive conditions including different kinds of uncertainties. In this report it is shown that the criteria could be met if credit for the reactivity decrease due to the burn up of the fuel is taken into account. The criticality safety criteria are based on the US NRC regulatory requirements for transportation and storage of spent fuel

  7. Security for safety critical space borne systems

    Science.gov (United States)

    Legrand, Sue

    1987-01-01

    The Space Station contains safety critical computer software components in systems that can affect life and vital property. These components require a multilevel secure system that provides dynamic access control of the data and processes involved. A study is under way to define requirements for a security model providing access control through level B3 of the Orange Book. The model will be prototyped at NASA-Johnson Space Center.

  8. Neutron nuclear data measurements for criticality safety

    Science.gov (United States)

    Guber, Klaus; Paradela, Carlos; Heyse, Jan; Kopecky, Stefan; Schillebeeckx, Peter; Siegler, Peter

    2017-09-01

    To support the US Department of Energy Nuclear Criticality Safety Program, neutron-induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Joint Research Center Site Geel, European Union. Neutron capture and transmission measurements were carried out using metallic natural cerium and vanadium samples. Together with existing data, the measured data will be used for a new evaluation and will be submitted with covariances to the ENDF/B nuclear data library.

  9. Developing software for safety-critical applications

    International Nuclear Information System (INIS)

    Chudleigh, M.

    1989-01-01

    The effective implementation of many safety-critical systems involves microprocessors running software which needs to be of very high integrity. This article describes some of the problems of producing such software and the place of software within the total system. A development strategy is proposed based on three principles: the goal of defect-free development, the use of mathematical formalism, and the use of an independent team for testing. (author)

  10. The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, B.D.; Meade, R.A.; Pruvost, N.L.

    1999-09-20

    The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is a program jointly funded by the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) in conjunction with the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2. The goal of CSIRC is to preserve primary criticality safety documentation from U.S. critical experimental sites and to make this information available for the benefit of the technical community. Progress in archiving criticality safety primary documents at the LANL archives as well as efforts to make this information available to researchers are discussed. The CSIRC project has a natural linkage to the International Criticality Safety Benchmark Evaluation Project (ICSBEP). This paper raises the possibility that the CSIRC project will evolve in a fashion similar to the ICSBEP. Exploring the implications of linking the CSIRC to the international criticality safety community is the motivation for this paper.

  11. The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Henderson, B.D.; Meade, R.A.; Pruvost, N.L.

    1999-01-01

    The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is a program jointly funded by the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) in conjunction with the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2. The goal of CSIRC is to preserve primary criticality safety documentation from U.S. critical experimental sites and to make this information available for the benefit of the technical community. Progress in archiving criticality safety primary documents at the LANL archives as well as efforts to make this information available to researchers are discussed. The CSIRC project has a natural linkage to the International Criticality Safety Benchmark Evaluation Project (ICSBEP). This paper raises the possibility that the CSIRC project will evolve in a fashion similar to the ICSBEP. Exploring the implications of linking the CSIRC to the international criticality safety community is the motivation for this paper

  12. A desktop 3D printer in safety-critical Java

    DEFF Research Database (Denmark)

    Strøm, Tórur Biskopstø; Schoeberl, Martin

    2012-01-01

    It is desirable to bring Java technology to safety-critical systems. To this end The Open Group has created the safety-critical Java specification, which will allow Java applications, written according to the specification, to be certifiable in accordance with safety-critical standards. Although...... there exist several safety-critical Java framework implementations, there is a lack of safety-critical use cases implemented according to the specification. In this paper we present a 3D printer and its safety-critical Java level 1 implementation as a use case. With basis in the implementation we evaluate...

  13. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  14. The international dimensions of nuclear safety standards

    International Nuclear Information System (INIS)

    Reed, J.M.

    1992-01-01

    The paper reviews the activities of the major international organisations in the field of nuclear safety standards; the International Atomic Energy Agency (IAEA), the OECD's Nuclear Energy Agency (NEA) and the Commission of the European Communities. Each organisation encourages the concept of international nuclear safety standards. After Chernobyl, there were calls for some form of binding international nuclear safety standards. Many Member States of IAEA accepted these Codes as a suitable basis for formulating their national safety standards, but the prevailing view was that voluntary compliance with the Codes was the preferred path. With few reactor vendors in a limited international market, the time may be approaching when an internationally licensable nuclear reactor is needed. Commonly accepted safety standards would be a prerequisite. The paper discusses the issues involved and the complexities of standards making in the international arena. (author)

  15. Validation testing of safety-critical software

    International Nuclear Information System (INIS)

    Kim, Hang Bae; Han, Jae Bok

    1995-01-01

    A software engineering process has been developed for the design of safety critical software for Wolsung 2/3/4 project to satisfy the requirements of the regulatory body. Among the process, this paper described the detail process of validation testing performed to ensure that the software with its hardware, developed by the design group, satisfies the requirements of the functional specification prepared by the independent functional group. To perform the tests, test facility and test software were developed and actual safety system computer was connected. Three kinds of test cases, i.e., functional test, performance test and self-check test, were programmed and run to verify each functional specifications. Test failures were feedback to the design group to revise the software and test results were analyzed and documented in the report to submit to the regulatory body. The test methodology and procedure were very efficient and satisfactory to perform the systematic and automatic test. The test results were also acceptable and successful to verify the software acts as specified in the program functional specification. This methodology can be applied to the validation of other safety-critical software. 2 figs., 2 tabs., 14 refs. (Author)

  16. Criticality safety training at Westinghouse Hanford Company

    International Nuclear Information System (INIS)

    Rogers, C.A.; Paglieri, J.N.

    1983-01-01

    In 1972 the Westinghouse Hanford Company (WHC) established a comprehensive program to certify personnel who handle fissionable materials. As the quantity of fissionable material handled at WHC has increased so has the scope of training to assure that all employes perform their work in a safe manner. This paper describes training for personnel engaged in fuel fabrication and handling activities. Most of this training is provided by the Fissionable Material Handlers Certification Program. This program meets or exceeds all DOE requirements for training and has been attended by more than 475 employes. Since the program was instituted, the rate of occurrence of criticality safety limit violations has decreased by 50%

  17. 14 CFR 417.121 - Safety critical preflight operations.

    Science.gov (United States)

    2010-01-01

    ... the launch of an unguided suborbital rocket, in addition to meeting the other requirements of this... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.121 Safety critical preflight operations. (a) General. A launch operator must perform safety critical...

  18. Identifying gaps in international food safety regulation.

    Science.gov (United States)

    McGrady, Benn; Ho, Christina S

    2011-01-01

    The rise in food importation in countries such as the United States, coupled with food safety incidents, has led to increased concern with the safety of imported food. This concern has prompted discussion of how international law and governance mechanisms might enhance food safety. This paper identifies the objectives underlying multilateral approaches to food safety such as raising food safety standards abroad, information sharing and ensuring market access. The paper then explores how these objectives are integrated into the international system and identifies how the current state of the law creates imbalances in the pursuit of these objectives.

  19. Development of the DOE Nuclear Criticality Safety Program Web site for the nuclear criticality safety professional

    International Nuclear Information System (INIS)

    Lee, C.K.; Huang, S.; Morman, J.A.; Garcia, A.S.

    2000-01-01

    Development of the US Department of Energy (DOE) Nuclear Criticality Safety (NCS) Program (NCSP) Web site is the result of the efforts of many members of the NCS community and is maintained by Lawrence Livermore National Laboratory (LLNL) under the direction of the NCSP Management Team. This World-Wide-Web resource was developed as part of the DOE response to Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. The NCSP Web site provides information of interest to NCS professionals and includes links to other sites actively involved in the collection and dissemination of criticality safety information. To the extent possible, the hyperlinks on this Web site direct the user to the original source of the referenced material to ensure access to the latest, most accurate version. This site is intended to provide a central location for access to relevant NCS information in a user-friendly environment for the criticality safety community

  20. NUSS safety standards: A critical assessment

    International Nuclear Information System (INIS)

    Minogue, R.B.

    1985-01-01

    The NUSS safety standards are based on systematic review of safety criteria of many countries in a process carefully defined to assure completeness of coverage. They represent an international consensus of accepted safety principles and practices for regulation and for the design, construction, and operation of nuclear power plants. They are a codification of principles and practices already in use by some Member States. Thus, they are not standards which describe methodologies at their present state of evolution as a result of more recent experience and improvements in technological understanding. The NUSS standards assume an underlying body of national standards and a defined technological base. Detailed design and industrial practices vary between countries and the implementation of basic safety standards within countries has taken approaches that conform with national industrial practices. Thus, application of the NUSS standards requires reconciliation with the standards of the country where the reactor will be built as well as with the country from which procurement takes place. Experience in making that reconciliation will undoubtedly suggest areas of needed improvement. After the TMI accident a reassessment of the NUSS programme was made and it was concluded that, given the information at that time and the then level of technology, the basic approach was sound; the NUSS programme should be continued to completion, and the standards should be brought into use. It was also recognized, however, that in areas such as probabilistic risk assessment, human factors methodology, and consideration of detailed accident sequences, more advanced technology was emerging. As these technologies develop, and become more amenable to practical application, it is anticipated that the NUSS standards will need revision. Ideally those future revisions will also flow from experience in their use

  1. Memory Management for Safety-Critical Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2011-01-01

    Safety-Critical Java (SCJ) is based on the Real-Time Specification for Java. To simplify the certification of Java programs, SCJ supports only a restricted scoped memory model. Individual threads share only immortal memory and the newly introduced mission memory. All other scoped memories...... are thread private. Furthermore, the notation of a maximum backing store requirement enables implementation of the scoped memories without fragmentation issues. In this paper we explore the implications of this new scoped memory model and possible simplifications in the implementation. It is possible...... to unify the three memory area types and provide a single class to represent all three memory areas of SCJ. The knowledge of the maximum storage requirements allows using nested backing stores in the implementation of the memory area representation. The proposed design of an SCJ compliant scope...

  2. Nuclear critical safety analysis for UX-30 transport of freight package

    International Nuclear Information System (INIS)

    Quan Yanhui; Zhou Qi; Yin Shenggui

    2014-01-01

    The nuclear critical safety analysis and evaluation for UX-30 transport freight package in the natural condition and accident condition were carried out with MONK-9A code and MCNP code. Firstly, the critical benchmark experiment data of public in international were selected, and the deflection and subcritical limiting value with MONK-9A code and MCNP code in calculating same material form were validated and confirmed. Secondly, the neutron efficiency multiplication factors in the natural condition and accident condition were calculated and analyzed, and the safety in transport process was evaluated by taking conservative suppose of nuclear critical safety. The calculation results show that the max value of k eff for UX-30 transport freight package is less than the subcritical limiting value, and the UX-30 transport freight package is in the state of subcritical safety. Moreover, the critical safety index (CSI) for UX-30 package can define zero based on the definition of critical safety index. (authors)

  3. New challenges for the internal safety organisation

    DEFF Research Database (Denmark)

    Hasle, Peter; Jensen, Per Langå

    2003-01-01

    Research from several countries indicates that the internal health and safety organisation in most companies is placed in an appendix position. Introduc-tion of learning is a possibility for the development of a stronger and more ef-fective health and safety organisation. This approach has been...... studied in a Danish network project with 11 companies....

  4. Martin Marietta Energy Systems Nuclear Criticality Safety Improvement Program

    International Nuclear Information System (INIS)

    Speas, I.G.

    1987-01-01

    This report addresses questions raised by criticality safety violation at several DOE plants. Two charts are included that define the severity and reporting requirements for the six levels of accidents. A summary is given of all reported criticality incident at the DOE plants involved. The report concludes with Martin Marietta's Nuclear Criticality Safety Policy Statement

  5. Safety Justification and Safety Case for Safety-critical Software in Digital Reactor Protection System

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Lee, Jang-Soo; Jee, Eunkyoung

    2016-01-01

    Nuclear safety-critical software is under strict regulatory requirements and these regulatory requirements are essential for ensuring the safety of nuclear power plants. The verification & validation (V and V) and hazard analysis of the safety-critical software are required to follow regulatory requirements through the entire software life cycle. In order to obtain a license from the regulatory body through the development and validation of safety-critical software, it is essential to meet the standards which are required by the regulatory body throughout the software development process. Generally, large amounts of documents, which demonstrate safety justification including standard compliance, V and V, hazard analysis, and vulnerability assessment activities, are submitted to the regulatory body during the licensing process. It is not easy to accurately read and evaluate the whole documentation for the development activities, implementation technology, and validation activities. The safety case methodology has been kwon a promising approach to evaluate the level and depth of the development and validation results. A safety case is a structured argument, supported by a body of evidence that provides a compelling, comprehensible, and valid case that a system is safe for a given application in a given operating environment. It is suggested to evaluate the level and depth of the results of development and validation by applying safety case methodology to achieve software safety demonstration. A lot of documents provided as evidence are connected to claim that corresponds to the topic for safety demonstration. We demonstrated a case study in which more systematic safety demonstration for the target system software is performed via safety case construction than simply listing the documents

  6. Safety case: An international perspective

    International Nuclear Information System (INIS)

    Pescatore, C.; Voinis, S.

    2002-01-01

    In recent years, it has become more and more evident that repository development will involve a number of stages punctuated by interdependent decisions on whether and how to move to the next stage. These decisions require a clear and traceable presentation of technical arguments that will help in giving confidence in the feasibility and safety of the proposed concept. The depth of understanding and technical information available to support decisions will vary from step to step. A safety case is a key item to support the decision to move to the next stage in repository development. Progress is noted, in the past decade, in the performance and safety assessment areas, particularly in the methodologies for repository system analysis. Progress is also observed regarding the understanding of the natural system and its characterisation, treatment of uncertainties, and modelling. Some areas are under active development, e.g. the area of scenario development and analysis. Finally, to increase confidence, rigorous quality assurance procedures need to be implemented, as well as the factoring of the contribution of R and D in underground research laboratories. The paper summarises the lessons learnt within relevant NEA initiatives as they evolved over the course of a decade and now allow a comprehensive view of what constitutes a safety case. (author)

  7. RECENT ADDITIONS OF CRITICALITY SAFETY RELATED INTEGRAL BENCHMARK DATA TO THE ICSBEP AND IRPHEP HANDBOOKS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Sartori

    2009-09-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions.

  8. REcent Additions Of Criticality Safety Related Integral Benchmark Data To The Icsbep And Irphep Handbooks

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Scott, Lori; Rugama, Yolanda; Sartori, Enrico

    2009-01-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions.

  9. Proceedings of the Nuclear Criticality Technology Safety Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  10. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Monahan, S.P.; McLaughlin, T.P.

    1997-01-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory's Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ''Conduct of Business in the Nuclear Criticality Safety Group.'' There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets

  11. SRTC criticality safety technical review: Nuclear Criticality Safety Evaluation 93-04 enriched uranium receipt

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Review of NMP-NCS-930087, open-quotes Nuclear Criticality Safety Evaluation 93-04 Enriched Uranium Receipt (U), July 30, 1993, close quotes was requested of SRTC (Savannah River Technology Center) Applied Physics Group. The NCSE is a criticality assessment to determine the mass limit for Engineered Low Level Trench (ELLT) waste uranium burial. The intent is to bury uranium in pits that would be separated by a specified amount of undisturbed soil. The scope of the technical review, documented in this report, consisted of (1) an independent check of the methods and models employed, (2) independent HRXN/KENO-V.a calculations of alternate configurations, (3) application of ANSI/ANS 8.1, and (4) verification of WSRC Nuclear Criticality Safety Manual procedures. The NCSE under review concludes that a 500 gram limit per burial position is acceptable to ensure the burial site remains in a critically safe configuration for all normal and single credible abnormal conditions. This reviewer agrees with that conclusion

  12. Proceedings of the first annual Nuclear Criticality Safety Technology Project

    International Nuclear Information System (INIS)

    Rutherford, D.A.

    1994-09-01

    This document represents the published proceedings of the first annual Nuclear Criticality Safety Technology Project (NCSTP) Workshop, which took place May 12--14, 1992, in Gaithersburg, Md. The conference consisted of four sessions, each dealing with a specific aspect of nuclear criticality safety issues. The session titles were ''Criticality Code Development, Usage, and Validation,'' ''Experimental Needs, Facilities, and Measurements,'' ''Regulation, Compliance, and Their Effects on Nuclear Criticality Technology and Safety,'' and ''The Nuclear Criticality Community Response to the USDOE Regulations and Compliance Directives.'' The conference also sponsored a Working Group session, a report of the NCSTP Working Group is also presented. Individual papers have been cataloged separately

  13. Nuclear Criticality Safety Handbook, Version 2. English translation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-08-01

    The Nuclear Criticality Safety Handbook, Version 2 essentially includes the description of the Supplement Report to the Nuclear Criticality Safety Handbook, released in 1995, into the first version of the Nuclear Criticality Safety Handbook, published in 1988. The following two points are new: (1) exemplifying safety margins related to modeled dissolution and extraction processes, (2) describing evaluation methods and alarm system for criticality accidents. Revision has been made based on previous studies for the chapter that treats modeling the fuel system: e.g., the fuel grain size that the system can be regarded as homogeneous, non-uniformity effect of fuel solution, an burnup credit. This revision has solved the inconsistencies found in the first version between the evaluation of errors found in JACS code system and the criticality condition data that were calculated based on the evaluation. This report is an English translation of the Nuclear Criticality Safety Handbook, Version 2, originally published in Japanese as JAERI 1340 in 1999. (author)

  14. Criticality safety training at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

    1983-01-01

    HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program

  15. Critical review of safety performance metrics

    NARCIS (Netherlands)

    Karanikas, Nektarios

    2016-01-01

    Various tools for safety performance measurement have been introduced in order to fulfil the need for safety monitoring in organisations, which is tightly related to their overall performance and achievement of their business goals. Such tools include accident rates, benchmarking, safety culture and

  16. Automated tools for safety-critical software

    International Nuclear Information System (INIS)

    Lapassat, A.M.

    1993-01-01

    The regulatory (DSIN), the utilities (EDF, CEA..) and the CEA-Institute for Protection and Nuclear Safety (IPSN) work together at the French nuclear safety. This paper presents a tool, called CLAIRE, for simulation and tests of different nuclear safety system. (TEC)

  17. 49 CFR 659.27 - Internal safety and security reviews.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Internal safety and security reviews. 659.27... State Oversight Agency § 659.27 Internal safety and security reviews. (a) The oversight agency shall... safety and security reviews in its system safety program plan. (b) The internal safety and security...

  18. Methodology for Determination of the Upper Safety Limit for Criticality Calculations for Criticality Safety Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.H.; Keener, H.J.; DeClue, J.F.; Krass, A.W.

    2001-04-01

    This report considers the methods for determination of an upper safety limit, and incorporating uncertainty and margin into the safety limit, provides comparisons, and recommends a preferred method for determining the Upper Safety Limit (USL). A USL is developed for CSAS25 from SCALE4.4a. The USL is applicable for the CSAS25 control module from the SCALE 4.4a computer code system for use in evaluating nuclear criticality safety of enriched uranium systems. The benchmark calculation results used for this report are documented in Y/DD-896. The statistical evaluation is documented in CCG-380. The 27-group ENDF/B-IV, 44-group ENDF/B-V, and 238-group ENDF/B-V cross-section libraries were used. Numerical methods for applying margins are described, but the determination of appropriate correlating parameters and values for additional margin, applicable to a particular analysis, must be determined as part of a process analysis. As such, this document does not specify final upper subcritical limits as has been done in the past. No correlation between calculation results and neutron energy causing fission was found for the critical experiment results. Analysts using these results are responsible for exercising sound engineering judgment using strong technical arguments to develop ''a margin in k{sub eff} or other correlating parameter that is sufficiently large to ensure that conditions (calculated by this method to be subcritical by this margin) will actually be subcritical.'' Documentation of area of applicability and determination and justification of the appropriate margin in the analyst's evaluation, in conjunction with this report, will constitute the complete Validation Report in accordance with ANSI/ANS-8.1-1998, Section 4.3.6(4).

  19. KEOPS and other VENUS experiments dedicated to the criticality safety of a MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Lance, Benoit; Van Den Hende, Paul; Marloye, Daniel; Basselier, Jacques; Libon, Henri; De Vleeschhauwer, Marc; Moerenhout, Jeremie; Baeten, Peter

    2005-01-01

    The qualification scheme of criticality computer codes for Pu bearing powders lies upon databases which suffer from a lack of recent experimental results. As a MOX manufacture, BELGONUCLEAIRE is especially concerned by criticality safety and would like to address such an issue by launching with SCK-CEN an International Programme called KEOPS. (author)

  20. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas

  1. Criticality Safety Evaluation of Hanford Tank Farms Facility

    International Nuclear Information System (INIS)

    WEISS, E.V.

    2000-01-01

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste

  2. A Web-Based Nuclear Criticality Safety Bibliographic Database

    International Nuclear Information System (INIS)

    Koponen, B L; Huang, S

    2007-01-01

    A bibliographic criticality safety database of over 13,000 records is available on the Internet as part of the U.S. Department of Energy's (DOE) Nuclear Criticality Safety Program (NCSP) website. This database is easy to access via the Internet and gets substantial daily usage. This database and other criticality safety resources are available at ncsp.llnl.gov. The web database has evolved from more than thirty years of effort at Lawrence Livermore National Laboratory (LLNL), beginning with compilations of critical experiment reports and American Nuclear Society Transactions

  3. The critical safety functions and plant operation

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Porter, N.J.; Cross, M.T.; Guinn, W.M.

    1981-01-01

    The paper outlines the operator's role in nuclear safety and introduces the concept of ''safety functions''. Safety functions are a group of actions that prevent core melt or minimize radiation releases to the general public. They can be used to provide a hierarchy of practical plant protection that an operator should use. ''An accident identical to that at Three Mile Island is not going to happen again'', said the Rogovin investigators. The concepts put forward in this paper are intended to help the operator avoid serious consequence from the next unexpected threat. On the basis of the safety evaluation, the operator has three roles in assuring that the consequences of an event will be no worse than the predicted acceptable results. These three operator roles are: first, maintain plant setup in readiness to properly respond; second, operate the plant in a manner such that fewer, milder events minimize the frequency and the severity of adverse events; third, the operator needs to monitor the plant to verify that the safety functions are accomplished. The operator needs a systematic approach to mitigating the consequences of an event. The concept of ''safety function'' introduces that systematic approach and prevents a hierarchy of protection. If the operator has difficulty in identifying an event for any reason, the systematic safety function approach allows ones to accomplish the overall path of mitigating consequences. There are ten identified functions designed to protect against core melt, preserve containment integrity, prevent indirect release of radioactivity, and maintain vital auxiliaries needed to support the other safety functions. The paper describes in detail the operator's role and the safety functions, and provides many examples of the use of alternative success paths to accomplish the safety function

  4. Can international safety overcome national prejudice

    International Nuclear Information System (INIS)

    Thomas, S.

    1986-01-01

    Following the accident at the Chernobyl nuclear power plant, a proposal has been made that the International Atomic Energy Agency (IAEA) should carry out a programme of reactor assessments and inspections to ensure that the plant is competently run. The 13 proposals for improving safety that arose from the recent IAEA meeting in Vienna about the events at Chernobyl are listed. They also propose international collaboration on many points. This article draws attention to the difficulties in achieving international cooperation. Comparison is made with the case of international air and marine transport and an attempt to get an agreement to reduce emissions of acid rain precursors by 30%. The essential requirements for international regulation are stated. Four specific activities that could be covered are discussed. These are inspection of operating plant, enforcement of minimum standards for routine emissions, establishment of design standards and establishment of post-accident procedures for international co-operation. (UK)

  5. International Nuclear Safety Center (INSC) database

    International Nuclear Information System (INIS)

    Sofu, T.; Ley, H.; Turski, R.B.

    1997-01-01

    As an integral part of DOE's International Nuclear Safety Center (INSC) at Argonne National Laboratory, the INSC Database has been established to provide an interactively accessible information resource for the world's nuclear facilities and to promote free and open exchange of nuclear safety information among nations. The INSC Database is a comprehensive resource database aimed at a scope and level of detail suitable for safety analysis and risk evaluation for the world's nuclear power plants and facilities. It also provides an electronic forum for international collaborative safety research for the Department of Energy and its international partners. The database is intended to provide plant design information, material properties, computational tools, and results of safety analysis. Initial emphasis in data gathering is given to Soviet-designed reactors in Russia, the former Soviet Union, and Eastern Europe. The implementation is performed under the Oracle database management system, and the World Wide Web is used to serve as the access path for remote users. An interface between the Oracle database and the Web server is established through a custom designed Web-Oracle gateway which is used mainly to perform queries on the stored data in the database tables

  6. Overview of DOE/ONS criticality safety projects

    International Nuclear Information System (INIS)

    Barber, R.W.; Brown, B.P.; Hopper, C.M.

    1985-01-01

    The evolution of Federal involvement with nuclear criticality safety has traversed through the 1940's and early 1950's with the Manhattan Engineering District, the 1950's and 1960's with the Atomic Energy Commission, the early 1970's with the Energy Research and Development Administration, and the late 1970's to date with the US Department of Energy. The importance of nuclear criticality safety has been maintained throughout these periods; however, criticality safety has received shifting emphases in research/applications, promulgations of regulations/standards, origins of fiscal support and organization. In June 1981 the Office of Nuclear Safety was established in response to a Department of Energy study of the impact of the March 1979 Three Mile Island accident. The organizational structure of the ONS, its program for establishing and maintaining a progressive nuclear criticality safety program, and associated projects, and current history of ONS's fiscal support of program projects is presented. With the establishment of the ONS came concomitant missions to develop and maintain nuclear safety policy and requirements, to provide independent assurance that nuclear operations are performed safely, to provide resources and management for DOE responses to nuclear accidents, and to provide technical support. In the past four years, ONS has developed and initiated a continuing Department Nuclear Criticality Safety Program in such areas as communications and information, physics of criticality, knowledge of factors affecting criticality, and computational capability

  7. Use of a web site to enhance criticality safety training

    International Nuclear Information System (INIS)

    Huang, Song T.; Morman, James A.

    2003-01-01

    Establishment of the NCSP (Nuclear Criticality Safety Program) website represents one attempt by the NCS (Nuclear Criticality Safety) community to meet the need to enhance communication and disseminate NCS information to a wider audience. With the aging work force in this important technical field, there is a common recognition of the need to capture the corporate knowledge of these people and provide an easily accessible, web-based training opportunity to those people just entering the field of criticality safety. A multimedia-based site can provide a wide range of possibilities for criticality safety training. Training modules could range from simple text-based material, similar to the NCSET (Nuclear Criticality Safety Engineer Training) modules, to interactive web-based training classes, to video lecture series. For example, the Los Alamos National Laboratory video series of interviews with pioneers of criticality safety could easily be incorporated into training modules. Obviously, the development of such a program depends largely upon the need and participation of experts who share the same vision and enthusiasm of training the next generation of criticality safety engineers. The NCSP website is just one example of the potential benefits that web-based training can offer. You are encouraged to browse the NCSP website at http://ncsp.llnl.gov. We solicit your ideas in the training of future NCS engineers and welcome your participation with us in developing future multimedia training modules. (author)

  8. Criticality Safety Evaluation for the TACS at DAF

    Energy Technology Data Exchange (ETDEWEB)

    Percher, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-10

    Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, Guidance for Nuclear Criticality Safety Engineer Training and Qualification. This document is a criticality safety evaluation of the training activities and operations associated with HS-3201-P, Nuclear Criticality 4-Day Training Course (Practical). This course was designed to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program1. The hands-on, or laboratory, portion of the course will utilize the Training Assembly for Criticality Safety (TACS) and will be conducted in the Device Assembly Facility (DAF) at the Nevada Nuclear Security Site (NNSS). The training activities will be conducted by Lawrence Livermore National Laboratory following the requirements of an Integrated Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of an LLNL Certified Fissile Material Handler.

  9. Criticality safety in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Krug, H.; Thomas, W.

    1980-01-01

    Criticality safety is of concern in processing, handling and storage of nuclear fuel outside reactors. Considerable experience has been gained in this area in the last twenty years. No criticality safety problems can be performed by applying a great variety of simple or sophisticated computation techniques. Calculated criticality data have been collected and issued in a handbook. A review is given of criticality safety philosophy, common practice in safety design, application of limitations and standards and accident analysis. As recent developments efforts have been made to investigate concrete reflection, the possible use of gadolinium as homogeneous poison, the suitability of hafnium as neutron absorber and nondestructive in-line measurement of fissile content concentrations. Recently a critical safe design has been established for a cast-iron cask for dry storage of spent fuel elements taking account of accidental moderation of the fuel. 8 figures

  10. Proceedings of the nuclear criticality technology safety project

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings

  11. Proceedings of the nuclear criticality technology safety project

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  12. Intermediate probabilistic safety assessment approach for safety critical digital systems

    International Nuclear Information System (INIS)

    Taeyong, Sung; Hyun Gook, Kang

    2001-01-01

    Even though the conventional probabilistic safety assessment methods are immature for applying to microprocessor-based digital systems, practical needs force to apply it. In the Korea, UCN 5 and 6 units are being constructed and Korean Next Generation Reactor is being designed using the digital instrumentation and control equipment for the safety related functions. Korean regulatory body requires probabilistic safety assessment. This paper analyzes the difficulties on the assessment of digital systems and suggests an intermediate framework for evaluating their safety using fault tree models. The framework deals with several important characteristics of digital systems including software modules and fault-tolerant features. We expect that the analysis result will provide valuable design feedback. (authors)

  13. SCALE Graphical Developments for Improved Criticality Safety Analyses

    International Nuclear Information System (INIS)

    Barnett, D.L.; Bowman, S.M.; Horwedel, J.E.; Petrie, L.M.

    1999-01-01

    New computer graphic developments at Oak Ridge National Ridge National Laboratory (ORNL) are being used to provide visualization of criticality safety models and calculational results as well as tools for criticality safety analysis input preparation. The purpose of this paper is to present the status of current development efforts to continue to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system. Applications for criticality safety analysis in the areas of 3-D model visualization, input preparation and execution via a graphical user interface (GUI), and two-dimensional (2-D) plotting of results are discussed

  14. Computational methods for criticality safety analysis within the scale system

    International Nuclear Information System (INIS)

    Parks, C.V.; Petrie, L.M.; Landers, N.F.; Bucholz, J.A.

    1986-01-01

    The criticality safety analysis capabilities within the SCALE system are centered around the Monte Carlo codes KENO IV and KENO V.a, which are both included in SCALE as functional modules. The XSDRNPM-S module is also an important tool within SCALE for obtaining multiplication factors for one-dimensional system models. This paper reviews the features and modeling capabilities of these codes along with their implementation within the Criticality Safety Analysis Sequences (CSAS) of SCALE. The CSAS modules provide automated cross-section processing and user-friendly input that allow criticality safety analyses to be done in an efficient and accurate manner. 14 refs., 2 figs., 3 tabs

  15. SCALE 5: Powerful new criticality safety analysis tools

    International Nuclear Information System (INIS)

    Bowman, Stephen M.; Hollenbach, Daniel F.; Dehart, Mark D.; Rearden, Bradley T.; Gauld, Ian C.; Goluoglu, Sedat

    2003-01-01

    Version 5 of the SCALE computer software system developed at Oak Ridge National Laboratory, scheduled for release in December 2003, contains several significant new modules and sequences for criticality safety analysis and marks the most important update to SCALE in more than a decade. This paper highlights the capabilities of these new modules and sequences, including continuous energy flux spectra for processing multigroup problem-dependent cross sections; one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations; two-dimensional flexible mesh discrete ordinates code; automated burnup-credit analysis sequence; and one-dimensional material distribution optimization for criticality safety. (author)

  16. Nuclear criticality safety program at the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Fujita, E.K.; Tracy, D.B.; Klann, R.T.; Imel, G.R.; Benedict, R.W.; Rigg, R.H.

    1994-01-01

    The Fuel Cycle Facility (FCF) is designed to demonstrate the feasibility of a novel commercial-scale remote pyrometallurgical process for metallic fuels from liquid metal-cooled reactors and to show closure of the Integral Fast Reactor (IFR) fuel cycle. Requirements for nuclear criticality safety impose the most restrictive of the various constraints on the operation of FCF. The upper limits on batch sizes and other important process parameters are determined principally by criticality safety considerations. To maintain an efficient operation within appropriate safety limits, it is necessary to formulate a nuclear criticality safety program that integrates equipment design, process development, process modeling, conduct of operations, a measurement program, adequate material control procedures, and nuclear criticality analysis. The nuclear criticality safety program for FCF reflects this integration, ensuring that the facility can be operated efficiently without compromising safety. The experience gained from the conduct of this program in the Fuel cycle Facility will be used to design and safely operate IFR facilities on a commercial scale. The key features of the nuclear criticality safety program are described. The relationship of these features to normal facility operation is also described

  17. Criticality Safety Evaluation of Standard Criticality Safety Requirements #1-520 g Operations in PF-4

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Alan Joseph Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-13

    Guidance has been requested from the Nuclear Criticality Safety Division (NCSD) regarding processes that involve 520 grams of fissionable material or less. This Level-3 evaluation was conducted and documented in accordance with NCS-AP-004 (Ref. 1), formerly NCS-GUIDE-01. This evaluation is being written as a generic evaluation for all operations that will be able to operate using a 520-gram mass limit. Implementation for specific operations will be performed using a Level 1 CSED, which will confirm and document that this CSED can be used for the specific operation as discussed in NCS-MEMO-17-007 (Ref. 2). This Level 3 CSED updates and supersedes the analysis performed in NCS-TECH-14-014 (Ref. 3).

  18. A Methodological Framework for Software Safety in Safety Critical Computer Systems

    OpenAIRE

    P. V. Srinivas Acharyulu; P. Seetharamaiah

    2012-01-01

    Software safety must deal with the principles of safety management, safety engineering and software engineering for developing safety-critical computer systems, with the target of making the system safe, risk-free and fail-safe in addition to provide a clarified differentaition for assessing and evaluating the risk, with the principles of software risk management. Problem statement: Prevailing software quality models, standards were not subsisting in adequately addressing the software safety ...

  19. A Test Suite for Safety-Critical Java using JML

    DEFF Research Database (Denmark)

    Ravn, Anders Peter; Søndergaard, Hans

    2013-01-01

    Development techniques are presented for a test suite for the draft specification of the Java profile for Safety-Critical Systems. Distinguishing features are: specification of conformance constraints in the Java Modeling Language, encoding of infrastructure concepts without implementation bias...

  20. Explicit Precedence Constraints in Safety-Critical Java

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Noulard, Eric; Pagetti, Claire

    2013-01-01

    Safety-critical Java (SCJ) aims at making the amenities of Java available for the development of safety-critical applications. The multi-rate synchronous language Prelude facilitates the specification of the communication and timing requirements of complex real-time systems. This paper combines...... to provide explicit support for precedence constraints. We present the considerations behind the design of this extension and discuss our experiences with a first prototype implementation based on the SCJ implementation of the Java Optimized Processor....

  1. Nuclear criticality safety. Chapter 0530 of AEC manual

    International Nuclear Information System (INIS)

    2006-01-01

    The programme objectives of this chapter of the U.S. Atomic Energy Commission manual on nuclear criticality safety are to protect the health and safety of the public and of the government and contractor personnel working in plants that handle fissionable material and to protect public and private property from the consequences of a criticality accident occurring in AEC-owned plants and other AEC-contracted activities involving fissionable materials

  2. Parametric Criticality Safety Calculations for Arrays of TRU Waste Containers

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Sean T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    The Nuclear Criticality Safety Division (NCSD) has performed criticality safety calculations for finite and infinite arrays of transuranic (TRU) waste containers. The results of these analyses may be applied in any technical area onsite (e.g., TA-54, TA-55, etc.), as long as the assumptions herein are met. These calculations are designed to update the existing reference calculations for waste arrays documented in Reference 1, in order to meet current guidance on calculational methodology.

  3. Safety in an international work environment: CERN

    CERN Document Server

    Potter, K.

    1990-01-01

    The European Laboratory for Particle Physics (CERN) has recently completed a new accelerator. The installation of this accelerator and its experimental areas represents an example of harmonization of safety rules in supranational areas, as CERN is an international organization and the machine is housed in a tunnel of 26.7 km circumference, of which 20 km is on French territory and 6.7 km on Swiss territory. The work was carried out by a large number of firms from all over Europe, CERN staff and physicists and technicians from all over the world, and represented almost 4 million working hours. The safety organization chosen and applied with the agreement of the two host-State safety authorities is described and the resulting application, including the results in terms of accident statistics, from the installation of the machine, experimental areas and detectors are presented.

  4. Decoupling from international food safety standards

    DEFF Research Database (Denmark)

    Mercado, Geovana; Hjortsø, Carsten Nico; Honig, Benson

    2018-01-01

    in the market. These include: (1) partial adoption of formal rules; (2) selective adoption of convenient rules; and (3) ceremonial adoption to avoid compliance. Decoupling strategies allow local actors to largely disregard the formal food safety regulations while accommodating traditional cultural practices......Although inclusion in formal value chains extends the prospect of improving the livelihoods of rural small-scale producers, such a step is often contingent on compliance with internationally-promoted food safety standards. Limited research has addressed the challenges this represents for small...... rural producers who, grounded in culturally-embedded food safety conceptions, face difficulties in complying. We address this gap here through a multiple case study involving four public school feeding programs that source meals from local rural providers in the Bolivian Altiplan. Institutional logics...

  5. K-effective as a measure of criticality safety

    International Nuclear Information System (INIS)

    Venner, J.; Haley, R.M.; Bowden, R.L.

    2003-01-01

    This paper considers the relation between the neutron multiplication of a system, k-effective, and critical parameters. It aims to investigate whether k-effective is always the most appropriate measure of safety. For simple systems handbook data can be effectively utilized, applying a safety factor to critical masses. In such situations, the criticality safety margin is readily apparent. However, more complex systems may use the calculated value of neutron multiplication to assess the criticality safety of the system under investigation. A problem arises because there is no exact consistency between k-effective and the physical margin of subcriticality, in terms of parameters such as mass. In the UK, commonly accepted safety criteria are applied to limit the k-effective of the system being assessed. These margins of subcriticality have no definitive justification to support the values chosen and might be considered rather arbitrary in nature. This paper aims to answer this question of suitability by investigating the relation between k-effective and the physical critical parameters for a wide range of systems. It concludes that the safety criteria currently applied in the UK are valid, but some difference exists between safety factors applied to the mass of fissile material present and the corresponding value of k-effective. (author)

  6. EPR meeting international safety standards with margin

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Brauns, J.; Blombach, J.

    2005-01-01

    The EPR provides technology that offers a solution to the market's need for safe, economic power. The EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product capable of international licensing. As such, the EPR is a global product with commercial units currently being built in Finland at the Olkiluoto site, and planned for France, at the Flamanville site. Framatome ANP has recently proposed four EPR units to China in response to a request for vendor bids. In addition, Framatome ANP has announced their intent to pursue design certification with the United States Nuclear Regulatory Commission (NRC). This paper discusses how EPR's innovative safety philosophy ensures compliance with international safety standards for advanced light-water reactors (ALWRs). (author)

  7. EPR meeting international safety standards with margin

    International Nuclear Information System (INIS)

    Mazurkiewicz, S.M.; Brauns, J.; Blombach, J.

    2005-01-01

    The EPR provides technology that offers a solution to the market's need for safe, economic power. The EPR was originally developed through a joint effort between Framatome ANP and Siemens by incorporating the best technological features from the French and German nuclear reactor fleets into a cost-competitive product capable of international licensing. As such, the EPR is a global product with commercial units currently being built in Finland at the Olkiluoto site, and planned for France, at the Flamanville site. Framatome ANP has recently proposed four EPR units to China in response to a request for vendor bids. In addition, Framatome ANP has announced their intent to pursue design certification in with the United States Nuclear Regulatory Commission (NRC). This paper discusses how EPR's innovative safety philosophy ensures compliance with international safety standards for advanced light-water reactors (ALWRs). (author)

  8. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i's incompletely developed in some areas. Details of this analysis are provided in this report

  9. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    International Nuclear Information System (INIS)

    Westfall, R.M.; McKnight, R.D.

