WorldWideScience

Sample records for internally circulating fluidized

  1. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation

    Science.gov (United States)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  2. Combustion of Liquid Bio-Fuels in an Internal Circulating Fluidized Bed

    Czech Academy of Sciences Publication Activity Database

    Miccio, F.; Kalisz, S.; Baxter, D.; Svoboda, Karel

    2008-01-01

    Roč. 143, 1-3 (2008), s. 172-179 ISSN 1385-8947 Institutional research plan: CEZ:AV0Z40720504 Keywords : internal circulating fluidized bed * liquid fuel * combustion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.813, year: 2008

  3. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R.; Lindblom, M. [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1996-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  4. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R; Lindblom, M [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1997-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  5. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S; Toyoda, S [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  6. Characterization of fluidization regime in circulating fluidized bed reactor with high solid particle concentration using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chalermsinsuwan, Benjapon; Thummakul, Theeranan; Piumsomboon, Pornpote [Chulalongkorn University, Bangkok (Thailand); Gidaspow, Dimitri [Armour College of Engineering, Chicago (United States)

    2014-02-15

    The hydrodynamics inside a high solid particle concentration circulating fluidized bed reactor was investigated using computational fluid dynamics simulation. Compared to a low solid particle reactor, all the conventional fluidization regimes were observed. In addition, two unconventional fluidization regimes, circulating-turbulent and dense suspension bypassing regimes, were found with only primary gas injection. The circulating-turbulent fluidization regime showed uniformly dense solid particle distribution in all the system directions, while the dense suspension bypassing fluidization regime exhibited the flow of solid particles at only one side system wall. Then, comprehensive fluidization regime clarification and mapping were evaluated using in-depth system parameters. In the circulating-turbulent fluidization regime, the total granular temperature was low compared to the adjacent fluidization regimes. In the dense suspension bypassing fluidization regime, the highest total granular temperature was obtained. The circulating-turbulent and dense suspension bypassing fluidization regimes are suitable for sorption and transportation applications, respectively.

  7. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    An investigation of single particle behaviour in a circulating fluidized bed combustor is described, relating to sulphur capture reactions by limestone under alternate oxidizing and reducing conditions present in a circulating fluidized bed combustor, and to the devolatilization and burn out...

  8. Fluidization behavior in a circulating slugging fluidized bed reactor. Part II: Plug characteristics

    NARCIS (Netherlands)

    van Putten, I.C.; van Sint Annaland, M.; Weickert, G.

    2007-01-01

    In the transporting square nosed slugging fluidization regime (0.4 < u0 < 1.0m/s) a bed of polyethylene powder with a low density (ρ = 900/kg/m3) and a large particle size distribution (70 < dρ < 1600µm) was operated in two circulating fluidized bed systems (riser diameters 0.044 and 0.105 m). A

  9. Exergy analysis of a circulating fluidized bed boiler cogeneration power plant

    International Nuclear Information System (INIS)

    Gürtürk, Mert; Oztop, Hakan F.

    2016-01-01

    Highlights: • Analysis of energy and exergy for a cogeneration power plant have been performed. • This plant has circulating fluidized bed boiler. • Energy and exergy efficiencies of the boiler are obtained as 84.65% and 29.43%, respectively. • Exergy efficiency of the plant was calculated as 20%. - Abstract: In this study, energy and exergy analysis of a cogeneration power plant have been performed. The steam which is produced by the cogeneration power plant is used for salt production and most important part of the cogeneration power plant is the circulation fluidized bed boiler. Energy and exergy efficiency of the circulation fluidized bed boiler were found as 84.65% and 29.43%, respectively. Exergy destruction of the circulation fluidized bed boiler was calculated as 21789.39 kW and 85.89% of exergy destruction in the plant. The automation system of the cogeneration power plant is insufficient. Exergy efficiency of the plant was calculated as 20%. Also, some design parameters increasing energy losses were determined.

  10. Hydrodynamics of circulating and bubbling fluidized beds

    International Nuclear Information System (INIS)

    Gidaspow, D.P.; Tsuo, Y.P.; Ding, J.

    1991-01-01

    This paper reports that a review of modeling of the hydrodynamics of fluidization of bubbling beds showed that inviscid two-fluid models were able to predict a great deal of the behavior of bubbling beds because the dominant mechanism of energy dissipation is the drag between the particles and the fluid. The formation, the growth and the bursting of bubbles were predicted. Predicted wall-to-bed heat transfer coefficients and velocity profiles of jets agreed with measurements. Time average porosity distributions agreed with measurements done using gamma-ray densitometers without the use of any adjustable parameters. However, inviscid models could not correctly predict rates of erosion around tubes immersed into fluidized beds. To correctly model such behavior, granular stresses involving solids viscosity were added into the computer model. This viscosity arises due to random collision of particles. Several models fro this viscosity were investigated and the results compared to measurements of solids distributions in two-dimensional beds and to particle velocities reported in the literature. While in the case of bubbling beds the solids viscosity plays the role of a correction, modeling of a circulating fluidized bed (CFB) without a viscosity is not possible. Recent experimental data obtained at IIT and at IGT show that in CFB the solids viscous dissipation is responsible for as much as half of the pressure drop. From such measurement, solids viscosities were computed. These were used in the two fluid hydrodynamic model, to predict radial solids distributions and solids velocities which matched the experimental distributions. Most important, the model predicted cluster formation and transient internal circulation which is responsible for the favorable characteristics of CFBs, such as good wall-to-bed heat transfer. Video tape movies of computations compared favorably with high speed movies of the experiments

  11. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  12. Fluidization behavior in a circulating slugging fluidized bed reactor. Part I : residence time and residence time distribution of polyethylene solids

    NARCIS (Netherlands)

    Putten, van I.C.; Sint Annaland, van M.; Weickert, G.

    2007-01-01

    Square nosed slugging fluidization behavior in a circulating fluidized bed riser using a polyethylene powder with a very wide particle size distribution was studied. In square nosed slugging fluidization the extent of mixing of particles of different size depends on the riser diameter, gas velocity,

  13. Fluidization behavior in a circulating slugging fluidized bed reactor. Part I: Residence time and residence time distribution of polyethylene solids

    NARCIS (Netherlands)

    van Putten, I.C.; van Sint Annaland, M.; Weickert, G.

    2007-01-01

    Square nosed slugging fluidization behavior in a circulating fluidized bed riser using a polyethylene powder with a very wide particle size distribution was studied. In square nosed slugging fluidization the extent of mixing of particles of different size depends on the riser diameter, gas velocity,

  14. Single-particle behaviour in circulating fluidized beds

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Dam-Johansen, Kim; Johnsson, Jan Erik

    1997-01-01

    This paper describes an experimental investigation of single-particle behaviour in a cold pilot-scale model of a circulating fluidized bed combustor (CFBC). In the system, sand is recirculated by means of air. Pressure measurements along the riser are used to determine the suspension density...

  15. Numerical simulation of a full-loop circulating fluidized bed under different operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yupeng [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Musser, Jordan M. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Li, Tingwen [National Energy Technology Lab. (NETL), Morgantown, WV (United States); AECOM, Morgantown, WV (United States); Rogers, William A. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2017-10-17

    Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loop circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.

  16. Pulverized coal vs. circulating fluidized bed: An economic comparison

    International Nuclear Information System (INIS)

    Johns, R.F.

    1991-01-01

    As the power industry looks to the 1990s for expanded steam generation capacity, boiler owners will continue on their long-standing assignment to evaluate and select the best, lowest cost alternative to meet their energy needs. For coal-fired plants, this evaluation process includes pulverized coal-fired boilers (PC) and circulating fluidized bed boilers (CFB). The cost difference between these products is site specific and depends on several variables, including: Boiler size, pressure, and temperature; Operating variables, such as the cost for fuel, auxiliary power, SO 2 reagent, and ash disposal; Capital cost; and Financial variables, such as evaluation period and interest rate. This paper provides a technical and economic comparison between a pulverized coal-fired boiler and circulating fluidized bed boiler

  17. Ash behavior and de-fluidization in low temperature circulating fluidized bed biomass gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas

    ensures that high-alkali biomass fuels can be used without risks of bed de-fluidization. This thesis aims to understand the behavior of alkali metals and ash in the LTCFB system. The thesis work involved measurements made on bed material and product gas dust samples on a 100kW LTCFB gasifier placed......Biomass is increasingly used as a fuel for power generation. Herbaceous fuels however, contain high amounts of alkali metals which get volatilized at high temperatures and forms salts with low melting points and thus condense on pipelines, reactor surfaces and may cause de-fluidization. A Low......-Temperature Circulating Fluidized Bed System (LTCFB) gasifier allows pyrolysis and gasification of biomass to occur at low temperatures thereby improving the retention of alkali and other ash species within the system and minimizing the amount of ash species in the product gas. In addition, the low reactor temperature...

  18. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  19. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    Science.gov (United States)

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  1. Design and simulation of a circulating fluidized bed to clean the products of biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Uchoa Neto, Moises; Carvalho, Yuri de Araujo [Dept. de Engenharia Mecanica. Faculdade de Tecnologia. Universidade de Brasilia, DF (Brazil); Oliveira, Taygoara Felamingo de; Barcelos, Manuel [Faculdade do Gama. Universidade de Brasilia, Gama, DF (Brazil)], e-mail: taygoara@unb.br

    2010-07-01

    The main goal of this work is to design a workbench circulating fluidized bed to study the cracking of tar in gases from the processes of biomass gasification. For this, a design methodology based on analytical results and empirical correlations for fluidized beds was employed. In parallel, a numerical code of open source technology (MFIX) for the solution of the transport equations of the multiphase flow in the column of a fluidized bed was used to give support to the choice of the design elements. The whole project of the workbench fluidized bed was completely developed, whose operation parameters such as bed geometry, gas velocity, circulating ratio and void fraction characterize a fast fluidization process. A preliminary mesh convergence study was executed with the numerical tool, that was validated comparing with analytical results. Among the most important results, the code computed the predicted value for the minimum fluidization. (author)

  2. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    Science.gov (United States)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 μm. The coal particles were mixed with dolomite particles of d p = 111 μm and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 μm. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  3. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  4. Combustion of Jordanian oil shale using circulating fluidized bed

    International Nuclear Information System (INIS)

    Hamdan, M.; Al-Azzam, S.

    1998-11-01

    this study re[resents design and manufacturing of a lab-scale circulating fluidized bed (C.F.B) to burn low grade fuel such as Jordanian oil shale. Hydrodynamic properties of C.F.B. were studied like minimum fluidization velocity, circulation flux and carryover rate. a hot run was firstly conducted by the combustion of L.P.G. to start up the combustion process. It proceeds until reaching the minimum burning temperature of oil shale particles, at which time the LPG supply was gradually reduced and oil shale feeding started. soon after reaching a self sustainable condition of oil shale particles, the LPG supply was cut off. The main combustion variables were investigated such as air to fuel ratios, temperature profiles across the bed, exhaust gas analysis and combustion efficiency. a combustion intensity of 859 kg/hr.m 2 and combustion efficiency of 96% were achieved. (authors). 19 refs., 9 tab., 18 fig

  5. Oxy-fuel combustion on circulating fluidized bed. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, E.J. [Canmet, Natural Resources Canada (Canada); Hack, H. [Foster Wheeler North America Corporation (United States)

    2011-07-01

    This paper explores the developments and field tests carried out with oxy-fuel fluidized bed combustion. This method has the advantage over the other options of emitting a pure stream of CO2 which thus does not need to be concentrated to be liquefied, transported and stored. In addition, pilot scale tests have shown that oxy-fired circulating fluidized bed combustion (CFBC) results in low emission and fuel flexibility. This paper highlighted that oxy-fired CFBC might be a good option for CCS but tests performed so far have been on a small scale. To confirm the promising results of pilot tests, demonstration projects are underway and are presented herein.

  6. Biomass Gasification in Internal Circulating Fluidized Beds: a Thermodynamic Predictive Tool

    Czech Academy of Sciences Publication Activity Database

    Miccio, F.; Svoboda, Karel; Schosger, J.-P.; Baxter, D.

    2008-01-01

    Roč. 25, č. 4 (2008), s. 721-726 ISSN 0256-1115 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidized bed * gasification * fluidized bed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.830, year: 2008

  7. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  8. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  9. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  10. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  11. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    particles concentration in the upper section of the reactors, thus the gas solids contact. They are interconnected by means of two pneumatically controlled divided loop-seals and a bottom extraction/lift. The system is designed to be as compact as possible, to help up-scaling and enclosure into a pressurized vessel, aiming pressurization in a second phase. In addition several industrial solutions have been utilized, from highly loaded cyclones to several levels of secondary air injections.The divided loop-seals are capable to internally re-circulate part of the entrained solids, uncoupling the solids entrainment from the solids exchange. This will provide a better control on the process increasing its flexibility and helping to fulfil downstream requirements. No mechanical valves are utilized, but gas injections. The bottom extraction compensates the lower entrainment of the FR which has less fluidising gas availability and smaller cross section than the AR. The lift allows adjusting the reactors bottom inventories, thus the pressures in the bottom sections of the reactors. In this way the divided loop-seals are not exposed to large pressure unbalances and the whole system is hydrodynamically more robust. The proposed design was finally validated by means of a full scale cold flow model (CFM), without chemical reactions. A thorough evaluation of the scaling state-of-the-art in fluidization engineering has been done; two are the approaches. One consists of building a small scale model which resembles the hydrodynamics of the bigger hot setup, by keeping constant a set of dimensionless numbers. The other is based on the construction of a full scale model, being careful to be in the same fluidization regime and to utilize particles with the same fluidization properties as the hot setup. In this way the surface to volume ratio is kept the same as that one of the hot rig. The idea presented in this work combines those two strategies, building a full scale CFM. In this way, it

  12. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  13. Modeling N2O Reduction and Decomposition in a Circulating Fluidized bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars-Erik; Dam-Johansen, Kim

    1996-01-01

    The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O in the comb......The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O...... in the combustion chamber and the cyclone was calculated taking three mechanisms into account: Reduction by char, catalytic decomposition over bed material and thermal decomposition. The calculated destruction rate was in good agreement with the measured destruction of N2O injected at different levels in the boiler...

  14. Control of the Bed Temperature of a Circulating Fluidized Bed Boiler by using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    AYGUN, H.

    2012-05-01

    Full Text Available Circulating fluidized bed boilers are increasingly used in the power generation due to their higher combustion efficiency and lower pollutant emissions. Such boilers require an effective control of the bed temperature, because it influences the boiler combustion efficiency and the rate of harmful emissions. A Particle-Swarm-Optimization-Proportional-Integrative-Derivative (PSO-PID controller for the bed temperature of a circulating fluidized bed boiler is presented. In order to prove the capability of the proposed controller, its performances are compared at different boiler loads with those of a Fuzzy Logic (FL controller. The simulation results demonstrate some advantages of the proposed controller.

  15. Application of digital image processing methods on the cluster structure at the wall of a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-guang; Zhao, Zeng-wu; Li, Bao-wei; Wu, Wen-fei [Inner Mongolia Univ. of Science and Technology, Baotou (China). School of Environment and Energy

    2013-07-01

    This paper describes experiments to investigate the cluster structure of gas-particle flow at the wall region of a circulating fluidized bed (CFB). The setup is in a cold scale-model circulating fluidized bed with a riser that has a 0.30 m 0.28 m cross-section and is 2.9 m tall. A video camera was utilized to visualize the cluster structure through a transparent Plexiglas wall. An image processing system was used to analyze images, which were obtained under different superficial gas velocities and solid circulating rates. The results show that distinctly different cluster structures exist in the different operating conditions, which the number, shape and size of the clusters are affected by main air flow.

  16. Fiscal 1995 survey report on the environmentally friendly type coal utilization system introduction support project. Verification project on the circulating fluidized bed boiler; Kankyo chowagata sekitan riyo system donyu shien jigyo. Junkan ryudosho boiler ni kakawaru jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    In relation to the circulating fluidized bed boiler which reduces the amount of sulfur oxides emitted in coal utilization, a verification project was carried out on installation of the equipment and spread activity in China and the Philippines contributing to the control of environmental pollutant associated with coal utilization and the effective use of energy. At the Fanshan area, installed was a 10t/h internal circulating fluidized bed boiler. At the performance test, coal includes around 7% of impurities such as stone, and the impurities should be excluded continuously at the time of actual run. Therefore, the boiler efficiency had to be changed from 89.5% to 85.8%. Further, power generation facilities have not yet been finished, and the overall operation of boiler turbine has not been executed. At the Zibo area, a 30t/h external circulating fluidized bed boiler was installed. The boiler efficiency reached 86.1%, over the targeted value. At the Batangas area in the Philippines, a 10t/h internal circulating fluidized bed boiler was installed. The boiler efficiency reached 85.8%, over the designed value. About the coal produced in the Philippines, slagging was feared, but the combustion state was favorable. 82 figs., 21 tabs.

  17. Ten residual biomass fuels for circulating fluidized-bed gasification

    Energy Technology Data Exchange (ETDEWEB)

    Drift, A. van der; Doorn, J. van [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Vermeulen, J.W. [NV Afvalzorg, Haarlem (Netherlands)

    2001-07-01

    In co-operation with a Dutch company (NV Afvalzorg) and the Dutch agency for energy and environment (Novem), ECN has successfully tested 10 different biomass residues in its 500 kW{sub th} circulating fluidized-bed gasification facility. Among the fuels used as demolition wood (both puree and mixed with sewage sludge and paper sludge), verge grass, railroad ties, cacao shells and different woody fuels. Railroad ties turn out to contain very little (heavy) metals. Initially, fuel feeding problems often impeded smooth operation. Contrary to feeding systems, the circulating fluidized-bed gasification process itself seems very flexible concerning the conversion of different kinds of biomass fuels. The fuel moisture content is one of the most important fuel characteristics. More moisture means that more air is needed to maintain the process temperature resulting in better carbon conversion and lower tar emission but also lower product gas heating value and lower cold gas efficiency. So, for a good comparison of the gasification behaviour of different fuels, the moisture content should be similar. However, the moisture content should be defined on an ash-free basis rather than on total mass (the usual way). Some of the ashes produced and retained in the second cyclone were analysed both for elemental composition and leaching behaviour. It turned out that the leaching rate of Mo and Br, elements only present in small concentrations, are preventing the ash to be considered as inert material according to the Dutch legislation for dumping on landfill sites. (Author)

  18. Influence of Bubble-Bubble interactions on the macroscale circulation patterns in a bubbling gas-solid fluidized bed

    NARCIS (Netherlands)

    Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    The macro-scale circulation patterns in the emulsion phase of a gas-solid fluidized bed in the bubbling regime have been studied with a 3D Discrete Bubble Model. It has been shown that bubble-bubble interactions strongly influence the extent of the solids circulation and the bubble size

  19. Identification and MPC control of a circulation fluidized bed boiler using an LPV model

    NARCIS (Netherlands)

    Huang, J.; Ji, G.; Zhu, Y.; Lin, W.; Kothare, M.; Tade, M.; Vande Wouwer, A.; Smets, I.

    2010-01-01

    This work studies the identification and control of circulation fluidized bed (CFB) boilers. The CFB boiler under investigation shows strong nonlinearity due to big changes of steam load. A linear parameter varying (LPV) model is used to represent the process dynamics and used in control. The steam

  20. Nucla circulating atmospheric fluidized bed demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  1. Internal dust recirculation system for a fluidized bed heat exchanger

    Science.gov (United States)

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  2. Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M. [University of California, Riverside (United States)

    2015-07-15

    A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters.

  3. Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system

    International Nuclear Information System (INIS)

    Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon; Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M.

    2015-01-01

    A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters

  4. Experimental investigation on a 0.35 MWth coal-fired horizontal circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Aihong; Li, Qinghai; Zhang, Yanguo; Wang, Zhaojun; Dang, Wenda [Tsinghua Univ., Beijing (China); Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    The capacities of industrial coal-fired boilers are normally less than 20-30 MWe. And these coal-fired boilers of low capacity are facing the severe situation of low efficiency and heavy environmental pollution. Hence, an innovative horizontal circulating fluidized bed (HCFB) boiler was developed to enhance heat efficiency and reduce pollutant emission of industrial boilers in China. The chamber in the HCFB boiler consists of primary combustion chamber, secondary combustion chamber and burnout chamber, which were combined horizontally side by side. To verify the conception of horizontal fluidized circulation and to obtain the characteristic data, a 0.35 MWth coal-combustion HCFB boiler was designed and installed to perform some experiments of combustion and mass circulation. In the boiler there were two mass circulating paths, one is inner circulating through the inertia separator and another was external circulating through the cyclone separator. The connection bottom of the secondary chamber and the burnout chamber was designed as an inertia separator, in which separated and collected solid materials were returned to the primary combustion. In fact the secondary separator was a small cyclone separator connecting to the exit of the burnout chamber. Heat efficiency and separating efficiency of the experimental boiler were measured and analyzed. Furthermore, mass and temperature distribution along the chambers height were also investigated. The results showed that the heat efficiency of the bare boiler was 82%. The mass balance based on ash content was measured and analyzed. Separating efficiency of the inertia separator and cyclone separator was 60 and 99.9%, respectively. It showed that the two stage material separation and circulation enhanced coal combustion in the HCFB boiler and help to minimize the height of the furnace.

  5. Effects of biomass on dynamics of combustion in circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Tourunen Antti

    2004-01-01

    Full Text Available Fluidized bed technology is very suitable for the combustion of biomass Nevertheless substitution of coal with biomass affects boiler operation and especially dynamics and controllability. Non-homogeneity of biomass and fuel feeding disturbances cause process instability, such as variations in temperatures and pressures, which reduce lifetime of equipment and structures. Because of process instability higher air coefficient must be used in order to avoid CO emissions, which is not economical. Combustion profiles for coal, wood and peat, measured at the VTT Processes Pilot circulating fluidized bed reactor, have been compared. Process stability and char inventories have been studied by the measurements and the model. Biofuel are usually very reactive and their combustion profiles are quite different compared to coals. Because of high reactivity and low char content combustion process with biofuel is very sensitive for fuel feeding. Also low char inventory effect on load changes combined with combustion profile that differs from coals. Because of different combustion profile heat transfer can be a limiting factor in load changes despite the high reactivity and fast oxygen response.

  6. Analysis of microalgae pellets combustion in a circulating fluidized-bed

    Directory of Open Access Journals (Sweden)

    Kosowska-Golachowska Monika

    2017-01-01

    Full Text Available Microalgae are expected to become an important source of highvalue products with several applications in a large number of areas of biotechnology and, especially, in biofuels production. The increasing interest in microalgae as a source of biofuel (so-called third generation biofuel is due to the several advantages. The objective of this study was to investigate combustion characteristics of microalgae (Oscillatoria sp. pellets burnt in a circulating fluidized-bed (CFB in terms of sample temperature profiles, ignition time, ignition temperature, devolatilization time and the burnout time. Spherical 10-mm microalgae pellets were tested at temperature of 850°C in a 12-kW bench-scale CFB combustor.

  7. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  8. Selective phenol methylation to 2,6-dimethylphenol in a fluidized bed of iron-chromium mixed oxide catalyst with o-cresol circulation.

    Science.gov (United States)

    Zukowski, Witold; Berkowicz, Gabriela; Baron, Jerzy; Kandefer, Stanisław; Jamanek, Dariusz; Szarlik, Stefan; Wielgosz, Zbigniew; Zielecka, Maria

    2014-01-01

    2,6-dimethylphenol (2,6-DMP) is a product of phenol methylation, especially important for the plastics industry. The process of phenol methylation in the gas phase is strongly exothermic. In order to ensure good temperature equalization in the catalyst bed, the process was carried out using a catalyst in the form of a fluidized bed - in particular, the commercial iron-chromium catalyst TZC-3/1. Synthesis of 2,6-dimethylphenol from phenol and methanol in fluidized bed of iron-chromium catalyst was carried out and the fluidization of the catalyst was examined. Stable state of fluidized bed of iron-chromium catalyst was achieved. The measured velocities allowed to determine the minimum flow of reactants, ensuring introduction of the catalyst bed in the reactor into the state of fluidization. Due to a high content of o-cresol in products of 2,6-dimethylphenol synthesis, circulation in the technological node was proposed. A series of syntheses with variable amount of o-cresol in the feedstock allowed to determine the parameters of stationary states. A stable work of technological node with o-cresol circulation is possible in the temperature range of350-380°C, and o-cresolin/phenolin molar ratio of more than 0.48. Synthesis of 2,6-DMP over the iron-chromium catalyst is characterized by more than 90% degree of phenol conversion. Moreover, the O-alkylation did not occur (which was confirmed by GC-MS analysis). By applying o-cresol circulation in the 2,6-DMP process, selectivity of more than 85% degree of 2,6-DMP was achieved. The participation levels of by-products: 2,4-DMP and 2,4,6-TMP were low. In the optimal conditions based on the highest yield of 2,6-DMP achieved in the technological node applying o-cresol circulation, there are 2%mol. of 2,4-DMP and 6%mol. of 2,4,6-TMP in the final mixture, whereas 2,4,6-TMP can be useful as a chain stopper and polymer's molar mass regulator during the polymerization of 2,6-DMP.

  9. Circulating fluidized-bed technologies for the conversion of biomass into energy

    International Nuclear Information System (INIS)

    Greil, C.; Hirschfelder, H.

    1995-01-01

    The paper introduces circulating fluidized-bed (CFB) combustion and CFB gasification. CFB combustion units are state-of-the-art and have proven their ability to convert biomass into power and/or steam. The existing units and projects in developing countries are discussed as examples of conventional technology. To illustrate advanced technologies, CFB gasification is discussed. Important process parameters of plants already in operation or under construction in developed countries are shown, Criteria for the selection of CFB combustion or gasification based on available feedstocks and products required are discussed. Finally, a procedure for implementing Lurgi's CFB technology in developing countries is proposed. (author)

  10. Three-stage steady-state model for biomass gasification in a dual circulating fluidized-bed

    International Nuclear Information System (INIS)

    Nguyen, Thanh D.B.; Ngo, Son Ich; Lim, Young-Il; Lee, Jeong Woo; Lee, Uen-Do; Song, Byung-Ho

    2012-01-01

    Highlights: ► Steam gasification of woodchips is examined in dual circulating fluidized-bed (DFB). ► We develop a three-stage model (TSM) for process performance evaluation. ► Effect of gasification temperature and steam to fuel ratio is investigated. ► Several effective operating conditions are found by parametric study. - Abstract: A three-stage steady state model (TSM) was developed for biomass steam gasification in a dual circulating fluidized-bed (DFB) to calculate the composition of producer gas, carbon conversion, heat recovery, cost efficiency, and heat demand needed for the endothermic gasification reactions. The model was divided into three stages including biomass pyrolysis, char–gas reactions, and gas–phase reaction. At each stage, an empirical equation was estimated from experimental data. It was assumed that both unconverted char and additional fuel were completely combusted at 950 °C in the combustor (riser) and the heat required for gasification reactions was provided by the bed material (silica sand). The model was validated with experimental data taken from the literature. The parametric study of the gasification temperature (T) and the steam to fuel ratio (γ) was then carried out to evaluate performance criteria of a 1.8 MW DFB gasifier using woodchips as a feedstock for the electric power generation. Effective operating conditions of the DFB gasifier were proposed by means of the contour of the solid circulation ratio, the heat recovery, the additional fuel ratio and the cost efficiency with respect to T and γ.

  11. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    Science.gov (United States)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.

    2016-06-01

    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  12. Multi-stage circulating fluidized bed syngas cooling

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  13. Influence of additives on selective noncatalytic reduction of nitric oxide with ammonia in circulating fluidized bed boilers

    DEFF Research Database (Denmark)

    Leckner, Bo; Karlsson, Maria; Dam-Johansen, Kim

    1991-01-01

    The application of selective noncatalytic reduction of nitric oxide with ammonia in circulating fluidized bed boilers is investigated. Special attention is directed to the use of additives to the ammonia so that the efficiency of the NO reduction at lower temperatures can be increased. Tests under...

  14. Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion

    International Nuclear Information System (INIS)

    Adamczyk, Wojciech P.; Kozołub, Paweł; Klimanek, Adam; Białecki, Ryszard A.; Andrzejczyk, Marek; Klajny, Marcin

    2015-01-01

    Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown

  15. Fluidized-bed nuclear reactor

    International Nuclear Information System (INIS)

    Grimmett, E.S.; Kunze, J.F.

    1975-01-01

    A reactor vessel containing a fluidized-bed region of particulate material including both a neutron-moderating and a fertile substance is described. A gas flow including fissile material passes through the vessel at a sufficient rate to fluidize the particulate material and at a sufficient density to support a thermal fission reaction within the fluidized-bed region. The high-temperature portion of a heat transfer system is located within the fluidized-bed region of the reactor vessel in direct contact with the fluidized particles. Heat released by fission is thereby transferred at an enhanced rate to a coolant circulating within the heat transfer system. Fission products are continuously removed from the gas flow and supplemental fissile material added during the reactor operation. (U.S.)

  16. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  17. Circulating fluidized-bed technologies for the conversion of biomass into energy

    Energy Technology Data Exchange (ETDEWEB)

    Greil, C; Hirschfelder, H [Lurgi Energid und Umwelt GmbH, Frankfurt am Main (Germany)

    1995-12-01

    The paper introduces circulating fluidized-bed (CFB) combustion and CFB gasification. CFB combustion units are state-of-the-art and have proven their ability to convert biomass into power and/or steam. The existing units and projects in developing countries are discussed as examples of conventional technology. To illustrate advanced technologies, CFB gasification is discussed. Important process parameters of plants already in operation or under construction in developed countries are shown, Criteria for the selection of CFB combustion or gasification based on available feedstocks and products required are discussed. Finally, a procedure for implementing Lurgi`s CFB technology in developing countries is proposed. (author) 7 refs, 4 figs, 3 tabs

  18. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  19. Computational fluid dynamics simulation for chemical looping combustion of coal in a dual circulation fluidized bed

    International Nuclear Information System (INIS)

    Su, Mingze; Zhao, Haibo; Ma, Jinchen

    2015-01-01

    Highlights: • CFD simulation of a 5 kW_t_h CLC reactor of coal was conducted. • Gas leakage, flow pattern and combustion efficiency of the reactor was analyzed. • Optimal condition was achieved based on operation characteristics understanding. - Abstract: A dual circulation fluidized bed system is widely accepted for chemical looping combustion (CLC) for enriching CO_2 from the utilization of fossil fuels. Due to the limitations of the measurement, the details of multiphase reactive flows in the interconnected fluidized bed reactors are difficult to obtain. Computational Fluid Dynamics (CFD) simulation provides a promising method to understand the hydrodynamics, chemical reaction, and heat and mass transfers in CLC reactors, which are very important for the rational design, optimal operation, and scaling-up of the CLC system. In this work, a 5 kW_t_h coal-fired CLC dual circulation fluidized bed system, which was developed by our research group, was first simulated for understanding gas leakage, flow pattern and combustion efficiency. The simulation results achieved good agreement with the experimental measurements, which validates the simulation model. Subsequently, to improve the combustion efficiency, a new operation condition was simulated by increasing the reactor temperature and decreasing the coal feeding. An improvement in the combustion efficiency was attained, and the simulation results for the new operation condition were also validated by the experimental measurements in the same CLC combustor. All of the above processes demonstrated the validity and usefulness of the simulation results to improve the CLC reactor operation.

  20. Conversion of ammonium uranyl carbonate to UO2 in a fluidized bed

    International Nuclear Information System (INIS)

    Zhao Jun; Qiu Lufu; Zhong Xing; Xu Heqing

    1989-11-01

    The conversion of AUC (Ammonium Uranyl Carbonate) to UO 2 was studied in a fluidized bed of 60 mm inner diameter based on the thermodynamics and kinetics data of decomposition-reduction of AUC. The influence of the reaction temperature, composition of fluidization gas and fluidization velocity on conversion were investigated by using N 2 , Ar and circulation gas (mixing gas of H 2 and CO obtained from the exhaust gas of the decomposition of AUC by catalyst crack-conversion) as the fluidization gas. The throughput is up to the high levels (3.32 kg(wet)/h·L) by using circulation gas or mixing of circulation gas and Ar (< 21%) as the fluidization gas when the reaction temperature exceeds 570 deg C

  1. Enrichment of thallium in fly ashes in a Spanish circulating fluidized-bed combustion plant

    OpenAIRE

    López Antón, María Antonia; Spears, D. Alan; Díaz Somoano, Mercedes; Díaz, Luis; Martínez Tarazona, María Rosa

    2015-01-01

    This work evaluates the behavior of thallium in a 50 MW industrial circulating fluidized-bed combustion plant (CFBC), focusing on the distribution of this element among the bottom and fly ashes separated by the solid retention devices in the plant. The results show that thallium species are mainly retained in the solid by-products and are not emitted to air with flue gases in significant amounts, proving that this technology is a more effective means of preventing thallium emissions than pulv...

  2. Pulsed atmospheric fluidized-bed combustor development

    International Nuclear Information System (INIS)

    1992-05-01

    Pulsed atmospheric fluidized-bed combustion (PAFBC) is a unique and innovative coal-fueled technology that has the potential to meet these conditions and provide heat and/or process steam to small industrial, commercial, institutional and residential complexes. The potential of Pulse Atmospheric Fluidized Bed Combustion (PAFBC) technology has been amply demonstrated under the sponsorship of a previous DOE/METC contract (DE-AC21-88MC25069). The environmental performance of a coal-fired laboratory-scale system (1.5 million British Thermal Units per hour) (MMBtu/hr) significantly surpassed that of conventional bubbling and circulating fluidized-bed combustion units (see Table 1 for performance comparison). Prompted by these encouraging results in combustion, sulfur capture, emissions control, and enhanced heat transfer, Island Creek Coal Company (ICC) and Baltimore Thermal Energy Corporation expressed interest in the technology and offered to participate by providing host sites for field testing. EA's have been submitted independently for each of these field test sites. This submission addresses the preliminary testing of the PAFBC unit at Manufacturing and Technology Conversion International's (MTCI) Baltimore, MD facility

  3. Advanced treatment of biologically pretreated coal chemical industry wastewater using the catalytic ozonation process combined with a gas-liquid-solid internal circulating fluidized bed reactor.

    Science.gov (United States)

    Li, Zhipeng; Liu, Feng; You, Hong; Ding, Yi; Yao, Jie; Jin, Chao

    2018-04-01

    This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al 2 O 3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al 2 O 3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnO X /activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.

  4. Experimental study on fuel oil combustion in circulating fluidized bed; Estudio experimental sobre la combustion de combustoleo en lecho fluidizado circulante

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rangel, Ricardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The Instituto de Investigaciones Electricas (IIE) developed a circulating fluidized bed combustor of 0.5 thermal MW unique in its type in Latin America. The Bachelor`s thesis entitled ``Experimental Study on Fuel Oil Combustion in Circulating Fluidized Bed`` was performed operating this combustor with the purpose of determining the feasibility of burning heavy fuel oil in a stable and sustained form, as well as the effect of the addition of calcium carbonate to the combustor. The results of the experimental trials showed heavy fuel oil can be burned in a circulating fluidized bed, with low sulfur dioxide emissions. During the conduction of the experiments a sulfur retention of 43% was achieved with a Ca/S relationship of 4.5. [Espanol] El Instituto de Investigaciones Electricas (IIE) desarrollo un combustor de lecho fluidizado circulante de 0.5 MW termicos de potencia, unico en su tipo en Latinoamerica. La tesis de licenciatura titulada Estudio Experimental sobre la Combustion de Combustoleo en Lecho Fluidizado Circulante se realizo operando dicho combustor, con el proposito de determinar la factibilidad de quemar combustoleo pesado en forma estable y autosostenida, asi como la influencia que tiene la adicion de carbonato de calcio al lecho. Los resultados de los ensayos experimentales mostraron que se puede quemar combustoleo pesado en un lecho fluidizado circulante, con bajas emisiones de bioxido de azufre. Durante la experimentacion se logro una retencion de azufre del 43%, con una relacion Ca/S de 4.5.

  5. Experimental study on fuel oil combustion in circulating fluidized bed; Estudio experimental sobre la combustion de combustoleo en lecho fluidizado circulante

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rangel, Ricardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The Instituto de Investigaciones Electricas (IIE) developed a circulating fluidized bed combustor of 0.5 thermal MW unique in its type in Latin America. The Bachelor`s thesis entitled ``Experimental Study on Fuel Oil Combustion in Circulating Fluidized Bed`` was performed operating this combustor with the purpose of determining the feasibility of burning heavy fuel oil in a stable and sustained form, as well as the effect of the addition of calcium carbonate to the combustor. The results of the experimental trials showed heavy fuel oil can be burned in a circulating fluidized bed, with low sulfur dioxide emissions. During the conduction of the experiments a sulfur retention of 43% was achieved with a Ca/S relationship of 4.5. [Espanol] El Instituto de Investigaciones Electricas (IIE) desarrollo un combustor de lecho fluidizado circulante de 0.5 MW termicos de potencia, unico en su tipo en Latinoamerica. La tesis de licenciatura titulada Estudio Experimental sobre la Combustion de Combustoleo en Lecho Fluidizado Circulante se realizo operando dicho combustor, con el proposito de determinar la factibilidad de quemar combustoleo pesado en forma estable y autosostenida, asi como la influencia que tiene la adicion de carbonato de calcio al lecho. Los resultados de los ensayos experimentales mostraron que se puede quemar combustoleo pesado en un lecho fluidizado circulante, con bajas emisiones de bioxido de azufre. Durante la experimentacion se logro una retencion de azufre del 43%, con una relacion Ca/S de 4.5.

  6. Circulating fluidized bed reformer-regenerator system for hydrogen production from methane. Paper no. IGEC-1-092

    International Nuclear Information System (INIS)

    Prasad, P.; Elnashaie, S.S.E.H.

    2005-01-01

    Steam reforming is presently the principal route for large-scale hydrogen production from natural gas. This paper proposes a novel concept of a reactor-regenerator type circulating fluidized bed (Prasad and Elnashaie, 2002) for efficient production of hydrogen. Carbon is optimally allowed to form on the catalyst in the reactor section through methane cracking and Boudouard coking reactions, and the deactivated catalyst is regenerated in the regenerator by burning off the carbon. This concept of carbon formation and burning cannot be used in a fixed bed configuration but is possible in the proposed novel Circulating Fluidized Bed (CFB) configuration, which employs a reactor-regenerator type of configuration. Allowing both carbon formation and steam reforming to occur simultaneously by introducing steam as part of the feed, gives more than 3 moles hydrogen per mole of methane at almost zero energy consumption. The steam can be fed as water at room temperature, and the hot catalyst returning from the regenerator can be used to vaporize it into steam. This route is the most efficient from both hydrogen yield and energy consumption points of view. This CFB configuration exhibits the bifurcation behavior and the present paper reports an investigation of its static bifurcation characteristics through a rigorous mathematical model. (author)

  7. The prediction of heat transfer coefficient in circulating fluidized bed combustors

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Al-qaq, A.M.