    2005-01-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG).The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations

  10. Nuclear Data Activities in Support of the DOE Nuclear Criticality Safety Program

    Science.gov (United States)

    Westfall, R. M.; McKnight, R. D.

    2005-05-01

    The DOE Nuclear Criticality Safety Program (NCSP) provides the technical infrastructure maintenance for those technologies applied in the evaluation and performance of safe fissionable-material operations in the DOE complex. These technologies include an Analytical Methods element for neutron transport as well as the development of sensitivity/uncertainty methods, the performance of Critical Experiments, evaluation and qualification of experiments as Benchmarks, and a comprehensive Nuclear Data program coordinated by the NCSP Nuclear Data Advisory Group (NDAG). The NDAG gathers and evaluates differential and integral nuclear data, identifies deficiencies, and recommends priorities on meeting DOE criticality safety needs to the NCSP Criticality Safety Support Group (CSSG). Then the NDAG identifies the required resources and unique capabilities for meeting these needs, not only for performing measurements but also for data evaluation with nuclear model codes as well as for data processing for criticality safety applications. The NDAG coordinates effort with the leadership of the National Nuclear Data Center, the Cross Section Evaluation Working Group (CSEWG), and the Working Party on International Evaluation Cooperation (WPEC) of the OECD/NEA Nuclear Science Committee. The overall objective is to expedite the issuance of new data and methods to the DOE criticality safety user. This paper describes these activities in detail, with examples based upon special studies being performed in support of criticality safety for a variety of DOE operations.

  11. USNRC licensing process as related to nuclear criticality safety

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1987-01-01

    The U.S. Code of Federal Regulations establishes procedures and criteria for the issuance of licenses to receive title to, own, acquire, deliver, receive, possess, use, and initially transfer special nuclear material; and establishes and provides for the terms and conditions upon which the Nuclear Regulatory Commission (NRC) will issue such licenses. Section 70.22 of the regulations, ''Contents of Applications'', requires that applications for licenses contain proposed procedures to avoid accidental conditions of criticality. These procedures are elements of a nuclear criticality safety program for operations with fissionable materials at fuels and materials facilities (i.e., fuel cycle facilities other than nuclear reactors) in which there exists a potential for criticality accidents. To assist the applicant in providing specific information needed for a nuclear criticality safety program in a license application, the NRC has issued regulatory guides. The NRC requirements for nuclear criticality safety include organizational, administrative, and technical requirements. For purely technical matters on nuclear criticality safety these guides endorse national standards. Others provide guidance on the standard format and content of license applications, guidance on evaluating radiological consequences of criticality accidents, or guidance for dealing with other radiation safety issues. (author)

  12. CRITICALITY SAFETY LIMIT EVALUATION PROGRAM (CSLEP's) AND QUICK SCREENS: ANSWERS TO EXPEDITED PROCESSING LEGACY CRITICALITY SAFETY LIMITS AND EVALUATIONS

    International Nuclear Information System (INIS)

    TOFFER, H.

    2006-01-01

    Since the end of the cold war, the need for operating weapons production facilities has faded. Criticality Safety Limits and controls supporting production modes in these facilities became outdated and furthermore lacked the procedure based rigor dictated by present day requirements. In the past, in many instances, the formalism of present day criticality safety evaluations was not applied. Some of the safety evaluations amounted to a paragraph in a notebook with no safety basis and questionable arguments with respect to double contingency criteria. When material stabilization, clean out, and deactivation activities commenced, large numbers of these older criticality safety evaluations were uncovered with limits and controls backed up by tenuous arguments. A dilemma developed: on the one hand, cleanup activities were placed on very aggressive schedules; on the other hand, a highly structured approach to limits development was required and applied to the cleanup operations. Some creative approaches were needed to cope with the limits development process

  13. Credit to fuel burnup for criticality safety evaluations in Spain

    International Nuclear Information System (INIS)

    Conde, J.M.; Recio, M.

    1998-01-01

    The status of development of burnup credit for criticality safety analyses in Spain is described in this paper. Ongoing activities in the country in this field, both national and international, are resumed. Burnup credit is currently being applied to wet storage of PWR fuel, and credit to integral burnable absorbers is given for BWR fuel storage. It is envisaged to apply burnup credit techniques to the new generation of transport casks now in the design phase. The analysis methodologies submitted for the analyses of PWR and BWR fuel wet storage are outlined. Analysis characteristics specific to burnup credit are described, namely the need to increase the experimental data to allow for a more detailed validation of the depletion codes, and of the criticality codes when applied to spent fuel. Reactivity effects that arise in burnup credit analysis, such as axial and radial effects, fuel irradiation history and others are revised. The methods used to address them in the approved methodologies are outlined. Finally, the regulatory approach used to accept these new analytical methodologies is described. (author)

  14. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda

  15. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  16. An Approach to Modeling Software Safety in Safety-Critical Systems

    OpenAIRE

    Ben S. Medikonda; Seetha R. Panchumarthy

    2009-01-01

    Software for safety-critical systems has to deal with the hazards identified by safety analysis in order to make the system safe, risk-free and fail-safe. Software safety is a composite of many factors. Problem statement: Existing software quality models like McCalls and Boehms and ISO 9126 were inadequate in addressing the software safety issues of real time safety-critical embedded systems. At present there does not exist any standard framework that comprehensively addresses the Factors, Cr...

  17. Research on neutron source multiplication method in nuclear critical safety

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Hu Dingsheng

    2005-01-01

    The paper concerns in the neutron source multiplication method research in nuclear critical safety. Based on the neutron diffusion equation with external neutron source the effective sub-critical multiplication factor k s is deduced, and k s is different to the effective neutron multiplication factor k eff in the case of sub-critical system with external neutron source. The verification experiment on the sub-critical system indicates that the parameter measured with neutron source multiplication method is k s , and k s is related to the external neutron source position in sub-critical system and external neutron source spectrum. The relation between k s and k eff and the effect of them on nuclear critical safety is discussed. (author)

  18. Canadian Nuclear Safety Commission's intern program

    International Nuclear Information System (INIS)

    Gilmour, P.E.

    2002-01-01

    The Intern Program was introduced at the Canadian Nuclear Safety Commission, Canada's Nuclear Regulator in response to the current competitive market for engineers and scientists and the CNSC's aging workforce. It is an entry level staff development program designed to recruit and train new engineering and science graduates to eventually regulate Canada's nuclear industry. The program provides meaningful work experience and exposes the interns to the general work activities of the Commission. It also provides them with a broad awareness of the regulatory issues in which the CNSC is involved. The intern program is a two-year program focusing on the operational areas and, more specifically, on the generalist functions of project officers. (author)

  19. Importance of international cooperation in food safety.

    Science.gov (United States)

    Canet, C

    1993-01-01

    All countries need to ensure that national food supplies are safe, of good quality and available in adequate amounts at affordable prices to ensure good nutrition and health for all population groups. The enforcement of food standards by efficient national food control authorities in domestic markets and at the points of import and export has been increasingly recognized as a means of raising the value of exported goods by reducing the number of rejected or reconditioned consignments, and of ensuring the safety of the food and its acceptability by the final consumer. However, those national efforts have sometimes induced some non-tariff barriers to food trade and distribution. In addition, new developments in the technologies of food production, processing and marketing pose a new challenge to ensure safety of food. The strengthening of national food control infrastructures in particular in developing countries including the strengthening of staff capabilities, the need for harmonization of food at international levels, the need for collection and exchange of data on food control and food contamination issues are essential elements to ensure food safety in the world. International cooperation has an important role to play in achieving these essential elements.

  20. Safety critical systems handbook a straightforward guide to functional safety : IEC 61508 (2010 edition) and related standards

    CERN Document Server

    Smith, David J

    2010-01-01

    Electrical, electronic and programmable electronic systems increasingly carry out safety functions to guard workers and the public against injury or death and the environment against pollution. The international functional safety standard IEC 61508 was revised in 2010, and this is the first comprehensive guide available to the revised standard. As functional safety is applicable to many industries, this book will have a wide readership beyond the chemical and process sector, including oil and gas, power generation, nuclear, aircraft, and automotive industries, plus project, instrumentation, design, and control engineers. * The only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards* Helps readers understand the process required to apply safety critical systems standards* Real-world approach helps users to interpret the standard, with case studies and best practice design examples...

  1. Criticality Safety Basics for INL FMHs and CSOs

    Energy Technology Data Exchange (ETDEWEB)

    V. L. Putman

    2012-04-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications

  2. Criticality Safety Basics for INL FMHs and CSOs

    International Nuclear Information System (INIS)

    Putman, V.L.

    2012-01-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information

  3. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    Science.gov (United States)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  4. Integration of Several Elements of the DOE Nuclear Criticality Safety Program

    International Nuclear Information System (INIS)

    Valentine, T.E.

    2001-01-01

    evaluated and benchmark models were developed and submitted to the International Criticality Safety Benchmark Evaluation Project for review and publication in the ''International Handbook of Evaluated Criticality Safety Benchmark Experiments''. Sensitivity analyses were performed as a part of the benchmark evaluation to determine the sensitivity of the critical experiments to the various constituents of the assembly. The benchmark models were then used to determine the computed k eff for various cross section data sets. The variation in the computed k eff value for the new evaluated data set was then used as an indicator to adjust the negative energy capture widths for the capture cross section data. Furthermore, the changes in k eff were used as an indicator to the inadequacy of previous measured data in the unresolved resonance region. The result of the efforts of the NCSP provided the most precise set of nuclear data for silicon. The resulting ORNL evaluation produced the most consistent evaluation for silicon. This result could only be achieved through integration of many components of the NCSP

  5. Test process for the safety-critical embedded software

    International Nuclear Information System (INIS)

    Sung, Ahyoung; Choi, Byoungju; Lee, Jangsoo

    2004-01-01

    Digitalization of nuclear Instrumentation and Control (I and C) system requires high reliability of not only hardware but also software. Verification and Validation (V and V) process is recommended for software reliability. But a more quantitative method is necessary such as software testing. Most of software in the nuclear I and C system is safety-critical embedded software. Safety-critical embedded software is specified, verified and developed according to V and V process. Hence two types of software testing techniques are necessary for the developed code. First, code-based software testing is required to examine the developed code. Second, after code-based software testing, software testing affected by hardware is required to reveal the interaction fault that may cause unexpected results. We call the testing of hardware's influence on software, an interaction testing. In case of safety-critical embedded software, it is also important to consider the interaction between hardware and software. Even if no faults are detected when testing either hardware or software alone, combining these components may lead to unexpected results due to the interaction. In this paper, we propose a software test process that embraces test levels, test techniques, required test tasks and documents for safety-critical embedded software. We apply the proposed test process to safety-critical embedded software as a case study, and show the effectiveness of it. (author)

  6. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems

    Science.gov (United States)

    Lutz, Robyn R.

    1993-01-01

    This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.

  7. Safety impacts of bicycle infrastructure: A critical review.

    Science.gov (United States)

    DiGioia, Jonathan; Watkins, Kari Edison; Xu, Yanzhi; Rodgers, Michael; Guensler, Randall

    2017-06-01

    This paper takes a critical look at the present state of bicycle infrastructure treatment safety research, highlighting data needs. Safety literature relating to 22 bicycle treatments is examined, including findings, study methodologies, and data sources used in the studies. Some preliminary conclusions related to research efficacy are drawn from the available data and findings in the research. While the current body of bicycle safety literature points toward some defensible conclusions regarding the safety and effectiveness of certain bicycle treatments, such as bike lanes and removal of on-street parking, the vast majority treatments are still in need of rigorous research. Fundamental questions arise regarding appropriate exposure measures, crash measures, and crash data sources. This research will aid transportation departments with regard to decisions about bicycle infrastructure and guide future research efforts toward understanding safety impacts of bicycle infrastructure. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  8. Nuclear Criticality Safety Organization qualification program. Revision 4

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSO technical and managerial qualification as required by the Y-12 Training Implementation Matrix (TIM). It is implemented through a combination of LMES plant-wide training courses and professional nuclear criticality safety training provided within the organization. This Qualification Program is applicable to technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who perform the NCS tasks or serve NCS-related positions as defined in sections 5 and 6 of this program

  9. Critical safety function guidelines for experimental fusion facilities

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1989-01-01

    As fusion experiments proceed toward deuterium-tritium operation, more attention is being given to public safety. This paper presents the four classes of functions that fusion experiments must provide to assure safe, stable shutdown and retention of radionuclides. These functions are referred to as critical safety functions (CSFs). Selecting CSFs is an important step in probabilistic risk assessment (PRA). An example of CSF selection and usage for the Compact Ignition Tokamak (CIT) is also presented. 10 refs., 6 figs

  10. Criticality safety implementation, operations, and training for TMI-2 defueling

    International Nuclear Information System (INIS)

    Knief, R.A.; Fergus, I.E.

    1986-01-01

    The nuclear criticality safety of the accident-damaged Three Mile Island Unit 2 (TMI-2) reactor has depended primarily on the use of soluble neutron poison. Detailed calculations have been performed to establish the boric acid concentrations needed for subcriticality of postulated core configurations related to recovery and defueling activities. Based on the minimum acceptable boron concentration, operating requirements were developed, safety reviews conducted, strategies and procedures implemented, and training conducted

  11. Criticality safety for TMI-2 canister storage at INEL

    International Nuclear Information System (INIS)

    Jones, R.R.; Briggs, J.B.; Ayers, A.L. Jr.

    1986-01-01

    Canisters containing Three Mile Island Unit 2 (TMI-2) core debris will be researched, stored, and prepared for final disposition at the Idaho National Engineering Laboratory (INEL). The canisters will be placed into storage modules and assembled into a storage rack, which will be located in the Test Area North (TAN) storage pool. Criticality safety calculations were made (a) to ensure that the storage rack is safe for both normal and accident conditions and (b) to determine the effects of degradation of construction materials (Boraflex and polyethylene) on criticality safety

  12. Nuclear Criticality Safety Organization training implementation. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-05-19

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document provides a listing of the roles and responsibilities of NCSO personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This Training Implementation document is applicable to all technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who are in a qualification program.

  13. Nuclear Criticality Safety Organization training implementation. Revision 4

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document provides a listing of the roles and responsibilities of NCSO personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This Training Implementation document is applicable to all technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who are in a qualification program

  14. Merger of Nuclear Data with Criticality Safety Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, H.; Larson, N.M.; Leal, L.C.

    1999-09-20

    In this paper we report on current activities related to the merger of differential/integral data (especially in the resolved-resonance region) with nuclear criticality safety computations. Techniques are outlined for closer coupling of many processes � measurement, data reduction, differential-data analysis, integral-data analysis, generating multigroup cross sections, data-testing, criticality computations � which in the past have been treated independently.

  15. Merger of Nuclear Data with Criticality Safety Calculations

    International Nuclear Information System (INIS)

    Derrien, H.; Larson, N.M.; Leal, L.C.

    1999-01-01

    In this paper we report on current activities related to the merger of differential/integral data (especially in the resolved-resonance region) with nuclear criticality safety computations. Techniques are outlined for closer coupling of many processes measurement, data reduction, differential-data analysis, integral-data analysis, generating multigroup cross sections, data-testing, criticality computations which in the past have been treated independently

  16. Safety analysis of the Los Alamos critical experiments facility

    International Nuclear Information System (INIS)

    Paxton, H.C.

    1975-10-01

    The safety of Pajarito Site critical assembly operations depends upon protection built into the facility, upon knowledgeable personnel, and upon good practice as defined by operating procedures and experimental plans. Distance, supplemented by shielding in some cases, would protect personnel against an extreme accident generating 10 19 fissions. During the facility's 28-year history, the direct cost of criticality accidents has translated to a risk of less than $200 per year

  17. A Critical Evaluation of Academic Internal Audit

    Science.gov (United States)

    Blackmore, Jacqueline Ann

    2004-01-01

    This account of internal audit is set within the context of higher education in the UK and a fictitiously named Riverbank University. The study evaluates the recent introduction of "Internal Academic Audit" to the University and compares the process with that of the internationally recognized ISO 19011 Guidelines for Auditing Quality…

  18. 3rd International Workshop on Critical Systems Development with UML

    OpenAIRE

    Jan Jürjens; Eduardo B. Fernandez; Robert France; Bernhard Rumpe

    2017-01-01

    Topics of the Workshop include: --- Applications of UML to real-time systems security-critical systems dependable / safety-critical systems performance-critical systems embedded systems hybrid systems reactive systems --- Extensions of UML (UML-RT, UMLsec, Automotive UML, Embedded UML, ...) and new developments (UML 2.0, MDA) --- Modeling, synthesis, model transformation, code generation, testing, validation, and verification of critical systems using UML --- Aspect-oriented or Component-base...

  19. CERN safety expert receives international award

    CERN Multimedia

    2005-01-01

    On 18 December 2004, the President of the Swiss Electro-technical Committee, Martin Reichle (left), presented the award to Helmut Schönbacher. Helmut Schönbacher, of the Safety Commission at CERN, has received, the "1906 Award" of the International Electrotechnical Commission (IEC) for his standardisation work on the influence of ionizing radiation on insulating materials. From 1986 until 2004, Schönbacher was leader of a working group on radiation composed of internationally recognised experts. It edited standards of the IEC 60544 series on the determination of the effects of ionizing radiation on electrical insulating materials. The working group also edited three IEC Technical Reports on the determination of long-term radiation ageing in polymers. This standardisation work and long-term experience from CERN on the radiation ageing of materials also contributed to research coordination programmes of the International Atomic Energy Agency (IAEA). From 1968 until 1988, Schönbacher was a member of the Rad...

  20. Safety prediction for basic components of safety-critical software based on static testing

    International Nuclear Information System (INIS)

    Son, H.S.; Seong, P.H.

    2000-01-01

    The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)

  1. Safety prediction for basic components of safety critical software based on static testing

    International Nuclear Information System (INIS)

    Son, H.S.; Seong, P.H.

    2001-01-01

    The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, both of which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)

  2. Fast Reactor Spent Fuel Processing: Experience and Criticality Safety

    International Nuclear Information System (INIS)

    Chad Pope

    2007-01-01

    This paper discusses operational and criticality safety experience associated with the Idaho National Laboratory Fuel Conditioning Facility which uses a pyrometallurgical process to treat spent fast reactor metallic fuel. The process is conducted in an inert atmosphere hot cell. The process starts with chopping metallic fuel elements into a basket. The basket is lowered into molten salt (LiCl-KCl) along with a steel mandrel. Active metal fission products, transuranic metals and sodium metal in the spent fuel undergo chemical oxidation and form chlorides. Voltage is applied between the basket, which serves as an anode, and the mandrel, which serves as a cathode, causing metallic uranium in the spent fuel to undergo electro-chemical oxidation thereby forming uranium chloride. Simultaneously at the cathode, uranium chloride undergoes electro-chemical reduction and deposits uranium metal onto the mandrel. The uranium metal and accompanying entrained salt are placed in a distillation furnace where the uranium melts forming an ingot and the entrained salt boils and subsequently condenses in a separate crucible. The uranium ingots are placed in long term storage. During the ten year operating history, over one hundred criticality safety evaluations were prepared. All criticality safety related limits and controls for the entire process are contained in a single document which required over thirty revisions to accommodate the process changes. Operational implementation of the limits and controls includes use of a near real-time computerized tracking system. The tracking system uses an Oracle database coupled with numerous software applications. The computerized tracking system includes direct fuel handler interaction with every movement of material. Improvements to this system during the ten year history include introduction of web based operator interaction, tracking of moderator materials and the development of a plethora database queries to assist in day to day

  3. Nuclear criticality safety training: guidelines for DOE contractors

    International Nuclear Information System (INIS)

    Crowell, M.R.

    1983-09-01

    The DOE Order 5480.1A, Chapter V, Safety of Nuclear Facilities, establishes safety procedures and requirements for DOE nuclear facilities. This guide has been developed as an aid to implementing the Chapter V requirements pertaining to nuclear criticality safety training. The guide outlines relevant conceptual knowledge and demonstrated good practices in job performance. It addresses training program operations requirements in the areas of employee evaluations, employee training records, training program evaluations, and training program records. It also suggests appropriate feedback mechanisms for criticality safety training program improvement. The emphasis is on academic rather than hands-on training. This allows a decoupling of these guidelines from specific facilities. It would be unrealistic to dictate a universal program of training because of the wide variation of operations, levels of experience, and work environments among DOE contractors and facilities. Hence, these guidelines do not address the actual implementation of a nuclear criticality safety training program, but rather they outline the general characteristics that should be included

  4. Chip-Multiprocessor Hardware Locks for Safety-Critical Java

    DEFF Research Database (Denmark)

    Strøm, Torur Biskopstø; Puffitsch, Wolfgang; Schoeberl, Martin

    2013-01-01

    and may void a task set's schedulability. In this paper we present a hardware locking mechanism to reduce the synchronization overhead. The solution is implemented for the chip-multiprocessor version of the Java Optimized Processor in the context of safety-critical Java. The implementation is compared...

  5. Recommendations for preparing the criticality safety evaluation of transportation packages

    International Nuclear Information System (INIS)

    Dyer, H.R.; Parks, C.V.

    1997-04-01

    This report provides recommendations on preparing the criticality safety section of an application for approval of a transportation package containing fissile material. The analytical approach to the evaluation is emphasized rather than the performance standards that the package must meet. Where performance standards are addressed, this report incorporates the requirements of 10 CFR Part 71. 12 refs., 6 figs., 8 tabs

  6. Criticality safety enhancements for SCALE 6.2 and beyond

    International Nuclear Information System (INIS)

    Rearden, Bradley T.; Bekar, Kursat B.; Celik, Cihangir; Clarno, Kevin T.; Dunn, Michael E.; Hart, Shane W.; Ibrahim, Ahmad M.; Johnson, Seth R.; Langley, Brandon R.; Lefebvre, Jordan P.; Lefebvre, Robert A.; Marshall, William J.; Mertyurek, Ugur; Mueller, Don; Peplow, Douglas E.; Perfetti, Christopher M.; Petrie Jr, Lester M.; Thompson, Adam B.; Wiarda, Dorothea; Wieselquist, William A.; Williams, Mark L.

    2015-01-01

    SCALE is a widely used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. Since 1980, regulators, industry, and research institutions around the world have relied on SCALE for nuclear safety analysis and design. SCALE 6.2 provides several new capabilities and significant improvements in many existing features for criticality safety analysis. Enhancements are realized for nuclear data; multigroup resonance self-shielding; continuous-energy Monte Carlo analysis for sensitivity/uncertainty analysis, radiation shielding, and depletion; and graphical user interfaces. An overview of these capabilities is provided in this paper, and additional details are provided in several companion papers.

  7. Criticality safety enhancements for SCALE 6.2 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bekar, Kursat B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Celik, Cihangir [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clarno, Kevin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dunn, Michael E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hart, Shane W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ibrahim, Ahmad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Seth R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Langley, Brandon R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lefebvre, Jordan P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lefebvre, Robert A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mueller, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perfetti, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie Jr, Lester M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thompson, Adam B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wiarda, Dorothea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wieselquist, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Mark L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    SCALE is a widely used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. Since 1980, regulators, industry, and research institutions around the world have relied on SCALE for nuclear safety analysis and design. SCALE 6.2 provides several new capabilities and significant improvements in many existing features for criticality safety analysis. Enhancements are realized for nuclear data; multigroup resonance self-shielding; continuous-energy Monte Carlo analysis for sensitivity/uncertainty analysis, radiation shielding, and depletion; and graphical user interfaces. An overview of these capabilities is provided in this paper, and additional details are provided in several companion papers.

  8. Safety of nuclear installations. An international comparison

    International Nuclear Information System (INIS)

    Renner, Andrea; Diwes, Andreas; Reingardt, Martin

    2010-01-01

    Safeguarding of nuclear power plants against disruptive actions or other external hazards is part of the plant design and presumption of an operation license. The general principle is defense in depth involving different security zones with separate barriers. The safeguards for nuclear installations are organized in three areas of responsibility: governmental measures (police, military), technical (detectors, scanners, illuminations, camera tracking, concrete barriers) and personnel measures (access control, security personnel, alarm) of the operating company. International responsibilities results from the treaty on the non-proliferation of nuclear weapons and several IAEA documents. The authors discuss the national regulations in Germany, Switzerland, United Kingdom and USA. Older NPPs that are not in compliance with actual safety standards will be a topic of increasing importance.

  9. The SCALE criticality safety analysis sequences: Status and future directions

    International Nuclear Information System (INIS)

    Parks, C.V.

    1993-01-01

    The Standardized Computer Analyses for Licensing Evaluation (SCALE) code system. Was originally conceived and developed in the late 1970s for the US Nuclear Regulatory Commission. The goal was to provide easy-to-use, yet accurate, analysis capabilities for use in evaluating the criticality safety, shielding, and heat transfer aspects of transportation packages for radioactive material. The Criticality Safety Analysis Sequences (CSAS) for SCALE were developed to ''automate'' problem-dependent cross-section and material processing prior to execution of the wellestablished XSDRNPM or KENO codes for calculation of k eff . The criticality analysis sequences provided in SCALE-4 are summarized. The SCALE system continues to be maintained and enhanced by staff of the Computing Applications Division at Oak Ridge National Laboratory (ORNL). The purpose of this paper is to discuss recent work to improve system portability and user interfaces and to provide information on ongoing work to enhance the analysis capabilities

  10. Use of PCs and workstations for criticality safety analysis

    International Nuclear Information System (INIS)

    Watmough, M.H.; Evans, A.M.; Smith, N.R.

    1993-01-01

    Making effective use of the best available computer technology has long been a feature of U.K. criticality safety analyses. In recent years, the industry's drive for improvements in design safety assessment practice has been supplemented by increasing commercial awareness, bringing further emphasis to the consideration of cost-effectiveness in criticality computation. Consequently, there has been an evolution of computing facilities seen by U.K. criticality assessors from the mainframe terminals of the 1970s through minicomputers in the 1980s to graphical workstations and, most recently, personal computers (PCs) in the 1990s. These moves have been initiated by the availability of hardware capable of providing adequate performance and facilitated by cooperation and subsequently formal collaboration between British Nuclear Fuels Limited (BNFL) and the Atomic Energy Authority (AEA) in the field of software development

  11. Lecture Notes on Criticality Safety Validation Using MCNP & Whisper

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    Training classes for nuclear criticality safety, MCNP documentation. The need for, and problems surrounding, validation of computer codes and data area considered first. Then some background for MCNP & Whisper is given--best practices for Monte Carlo criticality calculations, neutron spectra, S(α,β) thermal neutron scattering data, nuclear data sensitivities, covariance data, and correlation coefficients. Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the Monte Carlo radiation transport package MCNP. Whisper's methodology (benchmark selection – Ck's, weights; extreme value theory – bias, bias uncertainty; MOS for nuclear data uncertainty – GLLS) and usage are discussed.

  12. SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing

    International Nuclear Information System (INIS)

    Rathbun, R.

    1994-01-01

    Review of NMP-NCS-94-0087, ''Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,'' was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion

  13. A software engineering process for safety-critical software application

    International Nuclear Information System (INIS)

    Kang, Byung Heon; Kim, Hang Bae; Chang, Hoon Seon; Jeon, Jong Sun

    1995-01-01

    Application of computer software to safety-critical systems in on the increase. To be successful, the software must be designed and constructed to meet the functional and performance requirements of the system. For safety reason, the software must be demonstrated not only to meet these requirements, but also to operate safely as a component within the system. For longer-term cost consideration, the software must be designed and structured to ease future maintenance and modifications. This paper presents a software engineering process for the production of safety-critical software for a nuclear power plant. The presentation is expository in nature of a viable high quality safety-critical software development. It is based on the ideas of a rational design process and on the experience of the adaptation of such process in the production of the safety-critical software for the shutdown system number two of Wolsung 2, 3 and 4 nuclear power generation plants. This process is significantly different from a conventional process in terms of rigorous software development phases and software design techniques, The process covers documentation, design, verification and testing using mathematically precise notations and highly reviewable tabular format to specify software requirements and software requirements and software requirements and code against software design using static analysis. The software engineering process described in this paper applies the principle of information-hiding decomposition in software design using a modular design technique so that when a change is required or an error is detected, the affected scope can be readily and confidently located. it also facilitates a sense of high degree of confidence in the 'correctness' of the software production, and provides a relatively simple and straightforward code implementation effort. 1 figs., 10 refs. (Author)

  14. Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments

    International Nuclear Information System (INIS)

    Pevey, Ronald E.

    2005-01-01

    Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL

  15. Using fuzzy self-organising maps for safety critical systems

    International Nuclear Information System (INIS)

    Kurd, Zeshan; Kelly, Tim P.

    2007-01-01

    This paper defines a type of constrained artificial neural network (ANN) that enables analytical certification arguments whilst retaining valuable performance characteristics. Previous work has defined a safety lifecycle for ANNs without detailing a specific neural model. Building on this previous work, the underpinning of the devised model is based upon an existing neuro-fuzzy system called the fuzzy self-organising map (FSOM). The FSOM is type of 'hybrid' ANN which allows behaviour to be described qualitatively and quantitatively using meaningful expressions. Safety of the FSOM is argued through adherence to safety requirements-derived from hazard analysis and expressed using safety constraints. The approach enables the construction of compelling (product-based) arguments for mitigation of potential failure modes associated with the FSOM. The constrained FSOM has been termed a 'safety critical artificial neural network' (SCANN). The SCANN can be used for non-linear function approximation and allows certified learning and generalisation for high criticality roles. A discussion of benefits for real-world applications is also presented

  16. Private Memory Allocation Analysis for Safety-Critical Java

    DEFF Research Database (Denmark)

    Dalsgaard, Andreas E.; Hansen, René Rydhof; Schoeberl, Martin

    2012-01-01

    allowed from objects allocated in scopes with a shorter lifetime to objects allocated in scopes with a longer lifetime. To ensure memory safety, programmers are required to either manually annotate the application with complex annotations, rely on a runtime test of each reference assignment, or statically......Safety-critical Java (SCJ) avoids garbage collection and uses a scope based memory model. This memory model is based on a restricted version of RTSJ [2] style scopes. The scopes form a clear hierarchy with different lifetimes. Therefore, references between objects in different scopes are only...

  17. Criticality safety assessment of WWER-1000 spent fuel cask

    International Nuclear Information System (INIS)

    Apostolov, T.; Manolova, M.; Prodanova, R.

    2001-01-01

    A methodology that allows taking credit for burnup in the criticality safety analysis of WWER spent fuel casks is presented. It is based on the two world well known and used code systems:NESSEL-NUKO for depletion and SCALE-4.4 for criticality calculations. The results of criticality calculations of WWER-1000 spent fuel storage and transportation cask, applying burnup credit is shown. The depletion calculations have been carried out for three types of WWER-1000 fuel assemblies (with enrichment of 3.0%, 3.3% and 3.3% profiled) by modelling the real operational history of the first three fuel cycles at unit 6, Kozloduy NPP. The criticality calculational model has been developed on the basis of real fuel cask, designed by the Izorskie zavody. The results obtained show that the criticality safety criterion K eff < 0.95 is satisfied for both fresh and spent fuel. Besides, the implementation of burnup credit accounts for the reduced reactivity of spent fuel and allows evaluating the conservatism of the fresh fuel assumption. (author)

  18. National Transportation Safety Board : weak internal control impaired financial accountability

    Science.gov (United States)

    2001-09-28

    The U. S. General Accounting Office (GAO) was asked to review the National Transportation Safety Board's (NTSB) internal controls over selected types of fiscal year expenditures. They were asked to determine whether internal control weaknesses were a...

  19. International English Language Testing: A Critical Response

    Science.gov (United States)

    Hall, Graham

    2010-01-01

    Uysal's article provides a research agenda for IELTS and lists numerous issues concerning the test's reliability and validity. She asks useful questions, but her analysis ignores the uncertainties inherent in all language test development and the wider social and political context of international high-stakes language testing. In this response, I…

  20. Critical Issues in International Group Counseling

    Science.gov (United States)

    Bemak, Fred; Chung, Rita Chi-Ying

    2015-01-01

    Three-quarters of the world come from collectivistic group-oriented cultures. As the world becomes more globalized it is inevitable that group counseling will be a major choice of healing and psychological intervention internationally. However, a review of scholarly articles from "The Journal for Specialists in Group Work" and…

  1. Software quality assurance plans for safety-critical software

    International Nuclear Information System (INIS)

    Liddle, P.

    2006-01-01

    Application software is defined as safety-critical if a fault in the software could prevent the system components from performing their nuclear-safety functions. Therefore, for nuclear-safety systems, the AREVA TELEPERM R XS (TXS) system is classified 1E, as defined in the Inst. of Electrical and Electronics Engineers (IEEE) Std 603-1998. The application software is classified as Software Integrity Level (SIL)-4, as defined in IEEE Std 7-4.3.2-2003. The AREVA NP Inc. Software Program Manual (SPM) describes the measures taken to ensure that the TELEPERM XS application software attains a level of quality commensurate with its importance to safety. The manual also describes how TELEPERM XS correctly performs the required safety functions and conforms to established technical and documentation requirements, conventions, rules, and standards. The program manual covers the requirements definition, detailed design, integration, and test phases for the TELEPERM XS application software, and supporting software created by AREVA NP Inc. The SPM is required for all safety-related TELEPERM XS system applications. The program comprises several basic plans and practices: 1. A Software Quality-Assurance Plan (SQAP) that describes the processes necessary to ensure that the software attains a level of quality commensurate with its importance to safety function. 2. A Software Safety Plan (SSP) that identifies the process to reasonably ensure that safety-critical software performs as intended during all abnormal conditions and events, and does not introduce any new hazards that could jeopardize the health and safety of the public. 3. A Software Verification and Validation (V and V) Plan that describes the method of ensuring the software is in accordance with the requirements. 4. A Software Configuration Management Plan (SCMP) that describes the method of maintaining the software in an identifiable state at all times. 5. A Software Operations and Maintenance Plan (SO and MP) that

  2. Nuclear criticality safety program development using necessary and sufficient standards

    Energy Technology Data Exchange (ETDEWEB)

    Croucher, D.W.; Stachowiak, R.V. [Kaiser-Hill Co., LLC, Golden, CO (United States); Wilson, R.E. [Safe Sites of Colorado, Golden, CO (United States)

    1996-12-31

    The U.S. Department of Energy`s (DOE`s) Necessary and Sufficient Standards Closure Process has been used to develop a new criticality, safety program manual for the Rocky Flats Environmental Technology Site (RFETS). Standards define and communicate the expectations for performance of work. The purpose of the necessary and sufficient standards closure process is to apply standards determined to be necessary and sufficient for protecting the workers, the public, and the environment. This ensures that the applied standards add value to the performance of the activity; work effectiveness is increased. The purpose of this paper is to briefly describe the process and the results for the selection of national criticality safety standards for use at the Rocky Flats facilities.

  3. Safety culture and subcontractor network governance in a complex safety critical project

    International Nuclear Information System (INIS)

    Oedewald, Pia; Gotcheva, Nadezhda

    2015-01-01

    In safety critical industries many activities are currently carried out by subcontractor networks. Nevertheless, there are few studies where the core dimensions of resilience would have been studied in safety critical network activities. This paper claims that engineering resilience into a system is largely about steering the development of culture of the system towards better ability to anticipate, monitor, respond and learn. Thus, safety culture literature has relevance in resilience engineering field. This paper analyzes practical and theoretical challenges in applying the concept of safety culture in a complex, dynamic network of subcontractors involved in the construction of a new nuclear power plant in Finland, Olkiluoto 3. The concept of safety culture is in focus since it is widely used in nuclear industry and bridges the scientific and practical interests. This paper approaches subcontractor networks as complex systems. However, the management model of the Olkiluoto 3 project is to a large degree a traditional top-down hierarchy, which creates a mismatch between the management approach and the characteristics of the system to be managed. New insights were drawn from network governance studies. - Highlights: • We studied a relevant topical subject safety culture in nuclear new build project. • We integrated safety science challenges and network governance studies. • We produced practicable insights in managing safety of subcontractor networks

  4. Criticality safety and shielding analysis of WWER-440 fuel configurations

    International Nuclear Information System (INIS)

    Christoskov, I.

    2008-01-01

    An overview is made of some studies performed on the criticality safety and radiation shielding analysis of irradiated WWER-440 fuel storage and handling configurations. The analytical tools are based on the SCALE 4.4a code system, in combination with the TORT discrete ordinates transport code and the BUGLE-96 cross-sections library. The accuracy of some important results is assessed through comparison with independent evaluations and with measurement data. (author)

  5. Multiprocessor Priority Ceiling Emulation for Safety-Critical Java

    DEFF Research Database (Denmark)

    Strøm, Torur Biskopstø; Schoeberl, Martin

    2015-01-01

    Priority ceiling emulation has preferable properties on uniprocessor systems, such as avoiding priority inversion and being deadlock free. This has made it a popular locking protocol. According to the safety-critical Java specication, priority ceiling emulation is a requirement for implementations....... However, implementing the protocol for multiprocessor systemsis more complex so implementations might perform worse than non-preemptive implementations. In this paper we compare two multiprocessor lock implementations with hardware support for the Java optimized processor: non-preemptive locking...

  6. Hardware Support for Safety-critical Java Scope Checks

    DEFF Research Database (Denmark)

    Rios Rivas, Juan Ricardo; Schoeberl, Martin

    2012-01-01

    Memory management in Safety-Critical Java (SCJ) is based on time bounded, non garbage collected scoped memory regions used to store temporary objects. Scoped memory regions may have different life times during the execution of a program and hence, to avoid leaving dangling pointers, it is necessary...... in terms of execution time for applications where cross-scope references are frequent. Our proposal was implemented and tested on the Java Optimized Processor (JOP)....

  7. Safety-Critical Software: Status Report and Annotated Bibliography

    Science.gov (United States)

    1993-06-01

    software in place of hardware in safety-critical sys- tems are the Therac 25 (a therapeutic linear accelerator) and nuclear reactor shutdown sys- tems...Leveson and Turner [141], is the Therac 25 radiation treatment machine. A predecessor to the Therac 25, the Therac 20, had a number of hardware Interlocks...to stop an undesirable behavior. Much of the software in the Therac 25 was similar to that of the Therac 20 and the software in both cases contained

  8. A Test Suite for Safety-Critical Java using JML

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Søndergaard, Hans

    2013-01-01

    Development techniques are presented for a test suite for the draft specification of the Java profile for Safety-Critical Systems. Distinguishing features are: specification of conformance constraints in the Java Modeling Language, encoding of infrastructure concepts without implementation bias......, and corresponding specifications of implicitly stated behavioral and real-time properties. The test programs are auto-generated from the specification, while concrete values for test parameters are selected manually. The suite is open source and publicly accessible....

  9. Plenary keynote: Monitoring Safety Critical Infrastructure with Mobile Robots

    OpenAIRE

    Sattar, TP

    2017-01-01

    Reliable Non Destructive Testing (NDT) is vital to the integrity and performance management of capital assets in safety critical industries such as aerospace, transportation, pipelines, petro-chemical processing, and power generation [ ]. The structures that are to be inspected are usually very large and located in remote and hazardous environments. The NDT system has to be deployed by first providing very expensive access, requiring the erection of scaffolding and lengthy preparation before ...

  10. Use of modern software - based instrumentation in safety critical systems

    International Nuclear Information System (INIS)

    Emmett, J.; Smith, B.