    2008-01-01

    In the present work, a theoretical study is performed to modify an existing model that is used to predict the heat transfer coefficient in circulating fluidized bed combustors. In the model, certain parameters were used as being of constant values, which leads to an error in the obtained value of the heat transfer coefficient. In this study and as a first step, the model is thoroughly studied and then the variation of the coefficient with these parameters is presented. Having done that, correlation for these parameters are obtained and then used in the model. Finally the modified model was tested against previously experimental and theoretical data that is available in literature. It was found that the accuracy of the model has been improved after it has been modified

  8. The prediction of heat transfer coefficient in circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Hamdan, M.A.; Al-qaq, A.M. [Department of Mechanical Engineering, University of Jordan Amman, Qween Rania Street, Amman, AL Jbeeha 11942 (Jordan)

    2008-11-15

    In the present work, a theoretical study is performed to modify an existing model that is used to predict the heat transfer coefficient in circulating fluidized bed combustors. In the model, certain parameters were used as being of constant values, which leads to an error in the obtained value of the heat transfer coefficient. In this study and as a first step, the model is thoroughly studied and then the variation of the coefficient with these parameters is presented. Having done that, correlation for these parameters are obtained and then used in the model. Finally the modified model was tested against previously experimental and theoretical data that is available in literature. It was found that the accuracy of the model has been improved after it has been modified. (author)

  9. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  10. Biomass gasification in a circulating fluidized bed; Vergasung von Biomasse in der zirkulierenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Ising, M; Hoelder, D; Backhaus, C; Althaus, W [Fraunhofer Inst. fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany)

    1998-09-01

    Biomass gasification in a circulating fluidized bed, in combination with a gas engine or gas burner, is a promising option for energetic use of biomass. Economic efficiency analyses on the basis of the UMSICHT plant show that this technology for combined heat and power generation from biomass is promising also for the range below 10 MW. The economic situation of any plant must be considered for the specific boundary conditions imposed by the power supply industry. The feasibility of the process was tested in a demonstration plant at Oberhausen. The plant was optimized further in extensive test series, and a number of tar reduction processes were investigated and improved on. The authors now intend to prove that gasification in a circulating fluidized bed combined with a gas engine cogeneration plant is feasible in continuous operation. (orig./SR) [Deutsch] Die Vergasung von Biomasse in der zirkulierenden Wirbelschicht ist in Kombination mit einem Gasmotor oder einem Gasbrenner eine vielversprechende Option fuer die energetische Biomassenutzung. Wirtschaftlichkeitsbetrachtungen auf Basis der UMSICHT-Anlage zeigen, dass diese Technologie fuer die gekoppelte Strom- und Waermeerzeugung aus Biomasse auch im Leistungsbereich unter 10 MW grosse Chancen verspricht. Dabei ist die oekonomische Situation einer Anlage im Einzelfall unter Beachtung der energiewirtschaftlichen Randbedingungen zu beurteilen. Durch den Betrieb einer Demonstrationsanlage in Oberhausen konnte die Funktion des Verfahrens nachgewiesen werden. In weiteren umfangreichen Versuchsreihen werden die Anlage weiter optimiert und verschiedene Konzepte zur Teerminderung untersucht und weiterentwickelt. Angestrebt ist der Nachweis des Dauerbetriebs von ZWS-Vergasung zusammen mit dem Gasmotoren-BHKW. (orig./SR)

  11. CFD simulation of CO_2 sorption on K_2CO_3 solid sorbent in novel high flux circulating-turbulent fluidized bed riser: Parametric statistical experimental design study

    International Nuclear Information System (INIS)

    Thummakul, Theeranan; Gidaspow, Dimitri; Piumsomboon, Pornpote; Chalermsinsuwan, Benjapon

    2017-01-01

    Highlights: • Circulating-turbulent fluidization was proved to be advantage on CO_2 sorption. • The novel regime was proven to capture CO_2 higher than the conventional regimes. • Uniform solid particle distribution was observed in the novel fluidization regime. • The system continuity had more effect in the system than the process system mixing. • Parametric experimental design analysis was studied to evaluate significant factor. - Abstract: In this study a high flux circulating-turbulent fluidized bed (CTFB) riser was confirmed to be advantageous for carbon dioxide (CO_2) sorption on a potassium carbonate solid sorbent. The effect of various parameters on the CO_2 removal level was evaluated using a statistical experimental design. The most appropriate fluidization regime was found to occur between the turbulent and fast fluidization regimes, which was shown to capture CO_2 more efficiently than conventional fluidization regimes. The highest CO_2 sorption level was 93.4% under optimized CTFB operating conditions. The important parameters for CO_2 capture were the inlet gas velocity and the interactions between the CO_2 concentration and the inlet gas velocity and water vapor concentration. The CTFB regime had a high and uniform solid particle distribution in both the axial and radial system directions and could transport the solid sorbent to the regeneration reactor. In addition, the process system continuity had a stronger effect on the CO_2 removal level in the system than the process system mixing.

  12. Process and technological wastes compaction through a fluidized bed incineration process

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1993-01-01

    The various fluidized bed systems (dense or circulating) are reviewed and the advantages of the circulation fluidized bed are highlighted (excellent combustion performance, clean combustion, large operating range, poly-functionality with regards to waste type, ...). Applications to contaminated graphite (with the problem of ash management) and to plant process wastes (ion exchangers, technological wastes, aqueous effluents); study of the neutralization and chlorine emission

  13. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ((approx)2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate

  14. Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds.

    Science.gov (United States)

    Zuo, Wu; Jin, Baosheng; Huang, Yaji; Sun, Yu; Li, Rui; Jia, Jiqiang

    2013-01-01

    A circulating fluidized bed reactor was used for pyrolyzing sewage sludge with a high ash content to produce liquids rich in heterocyclic nitrogenated compounds. GC/MS and FTIR analyses showed that heterocyclic nitrogenated compounds and hydrocarbons made up 38.5-61.21% and 2.24-17.48% of the pyrolysis liquids, respectively. A fluidized gas velocity of 1.13 m/s, a sludge feed rate of 10.78 kg/h and a particle size of 1-2mm promoted heterocyclic nitrogenated compound production. Utilizing heterocyclic nitrogenated compounds as chemical feedstock could be a way for offsetting the cost of sewage sludge treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. FY 1999 report on the potential survey of the environmental friendly type coal utilization system. Survey on the spread/promotion of circulating fluidized bed boilers in China; 1999 nendo chosa hokoksho. Kankyo chowagata sekitan riyo system kanosei chosa. Chugoku ni okeru junkan yukaboira no fukyu sokushin ni kakawaru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of contributing to the spread/promotion of Japanese-make circulating fluidized bed boilers with desulfurization function, survey was conducted of the state of utilization of circulating fluidized bed boilers, the needs, etc. in China. In the survey, field survey was made at two boiler manufacturers and four companies using boilers in Beijing city, Fujian province, Hubei province, etc. to grasp the state of utilization and study conditions for the spread/promotion of circulating fluidized bed boilers. The Chinese government is making efforts for the spread of circulating fluidized bed boilers. The number of the domestically existing circulating fluidized bed boilers is estimated at approximately 800, but almost none of them conducts furnace desulfurization. Further, the operating rate of boiler is not always high. The reasons are as follows: desulfurization costs high without connecting to the production; environmental regulation is still mild in China; reliability and maintenance technique are still at low levels. It is urgently desirable to spread highly reliable circulating fluidized bed boilers with desulfurization function, and accordingly, it is necessary to reduce the cost of Japanese-make boilers. (NEDO)

  16. Operating experience - electrostatic precipitators as deduster for circulating fluidized bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Frank, M.J.; Bork, G. [Lurgi Lentjes Bischoff GmbH (Germany)

    1999-07-01

    Electrostatic precipitators (ESPs) are widely used for dedusting flue gases generated by steam generators with circulating fluidized bed (CFB) furnaces. In such applications, limestone is used as a desulphurisation additive in the furnace, eliminating the need for further desulphurisation systems downstream. However, the additive changes the physical properties of the particulate matter to be removed by the ESP, mostly unfavourably as regards ash resistivity. In this paper, design criteria and operating experiences are discussed, showing the main influences attributable to the additive and the CFB operating regime. Specific reference is made to the Heizkraftwerk 1 CFB power plant (Germany). Designed for domestic coals, on switching to import coals boiler output at the plant had to be limited due to unacceptably high dust emissions. ESP efficiency was optimised in two ways: (1) flow distribution was improved; and (2) new microprocessor controllers installed. Results of the modifications are discussed.

  17. Heat exchanger support apparatus in a fluidized bed

    Science.gov (United States)

    Lawton, Carl W.

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  18. Occurrence of polycyclic aromatic hydrocarbons in dust emitted from circulating fluidized bed boilers.

    Science.gov (United States)

    Kozielska, B; Konieczyńiski, J

    2008-11-01

    Occurrence of polycyclic aromatic hydrocarbons (PAHs) in granulometric fractions of dust emitted from a hard coal fired circulating fluidized bed (CFB) boiler was investigated. The dust was sampled with the use of a Mark III impactor. In each fraction of dust, by using gas chromatography (GC), 16 selected PAHs and total PAHs were determined and the toxic equivalent B(a)P (TE B(a)P) was computed. The results, recalculated for the standard granulometric fractions, are presented as concentrations and content of the determined PAHs in dust. Distributions of PAHs and their profiles in the granulometric dust fractions were studied also. The PAHs in dust emitted from the CFB boiler were compared with those emitted from mechanical grate boilers; a distinctly lower content of PAHs was found in dust emitted from the former.

  19. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    Science.gov (United States)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  20. Attempts on cardoon gasification in two different circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Chr. Christodoulou

    2014-11-01

    Full Text Available Few tests have been carried out in order to evaluate the use of cardoon in gasification and combustion applications most of the researchers dealt with agglomeration problems. The aim of this work is to deal with the agglomeration problem and to present a solution for the utilization of this biofuel at a near industrial application scale. For this reason, two experiments were conducted, one in TU Delft and one in Centre for Research and Technology Hellas (CERTH, using fuel cardoon and 50% w/w cardoon blended with 50% w/w giant reed respectively. Both experimental campaigns were carried out in similar atmospheric circulating fluidized bed gasifiers. Apart from the feedstock, the other differences were the gasification medium and the bed material used in each trial. The oxidizing agent at TUD׳s run was O2/steam, whereas CERTH׳s tests used air. When experiments with the cardoon 50% w/w–giant reed 50% w/w blend were performed no agglomeration problems were presented. Consequently, gasification could be achieved in higher temperature than that of pure cardoon which led to the reduction of tar concentration.

  1. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    Energy Technology Data Exchange (ETDEWEB)

    Oelfke, John Barry; Torczynski, John Robert; O' Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew

    2006-08-01

    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  2. Prospects for using the technology of circulating fluidized bed for technically refitting Russian thermal power stations

    Science.gov (United States)

    Ryabov, G. A.; Folomeev, O. M.; Litun, D. S.; Sankin, D. A.; Dmitryukova, I. G.

    2009-01-01

    The present state and development of circulating fluidized bed (CFB) technology around the world are briefly reviewed. Questions of increasing the capacity of single boiler units and raising the parameters of steam are discussed. CFB boilers for 225- and 330-MW power units are described and their parameters are estimated as applied to the conditions of firing different Russian fuels. Indicators characterizing CFB boilers and pulverized-coal boilers are given. Capital outlays and operational costs for new coal-fired units are compared, and the results from this comparison are used to show the field of the most promising use of the CFB technology during technical refitting of Russian thermal power stations.

  3. Boiler for combustion fuel in a fluidized bed

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2015-01-01

    Full Text Available Fuel combustion in fluidized bed combustion is a process that is current and which every day gives more attention and there are many studies that have been closely associated with this technology. This combustion technology is widespread and constantly improving the range of benefits it provides primarily due to reduced emissions. This paper presents the boilers for combustion in a fluidized bed, whit characteristics and advantages. Also is shown the development of this type of boilers in Republic of Serbia. In this paper is explained the concept of fluidized bed combustion. Boilers for this type of combustion can be improved and thereby increase their efficiency level. More detailed characteristics are given for boilers with bubbling and circulating fluidized bed as well as their mutual comparison.

  4. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators.

    Science.gov (United States)

    You, Haihui; Ma, Zengyi; Tang, Yijun; Wang, Yuelan; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa; Huang, Qunxing

    2017-10-01

    The heating values, particularly lower heating values of burning municipal solid waste are critically important parameters in operating circulating fluidized bed incineration systems. However, the heating values change widely and frequently, while there is no reliable real-time instrument to measure heating values in the process of incinerating municipal solid waste. A rapid, cost-effective, and comparative methodology was proposed to evaluate the heating values of burning MSW online based on prior knowledge, expert experience, and data-mining techniques. First, selecting the input variables of the model by analyzing the operational mechanism of circulating fluidized bed incinerators, and the corresponding heating value was classified into one of nine fuzzy expressions according to expert advice. Development of prediction models by employing four different nonlinear models was undertaken, including a multilayer perceptron neural network, a support vector machine, an adaptive neuro-fuzzy inference system, and a random forest; a series of optimization schemes were implemented simultaneously in order to improve the performance of each model. Finally, a comprehensive comparison study was carried out to evaluate the performance of the models. Results indicate that the adaptive neuro-fuzzy inference system model outperforms the other three models, with the random forest model performing second-best, and the multilayer perceptron model performing at the worst level. A model with sufficient accuracy would contribute adequately to the control of circulating fluidized bed incinerator operation and provide reliable heating value signals for an automatic combustion control system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Co-combustion of agricultural wastes in a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Huseyin Topal; Aysel T. Atimtay [Gazi University, Ankara (Turkey). Dept. of Mechanical Engineering

    2005-07-01

    In this study a circulating fluidized bed combustion (CFBC) of 125 mm inside diameter and 1800 mm height was used to investigate the co-combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry, and sunflower stems produced as a waste from the edible oil industry with a lignite coal. Lignite coal is a coal most widely used in Turkey. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NOx and total hydrocarbons (C{sub m}H{sub n}) were measured in the flue gas during combustion experiments. By changing the operating parameters the variation of emissions of various pollutants were studied. During combustion tests, it was observed that the volatile matter from agro-wastes quickly volatilizes and mostly burn in the riser. The temperature profiles along the bed and the rise also confirmed this phenomenon. It was found that as the volatile matter content of agro-waste increases, the combustion efficiency increases and the combustion takes place more in the upper region of the riser. These results suggest that agro-wastes are potential fuels that can be utilized for clean energy production by using CFBC in countries where agricultural activities are heavy. 3 refs., 4 figs., 5 tabs.

  6. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  7. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  8. Modelling of Devolatilization in Fluidized Bed Combustion

    DEFF Research Database (Denmark)

    Stenseng, Mette; Lin, Weigang; Johnsson, Jan Erik

    1997-01-01

    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and hea...

  9. Energetic, ecologic and fluid-dynamic analysis of a fluidized bed gasifier operating with sugar cane bagasse

    International Nuclear Information System (INIS)

    Diniz Filho, Paulo Tasso; Silveira, Jose Luz; Tuna, Celso Eduardo; Lamas, Wendell de Queiroz

    2013-01-01

    This work aims to study the thermodynamic, ecological and fluid-dynamic aspects of a circulating fluidized bed gasifier using sugar cane bagasse as biomass, in order to estimate a model of its normal operation. In the initial stage was analysed the composition of biomass selected (sugar cane bagasse) and its lower heating value (LHV) was calculated. The energy balance of the gasifier was done, being the volumetric flow of air, synthesis gas and biomass estimated. Also the power produced by this gasifier was theoretically estimated. Then the circulating fluidized bed gasifier was designed for operation with approximately 100 kg/h of processed biomass. Cross-sectional area of the reactor, feeder size, diameter of the exit zone of the gases and minimum height of the expanded bed were selected. Some bed gasifier hydrodynamic factors were also studied. The minimum fluidization velocity, fluidization terminal velocity, and average fluidizing velocity were calculated, in order to understand the fluid-dynamic behaviour of gasification of this fuel. It was obtained a theoretical model that can support a possible prototype of circulating fluidized bed gasifier biomass. Finally, there were studied the ecological aspects of the gasifier, through an overall methodology. Ecological efficiencies were estimated for two scenarios: first considering the carbon cycle and thereafter disregarding the carbon cycle. In both cases, it can be proved the ecological viability of the project. -- Highlights: • we develop a methodology to size a fluidized bed gasifier. • we validate this methodology comparing to a fixed bed gasifier values. • we aggregate ecological efficiency to this methodology

  10. VOC emission control by circulating fluidized bed adsorption; Controle de l'emission de composes organiques volatils par adsorption en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Song, W.

    2003-12-15

    This work deals with the circulating fluidized bed technology, applied to the elimination by adsorption of volatile organic compounds (VOCs), like toluene, in a gas flow. In the process, the adsorbent (millimetric spherical grains of micro-porous carbon) is moved by a strong flow rate of gas inside a vertical tube without lining. Mass and heat transfers are very important and important volumes of compounds can be processed. This work presents the determination of the adsorption equilibrium, the description of the experimental facility and of the results of experiments, the development of an original model of the process which combines a flow model and a mass transfer model, a parametric study of this model, and finally, some extensions of the process principle to staged operations with pressure variation or temperature variation cycles. (J.S.)

  11. Gasification of algal biomass (Cladophora glomerata L.) with CO2/H2O/O2 in a circulating fluidized bed.

    Science.gov (United States)

    Ebadi, Abdol Ghaffar; Hisoriev, Hikmat

    2017-11-28

    Gasification is one of the most important thermochemical routes to produce both synthesis gas (syngas) and chars. The quality of produced syngas wieldy depends on the operating conditions (temperature, residence time, heating rate, and gasifying agent), hydrodynamic properties of gasifier (particle size, minimum fluidization velocity, and gasifier size), and type of feedstock (coal, biomass, oil, and municipal solid wastes). In the present study, simulation of syngas production via circulating fluidized bed (CFB) gasification of algal biomass (Cladophora glomerata L.) at different gasifying agents and particle sizes was carried out, using Aspen Plus simulator. The model which has been validated by using experimental data of the technical literature was used to evaluate the influence of operating conditions on gas composition and performance parameters. The results show that biomass gasification using pure oxygen as the gasification agent has great potential to improve the caloric value of produced gas and performance indicators. It was also found that the produced gas caloric value, syngas yield, and performance parameters (CCE and CGE) increase with reaction temperature but are inversely proportional to the biomass particle size.

  12. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US

  13. State of the art and the future fuel portfolio of fluidized bed combustion systems; Status und kuenftiges Brennstoffportfolio bei Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Szentannai, Pal; Friebert, Arpad; Winter, Franz [Technische Univ. Wien (Austria). Inst. fuer Verfahrens-, Umwelttechnik und technische Biowissenschaften

    2008-07-01

    Coal, biomass and substitute fuels energetically can be used efficiently and with low pollution in fluidized bed plants. In comparison to biomass there are significant differences between the circulating and stationary fluidized bed technology. The stationary fluidised bed is fed predominantly with biomasses and residual substances. Coal usually is the basis fuel in the circulating fluidised bed. Biomass and residual substances frequently are course-fired. The state of the art is the employment of a broad fuel mixture in small and large fluidized-bed combustion systems. Future developments present an increased use of sewage sludge, fluidized bed combustion systems with wood as a basis fuel, utilization of household waste and the gas production.

  14. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel; Simulation de la combustion en boucle chimique d'une charge gazeuse dans un lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Mahalatkar, K.; Kuhlman, J. [West Virginia University, Dept. of Mechanical and Aerospace Engineering, Morgantown, WV, 26506 (United States); Mahalatkar, K. [ANSYS Inc., 3647 Collins Ferry Road Suite A, Morgantown, WV, 26505 (United States); Kuhlman, J.; Huckaby, E.D.; O' Brien, T. [National Energy Technology Laboratory, 3610 Collins Ferry Road, Morgantown, WV, 26507 (United States)

    2011-03-15

    Numerical studies using Computational Fluid Dynamics (CFD) have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185). There have been extensive experimental studies in Chemical Looping Combustion (CLC), however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particle-particle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. (authors)

  15. Desulphurization in peat-fired circulating and bubbling fluidized bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kouvo, P. [Imatran Voima Oy, Vantaa (Finland); Salmenoja, K. [Kvaerner Pulping Oy, Tampere (Finland)

    1997-12-31

    The new emission limit values for large combustion plants are under consideration both at the EU level and in Finland. Peat and wood are the only indigenous fuels of Finland. In 1995 appr. 8 % of electricity was produced with peat. The lower heating value of peat is around 10 MJ/kg. The moisture content varies between 35-55 % and sulphur content in dry solids between 0.15-0.35 %. The total peat power capacity of Finland in 1995 was 1400 MW. Because there was not enough information available about the desulphurization of the flue gases from peat-fired fluidized bed boilers, a group of Finnish companies and Ministry of Trade and Industry decided to carry out the full-scale desulphurisation study. In the project the desulphurization with limestone injection into the furnace of two types of peat-fired boilers were studied. The goal of the project was to investigate: what the technically and economically feasible emission level is by limestone injection in the fluidized bed combustion; how the limestone injection affects the other flue gas emissions and the fouling of the boiler and, what the economy of desulphurisation is. The tests were carried out at Kokkola and Kemi power plants in Finland. At Kokkola (108 MW{sub f}) circulating fluidized bed boiler, the emission limit of 200 mg/m{sup 3}n was leached at a Ca/S-molar ratio of appr. 10, with limestone containing 92 % of calcium carbonate, CaCO{sub 3}. At Kemi (267 MW{sub f}) bubbling fluidized bed boiler, the emission limit of 280 mg/m{sup 3}n with limestone containing appr. 95 % of CaCO{sub 3} was reached at a Ca/S-molar ratio of appr. 7.0. Emissions of NO{sub x}, N{sub 2}O, NH{sub 3} and dust after the ESP were not elevated due to the limestone feed. At the Kokkola power plant the NO{sub x} emissions varied from 300 to 400 mg/m{sup 3}n, and, at the Kemi power station the NO{sub x} emissions were around 200 mg/m{sup 3}n. The fouling of the Kemi boiler was found to be significant in the scheduled outage after the test

  16. Experimental study of the mechanisms of CO2 capture by calcium cycle under circulating fluidized bed conditions

    International Nuclear Information System (INIS)

    Hoteit, A.

    2006-06-01

    The work undertaken in this Thesis in partnership with department R and D of ALSTOM Power Boilers, CEMEX and the ADEME, relates to the experimental study of various phenomena associated to CO 2 capture under circulating fluidized bed conditions. The size of particles, temperature and the CO 2 concentration have an influence on the limestone calcination reaction. The reaction of carbonation of lime is not total. During successive cycles of calcination/carbonation, the rate of carbonation obtained with hydrated lime is increasingly higher than that obtained with the lime. Under continuously reducing conditions, the decomposition of sulphates present in the bed ashes is not total. This decomposition is total under reduction/oxidation cycles. A modeling of calcination allowed to determine the intrinsic kinetic constants of calcination and carbonation. (author)

  17. Numerical simulation of the gas-solid flow in a square circulating fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengyang [Harbin Institute of Technology, Harbin (China). Post-doctor Station of Civil Engineering; Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Sun, Shaozeng; Zhao, Ningbo; Wu, Shaohua [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Tan, Yufei [Harbin Institute of Technology, Harbin (China). School of Municipal and Environmental Engineering

    2013-07-01

    The dynamic behavior of gas-solid flow in an experimental square circulating fluidized bed setup (0.25 m x 0.25 m x 6.07 m) is predicted with numerical simulation based on the theory of Euler-Euler gas-solid two-phase flow and the kinetic theory of granular flows. The simulation includes the operation cases with secondary injection and without air-staging. The pressure drop profile, local solids concentration and particle velocity was compared with experimental results. Both simulation and experimental results show that solids concentration increases significantly below the secondary air injection ports when air-staging is adopted. Furthermore, the flow asymmetry in the solid entrance region of the bed was investigated based on the particle concentration/velocity profile. The simulation results are in agreement with the experimental results qualitatively.

  18. Fluidization quality analyzer for fluidized beds

    Science.gov (United States)

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  19. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-30

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  20. On partial fluidization in rotating fluidized beds

    International Nuclear Information System (INIS)

    Kao, J.; Pfeffer, R.; Tardos, G.I.

    1987-01-01

    In a rotating fluidized bed, unlike in a conventional fluidized bed, the granules are fluidized layer by layer from the (inner) free surface outward at increasing radius as the gas velocity is increased. This is a very significant and interesting phenomenon and is extremely important in the design of these fluidized beds. The phenomenon was first suggested in a theoretical analysis and recently verified experimentally in the authors' laboratory. However, in the first paper, the equations presented are too cumbersome and the influence of bed thickness is not clearly stated. In this note the authors present simplified equations, based on that paper, for the pressure drop and the minimum fluidizing velocities in a rotating fluidized bed. Experimental data are also shown and compared with the theoretical model, and the effect of bed thickness is shown. Furthermore, an explanation for the observation of a maximum in the pressure drop vs. velocity curve instead of the plateau derived by Chen is proposed

  1. Numerical simulation of gas-solid flow in an interconnected fluidized bed

    Directory of Open Access Journals (Sweden)

    Canneto Giuseppe

    2015-01-01

    Full Text Available The gas-particles flow in an interconnected bubbling fluidized cold model is simulated using a commercial CFD package by Ansys. Conservation equations of mass and momentum are solved using the Eulerian granular multiphase model. Bubbles formation and their paths are analyzed to investigate the behaviour of the bed at different gas velocities. Experimental tests, carried out by the cold model, are compared with simulation runs to study the fluidization quality and to estimate the circulation of solid particles in the bed.

  2. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  3. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    Science.gov (United States)

    Talmud, Fred M.; Garcia-Mallol, Juan-Antonio

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  4. Research report of FY 1997 on the environmentally acceptable coal utilization system introduction support project. Demonstration project of circulating fluidized bed boiler (Jinzhou Coal-Thermal Power Corporation); 1997 nendo seika hokokusho (kankyo chowagata sekitan riyo system donyu shien jigyo). Junkan ryudosho boiler ni kakawaru jissho jigyo (Jinzhou netsuden sokoji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    To verify the clean coal technology to be diffused in China and consolidate its diffusion basis, demonstration project of circulating fluidized bed boiler was conducted through the cooperation with China which is positive in its introduction. This report describes its characteristics. Coal and limestone are supplied in a lower part of combustion chamber, and are mixed with circulating ash by fluidized air for combustion. Densely fluidized bed the same as the bubbling fluidized bed is formed in the lower part of combustion chamber, which provides excellent stability in ignition and combustion. Particles including ash, char and limestone formed during the combustion are discharged into the cyclone through the convection heat transfer part at the outlet of combustion chamber with the combustion gas flow. Since the gas temperature is lowered to 400 to 500degC at the convection heat transfer part, troubles of the ash circulating system can be prevented. The combustion gas separated from ash at the cyclone is discharged through the heat exchanger and precipitator, and the collected ash is returned to the lower part of combustion chamber. In FY 1997, design, fabrication, procurement/inspection, field survey/meeting, survey of visitors/meeting, and education were carried out. 4 figs., 4 tabs.

  5. Thermodynamic optimisation and computational analysis of irreversibilities in a small-scale wood-fired circulating fluidised bed adiabatic combustor

    CSIR Research Space (South Africa)

    Baloyi, J

    2014-06-01

    Full Text Available parameters on energy and exergy characteristics and exergy losses. International Journal of Energy Research 2006; 30: 203-219. [24] Ziebik A, stanek W. Energy and exergy system analysis of thermal improvements of blast-furnace plants. International... in the riser column of a pressurized circulating fluidized bed. International Journal of Energy Research 2006; 30: 149-162. [27] Cihan A, Hacihafizoglu O, Kahveci K. Energy-exergy analysis and modenization suggestions for a combined-cycle power plant...

  6. Dry out of a fluidized particle bed with internal heat generation

    International Nuclear Information System (INIS)

    Keowen, R.S.; Catton, I.

    1975-03-01

    An apparatus was designed to adequately simulate the characteristics of a particle bed formed by nuclear reactor fuel after the reactor has been operable for some length of time at high power. This was accomplished by using a 10 KW, 453 Kc induction heater, coupled through a multi-turn work coil to particle beds of cast steel shot and lead shot in water. The temperature response and dryout condition was determined for various bed levels, particle diameters, and heat fluxes. Analysis of the data retrieved from the bed was used to generate a family of curves to predict the necessary conditions for dryout to occur within a fluidized particle bed with internal heat generation. The results presented here, with internal heat generation, show that previous results with bottom heating and volume heating are conservative. (U.S.)

  7. Properties of Controlled Low Strength Material with Circulating Fluidized Bed Combustion Ash and Recycled Aggregates

    Science.gov (United States)

    Weng, Tsai-Lung; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi

    2018-01-01

    This study aims to investigate the effect of adding circulating fluidized bed combustion (CFBC) ash, desulfurization slag, air-cooled blast-furnace slag and coal bottom ash to the controlled low-strength material (CLSM). Test methods include slump flow test, ball drop test, water soluble chloride ion content measurement, compressive strength and length change measurement. The results show that (1) the use of CFBC hydration ash with desulfurization slag of slump flow is the best, and the use of CFBC hydration ash with coal bottom ash and slump flow is the worst; (2) CFBC hydration ash with desulfurization slag and chloride ion content is the highest; (3) 24 h ball drop test (diameter ≤ 76 mm), and test results are 70 mm to 76 mm; (4) CFBC hydration ash with desulfurization slag and compression strength is the highest, with the coal bottom ash being the lowest; increase of CFBC hydration ash can reduce compressive strength; and (5) the water-quenched blast furnace slag and CFBC hydration ash would expand, which results in length changes of CLSM specimens. PMID:29724055

  8. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis

    International Nuclear Information System (INIS)

    Xu Hui; Li Qin; Shen Lifeng; Zhang Mengqun; Zhai Jianping

    2010-01-01

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  9. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    International Nuclear Information System (INIS)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-01-01

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives

  10. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  11. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Marashdeh, Qussai [Tech4imaging LLC, Columbus, OH (United States)

    2013-02-01

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  12. Limestone particle attrition and size distribution in a small circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhongxiang Chen; John R. Grace; C. Jim Lim [University of British Columbia, Vancouver, BC (Canada). Department of Chemical and Biological Engineering

    2008-06-15

    Limestone particle attrition was investigated in a small circulating fluidized bed reactor at temperatures from 25 to 850{sup o}C, 1 atm pressure and superficial gas velocities from 4.8 to 6.2 m/s. The effects of operating time, superficial gas velocity and temperature were studied with fresh limestone. No calcination or sulfation occurred at temperatures {le} 580{sup o}C, whereas calcination and sulfation affected attrition at 850{sup o}C. Increasing the temperature (while maintaining the same superficial gas velocity) reduced attrition if there was negligible calcination. Attrition was high initially, but after about 24 h, the rate of mass change became constant. The ratio of initial mean particle diameter to that at later times increased linearly with time and with (U{sub g} - U{sub mf}){sup 2}, while decreasing exponentially with temperature, with an activation energy for fresh limestone of -4.3 kJ/mol. The attrition followed Rittinger's surface theory. The change of surface area of limestone particles was proportional to the total excess kinetic energy consumed and to the total attrition time, whereas the change of surface area decreased exponentially with increasing temperature. At 850{sup o}C, the attrition rate of calcined lime was highest, whereas the attrition rate was lowest for sulfated particles. When online impact attrition was introduced, the attrition rate was about an order of magnitude higher than without impacts. 25 refs., 14 figs., 4 tabs.

  13. Ash and heavy metals in fluidized bed-combustion; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO International, Vantaa (Finland)

    1996-12-01

    Combustion ashes and submicron fly ash particles were characterized in two industrial boilers (bubbling vs. circulating fluidized bed) burning paper mill deinking sludge and bark or wood as support fuel. Bulk samples from fly ash, circulating ash and bottom ash were analyzed. Fine particles in fly ash were monitored and sampled for microscopic studies. The mass size distribution of fly ash was measured and the chemical composition according to particle size was analyzed. The results showed that ash consists of large and friable clusters formed by sintering of small mineral particles originating from paper fillers. Very few ash particles were fused and they were found only among the smallest particles. No agglomerates of fused particles were found. If the residence time in furnace is long enough sintering may proceed further and ash structure grows more dense. No indication of ash vaporization was detected. These results were similar for bubbling and circulating fluidized bed boilers. (author)

  14. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Energy Technology and Environmental Protection

    1997-10-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and the heat transfer of the fluidized bed in the boundary layer near the wall. During the project the concentration and the velocity of the sand particles are measured. The particle concentration and the particle velocity are measured by an image analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The measured particle concentration was at highest slightly over 20 % on the straight wall. As expected, the velocity of the fluidizing gas had the most important role on the particle concentration. The experimental studies of the particle velocity were started last autumn 1996. The velocities of the particles were measured by using a multiple exposure technique. Afterwards the images captured were analyzed by performing a Fourier transform analysis. So far the results have been encouraging and the analyzing work will be ended this spring. (orig.)

  15. Simulation of biomass-steam gasification in fluidized bed reactors: Model setup, comparisons and preliminary predictions.

    Science.gov (United States)

    Yan, Linbo; Lim, C Jim; Yue, Guangxi; He, Boshu; Grace, John R

    2016-12-01

    A user-defined solver integrating the solid-gas surface reactions and the multi-phase particle-in-cell (MP-PIC) approach is built based on the OpenFOAM software. The solver is tested against experiments. Then, biomass-steam gasification in a dual fluidized bed (DFB) gasifier is preliminarily predicted. It is found that the predictions agree well with the experimental results. The bed material circulation loop in the DFB can form automatically and the bed height is about 1m. The voidage gradually increases along the height of the bed zone in the bubbling fluidized bed (BFB) of the DFB. The U-bend and cyclone can separate the syngas in the BFB and the flue gas in the circulating fluidized bed. The concentration of the gasification products is relatively higher in the conical transition section, and the dry and nitrogen-free syngas at the BFB outlet is predicted to be composed of 55% H 2 , 20% CO, 20% CO 2 and 5% CH 4 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Rapid pyrolysis of wheat straw in a Bench-Scale circulating Fluidized-Bed downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ding, T. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Graduate School of Chinese Academy of Sciences, Beijing (China); Li, S.; Xie, J.; Song, W.; Yao, J.; Lin, W. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China)

    2012-12-15

    The effects of acid washing treatment on the pyrolysis product distribution and product properties were investigated in a bench-scale circulating fluidized-bed (CFB) downer reactor with wheat straw as feedstock. The acid treatment not only removes most of the inorganic species present in the biomass but also alters the distribution of the remaining organic constituents. It was found that the removal of the inorganic species increases the yield of liquid product and reduces char formation and gas yield. CO and CO{sub 2} are the dominant components in the gaseous product, accounting for over 90 %. The concentration of CO in the gaseous product increases after acid treatment, while the CO{sub 2} concentration decreases. The oxygen and water contents in the liquid product are decreased on acid treatment, leading to a relatively high heating value and viscosity. More volatiles can be found in the char derived from the acid-treated wheat straw than from the raw wheat straw. This may suggest that a longer residence time is needed for pyrolysis of the acid-treated wheat straw in order to obtain the maximal yield of volatile matter. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Oxygen Carrier Aided Combustion (OCAC of Wood Chips in a Semi-Commercial Circulating Fluidized Bed Boiler Using Manganese Ore as Bed Material

    Directory of Open Access Journals (Sweden)

    Magnus Rydén

    2016-11-01

    Full Text Available Oxygen Carrier Aided Combustion (OCAC is realized by using an active oxygen-carrying bed material in fluidized bed boilers. The active material is reduced in fuel rich parts of the boiler and oxidized in air rich parts. Advantages could be achieved such as new mechanisms for oxygen transport in space and time. Here calcined manganese ore has been used as active bed material in a 12 MWth circulating fluidized bed boiler. The fuel was wood chips and the campaign lasted more than two weeks. From an operational point of view, manganese ore worked excellently. From the temperature profile of the boiler it can be concluded that fuel conversion was facilitated, especially in the dense bottom bed. The effect did not always translate to reduced emissions, which suggests that final combustion in the cyclone outlet was also influenced. Substituting 10% of the sand bed with manganese ore made it possible to reduce the air to fuel ratio without generating large amounts of CO. The use of 100% manganese ore resulted in higher emissions of CO than the sand reference, but, when combined sulphur feeding, dramatic reductions in CO emissions, up to 90% compared to sand reference, was achieved.

  18. Modelling of N2O Reduction in a Circulating Fluidized Bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars Erik; Dam-Johansen, Kim

    1996-01-01

    The addition of limestone for sulphur retention in Fluidized Bed Combustion (FBC) has been observed to influence the emission of N2O, and in many cases a lower emission was observed. The catalytic activity of a Danish limestone (Stevns Chalk) for decomposition of N2O in a laboratory fixed bed qua...

  19. Fabrication works on rotary kiln fluidized bed

    International Nuclear Information System (INIS)

    Shahazrin Mohd Nasir; Mohamad Azman Che Mat Isa; Mohamad Puad Haji Abu; Mohd Fairus Abdul Farid

    2005-01-01

    Rotary kiln has been widely used in incineration and studied by many researches. Solid wastes of various shapes, sizes and heat value can be fed into rotary kiln either in batches or continually. Waste combustion in rotary kiln involves rotation method and the residence time depends on the length and diameter of the rotary kiln and the total stichomythic air given to the system.Rocking system is another technology used in incinerator. In the rocking system, internal elements in the combustion chamber move to transports and mix the burning waste so that all combustible material in the waste is fully burnt. Another technology in incinerator is the fluidized bed. This method uses air to fluidized the sand thus enhancing the combustion process. The total air is controlled in order to obtain a suitable fluidized condition.This preliminary study was conducted to study the feasibility of an incinerator system when three components viz. the rotary kiln, rocking system and fluidized bed are combined. This research was also conducted to obtain preliminary data parameters of the three components such as the suitable temperature, the angle of the kiln, residence time, total air for fluidization, rocking speed and the devolatilization rate. The samples used in this research were the palm oil kernel shells. (Author)

  20. Steam gasification of coal using a pressurized circulating fluidized bed

    International Nuclear Information System (INIS)

    Werner, K.F.J.

    1989-09-01

    Subject of this investigation is the process engineering of a coal gasification using nuclear heat. A special aspect is the efficiency. To this purpose a new method for calculating the kinetics of hard coal steam gasification in a fluidized bed is presented. It is used for evaluations of gasification kinetics in a large-scale process on the basis of laboratory-scale experiments. The method is verified by experimental data from a large-scale gasifier. The investment costs and the operating costs of the designed process are estimated. (orig.) [de

  1. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  2. An experimental study of fluidization behavior using flow visualization and image processing

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Sefidvash, Farhang; Cornelius, Vanderli

    2000-01-01

    A program of experimental study of fluidization of heavy spherical pellets with water using image processing technique has been started in the Nuclear Engineering Department of the Federal University of Rio Grande do Sul. Fluidization for application in nuclear reactors requires very detailed knowledge of its behavior as the reactivity is closely dependent on the porosity of the fluidized bed. A small modular nuclear reactor concept with suspended core is under study. A modified version of the reactor involves the choice of is to make conical the shape of the reactor core to produce a non-fluctuating bed and consequently guarantee the dynamic stability of the reactor. A 5 mm diameter steel ball are fluidized with water in a conical Plexiglass tube. A pump circulate the water in a loop feeding the room temperature water from the tank into the fluidization system and returning it back to the tank. A controllable valve controls the flow velocity. A high velocity digital CCD camera captures the images of the pellets moving in the fluidized tube. At different flow velocities, the individual pellets can be tracked by processing the sequential frames. A DVT digital tape record stores the images and by acquisition through interface board into a microcomputer. A special program process the data later on. Different algorithm of image treatment determines the velocity fields of the pellets. The behavior of the pellets under different flow velocity and porosity are carefully studied. (author)

  3. The stability of CaS in circulating fluidized bed boiler residue and the possible release of H2S gas to the atmosphere

    International Nuclear Information System (INIS)

    Mattisson, T.; Lyngfelt, A.

    1995-01-01

    During the combustion of coal, SO 2 is released to the atmosphere. Because of environmental concerns with acid rain, the capture of SO 2 is an important issue. In fluidized bed combustion SO 2 is captured in-situ by limestone or dolomite to form CaSO 4 . This product is stable and can be disposed of or reused as gypsum. In order to capture the sulphur as CaSO 4 oxidizing conditions are necessary. In a fluidized bed boiler (FBB) CaS may form in regions with reducing conditions, and FBB ashes sampled under irregular operating conditions may contain as much as 50 % of the captured sulphur as CaS. The stability of CaS in a landfill environment is thus very important. It is possible that the sulphide decomposes in the presence of moisture or runoff leachate with the subsequent release of H 2 S gas. This re-release of captured sulphur could have a substantial effect on the overall sulphur capture efficiency, with more sulphur released to the atmosphere than previously thought. In this study the stability of CaS in bed ashes from a 12 MW circulating FBB combusting coal has been investigated, with focus on the release of H 2 S gas. (orig.)

  4. Fluidized bed combustion with the use of Greek solid fuels

    Directory of Open Access Journals (Sweden)

    Kakaras Emmanuel

    2003-01-01

    Full Text Available The paper is an overview of the results obtained up to date from the combustion and co-combustion activities with Greek brown coal in different installations, both in semi-industrial and laboratory scale. Combustion tests with Greek lignite were realized in three different Circulating Fluidized Bed Combustion (CFBC facilities. Low rank lignite was burned in a pilot scale facility of approx. 100kW thermal capacity, located in Athens (NTUA and a semi-industrial scale of 1.2 MW thermal capacity, located at RWE's power station Niederaussem in Germany. Co-combustion tests with Greek xylitic lignite and waste wood were carried out in the 1 MWth CFBC installation of AE&E, in Austria. Lab-scale co-combustion tests of Greek pre-dried lignite with biomass were accomplished in a bubbling fluidized bed in order to investigate ash melting problems. The obtained results of all aforementioned activities showed that fluidized bed is the appropriate combustion technology to efficiently exploit the low quality Greek brown coal either alone or in conjunction with biomass species.

  5. Modeling of NO and N2O emissions from biomass circulating fluidized bed combustors

    International Nuclear Information System (INIS)

    Liu, H.; Gibbs, B.M.

    2002-01-01

    In order to correctly model biomass combustion in a circulating fluidized bed (CFB) combustor, it is necessary to examine the four main stages in the combustion of biomass particles. These include drying, devolatilization, volatile combustion and char combustion in a CFB combustor. This paper presents a newly developed model for nitric oxide (NO) and nitrous oxide (N 2 O) emissions from biomass-fired CFB combustors. A typical woody biomass of pinewood chips was selected for the model parameters. The drying and devolatilization of biomass particles was modeled with limited rates according to woody biomass fuels. The partition of fuel nitrogen between volatiles and char was chosen for pinewood based on available data from literature. It was assumed that the volatile nitrogen was composed of ammonia (NH 3 ), hydrogen cyanide (HCN) and nitrogen (N 2 ). The model included 25 chemical reactions, of which 20 belonged to global fuel-nitrogen reaction kinetics. A 12 MW CFB boiler was used to apply the model. Results were compared with experimental values as well as data from literature. The reaction between NO and char was found to be the key reaction that determines NO emissions. The catalytic effect of bed materials on the oxidation of NH 3 and the the homogeneous reaction of NH 3 with nitric oxide was also significant. 25 refs., 2 tabs., 5 figs

  6. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  7. Fluidization of nanopowders: a review

    International Nuclear Information System (INIS)

    Ommen, J. Ruud van; Valverde, Jose Manuel; Pfeffer, Robert

    2012-01-01

    Nanoparticles (NPs) are applied in a wide range of processes, and their use continues to increase. Fluidization is one of the best techniques available to disperse and process NPs. NPs cannot be fluidized individually; they fluidize as very porous agglomerates. The objective of this article is to review the developments in nanopowder fluidization. Often, it is needed to apply an assistance method, such as vibration or microjets, to obtain proper fluidization. These methods can greatly improve the fluidization characteristics, strongly increase the bed expansion, and lead to a better mixing of the bed material. Several approaches have been applied to model the behavior of fluidized nanopowders. The average size of fluidized NP agglomerates can be estimated using a force balance or by a modified Richardson and Zaki equation. Some first attempts have been made to apply computational fluid dynamics. Fluidization can also be used to provide individual NPs with a thin coating of another material and to mix two different species of nanopowder. The application of nanopowder fluidization in practice is still limited, but a wide range of potential applications is foreseen.

  8. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    Science.gov (United States)

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.

  9. Dynamic behavior of tobacco waste in the coal-fired fluidized-bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Chang, Jian; Chen, Honggang; Yang, Yongping [North China Electric Power Univ., Beijing (China). National Eng Lab for Biomass Power Generation Equipment; Yu, Bangting [China Univ. of Petroleum, Beijing (China). State Key Lab. of Heavy Oil Processing

    2013-07-01

    Circulating fluidized bed (CFB) technology is an advanced method for utilizing coal and other solid fuels in an environmentally acceptable manner. During the processing procedure in the nicotiana tabacum plants, lots of tobacco stem wastes are produced, which are normally being dumped to the landfill field. If this kind of waste can be used as a part of the fuel to be added into the coal in a CFB combustor, it will reduce the use of coal and then cut the net carbon emissions. To understand the complicated fluid dynamics of nicotiana tabacum wastes in the coal-fired CFB boiler, the mixing and segregation behavior of tobacco stalk are preliminary measured in a cylindrical fluidized bed. Obvious segregation behavior is found due to distinct differences in density and shape between tobacco stem and coal, which results in poor fluidization quality and bad combustion efficiency. To overcome this disadvantage, a jet with high gas velocity is introduced through the air distributor and a detailed experimental study is conducted in a fluidized bed made up of stem-sand mixture with different solid components at various jet velocities, which greatly improve the mixing performance of stem in the fluidized bed. The above findings are helpful for the technological upgrading of small- or middle-sized CFB boiler with adding tobacco stem into coal.

  10. Staged fluidized-bed combustion and filter system

    International Nuclear Information System (INIS)

    Mei, J.S.; Halow, J.S.

    1994-01-01

    A staged fluidized-bed combustion and filter system are described for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste. 10 figures

  11. Analysis of cold flow fluidization test results for various biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, M.Z.; Husain, Z.; Pong, S.L.Y. [University Sains Malaysia, Penang (Malaysia). School of Mechanical Engineering

    2003-07-01

    A systematic theoretical and experimental study was conducted to obtain hydrodynamic properties such as particle size diameter, bulk density, fluidizing velocity, etc. for locally available biomass residue fuels in Malaysia like rice husk, sawdust, peanut shell, coconut shell, palm fiber as well as coal and bottom ash. The tests were carried out in a cold flow fluidization bed chamber of internal diameter 60 mm with air as fluidizing medium. Bed-pressure drop was measured as a function of superficial air velocity over a range of bed heights for each individual type of particle. The data were used to determine minimum fluidization velocity, which could be used to compare with theoretical values. The particle size of biomass residue fuel was classified according to Gildart's distribution diagram. The results show that Gildart's particle size (B) for sawdust, coal bottom ash, coconut shell have good fluidizing properties compared to rice husk, type (D) or palm fiber, type (A). The bulk density and voidage are found to be main factors contributing to fluidizing quality of the bed.

  12. Study of particle movement in conical fluidized beds using the tracer method

    Energy Technology Data Exchange (ETDEWEB)

    Penkalla, H. J.; Gyarmati, E.; Nickel, H.

    1976-01-15

    In the work reported here, a method is described which enables the path and speed of the particles during fluidization to be measured using a tracer particle technique. Using statistical methods, it is then possible to determine the path-time diagram, the rate of circulation of the particles, the transport capacity, the extent of mixing and the relative residence time of the particles in a given zone of the bed. Measurements were made at room temperature in a 3'' model fluidized bed as a first step in evaluating the feasibility of the test method. Criteria for the type of coating, the growth rate of the coatings and the coating potential of the coating as were correlated with the relative dwell time of the particles and the dwell-time spectrum of the coating gases in a given part of the bed. It was therefore necessary to know the streaming behavior of the fluidizing gas, and so such an analysis was first carried out.

  13. Application of Scaling-Law and CFD Modeling to Hydrodynamics of Circulating Biomass Fluidized Bed Gasifier

    Directory of Open Access Journals (Sweden)

    Mazda Biglari

    2016-06-01

    Full Text Available Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.

  14. Fluidization in nuclear engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyamoorthy, D; Venugopalan, Ramani; Vijay, P L [Metallurgy Division, Bhabha Atomic Research Centre, Mumbai (India); Varadarajan, T G [Heavy Water Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Fluidization technique has not been fully exploited in nuclear industries mainly due to lack of open literature or unawareness of its applications. Hence in this paper a detailed range of applications of fluidization in uranium extraction, nuclear fuel material preparation, fuel reprocessing and waste disposal is highlighted. A fluidized bed nuclear reactor concept is also presented. The need of fluidization for process improvement and modernization in nuclear programmes is stressed. (author). 40 refs., 3 figs.

  15. Comparative study between fluidized bed and fixed bed reactors in methane reforming with CO2 and O2 to produce syngas

    International Nuclear Information System (INIS)

    Jing Qiangshan; Lou Hui; Mo Liuye; Zheng Xiaoming

    2006-01-01

    Reforming of methane with carbon dioxide and oxygen was investigated over Ni/MgO-SiO 2 catalysts using fixed bed and fluidized bed reactors. The conversions of CH 4 and CO 2 in a fluidized bed reactor were close to thermodynamic equilibrium. The activity and stability of the catalyst in the fixed bed reactor were lower than that in the fluidized bed reactor due to carbon deposition and nickel sintering. TGA and TEM techniques were used to characterize the spent catalysts. The results showed that a lot of whisker carbon was found on the catalyst in the rear of the fixed bed reactor, and no deposited carbon was observed on the catalysts in the fluidized bed reactor after reaction. It is suggested that this phenomenon is related to a permanent circulation of catalyst particles between the oxygen rich and oxygen free zones. That is, fluidization of the catalysts in the fluidized bed reactor favors inhibiting deposited carbon and thermal uniformity in the reactor

  16. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny

    2017-01-01

    Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification...... process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg...... particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied...

  17. Survey of radionuclide emissions from coal-fired power plants and examination of impacts from a proposed circulating fluidized bed boiler power plant

    International Nuclear Information System (INIS)

    Steiner, C.P.; Militana, L.M.; Harvey, K.A.; Kinsey, G.D.

    1995-01-01

    This paper presents the results of a literature survey that examined radionuclide emissions from coal-fired power plants. Literature references from both the US and foreign countries are presented. Emphasis is placed on references from the US because the radionuclide emissions from coal-fired power plants are related to radionuclide concentrations in the coal, which vary widely throughout the world. The radionuclides were identified and quantified for various existing power plants reported in the literature. Applicable radionuclide emissions criteria discovered in the literature search were then applied to a proposed circulating fluidized bed boiler power plant. Based upon the derived radionuclide emission rates applied to the proposed power plant, an air quality modeling analysis was performed. The estimated ambient concentrations were compared to the most relevant existing regulatory ambient levels for radionuclides

  18. Bifurcation behavior during the hydrogen production in two compatible configurations of a novel circulating fluidized bed membrane reformer

    International Nuclear Information System (INIS)

    Chen, Z.; Elnashaie, S.S.

    2004-01-01

    'Full text:' Multiplicity of steady states (Static Bifurcation Behavior, SBB) in a novel Circulating Fluidized Bed (CFB) membrane reformer for the efficient production of hydrogen by steam reforming of heptane (model component of heavy hydrocarbons and renewable bio-oils) is investigated. The present paper highlights the practical implications of this phenomenon on the behavior of this novel reformer with special focusing on hydrogen production. Two configurations are considered and compared. One is with the catalyst regeneration before the gas-solid separation and the other one is with the catalyst regeneration after the gas-solid separation. Multiplicity of the steady states prevails over a number of design and operating parameters with important impact on the reformer performance. The basis of process evaluation is focused on the net hydrogen production. The dependence of the behavior of this autothermal CFB is shown to be quite complex and defy the simple logic of non-autothermal processes. The unit can be a very efficient hydrogen producer provided its bifurcation behavior is well understood and correctly exploited. (author)

  19. Experimental findings on thermal use of residues and biofuels in circulating fluidized bed combustion systems; Experimentelle Ergebnisse zur thermischen Nutzung von Rest- und Biobrennstoffen in zirkulierenden Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W; Brunne, T; Girndt, H [Technische Univ. Dresden (Germany); Albrecht, J [Lurgi Lentjes Babcock, Frankfurt am Main (Germany); Youssef, M [Minia Univ. (Egypt)

    1997-12-31

    The energy Engineering Institute of Dresden Technical University investigated the combustion and emission characteristics of a number of combustion systems, including a circulating fluidized bed system with a capacity of 0.3 MW{sub th}. Egypt`s sugar cane industry produces large volumes of bagasse. The conbustion and emission characteristics of this biofuel in a circulating fludized bed combustion systems were investigated in a joint research project of the University of Minia and Dresden Technical University. (orig.) [Deutsch] Am Institut fuer Energietechnik der TU Dresden wird das Verbrennungs- und Emissionsverhalten verschiedenster Brennstoffe in unterschiedlichen Feuerungssystemen untersucht. Neben anderen Pilotanlagen steht eine zirkulierende Wirbelschichtfeuerung (ZWFS) mit einer Leistung von 0.3 MW{sub th} zur Verfuegung. In der Zuckerrohrindustrie Aegyptens fallen grosse Mengen von Bagasse an. In einer gemeinsamen Forschungsarbeit zwischen der Universitaet Minia und der TU Dresden sollte das Verbrennungs- und Emissionsverhalten dieses Biobrennstoffes in einer ZWSF untersucht werden. (orig)

  20. Experimental findings on thermal use of residues and biofuels in circulating fluidized bed combustion systems; Experimentelle Ergebnisse zur thermischen Nutzung von Rest- und Biobrennstoffen in zirkulierenden Wirbelschichtfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Girndt, H. [Technische Univ. Dresden (Germany); Albrecht, J. [Lurgi Lentjes Babcock, Frankfurt am Main (Germany); Youssef, M. [Minia Univ. (Egypt)

    1996-12-31

    The energy Engineering Institute of Dresden Technical University investigated the combustion and emission characteristics of a number of combustion systems, including a circulating fluidized bed system with a capacity of 0.3 MW{sub th}. Egypt`s sugar cane industry produces large volumes of bagasse. The conbustion and emission characteristics of this biofuel in a circulating fludized bed combustion systems were investigated in a joint research project of the University of Minia and Dresden Technical University. (orig.) [Deutsch] Am Institut fuer Energietechnik der TU Dresden wird das Verbrennungs- und Emissionsverhalten verschiedenster Brennstoffe in unterschiedlichen Feuerungssystemen untersucht. Neben anderen Pilotanlagen steht eine zirkulierende Wirbelschichtfeuerung (ZWFS) mit einer Leistung von 0.3 MW{sub th} zur Verfuegung. In der Zuckerrohrindustrie Aegyptens fallen grosse Mengen von Bagasse an. In einer gemeinsamen Forschungsarbeit zwischen der Universitaet Minia und der TU Dresden sollte das Verbrennungs- und Emissionsverhalten dieses Biobrennstoffes in einer ZWSF untersucht werden. (orig)

  1. Critical comparison of hydrodynamic models for gas-solid fluidized beds - Part II: freely bubbling gas-solid fluidized beds

    NARCIS (Netherlands)

    Patil, D.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    Correct prediction of spontaneous bubble formation in freely bubbling gas¿solid fluidized beds using Eulerian models, strongly depends on the description of the internal momentum transfer in the particulate phase. In this part, the comparison of the simple classical model, describing the solid phase

  2. Co-firing coal and hospital waste in a circulating fluidized bed boiler

    International Nuclear Information System (INIS)

    Coulthard, E.J.; Korenberg, J.; Oswald, K.D.

    1991-01-01

    The Department of Energy - Morgantown Energy Technology Center and the Pennsylvania Energy Development Authority are co-funding a project which will demonstrate the reduction of infectious hospital waste to an environmentally safe disposable ash by cofiring the waste with coal in a circulating fluidized bed (CFB). The main objective of this paper is increased utilization of coal but the project also provides a solution to a problem which has grown rapidly and become very visible in recent years (e.g., hospital waste washed up on beaches). The application of CFB boilers in hospitals introduces an economical clean coal technology into a size range and market dominated by gas and oil combustion systems. The use of CFB represents the utilization of state-of-the-art technology for burning coal in an environmentally benign manner. SO 2 , NO x , CO and particulate emissions lower than the latest New Source Performance Standards have proven to be achievable in CFB combustion systems. By processing the infectious waste in a steam generation system which operates continuously, the problem of creating excessive gaseous emissions during repeated start-ups (as is the case with current incinerator technology) is avoided. The operating conditions with respect to residence time, temperature and turbulence that are inherent to a CFB combustion system, provide an excellent environment for complete combustion and destruction of potentially hazardous solid and gaseous emissions (e.g., dioxins). The limestone, which is injected into the combustion system to reduce SO 2 emissions, will also react with chlorine. Thus chlorine compound emissions and the corrosive nature of the flue gas are reduced. The work efforts to date indicate that infectious waste thermal processing in a coal-fired CFB is a technically and economically viable on-site disposal option

  3. Investigation of gas–solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    International Nuclear Information System (INIS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-01-01

    The hydrodynamics of gas–solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s −1 to 3.0 m s −1 with a step of 0.2 m s −1 . The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas–solids bubbling flows. (paper)

  4. Apparatus for controlling fluidized beds

    Science.gov (United States)

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  5. A numerical study of fluidization behavior of Geldart A particles using a discrete particle model

    NARCIS (Netherlands)

    Ye, M.; van der Hoef, Martin Anton; Kuipers, J.A.M.

    2004-01-01

    This paper reports on a numerical study of fluidization behavior of Geldart A particles by use of a 2D soft-sphere discrete particle model (DPM). Some typical features, including the homogeneous expansion, gross particle circulation in the absence of bubbles, and fast bubbles, can be clearly

  6. Development of an enzyme fluidized bed reactor equipped with static mixers: application to lactose hydrolysis in whey

    Energy Technology Data Exchange (ETDEWEB)

    Fauquex, P F; Flaschel, E; Renken, A

    1984-01-01

    Reactor operation with immobilized enzymes in fixed bed arrangement is often impaired due to the presence of finely divided solid matter, adsorbing substances or gas. The fluidized bed reactor would be applied in such cases owing to a limited pressure drop, a controlled voidage, and the avoidance of perforated plates for catalyst retention. Since enzymic reactions are often slow processes, catalysts of high external surface area should be provided together with sufficient time. However, classical fluidized beds suffer from hydrodynamic instability under these conditions. Therefore, a new reactor design was developed which used motionless mixers as internals. Fluidized bed reactors equipped with internals exhibit an outstanding hydrodynamic stability accompanied by an increase of the operating range in terms of flow rate by a factor of 4 compared to the classical fluidized bed. Results are presented, with emphasis on the backmixing and expansion characteristics. Various motionless mixers were investigated in columns of 39 and 150 mm in diameter. The fluidized bed equipped with internals was used for lactose hydrolysis in partially deproteinized whey. The lactase from Aspergillus niger immobilized on silica gel particles of 125-160 molm had a half-life of approximately 1 mo.

  7. Flow Pattern in a Fluidized Bed with a Non-fluidized Zone

    DEFF Research Database (Denmark)

    Lin, Weigang; Dam-Johansen, Kim; Van den Bleek, Cor. M.

    1997-01-01

    is introduced. However, once the gas velocity exceeds the minimum fluidization velocity in the zone where the air is introduced, the cross-flow hardly changes upon further increase of the gas velocity. A continuity equation and Ergun's equation are used to describe the flow pattern and pressure distribution...... over the bed. Very good agreement between the experimental and calculated results is achieved without any fitting parameter. The results are relevant to the understanding of heat transfer behaviour of a fluidized bed combustor (FBC) that is only partly fluidized to control its load....

  8. Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.

    Science.gov (United States)

    Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua

    2015-12-01

    Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  10. Fluidized bed volume reduction of diverse radwastes

    International Nuclear Information System (INIS)

    McFee, J.N.; McConnell, J.W.; Waddoups, D.A.; Gray, M.F.; Harwood, L.E.; Clayton, N.J.; Drown, D.C.

    1981-01-01

    Method and apparatus for a fluidized bed radwaste volume reduction system are claimed. Low level radioactive wastes, combustible solids, ion exchange resins and filter sludges, and liquids, emanating from a reactor facility are introduced separately through an integrated waste influent system into a common fluidized bed vessel where volume reduction either through incineration or calcination occurs. Addition of a substance to the ion exchange resin before incineration inhibits the formation of low-melting point materials which tend to form clinkers in the bed. Solid particles are scrubbed or otherwise removed from the gaseous effluent of the vessel in an off-gas system, before the cooled and cleaned off-gas is released to the atmosphere. Iodine is chemically or physically removed from the off-gas. Otherwise, the only egress materials from the volume reduction system are containerized dry solids and tramp material. The bed material used during each mode may be circulated, cleaned, stored and exchanged from within the bed vessel by use of a bed material handling system. An instrumentation and control system provides operator information, monitors performance characteristics, implements start up and shut down procedures, and initiates alarms and emergency procedures during abnormal conditions

  11. Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units

    International Nuclear Information System (INIS)

    Gao, Mingming; Hong, Feng; Liu, Jizhen

    2017-01-01

    Highlights: • The model of energy storage of subcritical CFB boilers is established. • The capacity and increment rate of heat storage are quantified. • A novel load control strategy is proposed to improve the quick load change ability. • An application on the 300 MW CFB unit proves the load change rate to 5–8 MW/min. - Abstract: The energy storage of circulating fluidized bed (CFB) boilers on fuel side cannot be ignored due to the special combustion type different from pulverized coal boilers. The sizable energy storage makes it possible for CFB units to enhance the quick load change ability and to increase the scale of new energy power connected into grid. Through mechanism analysis, the model of energy storage of subcritical CFB boilers has been established for the first time. Then by the project practice, the quantitative analysis is demonstrated for the capacity and control characteristics of energy storage on fuel side and steam water side. Based on the control characteristics and the transformation of the energy storage, a coordinated control system (CCS) control strategy named advanced energy balance (AEB) is designed to shorten the response time through the use of energy storage and to accelerate the load change speed of subcritical CFB units. Finally, a case study on a 300 MW CFB unit proves the feasibility of the proposed control strategy.

  12. Comparative modeling of biological nutrient removal from landfill leachate using a circulating fluidized bed bioreactor (CFBBR).

    Science.gov (United States)

    Eldyasti, Ahmed; Andalib, Mehran; Hafez, Hisham; Nakhla, George; Zhu, Jesse

    2011-03-15

    Steady state operational data from a pilot scale circulating fluidized bed bioreactor (CFBBR) during biological treatment of landfill leachate, at empty bed contact times (EBCTs) of 0.49, and 0.41 d and volumetric nutrients loading rates of 2.2-2.6 kg COD/(m(3)d), 0.7-0.8 kg N/(m(3)d), and 0.014-0.016 kg P/(m(3)d), was used to calibrate and compare developed process models in BioWin(®) and AQUIFAS(®). BioWin(®) and AQUIFAS(®) were both capable of predicting most of the performance parameters such as effluent TKN, NH(4)-N, NO(3)-N, TP, PO(4)-P, TSS, and VSS with an average percentage error (APE) of 0-20%. BioWin(®) underpredicted the effluent BOD and SBOD values for various runs by 80% while AQUIFAS(®) predicted effluent BOD and SBOD with an APE of 50%. Although both calibrated models, confirmed the advantages of the CFBBR technology in treating the leachate of high volumetric loading and low biomass yields due to the long solid retention time (SRT), both BioWin(®) and AQUIFAS(®) predicted the total biomass and SRT of CFBBR based on active biomass only, whereas in the CFBBR runs both active as well as inactive biomass accumulated. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Experimental study of the mechanisms of CO{sub 2} capture by calcium cycle under circulating fluidized bed conditions; Etude experimentale des mecanismes de capture du CO{sub 2} par cycle calcium en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Hoteit, A

    2006-06-15

    The work undertaken in this Thesis in partnership with department R and D of ALSTOM Power Boilers, CEMEX and the ADEME, relates to the experimental study of various phenomena associated to CO{sub 2} capture under circulating fluidized bed conditions. The size of particles, temperature and the CO{sub 2} concentration have an influence on the limestone calcination reaction. The reaction of carbonation of lime is not total. During successive cycles of calcination/carbonation, the rate of carbonation obtained with hydrated lime is increasingly higher than that obtained with the lime. Under continuously reducing conditions, the decomposition of sulphates present in the bed ashes is not total. This decomposition is total under reduction/oxidation cycles. A modeling of calcination allowed to determine the intrinsic kinetic constants of calcination and carbonation. (author)

  14. Coal. Fluidized bed, a world record; Charbon. Lit fluidise: record mondial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In April 1996, the `Societe Provencale du Lit Fluidise`, a subsidiary of Electricite de France (EDF) has put into service in Gardanne, the most powerful circulating fluidized bed boiler in the world, producing 600 MWt; it was constructed by GEC Alsthom Stein Industrie, and will strongly reduce the SO{sub 2} emissions from the coal power plant of Gardanne, which use a highly sulfurous coal. New regulations concerning the French coal industry are also introduced

  15. Coal. Fluidized bed, a world record; Charbon. Lit fluidise: record mondial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    In April 1996, the `Societe Provencale du Lit Fluidise`, a subsidiary of Electricite de France (EDF) has put into service in Gardanne, the most powerful circulating fluidized bed boiler in the world, producing 600 MWt; it was constructed by GEC Alsthom Stein Industrie, and will strongly reduce the SO{sub 2} emissions from the coal power plant of Gardanne, which use a highly sulfurous coal. New regulations concerning the French coal industry are also introduced

  16. Characterization of hydrodynamics and solids mixing in fluidized beds involving biomass

    Science.gov (United States)

    Fotovat, Farzam

    This thesis focuses on the characterization of hydrodynamics and mixing phenomena in fluidized beds containing mixtures of sand and irregular biomass particles. The first objective of this study is understanding the effect of the large biomass particles on the bubbling characteristics and gas distribution pattern of sand fluidized beds. The second objective is the characterization of mixing/segregation of biomass and sand particles under fluidization conditions. A variety of experimental techniques are employed to study the behavior of two constituting phases of a fluidized bed, i.e., dilute (bubble) and dense (emulsion) phases. Exploring the characteristic fluidization velocities of sand-biomass mixtures unveils that the onset of bubbling in these systems occurs at a higher gas velocity compared to that of the initial fluidization velocity (Uif). The initial bubbling velocity (Uib), the final fluidization velocity ( Uff), and the transition gas velocity from bubbling to turbulent regime (Uc) rise by increasing the fraction of biomass in the mixture. Statistical analysis of the pressure signal at top of the bed reveals that increasing the biomass load hinders the evolution of bubbles at a low gas velocity (Uactive biomass particle is tracked for a long period of time and its instantaneous position is recorded. The acquired data is then processed to achieve the time-averaged concentration profile of biomass particles. This profile represents the segregation of biomass particles, which tend to accumulate in the upper levels of the bed. Changes in the fraction of biomass with increasing gas velocity are inferred from the local changes of the time-averaged pressure drop values at the top of the bed. To determine the parameters affecting the movement and segregation of biomass particles, their circulatory motion is also scrutinized using the RPT data. The circulation of biomass is impeded when the load of biomass rises at U=0.36 m/s, resulting in a more pronounced

  17. Letter to the Editor. Three-dimensional Modeling of a Circulating Fluidized-Bed Gasifier for Sewage Sludge

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav

    2006-01-01

    Roč. 61, č. 12 (2006), s. 4132-4133 ISSN 0009-2509 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidization * terminal velocity * drag coeffficient Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.629, year: 2006

  18. Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Y.D.; Lee, K.B.; Islam, S.Z.; Ko, S.B. [Kongju National University, Kong Ju (Republic of Korea). Dept. for Mechanical Engineering

    2008-07-01

    In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.

  19. Numerical modelling 2 D and 3 D of circulating fluidized bed: application to the realization of regime diagrams; Modelisation numerique 2D et 3D de lit fluidise circulant: application a la realisation du diagramme des regimes

    Energy Technology Data Exchange (ETDEWEB)

    Begis, J.; Balzer, G.

    1997-02-01

    The numerical modelling of internal CFB boilers flows faced with complex phenomenons due to the flows un-stationariness, the heterogeneousness of the particle size distribution, and interactions between the two phases and the walls. Our study consisted in applying numerical models to the experimental configuration of cold circulating fluidized bed studied at the Cerchar. Special attention was given to the analysis of particles - wall interactions models, stemming from Jenkins (1992) and Louge`s (1994) theories, as well as the influence of the particles on fluid turbulence. In order to realize numerical simulations, we have used Eulerian two-phases flow codes developed at NHL medolif(2D), ESTET-ASTRID(3D). From different tests we have deducted that the most appropriate model for the realization of CFB`s prediction is the model taking in account the influence of particles on fluid turbulence. Then, to evaluate the validity limits of this model, we have built the regime diagram, and we have compared it with the experimental diagram. We have concluded that the simulation allows to describe the different CFB`s working regimes, and especially transitions. We have also noticed the importance of the choice of the mean diameter of the simulated particles. In this way, making a correction of the simulated particles` diameter in comparison with Sauter mean particle diameter, we obtained numerical results in good agreement with experimental data. (authors) 13 refs.

  20. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)

  1. Fluidized-bed reactors processes and operating conditions

    CERN Document Server

    Yates, John G

    2016-01-01

    The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

  2. Fluidized bed boiler feed system

    Science.gov (United States)

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  3. Pressurized Fluidized Bed Combustion Second-Generation System Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    A. Robertson; D. Horazak; R. Newby; H. Goldstein

    2002-11-01

    Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

  4. Apparatus and process for controlling fluidized beds

    Science.gov (United States)

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  5. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan

    2006-05-30

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  6. Effect of fluidization number on the combustion of simulated municipal solid waste in a fluidized bed

    International Nuclear Information System (INIS)

    Anwar Johari; Mutahharah, M.M.; Abdul, A.; Salema, A.; Kalantarifard, A.; Rozainee, M.

    2010-01-01

    The effect of fluidization number on the combustion of simulated municipal solid was in a fluidized bed was investigated. Simulated municipal solid waste was used a sample and it was formulated from major waste composition found in Malaysia which comprised of food waste, paper, plastic and vegetable waste. Proximate and ultimate analyses of the simulated were conducted and results showed its composition was similar to the actual Malaysian municipal solid waste composition. Combustion study was carried out in a rectangular fluidized bed with sand of mean particle size of 0.34 mm as a fluidising medium. The range of fluidization numbers investigated was 3 to 11 U mf . The combustion was carried out at stoichiometric condition (Air Factor = 1). Results showed that the best fluidization number was in the range of 5 to 7 U mf with 5 U mf being the most optimum in which the bed temperature was sustained in a much longer period. (author)

  7. Experimental on fly ash recirculation with bottom feeding to improve the performance of a circulating fluidized bed boiler co-burning coal sludge

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lunbo; Xu, Guiling; Liu, Daoyin; Chen, Xiaoping; Zhao, Changsui [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    With the aim of reducing carbon content in fly ash, fly ash recirculation with bottom feeding (FARBF) technology was applied to a 75 t/h Circulating Fluidized Bed (CFB) boiler burning mixture of coal and coal sludge. And industrial experiments were carried out to investigate the influence of FARBF technology on the combustion performance and pollutant emission characteristics of the CFB boiler. Results show that as the recirculation rate of fly ash increases, the CFB dense bed temperature decreases while the furnace outlet temperature increases, and the temperature distribution in the furnace becomes uniform. Compared with the conditions without fly ash recirculation, the combustion efficiency increases from 92 to 95% when the recirculation rate increases to 8 t/h, and the desulfurization efficiency also increases significantly. As the recirculation rate increases, the emissions of NO and CO decrease, but the particulate emission increases. The present study indicates that FARBF technology can improve the combustion performance and desulfurization efficiency for the CFB boilers burning coal sludge, and this can bring large economical and environmental benefits in China.

  8. Chaotic hydrodynamics of fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Van der Stappen, M.L.M. [Unit Process and Systems Engineering, Advanced Manufacturing Technology Group, Unilever Research Laboratorium, Vlaardingen (Netherlands)

    1996-12-31

    The major goals of this thesis are: (1) to develop and evaluate an analysis method based on techniques from non-linear chaos theory to characterize the nonlinear hydrodynamics of gas-solids fluidized beds quantitatively; and (2) to determine the dependence of the chaotic invariants on the operating conditions and investigate how the chaos analysis method can be profitably applied to improve scale-up and design of gas-solids fluidized bed reactors. Chaos theory is introduced in chapter 2 with emphasis on analysis techniques for (experimental) time series, known from literature at the start of this work (1990-1991). In chapter 3, the testing of existing and newly developed techniques on both model and fluidized bed data is described. This leads to the development of the chaos analysis method to analyze measured pressure fluctuations time series of a fluidized bed. Following, in chapter 4, this method is tested and all choices for the parameters are evaluated. The influence of the experimental parameters and external disturbances on the measurements and analysis results is discussed and quantified. The result is a chaos measurement and analysis protocol, which is further used in this work. In chapter 5, the applications to fluidized beds are discussed. It is shown that the entropy is a good measure for the characterization of the dynamical behavior of gas-solids bubbling/slugging fluidized beds. Entropy is applied to characterize the influence of the operating conditions, to assess regime transitions and to analyze dimensionless similar beds of different scale. Quantitative design correlations that relate entropy to the operating parameters (including the bed diameter) are described. Finally, it is discussed how the results of this work might be used in scaling up the chaotic dynamics of fluidized beds. The overall conclusions and outlook from this work are presented in chapter 6. 182 refs.

  9. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  10. Combustion of gases released from peat or biomass in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-01

    Temperature and gas concentration experiments have been conducted to determine at what temperature carbon monoxide, methane and propane begin to react within the particulate phase of a bubbling fluidized bed. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 50 mm surrounded by an electric heater. Two different natural quartz sands were used (d{sub p} =0.35 mm and 0.6 mm). The bed height used varied between 100 and 260 mm (in unfluidized state). A porous plate distributor, made of kaowool, was used to avoid jets appearing at the distributor. The bed was operated at incipient fluidization (u = 5.9-9 cm/s). The bed temperatures used ranged from 600 deg C to 850 deg C. It was found that carbon monoxide, methane and propane react inside a fluidized bed, but often other conditions than temperature have a considerable effect on the rate of the reaction. The critical temperature was found to be 650 deg C for propane and carbon monoxide and 700 deg C for methane. With under-stoichiometric mixture of carbon monoxide and air the heat release can be over 2.5 MW/m{sup 3} when bed temperature is 650 deg C. According to these experiments it is obvious that the reaction mechanism for carbon monoxide oxidation inside a fluidized bed differs greatly from that of gas phase only. The results of our more than 1300 test runs show clearly the varying effects of the different bed materials. Even with the same bed material totally different results can be obtained. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies was conducted with both fresh bed particles and used bed particles. Also the effect of commonly used ingredients, like limestone and dolomite, was tested. A global model for carbon monoxide oxidation inside a fluidized bed was introduced. The model was tested against measured data from the laboratory-scale fluidized bed test rig. (Abstract Truncated)

  11. Predictive models of circulating fluidized bed combustors: SO[sub 2] sorption in the CFB loop

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.; Therdthianwong, A. (Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering)

    1993-02-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Sorption of S0[sub 2] with calcined limestone was studied in a PYROFLOW type CFB loop at conditions approximating those found in a CFB combustor. Initially the CFB loop contained 150 micron CaO particles of a density of 3.3 g/cm[sup 3] and air at 1143[degrees]K and 3.25 atm. Atzero time, air containing 600 ppm SO[sub 2], was introduced into the riser bottom at 1143[degrees]K. The effect of gas velocity, sorbent inventory and inlet pressure on the sorption of SO[sub 2], were studied isothermally by running our hydrodynamic code with the S0[sub 2] sorption conservation of species equation. At a velocity of 5m/sec., reported to be a typical velocity by PYROPOWER, there is reasonably good S0[sub 2] removal. At 10 m/sec the S0[sub 2] removal is poor. The best SO[sub 2], removal is for a velocity of 5 m/s and a high bed inventory, initial bed height, H = 9m. Most of the S0[sub 2] is removed in the first two meters of the reactor. However, the S0[sub 2] removal is not complete at the bed outlet. This is due to mixing. At the left wall of the reactor (wall opposite the solids inlet) the S0[sub 2] removal was poor due to gas bypassing caused by the asymmetrical solids inlet. Simulation of the PYROPOWER loop with a symmetrical inlet gave us an order of magnitude improvement over the conventional PYROPOWER system. These results demonstrate the practical utility of the predictive model that we have developed over the last three years.

  12. Fluidization of spherocylindrical particles

    Science.gov (United States)

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.

    2017-06-01

    Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  13. Field study of wastes from fluidized-bed combustion technologies

    International Nuclear Information System (INIS)

    Weinberg, A.; Holcombe, L.; Butler, R.

    1991-01-01

    The Department of Energy (DOE) has undertaken a research project to monitor advanced coal process wastes placed in natural geologic settings. The overall objective of the study is to gather field data on the engineering and environmental performance of disposed solid waste from various advanced coal processes. The coal ash from a fluidized-bed combustion unit is being studied as part of the DOE program. The unit is a 110-MW circulating fluidized bed (CFB) at Colorado Ute Electric Association's Nucla Steam Electric Station, which is being demonstrated with the support of the DOE Clean Coal Technology Program. The Electric Power Research Institute is cofunding the study. In June of 1989, a test cell approximately 100 feet square and 8 feet deep was constructed and filled with ash from the Colorado Ute CFB unit. The cell was instrumented with lysimeters and neutron probe access tubes to monitor water flow and leachate chemistry in the ash; groundwater wells and runoff collection devices were installed to determine the effects on groundwater and surface water quality, and a meteorological station was installed to determine the water balance. Additionally, tests are being performed to evaluate the chemical, physical, and mineralogical properties of the solid waste and geologic materials. Results from the first year of monitoring are presented

  14. Fluidization control in the wurster coating process

    Directory of Open Access Journals (Sweden)

    el Mafadi Samira

    2003-01-01

    Full Text Available Paniculate coating process in a fluidized bed involves different sub processes including particle wetting, spreading and also consolidation or drying of the coating applied. These sub processes are done simultaneously to particle fluidization and motion. All the parameters of fluidization are known to affect the coating quality. That is why the motion of particles in the Wurster coating process has been observed and described step by step. These observations have achieved a general understanding of phenomena which take place inside the bed during fluidization and have allowed the development of an easy method for optimizing all the parameters affecting this operation.

  15. substrate reduction kinetics and performance evaluation of fluidized

    African Journals Online (AJOL)

    eobe

    takes place during the treatment of waste water by microorganisms in a fluidized takes place ... industrial size- fluidized bed reactor for treatment of brewery waste water. fluidized ... Brewing industry holds a strategic economic position ... brewer yeast and hops for its daily production of beer ... Considering energy costs and.

  16. Non-polluting steam generators with fluidized-bed furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, H [Deutsche Babcock A.G., Oberhausen (Germany, F.R.)

    1979-07-01

    The author reports on a 35 MW steam generator with hard coal fluidized-bed furnace a planned 35 MW steam generator with flotation-dirt fluidized-bed furnace, and on planned steam generators for fluidized-bed firing of hard coal up to a steam power of about 200 MW.

  17. Continuous austempering fluidized bed furnace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

    1997-09-23

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  18. Research report of FY 1997 on the environmentally acceptable coal utilization system introduction support project. Follow-up project on circulating fluidized bed boiler introduction (Calaca Batangas Thermal Power Station); 1997 nendo chosa hokokusho. Kankyo chowagata sekitan riyo system donyu shien jigyo (junkan ryudosho boiler ni kakawaru follow up jigyo (Calaca Batangas karyoku hatsudensho))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the follow-up project, to promote the diffusion of results of the clean coal technology (CCT) model projects, experts of circulating fluidized bed boilers were dispatched, to guide and advise for the operation of facilities introduced in these projects. The purpose of these projects is to diffuse the CCTs, and to support the promotion of environmental measures. Some guidance and advice about operation processes, data processing, operation regulation, maintenance, and boiler maintenance works were provided to the Ministry of Energy and Electric Power Corporation of the Philippines. Semirara, Malangas, and Samar coals in the Philippines were used for the tests. The boiler facilities could be operated by Philippine operators themselves. Based on the guidance and advice about operation processes, combustion tests using various Philippine coals were also planned and conducted by themselves. The maintenance techniques were transferred to Philippine operators through the inspection, repair and advice. The Philippine side understood the technologies well, and the circulating fluidized bed boiler technology was independently educated in the Philippines. 23 figs., 16 tabs.