    2005-01-01

    Many Nuclear Power Plants are now ageing and in need of various degrees of refurbishment. Installed instrumentation usually uses out of date 'analogue' technology and is often no longer available in the market place. New technology instrumentation is generally un-qualified for nuclear use and specifically the new 'smart' technology contains 'firmware', (effectively 'soup' (Software of Uncertain Pedigree)) which must be assessed in accordance with relevant safety standards before it may be used in a safety application. Particular standards are IEC 61508 [1] and the British Energy (BE) PES (Programmable Electronic Systems) guidelines EPD/GEN/REP/0277/97. [2] This paper outlines a new instrument evaluation system, which has been developed in conjunction with the UK Nuclear Industry. The paper concludes with a discussion about on-line monitoring of Smart instrumentation in safety critical applications. (author)

  11. Agile Methods for Open Source Safety-Critical Software.

    Science.gov (United States)

    Gary, Kevin; Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-08-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the rightamount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion.

  12. Quantitative reliability assessment for safety critical system software

    International Nuclear Information System (INIS)

    Chung, Dae Won; Kwon, Soon Man

    2005-01-01

    An essential issue in the replacement of the old analogue I and C to computer-based digital systems in nuclear power plants is the quantitative software reliability assessment. Software reliability models have been successfully applied to many industrial applications, but have the unfortunate drawback of requiring data from which one can formulate a model. Software which is developed for safety critical applications is frequently unable to produce such data for at least two reasons. First, the software is frequently one-of-a-kind, and second, it rarely fails. Safety critical software is normally expected to pass every unit test producing precious little failure data. The basic premise of the rare events approach is that well-tested software does not fail under normal routine and input signals, which means that failures must be triggered by unusual input data and computer states. The failure data found under the reasonable testing cases and testing time for these conditions should be considered for the quantitative reliability assessment. We will present the quantitative reliability assessment methodology of safety critical software for rare failure cases in this paper

  13. Agile Methods for Open Source Safety-Critical Software

    Science.gov (United States)

    Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-01-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the right amount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion. PMID:21799545

  14. Formalization and Validation of Safety-Critical Requirements

    Directory of Open Access Journals (Sweden)

    Alessandro Cimatti

    2010-03-01

    Full Text Available The validation of requirements is a fundamental step in the development process of safety-critical systems. In safety critical applications such as aerospace, avionics and railways, the use of formal methods is of paramount importance both for requirements and for design validation. Nevertheless, while for the verification of the design, many formal techniques have been conceived and applied, the research on formal methods for requirements validation is not yet mature. The main obstacles are that, on the one hand, the correctness of requirements is not formally defined; on the other hand that the formalization and the validation of the requirements usually demands a strong involvement of domain experts. We report on a methodology and a series of techniques that we developed for the formalization and validation of high-level requirements for safety-critical applications. The main ingredients are a very expressive formal language and automatic satisfiability procedures. The language combines first-order, temporal, and hybrid logic. The satisfiability procedures are based on model checking and satisfiability modulo theory. We applied this technology within an industrial project to the validation of railways requirements.

  15. Proceedings of the workshop on integral experiment covariance data for critical safety validation

    Energy Technology Data Exchange (ETDEWEB)

    Stuke, Maik (ed.)

    2016-04-15

    For some time, attempts to quantify the statistical dependencies of critical experiments and to account for them properly in validation procedures were discussed in the literature by various groups. Besides the development of suitable methods especially the quality and modeling issues of the freely available experimental data are in the focus of current discussions, carried out for example in the Expert Group on Uncertainty Analysis for Criticality Safety Assessment (UACSA) of the OECD-NEA Nuclear Science Committee. The same committee compiles and publishes also the freely available experimental data in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Most of these experiments were performed as series and might share parts of experimental setups leading to correlated results. The quality of the determination of these correlations and the underlying covariance data depend strongly on the quality of the documentation of experiments.

  16. Proceedings of the workshop on integral experiment covariance data for critical safety validation

    International Nuclear Information System (INIS)

    Stuke, Maik

    2016-04-01

    For some time, attempts to quantify the statistical dependencies of critical experiments and to account for them properly in validation procedures were discussed in the literature by various groups. Besides the development of suitable methods especially the quality and modeling issues of the freely available experimental data are in the focus of current discussions, carried out for example in the Expert Group on Uncertainty Analysis for Criticality Safety Assessment (UACSA) of the OECD-NEA Nuclear Science Committee. The same committee compiles and publishes also the freely available experimental data in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Most of these experiments were performed as series and might share parts of experimental setups leading to correlated results. The quality of the determination of these correlations and the underlying covariance data depend strongly on the quality of the documentation of experiments.

  17. International conference on topical issues in nuclear safety. Contributed papers

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of the Conference was to foster the exchange of information on topical issues in nuclear safety, with the aim of consolidating an international consensus on the present status of these issues, priorities for future work, and needs for strengthening international cooperation, including the IAEA recommendations for future activities. This book contains concise contributed papers submitted on issues falling within the thematic scope of the Conference: risk informed decision making, influence of external factors on safety, safety of fuel cycle facilities, safety of research reactors, and safety performance indicators

  18. TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions

  19. Characteristics of safety critical organizations . work psychological perspective

    International Nuclear Information System (INIS)

    Oedewald, P.; Reiman, T.

    2006-02-01

    This book deals with organizations that operate in high hazard industries, such as the nuclear power, aviation, oil and chemical industry organisations. The society puts a great strain on these organisations to rigorously manage the risks inherent in the technology they use and the products they produce. In this book, an organisational psychology view is taken to analyse what are the typical challenges of daily work in these environments. The analysis is based on a literature review about human and organisational factors in safety critical industries, and on the interviews of Finnish safety experts and safety managers from four different companies. In addition to this, personnel interviews conducted in the Finnish nuclear power plants are utilised. The authors come up with eight themes that seem to be common organizational challenges cross the industries. These include e.g. how does the personnel understand the risks and what is the right level for rules and procedures to guide the work activities. The primary aim of this book is to contribute to the Finnish nuclear safety research and safety management discussion. However, the book is equally suitable for risk management, organizational development and human resources management specialists in different industries. The purpose is to encourage readers to consider how the human and organizational factors are seen in the field they work in. (orig.)

  20. Qualification of safety-critical software for digital reactor safety system in nuclear power plants

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Park, Gee-Yong; Kim, Jang-Yeol; Lee, Jang-Soo

    2013-01-01

    This paper describes the software qualification activities for the safety-critical software of the digital reactor safety system in nuclear power plants. The main activities of the software qualification processes are the preparation of software planning documentations, verification and validation (V and V) of the software requirements specifications (SRS), software design specifications (SDS) and codes, and the testing of the integrated software and integrated system. Moreover, the software safety analysis and software configuration management are involved in the software qualification processes. The V and V procedure for SRS and SDS contains a technical evaluation, licensing suitability evaluation, inspection and traceability analysis, formal verification, software safety analysis, and an evaluation of the software configuration management. The V and V processes for the code are a traceability analysis, source code inspection, test case and test procedure generation. Testing is the major V and V activity of the software integration and system integration phases. The software safety analysis employs a hazard operability method and software fault tree analysis. The software configuration management in each software life cycle is performed by the use of a nuclear software configuration management tool. Through these activities, we can achieve the functionality, performance, reliability, and safety that are the major V and V objectives of the safety-critical software in nuclear power plants. (author)

  1. Evaluating safety-critical organizations - emphasis on the nuclear industry

    International Nuclear Information System (INIS)

    Reiman, Teemu; Oedewald, Pia

    2009-04-01

    understood that safety is a complex phenomenon. Safety is understood as a property of an entire system and not just absence of incidents - people feel personally responsible for the safety of the entire system, they feel they can have an effect on safety - the organizations aims for understanding the hazards and anticipating the risks in their activities - the organization is alert to the possibility of an unanticipated event - good prerequisites for carrying out the daily work exist. An organizational evaluation should aim at reasoning the: - sources of effectiveness in the organizational dimensions - sources of ineffectiveness in the organization dimensions - social processes in the organization - psychological outcomes of the current organization on a personnel level, e.g. motivation, understanding of hazards and sense of control. When drawing inferences from the organizational evaluations and defining development initiatives, it is important to consider actions that will promote and maintain the strengths of the organization as well as actions that will address and develop the weak areas. Issues associated with data collection and choice of methods has been a topic of much discussion in the field of evaluation of safety-critical organizations. We argue that the problem of collecting data is not the most important problem in terms of facilitating valid evaluations. A more important problem concerns the criteria that are used, as well as the operationalization of criteria into something measurable. Too much effort has been spent on methods and too little on contemplating the question of valid evaluation criteria and a valid means of deducing from the data whether the criteria are fulfilled. In order to accomplish this, a valid evaluation framework is needed, which incorporates the idea of organization as a complex sociotechnical system. This report has been an attempt to illustrate the premises and key issues to consider in organizational evaluations. No method can

  2. Evaluating safety-critical organizations - emphasis on the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu; Oedewald, Pia (VTT, Technical Research Centre of Finland (Finland))

    2009-04-15

    - it is understood that safety is a complex phenomenon. Safety is understood as a property of an entire system and not just absence of incidents - people feel personally responsible for the safety of the entire system, they feel they can have an effect on safety - the organizations aims for understanding the hazards and anticipating the risks in their activities - the organization is alert to the possibility of an unanticipated event - good prerequisites for carrying out the daily work exist. An organizational evaluation should aim at reasoning the: - sources of effectiveness in the organizational dimensions - sources of ineffectiveness in the organization dimensions - social processes in the organization - psychological outcomes of the current organization on a personnel level, e.g. motivation, understanding of hazards and sense of control. When drawing inferences from the organizational evaluations and defining development initiatives, it is important to consider actions that will promote and maintain the strengths of the organization as well as actions that will address and develop the weak areas. Issues associated with data collection and choice of methods has been a topic of much discussion in the field of evaluation of safety-critical organizations. We argue that the problem of collecting data is not the most important problem in terms of facilitating valid evaluations. A more important problem concerns the criteria that are used, as well as the operationalization of criteria into something measurable. Too much effort has been spent on methods and too little on contemplating the question of valid evaluation criteria and a valid means of deducing from the data whether the criteria are fulfilled. In order to accomplish this, a valid evaluation framework is needed, which incorporates the idea of organization as a complex sociotechnical system. This report has been an attempt to illustrate the premises and key issues to consider in organizational evaluations. No

  3. Criticality safety analysis of a calciner exit chute

    International Nuclear Information System (INIS)

    Haught, C.F.; Basoglu, B.; Brewer, R.W.; Hollenback, D.F.; Wilkinson, A.D.; Dodds, H.L.

    1994-01-01

    Calcination of uranyl nitrate into uranium oxide is part of normal operations of some enrichment plants. Typically, a calciner discharges uranium oxide powder (U 3 O 8 ) into an exit chute that directs the powder into a receiving can located in a glove box. One possible scenario for a criticality accident is the exit chute becoming blocked with powder near its discharge. The blockage restricts the flow of powder causing the exit chute to become filled with the powder. If blockage does occur, the height of the powder could reach a level that would not be safe from a criticality point of view. In this analysis, the subcritical height limit is examined for 98% enriched U 3 O 8 in the exit chute with full water reflection and optimal water moderation. The height limit for ensuring criticality safety during such an accumulation is 28.2 cm above the top of the discharge pipe at the bottom of the chute. Chute design variations are also evaluated with full water reflection and optimal water moderation. Subcritical configurations for the exit chute variation are developed, but the configurations are not safe when combined with the calciner. To ensure criticality safety, modifications must be made to the calciner tube or safety measures must be implemented if these designs are to be utilized with 98% enriched material. A geometrically safe configuration for the exit chute is developed for a blockage of 20% enriched powder with full water reflection and optimal water moderation, and this configuration is safe when combined with the existing calciner

  4. The international state of affairs in marine safety

    International Nuclear Information System (INIS)

    Benkert, W.M.

    1978-01-01

    The three-fold objective of marine safety is examined with emphasis on international cooperation as a means of achievement. In this respect, the recent and present activities of the Intergovernmental Maritime Consultative organization are reviewed by looking at the accomplishments and goals of several subcommittees of the Maritime Safety Committee. The United States program for commercial vessel safety is briefly discussed along with a comment on the recent Tanker Safety initiatives

  5. Criticality safety calculations for three types of final disposal canisters

    International Nuclear Information System (INIS)

    Anttila, M.

    2005-07-01

    The criticality safety of the copper/iron canisters developed for the final disposal of the Finnish spent nuclear fuel has been studied with the MCNP4C Monte Carlo code. Three types of spent fuel disposal canisters have been analysed. The differences between the canisters result from the size and geometry of the spent fuel assemblies to be disposed of in them. One canister type has been designed to contain 12 hexagonal VVER-440 fuel assemblies used at the Loviisa nuclear power plant ('VVER canister'). The second type is for 12 square BWR fuel bundles used at the Olkiluoto 1 and 2 units ( B WR canister ) and the third type is for four fuel assemblies of the Olkiluoto 3 unit to be constructed in the near future ( E PR canister ) . Each canister type is of similar size in the radial direction, but the axial lengths vary significantly. A spent fuel disposal canister must meet the normal criticality safety criteria. The effective multiplication factor must be less than 0.95 also when the canister is in the most reactive credible configuration (optimum moderation and close reflection). Uncertainties in the calculation methods may necessitate the use of an even lower reactivity limit. However, no systematic uncertainty analysis was carried out during this study. It has been proved in an earlier study that a version of the VVER canister loaded with twelve similar fresh VVER-440 assemblies with the initial enrichment of 4.2% fulfils the criticality safety criteria. Also an earlier design of the BWR canister loaded with twelve fresh BWR assemblies of so-called ATRIUM 10x10-9Q type with the initial enrichment of 3.8% and without burnable absorbers has been proved to meet the safety criteria. Therefore, in this study only a few calculations have been carried out for the present versions of VVER and BWR canisters and the results are in good agreement with the previous ones. The main emphasis of this study has been on the EPR canister. This new canister type fulfils the

  6. Exemption, exception and other criteria for transport criticality safety

    International Nuclear Information System (INIS)

    Mennerdahl, D.

    2004-01-01

    Many strange concepts, requirements and specifications related to criticality safety are present in the Regulations. Some earlier problems have been corrected but, going back to 1961 and the first edition of the Regulations, it seems as many changes have been to the worse. Fissile material was defined correctly as a material that could consist of or contain fissile nuclides. Materials consisting of pure fissile nuclides don't exist but are important in package designs. 238 Pu was included as a fissile nuclide only as an emergency, because there was no alternative, but this caused some people to think that all nuclides supporting criticality are fissile. Neutron interaction between different (non-identical) packages had to be evaluated, making the transport index or allowable number of packages a credible safety control. That is not true anymore. The 15 gram exception limit for fissile nuclides was combined with a transport mode limit, similar to but more restrictive than the current consignment limit. The confinement system was introduced to help with formulation of a single requirement for safety of the containment system but is becoming something very different. Controls before the first use of a packaging have become controls of the first use of a package, supporting multiple shipments of the same package. The lack of exemption limits for fissile material essentially makes all radioactive materials fissile (all radioactive material contains some fissile atoms). Radioactive material seems to be defined without consideration of the criticality hazard of the material. LSA materials are defined with consideration of criticality, but only relates to quantities in fissile exceptions when other properties can be equally or more important. In July 2004, a number of proposals to IAEA have been submitted by Sweden to improve and expand the criticality safety control of the Regulations. Essential is the introduction of the fissionable nuclide and material concepts in

  7. Evaluating Knowledge and Critical Thinking in International Marketing Courses

    Science.gov (United States)

    Manton, Edgar J.; English, Donald E.; Kernek, Courtney Russ

    2008-01-01

    In view of the increasing business globalization trend, the development and implementation of teaching/learning strategies appropriate for the international marketing curriculum is a critical factor for the success of international business students. Bloom's taxonomy is a useful tool that can assist the teacher in testing and instructional…

  8. A study of software safety analysis system for safety-critical software

    International Nuclear Information System (INIS)

    Chang, H. S.; Shin, H. K.; Chang, Y. W.; Jung, J. C.; Kim, J. H.; Han, H. H.; Son, H. S.

    2004-01-01

    The core factors and requirements for the safety-critical software traced and the methodology adopted in each stage of software life cycle are presented. In concept phase, Failure Modes and Effects Analysis (FMEA) for the system has been performed. The feasibility evaluation of selected safety parameter was performed and Preliminary Hazards Analysis list was prepared using HAZOP(Hazard and Operability) technique. And the check list for management control has been produced via walk-through technique. Based on the evaluation of the check list, activities to be performed in requirement phase have been determined. In the design phase, hazard analysis has been performed to check the safety capability of the system with regard to safety software algorithm using Fault Tree Analysis (FTA). In the test phase, the test items based on FMEA have been checked for fitness guided by an accident scenario. The pressurizer low pressure trip algorithm has been selected to apply FTA method to software safety analysis as a sample. By applying CASE tool, the requirements traceability of safety critical system has been enhanced during all of software life cycle phases

  9. Criticality safety for deactivation of the Rover dry headend process

    International Nuclear Information System (INIS)

    Henrikson, D.J.

    1995-01-01

    The Rover dry headend process combusted Rover graphite fuels in preparation for dissolution and solvent extraction for the recovery of 235 U. At the end of the Rover processing campaign, significant quantities of 235 U were left in the dry system. The Rover Dry Headend Process Deactivation Project goal is to remove the remaining uranium bearing material (UBM) from the dry system and then decontaminate the cells. Criticality safety issues associated with the Rover Deactivation Project have been influenced by project design refinement and schedule acceleration initiatives. The uranium ash composition used for calculations must envelope a wide range of material compositions, and yet result in cost effective final packaging and storage. Innovative thinking must be used to provide a timely safety authorization basis while the project design continues to be refined

  10. Process management - critical safety issues with focus on risk management

    International Nuclear Information System (INIS)

    Sanne, Johan M.

    2005-12-01

    Organizational changes focused on process orientation are taking place among Swedish nuclear power plants, aiming at improving the operation. The Swedish Nuclear Power Inspectorate has identified a need for increased knowledge within the area for its regulatory activities. In order to analyze what process orientation imply for nuclear power plant safety a number of questions must be asked: 1. How is safety in nuclear power production created currently? What significance does the functional organization play? 2. How can organizational forms be analysed? What consequences does quality management have for work and for the enterprise? 3. Why should nuclear power plants be process oriented? Who are the customers and what are their customer values? Which customers are expected to contribute from process orientation? 4. What can one learn from process orientation in other safety critical systems? What is the effect on those features that currently create safety? 5. Could customer values increase for one customer without decreasing for other customers? What is the relationship between economic and safety interests from an increased process orientation? The deregulation of the electricity market have caused an interest in increased economic efficiency, which is the motivation for the interest in process orientation. among other means. It is the nuclear power plants' owners and the distributors (often the same corporations) that have the strongest interest in process orientation. If the functional organization and associated practices are decomposed, the prerequisites of the risk management regime changes, perhaps deteriorating its functionality. When nuclear power operators consider the introduction of process orientation, the Nuclear Power Inspectorate should require that 1. The operators perform a risk analysis beforehand concerning the potential consequences that process orientation might convey: the analysis should contain a model specifying how safety is currently

  11. Criticality safety of spent fuel casks considering water inleakage

    International Nuclear Information System (INIS)

    Osgood, N.L.; Withee, C.J.; Easton, E.P.

    2004-01-01

    A fundamental safety design parameter for all fissile material packages is that a single package must be critically safe even if water leaks into the containment system. In addition, criticality safety must be assured for arrays of packages under normal conditions of transport (undamaged packages) and under hypothetical accident conditions (damaged packages). The U.S. Nuclear Regulatory Commission staff has revised the review protocol for demonstrating criticality safety for spent fuel casks. Previous review guidance specified that water inleakage be considered under accident conditions. This practice was based on the fact that the leak tightness of spent fuel casks is typically demonstrated by use of structural analysis and not by physical testing. In addition, since a single package was shown to be safe with water inleakage, it was concluded that this analysis was also applicable to an array of damaged packages, since the heavy shield walls in spent fuel casks neutronically isolate each cask in the array. Inherent in this conclusion is that the fuel assembly geometry does not change significantly, even under drop test conditions. Requests for shipping fuel with burnup exceeding 40 GWd/MTU, including very high burnups exceeding 60 GWD/MTU, caused a reassessment of this assumption. Fuel cladding structural strength and ductility were not clearly predictable for these higher burnups. Therefore the single package analysis for an undamaged package may not be applicable for the damaged package. NRC staff developed a new practice for review of spent fuel casks under accident conditions. The practice presents two methods for approval that would allow an assessment of potential reconfiguration of the fuel assembly under accident conditions, or, alternatively, a demonstration of the water-exclusion boundary through physical testing

  12. International exchange of safety and licensing information

    International Nuclear Information System (INIS)

    Lafleur, J.D. Jr.; Hauber, R.D.; Chenier, D.M.

    1977-01-01

    A network of formal and informal bilateral arrangements for the exchange of nuclear safety information is being established by the US Nuclear Regulatory Commission. For developing countries such arrangements can provide ready access to the extensive, fully documented safety analyses and safety research results that USNRC has accumulated. USNRC has been receiving foreign visitors at a rate of about 500 per year, largely for discussions of safety and licensing questions related to light water reactors. Exchanges also are taking place on the safety of advanced reactors. A special interest of the USNRC is in providing for reciprocal communication, at the earliest possible time, of important problems, decisions and other actions on nuclear safety matters. For example, it is essential that a newly discovered problem in a nuclear reactor be brought immediately to the attention of other governments that are responsible for the safety of similar reactors. Definite progress has been made in the USA in defining categories of information that USNRC can receive in confidence from foreign countries, and can protect from disclosure under the US Freedom of Information Act. Certain exchanges have taken place on this basis. Experience in the establishment and operation of USNRC's bilateral exchange arrangements is summarized. A typical exchange with the regulatory authority of a country building its first power reactor is described. (author)

  13. International exchange of safety and licensing information

    International Nuclear Information System (INIS)

    Lafleur, J.D. Jr.; Hauber, R.D.; Chenier, D.M.

    1977-01-01

    A network of formal and informal bilateral arrangements for the exchange of nuclear safety information is being established by the U.S. Nuclear Regulatory Commission. For developing countries, such arrangements can provide ready access to the extensive, fully documented safety analyses and safety research results that NRC has accumulated. NRC has been receiving foreign visitors at a rate of about 500 per year, largely for discussions of safety and licensing questions related to light water reactors. Exchanges also are taking place on the safety of advanced reactors. A special interest of the NRC is in providing for reciprocal communicaion, at the earliest possible time, of important problems, decisions and other actions on nuclear safety matters. For example, it is essential that a newly-discovered problem in a nuclear reactor be brought immediately to the attention of other governments which are responsible for the safety of similar reactors. Definite progress has been made in the U.S. Freedom of Information Act. Certain exchanges have taken place on this basis. Experience in the establishment and operation of NRC's bilateral exchange arrangements is summarized. A typical exchange with the regulatory authority of country building its first power reactor is described

  14. Impact of Fuel Failure on Criticality Safety of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Marshall, William J.; Wagner, John C.

    2012-01-01

    Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for considerably longer periods than originally intended (e.g., 45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. This effort is primarily motivated by concerns related to the potential for fuel degradation during ES periods and transportation following ES. The criticality analyses consider representative UNF designs and cask systems and a range of fuel enrichments, burnups, and cooling times. The various failed-fuel configurations considered are designed to bound the anticipated effects of individual rod and general cladding failure, fuel rod deformation, loss of neutron absorber materials, degradation of canister internals, and gross assembly failure. The results quantify the potential impact on criticality safety associated with fuel reconfiguration and may be used to guide future research, design, and regulatory activities. Although it can be concluded that the criticality safety impacts of fuel reconfiguration during transportation subsequent to ES are manageable, the results indicate that certain configurations can result in a large increase in the effective neutron multiplication factor, k eff . Future work to inform decision making relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

  15. A Safety-Critical Java Technology Compatibility Kit

    DEFF Research Database (Denmark)

    Søndergaard, Hans; Korsholm, Stephan Erbs; Ravn, Anders P.

    2014-01-01

    In order to claim conformance with a given Java Specification Request (JSR), a Java implementation has to pass all tests in an associated Technology Compatibility Kit (TCK). This paper presents development of test cases and tools for the draft Safety-Critical Java (SCJ) specification. In previous...... work we have shown how the Java Modeling Language (JML) is applied to specify conformance constraints for SCJ, and how JML-related tools may assist in generating and executing tests. Here we extend this work with a layout for concrete test cases including checking of results in a simplified version...

  16. Safety-Critical Java for Low-End Embedded Platforms

    DEFF Research Database (Denmark)

    Søndergaard, Hans; Korsholm, Stephan E.; Ravn, Anders P.

    2012-01-01

    We present an implementation of the Safety-Critical Java profile (SCJ), targeted for low-end embedded platforms with as little as 16 kB RAM and 256 kB flash. The distinctive features of the implementation are a combination of a lean Java virtual machine (HVM), with a bare metal kernel implementing...... hardware objects, first level interrupt handlers, and native variables, and an infrastructure written in Java which is minimized through program specialization. The HVM allows the implementation to be easily ported to embedded platforms which have a C compiler as part of the development environment...

  17. Patterns for Safety-Critical Java Memory Usage

    DEFF Research Database (Denmark)

    Rios Rivas, Juan Ricardo; Nilsen, Kelvin; Schoeberl, Martin

    2012-01-01

    Scoped memories are introduced in real-time Java profiles in order to make object allocation and deallocation time and space predictable. However, explicit scoping requires care from programmers when dealing with temporary objects, passing scope-allocated objects as arguments to methods, and retu......Scoped memories are introduced in real-time Java profiles in order to make object allocation and deallocation time and space predictable. However, explicit scoping requires care from programmers when dealing with temporary objects, passing scope-allocated objects as arguments to methods...... are illustrated by implementations in the safety-critical Java profile....

  18. Safety-critical Java on a Java processor

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Rios Rivas, Juan Ricardo

    2012-01-01

    The safety-critical Java (SCJ) specification is developed within the Java Community Process under specification request number JSR 302. The specification is available as public draft, but details are still discussed by the expert group. In this stage of the specification we need prototype...... implementations of SCJ and first test applications that are written with SCJ, even when the specification is not finalized. The feedback from those prototype implementations is needed for final decisions. To help the SCJ expert group, a prototype implementation of SCJ on top of the Java optimized processor...

  19. A safety-critical java technology compatibility kit

    DEFF Research Database (Denmark)

    Søndergaard, Hans; Korsholm, Stephan E.; Ravn, Anders Peter

    2014-01-01

    In order to claim conformance with a given Java Specification Request (JSR), a Java implementation has to pass all tests in an associated Technology Compatibility Kit (TCK). This paper presents development of test cases and tools for the draft Safety-Critical Java (SCJ) specification. In previous...... work we have shown how the Java Modeling Language (JML) is applied to specify conformance constraints for SCJ, and how JML-related tools may assist in generating and executing tests. Here we extend this work with a layout for concrete test cases including checking of results in a simplified version...

  20. Evaluating Models of Human Performance: Safety-Critical Systems Applications

    Science.gov (United States)

    Feary, Michael S.

    2012-01-01

    This presentation is part of panel discussion on Evaluating Models of Human Performance. The purpose of this panel is to discuss the increasing use of models in the world today and specifically focus on how to describe and evaluate models of human performance. My presentation will focus on discussions of generating distributions of performance, and the evaluation of different strategies for humans performing tasks with mixed initiative (Human-Automation) systems. I will also discuss issues with how to provide Human Performance modeling data to support decisions on acceptability and tradeoffs in the design of safety critical systems. I will conclude with challenges for the future.

  1. Reliability assessment for safety critical systems by statistical random testing

    International Nuclear Information System (INIS)

    Mills, S.E.

    1995-11-01

    In this report we present an overview of reliability assessment for software and focus on some basic aspects of assessing reliability for safety critical systems by statistical random testing. We also discuss possible deviations from some essential assumptions on which the general methodology is based. These deviations appear quite likely in practical applications. We present and discuss possible remedies and adjustments and then undertake applying this methodology to a portion of the SDS1 software. We also indicate shortcomings of the methodology and possible avenues to address to follow to address these problems. (author). 128 refs., 11 tabs., 31 figs

  2. Criticality safety calculations for the nuclear waste disposal canisters

    International Nuclear Information System (INIS)

    Anttila, M.

    1996-12-01

    The criticality safety of the copper/iron canisters developed for the final disposal of the Finnish spent fuel has been studied with the MCNP4A code based on the Monte Carlo technique and with the fuel assembly burnup programs CASMO-HEX and CASMO-4. Two rather similar types of spent fuel disposal canisters have been studied. One canister type has been designed for hexagonal VVER-440 fuel assemblies used at the Loviisa nuclear power plant (IVO canister) and the other one for square BWR fuel bundles used at the Olkiluoto nuclear power plant (TVO canister). (10 refs.)

  3. Instructional games and activities for criticality safety training

    International Nuclear Information System (INIS)

    Bullard, B.; McBride, J.

    1993-01-01

    During the past several years, the Training and Management Systems Division (TMSD) staff of Oak Ridge Institute for Science and Education (ORISE) has designed and developed nuclear criticality safety (NCS) training programs that focus on high trainee involvement through the use of instructional games and activities. This paper discusses the instructional game, initial considerations for developing games, advantages and limitations of games, and how games may be used in developing and implementing NCS training. It also provides examples of the various instructional games and activities used in separate courses designed for Martin Marietta Energy Systems (MMES's) supervisors and U.S. Nuclear Regulatory Commission (NRC) fuel facility inspectors

  4. Administrative practices for nuclear criticality safety, ANSI/ANS-8.19-1996

    International Nuclear Information System (INIS)

    Smith, D.R.

    1996-01-01

    American National Standard, open-quotes Administrative Practices for Nuclear Criticality Safety,close quotes American National Standards Institute/American Nuclear Society (ANSI/ANS)-8.19-1996, addresses the responsibilities of management, supervision, and the criticality safety staff in the administration of an effective criticality safety program. Characteristics of operating procedures, process evaluations, material control procedures, and emergency plans are discussed

  5. International contributions of JNES on seismic safety areas

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Uchiyama, Yuichi; Yamada, Hiroyuki

    2010-01-01

    JNES actively promotes the international cooperation in seismic safety areas, aiming to play a role as the important international hub for it. To meet this purpose, JNES is now mainly focusing on the increased support of the international organizations including IAEA and the technological improvement in the seismic related assessment of Asian countries. This paper summarizes these efforts made by JNES. (author)

  6. Issues related to criticality safety analysis for burnup credit applications

    International Nuclear Information System (INIS)

    DeHart, M.D.; Parks, C.V.

    1995-01-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh fuel loading assumption. Parametric analyses are required to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models are evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. This paper discusses the results of studies to determine the effect of two important modeling assumptions on the criticality analysis of pressurized-water reactor (PWR) spent fuel: (1) the effect of assumed burnup history (i.e., specific power during and time-dependent variations in operational power) during depletion calculations, and (2) the effect of axial burnup distributions on the neutron multiplication factor calculated for a three-dimensional (3-D) conceptual cask design

  7. Criticality safety evaluation report for FFTF 42% fuel assemblies

    International Nuclear Information System (INIS)

    Richard, R.F.

    1997-01-01

    An FFTF tritium/isotope production mission will require a new fuel supply. The reference design core will use a mixed oxide fuel nominally enriched to 40 wt% Pu. This enrichment is significantly higher than that of the standard Driver Fuel Assemblies used in past operations. Consequently, criticality safety for handling and storage of this fuel must be addressed. The purpose of this document is to begin the process by determining the minimum critical number for these new fuel assemblies in water, sodium and air. This analysis is preliminary and further work can be done to refine the results reported here. Analysis was initially done using 45 wt 5 PuO. Additionally, a preliminary assessment is done concerning storage of these fuel assemblies in Interim Decay Storage (IDS), Fuel Storage Facility (FSF), and Core Component Containers/Interim Storage Casks (CCC/ISC)

  8. Criticality safety aspects of K-25 Building uranium deposit removal

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Ingram, J.C. III; Stinnet, E.C. Jr.

    1995-01-01

    The K-25 Building of the Oak Ridge Gaseous Diffusion Plant (now the K-25 Site) went into operation during World War II as the first large scale production plant to separate 235 U from uranium by the gaseous diffusion process. It operated successfully until 1964, when it was placed in a stand-by mode. The Department of Energy has initiated a decontamination and decommissioning program. The primary objective of the Deposit Removal (DR) Project is to improve the nuclear criticality safety of the K-25 Building by removing enriched uranium deposits from unfavorable-geometry process equipment to below minimum critical mass. The method utilized to accomplish this are detailed in this report

  9. Review of the international conference on nuclear criticality-issues, discussions, and challenges

    International Nuclear Information System (INIS)

    Parks, C.V.; Whitesides, G.E.

    1995-01-01

    The Fifth International Conference on Nuclear Criticality Safety (ICNC'95) was held September 17-22, 1995, in Albuquerque, New Mexico, USA. Organization and support for the conference was provided by the Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), the University of New Mexico, and the Organization for Economic Cooperation and Development (OECD). This conference traces its history back to 1981 when a group of select criticality safety specialists (mostly experimentalists) from France, Germany, Japan, the United Kingdom, and the United States participated in a small conference at LANL in the United States. The motivation for the conference had been provided by Dr. J. C. Manaranche of France who had asked D. Smith and G. E. Whitesides of the United States if it would be possible for the French experimentalists to be able to visit the experimental facilities at LANL. This first conference was followed by a similar conference held in Dijon, France, in 1993. Then in 1987 the conference was hosted by the Japanese and opened to much wider participation by criticality safety specialists involved in experiments, methods development and analysis, and operations. With the 1987 conference in Japan and the fourth conference (ICNC'91) held in the United Kingdom, the interest and international participation by the criticality safety community has grown rapidly. With this background, the occasion of ICNC'95 was one of much expectation

  10. EPR safety. Consideration of the internal and external hazards in the safety studies

    International Nuclear Information System (INIS)

    Gueguin, H.

    2008-04-01

    The author presents the main points of the Preliminary Safety Report of EDF on the EPR reactor safety. It concerns the considerations of the internal (fire, flood, explosions, pipes failures) and external (earthquakes, airplane falls, explosions, exceptional natural disasters, extreme meteorological conditions) damages. It presents how the safety report takes into account the aggression. (A.L.B.)

  11. Towards an international regime on radiation and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2000-01-01

    The 1990s have seen the de facto emergence of what might be called an 'international regime on nuclear and radiation safety'. It may be construed to encompass three key elements: legally binding international undertakings among States; globally agreed international safety standards; and provisions for facilitating the application of those standards. While nuclear and radiation safety are national responsibilities, governments have long been interested in formulating harmonised approaches to radiation and nuclear safety. A principal mechanism for achieving harmonisation has been the establishment of internationally agreed safety standards and the promotion of their global application. The development of nuclear and radiation safety standards is a statutory function of the IAEA, which is unique in the United Nations system. The IAEA Statute expressly authorises the Agency 'to establish standards of safety' and 'to provide for the application of these standards'. As the following articles and supplement in this edition of the IAEA Bulletin point out, facilitating international conventions; developing safety standards; and providing mechanisms for their application are high priorities for the IAEA. (author)

  12. Concepts and techniques: Active electronics and computers in safety-critical accelerator operation

    International Nuclear Information System (INIS)

    Frankel, R.S.

    1995-01-01

    The Relativistic Heavy Ion Collider (RHIC) under construction at Brookhaven National Laboratory, requires an extensive Access Control System to protect personnel from Radiation, Oxygen Deficiency and Electrical hazards. In addition, the complicated nature of operation of the Collider as part of a complex of other Accelerators necessitates the use of active electronic measurement circuitry to ensure compliance with established Operational Safety Limits. Solutions were devised which permit the use of modern computer and interconnections technology for Safety-Critical applications, while preserving and enhancing, tried and proven protection methods. In addition a set of Guidelines, regarding required performance for Accelerator Safety Systems and a Handbook of design criteria and rules were developed to assist future system designers and to provide a framework for internal review and regulation

  13. Concepts and techniques: Active electronics and computers in safety-critical accelerator operation

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, R.S.

    1995-12-31

    The Relativistic Heavy Ion Collider (RHIC) under construction at Brookhaven National Laboratory, requires an extensive Access Control System to protect personnel from Radiation, Oxygen Deficiency and Electrical hazards. In addition, the complicated nature of operation of the Collider as part of a complex of other Accelerators necessitates the use of active electronic measurement circuitry to ensure compliance with established Operational Safety Limits. Solutions were devised which permit the use of modern computer and interconnections technology for Safety-Critical applications, while preserving and enhancing, tried and proven protection methods. In addition a set of Guidelines, regarding required performance for Accelerator Safety Systems and a Handbook of design criteria and rules were developed to assist future system designers and to provide a framework for internal review and regulation.

  14. Criticality safety evaluation report for K Basin filter cartridges

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.

    1995-01-01

    A criticality safety evaluation of the K Basin filter cartridge assemblies has been completed to support operations without a criticality alarm system. The results show that for normal operation, the filter cartridge assembly is far below the safety limit of k eff = 0.95, which is applied to plutonium systems at the Hanford Site. During normal operating conditions, uranium, plutonium, and fission and corrosion products in solution are continually accumulating in the available void spaces inside the filter cartridge medium. Currently, filter cartridge assemblies are scheduled to be replaced at six month intervals in KE Basin, and at one year intervals in KW Basin. According to available plutonium concentration data for KE Basin and data for the U/Pu ratio, it will take many times the six-month replacement time for sufficient fissionable material accumulation to take place to exceed the safety limit of k eff = 0.95, especially given the conservative assumption that the presence of fission and corrosion products is ignored. Accumulation of sludge with a composition typical of that measured in the sand filter backwash pit will not lead to a k eff = 0.95 value. For off-normal scenarios, it would require at least two unlikely, independent, and concurrent events to take place before the k eff = 0.95 limit was exceeded. Contingencies considered include failure to replace the filter cartridge assemblies at the scheduled time resulting in additional buildup of fissionable material, the loss of geometry control from the filter cartridge assembly breaking apart and releasing the individual filter cartridges into an optimal configuration, and concentrations of plutonium at U/Pu ratios less than measured data for KE Basin, typically close to 400 according to extensive measurements in the sand filter backwash pit and plutonium production information

  15. Criticality safety evaluation of the fuel cycle facility electrorefiner

    International Nuclear Information System (INIS)

    Lell, R.M.; Mariani, R.D.; Fujita, E.K.; Benedict, R.W.; Turski, R.B.

    1993-01-01

    The integral Fast Reactor (IFR) being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal cooled reactors and a closed-loop fuel cycle. Some of the primary advantages are passive safety for the reactor and resistance to diversion for the heavy metal in the fuel cycle. in addition, the IFR pyroprocess recycles all the long-lived actinide activation products for casting into new fuel pins so that they may be burned in the reactor. A key component in the Fuel Cycle Facility (FCF) recycling process is the electrorefiner (ER) in which the actinides are separated from the fission products. In the process, the metal fuel is electrochemically dissolved into a high-temperature molten salt, and electrorefined uranium or uranium/plutonium products are deposited at cathodes. This report addresses the new and innovative aspects of the criticality analysis ensuing from processing metallic fuel, rather than metal oxide fuel, and from processing the spent fuel in batch operations. in particular, the criticality analysis employed a mechanistic approach as opposed to a probabilistic one. A probabilistic approach was unsuitable because of a lack of operational experience with some of the processes, rendering the estimation of accident event risk factors difficult. The criticality analysis also incorporated the uncertainties in heavy metal content attending the process items by defining normal operations envelopes (NOES) for key process parameters. The goal was to show that reasonable process uncertainties would be demonstrably safe toward criticality for continuous batch operations provided the key process parameters stayed within their NOES. Consequently the NOEs became the point of departure for accident events in the criticality analysis

  16. International organisations assure nuclear safety competence

    International Nuclear Information System (INIS)

    Alonso, A.