  19. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  20. Co-firing option of palm shell waste and Malaysian coal blends in a circulating fluidized bed

    International Nuclear Information System (INIS)

    Ahmad Hussain; Farid Nasir Ani

    2010-01-01

    Palm oil shell waste is one of the main agriculture wastes in Malaysia. In order to utilize these wastes efficiently, pyrolysis of oil-palm shell waste was first carried out using Thermogravimetric analysis (TGA). The effects of heating rate on the pyrolytic properties were investigated to evaluate its suitability for co-firing. The TGA analyses of oil palm shell waste and Malaysian coal blends suggests that there is an obvious lateral shift in the thermo grams for different heating rate. Kinetics calculations were also done using integral method. For palm shell waste powder it was found that the activation energies ranged from 112-119 kJ/mole and for the Mukah coal blends it ranged from 93.3 -100.8 kJ/mole. Combustion studies for palm shell wastes and coal blends were done in a hot circulating fluidized-bed (CFB) test rig. This is the first practical experience of using this type of rig in Malaysia. The temperature dependence on the combustion and emission behaviour were identified. The effects of variation of primary air and feed rate have also been analyzed and their influence on emissions has been established. The combustion studies of palm shell wastes were done and it was found that the emission of NO x ranged from 20-164 ppm while the CO emissions were high for some operating conditions. For the co-firing studies, the NO x and CO deceased with the percentage increase in the blending ratio of coal with palm shell waste.. The optimum blending ratio was found to be in a ratio of 40 percent coal and 60 percent Mukah coal. It was also found that Mukah coal show agglomeration behaviour with when it is blended in 80% ratio. (author)

  1. Hydrodynamic studies in designing of fluidized bed system

    International Nuclear Information System (INIS)

    Mohamad Puad Abu; Muhd Noor Muhd Yunus; Syed Nasaruddin Syed Idris

    2002-01-01

    Fluidized bed process have been used mostly in the petroleum and paper industries, and for processing nuclear wastes, spent cook liquor, wood chips, and sewage sludge disposal. Even at MINT some of the equipment available used this principal. Before we use or purchase this equipment, it is very grateful if we could understand how the system has been designed. The hydrodynamic fluidization studies is very important in designing of fluidized bed system especially in determining the minimum fluidizing velocity, terminal velocity, flexibility of operation, slugging condition, bubble size and velocity, and transport disengaging height. They can be determined either by calculation or experimentation. This paper will highlight the hydrodynamic study that need to be performed in designing of fluidized bed system so that its can be used appropriately. (Author)

  2. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel Simulation de la combustion en boucle chimique d’une charge gazeuse dans un lit fluidisé circulant

    Directory of Open Access Journals (Sweden)

    Mahalatkar K.

    2011-05-01

    Full Text Available Numerical studies using Computational Fluid Dynamics (CFD have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185. There have been extensive experimental studies in Chemical Looping Combustion (CLC, however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particleparticle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. Des études numériques de simulation des écoulements (CFD ont été réalisées sur un lit fluidisé circulant opérant en combustion par boucle chimique (CLC décrit dans la littérature (Abad et al., 2006 Fuel 85, 1174-1185. Si de nombreuses études expérimentales ont été conduites pour étudier le procédé CLC, les études concernant la simulation des écoulements par CFD de ce concept sont très limitées. Le système de combustion en boucle chimique simulé dans cette étude concerne la combustion d’une charge gazeuse (méthane. Un modèle 2-D à deux phases continues a été utilisé pour décrire les phases gaz et solide avec des sous-modèles détaillés pour décrire les forces d’interactions entre fluideparticule et particule-particule. Des modèles cinétiques globaux ont été intégrés pour décrire les réactions de combustion et de transformation du matériau transporteur d’oxygène. Les résultats obtenus par CFD ont été comparés aux concentrations expérimentales mesurées des diff

  3. Apparatus and method for determining solids circulation rate

    Science.gov (United States)

    Ludlow, J Christopher [Morgantown, WV; Spenik, James L [Morgantown, WV

    2012-02-14

    The invention relates to a method of determining bed velocity and solids circulation rate in a standpipe experiencing a moving packed bed flow, such as the in the standpipe section of a circulating bed fluidized reactor The method utilizes in-situ measurement of differential pressure over known axial lengths of the standpipe in conjunction with in-situ gas velocity measurement for a novel application of Ergun equations allowing determination of standpipe void fraction and moving packed bed velocity. The method takes advantage of the moving packed bed property of constant void fraction in order to integrate measured parameters into simultaneous solution of Ergun-based equations and conservation of mass equations across multiple sections of the standpipe.

  4. Fluidization bed coating of copper bars with epoxy powder

    OpenAIRE

    Soh, Chiaw Min

    2014-01-01

    Fluidized bed coating (FBC) is a process where preheated material is dipped into a flowing liquid bed of powder. Although FBC has existed for more than half a century, however there is little knowledge about the fluidized bed design that gives excellent fluidization quality as well as reducing powder entrainment. The objectives of this thesis are to investigate the effect of two different types of distributor with different pressure drop on powder coating, hydrodynamics of fluidized bed coati...

  5. Recent advances in fluidized bed drying

    Science.gov (United States)

    Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.

    2017-09-01

    Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.

  6. Study of the behaviour of gaseous pollutants during the incineration of municipal solid waste in a circulating fluidized bed; Etude du devenir des polluants gazeux lors de l`incineration d`ordures menageres en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Desroches-Ducarne, E

    1997-09-30

    The Circulating Fluidized Bed (CFB) combustor seems to be a promising tool, being able to burn a variety of fuels whilst maintaining low emissions levels. The present work describes an experimental and theoretical investigation into the formation and destruction of acid gases (HCl and SO{sub 2}) and nitrogen oxides (NO and N{sub 2}O) during Municipal Solid Waste incineration. Experiments were conducted on six different fuels (namely MSW, mixtures of wood, paper, plastics, polyethylene...). The effect of five parameters (temperature, excess air, air staging, calcium addition and moisture) on the emissions levels was investigated. A statistical study on the experimental data allowed us to quantify the impact of the operating conditions and the influence of the fuel characteristics. A mathematical model has been developed which includes the main physical and chemical steps of combustion in CFB and which predicts the pollutant emissions under various operating conditions. A parametric study of the influence of operating conditions on emissions showed that in most cases the trends predicted by the model are in agreement with the experimental observations. (author) 175 refs.

  7. Weighing fluidized powder

    International Nuclear Information System (INIS)

    Adomitis, J.T.; Larson, R.I.

    1980-01-01

    Fluidized powder is discharged from a fluidizing vessel into a container. Accurate metering is achieved by opening and closing the valve to discharge the powder in a series of short-duration periods until a predetermined weight is measured by a load cell. The duration of the discharge period may be increased in inverse proportion to the amount of powder in the vessel. Preferably the container is weighed between the discharge periods to prevent fluctuations resulting from dynamic effects. The gas discharged into the container causes the pressures in the vessel and container to equalize thereby decreasing the rate of discharge and increasing the accuracy of metering as the weight reaches the predetermined value. (author)

  8. Customized Internal Reference Controls for Improved Assessment of Circulating MicroRNAs in Disease.

    Directory of Open Access Journals (Sweden)

    Kenny Schlosser

    Full Text Available Altered levels of circulating extracellular miRNA in plasma and serum have shown promise as non-invasive biomarkers of disease. However, unlike the assessment of cellular miRNA levels for which there are accepted housekeeping genes, analogous reference controls for normalization of circulating miRNA are lacking. Here, we provide an approach to identify and validate circulating miRNA reference controls on a de novo basis, and demonstrate the advantages of these customized internal controls in different disease settings. Importantly, these internal controls overcome key limitations of external spike-in controls.Using a global RT-qPCR screen of 1066 miRNAs in plasma from pulmonary hypertension patients (PAH and healthy subjects as a case example, we identified a large pool of initial candidate miRNAs that were systematically ranked according to their plasma level stability using a predefined algorithm. The performance of the top candidates was validated against multiple comparators, and in a second independent cohort of PAH and control subjects. The broader utility of this approach was demonstrated in a completely different disease setting with 372 miRNAs screened in plasma from septic shock patients and healthy controls.Normalization of data with specific internal reference controls significantly reduced the overall variation in circulating miRNA levels between subjects (relative to raw data, provided a more balanced distribution of up- and down-regulated miRNAs, replicated the results obtained by the benchmark geometric averaging of all detected miRNAs, and outperformed the commonly used external spike-in strategy.We demonstrate the feasibility of identifying circulating reference controls that can reduce extraneous technical variations, and improve the assessment of disease-related changes in plasma miRNA levels. This study provides a novel conceptual framework that addresses a critical and previously unmet need if circulating miRNAs are to

  9. Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thapa, R.K.; Halvorsen, B.M. [Telemark University College, Kjolnes ring 56, P.O. Box 203, 3901 Porsgrunn (Norway); Pfeifer, C. [University of Natural Resources and Life Sciences, Vienna (Austria)

    2013-07-01

    Bubbling fluidized beds are widely used as biomass gasification reactors as at the biomass gasification plant in Gussing, Austria. The reactor in the plant is a dual circulating bubbling fluidized bed gasification reactor. The plant produces 2MW electricity and 4.5MW heat from the gasification of biomass. Wood chips as biomass and olivine particles as hot bed materials are fluidized with high temperature steam in the reactor. As a result, biomass undergoes endothermic chemical reaction to produce a mixture of combustible gases in addition to some carbon-dioxide (CO2). The combustible gases are mainly hydrogen (H2), carbon monoxide (CO) and methane (CH4). The gas is used to produce electricity and heat via utilization in a gas engine. Alternatively, the gas is further processed for gaseous or liquid fuels, but still on the process of development level. Composition and quality of the gas determine the efficiency of the reactor. A computational model has been developed for the study of reaction kinetics in the gasification rector. The simulation is performed using commercial software Barracuda virtual reactor, VR15. Eulerian-Lagrangian approach in coupling of gas-solid flow has been implemented. Fluid phase is treated with an Eulerian formulation. Discrete phase is treated with a Lagrangian formulation. Particle-particle and particle-wall interactions and inter-phase heat and mass transfer have been taken into account. Series of simulations have been performed to study model prediction of the gas composition. The composition is compared with data from the gasifier at the CHP plant in Güssing, Austria. The model prediction of the composition of gases has good agreements with the result of the operating plant.

  10. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  11. Fluidization calculation on nuclear fuel kernel coating

    International Nuclear Information System (INIS)

    Sukarsono; Wardaya; Indra-Suryawan

    1996-01-01

    The fluidization of nuclear fuel kernel coating was calculated. The bottom of the reactor was in the from of cone on top of the cone there was a cylinder, the diameter of the cylinder for fluidization was 2 cm and at the upper part of the cylinder was 3 cm. Fluidization took place in the cone and the first cylinder. The maximum and the minimum velocity of the gas of varied kernel diameter, the porosity and bed height of varied stream gas velocity were calculated. The calculation was done by basic program

  12. Mathematical modelling of fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Werther, J [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1978-11-01

    Among the many fluidized bed models to be found in the literature, the two-phase model originally proposed by May has proved most suitable for accomodation of recent advances in flow mechanics: this model resolves the gas/solids fluidized bed into a bubble phase and a suspension phase surrounding the bubbles. Its limitation to slow reactions is a disadvantage. On the basis of the analogy between fluidized beds and gas/liquid systems, a general two-phase model that is valid for fast reactions has therefore been developed and its validity is confirmed by comparison with the experimental results obtained by others. The model describes mass transfer across the phase interface with the aid of the film theory known from gas/liquid reactor technology, and the reaction occurring in the suspension phase as a pseudo-homogeneous reaction. Since the dependence of the performance of fluidized bed reactors upon geometry is accounted for, the model can also be used for scale-up calculations. Its use is illustrated with the aid of design diagrams.

  13. Update on status of fluidized-bed combustion technology

    International Nuclear Information System (INIS)

    Stallings, J.; Boyd, T.; Brown, R.

    1992-01-01

    During the 1980s, fluidized-bed combustion technology has become the dominant technology for solid-fuel-fired power generation systems in the United States. Atmospheric fluidized beds as large as 160 MWe in capacity are now in operation, while pressurized systems reaching 80 MWe have started up in the last year. The commercial status, boiler performance, emissions, and future developments for both atmospheric and pressurized fluidized-bed combustion systems are discussed

  14. Fluidized bed dry dense medium coal beneficiation

    CSIR Research Space (South Africa)

    North, Brian C

    2017-10-01

    Full Text Available medium beneficiation using a fluidized bed was investigated. Bed materials of sand, magnetite and ilmenite were used in a laboratory sized cylindrical fluidized bed. The materials were individually tested, as were mixes of sand and heavy minerals. Coal...

  15. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.H.; Wang, C.B.; Tan, Y.W.; Jia, L.F.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada)

    2011-09-15

    Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kW(th) mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO{sub 2} capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (similar to 850{sup o}C), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO{sub 2} in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO{sub 3}, indicating that sulfur capture in the oxy-fuel combustor occurred via direct sulfation.

  16. Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions

    International Nuclear Information System (INIS)

    Gómez, M.; Fernández, A.; Llavona, I.; Kuivalainen, R.

    2014-01-01

    CO 2 and SO 2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO 2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO 2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO 2 Capture and Transport (es.CO 2 ) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO 2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO 2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: •Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  17. Multiphase flow in spout fluidized bed granulators

    NARCIS (Netherlands)

    Buijtenen, van M.S.

    2011-01-01

    Spout fluidized beds are frequently used for the production of granules or particles through granulation, which are widely applied, for example, in the production of detergents, pharmaceuticals, food and fertilizers (M¨orl et al. 2007). Spout fluidized beds have a number of advantageous properties,

  18. Fluidized bed selective pyrolysis of coal

    Science.gov (United States)

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  19. Parameters critical to the morphology of fluidization craters

    Science.gov (United States)

    Siegal, B. S.; Gold, D. P.

    1973-01-01

    In order to study further the role of fluidization on the moon, a laboratory investigation was undertaken on two particulate material size fractions to determine the effect of variables, such as, duration of gas streaming, gas pressure, and 'regolith' thickness on the morphology of fluidization craters. A 3.175-mm cylindrical vent was used to simulate a gas streaming conduit. Details of the fluidization chamber are discussed together with questions of experimental control, aspects of nomenclature, crater measurements, and the effect of variables.

  20. Sodium and steam leak simulation studies for fluidized bed steam generators

    International Nuclear Information System (INIS)

    Keeton, A.R.; Vaux, W.G.; Lee, P.K.; Witkowski, R.E.

    1976-01-01

    An experimental program is described which was conducted to study the effects of sodium or steam leaking into an operating fluidized bed of metal or ceramic particles at 680 to 800 0 K. This effort was part of the early development studies for a fluidized-bed steam generator concept using helium as the fluidizing gas. Test results indicated that steam and small sodium leaks had no effect on the quality of fluidization, heat transfer coefficient, temperature distribution, or fluidizing gas pressure drop across the bed. Large sodium leaks, however, immediately upset the operation of the fluidized bed. Both steam and sodium leaks were detected positively and rapidly at an early stage of a leak by instruments specifically selected to accomplish this

  1. Flue Gas Emissions from Fluidized Bed Combustion

    NARCIS (Netherlands)

    Bramer, E.A.; Valk, M.

    1995-01-01

    During the past decades fluidized bed coal combustion was developed as a technology for burning coal in an effective way meeting the standards for pollution control. During the earlier years of research on fluidized bed combustion, the potential for limiting the S02 emission by adding limestone to

  2. Continuous cleaning of heat exchanger with recirculating fluidized bed

    International Nuclear Information System (INIS)

    St Kollbach, J.; Dahm, W.; Rautenbach, R.

    1987-01-01

    Fluidized bed heat exchangers for liquids have been studied in the United States, the Netherlands, and the Federal Republic of Germany. Between 1965 and 1970, fluidized bed heat exchangers were developed in the United States as brine heaters in seawater desalination. Furthermore, their potential in the utilization of geothermal energy was tested between 1975 and 1980. In the Netherlands, fluidized bed heat exchangers have been developed since 1973 for brine heating and heat recovery in multistage flash evaporators for seawater desalination and, since about 1980, for applications in the process industry. The authors became interested in fluidized bed heat exchangers first in 1978 in connection with wastewater evaporation. The authors emphasize that the results of all these groups were in basic agreement. They can be summarized as follows: 1. The fluidized bed will in many cases maintain totally clean surfaces and neither scaling nor fouling will occur. In cases where even a fluidized bed cannot completely prevent scaling or fouling, the thickness of the layer is controlled. In these cases stable operation maintaining acceptable overall heat transfer coefficients is possible without cleaning. 2. There are always excellent heat transfer coefficients as low superficial velocities of less than ν < 0.5 m/s. 3. The pressure losses are comparable with those in normal heat exchangers since fluidized bed heat exchangers are mostly operated at low superficial velocities. 4. Feed flow may be varied between 50 and 150% or more of the design feed flow. 5. Erosion is negligible. 6. Fluidized bed particles can be manufactured from all sorts of chemically and mechanically resistant materials, such as sand, glass, ceramics, and metals

  3. A review of some parameters involved in fluidized bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.C. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia); Raper, J.A. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia)

    1996-02-01

    Three-phase fluidized bed bioreactors have advantages over conventional chemical reaction systems. There is a lack of agreement over most major operational conditions, and a wide range of design variables are open to question. A large body of recent work in the field has been reviewed, with a degree of historical comparison and discussion. It has been found that aspects of fluidized bed biofilm reactors of vital importance include: choice of solid media, gas and liquid loadings, bacterial type and reactor mechanical design. A large proportion of the work in the field of three-phase fluidization is non-biologically specific, or not tested on a bacterially inoculated system. The majority of three-phase fluidized bed bioreactor work is in the field of water treatment. Although this work has highlighted the potential for use of bio-fluidized beds for this application, there are still specific problems hinderin the large scale industrial acceptance of three-phase fluidized bed bioreactors. (orig.)

  4. Gaseous Emissions from the Fluidized-bed Incineration of Sewage Sludge

    Czech Academy of Sciences Publication Activity Database

    Pohořelý, Michael; Svoboda, Karel; Trnka, Otakar; Baxter, D.; Hartman, Miloslav

    2005-01-01

    Roč. 59, 6b (2005), s. 458-463 ISSN 0366-6352. [International Conference SSCHE /32./. Tatranské Matliare, 23.05.2005-27.05.2005] R&D Projects: GA AV ČR IAA4072201; GA AV ČR KSK4040110 Institutional research plan: CEZ:AV0Z40720504 Keywords : sewage sludge * fluidized-bed incineration * solid fuels Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.409, year: 2005

  5. Stabilizing effect of plasma discharge on bubbling fluidized granular bed

    International Nuclear Information System (INIS)

    Hu Mao-Bin; Dang Sai-Chao; Ma Qiang; Xia Wei-Dong

    2015-01-01

    Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current C ms , air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge. (paper)

  6. Combustion in fluidized bed reactors; Verbrennung in Wirbelschichtreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J. [vivis CONSULT GmbH, Nietwerder (Germany)

    2013-03-01

    Since the first application for the coal gasification, the fluidized bed technology has passed an impressive development. Nowadays, the fluidized bed technology is utilized at chemical processes, drying and cooling, gasification, combustion and purification of exhaust gas. In the firing technology, the fluidized technology initially has been proved in the combustion of very high ash coal and sewage sludge. Recently, the fluidized bed technology also is applied in the drying of sewage sludge, combustion of domestic waste - as in Japan and Sweden - as well as in the gasification and combustion of substitute fuels, biomass - wood pellets, wood chips, straw, cocoa shells and so forth - and residues from the paper manufacturing - such as in Germany and Austria. Under this aspect, the author of the contribution under consideration reports on the combustion of sewage sludge, substitute fuels and biomass.

  7. Design Of Fluidized-bed Incinerator

    International Nuclear Information System (INIS)

    Lee, Bong Hun

    1992-04-01

    This book tells of design of fluidized-bed incinerator, which includes outline of fluidized-bed incinerator such as definition, characteristic, structure of principle of incineration and summary of the system, facilities of incinerator with classification of incinerator apparatus of supply of air, combustion characteristic, burnup control and point of design of incinerator, preconditioning facilities on purpose, types and characteristic of that system, a crusher, point of design of preconditioning facilities, rapid progress equipment, ventilation equipment, chimney facilities, flue gas cooling facilities boiler equipment, and removal facility of HCI/SOX and NOX.

  8. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydé n, Magnus; Lyngfelt, Anders; Mattisson, Tobias

    2011-01-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor

  9. Limestone attrition under simulated oxyfiring Fluidized-Bed combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F. [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy); Salatino, P. [Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Napoli (Italy)

    2009-03-15

    Limestone attrition by surface wear was studied during the flue gas desulfurization under simulated fluidized-bed (FB) oxyfiring conditions and hindered calcination. Bench-scale experimental tests were carried out using well-established techniques previously developed for the characterization of sulfation and attrition of sorbents in air-blown atmospheric FB combustors. The experimental limestone conversion and attrition results were compared with those previously obtained with the same limestone under simulated air-blown combustion conditions. The differences in the conversion and attrition extents and patterns associated with oxyfiring as compared to air-blown atmospheric combustion were highlighted and related to the different particle morphologies and thicknesses of the sulfate layer. It was noted that attrition could play an important role in practical circulating FB combustor operation, by effectively enhancing particle sulfation under both oxyfiring and air-blown combustion conditions. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  10. Thermal–hydraulic calculation and analysis of a 600 MW supercritical circulating fluidized bed boiler with annular furnace

    International Nuclear Information System (INIS)

    Wang, Long; Yang, Dong; Shen, Zhi; Mao, Kaiyuan; Long, Jun

    2016-01-01

    Highlights: • Non-linear model of supercritical CFB boiler with annular furnace is developed. • Many empirical correlations are used to solve the model. • The thermal–hydraulic characteristics of boiler are analyzed. • The results show that the design of the annular furnace is reasonable. - Abstract: The development of supercritical Circulating Fluidized Bed (CFB) boiler has great economic and environmental value. An entirely new annular furnace structure with outer and inner ring sidewalls for supercritical CFB boiler has been put forward by Institute of Engineering Thermophysics (IET), Chinese Academy of Sciences and Dongfang Boiler Group Co., Ltd. (DBC). Its outer and inner ring furnace structure makes more water walls arranged and reduces furnace height availably. In addition, compared with other additional evaporating heating surface structures such as mid-partition and water-cooled panels, the integrative structure can effectively avoid the bed-inventory overturn and improve the penetrability of secondary air. The conditions of the 600 MW supercritical CFB boiler including capability, pressure and mass flux are harsh. In order to insure the safety of boiler operation, it is very necessary to analyze the thermal–hydraulic characteristics of water-wall system. The water-wall system with complicated pipe arrangement is regarded as a network consisting of series-parallel circuits, pressure nodes and linking circuits, which represent vertical water-wall tubes, different headers and linking tubes, respectively. Based on the mass, momentum and energy conservation, a mathematical model is built, which consists of some simultaneous nonlinear equations. The mass flux in circuits, pressure drop between headers, outer vapor temperature of water-wall system and metal temperature data of tubes at the boiler maximum continuous rating (BMCR), 75% BMCR and 30% BMCR loads are obtained by solving the mathematical model. The results show that the vertical water

  11. Limestone fragmentation and attrition during fluidized bed oxyfiring

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Piero Salatino [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2010-04-15

    Attrition/fragmentation of limestone under simulated fluidized bed oxyfiring conditions was investigated by means of an experimental protocol that had been previously developed for characterization of attrition/fragmentation of sorbents in air-blown atmospheric fluidized bed combustors. The protocol was based on the use of different and mutually complementary techniques. The extent and pattern of attrition by surface wear in the dense phase of a fluidized bed were assessed in experiments carried out with a bench scale fluidized bed combustor under simulated oxyfiring conditions. Sorbent samples generated during simulated oxyfiring tests were further characterized from the standpoint of fragmentation upon high velocity impact by means of a purposely designed particle impactor. Results showed that under calcination-hindered conditions attrition and fragmentation patterns are much different from those occurring under air-blown atmospheric combustion conditions. Noteworthy, attrition/fragmentation enhanced particle sulfation by continuously regenerating the exposed particle surface. 13 refs., 8 figs.

  12. Iron crystallization in a fluidized-bed Fenton process.

    Science.gov (United States)

    Boonrattanakij, Nonglak; Lu, Ming-Chun; Anotai, Jin

    2011-05-01

    The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton's reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO(2), although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Graphite waste incineration in a fluidized bed

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1996-01-01

    French gas-cooled reactors belonging to the Atomic Energy Commission (CEA), Electricite de France (EDF), Hifrensa (Spain), etc., commissioned between the 1950s and 1970s, have generated large quantities of graphite wastes, mainly in the form of spent fuel sleeves. Furthermore, some of these reactors scheduled for dismantling in the near future (such as the G2 and G3 reactors at Marcoule) have cores consisting of graphite blocks. Consequently, a fraction of the contaminated graphite, amounting to 6000 t in France for example, must be processed in the coming years. For this processing, incineration using a circulating fluidized bed combustor has been selected as a possible solution and validated. However, the first operation to be performed involves recovering this graphite waste, and particularly, first of all, the spent fuel sleeves that were stored in silos during the years of reactor operation. Subsequent to the final shutdown of the Spanish gas-cooled reactor unit, Vandellos 1, the operating utility Hifrensa awarded contracts to a Framatome Iberica SA/ENSA consortium for removing, sorting, and prepackaging of the waste stored in three silos on the Vandellos site, essentially graphite sleeves. On the other hand, a program to validate the Framatome fluidized bed incineration process was carried out using a prototype incinerator installed at Le Creusot, France. The validation program included 22 twelve-hour tests and one 120-hour test. Particular attention was paid to the safety aspects of this project. During the performance of the validation program, a preliminary safety assessment was carried out. An impact assessment was performed with the help of the French Institute for Protection and Nuclear Safety, taking into account the preliminary spectra supplied by the CEA and EDF, and the activities of the radionuclides susceptible of being released into the atmosphere during the incineration. (author). 4 refs, 11 figs, 1 tab

  14. Pulsed atmospheric fluidized bed combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  15. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    Science.gov (United States)

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  16. Non-intrusive measurement and hydrodynamics characterization of gas–solid fluidized beds: a review

    OpenAIRE

    Sun, Jingyuan; Yan, Yong

    2016-01-01

    Gas-solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is therefore essential to characterize the two-phase flow behaviours in gas-solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive t...

  17. Steam and sodium leak simulation in a fluidized-bed steam generator

    International Nuclear Information System (INIS)

    Vaux, W.G.; Keeton, A.R.; Keairns, D.L.

    1977-01-01

    A fluidized-bed steam generator for the liquid metal fast breeder reactor enhances plant availability and minimizes the probability of a water/sodium reaction. An experimental test program was conceived to assess design criteria and fluidized-bed operation under conditions of water, steam, and sodium leaks. Sodium, steam, and water were leaked into helium-fluidized beds of metal and ceramic particles at 900 F. Test results show the effects of leaks on the heat transfer coefficient, quality of fluidization, leak detection, and cleanup procedures

  18. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-10-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidising gas, (3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger, and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  19. Chaotic behavior in a hydrodynamic model of a fluidized bed reactor

    International Nuclear Information System (INIS)

    Schouten, J.C.; van den Bleek, C.M.

    1991-01-01

    Recent preliminary experimental studies using time-series analysis have demonstrated that the multi-phase flow in fluidized bed reactors can be characterized as chaotic. In the present paper, it is therefore argued that the chaotic time-dependence of fluidization is a characteristic feature which should be included in scaling rules for fluidized bed reactors. For example, the similarity groups applied in dimensionless fluidized bed scaling should be improved by extending them with functions of the relevant numbers from chaos theory, such as the correlation and embedding dimension or the maximum Lyapunov exponent. This requires that the dependence of these numbers on fluidization parameters must be theoretically and experimentally investigated. The concept of chaos in fluidization also requires that the classical, empirically developed, hydrodynamic models that are applied in fluidized bed scaling are amended to include time-dependence, non-linearity as well as a sufficient level of complexity before they can predict any chaotic behavior. An example is given of chaotic behavior generated in the classical counter-current flow model according to Van Deemter by writing the upwards solids velocity as a harmonic oscillating function of time. A low-dimensional strange attractor is found, embedded in two-dimensional phase space, of which the correlation dimension depends on the solids exchange coefficient

  20. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-07-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidizing gas,(3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  1. Thermally activated creep and fluidization in flowing disordered materials

    Science.gov (United States)

    Merabia, Samy; Detcheverry, François

    2016-11-01

    When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.

  2. Operating Characteristics of a Continuous Two-Stage Bubbling Fluidized-Bed Process

    International Nuclear Information System (INIS)

    Youn, Pil-Sang; Choi, Jeong-Hoo

    2014-01-01

    Flow characteristics and the operating range of gas velocity was investigated for a two-stage bubbling fluidized-bed (0.1 m-i.d., 1.2 m-high) that had continuous solids feed and discharge. Solids were fed in to the upper fluidized-bed and overflowed into the bed section of the lower fluidized-bed through a standpipe (0.025 m-i.d.). The standpipe was simply a dense solids bed with no mechanical or non-mechanical valves. The solids overflowed the lower bed for discharge. The fluidizing gas was fed to the lower fluidized-bed and the exit gas was also used to fluidize the upper bed. Air was used as fluidizing gas and mixture of coarse (<1000 μm in diameter and 3090 kg/m 3 in apparent density) and fine (<100 μm in diameter and 4400 kg/m 3 in apparent density) particles were used as bed materials. The proportion of fine particles was employed as the experimental variable. The gas velocity of the lower fluidized-bed was defined as collapse velocity in the condition that the standpipe was emptied by upflow gas bypassing from the lower fluidized-bed. It could be used as the maximum operating velocity of the present process. The collapse velocity decreased after an initial increase as the proportion of fine particles increased. The maximum took place at the proportion of fine particles 30%. The trend of the collapse velocity was similar with that of standpipe pressure drop. The collapse velocity was expressed as a function of bulk density of particles and voidage of static bed. It increased with an increase of bulk density, however, decreased with an increase of voidage of static bed

  3. Review of the phenomenon of fluidization and its numerical modelling techniques

    Directory of Open Access Journals (Sweden)

    H Khawaja

    2016-10-01

    Full Text Available The paper introduces the phenomenon of fluidization as a process. Fluidization occurs when a fluid (liquid or gas is pushed upwards through a bed of granular material. This may make the granular material to behave like a liquid and, for example, keep a level meniscus on a tilted container, or make a lighter object float on top and a heavier object sink to the bottom. The behavior of the granular material, when fluidized, depends on the superficial gas velocity, particle size, particle density, and fluid properties resulting in various regimes of fluidization. These regimes are discussed in detail in the paper. This paper also discusses the application of fluidized beds from its early usage in the Winkler coal gasifier to more recent applications for manufacturing of carbon nano-tubes. In addition, Geldart grouping based on the range of particle sizes is discussed. The minimum fluidization condition is defined and it is demonstrated that it may be registered slightly different when particles are being fluidized or de-fluidized. The paper presents discussion on three numerical modelling techniques: the two fluid model, unresolved fluid-particle model and resolved fluid particle model. The two fluid model is often referred to Eulerian-Eulerian method of solution and assumes particles as well as fluid as continuum. The unresolved and resolved fluid-particle models are based on Eulerian-Lagrangian method of solution. The key difference between them is the whether to use a drag correlation or solve the boundary layer around the particles. The paper ends with the discussion on the applicability of these models.

  4. Engineering aspects of fluidized bed reactor operation applied to lactase treatment of whole whey

    Energy Technology Data Exchange (ETDEWEB)

    Metzdorf, C; Fauquex, P F; Flaschel, E; Renken, A

    1985-01-01

    An interesting possibility for the use of lactoserum in human nutrition is the hydrolysis of lactose to glucose and galactose, sugars which exhibit a better digestibility, a higher solubility, and which have a greater sweetening power than lactose. The hydrolysis is catalyzed by an enzyme, the ..beta..-galactosidase which, due to its high price, must be used continuously, preferentially in immobilized form. The enzyme used for these studies has been immobilized on silica gel precoated with chitosan. When whole whey or partially deproteinized whey is treated, a fluidized bed reactor seems to be the most appropriate to circumvent problems with protein adsorption and reactor plugging. However the fluidization of fine particles with a small density difference between the solid and the liquid may give rise to stability problems. In order to prevent unstable operation of the fluidized bed, the reactor has been equipped with special internals. They impose a radial distribution of the liquid and the solid phase and increase the linear velocity required to achieve a given expansion by a factor of five. Besides the resulting high solids content, the back-mixing of the liquid decreases significantly when static mixer-packings are used.

  5. Predictive models of circulating fluidized bed combustors: SO{sub 2} sorption in the CFB loop. Fourteenth technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.; Therdthianwong, A. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering

    1993-02-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Sorption of S0{sub 2} with calcined limestone was studied in a PYROFLOW type CFB loop at conditions approximating those found in a CFB combustor. Initially the CFB loop contained 150 micron CaO particles of a density of 3.3 g/cm{sup 3} and air at 1143{degrees}K and 3.25 atm. Atzero time, air containing 600 ppm SO{sub 2}, was introduced into the riser bottom at 1143{degrees}K. The effect of gas velocity, sorbent inventory and inlet pressure on the sorption of SO{sub 2}, were studied isothermally by running our hydrodynamic code with the S0{sub 2} sorption conservation of species equation. At a velocity of 5m/sec., reported to be a typical velocity by PYROPOWER, there is reasonably good S0{sub 2} removal. At 10 m/sec the S0{sub 2} removal is poor. The best SO{sub 2}, removal is for a velocity of 5 m/s and a high bed inventory, initial bed height, H = 9m. Most of the S0{sub 2} is removed in the first two meters of the reactor. However, the S0{sub 2} removal is not complete at the bed outlet. This is due to mixing. At the left wall of the reactor (wall opposite the solids inlet) the S0{sub 2} removal was poor due to gas bypassing caused by the asymmetrical solids inlet. Simulation of the PYROPOWER loop with a symmetrical inlet gave us an order of magnitude improvement over the conventional PYROPOWER system. These results demonstrate the practical utility of the predictive model that we have developed over the last three years.

  6. Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Nina [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zhang, Ping, E-mail: pingzhang@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Song, Lixian; Kang, Ming; Lu, Zhongyuan [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010 (China); Zheng, Rong [Sichuan Jinhe Group Co., Ltd., Mianyang 621010 (China)

    2013-08-15

    The aim of this work was to test circulating fluidized bed combustion fly ashes (CFAs) for its potential to be utilized in polymer composites manufacturing to improve its toughness. CFAs was coated by stearic acid and used in the composite of polypropylene/ethylene vinyl acetate/high density polyethylene (PP/EVA/HDPE) by molding process method. The resulting coated and uncoated CFAs were fully characterized by particle size analyzer, contact angles, powder X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stearic acid coated onto the surface of CFAs particles in the physical and chemical ways, and the total clad ratio reached 2.05% by measuring TGA/DTA curve. The percentage of CFAs particles focused to a narrow range 2–4 μm and the median mean size was 3.2 μm more than uncoated CFAs. The properties of hydrophobic and dispersive of CFAs particles improved and original activity was reserved after stearic acid coating. The stearic acid was verified as a coupling agent by how much effect it had on the mechanical properties. It showed the elongation at break of PP/EVA/HDPE reinforced with 15 wt% coated CFAs (c-CFAs) was 80.20% and higher than that of the uncoated. The stearic acid treatment of CFAs is a very promising approach to improve the mechanical strength due to the incorporation of stearic acid on the CFAs surface, and hence, further enhances the potential for recycling CFAs as a suitable filler material in polymer composites.

  7. Stearic acid coating on circulating fluidized bed combustion fly ashes and its effect on the mechanical performance of polymer composites

    International Nuclear Information System (INIS)

    Yao, Nina; Zhang, Ping; Song, Lixian; Kang, Ming; Lu, Zhongyuan; Zheng, Rong

    2013-01-01

    The aim of this work was to test circulating fluidized bed combustion fly ashes (CFAs) for its potential to be utilized in polymer composites manufacturing to improve its toughness. CFAs was coated by stearic acid and used in the composite of polypropylene/ethylene vinyl acetate/high density polyethylene (PP/EVA/HDPE) by molding process method. The resulting coated and uncoated CFAs were fully characterized by particle size analyzer, contact angles, powder X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stearic acid coated onto the surface of CFAs particles in the physical and chemical ways, and the total clad ratio reached 2.05% by measuring TGA/DTA curve. The percentage of CFAs particles focused to a narrow range 2–4 μm and the median mean size was 3.2 μm more than uncoated CFAs. The properties of hydrophobic and dispersive of CFAs particles improved and original activity was reserved after stearic acid coating. The stearic acid was verified as a coupling agent by how much effect it had on the mechanical properties. It showed the elongation at break of PP/EVA/HDPE reinforced with 15 wt% coated CFAs (c-CFAs) was 80.20% and higher than that of the uncoated. The stearic acid treatment of CFAs is a very promising approach to improve the mechanical strength due to the incorporation of stearic acid on the CFAs surface, and hence, further enhances the potential for recycling CFAs as a suitable filler material in polymer composites.

  8. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  9. Minimum and Full Fluidization Velocity for Alumina Used in the Aluminum Smelter

    Directory of Open Access Journals (Sweden)

    Paulo Douglas S. de Vasconcelos

    2011-11-01

    Full Text Available Fluidization is an engineering unit operation that occurs when a fluid (liquid or gas ascends through a bed of particles, and these particles get a velocity of minimum fluidization enough to stay in suspension, but without carrying them in the ascending flow. As from this moment the powder behaves as liquid at boiling point, hence the term “fluidization”. This operation is widely used in the aluminum smelter processes, for gas dry scrubbing (mass transfer and in a modern plant for continuous alumina pot feeding (particles’ momentum transfer. The understanding of the alumina fluoride rheology is of vital importance in the design of fluidized beds for gas treatment and fluidized pipelines for pot feeding. This paper shows the results of the experimental and theoretical values of the minimum and full fluidization velocities for the alumina fluoride used to project the state of the art round non‐metallic air‐fluidized conveyor of multiples outlets.

  10. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    Science.gov (United States)

    2012-05-31

    paper aooo not violate: any Oisclosur~,;·of trade• secrets or suggestions of outside individuals on::oncams whiCh have· beE !n communicated 1.o...fully three- dimensional global ocean circulation model, we will provide an internal tide capability everywhere, and allow nested models to include

  11. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness.

    Directory of Open Access Journals (Sweden)

    Ramaswamy Krishnan

    Full Text Available Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.

  12. Status of the fluidized bed unit

    International Nuclear Information System (INIS)

    Williams, P.M.; Wade, J.F.

    1994-01-01

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats' mixed waste, the largest being the lower temperature (700 degrees C versus 1000 degrees C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats

  13. The mechanism of char ignition in fluidized bed combustors

    NARCIS (Netherlands)

    Siemons, R.V.

    1987-01-01

    Knowledge about ignition processes of coal in fluidized beds is of importance for the start-up and dynamic control of these combustors. Initial experiments in a transparent fluidized bed scale model showed the existence of a considerable induction period for the ignition of char, especially at low

  14. Study of the fluidized bed chemical vapor deposition process on very dense powder for nuclear applications

    International Nuclear Information System (INIS)

    Vanni, Florence

    2015-01-01

    This thesis is part of the development of low-enriched nuclear fuel, for the Materials Test Reactors (MTRs), constituted of uranium-molybdenum particles mixed with an aluminum matrix. Under certain conditions under irradiations, the U(Mo) particles interact with the aluminum matrix, causing unacceptable swelling of the fuel plate. To inhibit this phenomenon, one solution consists in depositing on the surface of the U(Mo) particles, a thin silicon layer to create a barrier effect. This thesis has concerned the study of the fluidized bed chemical vapor deposition (CVD) process to deposit silicon from silane, on the U(Mo) powder, which has an exceptional density of 17,500 kg/m 3 . To achieve this goal, two axes were treated during the thesis: the study and the optimization of the fluidization of a so dense powder, and then those of the silicon deposition process. For the first axis, a series of tests was performed on a surrogate tungsten powder in different columns made of glass and made of steel with internal diameters ranging from 2 to 5 cm, at room temperature and at high temperature (650 C) close to that of the deposits. These experiments helped to identify wall effects phenomena within the fluidized bed, which can lead to heterogeneous deposits or particles agglomeration. Some dimensions of the fluidization columns and operating conditions allowing a satisfactory fluidization of the powder were identified, paving the way for the study of silicon deposition. Several campaigns of deposition experiments on the surrogate powder and then on the U(Mo) powder were carried out in the second axis of the study. The influence of the bed temperature, the inlet molar fraction of silane diluted in argon, and the total gas flow of fluidization, was examined for different diameters of reactor and for various masses of powder. Morphological and structural characterization analyses (SEM, XRD..) revealed a uniform silicon deposition on all the powder and around each particle

  15. Absorption in a three-phase fluidized bed I: Hydrodynamic investigations

    Directory of Open Access Journals (Sweden)

    Pejanović Srđan M.

    2003-01-01

    Full Text Available The hydrodynamic properties of a three phase fluidized bed with low density inert spherical packing, fluidized by the interaction of a gas flowing upwards and a liquid flowing downwards through the column, were investigated. It was found that the pressure drop, liquid hold up and dynamic bed height increase with both increasing liquid and gas flow rate. While the dynamic bed height and minimum fluidization velocity remain unchanged, both the pressure drop and liquid hold up increase with increasing density of the packing. Therefore, an increase in packing density causes more intensive mass transfer between the fluid phases than packed columns. It was shown that increase of the liquid flow rate causes an increase of both the effective liquid and gas velocity through the fluidized bed, which may also improve mass transfer.

  16. FY 1999 Feasibility study on the environmentally-friendly coal utilization systems. Green Helmet Project (Circulating fluidized bed boiler Zaozhuang, Shangdong Province, China); 1999 nendo kankyo chowagata sekitan riyo system kanosei chosa jigyo seika hokokusho. Green helmet jigyo (junkan ryudosho boiler Chugoku Shangdong sho Zaozhuang)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The demonstration project is carried out in at Chaili coal mine in Shangdong Province, China for installation of and dissemination activities for circulating fluidized bed boilers to abate sulfur oxide emissions associated with utilization of coal, and the FY 1999 results are reported. The operating conditions were reviewed, and some recommendations were made for improving the operation procedures. Limestone was not used for desulfurization, and furnace temperature tended to increase due to increased size of the fluidizing particles. Therefore, it was recommended to use limestone at the design rate. The boiler was operated at a load exceeding the design level, and it was recommended to limit the load viewed from extending serviceability. The boiler start-up procedure was concretely proposed to use a mixed fuel of wood and coal instead of distillate oil, in order to reduce the start-up cost. The recommendations and design support activities for improving facilities included early stage repair of the damaged refractories. For build up of the ashes in the horizontal heat transfer section, the investigated design charts for improvement by installation of ash-discharging hopper were drawn and proposed. Maintenance-related information was given, including Chinese agencies for obtaining auxiliary facilities. (NEDO)

  17. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    International Nuclear Information System (INIS)

    Azzam, S.M.

    1993-01-01

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of 'LPG' in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs

  18. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Azzam, S M

    1994-12-31

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of `LPG` in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs.

  19. Volatiles combustion in fluidized beds. Final technical report, 4 September 1992--4 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, R.A. II; Raffensperger, C.; Hesketh, R.P.

    1996-02-29

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. A review of the work conducted under this grant is presented in this Final Technical Report. Both experimental and theoretical work have been conducted to examine the inhibition of the combustion by the fluidized bed material, sand. It has been shown that particulate phase at incipient fluidization inhibits the combustion of propane by free radical destruction at the surface of sand particles within the particulate phase. The implications of these findings is that at bed temperatures lower than the critical temperatures, gas combustion can only occur in the bubble phase or at the top surface of a bubbling fluidized bed. In modeling fluidized bed combustion this inhibition by the particulate phase should be included.

  20. Non-intrusive measurement and hydrodynamics characterization of gas-solid fluidized beds: a review

    Science.gov (United States)

    Sun, Jingyuan; Yan, Yong

    2016-11-01

    Gas-solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is, therefore, essential to characterize the two-phase flow behaviours in gas-solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive techniques have been developed or proposed for measuring the fluidization dynamic parameters and monitoring the flow status without disturbing or distorting the flow fields. This paper presents a comprehensive review of the non-intrusive measurement techniques and the current state of knowledge and experience in the characterization and monitoring of gas-solid fluidized beds. These techniques are classified into six main categories as per sensing principles, electrostatic, acoustic emission and vibration, visualization, particle tracking, laser Doppler anemometry and phase Doppler anemometry as well as pressure-fluctuation methods. Trends and future developments in this field are also discussed.

  1. Non-intrusive measurement and hydrodynamics characterization of gas–solid fluidized beds: a review

    International Nuclear Information System (INIS)

    Sun, Jingyuan; Yan, Yong

    2016-01-01

    Gas–solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is, therefore, essential to characterize the two-phase flow behaviours in gas–solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive techniques have been developed or proposed for measuring the fluidization dynamic parameters and monitoring the flow status without disturbing or distorting the flow fields. This paper presents a comprehensive review of the non-intrusive measurement techniques and the current state of knowledge and experience in the characterization and monitoring of gas–solid fluidized beds. These techniques are classified into six main categories as per sensing principles, electrostatic, acoustic emission and vibration, visualization, particle tracking, laser Doppler anemometry and phase Doppler anemometry as well as pressure-fluctuation methods. Trends and future developments in this field are also discussed. (topical review)

  2. Hydrodynamic and thermal modelling of gas-particle flow in fluidized beds

    International Nuclear Information System (INIS)

    Abdelkawi, O.S; Abdalla, A.M.; Atwan, E.F; Abdelmonem, S.A.; Elshazly, K.M.

    2009-01-01

    In this study a mathematical model has been developed to simulate two dimensional fluidized bed with uniform fluidization. The model consists of two sub models for hydrodynamic and thermal behavior of fluidized bed on which a FORTRAN program entitled (NEWFLUIDIZED) is devolved. The program is used to predict the volume fraction of gas and particle phases, the velocity of the two phases, the gas pressure and the temperature distribution for two phases. Also the program calculates the heat transfer coefficient. Besides the program predicts the fluidized bed stability and determines the optimum input gas velocity for fluidized bed to achieve the best thermal behavior. The hydrodynamic model is verified by comparing its results with the computational fluid dynamic code MFIX . While the thermal model was tested and compared by the available previous experimental correlations.The model results show good agreement with MFIX results and the thermal model of the present work confirms Zenz and Gunn equations

  3. Fluidized bed calciner

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    A unique way to convert radioactive scrap into useful nuclear fuel products was developed for the Department of Energy at Hanford. An advanced, fluidized bed calciner is used to convert metallic nitrate scrap or waste solutions into benign, solid and gaseous products. There are broad potential applications of this concept beyond those in the nuclear industry

  4. A feasibility study to determine the functionality of a novel rocking kiln - fluidized bed reactor for the treatment of waste

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Muhd Noor Muhd Yunus; Mohamad Puad Abu; Shahazrin Mohd Nasir; Mohd fairus Abdul Farid

    2004-01-01

    Rotary kiln has been widely used in incineration and studied by many researches. Solid wastes of various shapes, sizes and heat value can be fed into rotary kiln either in batches or continually. Waste combustion in rotary kiln involves rotation method and the residence time depends on the length and diameter of the rotary kiln and the total stoichiometric air given to the system. Rocking system is another technology used in incinerator. In the rocking system, internal elements in the combustion chamber move to transports and mix the burning waste so that all combustible material in the waste is fully burnt. Another technology in incinerator is the fluidized bed This method uses air to fluidized the sand thus enhancing the combustion process. The total air is controlled in order to obtain a suitable fluidized condition This preliminary study was conducted to study the feasibility of an incinerator system when three components viz. the rotary kiln, rocking system and fluidized bed are combined This research was also conducted to obtain preliminary data parameters of the three components such as the suitable temperature, the angle of the kiln, residence time, total air for fluidization, rocking speed and the devolatilization rate. The samples used in this research were the palm oil kernel shells. The results of the studies showed that the palm oil kernel shells combusted evenly using the new parameters. (Author)

  5. Operating experience and data on revolving type fluidized bed incineration plants

    International Nuclear Information System (INIS)

    Nakayama, J.

    1990-01-01

    In refuse incinerators operating by revolving fluidization (Revolving Type Fluidized Bed Incinerator) a broad range of wastes, from low caloric refuse of high moisture content to high caloric value material including a wide variety of plastics, can be incinerated at high efficiency because the unit is outstanding in terms of distribution of waste in the incinerator bed and uniformity of heat. In addition, its vigorous revolving fluidization action is very effective in pulverizing refuse, so even relatively strict emission standards can be met without fine pre-shredding. Residues are discharged in a clean, dry form free of putrescible material. Data on practical operation of the revolving fluidized bed incinerator are presented in this paper

  6. CFD analysis of hydrodynamic studies of a bubbling fluidized bed

    Science.gov (United States)

    Rao, B. J. M.; Rao, K. V. N. S.; Ranga Janardhana, G.

    2018-03-01

    Fluidization velocity is one of the most important parameter to characterize the hydrodynamic studies of fluidized bed asit determines different flow regimes. Computational Fluid Dynamics simulations are carriedfor a cylindrical bubbling fluidized bed with a static bed height 1m with 0.150m diameter of gasification chamber. The parameter investigated is fluidization velocity in range of 0.05m/s to 0.7m/s. Sand with density 2600kg/m3 and with a constant particle diameter of sand 385μm is employed for all the simulations. Simulations are conducted using the commercial Computational Fluid Dynamics software, ANSYS-FLUENT.The bubbling flow regime is appeared above the air inlet velocity of 0.2m/s. Bubbling character is increased with increase in inlet air velocities indicated by asymmetrical fluctuations of volume fractions in radial directions at different bed heights

  7. Experimental study on dew point corrosion characteristics of the heating surface in a 65 t/h biomass-fired circulating fluidized bed boiler

    International Nuclear Information System (INIS)

    Wang, Yungang; Ma, Haidong; Liang, Zhiyuan; Chen, Heng; Zhao, Qinxin; Jin, Xin

    2016-01-01

    Highlights: • Dew point corrosion and ash deposit tests in a biomass-fired boiler were performed. • The XRD, XRF and SEM methods were used to analyze corrosion samples. • The deposits were made up of ash deposit layer, coupling layer and corrosion layer. • The metal matrix simultaneously confronted chlorine corrosion and oxygen corrosion. - Abstract: The dew point corrosion characteristics of the heating surface in a 65 t/h biomass-fired circulating fluidized bed (CFB) boiler were experimentally studied. The cross-sectional morphology and composition of the ash deposition were analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence spectrum (XRF), respectively. The results showed that the test tube surface was covered by ash deposit layer, coupling layer and corrosion layer. The ash deposit layer and the coupling layer were prone to spall off together. The coupling layer consists of partial ash and corrosion products. The corrosion layer was mainly composed of chlorides (FeCl_3, FeCl_2, and FeOCl) and oxides (FeOOH, Fe_2O_3). With the increase of the tube wall temperature, the corrosion depth decreased dramatically and the dew point corrosion was alleviated efficiently. The metal matrix simultaneously suffered from chlorine corrosion and oxygen corrosion. As the tube wall temperature was above water dew point, the main corrosion mode was oxygen corrosion. As the tube wall temperature was below water dew point, the main corrosion mode was chlorine corrosion.

  8. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments

    Directory of Open Access Journals (Sweden)

    Michael J. Nelson

    2017-06-01

    Full Text Available Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

  9. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  10. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer.

    Science.gov (United States)

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie

    2017-08-01

    The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed

  12. Advances in fluidized bed technologies

    International Nuclear Information System (INIS)

    Mutanen, K.

    1992-01-01

    Atmospheric fluidized bed combustion (AFBC) has advanced into industrial cogeneration and utility-scale electric generation. During the 1980's AFBC became the dominant technology in the United States for power generation systems fired with solid fuels. Development of pressurized fluidized bed combustion/gasification (PFB/G) has grown rapidly from small bench-scale rigs to large pilot and demonstration plants. AFBC as large as 160 MWe in capacity are now in operation, while pressurized combustion systems generating 80 MWe have started up two years ago. The major driving forces behind development of fluidized bed technologies are all the time strictening emission control regulations, need for fuel flexibility, repowering of older power plants and need for higher efficiency in electricity generation. Independent power producers (IPP) and cogenerators were the first ones in the United States who accepted AFBC for wide commercial use. Their role will be dominant in the markets of the 1990's also. Developers of AFBC systems are working on designs that reduce investment costs, decrease emissions and offer even higher reliability and availability in utility-scale applications while developers of PFBC/G work on designs that increase plant efficiencies, allow modular construction, decrease emissions further and reduce the cost of generating power. This paper presents technological background, commercial status, boiler performance, emissions and future developments for both AFBC and PFBC/G systems

  13. Effects of the updated national emission regulation in China on circulating fluidized bed boilers and the solutions to meet them.

    Science.gov (United States)

    Li, Jingji; Yang, Hairui; Wu, Yuxin; Lv, Junfu; Yue, Guangxi

    2013-06-18

    The advantage of circulating fluidized bed (CFB) boilers in China is their ability to utilize low rank coal with low cost emission control. However, the new National Emission Regulation (NER) issued in early 2012 brings much more stringent challenges on the CFB industries, which also causes much attention from other countries. Based on the principle of a CFB boiler and previous operating experience, it is possible for the CFB boilers to meet the new NER and maintain the advantage of low cost emission control, while, more influences should be considered in their design and operation. To meet the requirement of the new NER, the fly ash collector should adopt a bag house or combination of electrostatic precipitator and bag filter to ensure dust emissions of less than 30 mg · Nm(-3). For SO2 emission control, the bed temperature should be strictly lower than 900 °C to maintain high reactivity and pores. The limestone particle size distribution should be ranged within a special scope to optimize the residence time and gas-solid reaction. At the same time, the injecting point should be optimized to ensure fast contact of lime with oxygen. In such conditions, the desulfurization efficiency could be increased more than 90%. For lower sulfur content fuels (emissions lower than that of the new NER, 100 mg · Nm(-3). For fuels with sulfur content higher than 1.5%, some simplified systems for flue gas desulfurization, such as flash dryer absorber (FDA), are needed. And the NOx emissions of a CFB can be controlled to less than 100 mg · Nm(-3) without any equipment at a bed temperature lower than 900 °C for fuels with low volatiles content (emission of CFB is very low for the new NER due to its innate property.

  14. Reprint of “Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions”

    International Nuclear Information System (INIS)

    Gómez, M.; Fernández, A.; Llavona, I.; Kuivalainen, R.

    2015-01-01

    CO 2 and SO 2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO 2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO 2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO 2 Capture and Transport (es.CO 2 ) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO 2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO 2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: • Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  15. Fluidized bed and pulverized coal combustion residues for secondary pavements

    International Nuclear Information System (INIS)

    Ghafoori, N.; Diawara, H.; Wang, L.

    2009-01-01

    The United States produced nearly 125 million tons of coal combustion products in 2006. These by-products include fly ash, flue gas desulphurization materials, bottom ash, boiler slag, and other power plant by-products. The expense associated with waste disposal, lack of disposal sites, and significant environmental damage linked with the disposal of coal combustion residues have encouraged innovative utilization strategies such as the fluidized bed combustion (FBC) unit. This paper presented the results of a laboratory investigation that examined the properties of composites developed with different proportions of pre-conditioned FBC spent bed, pulverized coal combustion fly ash, natural fine aggregate, and Portland cement. The purpose of the study was to examine the extent to which the by-product composites could replace currently used materials in secondary roads. The paper presented the research objectives and experimental programs, including matrix constituent and proportions; mixture proportions; and mixing, curing, sampling, and testing. The discussion of results centered around compressive strength and expansion by internal sulfate attack. It was concluded that with proper proportioning, by-products of pulverized and fluidized bed combustion promote binding of sand particles and provide adequate strength under various curing and moisture conditions 4 refs., 6 tabs.

  16. Adaptive monitoring of emissions in energy boilers using self-organizing maps: An application to a biomass-fired CFB (circulating fluidized bed)

    International Nuclear Information System (INIS)

    Liukkonen, M.; Hiltunen, T.

    2014-01-01

    Improvement of energy efficiency, reduction of operating costs, and reduction of harmful emissions released into the atmosphere are issues of major concern in modern energy plants. While air emissions have to be restricted due to tightening environmental legislation, at the same time it is ever more important to be able to respond quickly to any changes in the load demand or fuel quality. As unpredictability increases with changing fuel quality and more complex operational strategies, undesired phenomena such as increased emission release rates may become more likely. Therefore, it is crucial that emission monitoring systems are able to adapt to varying conditions, and advanced methodologies are needed for monitoring and decision-support. In this paper a novel approach for advanced monitoring of emissions in CFB (circulating fluidized bed) boilers is described. In this approach a model based on SOM (self-organizing maps) is updated regularly to respond to the prevailing condition of the boiler. After creating each model a new set of measurements is input to the system, and the current state of the process is determined using vector distance calculation. Finally, the system evaluates the current condition and may alert if a preset limit defined for each emission component is exceeded. - Highlights: • An adaptive monitoring approach based on self-organizing maps is presented. • The system can monitor the current state of a combustion process and its emissions. • The system is designed to alert when the preset limits defined for emissions are exceeded. • Due to regular updating routine the system is able to adapt to changing conditions. • The application is demonstrated using data from a biomass-fired energy boiler

  17. Release of alkali salts and coal volatiles affecting internal components in fluidized bed combustion systems

    Directory of Open Access Journals (Sweden)

    Arias del Campo, E.

    2003-12-01

    Full Text Available In spite of the potential advantages of atmospheric fluidized bed systems, experience has proved that, under certain environments and operating conditions, a given material employed for internal components could lead to catastrophic events. In this study, an attempt is made to establish material selection and operational criteria that optimize performance and availability based on theoretical considerations of the bed hydrodynamics, thermodynamics and combustion process. The theoretical results may indicate that, for high-volatile coals with particle diameters (dc of 1-3 mm and sand particle size (ds of 0.674 mm, a considerable proportion of alkali chlorides may be transferred into the freeboard region of fluidized bed combustors as vapor phase, at bed temperatures (Tb < 840 °C, excess air (XSA ≤ 20 %, static bed height (Hs ≤ 0.2 m and fluidizing velocity (Uo < 1 m/s. Under these operating conditions, a high alkali deposition may be expected to occur in heat exchange tubes located above the bed. Conversely, when the combustors operate at Tb > 890 °C and XSA > 30 %, a high oxidation rate of the in-bed tubes may be present. Nevertheless, for these higher Tb values and XSA < 10 %, corrosion attack of metallic components, via sulfidation, would occur since the excessive gas-phase combustion within the bed induced a local oxygen depletion.

    A pesar de las ventajas potenciales de los sistemas atmosféricos de lecho fluidizado, la experiencia ha demostrado que, bajo ciertas atmósferas y condiciones de operación, un material que se emplea como componente interno podría experimentar una falla y conducir a eventos catastróficos. En este estudio, se intenta establecer un criterio tanto operativo como de selección del material que permita optimizar su disponibilidad y funcionalidad basados en consideraciones teóricas de la hidrodinámica del lecho, la termodin

  18. Climate effect of an integrated wheat production and bioenergy system with Low Temperature Circulating Fluidized Bed gasifier

    International Nuclear Information System (INIS)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard; Ahrenfeldt, Jesper

    2015-01-01

    Highlights: • Wheat straw removal from agricultural system has considerable GWP effect. • Changing the carbon conv. in the gasifier to 0.8–0.86 mitigates those effects. • Considerable difference is between sequestration potential of straw and biochar. • Lowering the carbon conversion improves GWP, but depends on subst. technology. - Abstract: When removing biomass residues from the agriculture for bioenergy utilization, the nutrients and carbon stored within these “residual resources” are removed as-well. To mitigate these issues the energy industry must try to conserve and not destroy the nutrients. The paper analyses a novel integration between the agricultural system and the energy system through the Low Temperature Circulating Fluidized Bed (LT-CFB) gasifier from the perspective of wheat grain production and electricity generation using wheat straw, where the effects of removing the straw from the agricultural system are assessed along with the effects of recycling the nutrients and carbon back to the agricultural system. The methods used to assess the integration was Life Cycle Assessment (LCA) with IPCC’s 2013 100 year global warming potential (GWP) as impact assessment method. The boundary was set from cradle to gate with two different functional units, kg grain and kW h electricity produced in Zealand, Denmark. Two cases were used in the analysis: 1. nutrient balances are regulated by mineral fertilization and 2. the nutrient balances are regulated by yield. The analysis compare three scenarios of gasifier operation based on carbon conversion to two references, no straw removal and straw combustion. The results show that the climate effect of removing the straws are mitigated by the carbon soil sequestration with biochar, and electricity and district heat substitution. Maximum biochar production outperforms maximum heat and power generation for most substituted electricity and district heating scenarios. Irrespective of the substituted

  19. The influence of curing time on the shear strength of fluidized fly ash

    Directory of Open Access Journals (Sweden)

    Gruchot Andrzej

    2015-06-01

    Full Text Available The paper presents results of research on the influence of compaction and air and water curing on angle of internal friction and cohesion of fluidized fly ash from “Połaniec” Power Plant. It was stated that the increase in compaction resulted in an insignificant increase of the angle of internal friction and a quite significant increase of cohesion. While the type and time of curing had a great influence on the angle of internal friction and cohesion. The highest values of angle of internal friction were obtained in the air curing, and the lowest in the water curing whereas in case of cohesion there was an inverse relation. The rise of curing time resulted in largely increased cohesion and small changes of angle of internal friction.

  20. Application and Discussion of Dual Fluidized Bed Reactor in Biomass Energy Utilization

    Science.gov (United States)

    Guan, Haibin; Fan, Xiaoxu; Zhao, Baofeng; Yang, Liguo; Sun, Rongfeng

    2018-01-01

    As an important clean and renewable energy, biomass has a broad market prospect. The dual fluidized bed is widely used in biomass gasification technology, and has become an important way of biomass high-value utilization. This paper describes the basic principle of dual fluidized bed gasification, from the gas composition, tar content and thermal efficiency of the system point of view, analyzes and summarizes several typical dual fluidized bed biomass gasification technologies, points out the existence of gas mixing, the external heat source, catalyst development problems on gas. Finally, it is clear that the gasification of biomass in dual fluidized bed is of great industrial application and development prospect.

  1. Anaerobic fluidized bed treatment of a tannery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.J.; Li, C.T.; Shieh, W.K.

    1988-11-01

    The anaerobic fluidized bed system, in conjunction with neutralization and chemical coagulation/flocculation, was evaluated for treatment of a tannery wastewater produced from a chrome tanning operation. Neutralization with 1 N sulphuric acid was effective for removal of chromate, with complete removal achieved at pH=8.0. Chemical coagulation/flocculation with alum at a dosage of 200 mg/L was able to remove 97% of feed SS and 65% of feed grease. Evaluation of the performance of the anaerobic fluidized bed system indicated more than 75% of feed COD could be removed up to an F/M ratio of approximately 0.4 g COD/g TVS center dot day. The observed methane production rate was 0.221 of CH/sub 4/ produced per gram COD removed. The anaerobic fluidized bed system could provide an effective treatment of a pretreated tannery wastewater.

  2. Retrieval of fluidizable radioactive wastes from storage facilities

    International Nuclear Information System (INIS)

    2006-08-01

    This report provides guidance for strategic planning and implementation of resuspension and retrieval of stored fluid or fluidizable radioactive wastes. The potential risks associated with preparation and realization of these processes are included in the report, and lessons learned from previous applications are highlighted. Technological procedures and equipment used in various countries for resuspension and remobilization of stored fluidizable radioactive wastes are described in the attached annexes as potential options. Waste retrieval is a maturing technology of major importance now that Member States are moving forward in the responsible management of wastes by removal to safe interim storage or disposal. Retrieval of fluidizable wastes is a four-phase operation: (1) access to the waste, (2) mobilize the waste, (3) remove the waste; and (4) transfer the waste.This report divides successful retrieval of radioactive waste into two areas. The first area applies the concept of the waste retrieval as being the final component of a systematic process of old waste management. It also encompasses characterization as it applies to waste retrieval and downstream processes, including acceptance of wastes for treatment, conditioning, storage or disposal. It should be in conformity with national policy, as well as complying with international safety standards and environmental agreements. The second area of the report focuses on implementation of waste retrieval in a wide range of scenarios and using a wide range of retrieval approaches, equipment and technologies. Technical processes are further explained as part of the experience gained in advanced countries on the subject. A set of detailed retrieval technology descriptions by country is included as Annexes to this report. Thirteen experts from seven Member States that previously implemented, or have planned for the near future, significant resuspension and remobilization operations were involved in the preparation of

  3. Fluidization mechanisms in slurry flow

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C. S.

    1989-01-01

    There are two mechanisms by which heavy settling particles may be suspended in a horizontal slurry flow: (1) by particle-particle interactions (e.g. Bagnold dispersive stresses) and (2) by particle-fluid interactions (e.g. entrainment of the particles by turbulent eddies.) The purpose of this investigation is to determine to what extent each fluidization mechanism is active and the effect of the fluidization mechanism on the global properties of the slurry. The technique employs the understanding that the particles entrained in the turbulence of the fluid will appear as an increased hydrostatic head across the channel. This may be directly measured and can be related to the fraction of the mass of particles that are supported by fluid-particle forces. (The rest must therefore be supported by particle-particle forces.) 17 refs., 26 figs.

  4. Volatiles combustion in fluidized beds. Technical progress report, 4 March 1993--3 June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hesketh, R.P.

    1993-09-01

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization will be performed to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. The work conducted during the period 4 March, 1993 through 3 June, 1993 is reported in this technical progress report. The work during this time period consists primarily of the startup and trouble shooting of the fluidized bed reactor and gas phase modeling of methane and propane.

  5. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Science.gov (United States)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  6. Fluidized-bed calciner with combustion nozzle and shroud

    International Nuclear Information System (INIS)

    Wielang, J.A.; Palmer, W.B.; Kerr, W.B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition. 4 claims, 2 figures

  7. Inclined fluidized bed system for drying fine coal

    Science.gov (United States)

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  8. Factors affecting the amounts of emissions arising from fluidized bed combustion of solid fuels

    International Nuclear Information System (INIS)

    Horbaj, P.

    1996-01-01

    The factors affecting the amounts of nitrogen oxides (NO x ) and sulfur oxides (SO x , i.e. SO 2 + SO 3 ) formed during fluidized bed combustion of fossil fuels are analyzed using both theoretical concepts and experimental data. The factors treated include temperature, excess air, fuel parameters, pressure, degree of combustion gas recycling, combustion distribution along the combustion chamber height, and sulfur trapping processes for NO x , and the Ca/S ratio, fluidized layer height and fluidization rate, granulometry and absorbent type, fluidized layer temperature, and pressure during combustion for SO x . It is concluded that fluidized bed boilers are promising power generating facilities, mitigating the environmental burden arising from fossil fuel combustion. (P.A.). 12 figs., 9 refs

  9. Instability and the formation of bubbles and the plugs in fluidized beds

    Directory of Open Access Journals (Sweden)

    Piotr Schulz

    2004-01-01

    Full Text Available This is an review paper, particulary concentrate on results not many researches by reason that are explain in the text. We consider stability of disperse, two-phase flow (gas-solid particles or liquid-solid particles linear and non-linear. In particular we discuss the result of Anderson, Sundareson and Jackson (1995 [Anderson K., Sundareson S., Jackson R.: Instabilities and the formation of bubbles in fluidized beds. J. Fluid Mech. 303 (1995, 327-366] that for vertical dispersion flow one- and two-dimensional, they attack problem growing disturbances directly by numerical integration of equations of motion from given initial conditions (using computer Cray C-90. In principle, this would allow authors to explore all aspects of dynamical behaviour of fluidized beds. It is interesting mechanism of periodic plug describing by Anderson et al. and attest by other researchers. Second part of paper is more general, dedicate the problem of linear stability of uniformly fluidized state ("fluidized bed". We make the most important stages of calculations (after to Jackson (2000 [Jackson R.: The Dynamics of Fluidized Particles. Cambridge University Press 2000] and demonstrate that the majority (but not all of fluidized beds with parameters having technical importance is unstable, or stable in narrow interval of wave numbers \\(k\\.

  10. Fluidized bed roasting of molybdenite-effect of operating variables

    International Nuclear Information System (INIS)

    Doheim, M.A.; Abdel-Wahab, M.Z.; Rassoul, S.A.

    1976-01-01

    The results of an investigation on the fluidized bed roasting of molybdenite are reported. Molybdenite mixed with quartz was subjected to an oxidizing roast in a 22 mm diam stainless steel batch fluidized bed reactor. Enriched air (with O 2 ) or diluted air (with N 2 ) was used as the fluidizing and oxidizing gas. In addition to the MoS 2 content of the solids and the O 2 content of the gas, the effect of temperature and flow rate was also examined. For the range of variables investigated, it was found that the temperature influences the rate of the roasting reaction greatly. The gas flow rate affects the conversion favorably up to a certain fluidizing flow rate. An increase in the O 2 content of the gas and the MoS 2 of the solids results in higher conversion levels. The unreacted core kinetic model was applied to the results; and the energy of activation for the reaction was obtained from the Arrhenius plot as 31,100 cal/gmol of MoS 2 . The data obtained should be useful in the design and operation of larger scale roasting reactors

  11. Hydrolysis of cellulose in a cellulase-bead fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Karube, I; Tanaka, S; Shirai, T; Suzuki, S

    1977-08-01

    Cellulase was immobilized in a collagen fibril matrix, and no leakage of cellulase from the collagen fibril matrix was observed. The immobilized cellulase was more stable than the native cellulase. The substrate cellulose was hydrolyzed quantitatively with immobilized cellulase. The final reaction product was identified as glucose. Immobilized cellulase was used in a fluidized bed reactor where the pressure drop of the fluidized bed reactor was low and constant. Cellulose was hydrolyzed to glucose by the cellulase-bead fluidized bed reactor. The minimum flow velocity (U/sub mf/) was 0.5 cm/sec and the optimum flow velocity of the cellulose hydrolysis was 1 cm/sec.

  12. Mass and heat transfer between a fluidized bed and a freely moving submerged sphere

    NARCIS (Netherlands)

    Prins, W.; Valk, M.

    1995-01-01

    For fluidized bed combustion and gasification of solid fuels, but also for various other fluidized bed processes such as drying, granulation and evaporation, mass and heat transport to (or from) a particle freely moving in the fluidized bed is of great importance. The combustion rate of a

  13. From continuum analytical description to discrete numerical modelling of localized fluidization in granular media

    Directory of Open Access Journals (Sweden)

    Puig i Montellà Eduard

    2017-01-01

    Full Text Available We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy’s law and Therzaghi’s effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous. The numerical approach is at the particle scale based on the coupled DEM-PFV method. It tackles the more heterogeneous situations which occur at larger injection rates. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. Finally, the merging of chimneys in case of two injection points is investigated.

  14. Pressurized fluidized-bed combustion technology exchange workshop

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  15. Drying of materials in fluidized bed: mathematical modeling

    International Nuclear Information System (INIS)

    Wildhagen, Gloria Regina S.; Silva, Eder F.; Calcada, Luis A.; Massarani, Giulio

    2000-01-01

    A three phase mathematical model for drying process in a fluidized bed was established. This model representing a bubble, interstitial gas and solid phase was based on principles of mass and energy conservation and on empirical relations for heat and mass transfer between phases. A fluidized bed dryer was built to test the results of proposed model with those obtained by experiments using alumina particles as a bed charge. A good agreement between the numerical and the experimental results were observed(author)

  16. Success of lime additives for controlling SO2 releases from fluidized bed combustion units

    International Nuclear Information System (INIS)

    Muezzinoglu, A.; Bayram, A.; Odabasi, M.

    1995-01-01

    Purpose of this work was to study the desulfurization efficiencies of dry additives on the fluidized bed reactors fired with low quality lignites. In these tests selected initial SO 2 levels were in the order of 1000 ppm or less in the flue gases. Lime addition for desulfurization may either be made by mixing with the fuel or by injection into the combustion reactor. In fluidized bed combustion systems both methods are physically possible. In the fluidized combustion systems a third method of addition is also possible this, is by mixing dry additives with fluidizer sand. In this third method additives create a fluidizer effect as well as reacting with the sulfur oxides being formed during the combustion of fuel

  17. Revamping of thermal power stations focusing on extension of service life and compliance with environmental requirements

    International Nuclear Information System (INIS)

    Pichler, M.

    1996-01-01

    This paper reports on some of advanced clean coal technologies supplied by the Austrian Energy and Environment GmbH (AE). A short description is given of their main advantages and possibilities to offer optimal environmental and technical solutions for removal of SO x , NO x , HCL, HF, fine dust, aerosols, heavy metals and noise. The following technologies are considered: 1) Revamping; 2) Flue gas desulfuration - Dry Circulating Fluid Bed Scrubbing (DCFBS); MgO-based Regenerative Process (MgO-Process); Semi Dry Flue Gas Desulphurization (Spray Absorption Technology) ; Wet Flue Gas Desulphurization (limestone slurry scrubbing - IFO process); 3) Fluidized Bed Combustion - Bubbling Bed Combustion , Fast Internally Circulating Fluidized Bed Combustion, External Circulating Fluidized Bed Combustion. AE's objective is to cooperate with local firms which will provide benefits to the local economy in the following manner: 1) Foreign currency requirements for applying the technology to domestic sources would be minimized; 2) A substantial portion of the work involved in engineering, manufacturing and installing the system could be done by local personnel

  18. Combining fluidized activated carbon with weak alternating electric fields for disinfection

    NARCIS (Netherlands)

    Racyte, J.; Sharabati, J.; Paulitsch-Fuchs, A.H.; Yntema, D.R.; Mayer, M.J.J.; Bruning, H.; Rijnaarts, H.H.M.

    2011-01-01

    This study presents fluidized bed electrodes as a new device for disinfection. In the fluidized bed electrodes system, granular activated carbon particles were suspended, and an alternating radio frequency electric field was applied over the suspended bed. Proof-of-principle studies with the

  19. Utilizing the fluidized bed to initiate water treatment on site

    International Nuclear Information System (INIS)

    Ahmadvand, H.; Germann, G.; Gandee, J.P.; Buehler, V.T.

    1995-01-01

    Escalating wastewater disposal costs coupled with enforcement of stricter regulations push industrial sites previously without water treatment to treat on site. These sites, inexperienced in water treatment, require a treatment technology that is easily installed, operated, and maintained. The aerobic granular activated carbon (GAC) fluidized bed incorporates biological and adsorptive technologies into a simple, cost-effective process capable of meeting strict effluent requirements. Two case studies at industrial sites illustrate the installation and operation of the fluidized bed and emphasize the ability to use the fluidized bed singularly or as an integral component of a treatment system capable of achieving treatment levels that allow surface discharge and reinjection. Attention is focused on BTEX (benzene, toluene, ethylbenzene, and xylenes)

  20. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Chen-Long; Liu, Xiao; Chen, Rong, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Shan, Bin, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)

    2015-07-15

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas–solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al{sub 2}O{sub 3} films on spherical SiO{sub 2} NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  1. Brazilian experience on fluidized bed combustion; Experiencia brasileira em leito fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Chazan, David Turik [CIENTEC, Porto Alegre, RS (Brazil)

    1988-12-31

    The aim of this work is to outline the evolution of the development of fluidized combustion in the main institutions which uses fluidized combustion of coal and other fossil fuels, industrial and agricultural wastes and biomass at industrial level in Brazil. (author) 1 fig.

  2. Effects of setting new source performance standards for fluidized-bed combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    This study was undertaken for the US Environmental Protection Agency to examine the potential consequences of revisions in New Source Performance Standards (NSPS) on fluidized-bed combustor-based steam electric generators of greater than 250,000,000 Btu. A study of the appropriateness and differential effects of alternate regulatory approaches to the standards-setting process was made. Problems dealing with an emerging technology such as fluidized-bed combustion were emphasized. Finally, an examination was made of the potential benefits of fluidized-bed combustion (FBC) systems relative to conventional coal-fired systems equipped with scrubbers. Information is included on the relative advantages and disadvantages of utility-sized fluidized-bed combustors, the technical consequences of NSPS alternatives, policy implications concerning NSPS for steam-electric generators, and cost models for atmospheric and pressurized FBC systems. (LCL)

  3. Design of fluidized-bed, biological denitrification systems

    International Nuclear Information System (INIS)

    Patton, B.D.; Hancher, C.W.; Pitt, W.W.; Walker, J.F.

    1982-01-01

    Many commercial processes yield nitrate-containing wastewaters that are being discharged to the environment because traditional recovery or disposal methods are economically unacceptable. The anticipated discharge limits (i.e., 10 to 20 g (NO 3 - )/m 3 ) being considered by many states will not allow continued release of these wastewaters. The new discharge standards can be met economically by use of the fluidizied-bed, biological denitrification process. Research and development studies were conducted with 0.05-, 0.10-, 0.20-, and 0.50-m-diam fluidized-bed bioreactor systems. Feed nitrate concentrations were in the 0 to 10,000 g (NO 3 - )/m 3 range. Using the data from these studies, rate expressions were developed for the destruction of nitrate as a function of nitrate concentration. Methods were also developed for sizing bioreactors and biomass control systems. The sizing methods for fluidized-bed denitrification systems are described, and support systems such as sampling and analysis, instrumentation and controls, utilities, and bacteria storage are discussed. Operation of the process is also briefly discussed to aid the designer. Using the methods presented in this report, fluidized-bed, biological denitrification systems can be designed to treat nitrate wastewater streams

  4. Experimental study of fluidized bed agglomeration of acerola powder

    Directory of Open Access Journals (Sweden)

    G. C. Dacanal

    2008-03-01

    Full Text Available The aim of this work was to study the main effects of acerola powder on fluidized bed agglomeration. A 2(4-1 fractional factoring design was used to evaluate the main operating conditions (fluidizing air temperature, fluidizing air velocity, atomizing air flow and height of nozzle in the bed. The mechanical and physicochemical product changes were determined by analysis of particle diameter, moisture content, wetting time and bed porosity. The particle enlargement by agglomeration occurred when the relative humidity in the bed increased and, thus, the moisture of the product increased. However, the excessive increase in relative humidity resulted in a decrease in yield, caused by caking and product incrustation. The consolidation of small granules resulted in an increase in the instant properties, decreasing the wetting time and increasing the solubility in a short period of agitation.

  5. Development of Mitsubishi--Lurgi fluidized bd incinerator with pre-drying hearths

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Y; Senshu, A; Mishima, K; Sato, T; Honda, H

    1979-02-01

    For a better disposal of a steadily increasing volume of sludges with energy conservation it is essential to develop an effective and energy-saving incinerator. The fluidized bed incinerator now widely used for the disposal of sludges has many superior features as compared with the conventional vertical multiple-hearth incinerator, but, on the other hand, has a defect, that is, a large fuel consumption. This is due to the fact that the fluidized bed incinerator has generally low drying efficiency notwithstanding its excellent burning characteristics with minimum excess air. The feasibility of fuel saving by installing sludge pre-drying hearths and an exhaust gas recirculation system additionally on the conventional fluidized bed incinerator and conducted incineration tests on various kinds of sludges, using a 1500 kg/h pilot plant equipped with the incinerator is examined. As the result, the Mitsubishi--Lurgi fluidized bed incinerator with high efficiency multiple pre-drying hearths which consumes less fuel was developed. Part of the incineration test results are presented.

  6. Thermal stability in a newly designed columnar-conical fluidized bed for combustion of rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Rozainee, M.; Salema, A.A.; Ngo, S.P.; Chye, G.B. [Malaysian Technological Univ., Johor Bahru (Malaysia). Dept. of Chemical Engineering

    2006-07-01

    The effects of fluidizing and liquid propane gas (LPG) flow rates on thermal stability of a fluidized bed were examined. The aim of the study was to hybridize a columnar and conical fluidized bed (CCFB) in order to encourage the combustion of low-calorific fuels such as rice husks. Experiments were conducted to examine the thermal stability of the CCFB. Premixed primary air and liquid propane gas (LPG) was fed into the bed in order to verify its thermal stability. Temperature profiles of the combustor and bed were measured. The impact of the fluidizing velocity and LPG flow rate on the temperature profile was examined in order to analyze the influence of the fluidizing velocity and LPG rate on combustion rates. Results of the study showed that the combustion of the CCFB was sustained at a fluidizing velocity of 1.5 U{sub mf} and at an LPG flow rate of 8 liters per minute. Results of the study showed that fluidizing velocity played an important role on the thermal stability of the bed. It was concluded that the thermal stability of the combustor is sufficient for the CCFB. 13 refs., 2 tabs., 5 figs.

  7. FOREIGN JUDGMENTS PROJECT OF HAGUE CONFERENCE: FOR A GLOBAL REGIME OF INTERNATIONAL CIRCULATION OF JUDGMENTS ON CIVIL AND COMMERCIAL SUBJECTS

    Directory of Open Access Journals (Sweden)

    Nadia de Araujo

    2017-02-01

    Full Text Available The Hague Conference on Private International Law is promoting the adoption of rules designed to circumvent usual obstacles to the international circulation of judgments. The Judgments Project initiated in the nineties aims at mitigating uncertainties and risks associated with the international commerce by setting forth a simple and safe system according to which foreign judgments may circulate from country to country. The purpose of this article is to preserve the historical moment of the negotiations taking place at the Hague, as well as to pinpoint some technical issues raised in the course of the project that may be of general interest to those involved in the subject of international jurisdiction.