    2000-01-01

    Irrespective of current views on the future of nuclear power programmes, concerns are arising with respect to the long-term ability to preserve safety competence because student enrollments in nuclear engineering are decreasing rapidly and experienced staff are reaching retirement age. 'Assuring Nuclear Safety Competence into the 21. Century' was discussed in depth by workshop participants. The need for a long-term strategic view was emphasised, and policy recommendations were made. These proceedings will be of particular interest to those playing a policy role in the nuclear industry, regulatory bodies and the education sector

  17. Using Machine Learning for Risky Module Estimation of Safety-Critical Software

    International Nuclear Information System (INIS)

    Kim, Young Mi; Jeong, Choong Heui

    2009-01-01

    With the rapid development of digital computer and information processing technologies, nuclear I and C (Instrument and Control) system which needs safety critical function has adopted digital technologies. Software used in safety-critical system must have high dependability. Highly dependable software needs strict software testing and V and V activities. These days, regulatory demands for nuclear power plants are more and more increasing. But, human resources and time for regulation are limited. So, early software risky module prediction is very useful for software testing and regulation activities. Early estimation can be built from a collection of internal metrics during early development phase. Internal metrics are measures of a product derived from assessment of the product itself, and external metrics are measures of a product derived from assessment of the behavior of the systems. Internal metrics can be collected more easily and early than external metrics. In addition, internal metrics can be useful for estimating fault-prone software modules using machine learning. In this paper, we introduce current research status and techniques related to estimating risky software module using machine learning techniques. Section 2 describes the overview of the estimation model using machine learning and section 3 describes processes of the estimation model. Section 4 describes several estimation models using machine leanings. Section 5 concludes the paper

  18. NPP safety and personnel training. XII International conference. Abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    The 12th International conference NPP Safety and Personnel Training took place in Obninsk, October 4-7, 2011. The issues of nuclear technologies safety are considered.The problems of life-cycle management of nuclear facilities are discussed. The criteria of assessment of physical protection systems of nuclear facilities are presented [ru

  19. The main requirements of the International Basic Safety Standards

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    1998-01-01

    The main requirements of the new international basic safety standards are discussed, including such topics as health effects of ionizing radiations, the revision of basic safety standards, the requirements for radiation protection practices, the requirements for intervention,and the field of regulatory infrastructures. (A.K.)

  20. Licensing process for safety-critical software-based systems

    International Nuclear Information System (INIS)

    Haapanen, P.; Korhonen, J.; Pulkkinen, U.

    2000-12-01

    System vendors nowadays propose software-based technology even for the most critical safety functions in nuclear power plants. Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of these systems. In the research project 'Programmable automation systems in nuclear power plants (OHA)', financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT), various safety assessment methods and tools for software based systems are developed and evaluated. As a part of the OHA-work a reference model for the licensing process for software-based safety automation systems is defined. The licensing process is defined as the set of interrelated activities whose purpose is to produce and assess evidence concerning the safety and reliability of the system/application to be licensed and to make the decision about the granting the construction and operation permissions based on this evidence. The parties of the licensing process are the authority, the licensee (the utility company), system vendors and their subcontractors and possible external independent assessors. The responsibility about the production of the evidence in first place lies at the licensee who in most cases rests heavily on the vendor expertise. The evaluation and gauging of the evidence is carried out by the authority (possibly using external experts), who also can acquire additional evidence by using their own (independent) methods and tools. Central issue in the licensing process is to combine the quality evidence about the system development process with the information acquired through tests, analyses and operational experience. The purpose of the licensing process described in this report is to act as a reference model both for the authority and the licensee when planning the licensing of individual applications. Many of the

  1. Licensing process for safety-critical software-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Haapanen, P. [VTT Automation, Espoo (Finland); Korhonen, J. [VTT Electronics, Espoo (Finland); Pulkkinen, U. [VTT Automation, Espoo (Finland)

    2000-12-01

    System vendors nowadays propose software-based technology even for the most critical safety functions in nuclear power plants. Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of these systems. In the research project 'Programmable automation systems in nuclear power plants (OHA)', financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT), various safety assessment methods and tools for software based systems are developed and evaluated. As a part of the OHA-work a reference model for the licensing process for software-based safety automation systems is defined. The licensing process is defined as the set of interrelated activities whose purpose is to produce and assess evidence concerning the safety and reliability of the system/application to be licensed and to make the decision about the granting the construction and operation permissions based on this evidence. The parties of the licensing process are the authority, the licensee (the utility company), system vendors and their subcontractors and possible external independent assessors. The responsibility about the production of the evidence in first place lies at the licensee who in most cases rests heavily on the vendor expertise. The evaluation and gauging of the evidence is carried out by the authority (possibly using external experts), who also can acquire additional evidence by using their own (independent) methods and tools. Central issue in the licensing process is to combine the quality evidence about the system development process with the information acquired through tests, analyses and operational experience. The purpose of the licensing process described in this report is to act as a reference model both for the authority and the licensee when planning the licensing of individual applications

  2. Study on burnup credit evaluation method at JAERI towards securing criticality safety rationale for management of spent fuel

    International Nuclear Information System (INIS)

    Nomura, Y.

    1998-01-01

    Lately, due to massive accumulation of spent fuel discharged from light water reactors in Japan, it is gradually demanded to introduce the so-called burnup credit methodology into criticality safety design for nuclear fuel cycle facilities, such as spent fuel storage pools and transport casks. In order to save space in the spent fuel storage pool of the Rokkasho Reprocessing Plant, the burnup credit design has been firstly implemented for its criticality safety evaluation. Here, its design conditions and operational control procedures are briefly shown and research using burned fuel at JAERI is explained to support its licensing safety review, focusing on the relevant content of the Nuclear Criticality Safety Handbook of Japan, which has been prepared so far and planned in the near future. Finally, international co-operation for study on burnup credit issues practiced by JAERI is addressed. (author)

  3. International conference on safety culture in nuclear installations. Contributed papers

    International Nuclear Information System (INIS)

    2002-01-01

    Safety culture is that assembly of characteristics and attitudes in organisation and individuals which establishes that as an overriding priority nuclear plant safety issues receives the attention warranted by their significance. This definition of safety culture brings out two major components in its manifestation. The framework within which individuals within the organisation works.The attitude and response of individual towards the safety issues over productivity and economics in the organisational work practices. The industry literature provides a great deal of insight at the artefact and espoused value levels, although as yet it remains somewhat disorganized. There is, however, an overall lack of understanding of the assumption level of safety culture. The IAEA has organised the conference on safety culture for better understanding of the safety culture issues on the international level

  4. New International Economic Order (NIEO: Origin, Elements and Criticisms

    Directory of Open Access Journals (Sweden)

    Fesseha Mulu Gebremariam

    2017-06-01

    Full Text Available Employing secondary sources of data this paper aims to assess the history, elements, and criticisms against New International Economic Order (NIEO. NIEO is mainly an economic movement happened after WWII with the aim of empowering developing countries politically through economic growth. It also criticizes the existing political and economic system as benefiting developed countries at the cost of developing countries so that a new system is needed that benefits poor countries. However, many criticize NIEO as hypothetical and unorganized movement. Clear division and disagreements among its members is evident. Developing countries failed to form unity, committed to meet the objectives of NIEO, and unable to compete in the market.

  5. An international career development survey of critical care practitioners*.

    Science.gov (United States)

    Patel, Mayur B; Laudanski, Krzysztof; Pandharipande, Pratik P

    2014-04-01

    To understand the career development needs of an international multidisciplinary group of critical care practitioners in the 21st century. A web-accessible survey deployed by the In-Training Section of the Society of Critical Care Medicine. University health sciences center. Physicians (doctor of medicine and doctor of osteopathic medicine), advance practice providers (nurse practitioner, physician assistant, nurses, pharmacists, and student members of the Society of Critical Care Medicine. The survey covered domains of demographics, opinions about career development, and opinions about the Society of Critical Care Medicine In-Training Section. One thousand forty-nine of approximately 16,000 Society of Critical Care Medicine members responded to the survey (7% response rate). Continuing education (280, 26.7%), leadership skills (197, 18.8%), and scientific development (192, 18.3%) are among the most important issues for the respondents. Many critical care practitioners would like to assist Society of Critical Care Medicine's efforts in career development (948, 90.4%) and many would consider some aspect of committee involvement (796, 75.9%). The Society of Critical Care Medicine In-Training Section, whose primary mission is career development across the spectrum of providers and expertise levels, needs improved advertisement (981, 93.7%). There is strong support for upcoming Annual Congresses dedicated to career development (834, 79.5%). Of the three main methods of information dissemination for Society of Critical Care Medicine career development initiatives from the In-Training Section, respondents rank e-mail highest (762, 72.6%), followed by webpages (228, 21.7%) and I-rooms (59, 5.6%). Over half of the Society of Critical Care Medicine membership surveyed lack a career development mentor in critical care. This is the largest assessment of the international critical care community regarding the career development needs of 21st century critical care practitioner

  6. International safety standards in a technological age

    International Nuclear Information System (INIS)

    Lawrence, D.J.

    1980-01-01

    Plant design, particularly plant involving pipework, is becoming more complex both in engineering sophistication and in scale of project. Simultaneously, the requirement from both environmental and legislative lobbies is in need of greater attention with regard to all aspects of safety. At the heart of both problems is the need for improved communication for speed, relevancy and accuracy. By the use of computer data banks and software specifically designed for the problem, it is shown how modern communications may be used. (author)

  7. Safety-Critical Java on a Time-predictable Processor

    DEFF Research Database (Denmark)

    Korsholm, Stephan Erbs; Schoeberl, Martin; Puffitsch, Wolfgang

    2015-01-01

    For real-time systems the whole execution stack needs to be time-predictable and analyzable for the worst-case execution time (WCET). This paper presents a time-predictable platform for safety-critical Java. The platform consists of (1) the Patmos processor, which is a time-predictable processor......; (2) a C compiler for Patmos with support for WCET analysis; (3) the HVM, which is a Java-to-C compiler; (4) the HVM-SCJ implementation which supports SCJ Level 0, 1, and 2 (for both single and multicore platforms); and (5) a WCET analysis tool. We show that real-time Java programs translated to C...... and compiled to a Patmos binary can be analyzed by the AbsInt aiT WCET analysis tool. To the best of our knowledge the presented system is the second WCET analyzable real-time Java system; and the first one on top of a RISC processor....

  8. Safety-critical Java on a time-predictable processor

    DEFF Research Database (Denmark)

    Korsholm, Stephan E.; Schoeberl, Martin; Puffitsch, Wolfgang

    2015-01-01

    For real-time systems the whole execution stack needs to be time-predictable and analyzable for the worst-case execution time (WCET). This paper presents a time-predictable platform for safety-critical Java. The platform consists of (1) the Patmos processor, which is a time-predictable processor......; (2) a C compiler for Patmos with support for WCET analysis; (3) the HVM, which is a Java-to-C compiler; (4) the HVM-SCJ implementation which supports SCJ Level 0, 1, and 2 (for both single and multicore platforms); and (5) a WCET analysis tool. We show that real-time Java programs translated to C...... and compiled to a Patmos binary can be analyzed by the AbsInt aiT WCET analysis tool. To the best of our knowledge the presented system is the second WCET analyzable real-time Java system; and the first one on top of a RISC processor....

  9. Criticality safety assessor training at British Nuclear Fuels, Sellafield

    International Nuclear Information System (INIS)

    Gunston, K.J.

    1993-01-01

    In accordance with company policy agreed to in April 1986, graduate new entrants to British Nuclear Fuels (BNFL) Sellafield join a management trainee/appraisal scheme. The purpose of this scheme is that while doing a real job, the trainee should undergo structured training and be given the opportunity to develop both personally and professionally. As part of this scheme, each trainee has a structured training program that is devised to fulfill the requirements of the individual, the department, the site and the professional body to which the trainee aspires. This paper outlines the management trainee training/appraisal system and the structured training program that is used to train criticality safety assessors at BNFL Sellafield

  10. New Criticality Safety Analysis Capabilities in SCALE 5.1

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Stephen M [ORNL; DeHart, Mark D [ORNL; Dunn, Michael E [ORNL; Goluoglu, Sedat [ORNL; Horwedel, James E [ORNL; Petrie Jr, Lester M [ORNL; Rearden, Bradley T [ORNL; Williams, Mark L [ORNL

    2007-01-01

    Version 5.1 of the SCALE computer software system developed at Oak Ridge National Laboratory, released in 2006, contains several significant enhancements for nuclear criticality safety analysis. This paper highlights new capabilities in SCALE 5.1, including improved resonance self-shielding capabilities; ENDF/B-VI.7 cross-section and covariance data libraries; HTML output for KENO V.a; analytical calculations of KENO-VI volumes with GeeWiz/KENO3D; new CENTRMST/PMCST modules for processing ENDF/B-VI data in TSUNAMI; SCALE Generalized Geometry Package in NEWT; KENO Monte Carlo depletion in TRITON; and plotting of cross-section and covariance data in Javapeno.

  11. Criticality safety analyses in SKODA JS a.s

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.

    1999-01-01

    This paper describes criticality safety analyses of spent fuel systems for storage and transport of spent fuel performed in SKODA JS s.r.o.. Analyses were performed for different systems both at NPP site including originally designed spent fuel pool with a large pitch between assemblies without any special absorbing material, high density spent fuel pool with an additional absorption by boron steel, depository rack for fresh fuel assemblies with a very large pitch between fuel assemblies, a container for transport of fresh fuel into the reactor pool and a cask for transport and storage of spent fuel and container for final storage depository. required subcriticality has been proven taking into account all possible unfavourable conditions, uncertainties etc. In two cases, burnup credit methodology is expected to be used. (Authors)

  12. Software Reliability Issues Concerning Large and Safety Critical Software Systems

    Science.gov (United States)

    Kamel, Khaled; Brown, Barbara

    1996-01-01

    This research was undertaken to provide NASA with a survey of state-of-the-art techniques using in industrial and academia to provide safe, reliable, and maintainable software to drive large systems. Such systems must match the complexity and strict safety requirements of NASA's shuttle system. In particular, the Launch Processing System (LPS) is being considered for replacement. The LPS is responsible for monitoring and commanding the shuttle during test, repair, and launch phases. NASA built this system in the 1970's using mostly hardware techniques to provide for increased reliability, but it did so often using custom-built equipment, which has not been able to keep up with current technologies. This report surveys the major techniques used in industry and academia to ensure reliability in large and critical computer systems.

  13. Training and qualification program for nuclear criticality safety technical staff

    International Nuclear Information System (INIS)

    Taylor, R.G.; Worley, C.A.

    1996-01-01

    A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. The program is compliant with requirements and provides evidence that a systematic approach has been taken to indoctrinate new technical staff. Development involved task analysis to determine activities where training was necessary and the standard which must be attained to qualify. Structured mentoring is used where experienced personnel interact with candidates using checksheets to guide candidates through various steps and to provide evidence that steps have been accomplished. Credit can be taken for the previous experience of personnel by means of evaluation boards which can credit or modify checksheet steps. Considering just the wealth of business practice and site specific information a new person at a facility needs to assimilate, the program has been effective in indoctrinating new technical staff personnel and integrating them into a productive role. The program includes continuing training

  14. Russian Minatom nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    Royen, J.

    1999-01-01

    An NEA study on safety research needs of Russian-designed reactors, carried out in 1996, strongly recommended that a strategic plan for safety research be developed with respect to Russian nuclear power plants. Such a plan was developed at the Russian International Nuclear Safety Centre (RINSC) of the Russian Ministry of Atomic Energy (Minatom). The Strategic Plan is designed to address high-priority safety-research needs, through a combination of domestic research, the application of appropriate foreign knowledge, and collaboration. It represents major progress toward developing a comprehensive and coherent safety-research programme for Russian nuclear power plants (NPPs). The NEA undertook its review of the Strategic Plan with the objective of providing independent verification on the scope, priority, and content of the research described in the Plan based upon the experience of the international group of experts. The principal conclusions of the review and the general comments of the NEA group are presented. (K.A.)

  15. International antiterrorist conventions concerning the safety of air transport

    Directory of Open Access Journals (Sweden)

    Jacek BARCIK

    2008-01-01

    Full Text Available In this article the international law regulations are presented concerning the civilian safety of the air transport. The history concerning air terrorism and international antiterrorist conventions was described in detail, involving The Chicago Convention, The Tokyo Convention, The Hague Convention and Montreal Convention.

  16. The International Student Safety Debate: Moving beyond Denial

    Science.gov (United States)

    Nyland, C.; Forbes-Mewett, H.; Marginson, S.

    2010-01-01

    In 2009 international student safety became an issue of immediate concern to Australian international education exporters following a series of demonstrations by Indian students and interventions by concerned foreign governments. With these developments the "industry" became fixated on how best to secure Australia's share of the…

  17. Evaluating internal public relations using the critical incident technique

    NARCIS (Netherlands)

    Koning, K.H.; de Jong, Menno D.T.; van Vuuren, Hubrecht A.

    2015-01-01

    Although the critical incident technique (CIT) is one of the current methods in communication audits, little is known about the way it works. The validity of the CIT in the context of internal public relations depends on 3 assumptions: that participants can describe discrete communication events,

  18. Revisiting the Continua of Biliteracy: International and Critical Perspectives.

    Science.gov (United States)

    Hornberger, Nancy H.; Skilton-Sylvester, Ellen

    2000-01-01

    The continua model of biliteracy offers a framework to situate research, teaching, and language planning in linguistically diverse settings. The continua model is revisited from the perspective of international cases of educational policy and practice in linguistically diverse settings, and from a critical perspective that seeks to make explicit…

  19. Quantification of Safety-Critical Software Test Uncertainty

    International Nuclear Information System (INIS)

    Khalaquzzaman, M.; Cho, Jaehyun; Lee, Seung Jun; Jung, Wondea

    2015-01-01

    The method, conservatively assumes that the failure probability of a software for the untested inputs is 1, and the failure probability turns in 0 for successful testing of all test cases. However, in reality the chance of failure exists due to the test uncertainty. Some studies have been carried out to identify the test attributes that affect the test quality. Cao discussed the testing effort, testing coverage, and testing environment. Management of the test uncertainties was discussed in. In this study, the test uncertainty has been considered to estimate the software failure probability because the software testing process is considered to be inherently uncertain. A reliability estimation of software is very important for a probabilistic safety analysis of a digital safety critical system of NPPs. This study focused on the estimation of the probability of a software failure that considers the uncertainty in software testing. In our study, BBN has been employed as an example model for software test uncertainty quantification. Although it can be argued that the direct expert elicitation of test uncertainty is much simpler than BBN estimation, however the BBN approach provides more insights and a basis for uncertainty estimation

  20. Collegiate Aviation Research and Education Solutions to Critical Safety Issues. UNO Aviation Monograph Series. UNOAI Report.

    Science.gov (United States)

    Bowen, Brent, Ed.

    This document contains four papers concerning collegiate aviation research and education solutions to critical safety issues. "Panel Proposal Titled Collegiate Aviation Research and Education Solutions to Critical Safety Issues for the Tim Forte Collegiate Aviation Safety Symposium" (Brent Bowen) presents proposals for panels on the…

  1. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24

  2. International advocacy for education and safety.

    Science.gov (United States)

    McQueen, Kelly A; Malviya, Shobha; Gathuya, Zipporah N; Tyler, Donald C

    2012-10-01

    Surgical safety has emerged as a significant global public health concern with reported mortality rates varying tremendously between developing and industrialized countries. This manuscript reviews some of the challenges encountered in providing safe anesthesia care in the humanitarian space; identifies the difficulties with providing high-quality education in developing countries; and describes how audits and quality improvement databases enhance our understanding of the nature and causes of harm to patients to inform the development of strategies for improvement. © 2012 Blackwell Publishing Ltd.

  3. Handbook on criticality. Vol. 1. Criticality and nuclear safety; Handbuch zur Kritikalitaet. Bd. 1. Kritikalitaet und nukleare Sicherheit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-04-15

    This handbook was prepared primarily with the aim to provide information to experts in industry, authorities or research facilities engaged in criticality-safety-related problems that will allow an adequate and rapid assessment of criticality safety issues already in the planning and preparation of nuclear facilities. However, it is not the intention of the authors of the handbook to offer ready solutions to complex problems of nuclear safety. Such questions have to remain subject to an in-depth analysis and assessment to be carried out by dedicated criticality safety experts. Compared with the previous edition dated December 1998, this handbook has been further revised and supplemented. The proven basic structure of the handbook remains unchanged. The handbook follows in some ways similar criticality handbooks or instructions published in the USA, UK, France, Japan and the former Soviet Union. The expedient use of the information given in this handbook requires a fundamental understanding of criticality and the terminology of nuclear safety. In Vol. 1, ''Criticality and Nuclear Safety'', therefore, first the most important terms and fundamentals are introduced and explained. Subsequently, experimental techniques and calculation methods for evaluating criticality problems are presented. The following chapters of Vol. 1 deal i. a. with the effect of neutron reflectors and absorbers, neutron interaction, measuring methods for criticality, and organisational safety measures and provide an overview of criticality-relevant operational experience and of criticality accidents and their potential hazardous impact. Vol. 2 parts 1 and 2 finally compile criticality parameters in graphical and tabular form. The individual graph sheets are provided with an initially explained set of identifiers, to allow the quick finding of the information of current interest. Part 1 includes criticality parameters for systems with {sup 235}U as fissile material, while part

  4. Finite test sets development method for test execution of safety critical software

    International Nuclear Information System (INIS)

    Shin, Sung Min; Kim, Hee Eun; Kang, Hyun Gook; Lee, Sung Jiun

    2014-01-01

    The V and V method has been utilized for this safety critical software, while SRGM has difficulties because of lack of failure occurrence data on developing phase. For the safety critical software, however, failure data cannot be gathered after installation in real plant when we consider the severe consequence. Therefore, to complement the V and V method, the test-based method need to be developed. Some studies on test-based reliability quantification method for safety critical software have been conducted in nuclear field. These studies provide useful guidance on generating test sets. An important concept of the guidance is that the test sets represent 'trajectories' (a series of successive values for the input variables of a program that occur during the operation of the software over time) in the space of inputs to the software.. Actually, the inputs to the software depends on the state of plant at that time, and these inputs form a new internal state of the software by changing values of some variables. In other words, internal state of the software at specific timing depends on the history of past inputs. Here the internal state of the software which can be changed by past inputs is named as Context of Software (CoS). In a certain CoS, a software failure occurs when a fault is triggered by some inputs. To cover the failure occurrence mechanism of a software, preceding researches insist that the inputs should be a trajectory form. However, in this approach, there are two critical problems. One is the length of the trajectory input. Input trajectory should long enough to cover failure mechanism, but the enough length is not clear. What is worse, to cover some accident scenario, one set of input should represent dozen hours of successive values. The other problem is number of tests needed. To satisfy a target reliability with reasonable confidence level, very large number of test sets are required. Development of this number of test sets is a herculean

  5. Accomplishment of 10-year research in NUCEF and future development. Criticality safety research

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori

    2005-01-01

    Since 1995, static and transient critical experiments on low enriched uranyl nitrate solution have been performed using two solution type criticality facilities, STACY and TRACY constructed in NUCEF. The obtained fundamental and systematic data on aqueous solution were used to validate the criticality safety calculation codes and to develop the transient analyses codes for criticality accident evaluation. This paper describes the outline of the criticality safety research conducted in NUCEF. (author)

  6. Analysis of Critical Characteristics for Safety Graded Personnel Computers in the KNICS Architecture

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Dong Young

    2009-01-01

    Critical characteristics analysis of a safety related item is to identify characteristics to be verified to replace an original item with the dedicated item. It is sure that the dedicated item meeting critical characteristics would perform its intended safety function instead of the specified item. KNICS project developed two safety systems: IDiPS RPS (Reactor Protection System) and IDiPS ESF-CCS (Engineered Safety Features-Component Control System). Two safety systems of IDiPS are equipped with personnel computers, so-called COMs (Cabinet Operator Modules), in their cabinets. The personnel computers, COMs, are responsible for safety system monitoring, testing, and maintaining. Even though two safety systems are safety critical system, the personnel computers of two systems, i.e. COMs, are not graded as safety-graded items. Regulation requirements are expected to be strengthened, and the functions of the personnel computer may be enhanced to include safety-related functions and safety functions, it would be necessary that the grade of the personnel computers is adjusted to a higher level, the safety grade. To try to upgrade a non safety system, i.e. COMs, to a safety system, its safety functions and requirements, i.e. critical characteristics, must be identified and verified. This paper describes the process of the identification of critical characteristics and the results of analysis

  7. Assuring fish safety and quality in international fish trade

    Energy Technology Data Exchange (ETDEWEB)

    Ababouch, Lahsen [United Nations, Food and Agricultural Organization, Chief, Fish Utilization and Marketing Services, FAO Headquarters, F-607 Rome (Italy)]. E-mail lahsen.ababouch@fao.org

    2006-07-01

    International trade in fishery commodities reached US$ 58.2 billion in 2002, a 5% improvement relative to 2000 and a 45% increase over 1992 levels. Within this global trade, developing countries registered a net trade surplus of US$ 17.4 billion in 2002 and accounted for almost 50% by value and 55% of fish exports by volume. This globalization of fish trade, coupled with technological developments in food production, handling, processing and distribution, and the increasing awareness and demand of consumers for safe and high quality food have put food safety and quality assurance high in public awareness and a priority for many governments. Consequently, many countries have tightened food safety controls, imposing additional costs and requirements on imports. As early as 1980, there was an international drive towards adopting preventative HACCP-based safety and quality systems. More recently, there has been a growing awareness of the importance of an integrated, multidisciplinary approach to food safety and quality throughout the entire food chain. Implementation of this approach requires an enabling policy and regulatory environment at national and international levels with clearly defined rules and standards, establishment of appropriate food control systems and programmes at national and local levels, and provision of appropriate training and capacity building. This paper discusses the international framework for fish safety and quality, with particular emphasis on the United Nation's Food and Agricultural Organization's (FAO) strategy to promote international harmonization and capacity building.

  8. Assuring fish safety and quality in international fish trade.

    Science.gov (United States)

    Ababouch, Lahsen

    2006-01-01

    International trade in fishery commodities reached US 58.2 billion dollars in 2002, a 5% improvement relative to 2000 and a 45% increase over 1992 levels. Within this global trade, developing countries registered a net trade surplus of US 17.4 billion dollars in 2002 and accounted for almost 50% by value and 55% of fish exports by volume. This globalization of fish trade, coupled with technological developments in food production, handling, processing and distribution, and the increasing awareness and demand of consumers for safe and high quality food have put food safety and quality assurance high in public awareness and a priority for many governments. Consequently, many countries have tightened food safety controls, imposing additional costs and requirements on imports. As early as 1980, there was an international drive towards adopting preventative HACCP-based safety and quality systems. More recently, there has been a growing awareness of the importance of an integrated, multidisciplinary approach to food safety and quality throughout the entire food chain. Implementation of this approach requires an enabling policy and regulatory environment at national and international levels with clearly defined rules and standards, establishment of appropriate food control systems and programmes at national and local levels, and provision of appropriate training and capacity building. This paper discusses the international framework for fish safety and quality, with particular emphasis on the United Nation's Food and Agricultural Organization's (FAO) strategy to promote international harmonization and capacity building.

  9. Assuring fish safety and quality in international fish trade

    International Nuclear Information System (INIS)

    Ababouch, Lahsen . E-mail lahsen.ababouch@fao.org

    2006-01-01

    International trade in fishery commodities reached US$ 58.2 billion in 2002, a 5% improvement relative to 2000 and a 45% increase over 1992 levels. Within this global trade, developing countries registered a net trade surplus of US$ 17.4 billion in 2002 and accounted for almost 50% by value and 55% of fish exports by volume. This globalization of fish trade, coupled with technological developments in food production, handling, processing and distribution, and the increasing awareness and demand of consumers for safe and high quality food have put food safety and quality assurance high in public awareness and a priority for many governments. Consequently, many countries have tightened food safety controls, imposing additional costs and requirements on imports. As early as 1980, there was an international drive towards adopting preventative HACCP-based safety and quality systems. More recently, there has been a growing awareness of the importance of an integrated, multidisciplinary approach to food safety and quality throughout the entire food chain. Implementation of this approach requires an enabling policy and regulatory environment at national and international levels with clearly defined rules and standards, establishment of appropriate food control systems and programmes at national and local levels, and provision of appropriate training and capacity building. This paper discusses the international framework for fish safety and quality, with particular emphasis on the United Nation's Food and Agricultural Organization's (FAO) strategy to promote international harmonization and capacity building

  10. Natural Language Interface for Safety Certification of Safety-Critical Software

    Science.gov (United States)

    Denney, Ewen; Fischer, Bernd

    2011-01-01

    Model-based design and automated code generation are being used increasingly at NASA. The trend is to move beyond simulation and prototyping to actual flight code, particularly in the guidance, navigation, and control domain. However, there are substantial obstacles to more widespread adoption of code generators in such safety-critical domains. Since code generators are typically not qualified, there is no guarantee that their output is correct, and consequently the generated code still needs to be fully tested and certified. The AutoCert generator plug-in supports the certification of automatically generated code by formally verifying that the generated code is free of different safety violations, by constructing an independently verifiable certificate, and by explaining its analysis in a textual form suitable for code reviews.

  11. The Criticality Safety Information Resource Center at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, B.D.; Meade, R.A. [Los Alamos National Lab., NM (United States); Pruvost, N.L. [Galaxy Computer Services, Inc., Santa Fe, NM (United States)

    1997-05-01

    The mission of the Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is the preservation of primary documentation supporting criticality safety. In many cases, but not all, this primary documentation consists of experimentalists` logbooks. Experience has shown that the logbooks and other primary information are vulnerable to being discarded. Destruction of these logbooks results in a permanent loss to the criticality safety community.

  12. Self-organized Criticality Model for Ocean Internal Waves

    International Nuclear Information System (INIS)

    Wang Gang; Hou Yijun; Lin Min; Qiao Fangli

    2009-01-01

    In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)

  13. CRISTAL: a french criticality code package to assess nuclear installation criticality safety

    International Nuclear Information System (INIS)

    Michel, E Doucet; Comte, N.; Jean Michel Gomit; Eric Letang; Chrsitine Magnaud; Christophe Venard; Herve Toubon; Cogema

    2005-01-01

    For more than thirty years, CEA, IRSN and the French nuclear industry have been combining their efforts to finance, develop and validate computer codes to assess the criticality safety concerns of nuclear installations, transport casks, and reprocessing facilities. As one of the major world fuel vendors, Framatome ANP is deeply involved in defining code developments which incorporate feedback from both users and customers. The result of these continuous efforts is the evolutionary CRISTAL code. The CRISTAL package was developed as an easy-to-use system using cross-section libraries (JEF 2.2 and CEA93), well-established computer codes (APOLLO2, MORET 4 and TRIPOLI-4) and including a Graphical User-Friendly Interface. The APOLLO2 computer code, a spectral code used for evaluating the basic characteristics of fuel assemblies, has been upgraded to perform criticality safety calculations. The MORET 4 computer code is a neutron simulation code in three dimensions which uses the multigroup formalism for cross-sections and the Monte Carlo method to solve the Boltzmann equation. Through the years, the CRISTAL package has been improved to take into account both the growth of its validation database and the increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating the comprehensive APOLLO2 and MORET 4 computer codes; CRISTAL V0 is the result of more than five years of development work focusing on theoretical approaches and on the implementation of user-friendly graphical interfaces. Thanks to its broad validation database, CRISTAL V0 provides outstanding accuracy of criticality evaluation for configurations covering the entire fuel cycle life (i.e. from fuel enrichment, pellet/assembly fabrication and transport casks to fuel reprocessing). With more than a thousand benchmark/calculation comparisons, uncertainties can be deduced for various file media, fissile shapes, fissile process interactions, neutron-poisoning screens and material

  14. Nuclear criticality safety calculational analysis for small-diameter containers

    International Nuclear Information System (INIS)

    LeTellier, M.S.; Smallwood, D.J.; Henkel, J.A.

    1995-11-01

    This report documents calculations performed to establish a technical basis for the nuclear criticality safety of favorable geometry containers, sometimes referred to as 5-inch containers, in use at the Portsmouth Gaseous Diffusion Plant. A list of containers currently used in the plant is shown in Table 1.0-1. These containers are currently used throughout the plant with no mass limits. The use of containers with geometries or material types other than those addressed in this evaluation must be bounded by this analysis or have an additional analysis performed. The following five basic container geometries were modeled and bound all container geometries in Table 1.0-1: (1) 4.32-inch-diameter by 50-inch-high polyethylene bottle; (2) 5.0-inch-diameter by 24-inch-high polyethylene bottle; (3) 5.25-inch-diameter by 24-inch-high steel can (open-quotes F-canclose quotes); (4) 5.25-inch-diameter by 15-inch-high steel can (open-quotes Z-canclose quotes); and (5) 5.0-inch-diameter by 9-inch-high polybottle (open-quotes CO-4close quotes). Each container type is evaluated using five basic reflection and interaction models that include single containers and multiple containers in normal and in credible abnormal conditions. The uranium materials evaluated are UO 2 F 2 +H 2 O and UF 4 +oil materials at 100% and 10% enrichments and U 3 O 8 , and H 2 O at 100% enrichment. The design basis safe criticality limit for the Portsmouth facility is k eff + 2σ < 0.95. The KENO study results may be used as the basis for evaluating general use of these containers in the plant

  15. Criticality Safety Information Resource Center Web portal: www.csirc.net

    International Nuclear Information System (INIS)

    Harmon, C.D. II; Jones, T.

    2000-01-01

    The Nuclear Criticality Safety Group (ESH-6) at Los Alamos National Laboratory (LANL) is in the process of collecting and archiving historical and technical information related to nuclear criticality safety from LANL and other facilities. In an ongoing effort, this information is being made available via the Criticality Safety Information Resource Center (CSIRC) web site, which is hosted and maintained by ESH-6 staff. Recently, the CSIRC Web site was recreated as a Web portal that provides the criticality safety community with much more than just archived data

  16. Integrated Design and Analysis Environment for Safety Critical Human-Automation Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight deck systems, like many safety critical systems, often involve complex interactions between multiple human operators, automated subsystems, and physical...

  17. Investigating the safety of medication administration in adult critical care settings.

    Science.gov (United States)

    Mansour, Mansour; James, Veronica; Edgley, Alison

    2012-01-01

    Medication errors are recognized causes of patient morbidity and mortality in hospital settings, and can occur at any stage of the medication management process. Medication administration errors are reported to occur more frequently in critical care settings, and can be associated with severe consequences. However, patient safety research tends to focus on accident causations rather than organizational factors which enhance patient safety and health care resilience to unsafe practice. The Organizational Safety Space Model was developed for high-risk industries to investigate factors that influence organizational safety. Its application in health care settings may offer a unique approach to understand organizational safety in the health care context, particularly in investigating the safety of medication administration in adult critical care settings. This literature review explores the development and use of the Organizational Safety Space Model in the industrial context, and considers its application in investigating the safety of medication administration in adult critical care settings. SEARCH STRATEGIES (INCLUSION AND EXCLUSION CRITERIA): CINAHL, Medline, British Nursing Index (BNI) and PsychInfo databases were searched for peer-reviewed papers, published in English, from 1970 to 2011 with relevance to organizational safety and medication administration in critical care, using the key words: organization, safety, nurse, critical care and medication administration. Archaeological searching, including grey literature and governmental documents, was also carried out. From the identified 766 articles, 51 studies were considered relevant. The Organizational Safety Space Model offers a productive, conceptual system framework to critically analyse the wider organizational issues, which may influence the safety of medication administration and organizational resilience to accidents. However, the model needs to be evaluated for its application in health care settings in

  18. Developing international safety standards for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Metcalf, P.

    2001-01-01

    In the context of the International Atomic Energy Agency's (IAEA) programme to create a corpus of internationally accepted Radioactive Waste Safety Standards (RADWASS), focus is currently being placed on establishing standards for the 'geological disposal of radioactive waste'. This is a challenging task and to help the standards development process there is a need to stimulate discussion of some of the associated scientific and technical issues. A number of position papers developed in recent years by a subgroup of the Waste Safety Standards Committee (WASSC), the subgroup on Principles and Criteria for Radioactive Waste Disposal, address many of the relevant issues. These include a common safety based framework for radioactive waste disposal, appropriate time frames for safety assessment, different possible indicators of long-term safety, the safety implications of reversibility and retrievability, the assessment of possible human intrusion into the repository, the role and limitations of institutional control, establishing reference critical groups and biospheres for long-term assessment, and what is meant by 'compliance' with the standards. These papers will be discussed at a Specialists Meeting to be held at the IAEA in June 2001 as a means of establishing the extent to which they enjoy the general support of experts. In order to broaden that consensus, the conclusions reached at the Specialists Meeting on the issues listed above will be presented and discussed with participants at a number of international meetings. Later this year, a draft safety standard on the geological disposal of radioactive waste which takes account of the consensus positions reached through the various consultations will be submitted for the consideration of Waste Safety Standards Committee (WASSC), the officially approved body within the IAEA for the review and approval of waste safety standards. The Committee is made up of government appointed radioactive waste regulators

  19. Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Engineering Dept.

    2016-09-20

    These are slides from a seminar given to the University of Mexico Nuclear Engineering Department. Whisper is a statistical analysis package developed to support nuclear criticality safety validation. It uses the sensitivity profile data for an application as computed by MCNP6 along with covariance files for the nuclear data to determine a baseline upper-subcritical-limit for the application. Whisper and its associated benchmark files are developed and maintained as part of MCNP6, and will be distributed with all future releases of MCNP6. Although sensitivity-uncertainty methods for NCS validation have been under development for 20 years, continuous-energy Monte Carlo codes such as MCNP could not determine the required adjoint-weighted tallies for sensitivity profiles. The recent introduction of the iterated fission probability method into MCNP led to the rapid development of sensitivity analysis capabilities for MCNP6 and the development of Whisper. Sensitivity-uncertainty based methods represent the future for NCS validation – making full use of today’s computer power to codify past approaches based largely on expert judgment. Validation results are defensible, auditable, and repeatable as needed with different assumptions and process models. The new methods can supplement, support, and extend traditional validation approaches.

  20. Major food safety episodes in Taiwan: Implications for the necessity of international collaboration on safety assessment and management

    Directory of Open Access Journals (Sweden)

    Jih-Heng Li

    2012-07-01

    Full Text Available The major food safety episodes that occurred in Taiwan during the past decade are briefly reviewed in this paper. Among the nine major episodes surveyed, with the exception of a U.S. beef (associated with Creutzfeldt–Jakob disease-related incident, all the others were associated with chemical toxicants. The general public, which has a layperson attitude of zero tolerance toward food safety, may panic over these food-safety-associated incidents. However, the health effects and impacts of most incidents, with the exception of the melamine incident, were essentially not fully evaluated. The mass media play an important role in determining whether a food safety concern becomes a major incident. A well-coordinated and harmonized system for domestic and international collaboration to set up standards and regulations is critical, as observed in the incidents of pork with ractopamine, Chinese hairy crab with nitrofuran antibiotics, and U.S. wheat with malathion. In the future, it can be anticipated that food safety issues will draw more attention from the general public. For unknown new toxicants or illicit adulteration of food, the establishment of a more proactive safety assessment system to monitor potential threats and provide real-time information exchange is imperative.