  8. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    Science.gov (United States)

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

  9. Some effects of gas-induced fluidization in dry granular media

    Energy Technology Data Exchange (ETDEWEB)

    Nermoen, Anders

    2010-06-15

    The main body of this thesis consists of three papers in which aspects of fluid induced deformation in granular materials are studied. Insight from experiments, dimensional analysis, numerical modeling and analytic predictions are combined to interpret observations various aspects of piercement structures in the geological record. A fourth paper is included showing how analogue modeling has been used to understand a geological processes. Paper 1 presents experimental work on the segregation pattern forming in partially fluidized, bi-modal sized granular mixtures. The experiments are performed on a vertically oriented Hele-Shaw cell (HS-cell), the narrow box between two parallel glass plates, filled with glass beads. Gas flow is imparted through the bottom of the bed causing fluidization when the system is driven at velocities exceeding a critical limit. The co-existence of fluidized and static zones is termed partial fluidization and occurs when the imposed gas flux is insufficient to fluidize the whole system. Within the fluidized zones, the particles re-organize and the large particles sediment down while the small particles remains fluidized. The re-organization is caused by differences in the ratio of the weight to the viscous drag. A pipe-like pattern develops due to a feedback mechanism in which the flow is focused through domains dominated by large particles. The focusing of the flow localizes the fluidization, which in turn enables the sedimentation of the large grains. Paper 2 presents an experimental and analytical study of the critical conditions for fluidization of a dry granular material. Based on the experiments, we find that the critical velocity of fluidization scales almost linear with the ratio of the filling height to the inlet width. An analytic model for the pressure field is obtained by solving the Laplace equation for the velocity boundary conditions given by the geometry of the experimental setup. By integrating the vertical component of the

  10. A new fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1986-01-01

    A new nuclear reactor design based on the fluidized bed concept is proposed. A current design utilizes spherical fuel of slightly enriched Zircaloy-clad uranium dioxide fluidized by light water under pressure. The reactor is modular in system; therefore, any size reactor can be constructed from the basic standard modul. The reactor physics calculations show that reactivity increases with porosity to a maximum value and thereafter decreases. This produces inherent safety and eliminates the need for control rods and burnable poisons. The heat transfer calculations show that the maximum power extracted from the reactor core is not limited to the material temperature limits but to the maximum mass flow of coolant, which corresponds to the desired operating porosity. Design simplicity and inherent safety make it an attractive small reactor design. (Author) [pt

  11. CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input

    International Nuclear Information System (INIS)

    Kraft, Stephan; Kirnbauer, Friedrich; Hofbauer, Hermann

    2017-01-01

    Highlights: • We simulated an 8 MWth steam gasification system with the CPFD code Barracuda. • The prediction of the hydrodynamics depends strongly upon the chosen drag law. • The EMMS drag law predicted best the bed material recirculation and pressure drops. • The model of the DFB plant is able to predict the operation accurately. - Abstract: Dual fluidized bed (DFB) systems for biomass gasification consist of two connected fluidized beds with a circulating bed material in between. Inside such reactor systems, rough conditions occur due to the high temperatures and the movement of the bed material. Computational fluid dynamics calculations are a useful tool for investigating fluid dynamics inside such a reactor system. In this study, an industrial-sized DFB system was simulated with the commercial code CPFD Barracuda. The DFB system is part of the combined heat and power (CHP) plant at Güssing, situated in Austria, and has a total fuel input of 8 MW_t_h. The model was set up according to geometry and operating data which allows a realistic description of the hot system in the simulation environment. Furthermore, a conversion model for the biomass particles was implemented which covers the drying and devolatilization processes. Homogeneous and heterogeneous reactions were considered. Since drag models have an important influence on fluidization behavior, four drag models were tested. It was found that the EMMS drag model fits best, with an error of below 20%, whereas the other drag models produced much larger errors. Based on this drag law, further simulations were conducted. The simulation model correctly predicts the different fluidization regimes and pressure drops in the reactor system. It is also able to predict the compositions of the product and flue gas, as well as the temperatures inside the reactor, with reasonable accuracy. Due to the results obtained, Barracuda seems suitable for further investigations regarding the fluid mechanics of such

  12. Experimental studies on combustion of composite biomass pellets in fluidized bed.

    Science.gov (United States)

    Guo, Feihong; Zhong, Zhaoping

    2017-12-01

    This work presents studies on the combustion of Composite Biomass Pellets (CBP S ) in fluidized bed using bauxite particles as the bed material. Prior to the combustion experiment, cold-flow characterization and thermogravimetric analysis are performed to investigate the effect of air velocity and combustion mechanism of CBP S . The cold-state test shows that CBPs and bauxite particles fluidize well in the fluidized bed. However, because of the presence of large CBPs, optimization of the fluidization velocity is rather challenging. CBPs can gather at the bottom of the fluidized bed at lower gas velocities. On the contrary, when the velocity is too high, they accumulate in the upper section of the fluidized bed. The suitable fluidization velocity for the system in this study was found to be between 1.5-2.0m/s. At the same time, it is found that the critical fluidization velocity and the pressure fluctuation of the two-component system increase with the increase of CBPs mass concentration. The thermogravimetric experiment verifies that the combustion of CBPs is a first-order reaction, and it is divided into three stages: (i) dehydration, (ii) release and combustion of the volatile and (iii) the coke combustion. The combustion of CBPs is mainly based on the stage of volatile combustion, and its activation energy is greater than that of char combustion. During the combustion test, CBP S are burned at a 10kg/h feed rate, while the excess air is varied from 25% to 100%. Temperatures of the bed and flue gas concentrations (O 2 , CO, SO 2 and NO) are recorded. CBPs can be burnt stably, and the temperature of dense phase is maintained at 765-780°C. With the increase of the air velocity, the main combustion region has a tendency to move up. While the combustion is stable, O 2 and CO 2 concentrations are maintained at about 7%, and 12%, respectively. The concentration of SO 2 in the flue gas after the initial stage of combustion is nearly zero. Furthermore, NO concentration

  13. The Rheology of Acoustically Fluidized Sand

    Science.gov (United States)

    Conrad, J. W.; Melosh, J.

    2013-12-01

    The collapse of large craters and the formation of central peaks and peak rings is well modeled by numerical computer codes that incorporate the acoustic fluidization mechanism to temporarily allow the fluid-like flow of rock debris immediately after crater excavation. Furthermore, long runout landslides require a similar mechanism to explain their almost frictionless movement, which is probably also a consequence of their granular composition coupled with internal vibrations. Many different investigators have now confirmed the ability of vibrations to fluidize granular materials. Yet it still remains to fully describe the rheology of vibrated sand as a function of stress, frequency and amplitude of the vibrations in the sand itself. We constructed a rotational viscometer to quantitatively investigate the relation between the stress and strain rate in a horizontal bed of strongly vibrated sand. In addition to the macroscopic stain rate, the amplitude and frequency of the vibrations produced by a pair of pneumatic vibrators were also measured with the aid of miniaturized piezoelectric accelerometers (B&K 4393) whose output was recorded on a digital storage oscilloscope. The initial gathering of the experimental data was difficult due to granular memory, but by having the sand compacted vibrationally for 8 minutes before each run the scatter of data was reduced and we were able to obtain consistent results. Nevertheless, our major source of uncertainty was variations in strain rate from run to run. We find that vibrated sand flows like a highly non-Newtonian fluid, in which the shear strain rate is proportional to stress to a power much greater than one, where the precise power depends on the amplitude and frequency of the applied vibrations. Rapid flow occurs at stresses less than half of the static yield stress (that is, the yield stress when no vibration is applied) when strong vibrations are present. For a Newtonian fluid, such as water, the relation between

  14. Dissolved oxygen control in a coupled fluidized bed system

    International Nuclear Information System (INIS)

    Jones, R.M.; Melcer, H.

    1988-01-01

    The biological fluidized bed process is a modification of more conventional fixed film processes, such as the trickling filter, in which wastewater is passed upward through a bed of granular support medium, typically sand, at a sufficient velocity to expand or fluidize the medium. The granular medium provides a large surface area for the establishment of a biological film. The fluidized bed process was selected to investigate the treatment of coking plant wastewaters in view of the significant advantages offered in terms of reduced reactor volumes that result from the high biomass concentration maintained on the support medium. The technical feasibility of treating coal distillation condensates was evaluated during a 3-year study at Environment Canada's Wastewater Technology Centre (WTC). The feed to the pilot scale test system consisted of effluent from fixed and free leg ammonia stills at the by-product coke plant of Dofasco Inc. in Hamilton, Ontario. The pilot plant consisted of two fluidized bed reactors in series, coupled to provide carbon oxidation, nitrification and denitrification in the predenitrification operating mode. The anoxic denitrification reactor was 115 mm in diameter and the oxygenic nitrification reactor, 290 mm in diameter. The bed heights and reactor volumes were adjustable by relocation of the position of the sand/biomass wasting valve. The experimental objective of this research was to determine those operating conditions required to maintain stable nitrification and complete denitrification under both steady state and dynamic operating conditions. Details regarding operating, sampling and analytic procedures have been presented elsewhere. A specific operating problem existed relating to the control of the dissolved oxygen concentration in the oxygenic fluidized bed reactor, the solution of which forms the basis of the paper

  15. Heat transfer in a membrane assisted fluidized bed with immersed horizontal tubes

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Volkers, Sander; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    The effect of gas permeation through horizontally immersed membrane tubes on the heat transfer characteristics in a membrane assisted fluidized bed operated in the bubbling fluidization regime was investigated experimentally. Local time-averaged heat transfer coefficients from copper tubes arranged

  16. Aerosol sampling of an experimental fluidized bed coal combustor

    International Nuclear Information System (INIS)

    Newton, G.J.; Peele, E.R.; Carpenter, R.L.; Yeh, H.C.

    1977-01-01

    Fluidized bed combustion of coal, lignite or other materials has a potential for widespread use in central electric generating stations in the near future. This technology may allow widespread use of low-grade and/or high sulfur fuels due to its high energy utilization at low combustion temperature and its ability to meet emission criteria by using limestone bed material. Particulate and gaseous products resulting from fuel combustion and fluidization of bed material are discharged and proceed out the exhaust clean-up system. Sampling philosophy, methodology and equipment used to obtain aerosol samples from the exhaust system of the 18-inch fluidized bed combustor (FBC) at the Morgantown Energy Research Center (MERC) are described. Identification of sampling sites led to design of an aerosol sampling train which allowed a known quantity of the effluent streams to be sampled. Depending on the position, a 15 to 25 l/min sample is extracted from the duct, immediately diluted and transferred to a sampling/aging chamber. Transmission and scanning electron microscope samples, two types of cascade impactor samples, vapor-phase and particulate-phase organic samples, spiral duct aerosol centrifuge samples, optical size measurements and filter samples were obtained. Samples are undergoing physical, chemical and biological tests to help establish human health risk estimates for fluidized bed coal combustion and to provide information for use in design and evaluation of control technologies

  17. Fluidized bed incineration of transuranic contaminated waste

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1978-01-01

    A 9 kg/hr pilot scale fluidized bed incinerator is now being used for burning various types of radioactive waste at Rocky Flats Plant. General solid combustible waste containing halogenated materials is burned in a fluidized bed of sodium carbonate for in situ neutralization of thermally generated acidic gases. A variety of other production related materials has been burned in the incinerator, including ion exchange resin, tributyl phosphate solutions, and air filters. Successful operation of the pilot plant incinerator has led to the design and construction of a production site unit to burn 82 kg/hr of plant generated waste. Residues from incinerator operations will be processed into glass buttons utilizing a vitrification plant now under development

  18. Thermal denitrification of evaporators concentrates in reactor with fluidized bed

    International Nuclear Information System (INIS)

    Brugnot, C.

    1993-11-01

    As part of the treatments of liquid wastes coming from the Marcoule reprocessing plant, the study of a thermal denitrification process for evaporator concentrates has been chosen by the CEA/CEN Cadarache: the fluidized-bed calcination. This work presents the study of a calcination pilot-plant for wastes with a very high sodium nitrate content. After a reactional analysis carried out in a thermobalance on samples which are representative of the fluidized-bed compounds, the perfecting of many of the plant parameters - such as the solution injection system - was carried out on a scale-model at first. Then, it was verified on the pilot-plant, and some experiments have been carried out. A mathematical model for the particle growth inside the fluidized-bed is proposed. (author). 179 refs., 65 figs., 23 tabs

  19. Defluidization in fluidized bed gasifiers using high-alkali content fuels

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk

    2016-01-01

    samples,agglomeration could be attributed to viscous silicate melts formed from reaction of inorganic alkalineand alkali earth species with silica from the bed particles. A mathematical model that addresses the defluidization behavior of alkali-rich samples was developed based on the experiments performed...... and calcium, which may form viscous melts that adhere on the surface of the colliding bed particles and bind them to form agglomerates. In this paper, studies were made to understand the behavior of inorganic elements (mainly K, Si and Ca) on agglomeration and de-fluidization of alkali rich bed...... in the bench-scale fluidized bed reactor as well as on results from literature. The model was then used topredict the de-fluidization behavior of alkali-rich bed material in a large-scale LTCFB gasifier....

  20. Fluidization of Dried Wastewater Sludge.

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2007-01-01

    Roč. 178, 3 (2007) , s. 166-172 ISSN 0032-5910 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidization characteristics * multiphase reactors * dried stabilized wastewater sludge Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.130, year: 2007

  1. Temperature and pressure distributions in a 400 kW{sub t} fluidized bed straw gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F. [Technical Univ. of Nova Scotia, Halifax (Canada)

    1993-12-31

    The temperature and pressure distribution characteristics of a 400 kW (thermal) dual-distributor type fluidized bed straw gasifier were investigated. The effects of the bed height, equivalence ratio (actual air-fuel ratio:stoichiometric air-fuel ratio) and fluidization velocity on the temperature and pressure variations in the gasifier were studied. Generally, the bed temperature reached the steady state condition within 15--20 minutes. The average temperature of the dense bed ranged from 649{degrees}C to 875{degrees}C depending on the levels of operating parameters used. The bed temperature increased linearly with increases in the equivalence ratio, higher bed temperatures were observed with lower bed height and no clear trend for the bed temperature with respect to variations in fluidization velocity was observed. The bed height, equivalence ratio and fluidization velocity affected the pressure drop in the fluidized bed gasifier. Increasing the fluidization velocity and/or decreasing the equivalence ratio resulted in higher pressure drops in the dense bed and the freeboard regions whereas increasing the bed height increased the pressure drop only in the dense bed.

  2. Combustion and co-combustion of biomass in a bubbling fluidized bed boiler

    NARCIS (Netherlands)

    Khan, A.A.

    2007-01-01

    This PhD dissertation concerns the study of different aspects of biomass (co)-combustion in small-scale fluidized bed boilers for heat generation. The most renowned gaseous emissions from fluidized bed combustion, namely, CO and NO, are investigated with the help of experimental and theoretical

  3. Bioreactors with Light-Beads Fluidized Bed: The Voidage Function and its Expression

    Directory of Open Access Journals (Sweden)

    Iliev Vasil

    2014-12-01

    Full Text Available Light-beads fluidized bed bioreactors with gel particles are an attractive alternative for the implementation of a system with immobilized cells. They have a number of advantages: soft operating conditions, ability to work in an ideal mixing regime, intensification of heat- and mass transfer processes in the fermentation system. The expansion characteristics of the fluidized bed were investigated in the present work. The fluidized bed expansion was described using the voidage function. It was found that the voidage can be described by nonlinear regression relationships and the regression coefficients were a function of the particles parameters.

  4. Dynamic simulation of industrial Fluidized-bed Catalytic Cracking - FCC unit

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Argimiro R.; Neumann, Gustavo A.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail: arge@enq.ufrgs.br; gneumann@enq.ufrgs.br; jorge@enq.ufrgs.br; Santos, Marlova G. [PETROBRAS S.A., Canoas, RS (Brazil). Refinaria Alberto Pasqualini]. E-mail: marlova@petrobras.com.br

    2000-07-01

    In this work a mathematical model for the dynamic simulation of the Fluidized-bed Catalytic Cracking (FCC) Reactor, to be used in the analysis, control, and optimization of this system is developed. Based on the full range of published data in FCC performance and kinetic rates, and adapted to the industrial unit of the PETROBRAS' Alberto Pasqualini Refinery (REFAP), an integrated dynamic model is build up. The model is sufficiently complex to capture the major dynamics effects that occur in this system. The regenerator is modeled as emulsion and bubble phases that exchange mass and heat. The riser is modeled as an adiabatic plug flow reactor. The fluid dynamic is taking into account for the catalyst circulation, and the dynamics of the gas phase and the riser are also considered into the model. The model, represented by a non-linear system of differential-algebraic equations, was written in language C and implemented in MATLAB/SIMULINK. The results are compared with the data obtained from the industrial plant of REFAP. (author)

  5. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment.

    Science.gov (United States)

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung

    2005-01-01

    In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.

  6. Effect of bed particles to combustion of gases in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, R.; Wallen, V.; Etelaeaho, R.; Correia, S. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-10-01

    The objective of this project was to obtain experimental data on effects of sand particles to the combustion of gases. The effect of the surface area of the particles was tested using different sized particles. The fluidized bed reactor used in these experiments was a stainless-steel tube with an internal diameter of 42 mm surrounded by an electric heater. The test rig was built in the Laboratory of Energy and Process Engineering at Tampere University of Technology. In order to elucidate the possible changes of particle surface, microscopic and porosimetric studies were conducted with both fresh bed particles and used bed particles. These measurements indicate that carbon monoxide significantly reacts with oxygen in the particulate or emulsion phase of a fluidized bed, if the residence time is long enough. The reaction rate depends mainly on temperature, air coefficient, residence time and particle size of the solids. It seems that the combustion enhances if the average particle size increases. Whether this is caused by increased free path length or reduced specific surface area of the bed is yet unknown. The first might be more probable cause because the majority of reactions often took place in the freeboard right above the bed. It was clear that the bed hindered proper combustion in several cases. (orig.)

  7. Experimental study of the drying in dense fluidized beds of a synthetic mud coated with support particulates; Etude experimentale du sechage en lit fluidise dense d'une boue synthetique enrobee sur des particules supports

    Energy Technology Data Exchange (ETDEWEB)

    Gode, C.; Shakourzadeh, K. [Universite de Technologie de Compiegne, L.G.P.I., 60 (France)

    2001-07-01

    This article presents the results of an experimental study of a new drying process for muddy materials and based on the fluidization technique. The granular phase has been obtained by the coating with mud of a porous mineral support, inert and recyclable in the process. Activated porous particulates of alumina (2-5 mm) have been chosen because of their heat transfer properties. A first part of the experimental study concerns the drying process. The second part concerns the attrition and elutriation mechanisms. The experimental measurements have been performed with a laboratory fluidized column (internal diameter = 150 mm) and with a fluidized column (internal diameter = 400 mm) from a semi-industrial facility. The air velocity and the drying temperature are the main adjustment parameters. The working temperatures have been fixed between 20 and 150 deg. C. (J.S.)

  8. Coexistence of solidlike and fluidlike states in a deep gas-fluidized bed

    NARCIS (Netherlands)

    Wang, J.; Hoef, van der M.A.; Kuipers, J.A.M.

    2010-01-01

    Characterizing regime transition in gas-fluidized beds is of fundamental importance for the successful applications of fluidization technology. In this study, we show that a state-of-the-art two-fluid model has the ability to correctly predict the transition from packed bed to fully bubbling

  9. Human circulating monocytes internalize 125I-insulin in a similar fashion to rat hepatocytes: relevance to receptor regulation in target and nontarget tissues

    International Nuclear Information System (INIS)

    Grunberger, G.; Robert, A.; Carpentier, J.L.; Dayer, J.M.; Roth, A.; Stevenson, H.C.; Orci, L.; Gorden, P.

    1985-01-01

    Circulating monocytes bind 125 I-insulin in a specific fashion and have been used to analyze the ambient receptor status in humans. When freshly isolated circulating monocytes are incubated with 125 I-insulin and examined by electron microscopic autoradiography, approximately 18% of the labeled material is internalized after 15 minutes at 37 degrees C. By 2 hours at 37 degrees C, approximately one half of the 125 I-insulin is internalized. Internalization occurs also at 15 degrees C but at a slower rate. Furthermore, the monocytes bind and internalize 125 I-insulin in a manner that mirrors that of major target tissues, such as rat hepatocytes. These data suggest that the insulin receptor of the circulating monocyte might be regulated by adsorptive endocytosis in a manner analogous to that of target tissue, such as the liver

  10. Coal pyrolysis in a continuous fluidized bed - process development studies

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, N N; Akmal, M A.K.; Vaidyeswaran, R

    1981-10-01

    The paper deals with the development of a process development unit (PDU) for the fluid bed pyrolysis of non-caking slack coal obtained from Singareni and Talcher coalfields. Preheated air is used as the fluidizing medium. It is necessary to avoid its maldistribution by a suitable design of the gas distributor. In this regard perforated conical distributors appear to play an important role. In the low temperature carbonization of coal an operation around 500 C gives optimum yields of char and tar of desirable quality. Carbonization reactions are generally completed within about 20 min of the feed entry into the fluidized bed and the char attains an equilibrium volatile matter content. Since air is used as the fluidizing medium carbonization gas is diluted with nitrogen and non-combustibles. The heating value of the gas is low. (5 refs.)

  11. Visual observations of individual particle behaviour in gas and liquid fluidized beds

    NARCIS (Netherlands)

    Hartholt, G.P; Hoffmann, A.C; Janssen, L.P.B.M.

    The behaviour of the individual particles in dense gas and liquid fluidized beds and the behaviour of the jetsam particles in gas fluidized beds containing binary mixtures of different density group B powders has been observed. These visualizations have been made by means of an optical probe fitted

  12. Fuel gas production from renewable biomass in a circulating fluidized bed as a bases for zero-CO{sub 2} power generation in a combined-cycle power plant; Brenngaserzeugung aus nachwachsenden Biomassen in der zirkulierenden Wirbelschicht als Grundlage fuer eine CO{sub 2}-neutrale Stromerzeugung in einem GUD Kraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, J; Loeffler, J; Hirschfelder, H [Lurgi Energie und Umwelt GmbH, Frankfurt am Main (Germany)

    1997-12-31

    A pilot circulating fluidized bed plant in the range of 1.7 MW{sub th} has been operated successfully with fossil fuels, residues, wood bark and wood chips, reet grass and sorghum pellets. Depending on the specifications for product gas and fuel quality, air, oxygen-enriched air or oxygen/steam mixtures are used as gasification agents in the gas generator. (orig) [Deutsch] In einer ZWS-Pilotanlage mit ca. 1.7 MW thermischer Leistung wurden bisher ausser fossilen und Abfallbrennstoffen auch Rindenabfaelle, Holzschnitzel, Schilfgras und Sorghumpellets erfolgreich zur Brenngaserzeugung eingesetzt. Entsprechend den Anforderungen an das Produktgas und der Brennstoffqualitaet wird Luft, sauerstoffangereicherte Luft oder Sauerstoff/Dampfgemische als Vergasungsmittel im ZWS-Gaserzeuger eingesetzt. (orig)

  13. Fuel gas production from renewable biomass in a circulating fluidized bed as a bases for zero-CO{sub 2} power generation in a combined-cycle power plant; Brenngaserzeugung aus nachwachsenden Biomassen in der zirkulierenden Wirbelschicht als Grundlage fuer eine CO{sub 2}-neutrale Stromerzeugung in einem GUD Kraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, J.; Loeffler, J.; Hirschfelder, H. [Lurgi Energie und Umwelt GmbH, Frankfurt am Main (Germany)

    1996-12-31

    A pilot circulating fluidized bed plant in the range of 1.7 MW{sub th} has been operated successfully with fossil fuels, residues, wood bark and wood chips, reet grass and sorghum pellets. Depending on the specifications for product gas and fuel quality, air, oxygen-enriched air or oxygen/steam mixtures are used as gasification agents in the gas generator. (orig) [Deutsch] In einer ZWS-Pilotanlage mit ca. 1.7 MW thermischer Leistung wurden bisher ausser fossilen und Abfallbrennstoffen auch Rindenabfaelle, Holzschnitzel, Schilfgras und Sorghumpellets erfolgreich zur Brenngaserzeugung eingesetzt. Entsprechend den Anforderungen an das Produktgas und der Brennstoffqualitaet wird Luft, sauerstoffangereicherte Luft oder Sauerstoff/Dampfgemische als Vergasungsmittel im ZWS-Gaserzeuger eingesetzt. (orig)

  14. Experimental results of combustion and desulphurization in fluidized bed. Implementation opportunities

    International Nuclear Information System (INIS)

    Dragos, L.; Jinescu, G.; Scarlat, N.

    1996-01-01

    Possibilities of both stationary fluidized bed combustion (SFBC) and circulating fluidized bed combustion (CFBC) technologies for desulfurization of Romanian coal-fired power plants have been studied since the 70's. The results of research on a 2 MWh SFBC semi-industrial pilot hot water boiler and an 1 MWh CFBC pilot plant are presented. 4 sorts of lignite (3 Romanian and 1 Albanian) are used in the study. The combustion efficiencies for SFBC are between 82 - 84% and for CFBC - between 84 - 87%. The heat transfer coefficients for lignite and peat coal have been determined for different zones, different levels of ash recirculation rate and various operating loads. Experiments with 2 sorts of sorbents: dolomite and limestone, under different temperature conditions and at Ca/S molar ratio 0.5 - 3.5 have been carried out. The temperature range for the maximum values of desulfurization efficiency is 840-870 o C for limestone and 820-860 o C for dolomite. The following efficiency values are obtained for lignite in the SFBC pilot plant: 1) over 80%, when using dolomite as a sorbent and the Ca/S molar ratio is greater than 2.5; 2) 75 - 90%, when limestone has been used and the Ca/S molar ratio is in the range 2-3. Desulfurization efficiency in CFBC plant for lignite using limestone is 80-93% for Ca/S ratio between 2 and 3. The necessity to commission a demonstrative installation with low pollutant emissions is pointed out. The Comanesti Power Plant has been chosen for this purpose. An old 75 t/h steam boiler will be replaced with 45 MWh CFBC boiler for combined heat and steam production. The overall estimated investment costs for this plant are about 6 million $US. 1 tabs., 5 refs

  15. Retrofit design of rice husk feeding system in the production of amorphous silica ash in a pilot scale fluidized bed combustor

    International Nuclear Information System (INIS)

    Abdul, A.; Rozainee, M.; Anwar, J.; Wan Alwi, R.S.

    2010-01-01

    Full text: Rice husk is among the most important recovery resources for silica that is produced annually in huge quantities in many countries such as Malaysia which produces 2.38 (MT) of rice paddy. Rice husks accounts for 14-35 % of the weight of the paddy harvested, depending on the paddy variety and because of its abundance it poses serious environmental problems in the rice producing countries. Therefore, the thermo-chemical conversion of rice husks to useful silica ash by fluidized bed combustion is the proven and cost-effective technology for converting the renewable waste husks by making commercial use of this rice husk ash because of its self sustaining ability. However, feeding of rice husk into the reactor bed has become a difficult problem hindering the production of amorphous silica. This is due to the poor penetration and low bulk density as well as the flaky, abrasive and joined nature of rice husk. Most of the researches into fluidized bed combustion are on laboratory or bench scale and none had discussed pilot scale combustion of rice husk into amorphous silica. A recent attempt to solve this feeding problem from an experimental investigation in a bench-scale culminates into a pilot-scale fluidized bed combustor designed with a combined screw conveyor and an inclined pneumatic feeding by direct injection, yet the problem persists. This paper presents a retrofit design of the existing 0.5 m internal diameter pilot scale fluidized bed combustor by the use of combined screw feeding system. It is envisaged that at the end of the experimental investigation the retrofit design will address the problem associated with rice husk feeding in bubbling fluidized bed combustors. (author)

  16. Mathematical model for solid fuel combustion in fluidized bed

    International Nuclear Information System (INIS)

    Kostikj, Zvonimir; Noshpal, Aleksandar

    1994-01-01

    A mathematical model for computation of the combustion process of solid fuel in fluidized bed is presented in this work. Only the combustor part of the plant (the fluidized bed and the free board) is treated with this model. In that manner, all principal, physical presumption and improvements (upon which this model is based) are given. Finally, the results of the numerical realisation of the mathematical model for combustion of minced straw as well as the results of the experimental investigation of a concrete physical model are presented. (author)

  17. Atmospheric fluidized bed coal combustion research, development and application

    CERN Document Server

    Valk, M

    1994-01-01

    The use of fluidized bed coal combustion technology has been developed in the past decade in The Netherlands with a view to expanding the industrial use of coal as an energy supply. Various research groups from universities, institutes for applied science and from boiler industries participated and contributed to this research area. Comprehensive results of such recent experimentation and development work on atmospheric fluidized bed combustion of coal are covered in this volume. Each chapter, written by an expert, treats one specific subject and gives both the theoretical background as well a

  18. Multiphase Flow and Fluidization Continuum and Kinetic Theory Descriptions

    CERN Document Server

    Gidaspow, Dimitri

    1994-01-01

    Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and i

  19. Effects of pressure and type of gas on particle-particle interaction and the consequences for gas-solid fluidization behaviour

    NARCIS (Netherlands)

    Piepers, H.W.; Cottaar, E.J.E.; Verkooijen, A.H.M.; Rietema, K.

    1984-01-01

    The fluidization behavior of cracking catalyst was studied at pressures of 1-15 bar with different fluidization gases (Ar, N2, H2). A no. of parameters of both the homogeneous and heterogeneous fluidized bed were examd. exptl. The exptl. results reveal that the min. fluidization velocity is

  20. Visualization of bed material movement in a simulated fluidized bed heat exchanger by neutron radiography

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Takenaka, Nobuyuki; Matsubayashi, Masahito

    1999-01-01

    The bulk movement of fluidized bed material was visualized by neutron radiography by introducing tracers into the bed materials. The simulated fluidized bed consisted of aluminum plates, and the bed material was sand of 99.7% SiO 2 (mean diameter: 0.218 mm, density: 2555 kg/m 3 ). Both materials were almost transparent to neutrons. Then the sand was colored by the contamination of the sand coated by CdSO 4 . Tracer particles of about 2 mm diameter were made by the B 4 C, bonded by the vinyl resin. The tracer was about ten times as large as the particle of fluidized bed material, but the traceability was enough to observe the bed-material bulk movement owing to the large effective viscosity of the fluidized bed. The visualized images indicated that the bubbles and/or wakes were important mechanism of the behavior of the fluidized bed movement

  1. Response characteristics of probe-transducer systems for pressure measurements in gas-solid fluidized beds: how to prevent pitfalls in dynamic pressure measurements

    NARCIS (Netherlands)

    Ommen, van J.R.; Schouten, J.C.; Stappen, van der M.L.M.; Bleek, van den C.M.

    1999-01-01

    It is long known already that the pressure probe–transducer systems applied in gas–solid fluidized beds can distort the measured pressure fluctuations. Several rules of thumb have been proposed to determine probe length and internal diameter required to prevent this. Recently, Xie and Geldart [H.-Y.

  2. Rethinking International Migration of Human Capital and Brain Circulation: The Case of Chinese-Canadian Academics

    Science.gov (United States)

    Blachford, Dongyan Ru; Zhang, Bailing

    2014-01-01

    This article examines the dynamics of brain circulation through a historical review of the debates over international migration of human capital and a case study on Chinese-Canadian academics. Interviews with 22 Chinese-Canadian professors who originally came from China provide rich data regarding the possibilities and problems of the contemporary…

  3. IEN project - Fluidized bed burner

    International Nuclear Information System (INIS)

    1985-08-01

    Due to difficulties inherent to the organic waste storage from laboratories and institutes which use radioactive materials for scientific researches, the Nuclear Facilities Division (DIN/CNEN); elaborated a project for constructing a fluidized burner, in laboratory scale, for burning the low level organic radioactive wastes. The burning system of organic wastes is described. (M.C.K.) [pt

  4. Chebyshev super spectral viscosity method for a fluidized bed model

    International Nuclear Information System (INIS)

    Sarra, Scott A.

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations

  5. Fluidization behavior of wood/sand mixtures

    NARCIS (Netherlands)

    Ramakers, B.J.; de Ridder, R; Kerkhof, P.J.A.M.

    2004-01-01

    In conversion of biomass to secondary energy carriers, several routes are possible, such as gasification, combustion and pyrolysis. In many of these processes it is necessary or advantageous to dry the biomass before further processing. For wooden biomass, fluidized bed drying in superheated steam

  6. The relationship of fluidized bed technology to the U.S. Clean Coal Technology demonstration program

    International Nuclear Information System (INIS)

    Weth, G.; Geffken, J.; Huber, D.A.

    1991-01-01

    Fluidized Bed Combustion projects (both AFBCs and PFBCs) have a prominent role in the US DOE Clean Coal Technology (CCT) Program. This program has the successful commercialization of these technologies as its primary objective and this is the basic criterion for government funding and participation in the development and demonstration of the technologies. Under the CCT program the US DOE is actively involved in the development and operation of three Fluidized Bed Technology projects, NUCLA, TIDD, and SPORN, and is in the negotiation stage on others, Dairyland, Nichols and Tallahassee. All of these projects, along with the operating information on fluidized beds in the industrial sector, will provide a basis for evaluating future utilization of Fluidized Bed Technology in the market place. Impacting upon further utilization will be the time-frame and the Clean Air Act Amendments of 1990. This paper presents the results of a study to ascertain the commercial readiness of Fluidized Bed Technology to meet the emissions and time-frame requirements of the Clean Air Act Amendments of 1990. Specifically addressed are: Commercialization criteria/factors which candidate and/or existing CCTs must achieve in order to gain market acceptance. The status of Fluidized Bed Technology in achieving these commercialization criteria for market acceptance (industrial and utility) consistent with the time frame of the Clean Air Act Amendments of 1990. Recommendations of commercialization criteria for future fluidized bed CCT demonstration projects

  7. Gas-solid hydroxyethylation of potato starch in a stirred vibrating fluidized bed reactor

    NARCIS (Netherlands)

    Kuipers, N.J M; Stamhuis, Eize; Beenackers, A.A C M

    A novel reactor for modifying cohesive C-powders such as in the gas-solid hydroxyethylation of semidry potato starch is characterized, the so-called stirred vibrating fluidized bed reactor. Good fluidization characteristics are obtained in this reactor for certain combinations of stirring and

  8. Experimental investigation of attrition resistance of zeolite catalysts in two particle gas-solid-solid fluidization system

    International Nuclear Information System (INIS)

    Nawaz, Z.; Ziaoping, T.; Shu, Q.; Wei, F.; Naveed, S.

    2010-01-01

    In the study of mechanical degradation of 34 ZSM-5 and SAPO catalysts, using the gas jet attrition - ASTM standard fluidized bed test (D-5757), the effect of particle size and its quantitative analysis in co-fluidization environment was investigated on the air jet index (AJI) basis. In gas-solid-solid fluidized bed reactors (GSS-FBR), two different sized particles were fluidized under isothermal conditions. In case of ZSM-5 and SAPO-34, significant attrition resistance was observed, which was attributed to small pore size and specific structural strength of the mobile framework image (MFI) and chabasite (CHA) structures, respectively. The optimum AJI for SAPO-34 and ZSM-5 (of particle size 0.2 mm) in GSS-fluidization system was observed to be 0.0118 and 0.0062, respectively. In co-fluidization, deviations from Gwyn relationship were observed due to change in impact of collision. Therefore, zeolites are recommended as suitable catalysts or catalytic supports (for doping of expensive metals) and for commercial use in GSS-FBR. (author)

  9. Effect of Fluidized Bed Stirring on Drying Process of Adhesive Particles

    Directory of Open Access Journals (Sweden)

    P. Hoffman

    2017-04-01

    Full Text Available This paper presents an attempt to optimize fluidized bed drying of wet and adhesive particles (with an initial diameter of about 580 mm with the use of stirring, and discusses the influence of stirring on the total drying time. The goal was to demonstrate the positive effect of stirring a fluidized bed to the drying time, to find the optimal parameters (stirrer design, speed, and size. Experiments were conducted on a drying chamber in batch operation. The objective was to evaluate the effect of stirring on the total drying time. The drying chambers were 85 mm, 100 mm, and 140 mm in diameter. An optimal stirrer shape and speed were specified. Our arrangement of the fluidized bed resulted in a decrease in drying time by up to 40 %.

  10. Production of renewable energy from biomass and waste materials using fluidized bed technologies

    International Nuclear Information System (INIS)

    Rozainee, M.; Rashid, M.; Looi, S.

    2000-01-01

    Malaysian industries generate substantial amount of biomass and waste materials such as wastes from agricultural and wood based industries, sludge waste from waste-water treatment plants and solid waste from municipals. Incinerating these waste materials not only produces renewable energy, but also solving their disposal problems. Fluidized bed combustors are widely used for incinerating these biomass materials. The significant advantages of fluidized bed incineration include simple design, efficient, and ability to reduce air pollution emissions. This paper discusses the opportunities and challenges of producing the green energy from biomass materials using the fluidized bed technologies. (Author)

  11. Utilization of salt ammoniacates in fluidized beds in energy conversion thermochemical systems

    International Nuclear Information System (INIS)

    Romero, Jesus

    1984-01-01

    This research thesis notably reports the design and development of a thermochemical storage device involving equilibria of thermal decomposition of ammoniacates of strontium chlorides and calcium chloride in fluidized beds. The experimental study of this device allowed operating conditions and the most important concomitant effects of fluidization to be highlighted. The measured thermal exchange coefficient is about twenty times the measured value in equivalent devices using fixed beds. An irreversibility of the operation has been noticed, and seems to be associated with the irreversible change of grain size of solids. The author also reports a study of the properties of ammoniacates of metallic salts, and of the influence of fluidization on the performance of energy conversion thermochemical systems [fr

  12. PENGARUH MASSA JENIS PARTIKEL DAN KETINGGIAN PARTIKEL TERHADAP FENOMENA FLUIDISASI DALAM FLUIDIZED BED DENGAN MENGGUNAKAN CFD

    Directory of Open Access Journals (Sweden)

    Rosyida Permatasari

    2016-12-01

    Full Text Available Fenomena fluidisasi pada fluidized bed yaitu kecepatan minimum dan tekanan statis partikel merupakan hal fenomena yang penting dalam desain fluidized bed. Fenomena-fenomena tersebut dipengaruhi oleh banyak faktor dalam fluidized bed diantaranya massa jenis dan tinggi partikel di dalam fluidized bed. Penelitian ini menggunakan jenis partikel yang berbeda-beda dan rasio ketinggian partikel terhadap diameter fluidized bed (H/D dengan menggunakan Computational Fluid Dynamics. Partikel yang digunakan adalah partikel dengan jenis Geldart B yaitu glass beads (ρ=2600 kg/m3, ground walnut shell (ρ=1200 kg/m3 dan ground corncob (ρ=800 kg/m3, sedangkan rasio ketinggian partikel yang digunakan yaitu 0.5, 1, 1.5, 2, dan 2.5. Hasil penelitian menunjukkan bahwa massa jenis partikel berbanding lurus dengan kecepatan minimum fluidisasi dan ketinggian partikel tidak mempengaruhi kecepatan minimum fluidisasi.

  13. Carbon Shale Combustion in the Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    Olek Małgorzata

    2014-06-01

    Full Text Available The purpose of this article is to present the possibilities of coal shale combustion in furnaces with bubbling fluidized bed. Coal shale can be autothermally combusted in the fluidized bed, despite the low calorie value and high ash content of fuel. Established concentrations of CO (500 ppm and VOC (30 mg/m3 have indicated a high conversion degree of combustible material during combustion process. Average concentrations of SO2 and NOx in the flue gas were higher than this received from the combustion of high quality hard coal, 600 ppm and 500 ppm, respectively. Optional reduction of SO2 and NOx emission may require the installation of flue gas desulphurization and de-NOx systems.

  14. Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-06-30

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality

  15. Assessment of motion-induced fluidization of dense pyroclastic gravity currents

    Directory of Open Access Journals (Sweden)

    P. Salatino

    2005-06-01

    Full Text Available The paper addresses some fundamental aspects of the dynamics of dense granular flows down inclines relevant to pyroclastic density currents. A simple mechanistic framework is presented to analyze the dynamics of the frontal zone, with a focus on the establishment of conditions that promote air entrainment at the head of the current and motion-induced self-fluidization of the flow. The one-dimensional momentum balance on the current along the incline is considered under the hypothesis of strongly turbulent flow and pseudo-homogeneous behaviour of the two-phase gas-solid flow. Departures from one-dimensional flow in the frontal region are also analyzed and provide the key to the assessment of air cross-flow and fluidization of the solids in the head of the current. The conditions for the establishment of steady motion of pyroclastic flows down an incline, in either the fluidized or «dry» granular states, are examined.