  1. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  2. International standardization of safety requirements for fast reactors

    International Nuclear Information System (INIS)

    2011-06-01

    Japan Atomic Energy Agency (JAEA) is conducting the FaCT (Fast Reactor Cycle Technology Development) project in cooperation with Japan Atomic Power Company (JAPC) and Mitsubishi FBR systems inc. (MFBR), where an advanced loop-type fast reactor named JSFR (Japan Sodium-cooled Fast Reactor) is being developed. It is important to develop software technologies (a safety guideline, safety design criteria, safety design standards etc.) of FBRs as well as hardware ones (a reactor plant itself) in order to address prospective worldwide utilization of FBR technology. Therefore, it is expected to establish a rational safety guideline applicable to the JSFR and harmonized with national nuclear-safety regulations as well, including Japan, the United States and the European Union. This report presents domestic and international status of safety guideline development for sodium-cooled fast reactors (SFRs), results of comparative study for safety requirements provided in existing documents and a proposal for safety requirements of future SFRs with a roadmap for their refinement and worldwide utilization. (author)

  3. Critical Realism versus Social Constructivism in International Relations

    Directory of Open Access Journals (Sweden)

    Roxana Bobulescu

    2011-05-01

    Full Text Available This article discusses the methodological differences between the British school and the American school of international relations. It attempts to demonstrate that Susan Strange, representative of the British school, could be considered a critical realist. The aim of the article is to show that her vision of international political economy fulfills the methodological reorientation initiated in economics by Tony Lawson at the end of the 90s. Strange’s radical ontology claims that structural power determines human actions. The paper contrasts Strange’s approach with that of John Ruggie, from the American school, who identifies himself as a social constructivist. Ruggie emphasizes the role of ideational factors in international relations and the constructed nature of social reality.

  4. Nuclear power performance and safety. V.3. Safety and international co-operation

    International Nuclear Information System (INIS)

    1988-01-01

    The International Conference on Nuclear Power Performance and Safety, organized by the International Atomic Energy Agency, was held at the Austria Centre Vienna (ACV) in Vienna, Austria, from 28 September to 2 October 1987. The objective of the Conference was to promote an exchange of worldwide information on the current trends in the performance and safety of nuclear power and its fuel cycle, and to take a forward look at the expectations and objectives for the 1990s. This objective was accomplished through presentation and discussion of about 200 papers at the Conference. Almost 500 participants and observers from 40 countries and 12 organizations discussed three major questions which were posed as the focus of this Conference: (1) What are the current trends and major issues with regard to performance and safety of nuclear power, the nuclear fuel cycle and radioactive waste management? (2) What steps are being taken or need to be taken to resolve outstanding issues in order to improve the performance of nuclear power with assured safety? (3) What performance objectives and achievements can be anticipated for the 1990s? All presentations of this Conference were divided into six volumes. This is Volume 3 which is devoted to the problems of safety and international cooperation. All presentations of Volume 3 were divided into four sessions as follows: the need for safety in nuclear power programmes (4 papers); international cooperation in nuclear safety (6 papers); technical aspects in plant safety (7 papers); approaches to safety (3 papers). A separate abstract was prepared for each of these 20 papers. Refs, figs and tabs

  5. Research on international cooperation for nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cheng Jianxiu

    2013-01-01

    This paper describes the importance and related requirements of international cooperation on nuclear and radiation safety, analyzes the current status, situation and challenges faced, as well as the existing weakness and needs for improvement, and gives some proposals for reference. (author)

  6. European and International Standards on health and safety in welding

    Science.gov (United States)

    Howe, A.

    2009-02-01

    A number of European and International Standards on health and safety in welding have been published in recent years and work on several more is nearing completion. These standards have been prepared jointly by the International Standards Organization (ISO) and the European Committee for Standardization (CEN). The standards development work has mostly been led by CEN/TC 121/SC 9, with excellent technical input from experts within Europe; but work on the revision of published standards, which has recently gathered pace, is now being carried out by ISO/TC 44/SC 9, with greater international involvement. This paper gives an overview of the various standards that have been published, are being revised or are under development in this field of health and safety in welding, seeking to (i) increase international awareness of published standards, (ii) encourage wider participation in health and safety in welding standards work and (iii) obtain feedback and solicit comments on standards that are currently under development or revision. Such an initiative is particularly timely because work is currently in progress on the revision of one of the more important standards in this field, namely EN ISO 10882:2001 Health and safety in welding and allied processes— Sampling of airborne particles and gases in the operator's breathing zone — Part 1: Sampling of airborne particles.

  7. Progress toward international agreement to improve reactor safety

    International Nuclear Information System (INIS)

    Lieberman, J.I.; Graham, B.

    1993-01-01

    Representatives of nearly one-half of the 114 member states of the International Atomic Energy Agency (IAEA), including the United States, have participated in the development of an international nuclear safety conventions proposed multilateral treaty to improve civil nuclear power reactor safety. A preliminary draft of the convention has been developed (referred to as the draft convention for this report), but discussions are continuing, and when the final convention text will be completed and presented to IAEA member states for signature is uncertain. This report responds to the former and current Chairman's request that we provide information on the development of the nuclear safety convention, including a discussion of (1) the draft convention's scope and objectives, (2) how the convention will be implemented and monitored, (3) the views of selected country representatives on what provisions should be included in the draft convention, and (4) the convention's potential benefits and limitations

  8. Safety and security profiles of industry networks used in safety- critical applications

    Directory of Open Access Journals (Sweden)

    Mária FRANEKOVÁ

    2008-01-01

    Full Text Available The author describes the mechanisms of safety and security profiles of industry and communication networks used within safety – related applications in technological and information levels of process control recommended according to standards IEC 61784-3,4. Nowadays the number of vendors of the safety – related communication technologies who guarantees besides the standard communication, the communication amongst the safety – related equipment according to IEC 61508 is increasing. Also the number of safety – related products is increasing, e. g. safety Fieldbus, safety PLC, safety curtains, safety laser scanners, safety buttons, safety relays and other. According to world survey the safety Fieldbus denoted the highest growth from all manufactured safety products.The main part of this paper is the description of the safety-related Fieldbus communication system, which has to guaranty Safety Integrity Level.

  9. Critical Incident Reporting in Anaesthesia: A Prospective Internal Audit

    Directory of Open Access Journals (Sweden)

    Sunanda Gupta

    2009-01-01

    Full Text Available Critical incident monitoring is useful in detecting new problems, identifying near misses′ and analyzing factors or events leading to mishaps, which can be instructive for trainees. This study was aimed at investigating potential risk factors and analyze events leading to pen-operative critical incidents in order to develop a critical incident reporting system. W conducted a one year prospective analysis of voluntarily reported 24- hour-perioperative critical inci-dents, occurring in patients subjected to anaesthesia. During a one year period from December 2006 to December 2007, 14,134 anaesthetics were administered and 112(0.79% critical incidents were reported with complete recov-ery in 71.42%(n=80 and mortality in 28.57% (n=32 cases. Incidents occurred maximally in 0-10 years age (23.21%, ASA 1(61.61%, in general surgery patients (43.75%, undergoing emergency surgery (52.46% and during day time (75.89%. Incidence was more in the operating theatre (77.68%, during maintenance (32.04% and post-operative phase (25.89% and in patients who received general anaesthesia (75.89%. Critical incidents occurred clue to fac-tors related to anaesthesia (42.85%, patient (37.50% and surgery (16.96°lo. Among anaesthesia related critical incidents (42.85% n=48/112, respiratory events were maximum (66.66% mainly at induction (37.5% and emer-gence (43.75%, and factors responsible were human error (85.41%, pharmacological factors (10.41% and equip-ment error (4.17%. Incidence of mortality was 22.6 per10, 000 anaesthetics (32/14,314, mostly attributable to risk factors in patient (59.38% as compared to anaesthesia (25% and surgery (9.38%. There were 8 anaesthesia related deaths (5.6 per 10, 000 anaesthetics where human error (75% attributed to lack of judgment (67.50% was an important causative factor. We conclude that critical incident reporting system may be a valuable part of quality assurance to develop policies to prevent recurrence and enhance patient

  10. Consensus standards utilized and implemented for nuclear criticality safety in Japan

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Okuno, Hiroshi; Naito, Yoshitaka

    1996-01-01

    The fundamental framework for the criticality safety of nuclear fuel facilities regulations is, in many advanced countries, generally formulated so that technical standards or handbook data are utilized to support the licensing safety review and to implement its guidelines. In Japan also, adequacy of the safety design of nuclear fuel facilities is checked and reviewed on the basis of licensing safety review guides. These guides are, first, open-quotes The Basic Guides for Licensing Safety Review of Nuclear Fuel Facilities,close quotes and as its subsidiaries, open-quotes The Uranium Fuel Fabrication Facility Licensing Safety Review Guidesclose quotes and open-quotes The Reprocessing Facility Licensing Safety Review Guides.close quotes The open-quotes Nuclear Criticality Safety Handbook close-quote of Japan and the Technical Data Collection are published and utilized to supply related data and information for the licensing safety review, such as for the Rokkasho reprocessing plant. The well-established technical standards and data abroad such as those by the American Nuclear Society and the American National Standards Institute are also utilized to complement the standards in Japan. The basic principles of criticality safety control for nuclear fuel facilities in Japan are duly stipulated in the aforementioned basic guides as follows: 1. Guide 10: Criticality control for a single unit; 2. Guide 11: Criticality control for multiple units; 3. Guide 12: Consideration for a criticality accident

  11. Nuclear energy - Fissile materials - Principles of criticality safety in storing, handling and processing

    International Nuclear Information System (INIS)

    1995-01-01

    This International Standard specifies the basic principles and limitations which govern operations with fissile materials. It discusses general criticality safety criteria for equipment design and for the development of operating controls, while providing guidance for the assessment of procedures, equipment, and operations. It does not cover quality assurance requirements or details of equipment or operational procedures, nor does it cover the effects of radiation on man or materials, or sources of such radiation, either natural or as the result of nuclear chain reactions. Transport of fissile materials outside the boundaries of nuclear establishments is not within the scope of this International Standard and should be governed by appropriate national and international standards and regulations. These criteria apply to operations with fissile materials outside nuclear reactors but within the boundaries of nuclear establishments. They are concerned with the limitations which must be imposed on operations because of the unique properties of these materials which permit them to support nuclear chain reactions. These principles apply to quantities of fissile materials in which nuclear criticality can be established

  12. Towards an International Network of Critical Zone Observatories

    Science.gov (United States)

    Lin, H.; Banwart, S. A.; Filley, T. R.; Guo, D.; Richter, D., Jr.; Trumbore, S.; Vereecken, H.; Voelkel, J.

    2015-12-01

    The Earth's Critical Zone (CZ) concept provides a holistic and unifying framework to understand diverse Earth surficial processes, encompassing the hydrologic cycle, the geochemical cycle, the carbon cycle, the nutrient cycle, gas exchange (major and trace gases), erosion and deposition, weathering, lithification (diagenesis), soil formation and evolution (pedogenesis), life processes (macro- and microbial communities), and human impacts (land use and management). Among the complexity of the CZ are the integration of abiotic and biotic processes, the linkage between belowground and aboveground systems, and the unification of time and space dimensions. Three aspects unique to CZ can be used to differentiate Critical Zone Observatories (CZOs) from other terrestrial environmental observing systems : 1) Deep time, including geologic timescale to understand the formation and evolution of the Earth's surficial environment and the reconciliation of long- and short-time scale processes; 2) Deep depth into weathered bedrock, which is much deeper than the classical perception of soils perceived as 1-2 m root zone; and 3) Deep coupling of diverse processes, including interactions and feedbacks among geologic, pedologic, hydrologic, biologic, geochemical, atmospheric, and anthropogenic processes. These "three deeps" can be used to guide the development of the international network of CZOs. The US, EU, Germany, UK, China, and Australia are leading the way to establish such an international network, which can serve the international scientific community through interdisciplinary research, common infrastructure, shared databases, integrated models, and the education of new generations of earth and environmental scientists.

  13. On the applicability of the critical safety function concept to a uranium hexafluoride conversion unit

    International Nuclear Information System (INIS)

    Santos, F.C.; Goncalves, J.S.; Melo, P.F. Frutuoso e; Medeiros, J.A.C.C.

    2013-01-01

    This paper presents a discussion on the applicability on the critical safety function (CSF) concept as a design criterion for the new UF 6 conversion plant of Industrias Nucleares do Brazil (INB). This discussion is in the context of accident management, under the safety function oriented management. Safety functions may be understood as those whose loss may lead to releases of radioactive material or highly toxic chemicals, having possible radiological and/or occupational consequences for workers, the public or the environment. They should be designed to prevent criticality and to ensure adequate process confinement, thus preventing radioactive material releases that might lead to internal or external exposure and highly toxic chemical releases and exposure. The main hazards is the potential release of chemicals, especially HF and UF 6 . A criticality hazard exists only if the conversion facility processes uranium with a 235 U concentration greater than 1% Industrial activities for UF 6 production include handling and processing explosive, toxic and lethal chemicals, such as HF, H 2 and elemental F 2 , besides intermediate compounds containing uranium. State trees and definition of logical arrangements to construct an annunciation system are the next development stages, resulting form the establishment of applicable CSFs as representative of the next development stages, resulting from the establishment of applicable CSFs as representative of the various systems that make up the conversion plant. Discussed also in the biggest challenge of the development of this innovation, that is, the uncertainties related to the impact of human factors (not subject to monitoring by sensors or process conventional instrumentation). (author)

  14. A critical review on toxicological safety of 2-alkylcyclobutanones

    International Nuclear Information System (INIS)

    Song, Beom-Seok; Choi, Soo-Jeong; Jin, Young-Bae; Park, Jong-Heum; Kim, Jae-Kyung; Byun, Eui-Baek; Kim, Jae-Hun; Lee, Ju-Woon; Kim, Gang-Sung; Marchioni, Eric

    2014-01-01

    2-Alkylcyclobutanones (2-ACBs) are known as unique radiolytic products generated from the major fatty acids and triglycerides in food through only irradiation. Since 1990, studies on the toxicological safety of 2-ACBs have been conducted extensively with synthetic compounds. Mutagenicity tests of 2-ACBs on the microorganisms reviewed in this study clearly indicate that no evidence was observed, while several in vitro studies demonstrated the cytotoxicity of 2-ACBs through cell death. Moreover, the genotoxicity of 2-ACBs was suggested as DNA strand breaks were observed. However, these findings should be interpreted with caution because genotoxicity may result from cytotoxicity, which causes DNA damage or from cell membrane destruction and indirect oxidative DNA damage. Therefore, elucidation of the mechanism of genotoxic effects is needed. With regards to the suggestion of Raul et al. (2002) who showed the promoting effect of colon cancer by the administration of 2-ACBs, further studies are needed to correct some experimental design errors. Moreover, an in-vivo experiment that evaluated the metabolism of 2-ACBs has revealed that 2-dDCB was metabolized into cyclic alcohol and excreted through fecal discharge. In conclusion, it is considered that the ingestion of 2-ACBs through irradiated foods is unlikely to affect the human health. However, more specific studies are required to identify the fate of 2-ACBs in body and the LD 50 values. The determination of chronic toxicity by long-term exposure to low concentrations of 2-ACBs has to be evaluated more clearly to determine if these compounds are safe to human. - Highlights: • Mutagenicity 2-ACBs on the microorganisms was not observed. • Several in vitro studies demonstrated the cytotoxicity of 2-ACBs. • Genotoxicity of 2-ACBs was suggested, but elucidation of the mechanism is needed. • 2-dDCB was metabolized into cyclic alcohol and excreted in feces. • Further studies for toxicity of 2-ACBs following

  15. Critical issues of alcohol safety in the region

    Directory of Open Access Journals (Sweden)

    Svetlana Vasil’evna Aksyutina

    2015-03-01

    Full Text Available The paper presents results of the research into the economic and socio-demographic indicators associated with the production and consumption of alcoholic beverages. It discloses the analysis of the alcoholic beverage market structure in the Vologda Oblast. The authors have identified the threshold of the safe alcohol production volume in the region taking into account the World Health Organization standards of alcohol consumption and the share of illegally produced goods. The article states that the increased alcohol production contributes to the rise in tax revenues, but the state fiscal policy to regulate the alcoholic beverage market leads to an increase in the share of shadow turnover. The authors have calculated the economic loss connected with the illegal production of alcoholic beverages in the Vologda Oblast. The alcohol consumption is a destructive socio-demographic process and one of the threats to the health of the nation. Excessive alcohol consumption leads to alcohol dependence, regression of the society and increases the threat to national and economic security. The study reveals a direct correlation between the consumption of alcoholic beverages per capita and mortality rates in men and women of working age from the causes related to the consumption of alcoholic beverages. The study of the international experience to regulate alcohol consumption has showed the need to tighten state control in the sphere of production and turnover of alcoholic products. The conduct of the unified state alcohol policy substantiates the selection of the alcohol industry in the all-Russian classifier of economic activity types. The authors have elaborated the concept and conditions of alcoholic security from the point of view of economic growth and social development. The article substantiates the necessity to monitor alcohol safety indicators when considering the regional development. It presents the complex system of socio-economic and demographic

  16. Overview of the activities of the OECD/NEA/NSC working party on nuclear criticality safety

    International Nuclear Information System (INIS)

    Nouri, A.; Blomquist, R.; Bradyraap, M.; Briggs, B.; Cousinou, P.; Nomura, Y.; Weber, W.

    2003-01-01

    The OECD Nuclear Energy Agency (NEA) started dealing with criticality-safety related subjects back in the seventies. In the mid-nineties, several activities related to criticality-safety were grouped together into the Working Party on Nuclear Criticality Safety. This working party has since been operating and reporting to the Nuclear Science Committee. Six expert groups co-ordinate various activities ranging from experimental evaluations to code and data inter-comparisons for the study of static and transient criticality behaviours. The paper describes current activities performed in this framework and the achievements of the various expert groups. (author)

  17. Critical incidents related to cardiac arrests reported to the Danish Patient Safety Database

    DEFF Research Database (Denmark)

    Andersen, Peter Oluf; Maaløe, Rikke; Andersen, Henning Boje

    2010-01-01

    Background Critical incident reports can identify areas for improvement in resuscitation practice. The Danish Patient Safety Database is a mandatory reporting system and receives critical incident reports submitted by hospital personnel. The aim of this study is to identify, analyse and categorize...... critical incidents related to cardiac arrests reported to the Danish Patient Safety Database. Methods The search terms “cardiac arrest” and “resuscitation” were used to identify reports in the Danish Patient Safety Database. Identified critical incidents were then classified into categories. Results One...

  18. International Safety Management – Safety Management Systems and the Challenges of Changing a Culture

    Directory of Open Access Journals (Sweden)

    Gregory Hanchrow

    2017-03-01

    Full Text Available Over the past generation, the ISM code has brought forth tremendous opportunities to investigate and enhance the human factor in shipping through the implementation of Safety Management Systems. One of the critical factors to this implementation has been mandatory compliance and a requirement for obtaining a Document of Compliance (DOC for vessels operating globally or at least internationally. A primary objective of these systems is to maintain them as “living” or “dynamic” systems that are always evolving. As the ISM code has evolved, there have been instances where large organizations have opted to maintain a voluntary DOC from their respective class society. This has been accomplished with a large human factor element as typically an organizational culture does not always accept change readily especially if there is not a legal requirement to do so. In other words, when considering maritime training is it possible that organizations may represent cultural challenges? The intent of this paper will be to research large maritime operations that have opted for a document of compliance voluntarily and compare them to similar organizations that have been mandated by international law to do the same. The result should be to gain insight into the human factors that must contribute to a culture change in the organization for the purposes of a legal requirement versus the human factors that contribute to a voluntary establishment of a safety management system. This analysis will include both the executive decision making that designs a system implementation and the operational sector that must execute its implementation. All success and failures of education and training can be determined by the outcome. Did the training achieve its goal? Or has the education prepared the students to embrace a new idea in conjunction with a company goal or a new regulatory scheme? In qualifying the goal of a successful ISM integration by examining both

  19. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

  20. Consequences of Fuel Failure on Criticality Safety of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Marshall, William J.; Wagner, John C.

    2012-09-01

    configuration categories was developed and specific configurations were evaluated. The various configurations were not developed to represent the results of specific reconfiguration progressions; rather, they were designed to be bounding of any reconfiguration progressions that could occur. loaded in representative cask systems were considered in this report. The two fuel assembly designs selected for this analysis represent a large portion of the current inventory of discharged UNF and/or a significant portion of the fuel designs currently in use. The cask systems selected for this analysis are high-capacity 32-PWR-assembly general burnup credit cask (GBC-32) and 68-BWR-assembly multipurpose canister (MPC-68) cask designs based on the Holtec International HI-STAR 100 system. The depletion conditions used in this analysis are considered representative of those used in a burnup credit criticality safety evaluation. The analysis focuses on typical discharge fuel conditions (e.g., fuel initial enrichment, discharge burnup, and post-irradiation decay time) that could be loaded into storage and transportation casks. Additional burnup and extended post-irradiation cooling times are considered in this analysis for both PWR and BWR fuel to establish the sensitivity of reconfiguration impacts to these parameters. Although the results indicate that the potential impacts on subcriticality can be rather significant for certain configurations, it can be concluded that the consequences of credible fuel failure configurations from ES or transportation following ES are manageable. Some examples for how to address the potential increases in keff in a criticality safety evaluation were provided. Future work to further inform decisionmaking relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

  1. Current status of international cooperation on nuclear safety research

    International Nuclear Information System (INIS)

    Katsuragi, Satoru

    1984-01-01

    JAERI (Japan Atomic Energy Research Institute), as a representative organization in Japan, has been participating in many international cooperations on nuclear safety research. This report reviews the recent achievement and evolution of the international cooperative safety studies. Twelve projects that are based on the agreements between JAERI and foreign organizations are reviewed. As the fuel irradiation studies, the recent achievement of the OECD Halden Reactor Project and the agreement between Pacific Northwest Laboratories, Battelle Memorial Institute, and JAERI are explained. As for the study of reactivity accident, the cooperation of the NSRR (Nuclear Safety Research Reactor) project in Japan with PBF, PNS and PHEBUS projects in the U.S., West Germany and France, respectively, are now in progress. The fuel performance in abnormal transient and the experiment and analysis of severe fuel damage are the new areas of international interest. The OECD/LOFT project and ROSA-4 projects are also explained in connection with the FP source term problem and the analysis codes such as RELAP-5 and TRAC. As the safety studies associated with the downstream of the nuclear fuel cycle, the BEFAST project of IAEA and the ISIRS project of OECD/NEA are shortly reviewed. (Aoki, K.)

  2. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  3. American National Standard administrative practices for nuclear criticality safety, ANSI/ANS-8.19

    International Nuclear Information System (INIS)

    Smith, D.R.; Carson, R.W.

    1991-01-01

    American National Standard Administrative Practices for Nuclear Criticality Safety, ANSI/ANS-8.19, provides guidance for the administration of an effective program to control the risk of nuclear criticality in operations with fissile material outside reactors. The several sections of the standard address the responsibilities of management, supervisory personnel, and the criticality safety staff, as well as requirements and suggestions for the content of operating procedures, process evaluations, material control procedures, and emergency procedures

  4. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  5. A fresh start of nuclear safety regulation and international perspective

    International Nuclear Information System (INIS)

    Oshima, Kenzo

    2013-01-01

    It should be explained more to the outside modestly the Fukushima nuclear accident would be a man-made complex disaster, which might be reluctant to do but not be neglected. Utmost efforts to change inward-looking attitude and reform safety culture should be done so as to prevent superficial reflection of the Fukushima nuclear accident. Since all nuclear regulatory functions ('3S': safety, security, safeguards) were integrated in Nuclear Regulation Authority (NRA), NRA and secretariat of NRA became more responsible for international response, and strengthening of organization system and human resources development would be an urgent necessity. This article described present stage of NRA focusing on international dimension including personal views. Overseas strong concern over the Fukushima nuclear accident and international communications were reviewed. The Fukushima nuclear accident started from natural disaster and enlarged as a man-made complex disaster with many human factors (mainly inaction, wilful negligence) overlapping and safety culture flawed. Examples of overseas and Japanese action plan to learn and absorb lessons from the Fukushima accident were introduced. NRA's started activities on inviting IAEA's IRRS and OPPAS as soon as ready, strengthening nuclear security measures, safeguards to prevent nuclear proliferation, bilateral cooperation and international advisors were also presented. (T. Tanaka)

  6. Development and experimental testing of the new safety-criticality Cristal package

    International Nuclear Information System (INIS)

    Mattera, Ch.

    1998-01-01

    This thesis is concerned with Criticality-Safety studies related to the French Nuclear Fuel Cycle. We first describe the steps in the nuclear fuel cycle and the specific characteristics of these studies compared with those performed in Reactor Physics. In order to respond to the future requirements of the French Nuclear Program, we have developed a new package CRISTAL based on a recent cross sections library (CEA93) and the newest accurate codes (APOLLO2, MORET4, TRIPOLI4). The cristal system includes two calculations routes: a design route which will be used by French Industry (COGEMA/SGN) and a reference route.) To transfer this package to the French industry, we have elaborated calculation schemes for fissile solutions, dissolver media, transport casks and storage pools. Afterwards, these schemes have been used for the CRISTAL experimental validation. We have also contributed to the CRISTAL experimental database by reevaluating a French storage pool experiment: the CRISTO II experiment. This revaluation has been submitted to the OCDE working group in order that this experiment can be used by international criticality safety engineers to validate calculations methods. This work represents a large contribution to the recommendation of accurate calculation schemes and to the experimental validation of the CRISTAL package. These studies came up to the French Industry expectations. (author)

  7. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    International Nuclear Information System (INIS)

    DAVIS, S.J.

    2000-01-01

    This document identifies critical characteristics of components to be dedicated for use in Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common, radiation area, monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF) for use in safety significant systems. System modifications are to be performed in accordance with the approved design. Components for this change are commercially available and interchangeable with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications

  8. International symposium on engineering under uncertainty : safety assessment and management

    CERN Document Server

    Bhattacharya, Gautam; ISEUSAM - 2012

    2013-01-01

    International Symposium on Engineering under Uncertainty: Safety Assessment and Management (ISEUSAM - 2012) is organized by Bengal Engineering and Science University, India during the first week of January 2012 at Kolkata.The primary aim of ISEUSAM 2012 is to provide a platform to facilitate the discussion for a better understanding and management of uncertainty and risk, encompassing various aspects of safety and reliability of engineering systems. The conference received an overwhelming response from national as well as international scholars, experts and delegates from different parts of the world.  Papers were received from authors of several countries including Australia, Canada, China, Germany, Italy, UAE, UK and USA, besides India. More than two hundred authors have shown their interest in the symposium. The Proceedings presents ninety two high quality papers which address issues of uncertainty encompassing various fields of engineering, i.e. uncertainty analysis and modelling, structural reliability...

  9. Validating the Danish adaptation of the World Health Organization's International Classification for Patient Safety classification of patient safety incident types

    DEFF Research Database (Denmark)

    Mikkelsen, Kim Lyngby; Thommesen, Jacob; Andersen, Henning Boje

    2013-01-01

    Objectives Validation of a Danish patient safety incident classification adapted from the World Health Organizaton's International Classification for Patient Safety (ICPS-WHO). Design Thirty-three hospital safety management experts classified 58 safety incident cases selected to represent all types...

  10. Definition and Means of Maintaining the Criticality Prevention Design Features Portion of the PFP Safety Envelope

    International Nuclear Information System (INIS)

    RAMBLE, A.L.

    2000-01-01

    The purpose of this document is to record the technical evaluation of the Operational Safety Requirements described in the Plutonium Finishing Plant Final (PFP) Operational Safety Requirements, WHC-SD-CP-OSR-010. Rev. 0-N , Section 3.1.1, ''Criticality Prevention System.'' This document, with its appendices, provides the following: (1) The results of a review of Criticality Safety Analysis Reports (CSAR), later called Criticality Safety Evaluation Reports (CSER), and Criticality Prevention Specifications (CPS) to determine which equipment or components analyzed in the CSER or CPS are considered as one of the two unlikely, independent, and concurrent changes before a criticality accident is possible. (2) Evaluations of equipment or components to determine the safety boundary for the system (Section 4). (3) A list of essential drawings that show the safety system or component (Appendix A). (4) A list of the safety envelope (SE) equipment (Appendix B). (5) Functional requirements for the individual safety envelope equipment (Sections 3 and 4). (6) A list of the operational and surveillance procedures necessary to maintain the system equipment within the safety envelope (Section 5)

  11. Analyzing Software Errors in Safety-Critical Embedded Systems

    Science.gov (United States)

    Lutz, Robyn R.

    1994-01-01

    This paper analyzes the root causes of safty-related software faults identified as potentially hazardous to the system are distributed somewhat differently over the set of possible error causes than non-safety-related software faults.

  12. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    Science.gov (United States)

    Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso

    2005-01-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  13. Criticality safety analysis of TK-13 cask in Bushehr nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Ashgar; Omidvari, Nima [Iran Radioactive Waste Management Company, Tehran (Iran, Islamic Republic of); Hassanzadeh, Mostafa [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-12-15

    Spent fuel production is one of the main problems of nuclear power plants that should be managed properly considering the strategy of each country. Today, in most of nuclear power owner countries, the interim storage has been selected as the temporary solution of spent fuel management because of absence of deep geological repositories and no tendency for reprocessing. On the other side, considering the merits of storage in dual purpose casks based on dry storage, this method was chosen for interim storage. By taking into account that the only operating reactor of Iran is of Water-Water Energetic Reactor (WWER)-1000 type, proposed TK-13 cask by Russia which is the manufacturer of these types of reactors has been considered. In this study, the calculation of basket holding spent fuel assembly criticality of this cask has been analyzed for two modes of fresh and spent fuel by ORIGEN2.1 and MCNPX2.6 nuclear codes. The criterion of the nuclear criticality safety for effective multiplication factor (k{sub eff}) should be 0.95 and 0.98 for many ordinary and accident conditions, respectively. Therefore, the results show that a cylindrical basket with 66 cm diameter and 28 cm pitch with internal holding basket made of borated steel with 0.1% borate and steel free from borate would meet the criticality of cask, respectively.

  14. Overview of Risk Mitigation for Safety-Critical Computer-Based Systems

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.

  15. American National Standards and the DOE - A cooperative effort to promote nuclear criticality safety

    International Nuclear Information System (INIS)

    Rothleder, B.M.

    1996-01-01

    The U.S. Department of Energy's (DOE's) new criticality safety order, DOE Order 420.1 (open-quotes Facility Safety,close quotes October 13, 1995), Sec. 4.3 (open-quotes Nuclear Criticality Safetyclose quotes), invokes, as an integral part, 12 appropriate American National Standards Institute/American Nuclear Society (ANSI/ANS) Series-8 standards for nuclear criticality safety, but with modifications. (The order that 420.1/4.3 replaced also invoked some ANSI/ANS Series-8 standards.) These modifications include DOE operation-specific exceptions to the standards and elaborations on some of the wording in the standards

  16. Training and qualification program for nuclear criticality safety technical staff. Revision 1

    International Nuclear Information System (INIS)

    Taylor, R.G.; Worley, C.A.

    1997-01-01

    A training and qualification program for nuclear criticality safety technical staff personnel has been developed and implemented. All personnel who are to perform nuclear criticality safety technical work are required to participate in the program. The program includes both general nuclear criticality safety and plant specific knowledge components. Advantage can be taken of previous experience for that knowledge which is portable such as performance of computer calculations. Candidates step through a structured process which exposes them to basic background information, general plant information, and plant specific information which they need to safely and competently perform their jobs. Extensive documentation is generated to demonstrate that candidates have met the standards established for qualification

  17. Safety issues in cultural heritage management and critical infrastructures management

    Science.gov (United States)

    Soldovieri, Francesco; Masini, Nicola; Alvarez de Buergo, Monica; Dumoulin, Jean

    2013-12-01

    This special issue is the fourth of its kind in Journal of Geophysics and Engineering , containing studies and applications of geophysical methodologies and sensing technologies for the knowledge, conservation and security of products of human activity ranging from civil infrastructures to built and cultural heritage. The first discussed the application of novel instrumentation, surface and airborne remote sensing techniques, as well as data processing oriented to both detection and characterization of archaeological buried remains and conservation of cultural heritage (Eppelbaum et al 2010). The second stressed the importance of an integrated and multiscale approach for the study and conservation of architectural, archaeological and artistic heritage, from SAR to GPR to imaging based diagnostic techniques (Masini and Soldovieri 2011). The third enlarged the field of analysis to civil engineering structures and infrastructures, providing an overview of the effectiveness and the limitations of single diagnostic techniques, which can be overcome through the integration of different methods and technologies and/or the use of robust and novel data processing techniques (Masini et al 2012). As a whole, the special issue put in evidence the factors that affect the choice of diagnostic strategy, such as the material, the spatial characteristics of the objects or sites, the value of the objects to be investigated (cultural or not), the aim of the investigation (knowledge, conservation, restoration) and the issues to be addressed (monitoring, decay assessment). In order to complete the overview of the application fields of sensing technologies this issue has been dedicated to monitoring of cultural heritage and critical infrastructures to address safety and security issues. Particular attention has been paid to the data processing methods of different sensing techniques, from infrared thermography through GPR to SAR. Cascini et al (2013) present the effectiveness of a

  18. I. Reactor safety (including comments on criticisms of WASH-1400)

    International Nuclear Information System (INIS)

    1976-01-01

    A major concern in any nuclear power programme is a reactor accident resulting in a large release of radioactivity to the environment. Serious reactor accidents are possible and the risk of such accidents cannot be reduced to zero i.e. absolute safety cannot be assured. All that can be expected is that the measures used to ensure safety in the design and operation of a reactor are such that the risk of accident is reduced to acceptably low levels. No member of the general public is known to have died or been injured as a result of an accident in over 1000 commercial nuclear power reactor-years. Some accidents in power reactors in operation today have come close enough to an environmental release of radioactivity to cause serious public concern about future safety. Apparent inadequacies in safety practices disclosed by former members of the nuclear power industry have added to this concern. To obtain an objective appraisal of the reactor safety issue this report examines the measures taken in the design and operation of nuclear reactors to reduce the probability of accident to acceptably low levels

  19. Generation of integral experiment covariance data and their impact on criticality safety validation

    Energy Technology Data Exchange (ETDEWEB)

    Stuke, Maik; Peters, Elisabeth; Sommer, Fabian

    2016-11-15

    The quantification of statistical dependencies in data of critical experiments and how to account for them properly in validation procedures has been discussed in the literature by various groups. However, these subjects are still an active topic in the Expert Group on Uncertainty Analysis for Criticality Safety Assessment (UACSA) of the OECDNEA Nuclear Science Committee. The latter compiles and publishes the freely available experimental data collection, the International Handbook of Evaluated Criticality Safety Benchmark Experiments, ICSBEP. Most of the experiments were performed as series and share parts of experimental setups, consequently leading to correlation effects in the results. The correct consideration of correlated data seems to be inevitable if the experimental data in a validation procedure is limited or one cannot rely on a sufficient number of uncorrelated data sets, e.g. from different laboratories using different setups. The general determination of correlations and the underlying covariance data as well as the consideration of them in a validation procedure is the focus of the following work. We discuss and demonstrate possible effects on calculated k{sub eff}'s, their uncertainties, and the corresponding covariance matrices due to interpretation of evaluated experimental data and its translation into calculation models. The work shows effects of various modeling approaches, varying distribution functions of parameters and compares and discusses results from the applied Monte-Carlo sampling method with available data on correlations. Our findings indicate that for the reliable determination of integral experimental covariance matrices or the correlation coefficients a detailed study of the underlying experimental data, the modeling approach and assumptions made, and the resulting sensitivity analysis seems to be inevitable. Further, a Bayesian method is discussed to include integral experimental covariance data when estimating an

  20. Methods and tools used at the IPSN for the safety assessment of critical software

    International Nuclear Information System (INIS)

    Regnier, P.; Henry, J.Y.

    1998-01-01

    A significant feature of EDF's latest 1400MWe ''N4'' generation of pressurized water reactor (PWR) is the extensive use of computerized instrumentation and control, including a fully digital system for the reactor protection function. For the safety assessment of the software driving the operation of this digital reactor protection called SPIN, IPSN has developed and implemented a set of methods and tools. Using the lessons learned from this experience, IPSN has worked at improving those methods and tools, mainly trying to make them more automatic to use, and has participated in an international assessment exercise to test some other methods and tools, either new products on the market or self-developed products. As a result of these works, this paper presents an up to date overview of the IPSN methods and tools used for the assessment of safety critical software. This assessment, which consists of an analysis of all the documentation associated with the technical specifications and of a representative set of functions, is usually carried out in five steps: (1) critical examination of the documents, (2) evaluation of the quality of the code, (3) determination of the critical software components, (4) development of test cases and choice of testing strategy, (5) dynamic analysis (consistency and robustness). This paper also presents methods and tools developed or implemented by IPSN in order to: evaluate the completeness and consistency of specification and design documents written in natural language; build a model and simulate specification or design items; evaluate the quality of the source code; carry out FMEA analysis; run the binary code and perform tests (CLAIRE); perform random or mutational tests. (author)

  1. Generation of integral experiment covariance data and their impact on criticality safety validation

    International Nuclear Information System (INIS)

    Stuke, Maik; Peters, Elisabeth; Sommer, Fabian

    2016-11-01

    The quantification of statistical dependencies in data of critical experiments and how to account for them properly in validation procedures has been discussed in the literature by various groups. However, these subjects are still an active topic in the Expert Group on Uncertainty Analysis for Criticality Safety Assessment (UACSA) of the OECDNEA Nuclear Science Committee. The latter compiles and publishes the freely available experimental data collection, the International Handbook of Evaluated Criticality Safety Benchmark Experiments, ICSBEP. Most of the experiments were performed as series and share parts of experimental setups, consequently leading to correlation effects in the results. The correct consideration of correlated data seems to be inevitable if the experimental data in a validation procedure is limited or one cannot rely on a sufficient number of uncorrelated data sets, e.g. from different laboratories using different setups. The general determination of correlations and the underlying covariance data as well as the consideration of them in a validation procedure is the focus of the following work. We discuss and demonstrate possible effects on calculated k eff 's, their uncertainties, and the corresponding covariance matrices due to interpretation of evaluated experimental data and its translation into calculation models. The work shows effects of various modeling approaches, varying distribution functions of parameters and compares and discusses results from the applied Monte-Carlo sampling method with available data on correlations. Our findings indicate that for the reliable determination of integral experimental covariance matrices or the correlation coefficients a detailed study of the underlying experimental data, the modeling approach and assumptions made, and the resulting sensitivity analysis seems to be inevitable. Further, a Bayesian method is discussed to include integral experimental covariance data when estimating an application

  2. CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    Energy Technology Data Exchange (ETDEWEB)

    ERICKSON, D.G.

    1999-02-23

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) {le} 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k{sub eff} = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle.

  3. CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    1999-01-01

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) ≤ 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k eff = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle

  4. CSER 98-003: criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    1999-01-01

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21 A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into Glovebox HC-21A are limited to those with a hydrogen to fissile atom ratio (H/X) ≤ 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k eff = 0.95 (including uncertainties). Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle

  5. Internal Arc: People safety in the electrical wiring

    International Nuclear Information System (INIS)

    Inchausti, J. M.

    2009-01-01

    The aim of this article is to describe the internal arc phenomenon, an extremely fast, almost explosive and unattended process of transformation form an initial electric power to the generation of a pressure and heat wave inside the medium its produced its consequences for safety, current methods of limiting them and current regulations in general for equipment used in medium-voltage electrical distribution networks. Taking into account that this type of equipment is found thought the distribution network in both public buildings and unrestricted access areas, safety (of operators and the general public) must be taken into account in the design of equipment and installations to minimize the risk of internal arcs occurring. This is the gist of, for example, ITC 16 of the Spanish Regulation on Power Plants and transformer substations. In addition to the construction aspects specific to each device in which the manufacturer has to takes steps to minimize the risks of an internal arcs occurring. This is the gist of, for example, ITC 16 of the Spanish Regulation on Power Plants and transformer substations. In addition to the construction aspects specific to each device in which an internal arc occurring, it is understood to be vitally important that users, installers and designers of Medium Voltage installations are familiar with the installation conditions stated by the manufacturer and thus avoid risks. (Author) 14 refs

  6. Possibilities and Limitations of Applying Software Reliability Growth Models to Safety- Critical Software

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Jang, Seung Cheol; Ha, Jae Joo

    2006-01-01

    As digital systems are gradually introduced to nuclear power plants (NPPs), the need of quantitatively analyzing the reliability of the digital systems is also increasing. Kang and Sung identified (1) software reliability, (2) common-cause failures (CCFs), and (3) fault coverage as the three most critical factors in the reliability analysis of digital systems. For the estimation of the safety-critical software (the software that is used in safety-critical digital systems), the use of Bayesian Belief Networks (BBNs) seems to be most widely used. The use of BBNs in reliability estimation of safety-critical software is basically a process of indirectly assigning a reliability based on various observed information and experts' opinions. When software testing results or software failure histories are available, we can use a process of directly estimating the reliability of the software using various software reliability growth models such as Jelinski- Moranda model and Goel-Okumoto's nonhomogeneous Poisson process (NHPP) model. Even though it is generally known that software reliability growth models cannot be applied to safety-critical software due to small number of expected failure data from the testing of safety-critical software, we try to find possibilities and corresponding limitations of applying software reliability growth models to safety critical software

  7. Comparative study of Malaysian and Philippine regulatory infrastructures on radiation and nuclear safety with international standards

    International Nuclear Information System (INIS)

    Cayabo, Lynette B.

    2013-06-01

    This study presents the results of the critical reviews, analysis, and comparison of the regulatory infrastructures for radiation and nuclear safety of Malaysis and the Philippines usi ng the IAEA safety requirements, GSR Part 1, G overnment, Legal and Regulatory Framework for Safety'' as the main basis and in part, the GSR Part 3, R adiation Protection and Safety of Radiation Sources: International Basic Safety Standards . The scope of the comparison includes the elements of the relevant legislations, the regulatory system and processes including the core functions of the regulatory body (authorization, review and assessment, inspection and enforcement, development of regulations and guides); and the staffing and training of regulatory body. The respective availabe data of the Malaysian and Philippine regulatory infrastructures and current practices were gathered and analyzed. Recommendations to fill the gaps and strengthen the existing regulatory infrastructure of each country was given using as bases relevant IAEA safety guides. Based on the analysis made, the main findings are: the legislations of both countries do not contain al the elements of teh national policy and strategy for safety as well as those of teh framework for safety in GR Part I. Among the provision that need to be included in the legislations are: emergency planning and response; decommissioning of facilities safe management of radioactive wastes and spent fuel; competence for safety; and technical sevices. Provisions on coordination of different authorities with safety responsibilities within the regulatory framework for safety as well as liaison with advisory bodies and support organizations need to be enhanced. The Philippines needs to establish an independent regulatory body, ie. separate from organizations charged with promotion of nuclear technologies and responsible for facilitiesand activities. Graded approach on the system of notification and authorization by registration and

  8. Criticality studies: One of the two pillars of criticality safety at the Belgonucleaire MOX plant

    International Nuclear Information System (INIS)

    Lance, B.; Maldague, T.; Evrard, G.; Renard, A.; Kockerols, P.

    2001-01-01

    The present paper focuses on the criticality studies performed by the Engineering Division of Belgonucleaire. These are one of the two pillars of the criticality prevention implemented for the Belgonucleaire MOX producing plant. (author)

  9. Criticality safety analysis of Hanford Waste Tank 241-101-SY

    International Nuclear Information System (INIS)

    Perry, R.T.; Sapir, J.L.; Krohn, B.J.

    1993-01-01

    As part of a safety assessment for proposed pump mixing operations to mitigate episodic gas releases in Tank 241-101-SY at the Hanford Site, Richland, Washington, a criticality safety analysis was made using the Sn transport code ONEDANT. The tank contains approximately one million gallons of waste and an estimated 910 G of plutonium. the criticality analysis considers reconfiguration and underestimation of plutonium content. The results indicate that Tank SY-101 does not present a criticality hazard. These methods are also used in criticality analyses of other Hanford tanks

  10. Child Passenger Safety Training for Pediatric Interns: Does it Work?

    Science.gov (United States)

    Morrissey, Dina; Riese, Alison; Violano, Pina; Lapidus, Garry; Baird, Janette; Mello, Michael J

    2016-03-01

    Evaluate the efficacy of a child passenger safety (CPS) educational intervention on the CPS-related knowledge, attitude and anticipatory guidance behaviors of pediatric interns. All subjects were surveyed at baseline and 6 months. Intervention interns attended a CPS training module which included viewing an educational video, observing a car seat inspection appointment, hands-on practice and completion of a post-intervention survey. All 16 intervention interns completed the initial survey, the intervention and the immediate-post questionnaire. Thirteen (81%) completed the 6-month follow-up. The baseline survey was completed by 27/40 (67%) of control interns, 28/40 (70%) submitted a follow-up. The proportion of intervention interns who self-reported giving CPS guidance at all well-child visits increased by 31.3% (95% CI 6.1,56.5%); the control group had no change. Similar results were seen with self-reported knowledge and attitude. A CPS training module increases pediatric interns' knowledge, improves attitudes, and self-reported behaviors regarding CPS-related anticipatory guidance.

  11. The Qualification Experiences for Safety-critical Software of POSAFE-Q

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Yeol; Son, Kwang Seop; Cheon, Se Woo; Lee, Jang Soo; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    Programmable Logic Controllers (PLC) have been applied to the Reactor Protection System (RPS) and the Engineered Safety Feature (ESF)-Component Control System (CCS) as the major safety system components of nuclear power plants. This paper describes experiences on the qualification of the safety-critical software including the pCOS kernel and system tasks related to a safety-grade PLC, i.e. the works done for the Software Verification and Validation, Software Safety Analysis, Software Quality Assurance, and Software Configuration Management etc.

  12. A Practical Risk Assessment Methodology for Safety-Critical Train Control Systems

    Science.gov (United States)

    2009-07-01

    This project proposes a Practical Risk Assessment Methodology (PRAM) for analyzing railroad accident data and assessing the risk and benefit of safety-critical train control systems. This report documents in simple steps the algorithms and data input...

  13. Seafood safety: economics of hazard analysis and Critical Control Point (HACCP) programmes

    National Research Council Canada - National Science Library

    Cato, James C

    1998-01-01

    .... This document on economic issues associated with seafood safety was prepared to complement the work of the Service in seafood technology, plant sanitation and Hazard Analysis Critical Control Point (HACCP) implementation...

  14. Overview of the Activities of the OECD/NEA/NSC Working Party on Nuclear Criticality Safety

    Energy Technology Data Exchange (ETDEWEB)

    Rugama, Y. [OECD Nuclear Energy Agency, 12, Bd des Iles, 92130 Issy-les-Moulineaux (France); Blomquist, R. [Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States); Brady Raap, M. [PNNL, 902 Battelle Blvd, P.O. Box 999, MSIN: K8-34, Richland, Washington 99352 (United States); Briggs, B. [INL, P.O. Box 1625, MS-3860 2525 North Fremont, Idaho Falls, ID 83415-3860 (United States); Gulliford, J. [NEXIA SOLUTIONS B168 Curie Av. Harwell Business Centre Didcot Oxfordshire OX110QT (United Kingdom); Miyoshi, Y.; Suyama, K. [JAEA 2-4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 (Japan); Ivanova, T. [IRSN, BP17 - 92262 Fontenay-Aux-Roses Cedex (France)

    2008-07-01

    Over the years, substantial progress has been made in developing nuclear data and computer codes to evaluate criticality safety for nuclear fuel handling. This state-of-the-art knowledge also has an economic impact. Increased understanding of uncertainties in safety margins allow rational and more economical designs for manipulation, storage and transportation of fissile materials. In the mid-nineties, several activities related to criticality-safety were grouped together into the Working Party on Nuclear Criticality Safety. Six expert groups co-ordinate various activities that run the gamut from experimental evaluations to code and data intercomparisons, for the study of static and transient criticality behaviors. The various reports produced by the expert groups attempt to establish practical rules and identify applicable tools when appropriate. (authors)

  15. Review of WHC criticality safety audit findings for 1970-1981

    International Nuclear Information System (INIS)

    Rogers, C.A.; Paglieri, J.N.

    1984-01-01

    At Westinghouse Hanford Company (WHC) all fissionable material handling must meet DOE requirements for safety. This necessitates a program of regular audits by the Safety group to verify compliance with criticality safety limits and controls and to alert facility management to observed discrepancies and potential problems. Audits of fissionable material facilities by Safety are required at least once every 6 months, but in practice are conducted more frequently. This paper summarizes findings from over 400 criticality safety audits conducted by Safety between July 1970 and July 1981 in seven fissionable material facilities to show their types and frequencies of occurrence. All limit violations occurring during this period are summarized, including those found by the operating group. 1 ref., 1 tab

  16. Data-Centric Knowledge Discovery Strategy for a Safety-Critical Sensor Application

    Directory of Open Access Journals (Sweden)

    Nilamadhab Mishra

    2014-01-01

    Full Text Available In an indoor safety-critical application, sensors and actuators are clustered together to accomplish critical actions within a limited time constraint. The cluster may be controlled by a dedicated programmed autonomous microcontroller device powered with electricity to perform in-network time critical functions, such as data collection, data processing, and knowledge production. In a data-centric sensor network, approximately 3–60% of the sensor data are faulty, and the data collected from the sensor environment are highly unstructured and ambiguous. Therefore, for safety-critical sensor applications, actuators must function intelligently within a hard time frame and have proper knowledge to perform their logical actions. This paper proposes a knowledge discovery strategy and an exploration algorithm for indoor safety-critical industrial applications. The application evidence and discussion validate that the proposed strategy and algorithm can be implemented for knowledge discovery within the operational framework.

  17. Fault Injection Validation of a Safety-Critical TMR Sysem

    Science.gov (United States)

    Irrera, Ivano; Madeira, Henrique; Zentai, Andras; Hergovics, Beata

    2016-08-01

    Digital systems and their software are the core technology for controlling and monitoring industrial systems in practically all activity domains. Functional safety standards such as the European standard EN 50128 for railway applications define the procedures and technical requirements for the development of software for railway control and protection systems. The validation of such systems is a highly demanding task. In this paper we discuss the use of fault injection techniques, which have been used extensively in several domains, particularly in the space domain, to complement the traditional procedures to validate a SIL (Safety Integrity Level) 4 system for railway signalling, implementing a TMR (Triple Modular Redundancy) architecture. The fault injection tool is based on JTAG technology. The results of our injection campaign showed a high degree of tolerance to most of the injected faults, but several cases of unexpected behaviour have also been observed, helping understanding worst-case scenarios.

  18. An assessment of criticality safety at the Department of Energy Rocky Flats Plant, Golden, Colorado, July--September 1989

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, Roger J.

    1989-09-01

    This is a report on the 1989 independent Criticality Safety Assessment of the Rocky Flats Plant, primarily in response to public concerns that nuclear criticality accidents involving plutonium may have occurred at this nuclear weapon component fabrication and processing plant. The report evaluates environmental issues, fissile material storage practices, ventilation system problem areas, and criticality safety practices. While no evidence of a criticality accident was found, several recommendations are made for criticality safety improvements. 9 tabs.

  19. Estimating Impact and Frequency of Risks to Safety and Mission Critical Systems Using CVSS

    NARCIS (Netherlands)

    Houmb, S.H.; Nunes Leal Franqueira, V.; Engum, E.A.

    2008-01-01

    Many safety and mission critical systems depend on the correct and secure operation of both supportive and core software systems. E.g., both the safety of personnel and the effective execution of core missions on an oil platform depend on the correct recording storing, transfer and interpretation of

  20. Classification for Safety-Critical Car-Cyclist Scenarios Using Machine Learning

    NARCIS (Netherlands)

    Cara, I.; Gelder, E.D.

    2015-01-01

    The number of fatal car-cyclist accidents is increasing. Advanced Driver Assistance Systems (ADAS) can improve the safety of cyclists, but they need to be tested with realistic safety-critical car-cyclist scenarios. In order to store only relevant scenarios, an online classification algorithm is

  1. Method of V ampersand V for safety-critical software in NPPs

    International Nuclear Information System (INIS)

    Kim, Jang-Yeol; Lee, Jang-Soo; Kwon, Kee-Choon

    1997-01-01

    Safety-critical software is software used in systems in which a failure could affect personal or equipment safety or result in large financial or social loss. Examples of systems using safety-critical software are systems such as plant protection systems in nuclear power plants (NPPs), process control systems in chemical plants, and medical instruments such as the Therac-25 medical accelerator. This paper presents verification and validation (V ampersand V) methodology for safety-critical software in NPP safety systems. In addition, it addresses issues related to NPP safety systems, such as independence parameters, software safety analysis (SSA) concepts, commercial off-the-shelf (COTS) software evaluation criteria, and interrelationships among software and system assurance organizations. It includes the concepts of existing industrial standards on software V ampersand V, Institute of Electrical and Electronics Engineers (IEEE) Standards 1012 and 1059. This safety-critical software V ampersand V methodology covers V ampersand V scope, a regulatory framework as part of its acceptance criteria, V ampersand V activities and task entrance and exit criteria, reviews and audits, testing and quality assurance records of V ampersand V material, configuration management activities related to V ampersand V, and software V ampersand V (SVV) plan (SVVP) production

  2. Decomobil, Deliverable 3.6, Human Centred Design for Safety Critical Transport Systems

    OpenAIRE

    PAUZIE, Annie; MENDOZA, Lucile; SIMOES, Anabela; BELLET, Thierry; MOREAU, Fabien

    2014-01-01

    The scientific seminar on 'Human Centred Design for Safety Critical Transport Systems' organized in the framework of DECOMOBIL has been held the 8th of September 2014 in Lisbon, Portugal, hosted by ADI/ISG. The aims of the event were to present the scientific problematic related to the safety of the complex transport systems and the increasing importance of human-­centred design, with a specific focus on Resilience Engineering concept, a new approach to safety management in highly complex sys...

  3. Electronics system design techniques for safety critical applications

    CERN Document Server

    Sterpone, Luca

    2008-01-01

    Addresses the development of techniques for the evaluation and the hardening of designs implemented on SRAM-based Field Programmable Gate Arrays. This title presents a design methodology solving industrial designer''s needs for implementing electronic systems using SRAM-based FPGAs in critical environments, like the space or avionic ones.

  4. Student research in criticality safety at the University of Arizona

    International Nuclear Information System (INIS)

    Hetrick, D.L.

    1997-01-01

    A very brief progress report on four University of Arizona student projects is given. Improvements were made in simulations of power pulses in aqueous solutions, including the TWODANT model. TWODANT calculations were performed to investigate the effect of assembly shape on the expansion coefficient of reactivity for solutions. Preliminary calculations were made of critical heights for the Los Alamos SHEBA assembly. Calculations to support French experiments to measure temperature coefficients of dilute plutonium solutions confirmed feasibility

  5. Sensitivity-Uncertainty Techniques for Nuclear Criticality Safety

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    The sensitivity and uncertainty analysis course will introduce students to keff sensitivity data, cross-section uncertainty data, how keff sensitivity data and keff uncertainty data are generated and how they can be used. Discussion will include how sensitivity/uncertainty data can be used to select applicable critical experiments, to quantify a defensible margin to cover validation gaps and weaknesses, and in development of upper subcritical limits.

  6. Review of patient safety incidents submitted from Critical Care Units in England & Wales to the UK National Patient Safety Agency.

    Science.gov (United States)

    Thomas, A N; Panchagnula, U; Taylor, R J

    2009-11-01

    We reviewed and classified all patient safety incidents submitted from critical care units in England and Wales to the National Patient Safety Agency for the first quarter of 2008. A total of 6649 incidents were submitted from 141 organisations (median (range) 23 (1-268 incidents)); 786 were unrelated to the critical care episode and 248 were repeat entries. Of the remaining 5615 incidents, 1726 occurred in neonates or babies, 1298 were associated with temporary harm, 15 with permanent harm and 59 required interventions to maintain life or may have contributed to the patient's death. The most common main incident groups were medication (1450 incidents), infrastructure and staffing (1289 incidents) and implementation of care (1047 incidents). There were 2789 incidents classified to more than one main group. The incident analysis highlights ways to improve patient safety and to improve the classification of incidents.

  7. KAERI software safety guideline for developing safety-critical software in digital instrumentation and control system of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Kim, Jang Yeol; Eum, Heung Seop

    1997-07-01

    Recently, the safety planning for safety-critical software systems is being recognized as the most important phase in the software life cycle, and being developed new regulatory positions and standards by the regulatory and the standardization organization. The requirements for software important to safety of nuclear reactor are described in such positions and standards. Most of them are describing mandatory requirements, what shall be done, for the safety-critical software. The developers of such a software. However, there have been a lot of controversial factors on whether the work practices satisfy the regulatory requirements, and to justify the safety of such a system developed by the work practices, between the licenser and the licensee. We believe it is caused by the reason that there is a gap between the mandatory requirements (What) and the work practices (How). We have developed a guidance to fill such gap, which can be useful for both licenser and licensee to conduct a justification of the safety in the planning phase of developing the software for nuclear reactor protection systems. (author). 67 refs., 13 tabs., 2 figs.

  8. KAERI software safety guideline for developing safety-critical software in digital instrumentation and control system of nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Jang Soo; Kim, Jang Yeol; Eum, Heung Seop.

    1997-07-01

    Recently, the safety planning for safety-critical software systems is being recognized as the most important phase in the software life cycle, and being developed new regulatory positions and standards by the regulatory and the standardization organization. The requirements for software important to safety of nuclear reactor are described in such positions and standards. Most of them are describing mandatory requirements, what shall be done, for the safety-critical software. The developers of such a software. However, there have been a lot of controversial factors on whether the work practices satisfy the regulatory requirements, and to justify the safety of such a system developed by the work practices, between the licenser and the licensee. We believe it is caused by the reason that there is a gap between the mandatory requirements (What) and the work practices (How). We have developed a guidance to fill such gap, which can be useful for both licenser and licensee to conduct a justification of the safety in the planning phase of developing the software for nuclear reactor protection systems. (author). 67 refs., 13 tabs., 2 figs

  9. Criticality Safety Problems Related to Storage of Highly Active Liquid Waste

    International Nuclear Information System (INIS)

    Amin, E.

    1999-01-01

    The geometries of liquid waste storage tanks are not generally safe against criticality. Normally, this does not cause problems as fissile materials exist in nitric acid solution only as depleted uranium or in insignificant concentration of the originally reprocessed inventory of plutonium. However, if sedimentation of solid particles would occur, the deposited material would cause criticality safety problems. Particularly, non-horizontal installation of the storage tanks would increase the Eigen value. The effect of the storage tank inclination and the presence of transplutonium elements on the criticality safety are investigated using the NCNSRC code packages. The results are compared well with a similar German published results

  10. Towards a new international framework for nuclear safety: Developments from Fukushima to Vienna

    International Nuclear Information System (INIS)

    Durand-Poudret, Emma

    2015-01-01

    On 11 March 2011, the nuclear safety sector was deeply shaken by the accident at the Fukushima Daiichi nuclear power plant in Japan. Because of this accident, 25 years of established certainties in nuclear power plant operational safety that followed the Chernobyl disaster were once again called into question. The adequacy of the international safety instruments was naturally questioned as well. The global nuclear safety framework is primarily composed of the Convention on Nuclear Safety (CNS) and the safety standards of the International Atomic Energy Agency (IAEA). Should this accident have been an inducement for a comprehensive overhaul of the existing framework? The broader international community mobilised its resources in response to this event, reflecting the overriding importance of nuclear safety and the urgent need to learn lessons from the accident. A process of reviewing the effectiveness of the CNS thus began in April 2011 at the Fifth Review Meeting of the Contracting Parties to the Convention. In September 2011, the adoption of the IAEA Action Plan on Nuclear Safety encouraged the states parties to study mechanisms to enhance the effective implementation of the CNS and to consider proposals to amend the Convention. In August 2012, the Second Extraordinary Meeting of the Contracting Parties allowed certain states to table amendments, thus stimulating debate but also revealing the difficulty of obtaining the majority required for such an undertaking. In order to break the impasse, an effectiveness and transparency working group was set up with the ambitious task of reporting to the Sixth Review Meeting on 'a list of actions to strengthen the CNS and on proposals to amend, where necessary, the Convention'. Since the amendment approach appeared to be a valid solution, Switzerland took the opportunity of the Sixth Review Meeting to submit a new draft to that effect. The convening of a Diplomatic Conference under Article 32 of the CNS would then

  11. Assessment of basic data for criticality safety and shielding design of Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Suto, Toshiyuki; Shimizu, Yoshio; Nakamura, Hirohumi; Nojiri, Ichiro; Maki, Akira; Yamanouchi, Takamichi

    1999-02-01

    As a part of the safety confirmation work of Tokai Reprocessing Plant, the appropriateness was checked on the basic data used in criticality safety and shielding design of early-designed facilities in the plant on the basis of recent knowledge and safety evaluation methods. In the criticality safety design, it was confirmed that critical and subcritical values concerning mass and concentration of U and Pu and equipment dimension were appropriate. In the shielding design, it was found that the relation between shielding thickness and permissible radioactivity might give underestimated results of shielding thickness necessary to limit dose rate to the designated one on some condition. In this cases, however, it was confirmed that necessary shielding thickness has been secured because of the conservative calculation conditions for the real conditions except the operation test laboratory (OTL). However, the amount of radioactivity handled at OTL needs to be limited. From a viewpoint of criticality safety, operational control for U and Pu transfer was also investigated. As a result of it, at the transfer route where erroneous batch-wise transfer of process solution might lead to a criticality accident, the reliability of U and Pu concentration measurement needs to be improved by multiple measurements. At other transfer routes, it was confirmed that single failure of equipment or operation error would not lead to a criticality problem. (author)

  12. Safety physics inter-comparison of advanced concepts of critical reactors and ADS

    International Nuclear Information System (INIS)

    Slessarev, I.

    2001-01-01

    Enhanced safety based on the principle of the natural ''self-defence'' is one of the most desirable features of innovative nuclear systems (critical or sub-critical) regarding both TRU transmutation and ''clean'' energy producer concepts. For the evaluation of the ''self-defence'' domain, the method of the asymptotic reactivity balance has been generalised. The promising option of Hybrids systems (that use a symbiosis of fission and spallation in sub-critical cores) which could benefit the advantages of both Accelerated Driven Systems of the traditional type and regular critical systems, has been advocated. General features of Hybrid dynamics have been presented and analysed. It was demonstrated that an external neutron source of Hybrids can expand the inherent safety potential significantly. This analysis has been applied to assess the safety physics potential of innovative concepts for prospective nuclear power both for energy producers and for transmutation. It has been found, that safety enhancement goal defines a choice of sub-criticality of Hybrids. As for energy producers with Th-fuel cycle, a significant sub-criticality level is required due to a necessity of an improvement of neutronics together with safety enhancement task. (author)

  13. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

    Energy Technology Data Exchange (ETDEWEB)

    Huffer, J.E. [Parallax, Inc., Atlanta, GA (United States)

    1997-04-01

    This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..

  14. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF6) in the diffusion cascade

    International Nuclear Information System (INIS)

    Huffer, J.E.

    1997-04-01

    This paper determines the nuclear safety of gaseous UF 6 in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF 6 in plant operations

  15. Energy Neutral Wireless Bolt for Safety Critical Fastening

    Directory of Open Access Journals (Sweden)

    Biruk B. Seyoum

    2017-09-01

    Full Text Available Thermoelectric generators (TEGs are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace.

  16. Energy Neutral Wireless Bolt for Safety Critical Fastening.

    Science.gov (United States)

    Seyoum, Biruk B; Rossi, Maurizio; Brunelli, Davide

    2017-09-26

    Thermoelectric generators (TEGs) are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius) temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace.

  17. The ORSphere Benchmark Evaluation and Its Potential Impact on Nuclear Criticality Safety

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Margaret A. Marshall; J. Blair Briggs

    2013-10-01

    In the early 1970’s, critical experiments using an unreflected metal sphere of highly enriched uranium (HEU) were performed with the focus to provide a “very accurate description…as an ideal benchmark for calculational methods and cross-section data files.” Two near-critical configurations of the Oak Ridge Sphere (ORSphere) were evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook). The results from those benchmark experiments were then compared with additional unmoderated and unreflected HEU metal benchmark experiment configurations currently found in the ICSBEP Handbook. For basic geometries (spheres, cylinders, and slabs) the eigenvalues calculated using MCNP5 and ENDF/B-VII.0 were within 3 of their respective benchmark values. There appears to be generally a good agreement between calculated and benchmark values for spherical and slab geometry systems. Cylindrical geometry configurations tended to calculate low, including more complex bare HEU metal systems containing cylinders. The ORSphere experiments do not calculate within their 1s uncertainty and there is a possibility that the effect of the measured uncertainties for the GODIVA I benchmark may need reevaluated. There is significant scatter in the calculations for the highly-correlated ORCEF cylinder experiments, which are constructed from close-fitting HEU discs and annuli. Selection of a nuclear data library can have a larger impact on calculated eigenvalue results than the variation found within calculations of a given experimental series, such as the ORCEF cylinders, using a single nuclear data set.

  18. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines.

  19. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    International Nuclear Information System (INIS)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines

  20. Design Information from the PSA for Digital Safety-Critical Systems

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Jang, Seung Cheol

    2005-01-01

    Many safety-critical applications such as nuclear field application usually adopt a similar design strategy for digital safety-critical systems. Their differences from the normal design for the non-safety-critical applications could be summarized as: multiple-redundancy, highly reliable components, strengthened monitoring mechanism, verified software, and automated test procedure. These items are focusing on maintaining the capability to perform the given safety function when it is requested. For the past several decades, probabilistic safety assessment (PSA) techniques are used in the nuclear industry to assess the relative effects of contributing events on plant risk and system reliability. They provide a unifying means of assessing physical faults, recovery processes, contributing effects, human actions, and other events that have a high degree of uncertainty. The applications of PSA provide not only the analysis results of already installed system but also the useful information for the system under design. The information could be derived from the PSA experience of the various safety-critical systems. Thanks to the design flexibility, the digital system is one of the most suitable candidates for risk-informed design (RID). In this article, we will describe the feedbacks for system design and try to develop a procedure for RID. Even though the procedure is not sophisticated enough now, it could be the start point of the further investigation for developing more complete and practical methodology

  1. Module Testing Techniques for Nuclear Safety Critical Software Using LDRA Testing Tool

    International Nuclear Information System (INIS)

    Moon, Kwon-Ki; Kim, Do-Yeon; Chang, Hoon-Seon; Chang, Young-Woo; Yun, Jae-Hee; Park, Jee-Duck; Kim, Jae-Hack

    2006-01-01

    The safety critical software in the I and C systems of nuclear power plants requires high functional integrity and reliability. To achieve those requirement goals, the safety critical software should be verified and tested according to related codes and standards through verification and validation (V and V) activities. The safety critical software testing is performed at various stages during the development of the software, and is generally classified as three major activities: module testing, system integration testing, and system validation testing. Module testing involves the evaluation of module level functions of hardware and software. System integration testing investigates the characteristics of a collection of modules and aims at establishing their correct interactions. System validation testing demonstrates that the complete system satisfies its functional requirements. In order to generate reliable software and reduce high maintenance cost, it is important that software testing is carried out at module level. Module testing for the nuclear safety critical software has rarely been performed by formal and proven testing tools because of its various constraints. LDRA testing tool is a widely used and proven tool set that provides powerful source code testing and analysis facilities for the V and V of general purpose software and safety critical software. Use of the tool set is indispensable where software is required to be reliable and as error-free as possible, and its use brings in substantial time and cost savings, and efficiency

  2. 77 FR 29899 - Safety Zone; International Special Operations Forces Week Capability Exercise, Seddon Channel...

    Science.gov (United States)

    2012-05-21

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; International Special Operations Forces... follows: Sec. 165.T07-0007 Safety Zone; International Special Operations Forces Week Capability Exercise... rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the waters of Seddon Channel...

  3. International overview of high-level simulation education initiatives in relation to critical care.

    Science.gov (United States)

    Alinier, Guillaume; Platt, Alan

    2014-01-01

    The use of simulation in health care education has become very topical across all professions and specialties in order to improve patient safety and quality of care. In the last decade, the adoption of more realistic simulation-based teaching methodologies, which serves as a bridge between the acquisition and application of clinical skills, knowledge, and attributes, has been accompanied by the development of a multitude of international and national simulation societies. These serve as important exchange fora for educators, clinicians, researchers, and engineers who desire to learn and share their experience and knowledge around simulation-based education. Several countries have derived their own strategy in order to promote the use of such training methodology. Current key national strategies will be presented in this paper alongside a discussion of their expected impact. Various approaches have been adopted and each has their own place and the potential to be adopted by other nations depending on their political, economic or even geographic context. Within the critical care arena, simulation has generated considerable interest and there is a growing evidence base for its use as a learning and teaching strategy within this environment. A number of critical care-related associations and societies are now recognizing simulation as an appropriate pedagogical approach and acknowledging its potential to improve patient care and clinical outcomes. Its implementation should be carefully considered to ensure that developments are based on current best educational practice to maximize the efficiency of these educational interventions. © 2013 British Association of Critical Care Nurses.

  4. A critical review on toxicological safety of 2-alkylcyclobutanones

    Science.gov (United States)

    Song, Beom-Seok; Choi, Soo-Jeong; Jin, Young-Bae; Park, Jong-Heum; Kim, Jae-Kyung; Byun, Eui-Baek; Kim, Jae-Hun; Lee, Ju-Woon; Kim, Gang-Sung; Marchioni, Eric

    2014-10-01

    2-Alkylcyclobutanones (2-ACBs) are known as unique radiolytic products generated from the major fatty acids and triglycerides in food through only irradiation. Since 1990, studies on the toxicological safety of 2-ACBs have been conducted extensively with synthetic compounds. Mutagenicity tests of 2-ACBs on the microorganisms reviewed in this study clearly indicate that no evidence was observed, while several in vitro studies demonstrated the cytotoxicity of 2-ACBs through cell death. Moreover, the genotoxicity of 2-ACBs was suggested as DNA strand breaks were observed. However, these findings should be interpreted with caution because genotoxicity may result from cytotoxicity, which causes DNA damage or from cell membrane destruction and indirect oxidative DNA damage. Therefore, elucidation of the mechanism of genotoxic effects is needed. With regards to the suggestion of Raul et al. (2002) who showed the promoting effect of colon cancer by the administration of 2-ACBs, further studies are needed to correct some experimental design errors. Moreover, an in-vivo experiment that evaluated the metabolism of 2-ACBs has revealed that 2-dDCB was metabolized into cyclic alcohol and excreted through fecal discharge. In conclusion, it is considered that the ingestion of 2-ACBs through irradiated foods is unlikely to affect the human health. However, more specific studies are required to identify the fate of 2-ACBs in body and the LD50 values. The determination of chronic toxicity by long-term exposure to low concentrations of 2-ACBs has to be evaluated more clearly to determine if these compounds are safe to human.

  5. Criticality safety analysis of accelerator transmutation waste system

    International Nuclear Information System (INIS)

    Landeyro, P.A.; Cepraga, D.G.; Orazi, A.

    1993-01-01

    The Accelerator Transmutation Waste system (ATW) is under development at the Los Alamos National Laboratory. It consists of a particle accelerator producing a proton beam having an energy of 1.5 GeV. These particles are introduced into the upper part of a molten Pb-Bi column and they produce, by a spallation reaction, a high strength neutron flux, 1.0x10 16 n/(square centimeters sec). The neutrons enter a heavy water blanket where actinides and long-lived fission products circulate in vertical tubes. The goal of this research effort is to perform an independent verification of the feasibility of actinide burning in the ATW system. The work is divided into four tasks: a) production of an actinide and long-lived fission product cross section library from JEF 2.2; b) simulation, using MCNP and KENO IV Monte Carlo codes, of the ATW configurations existing in literature; c) validation of the cross sections by comparison of Keff and reaction rate results, calculated with MCNP and KENO IV, with experimental benchmarks and intercomparison between calculations of a PWR unit cell and the computations carried out with various codes and cross section libraries (NEACRF criticality working group data); d) simulation of the ATW configuration. The two first tasks are almost complete with excellent agreement between this study's results and those of Los Alamos

  6. Critical evaluation of safety and radiological protection requirements adopted for the transport of uranium and thorium ores and concentrates

    International Nuclear Information System (INIS)

    Mezrahi, Arnaldo; Crispim, Verginia R.

    2009-01-01

    This work evaluates in a critical way the safety and radiological protection recommendations established by the International Atomic Energy Agency - IAEA and adopted national and internationally, for the transport of uranium and thorium ores and concentrates, known according the transport regulations, as being of the Low Specific Activity Material Type-I, LSA-I, basing on more realistic scenarios than the presently existent, aiming at the determination of maximum exposure levels of radiation as well as the maximal contents of those materials in packages and conveyance. A general overview taking into account the scenarios foreseen by the regulations of the IAEA pointed out for a need of a better justification of the requirements edited by the Agency or should be used to support a request of revision of those regulations, national and internationally adopted, in the pertinent aspects to the transport of uranium and thorium ores and concentrates. (author)

  7. 75 FR 8239 - School Food Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP...

    Science.gov (United States)

    2010-02-24

    ... 0584-AD65 School Food Safety Program Based on Hazard Analysis and Critical Control Point Principles... Safety Program Based on Hazard Analysis and Critical Control Point Principles (HACCP) was published on... school food safety program for the preparation and service of school meals served to children. The Office...

  8. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Separate review of NMP-NCS-930058, open-quotes Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility (U), August 17, 1993,close quotes was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility's Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2x2x1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion

  9. The role of international atomic energy agency in maintaining nuclear safety competence

    International Nuclear Information System (INIS)

    Aro, I.; Mazour, T.

    2000-01-01

    This paper provides information how International Atomic Energy Agency can assist Member States in maintaining and developing nuclear safety competence. The topics covered include the development of safety standards, organisation of nuclear safety related conferences, provision of safety reviews, organisation of training courses and topical workshops and publication of training related documents. Usefulness of these activities for competence development is discussed. (author)

  10. Comparative analysis of operation and safety of subcritical nuclear systems and innovative critical reactors

    International Nuclear Information System (INIS)

    Bokov, P.M.

    2005-05-01

    The main goal of this thesis work is to investigate the role of core subcriticality for safety enhancement of advanced nuclear systems, in particular, molten salt reactors, devoted to both energy production and waste incineration/transmutation. The inherent safety is considered as ultimate goal of this safety improvement. An attempt to apply a systematic approach for the analysis of the subcriticality contribution to inherent properties of hybrid system was performed. The results of this research prove that in many cases the subcriticality may improve radically the safety characteristics of nuclear reactors, and in some configurations it helps to reach the 'absolute' intrinsic safety. In any case, a proper choice of subcriticality level makes all analyzed transients considerably slower and monotonic. It was shown that the weakest point of the independent-source systems with respect to the intrinsic safety is thermohydraulic unprotected transients, while in the case of the coupled-source systems the excess reactivity/current insertion events remain a matter of concern. To overcome these inherent drawbacks a new principle of realization of a coupled sub-critical system (DENNY concept) is proposed. In addition, the ways to remedy some particular safety-related problems with the help of the core sub-criticality are demonstrated. A preliminary safety analysis of the fast-spectrum molten salt reactor (REBUS concept) is also carried out in this thesis work. Finally, the potential of the alternative (to spallation) neutron sources for application in hybrid systems is examined. (author)

  11. Critical roles of orthopaedic surgeon leadership in healthcare systems to improve orthopaedic surgical patient safety.

    Science.gov (United States)

    Kuo, Calvin C; Robb, William J

    2013-06-01

    The prevention of medical and surgical harm remains an important public health problem despite increased awareness and implementation of safety programs. Successful introduction and maintenance of surgical safety programs require both surgeon leadership and collaborative surgeon-hospital alignment. Documentation of success of such surgical safety programs in orthopaedic practice is limited. We describe the scope of orthopaedic surgical patient safety issues, define critical elements of orthopaedic surgical safety, and outline leadership roles for orthopaedic surgeons needed to establish and sustain a culture of safety in contemporary healthcare systems. We identified the most common causes of preventable surgical harm based on adverse and sentinel surgical events reported to The Joint Commission. A comprehensive literature review through a MEDLINE(®) database search (January 1982 through April 2012) to identify pertinent orthopaedic surgical safety articles found 14 articles. Where gaps in orthopaedic literature were identified, the review was supplemented by 22 nonorthopaedic surgical references. Our final review included 36 articles. Six important surgical safety program elements needed to eliminate preventable surgical harm were identified: (1) effective surgical team communication, (2) proper informed consent, (3) implementation and regular use of surgical checklists, (4) proper surgical site/procedure identification, (5) reduction of surgical team distractions, and (6) routine surgical data collection and analysis to improve the safety and quality of surgical patient care. Successful surgical safety programs require a culture of safety supported by all six key surgical safety program elements, active surgeon champions, and collaborative hospital and/or administrative support designed to enhance surgical safety and improve surgical patient outcomes. Further research measuring improvements from such surgical safety systems in orthopaedic care is needed.

  12. School Counselors in International School: Critical Issues and Challenges

    Science.gov (United States)

    Inman, Arpana G.; Ngoubene-Atioky, Arlette; Ladany, Nicholas; Mack, Toshi

    2009-01-01

    This study sought to examine the views of school counselors in international school settings; international schools being those that enroll students from varying nationalities (both English speaking and non-English speaking countries) and follow an American/International college preparatory education curriculum. Results were pursued in regard to…

  13. Framatome-ANP France UO2 fuel fabrication - criticality safety analysis in the light of the 1999' Tokay Mura accident

    International Nuclear Information System (INIS)

    Doucet, M.; Zheng, S.; Mouton, J.; Porte, R.

    2004-01-01

    In France the 1999' Tokai Mura criticality accident in Japan had a big impact on the nuclear fuel manufacturing facility community. Moreover this accident led to a large public discussion about all the nuclear facilities. The French Safety Authorities made strong requirements to the industrials to revisit completely their safety analysis files mainly those concerning nuclear fuels treatments. The Framatome-ANP production of its French low enriched (5 w/o) UO 2 fuel fabrication plant (FBFC/Romans) exceeds 1000 metric tons a year. Special attention was given to the emergency evacuation plan that should be followed in case of a criticality accident. If a criticality accident happens, site internal and external radioprotection requirements need to have an emergency evacuation plan showing the different routes where the absorbed doses will be as low as possible for people. The French Safety Authorities require also an update of the old based neutron source term accounting for state of the art methodology. UO 2 blenders units contain a large amount of dry powder strictly controlled by moderation; a hypothetical water leakage inside one of these apparatus is simulated by increasing the water content of the powder. The resulted reactivity insertion is performed by several static calculations. The French IRSN/CEA CRISTAL codes are used to perform these static calculations. The kinetic criticality code POWDER simulates the power excursion versus time and determines the consequent total energy source term. MNCP4B performs the source term propagation (including neutrons and gamma) used to determine the isodose curves needed to define the emergency evacuation plant. This paper deals with the approach Framatome-ANP has taken to assess Safety Authorities demands using the more up to date calculation tools and methodology. (authors)

  14. Framatome-ANP France UO2 fuel fabrication. Criticality safety analysis in the light of the JCO accident

    International Nuclear Information System (INIS)

    Doucet, M.; Zheng, S.; Mouton, J.; Porte, R.