  16. Steam reforming of heptane in a fluidized bed membrane reactor

    Science.gov (United States)

    Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Elnashaie, Said S. E. H.

    n-Heptane served as a model compound to study steam reforming of naphtha as an alternative feedstock to natural gas for production of pure hydrogen in a fluidized bed membrane reactor. Selective removal of hydrogen using Pd 77Ag 23 membrane panels shifted the equilibrium-limited reactions to greater conversion of the hydrocarbons and lower yields of methane, an intermediate product. Experiments were conducted with no membranes, with one membrane panel, and with six panels along the height of the reactor to understand the performance improvement due to hydrogen removal in a reactor where catalyst particles were fluidized. Results indicate that a fluidized bed membrane reactor (FBMR) can provide a compact reformer for pure hydrogen production from a liquid hydrocarbon feedstock at moderate temperatures (475-550 °C). Under the experimental conditions investigated, the maximum achieved yield of pure hydrogen was 14.7 moles of pure hydrogen per mole of heptane fed.

  17. Predicting freeboard heat transfer by using empirical correlations in high temperature fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Biyikli, Suleyman [Okan University Tuzla Kampusu, Faculty of Engineering and Architecture (Turkey)], email: suleyman.biyikli@okan.edu.tr

    2011-07-01

    This article investigates the heat transfer characteristics for horizontal tubes in a freeboard region of high temperature fluidized beds. The freeboard entrainment heights are calculated by using empirical correlations described in detail and used in estimating the heat transfer coefficients from a horizontal tube occurring by radiation, gas convection, and particle contact mechanisms in high temperature a fluidized bed combustor. The total average of these coefficients around a horizontal tube carrying water in high temperature fluidized beds can be written as the sum of convective, radiative, and fluidized-particle contact heat transfer coefficients and these correlations are tested against certain published experimental measurements. In full agreement with this data, it was observed that the calculated heat transfer coefficients increased with increasing gas velocity at a given tube elevation and they decreased and approached the values of single-phase gas convection and radiation with increasing tube elevation in the freeboard region while the relative contribution of radiation increases and approaches a constant fraction of total heat transfer.

  18. Formation and destruction mechanisms of nitrogen oxides during coal combustion in circulating fluidized beds; Mecanismes de formation et de destruction des oxydes d`azote lors de la combustion du charbon en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Borrel, G.; Lecuyer, I. [Universite du Haut-Rhin, 68 - Mulhouse (France)

    1997-01-01

    Formation and reduction of nitrogen oxides (NO and N{sub 2}O) during coal combustion in a circulating fluidized bed (CFBC) are very complicated and yet badly known. The aim of the present study was to better characterize these phenomena on a small-sized experimental unit (reactor diameter: 5 cm), with the possibility to re-inject the solids in the bottom of the furnace, as in a real industrial unit. This should allow then to develop a numerical set of chemical reactions involving the nitrogen oxides. The experimental results showed that coal ash plays a great role in reducing nitrogen oxides, the determining parameter being the quantity of unburnt carbon remaining in the ash. The study then detailed the interaction between nitrogen oxides and de-volatilized (char) according to the temperature, NO{sub x} concentration and the mass of solid. In the absence of oxygen small quantities of char can very significantly reduce NO as well as N{sub 2}O. It was possible to establish destruction kinetics on these particles, and orders of reaction could be determined versus the NO{sub x} concentration and the char particle mass (heterogeneous phase chemical reactions). Then, the coal pyrolysis study enabled to identify the products released during coal devolatilization and thermogravimetric analyses displayed several successive weight losses due CO, CO{sub 2} and CH{sub 4} releases, during a linear temperature increase. Lastly coal combustion was studied in the small pilot with variable experimental conditions. Using the previous experimental was studied in the small pilot with variable experimental conditions. Using the previous experimental results, a model was developed to calculate NO{sub x} concentrations during the coal combustion and validated. The NO and N{sub 2}O contents calculated are thoroughly correlated with the experimental data whatever the injection carbon/oxygen ratio is. (author) 96 refs.

  19. Fluidization Behavior of Oil-Contaminated Sand.

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar; Pohořelý, Michael

    2007-01-01

    Roč. 61, 2 (2007) , s. 93-97 ISSN 0366-6352 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidized bed * hydrodynamics * oil pollution Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.367, year: 2007

  20. Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans

    International Nuclear Information System (INIS)

    Ranjbaran, M.; Zare, D.

    2013-01-01

    The performance of microwave-assisted fluidized bed drying of soybeans was simulated (using a previously validated mathematical model) and analyzed based on the first- and second law of thermodynamics. The energy and exergy analysis were carried out for several drying conditions. The effects of inlet air temperature, microwave power density, bed thickness and inlet air velocity on the efficiencies and inefficiencies of drying process have been simulated and discussed. Generally, application of microwave energy during fluidized bed drying enhanced the exergy efficiency of drying process. However, the results showed that it was more efficient not to apply microwave energy at the first stage of fluidized bed drying process. The application of higher levels of drying air temperature led in higher exergy efficiencies. The values of mean relative deviations for the predictions of efficiencies and inefficiencies of drying process were less than 14%, compared with those calculated using experimental data. - Highlights: • Introducing a mathematical model to predict the efficiency of microwave-assisted fluidized bed dryers. • Energy and exergy analysis in microwave-assisted fluidized bed drying of grains. • Providing practical recommendations for efficient use of microwave power during drying

  1. Co-combustion of risk husk with coal in a fluidized bed

    International Nuclear Information System (INIS)

    Ghani, A.K.; Alias, A.B.; Savory, R.M.; Cliffe, K.R.

    2006-01-01

    Power generation from biomass is an attractive technology which utilizes agricultural residue waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk) was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and CO emissions were studied and compared with those for pure coal combustion. Biomass waste with up to 70% mass fraction can be co-combusted in a fluidized bed combustor designed for coal combustion with a maximum drop of efficiency of 20% depending upon excess air levels. CO levels fluctuated between 200-700 ppm were observed when coal is added. It is evident from this research that efficient co-firing of rice husk with coal can be achieved with minimum modification of existing coal-fired boilers. (Author)

  2. Time series analysis of pressure fluctuation in gas-solid fluidized beds

    Directory of Open Access Journals (Sweden)

    C. Alberto S. Felipe

    2004-09-01

    Full Text Available The purpose of the present work was to study the differentiation of states of typical fluidization (single bubble, multiple bubble and slugging in a gas-solid fluidized bed, using spectral analysis of pressure fluctuation time series. The effects of the method of measuring (differential and absolute pressure fluctuations and the axial position of the probes in the fluidization column on the identification of each of the regimes studied were evaluated. Fast Fourier Transform (FFT was the mathematic tool used to analysing the data of pressure fluctuations, which expresses the behavior of a time series in the frequency domain. Results indicated that the plenum chamber was a place for reliable measurement and that care should be taken in measurement in the dense phase. The method allowed fluid dynamic regimes to be differentiated by their dominant frequency characteristics.

  3. Autocorrelation spectra of an air-fluidized granular system measured by NMR

    Science.gov (United States)

    Lasic, S.; Stepisnik, J.; Mohoric, A.; Sersa, I.; Planinsic, G.

    2006-09-01

    A novel insight into the dynamics of a fluidized granular system is given by a nuclear magnetic resonance method that yields the spin-echo attenuation proportional to the spectrum of the grain positional fluctuation. Measurements of the air-fluidized oil-filled spheres and mustard seeds at different degrees of fluidization and grain volume fractions provide the velocity autocorrelation that differs from the commonly anticipated exponential Enskog decay. An empiric formula, which corresponds to the model of grain caging at collisions with adjacent beads, fits well to the experimental data. Its parameters are the characteristic collision time, the free path between collisions and the cage-breaking rate or the diffusion-like constant, which decreases with increasing grain volume fraction. Mean-squared displacements calculated from the correlation spectrum clearly show transitions from ballistic, through sub-diffusion and into diffusion regimes of grain motion.

  4. CFD Analysis to Calculate the Optimal Air Velocity in Drying Green Tea Process Using Fluidized Bed Dryer

    Science.gov (United States)

    Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri

    2018-02-01

    Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.

  5. Origin of Pressure Fluctuations in Fluidized Beds

    Czech Academy of Sciences Publication Activity Database

    Punčochář, Miroslav; Drahoš, Jiří

    2005-01-01

    Roč. 60, č. 5 (2005), s. 1193-1197 ISSN 0009-2509 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidization * pressure fluctuations * bubbles Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.735, year: 2005

  6. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew; Miller, David C.

    2012-01-01

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  7. Sorption-enhanced steam methane reforming in fluidized bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kim

    2006-10-15

    reformer-calciner system is likely to be rather low, so that only a fraction of the sorbent is utilized, highlighting the importance of the carbonation model at lower conversions. A dual fluidized bed reactor for the SE-SMR system was modeled by using a simple two-phase hydrodynamic model, the experimentally derived carbonation kinetics and literature values for the kinetics of steam reforming and water gas shift reactions. The model delineates important features of the process. Hydrogen concentrations of >98 mole% were predicted for temperatures {approx}600 C and a superficial gas velocity of 0.1 m/s. The reformer temperature should not be lower than 540 C or greater than 630 C for carbon capture efficiencies to exceed 90%. Operating at relatively high solid circulation rates to reduce the need for fresh sorbent, is predicted to give higher system efficiencies than for the case where fresh solid is added. This finding is attributed to the additional energy required to decompose both CaCO{sub 3} and MgCO{sub 3} in fresh dolomite. Moreover, adding fresh sorbent is likely to result in catalyst loss in the purge stream, requiring sorbents with lifetimes comparable to those of the catalyst. Thermo gravimetric analysis (TGA) was used to study the reversible CO{sub 2}-uptake of sorbents. In general, the multi-cycle capacity of the dolomite was found rather poor. Therefore, synthetic sorbents that maintain their capacities upon multiple reforming-calcination cycles were investigated. A low-temperature liquid phase co-precipitation method was used for synthesis of Li{sub 2}ZrO{sub 3} and Na{sub 2}ZrO{sub 3}. Li{sub 2}ZrO{sub 3} showed a superior multi-cycle capacity compared to Arctic dolomite in TGA, but the rate of reaction in diluted CO{sub 2} atmospheres was very slow. The synthesized Na{sub 2}ZrO{sub 3} proved to have both fast carbonation kinetics and stable multi-cycle performance. However, regeneration in the presence of carbon dioxide was not easily accomplished. The

  8. Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Riccardo Chirone; Amedeo Lancia [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2011-06-15

    A bubbling fluidized bed of inert material was used to increase the activated carbon residence time in the reaction zone and to improve its performance for mercury vapor capture. Elemental mercury capture experiments were conducted at 100{sup o}C in a purposely designed 65 mm ID lab-scale pyrex reactor, that could be operated both in the fluidized bed and in the entrained bed configurations. Commercial powdered activated carbon was pneumatically injected in the reactor and mercury concentration at the outlet was monitored continuously. Experiments were carried out at different inert particle sizes, bed masses, fluidization velocities and carbon feed rates. Experimental results showed that the presence of a bubbling fluidized bed led to an increase of the mercury capture efficiency and, in turn, of the activated carbon utilization. This was explained by the enhanced activated carbon loading and gas-solid contact time that establishes in the reaction zone, because of the large surface area available for activated carbon adhesion/deposition in the fluidized bed. Transient mercury concentration profiles at the bed outlet during the runs were used to discriminate between the controlling phenomena in the process. Experimental data have been analyzed in the light of a phenomenological framework that takes into account the presence of both free and adhered carbon in the reactor as well as mercury saturation of the adsorbent. 14 refs., 7 figs.

  9. Gas supply during fluidization of spherical particles in FBR

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Eom, Sung Ho; Kim, Yeon Ku; Kim, Woong Ki; Kim, Young Min; Lee, Young Woo; Cho, Moon Seong

    2011-11-01

    Calculations of gas flow requirements and of other related parameters in the fluidized-bed process used to coat nuclear fuel particles are presented. These data include: volumes and surfaces of spheres for diameters of 50 to 500μm: number of theses spheres in 1 g for densities of 2 to 11 g/cm 3 : overall densities of coated spheres for initial particle diameters of 50 to 500μm, initial densities of 8 to 11 g/cm 3 , coating densities of 1.0 to 2.2 g/cm 3 , and final particle diameters of 100 to 1000μm: viscosities of Ar, CO 2 , He, and H 2 for temperatures up to 2200 .deg. C: minimum flows of He and Ar necessary to fluidized nuclear fuel particles at 20 .deg. C: coefficients for converting the 20 .deg. C minimum fluidization gas flows to high-temperature flows (up to 2200 .deg. C): variation of particle diameter with time for constant weight deposition rate: variation of coating gas flow for constant linear growth of the coating: comparison of coating time at constant weight deposition rate and at constant coating growth rate

  10. Fluidized bed catalytic cracking regenerator model: grid effects

    Energy Technology Data Exchange (ETDEWEB)

    Errazu, A.F. (Universidad Nacional del Sur, Conicet, Argentina); De Lasa, H.I.; Sarti, F.

    1979-04-01

    A grid model including thermal effects is proposed. The aim is the simulation of a fluidized catalytic cracking regenerator similar to the industrial unit of Destileria La Palta, YPF, Argentina. It is demonstrated that a simple C.S.T.R. model without bypass of gas feed entering the bed provides a good approach for representing the fluidized bed including the grid region. In addition, by means of the C.S.T.R. model, it is shown that there exist two characteristic operating regions: a zone where (C/sub 0//sup 0/ to C/sub c/) depends on the initial coke concentration and a zone where (C/sub c//sub 0/ to C/sub c/) is controlled by oxygen supply. 40 references, 6 figures, 5 tables.

  11. Thermo-hydrodynamic design of fluidized bed combustors estimating metal wastage

    CERN Document Server

    Lyczkowski, Robert W; Bouillard, Jacques X; Folga, Stephen M

    2012-01-01

    Thermo-Hydrodynamic Design of Fluidized Bed Combustors: Estimating Metal Wastage is a unique volume that finds that the most sensitive parameters affecting metal wastage are superficial fluidizing velocity, particle diameter, and particle sphericity.  Gross consistencies between disparate data sources using different techniques were found when the erosion rates are compared on the same basis using the concept of renormalization.  The simplified mechanistic models and correlations, when validated, can be used to renormalize any experimental data so they can be compared on a consistent basis using a master equation.

  12. Fluidized bed drying characteristics and modeling of ginger ( zingiber officinale) slices

    Science.gov (United States)

    Parlak, Nezaket

    2015-08-01

    In this study fluidized bed drying characteristics of ginger have been investigated. The effects of the fluidizing air temperature, velocity, humidity and bed height on the drying performance of ginger slices have been found. The experimental moisture loss data of ginger slices has been fitted to the eight thin layer drying models. Two-term model drying model has shown a better fit to the experimental data with R2 of 0.998 as compared to others.

  13. Importance of fragmentation on the steady state combustion of wood char in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, Carlos [Universidade do Porto (CEFT/FEUP), Porto (Portugal). Faculdade de Engenharia. Centro de Estudos de Fenomenos de Transporte], E-mail: ctp@fe.up.pt

    2010-07-01

    A simple mathematical model for the analysis of the steady state behavior of a bubbling fluidized bed burner is presented, with the main intention of evaluating the importance of the primary fragmentation of fuel particles on the performance of this type of burners. This model has pedagogical advantages because of its simplicity and easiness of application to the analysis of realistic situations. The model is based upon the classical models used for the study of batch combustion processes in fluidized bed reactors. Experimental data from studies of fluidized bed combustion of portuguese vegetable chars are used to support the analysis of the performance of a 1 m diameter fluidized bed combustor. (author)

  14. INTENSIFICATION OF HEAT TRANSFER IN A HIGH-TEMPERATURED FLUIDIZED BED

    Directory of Open Access Journals (Sweden)

    А. O. Redko

    2017-10-01

    Full Text Available Purpose. This paper highlights experimental research of heat exchange in coarse particles to ensure the performance of ecological characteristics of Heat supply system. Methodology. The test stand has been developed to solve the defined task. It helps to do the research at the temperature of fluidizing bed and pulsating fluidizing bed at the range 800–1000°С. The temperature of the fluidized bed was provided by burning natural gas and wood waste. Sand and chamotte with a particle size of 1.0 to 5.0 mm were used as the layer material. The heat-transfer coefficient from the layer to the surface, immersed in the layer, and the density of the heat flux were measured by a calorimetric method under steady-state conditions. Smooth tubes and transversely finned with different height and rib spacing were investigated. Experiments in a high-temperature pulsating fluidized bed were carried out with pulsating combustion of natural gas in a layer or in a sublattice chamber into which natural gas and air were separately supplied. The frequency of combustion pulsations was provided by the automation system. The flash frequency was regulated in the range from 0.14 to 5 Hz. Findings. It is presented the results of physical modeling to find out the heat-transfer coefficients of smooth and finned tubes in fluidizing bed of coarse particles in the process of wood waste and gaseous fuel combusting. It is proved that the coefficient of heat transfer increases with increasing temperature by 2–2,5 times in the bed which contains particles diameter of 2.5–5 mm is 300–350Vt/(m2 К that is much higher than for layer furnaces. The results of the experiments are presented in the form of a generalized relationship that takes into account the diameter of the particles and the value of the finning coefficient. Heat transfer of finned tubes is 15–20% less then smooth tubes but the density of heat flow referred to the area of a finned tube is 0,12–0,20 МVt/m2 that

  15. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  16. Rocky Flats Plant fluidized-bed incinerator

    International Nuclear Information System (INIS)

    Meile, L.J.; Meyer, F.G.; Johnson, A.J.; Ziegler, D.L.

    1982-01-01

    Laboratory and pilot-scale testing of a fluidized-bed incineration process for radioactive wastes led to the installation of an 82-kg/hr demonstration unit at Rocky Flats Plant in 1978. Design philosophy and criteria were formulated to fulfill the needs and objectives of an improved radwaste-incineration system. Unique process concepts include low-temperature (550 0 C), flameless, fluidized-bed combustion and catalytic afterburning; in-situ neutralization of acid gases; and dry off-gas cleanup. Detailed descriptions of the process and equipment are presented along with a summary of the equipment and process performance during a 2-1/2 year operational-testing period. Equipment modifications made during the test period are described. Operating personnel requirements for solid-waste burning are shown to be greater than those required for liquid-waste incineration; differences are discussed. Process-utility and raw-materials consumption rates for full-capacity operation are presented and explained. Improvements in equipment and operating procedures are recommended for any future installations. Process flow diagrams, an area floor plan, a process-control-system schematic, and equipment sketches are included

  17. The infarction patterns and the compensatory effect of collateral circulation in patients with internal carotid artery occlusion: a correlative study

    International Nuclear Information System (INIS)

    Gao Honghua; Wen Jiamei; Gao Lianbo

    2012-01-01

    Objective: To investigate the infarction patterns and the collateral circulation in patients with internal carotid artery occlusion with diffusion-weighted imaging and DSA, to analyze the mechanism of stroke caused by internal carotid artery occlusion and to discuss the correlation between the infarction patterns and the compensatory effect of collateral circulation. Methods: A total of 45 patients with acute cerebral infarction due to DSA-confirmed unilateral internal carotid artery occlusion, who were admitted to the hospital during the period from Jan. 2009 to Sep. 2010, were enrolled in this study. Diffusion-weighted imaging and DSA were performed in all patients. The infarction regions and the findings of PCoA/ACoA were recorded, and the ipsilateral infarction patterns were evaluated. The relationship between the infarction patterns and the compensatory effect of collateral circulation was statistically analyzed. Results: The ipsilateral infarction patterns caused by internal carotid artery occlusion were classified as small cortical infarcts (84.4%), internal watershed infarcts (48.9%), territory infarcts (46.7%), posterior watershed infarcts (22.2%), anterior watershed infarcts (13.3%), perforating artery infarcts (22.2%). Among them, 23 patients had small cortical infarcts together with cerebral watershed infarcts (60.5%). No territory infarcts were found in the patients with patent ACoA (0%, P=0.013), while 91.7% of the patients showing no patent PCoA and/or ACoA had territory infarcts (11/12, p=0.003). Conclusion: Both artery-to-artery embolism and hypoperfusion with impaired emboli clearance are involved in the mechanism of ipsilateral infarctions caused by internal carotid artery occlusion. Patent ACoA can reduce the incidence of territory infarcts, and it maybe protect patients from territory infarcts. (authors)

  18. Operation of a steam hydro-gasifier in a fluidized bed reactor

    OpenAIRE

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    Carbonaceous material, which can comprise municipal waste, biomass, wood, coal, or a natural or synthetic polymer, is converted to a stream of methane and carbon monoxide rich gas by heating the carbonaceous material in a fluidized bed reactor using hydrogen, as fluidizing medium, and using steam, under reducing conditions at a temperature and pressure sufficient to generate a stream of methane and carbon monoxide rich gas but at a temperature low enough and/or at a pressure high enough to en...

  19. Advanced Magnetic Materials Methods and Numerical Models for Fluidization in Microgravity and Hypogravity

    Science.gov (United States)

    Atwater, James; Wheeler, Richard, Jr.; Akse, James; Jovanovic, Goran; Reed, Brian

    2013-01-01

    To support long-duration manned missions in space such as a permanent lunar base, Mars transit, or Mars Surface Mission, improved methods for the treatment of solid wastes, particularly methods that recover valuable resources, are needed. The ability to operate under microgravity and hypogravity conditions is essential to meet this objective. The utilization of magnetic forces to manipulate granular magnetic media has provided the means to treat solid wastes under variable gravity conditions by filtration using a consolidated magnetic media bed followed by thermal processing of the solid wastes in a fluidized bed reactor. Non-uniform magnetic fields will produce a magnetic field gradient in a bed of magnetically susceptible media toward the distributor plate of a fluidized bed reactor. A correctly oriented magnetic field gradient will generate a downward direct force on magnetic media that can substitute for gravitational force in microgravity, or which may augment low levels of gravity, such as on the Moon or Mars. This approach is termed Gradient Magnetically Assisted Fluidization (G-MAFB), in which the magnitude of the force on the fluidized media depends upon the intensity of the magnetic field (H), the intensity of the field gradient (dH/dz), and the magnetic susceptibility of the media. Fluidized beds based on the G-MAFB process can operate in any gravitational environment by tuning the magnetic field appropriately. Magnetic materials and methods have been developed that enable G-MAFB operation under variable gravity conditions.

  20. Biological reduction of nitrate wastewater using fluidized-bed bioreactors

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Hancher, C.W.; Patton, B.D.; Kowalchuk, M.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt % NO 3 - and as large as 2000 m 3 /d, in the nuclear fuel cycle as well as in many commercial processes such as fertilizer production, paper manufacturing, and metal finishing. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The major strain of denitrification bacteria is Pseudomonas which was derived from garden soil. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25 to 0.50-mm-diam coal particles, which are fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . A description is given of the results of two biodenitrification R and D pilot plant programs based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 gN(NO 3 - )/d per liter of empty bioreactor volume. The first of these pilot plant programs consisted of two 0.2-m-diam bioreactors, each with a height of 6.3 m and a volume of 208 liters, operating in series. The second pilot plant was used to determine the diameter dependence of the reactors by using a 0.5-m-diam reactor with a height of 6.3 m and a volume of 1200 liters. These pilot plants operated for a period of six months and two months respectively, while using both a synthetic waste and the actual waste from a gaseous diffusion plant operated by Goodyear Atomic Corporation

  1. A Three-Dimensional Numerical Study of Gas-Particle Flow and Chemical Reactions in Circulating Fluidised Bed Reactors

    DEFF Research Database (Denmark)

    Hansen, Kim Granly

    Three-dimensional Computational Fluid Dynamics (CFD) simulations of Circulating Fluidized Beds (CFB's) have been performed. The computations are performed using a 3D multiphase computational fluid dynamics code with an Eulerian description of both gas and particle phases. The turbulent motion...... implemented in the CFD code FLOTRACS-MP-3D. The decomposition reaction is studied in a 3D representation of a 0.254 m i.d. riser, which has been studied experimentally by Ouyang et al. (1993). Comparison between measured and simulated time-averaged ozone concentration at different elevations in the riser...

  2. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment.

    Science.gov (United States)

    Li, Jian; Ge, Zheng; He, Zhen

    2014-09-01

    A fluidized bed membrane bioelectrochemical reactor (MBER) was investigated using fluidized granular activated carbon (GAC) as a mean of membrane fouling control. During the 150-day operation, the MBER generated electricity with contaminant removal from either synthetic solution or actual wastewater, as a standalone or a coupled system. It was found that fluidized GAC could significantly reduce transmembrane pressure (TMP), although its function as a part of the anode electrode was minor. When the MBER was linked to a regular microbial fuel cell (MFC) for treating a wastewater from a cheese factory, the MFC acted as a major process for energy recovery and contaminant removal, and the coupled system removed more than 90% of chemical oxygen demand and >80% of suspended solids. The analysis showed that the ratio of energy recovery and consumption was slightly larger than one, indicating that the coupled system could be theoretically energy neutral. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization

    DEFF Research Database (Denmark)

    Luo, Hao; Lu, Bona; Zhang, Jingyuan

    2017-01-01

    The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt...... a two-step scheme to extend the EMMS/bubbling model to the sub-grid level. Thus the heterogeneity index, HD, which accounts for the hydrodynamic disparity between homogeneous and heterogeneous fluidization, can be correlated as a function of both local voidage and slip velocity. Simulations over...... a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high...

  4. Acoustic fluidization and the scale dependence of impact crater morphology

    Science.gov (United States)

    Melosh, H. J.; Gaffney, E. S.

    1983-01-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.

  5. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  6. Biological reduction of nitrates in wastewaters from nuclear processing using a fluidized-bed bioreactor

    International Nuclear Information System (INIS)

    Pitt, W.W.; Hancher, C.W.; Patton, B.D.

    1981-01-01

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt.% NO 3 - and as large as 2000 m 3 /day, in the nuclear fuel cycle. The biological reduction of nitrate in wastewater to gaseous nitrogen, accompanied by the oxidation of a nutrient carbon source to gaseous carbon dioxide, is an ecologically sound and cost-effective method of treating wastewaters containing nitrates. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO 3 - )/m 3 by the use of a fluidized-bed bioreactor. The denitrification bacteria are a mixed culture derived from garden soil; the major strain is Pseudomonas. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25- to 0.50-mm-diam coal fluidization particles, which are then fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m 3 . This paper describes the results of a biodenitrification R and D program based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m 3 and achieving denitrification rates as high as 80 g N(NO 3 - ) per day per liter of empty bioreactor volume. 4 figures, 7 tables

  7. CFD study of the minimum bubbling velocity of Geldart A particles in gas-fluidized beds

    NARCIS (Netherlands)

    Wang, Junwu; Hoef, van der M.A.; Kuipers, J.A.M.

    2010-01-01

    The minimum bubbling velocity, which demarcates the homogeneous and heterogeneous fluidization regimes, plays a pivotal role in gas fluidization of Geldart A particles. We systematically study the effect of gas and particle properties on the minimum bubbling velocity of Geldart A particles in

  8. Positron emission tomography applied to fluidization engineering

    NARCIS (Netherlands)

    Dechsiri, C; Ghione, A; van de Wiel, F; Dehling, HG; Paans, AMJ; Hoffmann, AC

    The movement of particles in a laboratory fluidized bed has been studied using Positron Emission Tomography (PET). With this non-invasive technique both pulses of various shapes and single tracer particles were followed in 3-D. The equipment and materials used made it possible to label actual bed

  9. Bubble Swarm Rise Velocity in Fluidized Beds.

    Czech Academy of Sciences Publication Activity Database

    Punčochář, Miroslav; Růžička, Marek; Šimčík, Miroslav

    2016-01-01

    Roč. 152, OCT 2 (2016), s. 84-94 ISSN 0009-2509 R&D Projects: GA ČR(CZ) GA15-05534S Institutional support: RVO:67985858 Keywords : bubbling fluidized bed * gas-solid * bubble swarm velocity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.895, year: 2016

  10. Hydrodynamical model and experimental results of a calcium looping cycle for CO2 capture

    International Nuclear Information System (INIS)

    Lisbona, Pilar; Martínez, Ana; Romeo, Luis M.

    2013-01-01

    Highlights: ► A scaled experimental cold flow model of a dual fluidized bed facility is presented. ► Two MATLAB models are developed for the single CFB and the dual CFB facility. ► Set of experiments are carried out and used to validate the mathematical model. ► Good agreement between model and experimental tests for sCFB. ► Further work required for validating dual CFB operation. -- Abstract: High temperature looping cycles involving solid circulation, such as carbonation–calcination, play an essential role among the CO 2 capture technologies under development. The low cost and high availability of Ca-based sorbents together with the feasibility of integration between these capture systems and existing power plants lead to very competitive potential costs of avoided CO 2 , below 20 €/tonne. Optimal configurations make use of several interconnected fluidized beds. One promising configuration for Ca-based sorbents looping systems relies on the use of two circulating beds (carbonator and calciner) and two bubbling beds acting as non-mechanical valves. Fluidized beds are well characterized when operating independently since they are extensively used in industrial applications, power and chemical plants. However, the operation when two or more fluidized beds exchange solid material through non-mechanical valves is still uncertain because of the more complex pressure balance of the system. Theoretical studies based on thermo-chemical simulations and experimental studies show that minimum CO 2 capture cost is attained with large solid circulation flow between reactors. The challenge is to reach the required particle circulation in a system with a complex configuration and be able to control it. Solid internal recirculation in any of these fluidized beds would provide flexibility in its control but it will also make harder the characterization of the whole system. The aim of this work is to analyse the hydrodynamics of the system and to generate a

  11. Fluidized-bed combustion of refuse-derived fuels; Verbrennung von Ersatzbrennstoff in der Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrecht, D.; Wolff, H.-J.; Matzmohr, R. [Universitaet Rostock (Germany). Institut fuer Energie und Umwelttechnik

    2004-07-01

    The experiments in the SWSF DN 400 test facility were to prove that combustion in a stationary, bubbling fluidized bed is an economically and ecologically feasible technology for treating the high-calorific fractions of waste materials conditioned in a mechanical and biological treatment system. This comprised the following tasks: Proof of the long-term suitability and availability of the selected fluidized-bed process; Reduction or prevention of emissions by primary, in-process measures in accordance with the specifications of the German Nuisance Control Ordinance (17. BImSchV); No secondary (additive) off-gas purification stages apart from a mechanical dedusting stage. The combustion off-gas of the fluidized-bed combustor were used for heat and power generation in a steam generator connected in series with the furnace. (orig.)

  12. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    Science.gov (United States)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  13. Experiment and modeling of low-concentration methane catalytic combustion in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Yang, Zhongqing; Yang, Peng; Zhang, Li; Guo, Mingnv; Ran, Jingyu

    2016-01-01

    Highlights: • The catalytic combustion of 0.15~3 vol. % low concentration methane in a fluidized bed was studied. • A mathematical model was proposed on the basis of gas–solid flow theory. • A comparative analysis of the established model with plug flow, mixed flow and K-L models was carried out. • The axial methane profile along fluidized bed was predicted by using the mathematical model. • The bed temperature has greater impact on methane conversion than fluidized velocity. - Abstract: This study undertakes a theoretical analysis and an experimental investigation into the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed reactor using 0.5 wt.% Pd/Al_2O_3 as catalytic particles. A mathematical model is established based on gas–solid flow theory and is used to study the effects of bed temperature and fluidized velocity on methane catalytic combustion, and predict the dimensionless methane concentration axial profile in reactor. It is shown that methane conversion increases with bed temperature, but decreases with increasing fluidized velocity. These theoretical results are found to correlate well with the experimental measurement, with a deviation within 5%. A comparative analysis of the developed model with plug flow, mixed flow and K-L models is also carried out, and this further verifies that the established model better reflects the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed. Using this reaction model, it was found that the difference in methane conversion between dense and freeboard zones gradually increases with bed temperature; the dense zone reaction levels off at 650 °C, thereby minimizing the difference between the dense and freeboard regions to around 15%. With an increase in bed temperature, the dimensionless methane concentration in the dense zone decreases exponentially, while in the splash zone, it varies from an exponential decay to a slow

  14. Synthesis of carbon nanotubes using fluidized bed technology

    CSIR Research Space (South Africa)

    Swartbooi, AM

    2008-11-01

    Full Text Available virgin plastics as well as a carbonaceous gas using fluidized bed technology. Current investigations are underway to test various factors involved with the CNT growth and production. An understanding of these factors and their interactions could provide...

  15. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    Science.gov (United States)

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Emission characteristics for gaseous- and size-segregated particulate PAHs in coal combustion flue gas from circulating fluidized bed (CFB) boiler.

    Science.gov (United States)

    Wang, Ruwei; Liu, Guijian; Sun, Ruoyu; Yousaf, Balal; Wang, Jizhong; Liu, Rongqiong; Zhang, Hong

    2018-07-01

    The partitioning behavior of polycyclic aromatic hydrocarbons (PAHs) between gaseous and particulate phases from coal-fired power plants (CFPPs) is critically important to predict PAH removal by dust control devices. In this study, 16 US-EPA priority PAHs in gaseous and size-segregated particulate phases at the inlet and outlet of the fabric filter unit (FFs) of a circulating fluidized bed (CFB) boiler were analyzed. The partitioning mechanisms of PAHs between gaseous and particulate phases and in particles of different size classes were investigated. We found that the removal efficiencies of PAHs are 45.59% and 70.67-89.06% for gaseous and particulate phases, respectively. The gaseous phase mainly contains low molecular weight (LMW) PAHs (2- and 3-ring PAHs), which is quite different from the particulate phase that mainly contains medium and high molecular weight (MMW and HMW) PAHs (4- to 6-ring PAHs). The fractions of LMW PAHs show a declining trend with the decrease of particle size. The gas-particle partitioning of PAHs is primarily controlled by organic carbon absorption, in addition, it has a clear dependence on the particle sizes. Plot of log (TPAH/PM) against logD p shows that all slope values were below -1, suggesting that PAHs were mainly adsorbed to particulates. The adsorption effect of PAHs in size-segregated PMs for HMW PAHs is more evident than LMW PAHs. The particle size distributions (PSDs) of individual PAHs show that most of PAHs exhibit bi-model structures, with one mode peaking in the accumulation size range (2.1-1.1 μm) and another mode peaking in coarse size range (5.8-4.7 μm). The intensities of these two peaks vary in function of ring number of PAHs, which is likely attributed to Kelvin effect that the less volatile HMW PAH species preferentially condense onto the finer particulates. The emission factor of PAHs was calculated as 3.53 mg/kg of coal burned, with overall mean EF PAH of 0.55 and 2.98 mg/kg for gaseous and particulate

  17. The influence of transport phenomena on the fluidized bed combustion of a single carbon particle

    NARCIS (Netherlands)

    Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The burning rate and temperature of the carbon particles are known to affect the efficiency of a fluidized bed combustor, and also the emission levels of undesired noxious components. The main results of an extensive study on the fluidized bed combustion behaviour of a single carbon particle [1] are

  18. Phenolic Wastewater Treatment using Activated Carbon in a Three Phase Fluidized-Bed Reactor

    Directory of Open Access Journals (Sweden)

    Pornsiri Tongprem

    2009-11-01

    Full Text Available Phenolic wastewater treatment was investigated using activated carbon in a lab scale three phase fluidized-bed reactor. The reactor with effective volume of 272 ml, 300 mm in height and 40 mm in diameter was made from transparent acrylic that allowed to observe the phenomena occurring inside. Phenol 10 mg/l and air were used as representative agents that were continuously fed to the reactor at a constant flow rate of 1 and 2 l/min with co-current and up-flow, respectively. Comparison of the phenolic adsorption under five different conditions: (a fresh Acs, (b 1st reused Acs, (c fresh Fe/Acs, (d 1st reused Fe/Acs, and (e 2nd reused Fe/Acs, have been carried out. The phenolic wastewater was re-circulated through the reactor and its concentration was measured with respect to time. The experimental adsorption results revealed that both fresh Acs and Fe/Acs gave the better results than reused Acs and reused Fe/Acs, respectively. The adsorption in all cases of Acs and Fe/Acs would follow Pseudo-second order kinetic.

  19. Collaborative research on fluidization employing computer-aided particle tracking

    International Nuclear Information System (INIS)

    Chen, M.M.

    1990-01-01

    The objective of this work is to obtain unique, fundamental information on fluidization dynamics over a wide range of flow regimes using a Transportable Computer-Aided Particle Tracking Apparatus (TCAPTA). The contractor will design and fabricate a transportable version of the Computer-Aided Particle Tracking Facility (CAPTF) he has previously developed. The contractor will install and operate the (TCAPTA) at the METC fluidization research facilities. Quantitative data on particle motion will be obtained and reduced. The data will be used to provide needed information for modeling of bed dynamics, and prediction of bed performance, including erosion. A radioactive tracer particle, identical in size shape and mass to the bed particles under study, is mixed in the bed. The radiation emitted by the tracer particle, monitored continuously by 16 scintillation detectors, allows its position to be determined as a function of time. Stochastic mixing processes intrinsic to fluidization further cause the particle to travel to all active regions of the bed, thus sampling the motion in these regions. After a long test run to insure that a sufficient sampling have been acquired, time-differentiation and other statistical processing will then yield the mean velocity distribution, the fluctuating velocity distribution, many types of auto- and cross correlations, as well as mean fluxes, including the mean momentum fluxes due to random motion, which represent the kinetic contributions to the mean stress tensor

  20. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor.

    Science.gov (United States)

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang

    2014-02-01

    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.

  1. Method and apparatus for adding and mixing second cohesive powders in a fluidized bed blender

    International Nuclear Information System (INIS)

    Larson, R.I.; Brassfield, H.C.; Adomitis, J.T.

    1981-01-01

    Injection and uniform dispersion of a second cohesive powdered ingredient or ingredients having hydrophobic, hydrophilic or hydroscopic properties into a fluidized bed of UO 2 powder is effected by impinging the second ingredient against a deflection plate 21 mounted within the fluidized bed. The apparatus also includes an eductor, a pressurised vortex mill 11 and a pneumatic conveying system. Before entering the fluidized bed, the second ingredient is entrained in a gas and conveyed under pressure to the vortex mill 11 where the particles of the second ingredient are propelled radially outwardly through channels 28 and collide against tungsten carbide impact, blocks 32 causing comminution of the particles. (author)

  2. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    Science.gov (United States)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  3. The Role of Membrane Fluidization in the Gel-Assisted Formation of Giant Polymersomes.

    Directory of Open Access Journals (Sweden)

    Adrienne C Greene

    Full Text Available Polymersomes are being widely explored as synthetic analogs of lipid vesicles based on their enhanced stability and potential uses in a wide variety of applications in (e.g., drug delivery, cell analogs, etc.. Controlled formation of giant polymersomes for use in membrane studies and cell mimetic systems, however, is currently limited by low-yield production methodologies. Here, we describe for the first time, how the size distribution of giant poly(ethylene glycol-poly(butadiene (PEO-PBD polymersomes formed by gel-assisted rehydration may be controlled based on membrane fluidization. We first show that the average diameter and size distribution of PEO-PBD polymersomes may be readily increased by increasing the temperature of the rehydration solution. Further, we describe a correlative relationship between polymersome size and membrane fluidization through the addition of sucrose during rehydration, enabling the formation of PEO-PBD polymersomes with a range of diameters, including giant-sized vesicles (>100 μm. This correlative relationship suggests that sucrose may function as a small molecule fluidizer during rehydration, enhancing polymer diffusivity during formation and increasing polymersome size. Overall the ability to easily regulate the size of PEO-PBD polymersomes based on membrane fluidity, either through temperature or fluidizers, has broadly applicability in areas including targeted therapeutic delivery and synthetic biology.

  4. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    Energy Technology Data Exchange (ETDEWEB)

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  5. Acoustic monitoring of a fluidized bed coating process

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Veski, Peep; Pedersen, Joan G.

    2007-01-01

      The aim of the study was to investigate the potential of acoustic monitoring of a production scale fluidized bed coating process. The correlation between sensor signals and the estimated amount of film applied and percentage release, respectively, were investigated in coating potassium chloride...