    2003-01-01

    In France the 1999' Tokai Mura criticality accident in Japan had a big impact on the nuclear fuel manufacturing facility community. Moreover this accident led to a large public discussion about all the nuclear facilities. The French Safety Authorities made strong requirements to the industrials to revisit completely their safety analysis files mainly those concerning nuclear fuels treatments. The FRAMATOME-ANP production of its French low enriched (5 w/o) UO2 fuel fabrication plant (FBFC/Romans) exceeds 1000 metric tons a year. Special attention was given to the emergency evacuation plan that should be followed in case of a criticality accident. If a criticality accident happens, site internal and external radioprotection requirements need to have an emergency evacuation plan showing the different routes where the absorbed doses will be as low as possible for people. The French Safety Authorities require also an update of the old based neutron source term accounting for state of the art methodology. UO2 blenders units contain a large amount of dry powder strictly controlled by moderation; a hypothetical water leakage inside one of these apparatus is simulated by increasing the water content of the powder. The resulted reactivity insertion is performed by several static calculations. The French IRSN/CEA CRISTAL codes are used to perform these static calculations. The kinetic criticality code POWDER simulates the power excursion versus time and determines the consequent total energy source term. MNCP4B performs the source term propagation (including neutrons and gamma) used to determine the isodose curves needed to define the emergency evacuation plant. This paper deals with the approach FRAMATOME-ANP has taken to assess Safety Authorities demands using the more up to date calculation tools and methodology. (author)

  15. The preliminary edition of nuclear criticality safety handbook of Japan, (5)

    International Nuclear Information System (INIS)

    Sakai, T.; Naito, Y.

    1987-01-01

    Full reflector thickness and isolation thickness of water and ordinary concrete were calculated with the nuclear criticality safety evaluation code system JACS for nuclear criticality safety on fuel facilities. Since these two values depend on physical/chemical property of nuclear fuel and shape/size of array units, it is unreasonable to apply only one value for all neutron interaction problems. In this paper, a simple evaluation method is examined to obtain full reflector thickness and isolation thickness for various cases. The following results are obtained; these two values are expressed as a simple function of neutron migration length of reflector, and this relation is well explained by one-group diffusion theory. With this relation, we proposed a new method to determine full reflector thickness and isolation thickness which are able to be used for criticality safety design. (author)

  16. The Dynamics of Agile Practices for Safety-Critical Software Development

    DEFF Research Database (Denmark)

    Nielsen, Peter Axel; Tordrup Heeager, Lise

    2017-01-01

    This short paper reports from a case study of the agile development of safety-critical software. It utilizes a framework of dynamic relationships between agile practices with the purpose of demonstrating the utility of the framework to understand a case in its context, and it shows significant dy...... dynamics. The study is concluded by pointing at which further research on the framework is required to use the framework in managing the agile development of safety-critical software.......This short paper reports from a case study of the agile development of safety-critical software. It utilizes a framework of dynamic relationships between agile practices with the purpose of demonstrating the utility of the framework to understand a case in its context, and it shows significant...

  17. Supporting Multiprocessors in the Icecap Safety-Critical Java Run-Time Environment

    DEFF Research Database (Denmark)

    Zhao, Shuai; Wellings, Andy; Korsholm, Stephan Erbs

    2015-01-01

    The current version of the Safety Critical Java (SCJ) specification defines three compliance levels. Level 0 targets single processor programs while Level 1 and 2 can support multiprocessor platforms. Level 1 programs must be fully partitioned but Level 2 programs can also be more globally...... scheduled. As of yet, there is no official Reference Implementation for SCJ. However, the icecap project has produced a Safety-Critical Java Run-time Environment based on the Hardware-near Virtual Machine (HVM). This supports SCJ at all compliance levels and provides an implementation of the safety......-critical Java (javax.safetycritical) package. This is still work-in-progress and lacks certain key features. Among these is the ability to support multiprocessor platforms. In this paper, we explore two possible options to adding multiprocessor support to this environment: the “green thread” and the “native...

  18. Diversity for security: case assessment for FPGA-based safety-critical systems

    Directory of Open Access Journals (Sweden)

    Kharchenko Vyacheslav

    2016-01-01

    Full Text Available Industrial safety critical instrumentation and control systems (I&Cs are facing more with information (in general and cyber, in particular security threats and attacks. The application of programmable logic, first of all, field programmable gate arrays (FPGA in critical systems causes specific safety deficits. Security assessment techniques for such systems are based on heuristic knowledges and the expert judgment. Main challenge is how to take into account features of FPGA technology for safety critical I&Cs including systems in which are applied diversity approach to minimize risks of common cause failure. Such systems are called multi-version (MV systems. The goal of the paper is in description of the technique and tool for case-based security assessment of MV FPGA-based I&Cs.

  19. Agility in Development of Safety-Critical Software: A Conceptual Model

    DEFF Research Database (Denmark)

    Tordrup Heeager, Lise; Nielsen, Peter Axel

    2018-01-01

    that there are important research gaps that need to be investigated. We suggest that future research should have a primary focus on the relationships: 1) on the dynamics of the whole field, 2) on incremental versus iterative development and 3) on how to create value with minimal but sufficient effort.......Safety-critical information systems are being used increasingly as we see applications in new areas such as personal medical devices, traffic control and detection of pathogens. A current research debate is whether safety-critical systems must be developed with traditional waterfall processes...... or agile processes which are faster and will lead to better products. In this paper we review the diverse research literature on agility in safety-critical software development. There are key propositions that we pull from the literature and combine into a framework for understanding the foundational...

  20. Risk Matrix-Based Method for Critical Infrastructure Safety Assessment Taking into Account Interdependencies

    Directory of Open Access Journals (Sweden)

    Brezhnev Eugene

    2016-01-01

    Full Text Available This paper is devoted to development of method for critical infrastructure (CI safety assessment taking into account the different types of interdependencies: logical, physical, geographical, etc. There are many existing approaches for CI safety assessment. But the limited number of them consider the interdependencies focused on safety. Only few of them focus on interdependencies formalization. The suggested approach is based on application of risk matrixes built for each CI systems. Criticality of state is considered as safety value. The risk matrixes are developed for each CI life stage. The initial risk matrix is developed during CI design stage. All operational risk matrixes are built based on fuzzy logic and system field data.

  1. International Nuclear Safety Center database on thermophysical properties of reactor materials

    International Nuclear Information System (INIS)

    Fink, J.K.; Sofu, T.; Ley, H.

    1997-01-01

    The International Nuclear Safety Center (INSC) database has been established at Argonne National Laboratory to provide easily accessible data and information necessary to perform nuclear safety analyses and to promote international collaboration through the exchange of nuclear safety information. The INSC database, located on the World Wide Web at http://www.insc.anl.gov, contains critically assessed recommendations for reactor material properties for normal operating conditions, transients, and severe accidents. The initial focus of the database is on thermodynamic and transport properties of materials for water reactors. Materials that are being included in the database are fuel, absorbers, cladding, structural materials, coolant, and liquid mixtures of combinations of UO 2 , ZrO 2 , Zr, stainless steel, absorber materials, and concrete. For each property, the database includes: (1) a summary of recommended equations with uncertainties; (2) a detailed data assessment giving the basis for the recommendations, comparisons with experimental data and previous recommendations, and uncertainties; (3) graphs showing recommendations, uncertainties, and comparisons with data and other equations; and (4) property values tabulated as a function of temperature

  2. An international review of patient safety measures in radiotherapy practice

    International Nuclear Information System (INIS)

    Shafiq, Jesmin; Barton, Michael; Noble, Douglas; Lemer, Claire; Donaldson, Liam J.

    2009-01-01

    Errors from radiotherapy machine or software malfunction usually are well documented as they affect hundreds of patients, whereas random errors affecting individual patients are more difficult to be discovered and prevented. Although major clinical radiotherapy incidents have been reported, many more have remained unrecognised or have not been reported. The literature in this field is limited as it is mostly published as a result of investigation of major errors. We present a review of radiotherapy incidents internationally with the aim of identifying the domains where most errors occur through extensive review and synthesis of published reports, unpublished 'Grey literature' and departmental incident data. Our review of radiotherapy-related events in the last three decades (1976-2007) identified more than seven thousand (N = 7741) incidents and near misses. Three thousand one hundred and twenty-five incidents reported patient harm of variable intensity ranging from underdose increasing the risk of recurrence, to overdose causing toxicity, and even death for 1% (N = 38); 4616 events were near misses with no recognisable patient harm. Based on our review, a radiotherapy risk profile has been published by the WHO World Alliance for Patient Safety that highlights the role of communication, training and strict adherence to guidelines/protocols in improving the safety of radiotherapy process.

  3. Enlightenment on international cooperation for nuclear safety in China in light of Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Fu Jie; Feng Yi; Luan Haiyan; Meng Yue; Zhang Ou

    2013-01-01

    This thesis elaborates on the impact of Fukushima nuclear accident on global nuclear power development and subsequent international activities carried out by major countries. It analyses significance of international cooperation in ensuring nuclear safety and promoting nuclear power development and makes some suggestions to further strengthen the international cooperation on nuclear safety in China. (authors)

  4. Planning the Unplanned Experiment: Assessing the Efficacy of Standards for Safety Critical Software

    Science.gov (United States)

    Graydon, Patrick J.; Holloway, C. Michael

    2015-01-01

    We need well-founded means of determining whether software is t for use in safety-critical applications. While software in industries such as aviation has an excellent safety record, the fact that software aws have contributed to deaths illustrates the need for justi ably high con dence in software. It is often argued that software is t for safety-critical use because it conforms to a standard for software in safety-critical systems. But little is known about whether such standards `work.' Reliance upon a standard without knowing whether it works is an experiment; without collecting data to assess the standard, this experiment is unplanned. This paper reports on a workshop intended to explore how standards could practicably be assessed. Planning the Unplanned Experiment: Assessing the Ecacy of Standards for Safety Critical Software (AESSCS) was held on 13 May 2014 in conjunction with the European Dependable Computing Conference (EDCC). We summarize and elaborate on the workshop's discussion of the topic, including both the presented positions and the dialogue that ensued.

  5. The safety of intra-articular injections for the treatment of knee osteoarthritis: a critical narrative review.

    Science.gov (United States)

    Nguyen, Christelle; Rannou, François

    2017-08-01

    International guidelines recommend that the management of knee osteoarthritis (OA) combine both nonpharmacological and pharmacological interventions. Intra-articular (IA) therapies are considered part of this multimodal approach and are well-established Food and Drug Administration (FDA) and European Medicines Agency (EMA)-approved treatments. Areas covered: Safety data for knee OA, including IA corticosteroids, hyaluronic acid, platelet-rich plasma and botulinum toxin are critically reviewed, and evidence- and pratice-based measures to improve safety of IA therapies are discussed. Expert opinion: The incidence of AEs attributable to IA therapies across clinical trials in knee OA is very low, and barely reaches significance when compared to the incidence of AEs in the comparator group. These events are exceptionally serious. Mild differences between products have been inconsistently reported mainly for IA HA. One can distinguish self-limited AEs such as post-injection pain and swelling that are the most frequently reported AEs, from AEs that are not self-limited but rare such as septic arthritis. The safety of IA therapies can be improved by applying simple measures designed to prevent AEs. However, even though no specific safety concerns have been raised to date about IA therapies, the quality of evidence is low, and there is a need to improve the monitoring and reporting of safety data from clinical trials and post-marketing surveillance.

  6. Software design analysis technique for the development of PLC-based safety-critical systems

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Seo Ryong; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Taejeon (Korea, Republic of)

    2005-11-15

    To develop and implement a safety-critical system, the requirements of the system must be analyzed thoroughly during the phases of a software development's life cycle because a single error in the requirements can generate serious software faults. In this study, a nuclear FBD-style design specification and analysis (NuFDS) approach was proposed for PLC based safety-critical systems. The NuFDS approach is suggested in a straightforward manner for the effective and formal specification and analysis of software designs. Accordingly, the proposed NuFDS approach comprises one technique for specifying the software design and another for analyzing the software design.

  7. Recognising safety critical events: can automatic video processing improve naturalistic data analyses?

    Science.gov (United States)

    Dozza, Marco; González, Nieves Pañeda

    2013-11-01

    New trends in research on traffic accidents include Naturalistic Driving Studies (NDS). NDS are based on large scale data collection of driver, vehicle, and environment information in real world. NDS data sets have proven to be extremely valuable for the analysis of safety critical events such as crashes and near crashes. However, finding safety critical events in NDS data is often difficult and time consuming. Safety critical events are currently identified using kinematic triggers, for instance searching for deceleration below a certain threshold signifying harsh braking. Due to the low sensitivity and specificity of this filtering procedure, manual review of video data is currently necessary to decide whether the events identified by the triggers are actually safety critical. Such reviewing procedure is based on subjective decisions, is expensive and time consuming, and often tedious for the analysts. Furthermore, since NDS data is exponentially growing over time, this reviewing procedure may not be viable anymore in the very near future. This study tested the hypothesis that automatic processing of driver video information could increase the correct classification of safety critical events from kinematic triggers in naturalistic driving data. Review of about 400 video sequences recorded from the events, collected by 100 Volvo cars in the euroFOT project, suggested that drivers' individual reaction may be the key to recognize safety critical events. In fact, whether an event is safety critical or not often depends on the individual driver. A few algorithms, able to automatically classify driver reaction from video data, have been compared. The results presented in this paper show that the state of the art subjective review procedures to identify safety critical events from NDS can benefit from automated objective video processing. In addition, this paper discusses the major challenges in making such video analysis viable for future NDS and new potential

  8. Definition and means of maintaining the criticality detectors and alarms portion of the PFP safety envelope

    International Nuclear Information System (INIS)

    White, W.F.

    1997-01-01

    The Criticality Alarm System (CAS) provides continuous detection for high radiation (criticality) events and automatically initiates an evacuation signal to affected personnel. The Safety Envelope (SE) for PFP includes the necessary equipment and the required procedures to ensure the CAS is capable of performing its intended function. This document provides the definition and means of maintaining the SE for PFP related to the CAS. This document also identifies and provides a justification for those portions of the CAS excluded from the PFP Safety Envelope

  9. Nuclear Criticality Safety Organization guidance for the development of continuing technical training. Revision 1

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in nuclear criticality safety at the Oak Ridge Y-12 Plant and throughout the DOE complex. Continuing technical training is training outside of the initial qualification program to address identified organization-wide needs. Typically, this training is used to improve organization performance in the conduct of business. This document provides guidelines for the development of the technical portions of the Continuing Training Program. It is not a step-by-step procedure, but a collection of considerations to be used during the development process

  10. Maintaining scale as a realiable computational system for criticality safety analysis

    International Nuclear Information System (INIS)

    Bowmann, S.M.; Parks, C.V.; Martin, S.K.

    1995-01-01

    Accurate and reliable computational methods are essential for nuclear criticality safety analyses. The SCALE (Standardized Computer Analyses for Licensing Evaluation) computer code system was originally developed at Oak Ridge National Laboratory (ORNL) to enable users to easily set up and perform criticality safety analyses, as well as shielding, depletion, and heat transfer analyses. Over the fifteen-year life of SCALE, the mainstay of the system has been the criticality safety analysis sequences that have featured the KENO-IV and KENO-V.A Monte Carlo codes and the XSDRNPM one-dimensional discrete-ordinates code. The criticality safety analysis sequences provide automated material and problem-dependent resonance processing for each criticality calculation. This report details configuration management which is essential because SCALE consists of more than 25 computer codes (referred to as modules) that share libraries of commonly used subroutines. Changes to a single subroutine in some cases affect almost every module in SCALE exclamation point Controlled access to program source and executables and accurate documentation of modifications are essential to maintaining SCALE as a reliable code system. The modules and subroutine libraries in SCALE are programmed by a staff of approximately ten Code Managers. The SCALE Software Coordinator maintains the SCALE system and is the only person who modifies the production source, executables, and data libraries. All modifications must be authorized by the SCALE Project Leader prior to implementation

  11. Managing Risk in Safety Critical Operations - Lessons Learned from Space Operations

    Science.gov (United States)

    Gonzalez, Steven A.

    2002-01-01

    The Mission Control Center (MCC) at Johnson Space Center (JSC) has a rich legacy of supporting Human Space Flight operations throughout the Apollo, Shuttle and International Space Station eras. Through the evolution of ground operations and the Mission Control Center facility, NASA has gained a wealth of experience of what it takes to manage the risk in Safety Critical Operations, especially when human life is at risk. The focus of the presentation will be on the processes (training, operational rigor, team dynamics) that enable the JSC/MCC team to be so successful. The presentation will also share the evolution of the Mission Control Center architecture and how the evolution was introduced while managing the risk to the programs supported by the team. The details of the MCC architecture (e.g., the specific software, hardware or tools used in the facility) will not be shared at the conference since it would not give any additional insight as to how risk is managed in Space Operations.

  12. REVEAL - A tool for rule driven analysis of safety critical software

    International Nuclear Information System (INIS)

    Miedl, H.; Kersken, M.

    1998-01-01

    As the determination of ultrahigh reliability figures for safety critical software is hardly possible, national and international guidelines and standards give mainly requirements for the qualitative evaluation of software. An analysis whether all these requirements are fulfilled is time and effort consuming and prone to errors, if performed manually by analysts, and should instead be dedicated to tools as far as possible. There are many ''general-purpose'' software analysis tools, both static and dynamic, which help analyzing the source code. However, they are not designed to assess the adherence to specific requirements of guidelines and standards in the nuclear field. Against the background of the development of I and C systems in the nuclear field which are based on digital techniques and implemented in high level language, it is essential that the assessor or licenser has a tool with which he can automatically and uniformly qualify as many aspects as possible of the high level language software. For this purpose the software analysis tool REVEAL has been developed at ISTec and the Halden Reactor Project. (author)

  13. Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1982-01-01

    This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41

  14. Analysis of international approaches which are used at development of theoperational safety performance indicators

    International Nuclear Information System (INIS)

    Lyigots'kij, O.Yi.; Nosovs'kij, A.V.; Chemeris, Yi.O.

    2009-01-01

    Description of international approaches and experience of the use of theoperational safety performance indicators system is provided for estimationof current status and making a decision on corrections in the operationpractice. The state of development of the operational safety performanceindicators system by the operating organization is overviewed. Thepossibility of application of international approaches during development ofthe integral safety performance indicators system is analyzed. Aims and tasksof future researches are formulated in relation to development of theintegral safety performance indicators system.

  15. Fault tree synthesis for software design analysis of PLC based safety-critical systems

    Energy Technology Data Exchange (ETDEWEB)

    Koo, S. R.; Cho, C. H. [Corporate R and D Inst., Doosan Heavy Industries and Construction Co., Ltd., 39-3, Seongbok-Dong, Yongin-Si, Gyeonggi-Do 449-795 (Korea, Republic of); Seong, P. H. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-3 Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2006-07-01

    As a software verification and validation should be performed for the development of PLC based safety-critical systems, a software safety analysis is also considered in line with entire software life cycle. In this paper, we propose a technique of software safety analysis in the design phase. Among various software hazard analysis techniques, fault tree analysis is most widely used for the safety analysis of nuclear power plant systems. Fault tree analysis also has the most intuitive notation and makes both qualitative and quantitative analyses possible. To analyze the design phase more effectively, we propose a technique of fault tree synthesis, along with a universal fault tree template for the architecture modules of nuclear software. Consequently, we can analyze the safety of software on the basis of fault tree synthesis. (authors)

  16. Safeguarding Safety Critical Infrastructure with Mobile Robot Inspectors , Opportunities and Challenges

    OpenAIRE

    Sattar, T

    2016-01-01

    Safeguarding Critical Infrastructure with Robotic Inspection, Opportunities and Challenges Reliable Non Destructive Testing (NDT) is vital to the integrity, performance management and sustainability of capital assets in safety critical industries such as oil and gas, aerospace, transportation, power generation and off-shore and subsea operations. The talk will explore opportunities to improve the NDT of industrial structures and decrease the cost of inspection by automating the NDT with mobil...

  17. Violence Against International Students: A Critical Gap in the Literature.

    Science.gov (United States)

    Bonistall Postel, Emily J

    2017-01-01

    Despite the growing trend on college campuses to increase their international student body, this population is largely left out of research due to the complexity they bring to the research process compared to their domestic counterparts. This is particularly true for the existing research on campus sexual violence; thus, there is no research-based indication that international students, let alone international graduate students, would face victimization risks on campus in the same way the extant literature identifies for domestic undergraduates. The existing research on international students indicates that their experiences are different than their domestic counterparts, and the sparse literature on graduate students indicates their experiences are different from their undergraduate counterparts. A specific focus on the intersection of these two identities, international graduate students, is almost completely absent from the literature. This research review highlights key research that provides foundational knowledge for the experience of international students and international graduate students with regard to their vulnerability to sexual violence. The author organizes the extant literature into three major areas that inform the overarching research topic: (1) international student experiences, (2) victimization, and (3) campus culture. Basic findings indicate that there are limitations in extrapolating previous research findings on campus sexual violence to this population, calling for a need to focus specifically and intentionally on this population of students. The objective of this article is to review the current state of knowledge about the risk and vulnerability of international students to sexual violence and victimization and to address the directions for future research.

  18. International conference on the strengthening of nuclear safety in Eastern Europe. Keynote papers. Regulatory aspects of NPP safety, status of safety improvements, status of safety analysis report

    International Nuclear Information System (INIS)

    1999-06-01

    The Objective of the Conference was to assess the past decade of nuclear safety efforts in countries operating WWER and RBMK nuclear reactors and to address remaining safety issues which require further work. A particular focus of the Conference was on international co-operation and assistance and where such efforts should be focused in the future. All Eastern European countries that operate RBMK or WWER reactors participated in the Conference, and presented papers on three key areas of nuclear safety: Regulatory Aspects of Nuclear Power Plant Safety; Status of Safety Improvements; and Status of Safety Analysis Reports. In addition, representatives from 18 additional countries that provide financial and/or technical assistance and co-operation in the area of WWER and RBMK safety offered the most extensive commentary. Key international (IAEA, World Association of Nuclear Operators, the Nuclear Energy Agency, the G-24 NUSAC, the European Commission, and the EBRD) organizations that provide nuclear safety assistance for WWER and RBMK reactors also made presentations. There is no question that considerable progress on nuclear safety has been made in Eastern Europe. Special mention should be made of successful efforts to strengthen the independence and technical competence of the nuclear regulatory authorities. Efforts should now concentrate on improving the depth and scope of the technical abilities of the regulatory authorities. More attention by governments is needed to ensure that the regulatory authorities have the financial resources and enforcement authority to fully execute their missions. In respect to the operators of the nuclear power plants, they have demonstrated clear progress in operational safety improvements. Significant additional efforts are required to maintain and enhance an effective safety culture. Design safety improvement programmes are in place in all countries. Implementation of these programmes has varied and is particularly affected by

  19. Safety, danger and catastrophe inevitability in operation of safety-critical software algorithms: a possible new look at software safety analysis

    International Nuclear Information System (INIS)

    Povyakalo, A.A.

    2000-01-01

    The paper provides basic definitions and describes the basic procedure of the Formal Qualitative Safety Analysis (FQSA) of critical software algorithms. The procedure is described by C-based pseudo-code. It uses the notion of weakest precondition and representation of a given critical algorithm by a Gurevich's Abstract State Mashine (GASM). For a given GASM and a given Catastrophe Condition the procedure results in a Catastrophe Inevitability Condition (it means that every sequence of algorithm steps lead to a catastrophe early or late), Danger Condition (it means that next step may lead to a catastrophe or make a catastrophe to be inevitable, but a catastrophe may be prevented yet), Safety Condition (it means that a next step can not lead to a catastrophe or make a catastrophe to be inevitable). The using of proposed procedure is illustrated by a simplest test example of algorithm. The FQSA provides a logical basis for PSA of critical algorithm. (author)

  20. Conformity of Zanzibar Maritime Legislation with International Safety Conventions and its implementation to safeguard Safety of life at Sea.

    OpenAIRE

    Kazi, George Joseph

    2010-01-01

    This paper aim to present an overview of the International Convention on Safety of Life at Sea of 1974 as amended. The purpose is to see to what extent Zanzibar maritime Legislations are in conformity with the International conventions and how the Revolutionary Government of Zanzibar implements them and put the into practice. The analysis in this work therefore shows, the extent Zanzibar Maritime Legislations domesticate Safety Conventions and the problems which the Revolutionary Governmen...

  1. Licensing of safety critical software for nuclear reactors. Common position of seven European nuclear regulators and authorised technical support organisations

    International Nuclear Information System (INIS)

    2010-01-01

    of guidelines; - as a reference in safety cases and demonstrations of safety of software based systems; - as guidance for system design specifications by manufacturers and major I and C suppliers on the international market. From the outset, attention focused on computer based systems used in nuclear power plants for the implementation of safety functions (i.e. the functions of the highest safety criticality level); namely, those systems classified by the International Atomic Energy Agency as 'safety systems'. The recommendations of this report therefore mainly address 'safety systems'; 'safety related systems' are addressed in certain common positions and recommendations only where explicitly mentioned. The common positions are intended to convey the unanimous views of the Task Force members on the guidance that the licensees need to follow as part of an adequate safety demonstration. Throughout the document these common positions are expressed with the auxiliary verb 'shall'. The use of this verb for common positions is intended to convey the unanimous desire felt by the Task Force members for the licensees to satisfy the requirements expressed in the clause. The common positions are a common set of requirements and practices considered necessary by the member states represented in the task force. There was no systematic attempt, however, at guaranteeing that for each issue area these sets are complete or sufficient. It is also recognised that - in certain cases - other possible practices cannot be excluded, but the members felt that such alternatives will be difficult to justify. Recommended practices are supported by most, but may not be systematically implemented by all of the members states represented in the task force. Recommended practices are expressed with the auxiliary verb 'should'. In order to avoid the guidance being merely reduced to a lowest common denominator of safety (inferior levelling), the task force - in addition to commonly accepted practices

  2. A study on quantitative V and V of safety-critical software

    International Nuclear Information System (INIS)

    Eom, H. S.; Kang, H. G.; Chang, S. C.; Ha, J. J.; Son, H. S.

    2004-03-01

    Recently practical needs have required quantitative features for the software reliability for Probabilistic Safety Assessment which is one of the important methods being used in assessing the overall safety of nuclear power plant. But the conventional assessment methods of software reliability could not provide enough information for PSA of NPP, therefore current assessments of a digital system which includes safety-critical software usually exclude the software part or use arbitrary values. This paper describes a Bayesian Belief Networks based method that models the rule-based qualitative software assessment method for a practical use and can produce quantitative results for PSA. The framework was constructed by utilizing BBN that can combine the qualitative and quantitative evidence relevant to the reliability of safety-critical software and can infer a conclusion in a formal and a quantitative way. The case study was performed by applying the method for assessing the quality of software requirement specification of safety-critical software that will be embedded in reactor protection system

  3. Applications of probabilistic risk assessment to criticality safety at the Savannah River Site

    International Nuclear Information System (INIS)

    Lux, C.R.; Fisk, P.L.

    1989-01-01

    Since 1973 the Savannah River Laboratory (SRL) has used probabilistic risk assessment to determine the frequency for criticality accidents at the Savannah River Site. The Savannah River Site is unique in that it has a detailed, site specific, data bank based on 35 years of facility operation. Use of this data bank with probabilistic risk assessment precipitated facility actions which resulted in the reduction of the calculated criticality frequency by as much as two orders of magnitude. Probabilistic risk assessment has also been used to quantify the impact of non-process-related systems on criticality safety

  4. Operation, Safety and Human: Critical Factors for the Success of Railway Transportation

    NARCIS (Netherlands)

    Rajabali Nejad, Mohammadreza; Martinetti, Alberto; van Dongen, Leonardus Adriana Maria

    2016-01-01

    This paper focuses on three categories of performance indicators for railway transportation: the excellence of operation, system safety and human factors. These are among the most critical indicators for delivering high quality services. This paper discusses the main issues, challenges and future

  5. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    International Nuclear Information System (INIS)

    Orndoff, J.D.; Paxton, H.C.; Wimett, T.F.

    1980-12-01

    Detailed consideration of the Skua burst assembly is provided, thereby supplementing the facility Safety Analysis Report covering the operation of other critical assemblies at the Los Alamos Scientific Laboratory. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public

  6. Cyclic executive for safety-critical Java on chip-multiprocessors

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Schoeberl, Martin

    2010-01-01

    , that uses model checking to find a static schedule, if one exists at all, which gives an implementation of a table driven multiprocessor scheduler. To evaluate the proposed cyclic executive for multiprocessors we have implemented it in the context of safety-critical Java on a Java processor....

  7. Criticality safety and sensitivity analyses of PWR spent nuclear fuel repository facilities

    NARCIS (Netherlands)

    Maucec, M; Glumac, B

    Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based

  8. Expressing best practices in (risk) analysis and testing of safety-critical systems using patterns

    DEFF Research Database (Denmark)

    Herzner, Wolfgang; Sieverding, Sven; Kacimi, Omar

    2014-01-01

    The continuing pervasion of our society with safety-critical cyber-physical systems not only demands for adequate (risk) analysis, testing and verification techniques, it also generates growing experience on their use, which can be considered as important as the tools themselves for their efficient...

  9. RICIS Symposium 1992: Mission and Safety Critical Systems Research and Applications

    Science.gov (United States)

    1992-01-01

    This conference deals with computer systems which control systems whose failure to operate correctly could produce the loss of life and or property, mission and safety critical systems. Topics covered are: the work of standards groups, computer systems design and architecture, software reliability, process control systems, knowledge based expert systems, and computer and telecommunication protocols.

  10. The integrated criticality safety evaluation for the Hanford tank waste treatment and immobilization plant

    International Nuclear Information System (INIS)

    Losey, D. C.; Miles, R. E.; Perks, M. F.

    2009-01-01

    The Criticality Safety Evaluation Report (CSER) for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) has been developed as a single, integrated evaluation with a scope that covers all of the planned WTP operations. This integrated approach is atypical, as the scopes of criticality evaluations are usually more narrowly defined. Several adjustments were made in developing the WTP CSER, but the primary changes were to provide introductory overview for the criticality safety control strategy and to provide in-depth analysis of the underlying physical and chemical mechanisms that contribute to ensuring safety. The integrated approach for the CSER allowed a more consistent evaluation of safety and avoided redundancies that occur when evaluation is distributed over multiple documents. While the approach used with the WTP CSER necessitated more coordination and teamwork, it has yielded a report is that more integrated and concise than is typical. The integrated approach with the CSER produced a simple criticality control scheme that uses relatively few controls. (authors)

  11. Delirium in Critically Ill Children: An International Point Prevalence Study.

    Science.gov (United States)

    Traube, Chani; Silver, Gabrielle; Reeder, Ron W; Doyle, Hannah; Hegel, Emily; Wolfe, Heather A; Schneller, Christopher; Chung, Melissa G; Dervan, Leslie A; DiGennaro, Jane L; Buttram, Sandra D W; Kudchadkar, Sapna R; Madden, Kate; Hartman, Mary E; deAlmeida, Mary L; Walson, Karen; Ista, Erwin; Baarslag, Manuel A; Salonia, Rosanne; Beca, John; Long, Debbie; Kawai, Yu; Cheifetz, Ira M; Gelvez, Javier; Truemper, Edward J; Smith, Rebecca L; Peters, Megan E; O'Meara, A M Iqbal; Murphy, Sarah; Bokhary, Abdulmohsen; Greenwald, Bruce M; Bell, Michael J

    2017-04-01

    To determine prevalence of delirium in critically ill children and explore associated risk factors. Multi-institutional point prevalence study. Twenty-five pediatric critical care units in the United States, the Netherlands, New Zealand, Australia, and Saudi Arabia. All children admitted to the pediatric critical care units on designated study days (n = 994). Children were screened for delirium using the Cornell Assessment of Pediatric Delirium by the bedside nurse. Demographic and treatment-related variables were collected. Primary study outcome measure was prevalence of delirium. In 159 children, a final determination of mental status could not be ascertained. Of the 835 remaining subjects, 25% screened positive for delirium, 13% were classified as comatose, and 62% were delirium-free and coma-free. Delirium prevalence rates varied significantly with reason for ICU admission, with highest delirium rates found in children admitted with an infectious or inflammatory disorder. For children who were in the PICU for 6 or more days, delirium prevalence rate was 38%. In a multivariate model, risk factors independently associated with development of delirium included age less than 2 years, mechanical ventilation, benzodiazepines, narcotics, use of physical restraints, and exposure to vasopressors and antiepileptics. Delirium is a prevalent complication of critical illness in children, with identifiable risk factors. Further multi-institutional, longitudinal studies are required to investigate effect of delirium on long-term outcomes and possible preventive and treatment measures. Universal delirium screening is practical and can be implemented in pediatric critical care units.

  12. 76 FR 52016 - NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-08-19

    ... consideration by NASA for Commercial Resupply Services for the International Space Station (ISS), with... SPACE ADMINISTRATION NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of...

  13. OECD/NEA working party on nuclear criticality safety: Challenge of new realities

    International Nuclear Information System (INIS)

    Nomura, Y.; Brady, M.C.; Briggs, J.B.; Sartori, E.

    1998-01-01

    New issues in criticality safety continue to emerge as spent fuel storage facilities reach the saturation point, fuel enrichments and burn-ups increase and new types of plutonium-carrying fuels are being developed. The new challenges related to the manipulation, transportation and storage of fuel demand further work to improve models predicting behavior through new experiments, especially where there is a lack of data in the present databases. This article summarizes the activities of the OECD/NEA working groups that coordinate and carry out work in the domain of criticality safety. Particular attention is devoted to establishing sound databases required in this area and to addressing issues of high relevance such as burn-up credit. This is aimed toward improving safety and identifying economic solutions to issues concerning the back end of the fuel cycle

  14. OECD/NEA working party on nuclear criticality safety: challenge of new realities

    International Nuclear Information System (INIS)

    Nomura, Y.; Brady, M.C.; Briggs, J.B.; Sartori, E.

    1998-01-01

    New issues in critically safety continue to emerge as spent fuel storage facilities reach the saturation point, fuel enrichments and burn-ups increase and new types of plutonium-carrying fuels are being developed. The new challenges related to the manipulation, transportation and storage of fuel demand further work to improve models predicting behaviour through new experiments, especially where there is a lack of data the present databases. This article summarizes the activities of the OECD/NEA working groups that co-ordinate and carry out work in the domain of criticality safety. Particular attention is devoted to establishing sound databases required in this area and to addressing issues of high relevance such as burn-up credit. This is aimed toward improving safety and identifying economic solutions to issues concerning the back end of the fuel cycle. (authors)

  15. Finite test sets development method for test execution of safety critical software

    International Nuclear Information System (INIS)

    El-Bordany Ayman; Yun, Won Young

    2014-01-01

    It reads inputs, computes new states, and updates output for each scan cycle. Korea Nuclear Instrumentation and Control System (KNICS) has recently developed a fully digitalized Reactor Protection System (RPS) based on PLD. As a digital system, this RPS is equipped with a dedicated software. The Reliability of this software is crucial to NPPs safety where its malfunction may cause irreversible consequences and affect the whole system as a Common Cause Failure (CCF). To guarantee the reliability of the whole system, the reliability of this software needs to be quantified. There are three representative methods for software reliability quantification, namely the Verification and Validation (V and V) quality-based method, the Software Reliability Growth Model (SRGM), and the test-based method. An important concept of the guidance is that the test sets represent 'trajectories' (a series of successive values for the input variables of a program that occur during the operation of the software over time) in the space of inputs to the software.. Actually, the inputs to the software depends on the state of plant at that time, and these inputs form a new internal state of the software by changing values of some variables. In other words, internal state of the software at specific timing depends on the history of past inputs. Here the internal state of the software which can be changed by past inputs is named as Context of Software (CoS). In a certain CoS, a software failure occurs when a fault is triggered by some inputs. To cover the failure occurrence mechanism of a software, preceding researches insist that the inputs should be a trajectory form. However, in this approach, there are two critical problems. One is the length of the trajectory input. Input trajectory should long enough to cover failure mechanism, but the enough length is not clear. What is worse, to cover some accident scenario, one set of input should represent dozen hours of successive values

  16. Multicentre study to develop a medication safety package for decreasing inpatient harm from omission of time-critical medications.

    Science.gov (United States)

    Graudins, Linda V; Ingram, Catherine; Smith, Brodie T; Ewing, Wendy J; Vandevreede, Melita

    2015-02-01

    Omitting time-critical medications leads to delays in treatment and may result in patient harm. Published studies show that omission of prescribed medication doses is common. Although most are inconsequential, up to 86% of omitted medications place patients at some risk of harm. Funding was obtained to develop a medication safety package to facilitate decreasing omitted dose incidents by audit, education and feedback. A panel of nursing and pharmacy hospital staff in Victoria, Australia, reviewed existing audit tools and published studies to develop a critical medication list and audit tool. The tool, definitions and instructions were tested in 11 rural, urban and teaching hospitals. Qualitative feedback was sought to refine the tool using a Plan-Do-Study-Act model. An educational presentation was developed using reported incidents. Staff in 11 hospitals tested the audit tool in 321 patients receiving 17 361 doses of medication. Feedback indicated audit data were useful for informing improvements in practice and for accreditation. The educational material consists of the User Guide, plus a presentation for nursing staff illustrated by six cases with questions, with instructions on how to decrease harm from omitted doses by ensuring correct documentation and prioritising time-critical medications. A medication safety package using standard definitions and a critical medication list was successfully tested. It is now used by nursing and pharmacy staff across the state. Several interstate hospitals are using the tools as part of their hospital medication safety programmes. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  17. Upgrading of fire safety in nuclear power plants. Proceedings of an International Symposium

    International Nuclear Information System (INIS)

    1998-04-01

    The document includes 40 papers presented at the International Symposium on Upgrading of Fire Safety in Nuclear Power Plants held in Vienna between 18-21 November 1997. The symposium presentations were grouped in 6 sessions: Fire safety reviews (5 papers), Fire safety analysis - Methodology (6 papers), Fire safety analysis - Applications (3 papers), Panel 1 - Identification of deficiencies in fire safety in nuclear power plants - Operational experience and data (7 papers), Panel 2 - Experience based data in fire safety assessment - Fire safety regulations and licensing (7 papers), Upgrading programmes (10 papers), and a closing session (2 papers). A separate abstract was prepared for each paper

  18. International Conference on Human and Organizational Aspects of Assuring Nuclear Safety. Exploring 30 years of Safety Culture. Programme and Abstracts

    International Nuclear Information System (INIS)

    2016-01-01

    Thirty years ago, the International Nuclear Safety Advisory Group concluded, in its investigation of the Chernobyl accident, that one of the key lessons to be learned from that accident was the importance of a strong safety culture to maintain safe operations. Almost five years have now passed since the accident at the Fukushima Daiichi nuclear power plant, and the need to implement a systemic approach to safety that takes into account the complex and dynamic sociotechnical systems comprising nuclear infrastructure is one of the main lessons emerging from investigations. This conference will allow an international audience to take a step back and reflect upon the knowledge accumulated in the areas of human and organizational factors (HOF), safety culture and leadership for safety over the past 30 years. The objectives of the conference are to: • Review the experience gained with regard to HOF, safety culture and leadership for safety; • Share and gather experiences related to current developments, approaches, methods and research in the areas of HOF, safety culture and leadership for safety; and • Identify the future needs for building organizational resilience capabilities in order to further strengthen defence in depth for nuclear facilities and activities. The special focus of the conference will be on safety culture and the past 30 years of developments in this area.

  19. General principles of the nuclear criticality safety for handling, processing and transportation fissile materials in the USSR

    International Nuclear Information System (INIS)

    Vnukov, V.S.; Rjazanov, B.G.; Sviridov, V.I.; Frolov, V.V.; Zubkov, Y.N.

    1991-01-01

    The paper describes the general principles of nuclear criticality safety for handling, processing, transportation and fissile materials storing. Measures to limit the consequences of critical accidents are discussed for the fuel processing plants and fissile materials storage. The system of scientific and technical measures on nuclear criticality safety as well as the system of control and state supervision based on the rules, limits and requirements are described. The criticality safety aspects for various stages of handling nuclear materials are considered. The paper gives descriptions of the methods and approaches for critical risk assessments for the processing facilities, plants and storages. (Author)

  20. Real-time software use in nuclear materials handling criticality safety control

    International Nuclear Information System (INIS)

    Huang, S.; Lappa, D.; Chiao, T.; Parrish, C.; Carlson, R.; Lewis, J.; Shikany, D.; Woo, H.

    1997-01-01

    This paper addresses the use of real-time software to assist handlers of fissionable nuclear material. We focus specifically on the issue of workstation mass limits, and the need for handlers to be aware of, and check against, those mass limits during material transfers. Here ''mass limits'' generally refer to criticality safety mass limits; however, in some instances, workstation mass limits for some materials may be governed by considerations other than criticality, e.g., fire or release consequence limitation. As a case study, we provide a simplified reliability comparison of the use of a manual two handler system with a software-assisted two handler system. We identify the interface points between software and handlers that are relevant to criticality safety

  1. Validation of Safety-Critical Systems for Aircraft Loss-of-Control Prevention and Recovery

    Science.gov (United States)

    Belcastro, Christine M.

    2012-01-01

    Validation of technologies developed for loss of control (LOC) prevention and recovery poses significant challenges. Aircraft LOC can result from a wide spectrum of hazards, often occurring in combination, which cannot be fully replicated during evaluation. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of hazardous and uncertain conditions, and the validation framework must provide some measure of assurance that the new vehicle safety technologies do no harm (i.e., that they themselves do not introduce new safety risks). This paper summarizes a proposed validation framework for safety-critical systems, provides an overview of validation methods and tools developed by NASA to date within the Vehicle Systems Safety Project, and develops a preliminary set of test scenarios for the validation of technologies for LOC prevention and recovery

  2. The IAEA International Seismic Safety Centre and IAEA safety standards for site evaluation and design of NPPs

    International Nuclear Information System (INIS)

    Godoy, A.; Sollogoub, P; )

    2009-01-01

    This presentation covers the following topics: 'Lessons learned' from the occurrence of strong natural events, (tsunamis, earthquakes, hurricanes, etc.) The International Seismic Safety Centre as a global focal point for the nuclear engineering community in those fields. A need for international cooperation, openness and transparency – Sharing of experience

  3. 76 FR 39811 - International Center for Technology Assessment and the Center for Food Safety; Noxious Weed...

    Science.gov (United States)

    2011-07-07

    ... dated July 18, 2002, the International Center for Technology Assessment and the Center for Food Safety... Inspection Service [Docket No. APHIS-2011-0081] International Center for Technology Assessment and the Center for Food Safety; Noxious Weed Status of Kentucky Bluegrass Genetically Engineered for Herbicide...

  4. Why land rights for women are critical | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-05-16

    May 16, 2017 ... Burundi women celebrating International Women's Day focusing on the issue of environmental protection for food security. Photo credit: UN Women Burundi ... We need to change the gender and cultural norms and attitudes that still prevent women from owning land. This has to happen from the bottom up, ...

  5. A critical evalluation of internal revenue generating efforts of some ...

    African Journals Online (AJOL)

    In a bid to enhance improvement of local government internal revenue efforts, the federal government has embarked on several policies some of these include; the creation of more local government areas from 96 divisions in 1963 to 774 local government areas in 1993. The local government reform of 1976 and the use of ...

  6. Internal Realism in the Philosophy of Science: A Critical Appraisal ...

    African Journals Online (AJOL)

    Internal realism is a species of idealism which holds that the human mind is totally responsible for what we call reality.This implies that all scientific theories are mental constructions that can not be linked to any external world. In as much as there are some idealistic and linguistic oddities in this doctrine as expressed by ...

  7. Some Challenges in the Design of Human-Automation Interaction for Safety-Critical Systems

    Science.gov (United States)

    Feary, Michael S.; Roth, Emilie

    2014-01-01

    Increasing amounts of automation are being introduced to safety-critical domains. While the introduction of automation has led to an overall increase in reliability and improved safety, it has also introduced a class of failure modes, and new challenges in risk assessment for the new systems, particularly in the assessment of rare events resulting from complex inter-related factors. Designing successful human-automation systems is challenging, and the challenges go beyond good interface development (e.g., Roth, Malin, & Schreckenghost 1997; Christoffersen & Woods, 2002). Human-automation design is particularly challenging when the underlying automation technology generates behavior that is difficult for the user to anticipate or understand. These challenges have been recognized in several safety-critical domains, and have resulted in increased efforts to develop training, procedures, regulations and guidance material (CAST, 2008, IAEA, 2001, FAA, 2013, ICAO, 2012). This paper points to the continuing need for new methods to describe and characterize the operational environment within which new automation concepts are being presented. We will describe challenges to the successful development and evaluation of human-automation systems in safety-critical domains, and describe some approaches that could be used to address these challenges. We will draw from experience with the aviation, spaceflight and nuclear power domains.

  8. Requirement analysis of the safety-critical software implementation for the nuclear power plant

    International Nuclear Information System (INIS)

    Chang, Hoon Seon; Jung, Jae Cheon; Kim, Jae Hack; Nam, Sang Ku; Kim, Hang Bae

    2005-01-01

    The safety critical software shall be implemented under the strict regulation and standards along with hardware qualification. In general, the safety critical software has been implemented using functional block language (FBL) and structured language like C in the real project. Software design shall comply with such characteristics as; modularity, simplicity, minimizing the use of sub-routine, and excluding the interrupt logic. To meet these prerequisites, we used the computer-aided software engineering (CASE) tool to substantiate the requirements traceability matrix that were manually developed using Word processors or Spreadsheets. And the coding standard and manual have been developed to confirm the quality of software development process, such as; readability, consistency, and maintainability in compliance with NUREG/CR-6463. System level preliminary hazard analysis (PHA) is performed by analyzing preliminary safety analysis report (PSAR) and FMEA document. The modularity concept is effectively implemented for the overall module configurations and functions using RTP software development tool. The response time imposed on the basis of the deterministic structure of the safety-critical software was measured

  9. A new approach to the criticality safety assessment of PCM at BNFL Sellafield

    International Nuclear Information System (INIS)

    Darby, Sam; Kirkwood, Dave

    2003-01-01

    Plutonium Contaminated Material (PCM) arises as a solid waste on the Sellafield Site and is packaged into 200 litre drums which are placed into interim surface storage arrays. These wastes may also contain 235 U. The traditional approach to criticality safety has been based on ''worst-case'' reactivity modelling. This has recently led to a number of difficulties by implying that the 230 g (Pu + 235 U) drum limit is very important for criticality safety and the assay instruments used to demonstrate compliance with the limit need a high level of safety reliability. Also, the reliability and accuracy of the assay results of historical or legacy PCM became an issue. The new focus on substantiation of safety related equipment in BNFL has highlighted reliability shortfalls for the assay instruments. To overcome these shortfalls, additional operational practices on the PCM handling regimes were introduced to give increased confidence in the fissile assay results. These practices significantly delayed processing PCM waste stocks and resulted in significant additional operator dose uptake. Thus there were strong reasons to improve the existing approach. This paper describes a new approach to the criticality modelling of PCM. (author)

  10. Quality and safety: reflection on the implications for critical care nursing education.

    Science.gov (United States)

    Baid, Heather; Hargreaves, Jessica

    2015-07-01

    Safe and high quality health care is underpinned by health care professionals possessing the knowledge, skills and professional attributes which are necessary for their specific clinical speciality and area of practice. Education is crucial as it enables clinicians to learn and put into practice their specialist knowledge, skills and attributes. These elements will be based on clinical standards, which set the agenda for quality and safety in health care. The purpose of this paper is to reflect upon how a post-registration, degree-level critical care nursing course provided by an English university facilitates nurses to deliver high quality, safe nursing care for critically ill patients and their families. As a reflective analysis, the process of reflection will be guided and structured according to Rolfe's framework for reflective practice. The reflection is based upon the personal observations and teaching experiences of two university lecturers involved in the delivery of the critical care course. Critical care nursing education can incorporate informed practice, simulation and non-technical skills into post-registration critical-care nursing courses as a way of promoting high-quality, safe clinical practice in the critical care setting. This article provides examples from one course's experience with doing this and ends with specific recommendations for how critical care nursing courses can enhance further the promotion of quality and safety. Educators, mentors and students of post-registration critical care nursing courses are encouraged to explore the relevance of nursing education in promoting safe and high-quality clinical practice. © 2015 British Association of Critical Care Nurses.

  11. Definition and means of maintaining the criticality detectors and alarms portion of the PFP safety envelope

    Energy Technology Data Exchange (ETDEWEB)

    White, W.F.

    1997-05-13

    The purpose of this document is to provide the definition and means of maintaining the Safety Envelope (SE) related to the Criticality Alarm System (CAS). This document provides amplification of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements (OSR), WHC-SD-CP-OSR-010, Rev. 0, 1994, Section 3.1.2, Criticality Detectors and Alarms. This document, with its appendices, provides the following: (1) System functional requirements for determining system operability (Section 3); (2) A list of annotated system block diagrams which indicate the safety envelope boundaries (Appendix C); (3) A list of the Safety Class 1 and 2 Safety Envelope (SC-1/2 SE) equipment for input into the Master Component Index (Appendix B); (4) Functional requirements for individual SC-1/2 SE components, including appropriate setpoints and process parameters (Section 6 and Appendix A); (5) A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the SC-1/2 SE components as required by the LCO (Section 6 and Appendix A).

  12. Safety of a training program for ultrasound-guided internal jugular vein catheterization in critically ill patients Segurança de um programa de treinamento para punção de veia jugular interna guiada por ultrassom em pacientes críticos

    Directory of Open Access Journals (Sweden)

    Felippe Leopoldo Dexheimer Neto

    2011-08-01

    Full Text Available OBJECTIVES: Evaluate the safety and effectiveness of a training program for performing ultrasound-guided internal jugular vein cannulation in critically ill patients. METHODS: Cohort prospective study, evaluating adult patients admitted in a teaching intensive care unit (ICU. Catheter placement was performed by an ICU medical resident. The patient's baseline characteristics, vessel's position and operator experience were the evaluated variables. The main outcomes were cannulation success rate and incidence of major complications. RESULTS: A total of 118 consecutive patients were enrolled between May 2008 and November 2009. The success rate of ultrasound guided catheter placement was 90% (106/118, 77% in the first attempt. Major complications occurred in 4% of the cases (n = 5 and were not associated with the analyzed variables. Inability to place the guide wire was the reason for 58% (7/12 of the failures. Operators with more than 15 previous ultrasound guided cannulations had an increased success rate (95% vs. 79%, p = 0.01 and increased failure was related to previous catheterization (26% vs. 7%, p = 0.02. CONCLUSION: Learning ultrasound guidance for IJV vein cannulation was safe and feasible in ICU patients. This process was not associated to complications and better results were achieved across the spectrum of operator experienceOBJETIVO: Avaliar a segurança e efetividade de um programa de treinamento para cateterização da veia jugular interna guiada por ultrassom em pacientes críticos. MÉTODOS: Estudo de coorte prospectivo, avaliando pacientes adultos internados em uma unidade de terapia intensiva com programa de ensino. Os médicos residentes do serviço realizaram as punções de veia jugular interna guiadas por ultrassom. Foram avaliadas as características de base dos pacientes, sintopia dos vasos e experiência dos operadores. Os desfechos primários foram a taxa de sucesso da cateterização e a incidência de complica

  13. Validation of Nuclear Criticality Safety Software and 27 energy group ENDF/B-IV cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.L. Jr.

    1994-08-01

    The validation documented in this report is based on calculations that were executed during June through August 1992, and was completed in June 1993. The statistical analyses in Appendix C and Appendix D were completed in October 1993. This validation gives Portsmouth NCS personnel a basis for performing computerized KENO V.a calculations using the Martin Marietta Nuclear Criticality Safety Software. The first portion of the document outlines basic information in regard to validation of NCSS using ENDF/B-IV 27-group cross sections on the IBM 3090 at ORNL. A basic discussion of the NCSS system is provided, some discussion on the validation database and validation in general. Then follows a detailed description of the statistical analysis which was applied. The results of this validation indicate that the NCSS software may be used with confidence for criticality calculations at the Portsmouth Gaseous Diffusion Plant. When the validation results are treated as a single group, there is 95% confidence that 99.9% of future calculations of similar critical systems will have a calculated K{sub eff} > 0.9616. Based on this result the Portsmouth Nuclear Criticality Safety Department has adopted the calculational acceptance criteria that a k{sub eff} + 2{sigma} {le} 0.95 is safety subcritical. The validation of NCSS on the IBM 3090 at ORNL was extended to include NCSS on the IBM 3090 at K-25.

  14. International conference on the operational safety performance in nuclear installations. Contributed papers

    International Nuclear Information System (INIS)

    2005-01-01

    In 2001, the IAEA organized an 'International Conference on Topical Issues in Nuclear Safety'. The issues discussed during the conference were: (1) risk- informed decision-making; (2) influence of external factors on safety; (3) safety of fuel cycle facilities; (4) safety of research reactors; and (5) safety performance indicators. Senior nuclear safety decision makers reviewed the issues and formulated recommendations for future actions by national and international organizations. In 2004, the IAEA organized an 'International Conference on Topical Issues in Nuclear Safety' in Beijing China. The issues discussed during the conference were: (1) changing environment - coping with diversity and globalization; (2) operating experience - managing changes effectively; (3) regulatory management systems - adapting to changes in the environment; and (4) long term operations - maintaining safety margins while extending plant lifetimes. The results of this conference confirmed the importance of operators and regulators of nuclear facilities meeting periodically to share experience and opinion on emerging issues and future challenges of the nuclear industry. Substantial progress has been made, and continues to be made by Member States in enhancing the safety of nuclear installations worldwide. At the same time, more attention is being given to other areas of nuclear safety. The safety standards for research reactors are being updated and new standards are planned on the safety of other facilities in the nuclear fuel cycle. The Agency has taken a lead role in this effort and is receiving much support from its Member States to gain international consensus in these areas. The objective of the conference is to foster the exchange of information on operational safety performance and operating experience in nuclear installations, with the aim of consolidating an international consensus on: - the present status of these issues; - emerging issues with international implications

  15. Guide to verification and validation of the SCALE-4 criticality safety software

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, M.B.; Jordan, W.C.

    1996-12-01

    Whenever a decision is made to newly install the SCALE nuclear criticality safety software on a computer system, the user should run a set of verification and validation (V&V) test cases to demonstrate that the software is properly installed and functioning correctly. This report is intended to serve as a guide for this V&V in that it specifies test cases to run and gives expected results. The report describes the V&V that has been performed for the nuclear criticality safety software in a version of SCALE-4. The verification problems specified by the code developers have been run, and the results compare favorably with those in the SCALE 4.2 baseline. The results reported in this document are from the SCALE 4.2P version which was run on an IBM RS/6000 workstation. These results verify that the SCALE-4 nuclear criticality safety software has been correctly installed and is functioning properly. A validation has been performed for KENO V.a utilizing the CSAS25 criticality sequence and the SCALE 27-group cross-section library for {sup 233}U, {sup 235}U, and {sup 239}Pu fissile, systems in a broad range of geometries and fissile fuel forms. The experimental models used for the validation were taken from three previous validations of KENO V.a. A statistical analysis of the calculated results was used to determine the average calculational bias and a subcritical k{sub eff} criteria for each class of systems validated. Included the statistical analysis is a means of estimating the margin of subcriticality in k{sub eff}. This validation demonstrates that KENO V.a and the 27-group library may be used for nuclear criticality safety computations provided the system being analyzed falls within the range of the experiments used in the validation.

  16. Propagation of Isotopic Bias and Uncertainty to Criticality Safety Analyses of PWR Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, Georgeta [ORNL

    2010-06-01

    Burnup credit methodology is economically advantageous because significantly higher loading capacity may be achieved for spent nuclear fuel (SNF) casks based on this methodology as compared to the loading capacity based on a fresh fuel assumption. However, the criticality safety analysis for establishing the loading curve based on burnup credit becomes increasingly complex as more parameters accounting for spent fuel isotopic compositions are introduced to the safety analysis. The safety analysis requires validation of both depletion and criticality calculation methods. Validation of a neutronic-depletion code consists of quantifying the bias and the uncertainty associated with the bias in predicted SNF compositions caused by cross-section data uncertainty and by approximations in the calculational method. The validation is based on comparison between radiochemical assay (RCA) data and calculated isotopic concentrations for fuel samples representative of SNF inventory. The criticality analysis methodology for commercial SNF disposal allows burnup credit for 14 actinides and 15 fission product isotopes in SNF compositions. The neutronic-depletion method for disposal criticality analysis employing burnup credit is the two-dimensional (2-D) depletion sequence TRITON (Transport Rigor Implemented with Time-dependent Operation for Neutronic depletion)/NEWT (New ESC-based Weighting Transport code) and the 44GROUPNDF5 crosssection library in the Standardized Computer Analysis for Licensing Evaluation (SCALE 5.1) code system. The SCALE 44GROUPNDF5 cross section library is based on the Evaluated Nuclear Data File/B Version V (ENDF/B-V) library. The criticality calculation code for disposal criticality analysis employing burnup credit is General Monte Carlo N-Particle (MCNP) Transport Code. The purpose of this calculation report is to determine the bias on the calculated effective neutron multiplication factor, k{sub eff}, due to the bias and bias uncertainty associated with

  17. Criticality safety evaluation of Rocky Flats Plant one-gallon shipping containers

    International Nuclear Information System (INIS)

    Briggs, J.B.

    1991-02-01

    Intraplant shipment of small quantities of plutonium and uranium at the Rocky Flats Plant (RFP) are made in one-gallon shipping containers. Criticality safety calculations have been performed to provide an analytical basis upon which handling, storage, and transportation limits on these containers are based. The calculations and results are documented in this report. This analysis was categorized as Quality Level A (according to the EG ampersand G Idaho Quality Manual) in that it is a service whose failure could cause undue risks to employees or public health and safety. It is intended to comply with NQA-1. 7 refs., 7 figs., 12 tabs

  18. Criticality safety analysis of spent fuel storage for NPP Mochovce using MCNP5

    International Nuclear Information System (INIS)

    Farkas, G.; Hascik, J.; Lueley, J.; Vrban, B.; Petriska, M.; Slugen, V.; Urban, P.

    2011-01-01

    The paper presents results of nuclear criticality safety analysis of spent fuel storage for the first and second unit of NPP Mochovce. The spent fuel storage pool (compact and reserve grid) was modeled using the Monte Carlo code MCNP5. Conservative approach was applied and calculation of k eff values was performed for normal and various postulated emergency conditions in order to evaluate the final maximal k eff values. The requirement of current safety regulations to ensure 5% subcriticality was met except one especially conservative case. (Authors)

  19. Practitioners' Perspectives on Change Impact Analysis for Safety-Critical Software - A Preliminary Analysis

    OpenAIRE

    Borg, Markus; de la Vara, José-Luis; Wnuk, Krzysztof

    2016-01-01

    Safety standards prescribe change impact analysis (CIA) during evolution of safety-critical software systems. Although CIA is a fundamental activity, there is a lack of empirical studies about how it is performed in practice. We present a case study on CIA in the context of an evolving automation system, based on 14 interviews in Sweden and India. Our analysis suggests that engineers on average spend 50-100 hours on CIA per year, but the effort varies considerably with the phases of projects....

  20. Critical review of controlled release packaging to improve food safety and quality.

    Science.gov (United States)

    Chen, Xi; Chen, Mo; Xu, Chenyi; Yam, Kit L

    2018-03-19

    Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.

  1. International ranking systems for universities and institutions: a critical appraisal

    Directory of Open Access Journals (Sweden)

    Tatsioni Athina

    2007-10-01

    Full Text Available Abstract Background Ranking of universities and institutions has attracted wide attention recently. Several systems have been proposed that attempt to rank academic institutions worldwide. Methods We review the two most publicly visible ranking systems, the Shanghai Jiao Tong University 'Academic Ranking of World Universities' and the Times Higher Education Supplement 'World University Rankings' and also briefly review other ranking systems that use different criteria. We assess the construct validity for educational and research excellence and the measurement validity of each of the proposed ranking criteria, and try to identify generic challenges in international ranking of universities and institutions. Results None of the reviewed criteria for international ranking seems to have very good construct validity for both educational and research excellence, and most don't have very good construct validity even for just one of these two aspects of excellence. Measurement error for many items is also considerable or is not possible to determine due to lack of publication of the relevant data and methodology details. The concordance between the 2006 rankings by Shanghai and Times is modest at best, with only 133 universities shared in their top 200 lists. The examination of the existing international ranking systems suggests that generic challenges include adjustment for institutional size, definition of institutions, implications of average measurements of excellence versus measurements of extremes, adjustments for scientific field, time frame of measurement and allocation of credit for excellence. Conclusion Naïve lists of international institutional rankings that do not address these fundamental challenges with transparent methods are misleading and should be abandoned. We make some suggestions on how focused and standardized evaluations of excellence could be improved and placed in proper context.

  2. Critical Analysis of the Hong Kong International Convention on Ship Recycling

    NARCIS (Netherlands)

    Jain, K.P.; Pruyn, J.F.J.; Hopman, J.J.

    2013-01-01

    In May 2009, the International Maritime Organization (IMO) adopted the Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships to address the growing concerns about the environmental, occupational health and safety risks related to ship recycling. The aim of the

  3. A study of the international trend and comprehensive enhancement program on the Nuclear Power Plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Soon Hong; Cho, Nam Jin; Paek, Won Phil [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] (and others)

    1990-12-15

    The objectives of this study are as follows : overview of the international trend related to the safety of Nuclear Power Plant(NPPs), study of the present status of NPP safety in Korea in aspects of design, construction and operation, suggestion of the comprehensive program to improve NPP safety in Korea. The results of this study can contribute to improve the safety of existing and future NPPs, and to establish the severe accident policy in Korea.

  4. International Conference of Ukrainian Nuclear Society ''NPP's safety and protection''(annotations)

    International Nuclear Information System (INIS)

    Barbashev, S.V.

    1997-01-01

    The abstracts of reports submitted to the Conference include: - New developments of the safe nuclear installations; - NPP ecological safety; - Methods of personnel and population protection; - Waste management safety (at transportation, processing and storage); - Spent nuclear fuel management; - NPP life extension and decommissioning; - Public opinion as an element of NPP safety; - Training of personnel, scientific support and safety culture; - Forecasting of nuclear power and industry safe development; - Development of international cooperation in nuclear power

  5. The role of the International Atomic Energy Agency in radiation and waste safety

    International Nuclear Information System (INIS)

    Wrixon, A.D.; Ortiz-Lopez, P.

    1999-01-01

    The International Atomic Energy Agency is specifically required by its Statute 'to establish or adopt ... standards of safety for protection of health and minimization of danger to life and property ... and to provide for the application of these standards ...'. Standards encompass three main elements: legally binding international undertakings among States; globally agreed international safety standards; and the provision for facilitating the application of those standards. Radiation safety standards are national responsibilities, but there is considerable value in formulating harmonized approaches throughout the world. The Agency has attempted to do this by establishing internationally agreed safety standards and by prompting their application. Of prime importance are the Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. These deal with the basic requirements that must be met in order to ensure an adequate standard of safety. More detailed guidance on the application of these requirements is given in Safety Guides established under them. Fuller technical support is given in a series of Safety Reports. A number of Safety Guides are relevant to this meeting. An existing Safety Guide on exemption is being revised to cover related topics such as exclusion and clearance, and this is the subject of a separate presentation. As part of the programme to combat illicit trafficking in radioactive materials, a new Safety Guide on the topic is being developed. Both are near completion. Another Safety Guide is being produced to elaborate the requirements in the Basic Safety Standards on the safety of radioactive sources. The topics of illicit trafficking in radioactive materials and the safety of radioactive sources were given added impetus by resolutions of the last General Conference of the Agency. This paper provides an overview of these activities of the Agency. (author)

  6. Feasibility and safety of virtual-reality-based early neurocognitive stimulation in critically ill patients.

    Science.gov (United States)

    Turon, Marc; Fernandez-Gonzalo, Sol; Jodar, Mercè; Gomà, Gemma; Montanya, Jaume; Hernando, David; Bailón, Raquel; de Haro, Candelaria; Gomez-Simon, Victor; Lopez-Aguilar, Josefina; Magrans, Rudys; Martinez-Perez, Melcior; Oliva, Joan Carles; Blanch, Lluís

    2017-12-01

    Growing evidence suggests that critical illness often results in significant long-term neurocognitive impairments in one-third of survivors. Although these neurocognitive impairments are long-lasting and devastating for survivors, rehabilitation rarely occurs during or after critical illness. Our aim is to describe an early neurocognitive stimulation intervention based on virtual reality for patients who are critically ill and to present the results of a proof-of-concept study testing the feasibility, safety, and suitability of this intervention. Twenty critically ill adult patients undergoing or having undergone mechanical ventilation for ≥24 h received daily 20-min neurocognitive stimulation sessions when awake and alert during their ICU stay. The difficulty of the exercises included in the sessions progressively increased over successive sessions. Physiological data were recorded before, during, and after each session. Safety was assessed through heart rate, peripheral oxygen saturation, and respiratory rate. Heart rate variability analysis, an indirect measure of autonomic activity sensitive to cognitive demands, was used to assess the efficacy of the exercises in stimulating attention and working memory. Patients successfully completed the sessions on most days. No sessions were stopped early for safety concerns, and no adverse events occurred. Heart rate variability analysis showed that the exercises stimulated attention and working memory. Critically ill patients considered the sessions enjoyable and relaxing without being overly fatiguing. The results in this proof-of-concept study suggest that a virtual-reality-based neurocognitive intervention is feasible, safe, and tolerable, stimulating cognitive functions and satisfying critically ill patients. Future studies will evaluate the impact of interventions on neurocognitive outcomes. Trial registration Clinical trials.gov identifier: NCT02078206.

  7. KAERI software verification and validation guideline for developing safety-critical software in digital I and C system of NPP

    International Nuclear Information System (INIS)

    Kim, Jang Yeol; Lee, Jang Soo; Eom, Heung Seop.

    1997-07-01

    This technical report is to present V and V guideline development methodology for safety-critical software in NPP safety system. Therefore it is to present V and V guideline of planning phase for the NPP safety system in addition to critical safety items, for example, independence philosophy, software safety analysis concept, commercial off the shelf (COTS) software evaluation criteria, inter-relationships between other safety assurance organizations, including the concepts of existing industrial standard, IEEE Std-1012, IEEE Std-1059. This technical report includes scope of V and V guideline, guideline framework as part of acceptance criteria, V and V activities and task entrance as part of V and V activity and exit criteria, review and audit, testing and QA records of V and V material and configuration management, software verification and validation plan production etc., and safety-critical software V and V methodology. (author). 11 refs

  8. Validation of KENO V.a for criticality safety calculations of low-enriched uranium-235 systems

    International Nuclear Information System (INIS)

    McCamis, R.H.

    1991-02-01

    The criticality safety analysis program KENO V.a, together with a 27-energy-group ENDF/B-IV criticality safety cross-section library, has been validated by comparison of calculations with the experimental results from critical benchmarks dealing with low-enriched (≤ 5 wt%) 235 U systems, obtained both from the literature and from recent AECL Research experiments with the SLOWPOKE Demonstration Reactor. The combination of the code and this data library is shown to be very suitable for criticality safety analyses of low-enriched 235 U systems, with mean values of the calculated reactivities being within 1% of the experimental values. (6 figs., 3 tabs., 37 refs.)

  9. Conclusions and Recommendations of the IAEA International Conference on Topical Issues in Nuclear Safety: Ensuring Safety for Sustainable Nuclear Development

    International Nuclear Information System (INIS)

    El-Shanawany, Mamdouh

    2011-01-01

    Over 200 participants from 33 countries and three international organizations came and actively participated and contributed to focused discussions and the success of the conference. The following points summarize the key conclusions and recommendations of the conference with respect to nuclear safety. 1. The nuclear safety approach is based on the philosophy developed in the 60's: defense in depth principles and deterministic criteria. When properly applied and completed by probabilistic analyses and operational experience feedback, it continues to be a successful approach. However, guarding against the risk of accidents requires constant vigilance and high technical competence and a never ending fight against complacency. In this context, having a strong leadership with a commitment to continuous improvement and a vision of sustained excellence is a key element of nuclear safety. Continuous improvement in safety also should be pursued through scientific research and operational experience feedback. 2. An accident anywhere is of concern to all Member States. Therefore, it is in the interest of all Member States to share and collaborate on safety matters. Participation of all Member States in international nuclear safety instruments and conventions, including liability for nuclear damage, is considered beneficial to global safety. The Convention on Nuclear Safety, the Joint Convention, international cooperation through IAEA and other organizations, bilateral or multilateral arrangements are important elements for establishing networks for sharing and transferring knowledge. It is acknowledged that the IAEA's Safety Fundamentals and Safety Requirements provide a sound foundation for high level nuclear safety. IAEA Safety Standards should be the basis for the establishment and maintenance of safety infrastructure. The IAEA's peer reviews and services such as IRRS, OSART, Site Evaluation and Reactor Safety Reviews provide also a valuable platform for sharing

  10. Main Conclusions and Recommendations of International Conference on Topical Issues in Nuclear Installation Safety: Ensuring Safety for Sustainable Nuclear Development

    International Nuclear Information System (INIS)

    El-Shanawany, Mamdouh

    2011-01-01

    Over 200 participants from 33 countries and three international organizations came and actively participated and contributed to focused discussions and the success of the conference. The following points summarize the key conclusions and recommendations of the conference with respect to nuclear safety. 1. The nuclear safety approach is based on the philosophy developed in the 60's: defense in depth principles and deterministic criteria. When properly applied and completed by probabilistic analyses and operational experience feedback, it continues to be a successful approach. However, guarding against the risk of accidents requires constant vigilance and high technical competence and a never ending fight against complacency. In this context, having a strong leadership with a commitment to continuous improvement and a vision of sustained excellence is a key element of nuclear safety. Continuous improvement in safety also should be pursued through scientific research and operational experience feedback. 2. An accident anywhere is of concern to all Member States. Therefore, it is in the interest of all Member States to share and collaborate on safety matters. Participation of all Member States in international nuclear safety instruments and conventions, including liability for nuclear damage, is considered beneficial to global safety. The Convention on Nuclear Safety, the Joint Convention, international cooperation through IAEA and other organizations, bilateral or multilateral arrangements are important elements for establishing networks for sharing and transferring knowledge. It is acknowledged that the IAEA's Safety Fundamentals and Safety Requirements provide a sound foundation for high level nuclear safety. IAEA Safety Standards should be the basis for the establishment and maintenance of safety infrastructure. The IAEA's peer reviews and services such as IRRS, OSART, Site Evaluation and Reactor Safety Reviews provide also a valuable platform for sharing

  11. Criticality safety of transuranic storage arrays at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Boyd, W.A.; Fecteau, M.W.

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) facility is designed to store transuranic waste that will consist mainly of surface contaminate articles and sludge. The fissile material in the waste is predominantly 239 Pu. The waste is grouped into two categories: contact-handled waste, which will be stored in 55-gal steel drums or in steel boxes, and remote-handled waste, which will be stored in specially designed cylindrical steel canisters. To show that criticality safety will be acceptable, criticality analyses were performed to demonstrate that a large number of containers with limiting loadings of fissile material could be stored at the site and meet a k eff limit of 0.95. Criticality analyses based on the classic worst-case moderated plutonium sphere approach would severely limit the capacity for storage of waste at the facility. Therefore, these analyses use realistic or credible worst-case assumptions to better represent the actual storage situation without compromising the margin of safety. Numerous sensitivity studies were performed to determine the importance of various parameters on the criticality of the configuration. It was determined that the plutonium loading has the dominant effect on the system reactivity. Nearly all other reactivity variations from the sensitivity studies were found to be relatively small. The analysis shows that criticality of the contact-handled waste storage drums and boxes and the remote-handled canisters is prevented by restrictions on maximum fissile loading per container and on the size of handling/storage areas

  12. Critical Incident Stress Management (CISM) in complex systems: cultural adaptation and safety impacts in healthcare.

    Science.gov (United States)

    Müller-Leonhardt, Alice; Mitchell, Shannon G; Vogt, Joachim; Schürmann, Tim

    2014-07-01

    In complex systems, such as hospitals or air traffic control operations, critical incidents (CIs) are unavoidable. These incidents can not only become critical for victims but also for professionals working at the "sharp end" who may have to deal with critical incident stress (CIS) reactions that may be severe and impede emotional, physical, cognitive and social functioning. These CIS reactions may occur not only under exceptional conditions but also during every-day work and become an important safety issue. In contrast to air traffic management (ATM) operations in Europe, which have readily adopted critical incident stress management (CISM), most hospitals have not yet implemented comprehensive peer support programs. This survey was conducted in 2010 at the only European general hospital setting which implemented CISM program since 2004. The aim of the article is to describe possible contribution of CISM in hospital settings framed from the perspective of organizational safety and individual health for healthcare professionals. Findings affirm that daily work related incidents also can become critical for healthcare professionals. Program efficiency appears to be influenced by the professional culture, as well as organizational structure and policies. Overall, findings demonstrate that the adaptation of the CISM program in general hospitals takes time but, once established, it may serve as a mechanism for changing professional culture, thereby permitting the framing of even small incidents or near misses as an opportunity to provide valuable feedback to the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Reliability estimation of safety-critical software-based systems using Bayesian networks

    International Nuclear Information System (INIS)

    Helminen, A.

    2001-06-01

    Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of software-based safety-critical automation systems in nuclear power plants. In the research project 'Programmable automation system safety integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002), various safety assessment methods and tools for software based systems are developed and evaluated. The project is financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT). In this report the applicability of Bayesian networks to the reliability estimation of software-based systems is studied. The applicability is evaluated by building Bayesian network models for the systems of interest and performing simulations for these models. In the simulations hypothetical evidence is used for defining the parameter relations and for determining the ability to compensate disparate evidence in the models. Based on the experiences from modelling and simulations we are able to conclude that Bayesian networks provide a good method for the reliability estimation of software-based systems. (orig.)

  14. Effect of mixing state on criticality safety evaluation in MOX powder and additive

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Miyoshi, Yoshinori

    2005-01-01

    Criticality safety analyses are discussed in which MOX powder and additive (e.g. zinc-stearate) are mixed in a powder treatment process of MOX fuel fabrication. The multiplication factor k eff is largely affected by how they are mixed, i.e., how the density and volume change with the mixing. In general, k eff increases when MOX powder is mixed with zinc-stearate. However, plutonium content and density of MOX powder make a difference in the k eff 's changes. Especially, MOX powder with a higher plutonium content and a higher density is not always unsafe in terms of criticality if it is mixed with zinc-stearate. (author)

  15. Trustworthy Variant Derivation with Translation Validation for Safety Critical Product Lines

    DEFF Research Database (Denmark)

    Iosif-Lazăr, Alexandru Florin; Wasowski, Andrzej

    2016-01-01

    Software product line (SPL) engineering facilitates development of entire families of software products with systematic reuse. Model driven SPLs use models in the design and development process. In the safety critical domain, validation of models and testing of code increases the quality of the p......Software product line (SPL) engineering facilitates development of entire families of software products with systematic reuse. Model driven SPLs use models in the design and development process. In the safety critical domain, validation of models and testing of code increases the quality...... of the products altogether. However, to maintain this trustworthiness it is necessary to know that the SPL tools, which manipulate models and code to derive concrete product variants, do not introduce errors in the process. We propose a general technique of checking correctness of product derivation tools through...

  16. Model-based schedulability analysis of safety critical hard real-time Java programs

    DEFF Research Database (Denmark)

    Bøgholm, Thomas; Kragh-Hansen, Henrik; Olsen, Petur

    2008-01-01

    In this paper, we present a novel approach to schedulability analysis of Safety Critical Hard Real-Time Java programs. The approach is based on a translation of programs, written in the Safety Critical Java profile introduced in [21] for the Java Optimized Processor [18], to timed automata models...... verifiable by the Uppaal model checker [23]. Schedulability analysis is reduced to a simple reachability question, checking for deadlock freedom. Model-based schedulability analysis has been developed by Amnell et al. [2], but has so far only been applied to high level specifications, not actual...... implementations in a programming language. Experiments show that model-based schedulability analysis can result in a more accurate analysis than possible with traditional approaches, thus systems deemed non-schedulable by traditional approaches may in fact be schedulable, as detected by our analysis. Our approach...

  17. Justification of criticism of the international financial institutions

    Directory of Open Access Journals (Sweden)

    Đonlagić Dženan

    2010-01-01

    Full Text Available As more than half a century has passed since the establishment of the international financial institutions (IMF, World Bank, this paper analyzes the opinion that these institutions have not accomplished their mission. They generally admit that they have not succeeded in the activities that they set out to accomplish, a propos of gathering funds for countries faced with economic gaps and helping them to maintain long term economic growth and development. We show that these financial institutions have done nothing to reduce poverty and financial disparities, to increase their own transparency, responsibility and management, especially with the public participation of developing countries, or to create a more effective loans system. In this paper the main goal of research is to explore the arguments pro and contra the strategic effect, policy, and working methodology of the international financial institutions in view of finding a solution to the global financial crisis and global prevalent financial problems, and also to consider the reasons for the justification or otherwise of their being part of the global financial system.

  18. V and V based Fault Estimation Method for Safety-Critical Software using BNs

    International Nuclear Information System (INIS)

    Eom, Heung Seop; Park, Gee Yong; Jang, Seung Cheol; Kang, Hyun Gook

    2011-01-01

    Quantitative software reliability measurement approaches have severe limitations in demonstrating the proper level of reliability for safety-critical software. These limitations can be overcome by using some other means of assessment. One of the promising candidates is based on the quality of the software development. Particularly in the nuclear industry, regulatory bodies in most countries do not accept the concept of quantitative goals as a sole means of meeting their regulations for the reliability of digital computers in NPPs, and use deterministic criteria for both hardware and software. The point of deterministic criteria is to assess the whole development process and its related activities during the software development life cycle for the acceptance of safety-critical software, and software V and V plays an important role in this process. In this light, we studied a V and V based fault estimation method using Bayesian Nets (BNs) to assess the reliability of safety-critical software, especially reactor protection system software in a NPP. The BNs in the study were made for an estimation of software faults and were based on the V and V frame, which governs the development of safety-critical software in the nuclear field. A case study was carried out for a reactor protection system that was developed as a part of the Korea Nuclear Instrumentation and Control System. The insight from the case study is that some important factors affecting the fault number of the target software include the residual faults in the system specification, maximum number of faults introduced in the development phase, ratio between process/function characteristic, uncertainty sizing, and fault elimination rate by inspection activities

  19. Safety-critical Java with cyclic executives on chip-multiprocessors

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Schoeberl, Martin

    2012-01-01

    Chip-multiprocessors offer increased processing power at a low cost. However, in order to use them for real-time systems, tasks have to be scheduled efficiently and predictably. It is well known that finding optimal schedules is a computationally hard problem. In this paper we present a solution ...... for multiprocessors, we have implemented it in the context of safety-critical Java on a Java processor....

  20. Criticality safety evaluation of Rocky Flats Plant one-gallon shipping containers

    International Nuclear Information System (INIS)

    Shaw, M.E.

    1991-12-01

    Criticality safety calculations have been performed to provide an analytical basis for handling, storage and transport of Rocky Flats Plant (RFP) one-gallon shipping containers. A mass limit was establish for metal (solid uranium or plutonium) and slurries (undissolved U or Pu solids in a ''mud,'' ''sludge,'' or ''slurry''). A separate volume limit was developed for plutonium solutions (liquids, either aqueous or organic, containing no visible undissolved solids)