  6. Report on the fiscal 1997 result of the Japan-China joint demonstration project of environment-friendly cost utilization systems. Low grade coal combustion system (Zhejiang Huba Co. Ltd.); 1997 nendo seika hokokusho kankyo chowagata sekitan riyo system kyodo jissho jigyo. Teihin`itan nensho system ni kakawaru jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This demonstration project aims at reduction of pollutants derived from coal utilization in China by demonstration of CCT to be diffused in China and preparation of diffusion bases, and stable import of energy for Japan. A low-grade coal combustion system burns low-grade coal by use of an internal circulating fluidized bed boiler which burns coal by uniform mixing and circulation of coal and some particles such as limestone and ash. Main specifications of the boiler are as follows: evaporation rate of 35t/h, steam pressure of 3.82MPa (39.0kg/cm{sup 2}), steam temperature of 450degC, water supply temperature of 150degC, internal circulating fluidized bed combustion type, boiler efficiency of 75%, and desulfurization rate of 90% or more. Main properties of low-grade coal are as follows: calorific value of 1830kcal/kg, coal size of 10mm or less, total water content of 2.5%, total S content of 2.7%, ash content of 67.7%, limestone purity of 50% or more, and stone size of 3mm or less. The results in fiscal 1997 are as follows: field survey and arrangement, basic planning and design, design, production and procurement of equipment, training, and dispatch of field supervisor. 26 figs., 3 tabs.

  7. Numerical simulation of non-conventional liquid fuels feeding in a bubbling fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2013-01-01

    Full Text Available The paper deals with the development of mathematical models for detailed simulation of lateral jet penetration into the fluidized bed (FB, primarily from the aspect of feeding of gaseous and liquid fuels into FB furnaces. For that purpose a series of comparisons has been performed between the results of in-house developed procedure- fluid-porous medium numerical simulation of gaseous jet penetration into the fluidized bed, Fluent’s two-fluid Euler-Euler FB simulation model, and experimental results (from the literature of gaseous jet penetration into the 2D FB. The calculation results, using both models, and experimental data are in good agreement. The developed simulation procedures of jet penetration into the FB are applied to the analysis of the effects, which are registered during the experiments on a fluidized pilot furnace with feeding of liquid waste fuels into the bed, and brief description of the experiments is also presented in the paper. Registered effect suggests that the water in the fuel improved mixing of fuel and oxidizer in the FB furnace, by increasing jet penetration into the FB due to sudden evaporation of water at the entry into the furnace. In order to clarify this effect, numerical simulations of jet penetration into the FB with three-phase systems: gas (fuel, oxidizer, and water vapour, bed particles and water, have been carried out. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in the fluidized bed

  8. Removal of SO2 with particles of dolomite limestone powder in a binary fluidized bed reactor with bubbling fluidization

    Directory of Open Access Journals (Sweden)

    R. Pisani Jr.

    2003-06-01

    Full Text Available In this work, SO2 was treated by reaction with dolomite limestone (24 µm in a fluidized bed reactor composed of 500-590 µm sand particles. The influence of operating temperature (500, 600, 700 and 800ºC, superficial gas velocity (0.8, 1.0 and 1.2 m/s and Ca/S molar ratio (1, 2 and 3 on SO2 removal efficiency for an inlet concentration of 1000 ppm was examined. Removal of the pollutant was found to be dependent on temperature and Ca/S molar ratio, particularly at 700 and 800ºC. A maximum removal of 76% was achieved at a velocity of 0.8 m/s, a temperature of 800°C and a Ca/S of 3. The main residence time of the powder particles was determined by integrating normalized gas concentration curves as a function of time; the values found ranged from 4.1 to 14.4 min. It was concluded that the reactor operated in bubbling fluidization under every operational condition.

  9. Experiences of CFD simulations at Foster Wheeler Energia Oy`s Karhula R and D center

    Energy Technology Data Exchange (ETDEWEB)

    Hyppaenen, T. [Foster Wheeler Energia Oy, Karhula (Finland). Karhula R and D Center

    1996-12-31

    Karhula R and D Center is specialized in the research of solid fuel combustion based on circulating fluidized bed technology. Since the 1970`s, numerical models have been utilized in process development to enhance fundamental understanding of the technology. Both own and commercial computer models have been used. Until now, a special problem in circulating fluidized beds has been the modeling of dense phase multiphase flow, especially for industrial solid-fuel boilers. This has prevented the Karhula R and D Center from using commercial codes, and as a consequence, own modeling approaches have been necessary. This presentation describes some main points of the modeling activities in circulating fluidized bed boilers. (author)

  10. Experiences of CFD simulations at Foster Wheeler Energia Oy`s Karhula R and D center

    Energy Technology Data Exchange (ETDEWEB)

    Hyppaenen, T [Foster Wheeler Energia Oy, Karhula (Finland). Karhula R and D Center

    1997-12-31

    Karhula R and D Center is specialized in the research of solid fuel combustion based on circulating fluidized bed technology. Since the 1970`s, numerical models have been utilized in process development to enhance fundamental understanding of the technology. Both own and commercial computer models have been used. Until now, a special problem in circulating fluidized beds has been the modeling of dense phase multiphase flow, especially for industrial solid-fuel boilers. This has prevented the Karhula R and D Center from using commercial codes, and as a consequence, own modeling approaches have been necessary. This presentation describes some main points of the modeling activities in circulating fluidized bed boilers. (author)

  11. Flue gas desulfurization under simulated oxyfiring fluidized bed combustion conditions: The influence of limestone attrition and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Salatino, P. [CNR, Naples (Italy)

    2010-01-01

    Flue gas desulfurization by means of limestone injection under simulated fluidized bed oxyfiring conditions was investigated, with a particular focus on particle attrition and fragmentation phenomena. An experimental protocol was applied, based on the use of complementary techniques that had been previously developed for the characterization of attrition of sorbents in air-blown atmospheric fluidized bed combustors. The extent and pattern of limestone attrition by surface wear in the dense phase of a fluidized bed were assessed in bench scale fluidized bed experiments under simulated oxyfiring conditions. Sorbent samples generated during the oxyfiring tests were further characterized from the standpoint of fragmentation upon high velocity impact by means of a particle impactor. The experimental results were compared with those previously obtained with the same limestone under air-blown atmospheric fluidized bed combustion conditions. The profound differences in the attrition and fragmentation extents and patterns associated with oxyfiring as compared to air-blown atmospheric combustion and the role played by the different attrition/fragmentation paths were highlighted. In particular, it was noted that attrition could effectively enhance particle sulfation under oxyfiring conditions by continuously disclosing unconverted calcium to the sulfur-bearing atmosphere.

  12. Development and application of a high-temperature sampling probe for burning chamber conditions in fluidized-bed combustion; Korkean laempoetilan naeytteenottosondin kehittaeminen ja soveltaminen leijukerrospolton tulipesaeolosuhteisiin

    Energy Technology Data Exchange (ETDEWEB)

    Larjava, K.; Paerkkae, M. [VTT Chemical Technology, Espoo (Finland); Linna, V. [VTT Energy, Jyvaeskylae (Finland). Environmental Technology

    1997-10-01

    Determination of heavy and alkali metals and other condensing compounds (e.g. chlorides) in combustion chamber conditions is limited by the poor suitability of traditional methods for sampling at high temperatures. IFRF has developed a high-temperature sampling probe for sampling HCN and NH{sub 3}, which has been tested for sampling of NH{sub 3} by Chalmers University of Technology in Sweden. VTT Chemical Technology and Chalmers University of Technology have in their preliminary experiments determined contents of vaporous heavy metals in the combustion chamber of a 12 MW circulating fluidized-bed boiler using this probe. According to the results, the modified probe is suitable for heavy metal determination in combustion chamber. Based on this series of experiments, modification of the probe has been started on the own financing of VTT Chemical Technology and a field measurement was performed in November 1994 to test the present version of the probe. Based on the results of that measurement, the probe has been modified further on as a part of this LIEKKI 2 project. Similar kind of a principle has been applied in the probe which has been developed by VTT Energy during 1994. The probe is built for determination of gas composition of fluidized bed in full-scale boilers. The purpose of this project is to develop and test a sampling probe for fluidized bed combustion. The main advantage of the probe is that condensation losses in sampling due to high temperature gradients can be avoided. Thus, the probe is very suitable for sampling vaporous heavy and alkali metals and other condensing species as well as burning gases and alternatively also solids at high temperatures

  13. Stochastic models for transport in a fluidized bed

    NARCIS (Netherlands)

    Dehling, H.G; Hoffmann, A.C; Stuut, H.W.

    1999-01-01

    In this paper we study stochastic models for the transport of particles in a fluidized bed reactor and compute the associated residence time distribution (RTD). Our main model is basically a diffusion process in [0;A] with reflecting/absorbing boundary conditions, modified by allowing jumps to the

  14. Fluidized bed combustion of low-grade coal and wastes: Research and development

    Energy Technology Data Exchange (ETDEWEB)

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Vinogradov, L.M. [Academy of Sciences of Belarus, Minsk (Belarus). A.V. Luikov Heat and Mass Transfer Inst.; Dobkin, S.M.; Telegin, E.M. [Special Design Office, Brest (Belarus)

    1994-12-31

    Experimental studies were carried out to investigate devolatilization of fuel as single spherical particles of wood, hydrolytic lignin, leather sewage sludge and Belarussian brown coals in a fluidized bed of sand. It is found that the devolatilization process depends on moisture and ash contents in fuel and on the external heat and mass transfer rate. The char combustion occurs largely in the intermediate region. Kinetic parameters of the devolatilization and char combustion are obtained. A low-capacity fluidized bed boiler suitable for combustion of coal and different wastes is described.

  15. Artificial Neural Networks for Thermochemical Conversion of Biomass

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Joan Carles

    2015-01-01

    Artificial neural networks (ANNs), extensively used in different fields, have been applied for modeling biomass gasification processes in fluidized bed reactors. Two ANN models are presented, one for circulating fluidized bed gasifiers and another for bubbling fluidized bed gasifiers. Both models...

  16. Hydrodynamic study of the turbulent fluidized beds; Etude hydrodynamique des lits fluidises turbulents

    Energy Technology Data Exchange (ETDEWEB)

    Taxil, I.

    1996-12-20

    Gas-solid turbulent fluidization has already been widely studied in the literature. However, its definition and specificities remain controversial and confused. Most of the studies focussed on the turbulent transition velocities are based on wall pressure drop fluctuations studies. In this work, we first characterize the turbulent regime with the classical study of pressure drop signals with standard deviation analysis, completed with a more specific frequency analysis and also by a stochastic analysis. Then, we evaluate bubble flow properties. Experimental results have been obtained in a 0.2 m I.D. fluidized bed expanding to 0.4 m I.D. in the freeboard in order to limit entrainment at high fluidization velocities. The so lid used was FCC catalyst. It was fluidized by air at ambient conditions. The superficial fluidization velocity ranged 0.2 to 2 m/s. Fast response transducers recorded pressure drop at the wall and bubble flow properties (bubble size, bubble velocity and bubble frequency) could be deduced from a light reflected signal at various bed locations with optical fibers. It has been shown the turbulent regime is delimited by two velocities: Uc (onset of turbulent regime) and Utr (onset of transport regime), which can be determined based on standard deviations, dominant frequencies and width of wave land of pressure signals. The stochastic analysis confirms that the signal enriches in frequencies in the turbulent regime. Bubble size and bubble velocity could be correlated to the main superficial gas velocity. The main change in bubble flow in the turbulent regime was shown to be the stagnation of the bubble frequency at its maximum value. It was also shown that the bubble flow properties in the turbulent regime imply a strong aeration of the emulsion phase. (authors) 76 refs.

  17. [International experience in the legal regulation of the circulation of medicines through the prism of the law of the world trade organization].

    Science.gov (United States)

    Pasechnyk, Olena V; Hendel, Nataliia V

    2018-01-01

    Introduction: The development of international legal cooperation in the field of health has largely been driven by the trade interests of states. The aim: The article analyzes the legal regulation of the circulation of medicines through the prism of the law of the World Trade Organization. Materials and methods: Using the historical legal method has allowed to analyze the genesis of legal regulation of the circulation of medicines through the prism of the law of the World Trade Organization. The dialectical method is widely used, in particular, when it comes to the issue of the ratio of market regulation of medicines circulation and public health protection, the formal logic method, in particular, in formulating the general principles, principles and methods of legal regulation in the field of medicines, as well as the systemic method, in particular, in defining the institutional component of legal regulation in the field of medicines. Review: The activities of the WTO include several areas related to health protection: international control over infectious diseases, international legal regulation of food safety (food security), tobacco control, environmental protection, international legal aspects of access and treatment of medicinal and pharmaceutical products, international legal regulation of medical services provision. Conclusions: It is proved that the right to health is a right to access to medicines. However, for many developing countries, it is problematic to obtain patents for the production of necessary medicines or to pay a license fee, which creates a barrier to the realization of the right to health.

  18. Dust removal from waste gas arising from fluidized beds

    International Nuclear Information System (INIS)

    Soltys, L.

    1992-01-01

    Two types dust removal equipment mostly useful for dust removal from waste gas from fluidized beds, i.e. electrofilters and pulsatory bag filters were presented. Their features and functional properties were compared. (author). 7 refs, 4 figs

  19. Combustion of cork waste in a circulating fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Miranda, M.; Cabrita, I. [Dept. de Tecnologias de Combustao, ITE-INETI, Lisboa (Portugal); Abelha, P. [Coaltec e Ambiente, Lisboa (Portugal)

    1999-07-01

    There is currently an ongoing joint project between Portugal and Spain, which is being funded by the FAIR programme. The principal objective of the FAIR project is to investigate the application of the fluidised bed combustion (FBC) technology to burn cork wastes with the aim of overcoming the difficulties currently experienced in the cork processing industries. The combustion studies at INETI were carried out using the 300 kW{sub th} circulating fluidised bed facility. The combustor is square in cross section with each side being 0.3 m long. The combustor height is 5 m. The temperatures in the bed, the riser and that of the flue gases leaving the reactor were continuously monitored. The combustion gases leaving the reactor passed through the recycling cyclone first to capture most of particulates elutriated out of the combustor. The solid particles were intermittently collected for analysis to determine the amount of carbon present, which helped the combustion efficiency to be calculated. Instantaneous measurements of O{sub 2}, CO, CO{sub 2}, NO{sub x}, N{sub 2}O and SO{sub 2} present levels in the flue gases were also carried out. The combustion tests were done with both the cork waste dust and granular virgin cork. The difference is that cork dust gets contaminated during the process due to the use of various additives. Most of the combustion took place in the riser where the temperature was at times up to 523 K above that of the bed. The unburned carbon level was low ranging from about 1.5 to 2.% suggesting that most of the particles burned to completion in the riser. (orig.)

  20. Air Gasification of Agricultural Waste in a Fluidized Bed Gasifier: Hydrogen Production Performance

    Directory of Open Access Journals (Sweden)

    A. B. Alias

    2009-05-01

    Full Text Available Recently, hydrogen production from biomass has become an attractive technology for power generation. The main objective pursued in this work is to investigate the hydrogen production potential from agricultural wastes (coconut coir and palm kernel shell by applying the air gasification technique. An experimental study was conducted using a bench-scale fluidized bed gasifier with 60 mm diameter and 425 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures (700 to 900°C, fluidization ratio (2 to 3.33 m/s, static bed height (10 to 30 mm and equivalence ratio (0.16 to 0.46 were studied. It was concluded that substantial amounts of hydrogen gas (up to 67 mol% could be produced utilizing agricultural residues such as coconut and palm kernel shell by applying this fluidization technique. For both samples, the rise of temperature till 900°C favored further hydrocarbon reactions and allowed an increase of almost 67 mol% in the release of hydrogen. However, other parameters such as fluidizing velocity and feed load showed only minor effects on hydrogen yield. In conclusion, agricultural waste can be assumed as an alternative renewable energy source to the fossil fuels, and the environmental pollution originating from the disposal of agricultural residues can be partially reduced.

  1. Dynamics of a shallow fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Tsimring, Lev S. [Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402 (United States); Ramaswamy, Ramakrishna [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, (India); Sherman, Philip [Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402 (United States)

    1999-12-01

    The results of the experimental study of the dynamics of a shallow fluidized bed are reported. The behavior of granular material is controlled by the interplay of two factors--levitation due to the upward airflow, and sliding back due to gravity. Near the threshold of instability, the system shows critical behavior with remarkably long transient dynamics. The experimental observations are compared with a simple cellular automata model. (c) 1999 The American Physical Society.

  2. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  3. Development of the fluidized bed thermal treatment process for treating mixed waste

    International Nuclear Information System (INIS)

    Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

    1993-01-01

    A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970's and 1980's in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed systems. The system operates at low temperatures (∼ 525--600 degree C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The process has shown the ability to destroy polychlorinated biphenyls (PCB's) with 99.9999% (''six-nines'') destruction efficiency in tests monitored by the Environmental Protection Agency (EPA). The bed makes use of in situ neutralization of acidic off-gases by incorporating sodium carbonate (Na 2 CO 3 ) in the bed media. This eliminates using wet scrubbers to treat the off-gas; these produce a high volume of secondary waste. Once in operation, it is expected that the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste

  4. Fluidized bed furnace for coating nuclear fuel and/or breeder material cores. Wirbelschichtofen zur Beschichtung von nuklearen Brennstoff- und/oder Brutstoffkernen

    Energy Technology Data Exchange (ETDEWEB)

    Barnert, E; Ringel, H; Schmitz, H; Zimmer, E

    1982-10-21

    The insulation of the fluidized bed chamber is divided into two parts, where the inner part can have a mechanical load on it, while the outer part has a low thermal conductivity. The latter makes it possible to use cooling gases, instead of water, for cooling the fluidized bed furnace. The cooling gas has no effect on the critical mass to be taken into account in dimensioning the volume of the fluidized bed, and the quantity of fuel and/or breeder material can be increased by about 20 times in the fluidized bed chamber, compared with the water-cooled fluidized bed furnace. For safety reasons, particularly in order to reduce the fire danger if there is a fault, inert gases, for example nitrogen, carbon dioxide etc. are preferred as cooling gases.

  5. Gasification of secondary fuels in a circulating fluidized bed for energetic use in cement production; Vergasung von Sekundaerbrennstoffen in der zirkulierenden Wirbelschicht zur energetischen Nutzung fuer die Zementherstellung

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, J; Gafron, B [Lurgi Umwelt GmbH, Frankfurt am Main (Germany); Scur, P; Wirthwein, R [Ruedersdorfer Zement GmbH (Germany)

    1998-09-01

    Ruedersforf cement factory was commissioned a century ago as one of the first in Germany. After the plant was taken over by Readymix AG, a comprehensive sanitation concept was carried through. The plant has a production capacity of 8000 t/d of cement clinkers which are produced in a new kiln with a capacity of 6000 t/d and two modernized kilns each with a capacity of 1000 t/d. Reduction of energy consumption was the main goal of modernisation, with fuel gas generation in a circulating fluidized bed as a key element. The unit provides 40 % of the energy consumed by the clinker production process and is also used for selective ash production up to 25 t/h. The ash is used as a raw material for cement production. (orig./SR) [Deutsch] Bereits vor 100 Jahren wurde eine der ersten Zementfabriken in Deutschland am Standort Ruedersdorf in Betrieb genommen. Zum Erhalt der Wettbewerbsfaehigkeit wurde nach der Uebernahme des Werkes Ruedersdorf durch die Readymix AG ein umfangreiches Sanierungskonzept in die Wege geleitet. Bei einer Produktionskapazitaet von ca. 8 000 t Klinker pro Tag werden eine neue Ofenanlage mit einer Kapazitaet von 6 000 t/Tag sowie 2 sanierte kleine Anlagen zu je 1000 t/Tag betrieben. In der neuen Ofenanlage werden alle Moeglichkeiten genutzt, den Energiebedarf fuer die Klinkerproduktion zu senken. Eine wesentliche neue innovative Komponente ist dabei eine Brenngaserzeugung in einer Zirkulierenden Wirbelschicht, ueber die im folgenden berichtet werden soll. Die Anlage kann bis zu 40% des Energiebedarfes des Zementprozesses liefern. Weiterhin wird mit der ZWS eine gezielte Ascheproduktion, bis zu 25 t/h, betrieben. Diese Aschen sind Teil der Rohstoffrezeptur an der Rohmuehle. (orig./SR)

  6. Low temperature fluidized wood chip drying with monoterpene analysis

    Science.gov (United States)

    Bridget N. Bero; Alarick Reiboldt; Ward Davis; Natalie Bedard; Evan Russell

    2011-01-01

    This paper describes the drying of ponderosa pine wood chips at low (20°C and 50°C) temperatures using a bench-scale batch pulsed fluidizer to evaluate both volatile pine oils (monoterpenes) and moisture losses during drying.

  7. Production of polycrystalline silicon by fluidized-bed-problems and recent progress of study

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Toshinori

    1988-10-01

    Concerning the production of polycrystalline silicon from SiH/sub 4/ by applying fluidized bed reaction, recent progress of study, problems involved, and countermeasures to them were reported. For the experiment, stainless tube with 50mm inside diameter attached with electric heater on the wall as auxillary heat source was used to measure the temperature distribution in the bed. As the diluting gas, hydrogen and argon were used to investigate the effect of diluent gas and it was understood that sort of diluent gas affected on the crogging and reaction rate. It was indicated that, in the fluidized bed reaction which gave large depositing area and high productivity, contamination was easily occurred. Observation of fine powder by electronic-microscope revealed that different diluent caused the difference of fine powder shape and that the higher the reaction temperature the more fine powder was produced. Crogging condition was affected by tower diameter, together with temperature and fluidizing conditions. In addition, two recent patents were introduced. 11 references, 10 figures.

  8. Formation and removal of biomass-derived contaminants in fluidized-bed gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The objectives of this thesis were to examine the effects of the feedstock and the operating conditions of a fluidized-bed gasifier on the formation of tars and nitrogen-containing compounds and to study the effectiveness of the hot gas cleaning methods developed for the removal of particulates, alkali metals, tars and nitrogen-containing compounds. The most essential part of the work was carried out in the pressurized fluidized-bed gasification test facilities composed of an air-blown bubbling fluidized-bed gasifier and subsequent hot gas filter unit. The operation pressure of the test rig could be varied in the range 0.3 - 1.0 MPa and the maximum allowable gasification temperature was 1 050 deg C. The maximum capacity with biomass fuels was 80 kg/h. A wide range of feedstocks from hard coals, lignite and peat to different wood derived fuels and straw were used in the gasification tests. Two different types of ceramic filters were tested in the filter unit connected to the pressurized fluidized-bed gasifier. The filter unit was operated in a temperature range of 400 - 740 deg C. The particulate removal requirements set by the gas turbines were met by both types of filters and with product gases derived from all the feedstocks tested. In addition to the gasification and gas filtration tests, catalytic tar and ammonia decomposition was studied using both laboratory and bench-scale test facilities. Inexpensive calcium-based bulk materials, dolomites and limestones, were efficient tar decomposition catalysts in atmospheric-pressure tests

  9. Formation and removal of biomass-derived contaminants in fluidized-bed gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The objectives of this thesis were to examine the effects of the feedstock and the operating conditions of a fluidized-bed gasifier on the formation of tars and nitrogen-containing compounds and to study the effectiveness of the hot gas cleaning methods developed for the removal of particulates, alkali metals, tars and nitrogen-containing compounds. The most essential part of the work was carried out in the pressurized fluidized-bed gasification test facilities composed of an air-blown bubbling fluidized-bed gasifier and subsequent hot gas filter unit. The operation pressure of the test rig could be varied in the range 0.3 - 1.0 MPa and the maximum allowable gasification temperature was 1 050 deg C. The maximum capacity with biomass fuels was 80 kg/h. A wide range of feedstocks from hard coals, lignite and peat to different wood derived fuels and straw were used in the gasification tests. Two different types of ceramic filters were tested in the filter unit connected to the pressurized fluidized-bed gasifier. The filter unit was operated in a temperature range of 400 - 740 deg C. The particulate removal requirements set by the gas turbines were met by both types of filters and with product gases derived from all the feedstocks tested. In addition to the gasification and gas filtration tests, catalytic tar and ammonia decomposition was studied using both laboratory and bench-scale test facilities. Inexpensive calcium-based bulk materials, dolomites and limestones, were efficient tar decomposition catalysts in atmospheric-pressure tests

  10. Application of image processing on struvite recovery from swine wastewater by using the fluidized bed.

    Science.gov (United States)

    Ye, Zhi-Long; Deng, Yujun; Ye, Xin; Lou, Yaoyin; Chen, Shaohua

    2018-01-01

    Fluidized granulation is one of the common methods used in wastewater treatment and resource recovery with harvesting millimeter-scale large particles. Presently, effective methods are lacking to measure the fluidized granules ranging from micro- to millimeter scales, with the consequence of ineffectively controlling and optimizing the granulation process. In this work, recovering struvite (MgNH 4 PO 4 ·6H 2 O) from swine wastewater by using a fluidized bed was taken as an example. Image processing was applied to analyze the properties of different types of struvite granules, including morphology, particle size distribution, number density and mass concentration. Four stages of the struvite crystal evolution were therefore defined: aggregation, aggregate compaction, cluster-agglomerating and coating growth. These stages could occur simultaneously or sequentially. Up-flow rates of 30-80 mm/s in the fluidized bed sustained 600-876 g/L granular solids. Results revealed that the coating-growth granules were formed with compact aggregates or cluster-agglomerating granules as the nuclei. The growth rates for the different types of particles, including population growth, mass increase and particle size enlargement, were determined. In final, a schematic illustration for struvite granulation process is also presented.

  11. Biological fluidized-bed treatment of groundwater from a manufactured gas plant site

    International Nuclear Information System (INIS)

    Grey, G.M.; Scheible, O.K.; Maiello, J.A.; Guarini, W.J.; Sutton, P.M.

    1995-01-01

    Bench- and pilot-scale biological treatability studies were performed as part of a comprehensive study for developing an on-site treatment system for contaminated groundwater at a former manufactured gas plant site. The bench-scale work, which included evaluations of activated sludge and fluidized-bed biological processes, indicated that a carbon-based fluidized-bed process was most appropriate. The process was then demonstrated on a pilot level at the site. The bench and pilot studies demonstrated significant reductions of chemical oxygen demand (COD), and all target organics including polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs)

  12. Development of fluidized-bed furnace for thermal treatment of ammonium uranyl carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, U C; Anuradha, M; Meena, R [Nuclear Fuel Complex, Hyderabad (India)

    1994-06-01

    At present the ammonium uranyl carbonate (AUC) route is developed at a scale of 10 kg/day of UO{sub 2}. This UO{sub 2} is directly compactible and sinterable to densities of 10.55-10.65 gm/cc. The equipment developed include precipitation tank with filtration and methanol washing and fluidized bed furnaces for thermal treatment of AUC and U{sub 3}O{sub 8}. During the design and development of these furnaces many experiments were conducted to study fluidization of AUC powder. In this paper the findings of these studies are presented. (author). 3 refs., 4 figs., 3 tabs.

  13. Adjustement of Dancoff factor for calculating the cell of fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Borges, V.; Sefidvash, F.

    1988-01-01

    A new nuclear reactor design based on the fluidized bed concept is under reserch and development. It utilized spherical fuel of slightly enriched zircaloy-clad uranium dioxide fluidized by light water under pressure since the Leopard code has been developed for light water reactor analysis, it was necessary to develop a method to determine the dimensions of the hypothetical fuel rod lattice, which are neutronically equivalent to the spherical fuel pellet lattice. This method is shown to calculate the Dancoff factor correctly. (author) [pt

  14. Technical and economical optimization of wood gasification in a circulating fluidized bed. Final report; Technische und wirtschaftliche Optimierung der Vergasung von Holz in der zirkulierenden Wirbelschicht. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ising, M.; Unger, C.; Heunemann, F.; Dinkelbach, L.

    2002-12-01

    The project's objective was the optimization of a novel process for high efficient combined heat and power production from solid biomass. The processed air blown wood gasification in a pilot scale circulating fluidized bed was added by a catalytic tar reformer which would yield a tar-free gas quality suitable for IC-engine operation. Major efforts were taken for technical improvement of the tar reformer, especially concerning temperature control and cleaning devices which is important for keeping constantly a high activity. Pure natural timber did not yield chemical deactivation at the catalyst whereas the gasification of waste wood yielded decreasing activity which could be partly reversed by special measures taken. Further optimization of the process considered a better automation and improvement of the engine's flue gas emissions. Also a detailed economic consideration and evaluation of the entire process has been carried out. As a result the novel process should have economic advantages compared with conventional technology. (orig.) [German] Gegenstand des Vorhabens war die Weiterentwicklung eines Verfahrens zur effizienteren Strom- und Waermegewinnung aus festen Biobrennstoffen. Durch luftgeblasene Vergasung von Holz im Pilotmassstab in einer zirkulierenden Wirbelschicht und anschliessender katalytischer Teerspaltung konnte ein niederkalorisches Brenngas erzeugt werden, welches zum Betrieb eines Motoren-Blockheizkraftwerks geeignet war. Im Rahmen der Verfahrensoptimierung wurde der katalytische Teer-Reformer, insbesondere in Bezug auf Temperaturfuehrung und die zum Aktivitaetserhalt wichtige Abreinigungsvorrichtung, verbessert. Bei der Vergasung von Naturholz wurde keine chemische Desaktivierung festgestellt. Beim Altholzeinsatz wurde ein ueberwiegend reversibler Aktivitaetsverlust verzeichnet und begruendet. Geeignete Gegenmassnahmen wurden untersucht und beschrieben. Weitere Optimierungen betrafen die Anlagensteuerungstechnik im Hinblick auf die

  15. An energy amplifier fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, F.; Seifritz, W.

    2001-01-01

    The concept of a fluidized bed nuclear reactor driven by an energy amplifier system is described. The reactor has promising characteristics of inherent safety and passive cooling. The reactor can easily operate with any desired spectrum in order to be a plutonium burner or have it operate with thorium fuel cycle. (orig.) [de

  16. Operational methods of the fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Borges, V.; Sefidvash, F.

    1993-01-01

    The operational curve of reactivity as a function of porosity of the Fluidized Bed Nuclear Reactor is presented. The strategies for start-up, shut-down and maintaining the reactor critical during operation are described. The inherent safety of the reactor from neutronic point of view under steady state condition is demonstrated. (author)

  17. Theoretical study of fluidized solar collector performance

    Energy Technology Data Exchange (ETDEWEB)

    Adulla, S. H; Kassem, M A; El-Refaie, M. F. [Cairo University, Giza (Egypt)

    2000-07-01

    This work presents a proposed novel design aiming to increasing the absorber-to-fluid heat transfer coefficient. This is accomplished by introducing small solid particles inside the collector tubes. When the collector liquid flows, it causes the particles to be fluidized and spread in the tubes. The particles material, size and total number should be turned together with the fluid mass flow rate to keep the bed, or particle dispersion, length within the physical length of collector tubes. Thus, the particles would be confined in the collector only; and not carried over to other parts of the circulation loop. While moving, the particles erode the thermal boundary layer formed on the tube inner surface, hence increasing the heat transfer coefficient. [Spanish] Este articulo presenta un diseno novedoso destinado a aumentar el coeficiente de trasferencia de calor de absorbedor a fluido. Esto se lleva a cabo mediante la introduccion de particulas solidas dentro de los tubos del colector. Cuando fluye el liquido del colector origina que las particulas se fluidicen y se diseminen en los tubos. El material de las particulas, tamano y numero total debera de ser puesto en movimiento junto con el regimen de flujo de masa de fluido para mantener el lecho o la dispersion de particulas por largo tiempo dentro de la longitud fisica de los tubos de colector. De esta manera las particulas seran confinadas solamente en el colector y no seran arrastradas a otras partes del anillo de circulacion. Al moverse, las particulas erosionan la capa de frontera termica formada en la superficie interior del tubo, aumentando por tanto el coeficiente de transmision de calor.

  18. Study of process parameters for reducing ammonium uranyl carbonate to uranium dioxide in fluidized bed furnace

    International Nuclear Information System (INIS)

    Leitao Junior, C.B.

    1992-01-01

    This work consists of studying the process parameters of AUC (ammonium uranyl carbonate) to U O 2 (uranium dioxide) reduction, with good physical and chemical characteristics, in fluidized bed. Initially, it was performed U O 2 cold fluidization experiments with an acrylic column. Afterward, it was done AUC to U O 2 reduction experiments, in which the process parameters influence in the granulometry, specific surface area, porosity and fluoride amount on the U O 2 powder produced were studied. As a last step, it was done compacting and sintering tests of U O 2 pellets in order to appreciate the U O 2 powder performance, obtained by fluidized bed, in the fuel pellets fabrication. (author)

  19. Kinetics study of the fluorination of uranium tetrafluoride in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Khani, M.H.; Pahlavanzadeh, H.; Ghannadi, M.

    2008-01-01

    The kinetics of reaction of the uranium tetrafluoride conversion to the uranium hexafluoride with fluorine gas taking place in a fluidized bed reactor operating in industrial conditions have been studied. The external and internal diffusion effects are investigated by Mears and Weisz-Prater criterions. The kinetic equation for the fluorination of uranium tetrafluoride is developed in the absence of diffusional limitation using an integral method by assuming that the gas flow is of plug or perfectly mixed type. A good agreement is observed between the experimental data and a first-order model with respect to fluorine in the CSTR system. The activation energy of the reaction and the pre-exponential factor are obtained using analytical results from a better model

  20. Experimental investigation of the oxy-fuel combustion of hard coal in a circulating fluidized-bed combustion; Experimentelle Untersuchung der Oxy-Fuel-Verbrennung von Steinkohle in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Gerrit Arne

    2017-03-16

    The United Nations Framework Convention on Climate Change (UNFCCC) in 1992 first illustrated the social, economic and politic focus being placed on combating climate change caused by anthropogenic greenhouse gases. From there onwards research and development efforts have particularly centred on the reduction of CO{sub 2} emissions in the production of electrical power through the use of carbonaceous fossil fuels. The long-term goal is a conversion to sustainable and CO{sub 2} free means of producing power, utilizing in the main part renewable forms of energy such as solar, wind and hydro power. Currently, such renewable ways of creating electricity only represent a small percentage of global energy production. The technological and economic hurdles that are associated with a substantial increase of renewable energy production have greatly slowed their increased implementation. However, the goal of keeping the atmospheric CO{sub 2} concentration below 450 ppm requires a significantly faster reduction in the amount of greenhouse gas emissions. Therefore, considerations are being given to bridge technologies which would be able to capture and store the CO{sub 2} emissions from fossil fired power plants. These technologies are referred to as CCS (carbon capture and storage). Oxy-fuel combustion, combustion with pure oxygen instead of air, is one of those technologies and forms the focus of investigation of this work. The Institute of Combustion and Power Plant Technology in Stuttgart, Germany, have researched this matter, carrying out combustion experiments in its 150 kW{sub th} circulating fluidized bed pilot facility. The experiments were aimed at investigating the influence of excess oxygen, combustion temperature and inlet oxygen concentration on the combustion process and comparing air to oxy-fuel combustion. These results were compared to the results of fundamental investigations and combustion experiments carried out by other research groups. The relationship

  1. Combustion of palm oil solid waste in fluidized bed combustor

    International Nuclear Information System (INIS)

    Abdullah, I.; Shamsuddin, A.H.; Sopian, K.

    2000-01-01

    Results of experimental investigations of fluidized bed combustion of palm oil wastes consisting of shell, fibre and empty fruit bunches high heating value of 17450 kJ/kg and low heating value of 14500 kJ/kg. The fluidized bed combuster used has a vessel size of 486 x 10 6 mm 3 , surface area of evaporation tubes and distribution air pipes of 500 mm 2 and 320 mm 2 respectively. It was found that a fuel feeding rate 160 kg/h is required to achieve a steam flow rate of 600 kg/h, with the combustion efficiency 96% and boiler efficiency of 72%, emission level of flue gas NO x at less than 180 ppm, SO 2 at less than 20 ppm are measured in the flue gas. (Author)

  2. Lewis pressurized, fluidized-bed combustion program. Data and calculated results

    Science.gov (United States)

    Rollbuhler, R. J.

    1982-03-01

    A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.

  3. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.

    Science.gov (United States)

    Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo

    2010-01-01

    The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.

  4. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    Directory of Open Access Journals (Sweden)

    Hou Peggy

    2004-01-01

    Full Text Available Heat-exchanger tubes in fluidized bed combustors (FBCs often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  5. Devolatilization of oil sludge in a lab-scale bubbling fluidized bed.

    Science.gov (United States)

    Liu, Jianguo; Jiang, Xiumin; Han, Xiangxin

    2011-01-30

    Devolatilization of oil sludge pellets was investigated in nitrogen and air atmosphere in a lab-scale bubbling fluidized bed (BFB). Devolatilization times were measured by the degree of completion of the evolution of the volatiles for individual oil sludge pellets in the 5-15 mm diameter range. The influences of pellet size, bed temperature and superficial fluidization velocity on devolatilization time were evaluated. The variation of devolatilization time with particle diameter was expressed by the correlation, τ(d) = Ad(p)(N). The devolatilization time to pellet diameter curve shows nearly a linear increase in nitrogen, whereas an exponential increase in air. No noticeable effect of superficial fluidization velocity on devolatilization time in air atmosphere was observed. The behavior of the sludge pellets in the BFB was also focused during combustion experiments, primary fragmentation (a micro-explosive combustion phenomenon) was observed for bigger pellets (>10mm) at high bed temperatures (>700 °C), which occurred towards the end of combustion and remarkably reduce the devolatilization time of the oil sludge pellet. The size analysis of bed materials and fly ash showed that entire ash particle was entrained or elutriated out of the BFB furnace due to the fragile structure of oil sludge ash particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Fluidized bed incineration of radioactive waste

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1976-01-01

    A fluidized-bed incineration facility is being designed for installation at the Rocky Flats Plant to demonstrate a process for the combustion of transuranic waste. The unit capacity will be about 82 kg/hr of combustible waste. The combustion process will utilize in situ neutralization of acid gases generated in the process. The equipment design is based on data generated on a pilot unit and represents a scale-up of nine. Title I engineering is at least 70 percent complete

  7. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydén, Magnus

    2011-03-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor system. For the oxygen uncoupling experiments, it was found that the particles released O2 in gas phase at temperatures above 720°C when the fuel reactor was fluidized with CO2. The effect increased with increased temperature, and with the O2 partial pressure in the air reactor. At 950°C, the O2 concentration in the outlet from the fuel reactor was in the order of 4.0vol%, if the particles were oxidized in air. For the chemical-looping combustion experiments the combustion efficiency with standard process parameters was in the order of 95% at 950°C, using 1000kg oxygen carrier per MW natural gas, of which about 30% was located in the fuel reactor. Reducing the fuel flow so that 1900kg oxygen carrier per MW natural gas was used improved the combustion efficiency to roughly 99.8%. The particles retained their physical properties, reactivity with CH4 and ability to release gas-phase O2 reasonably well throughout the testing period and there were no problems with the fluidization or formation of solid carbon in the reactor. X-ray diffraction showed that the particles underwent changes in their phase composition though. © 2010 Elsevier Ltd.

  8. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    Science.gov (United States)

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  9. Exploring bio-hydrogen-producing performance in three-phase fluidized bed bioreactors using different types of immobilized cells

    International Nuclear Information System (INIS)

    Shu-Yii Wu; Chi-Neng Lin; Yuan-Chang Shen; Shu-Yii Wu; Chiu-Yue Lin; Jo-Shu Chang

    2006-01-01

    In this study, the spherical activated carbon (AC) and silicone gel (SC) were used as the primary matrices to immobilize H 2 -producing activated sludge. The experiments were carried out in two different types of three-phase fluidized beds; namely, conventional fluidized bed reactor (FBR) and draft tube fluidized bed reactor (DTFBR). The solid volume of AC and SC immobilized cells was 10 vol.% for both FBR and DTFBR. Sucrose (at 20000 mg COD/l) was used as the carbon substrate for H 2 production. The H 2 -producing performance was examined at different hydraulic retention times (HRT = 8, 6, 4, 2, 1, and 0.5 h). The results show that the best volumetric H 2 production rate was 1.23 ± 0.08 l/h/l (HRT = 2 h) and 2.33 ± 0.22 l/h/l (HRT 0.5 h) for fluidized beds containing AC and SC immobilized cells, respectively. The highest H 2 yield was 3.37 mol H 2 /mol sucrose (HRT = 6 h) and 4.07 mol H 2 /mol sucrose (HRT = 4 h) for fluidized beds with AC and SC immobilized cells, respectively. The H 2 content in the biogas was stably maintained at 35% or higher for all the reactors, while the primary soluble metabolites in the cultures were acetic acid and butyric acid. (authors)

  10. Theory and measurements of electrophoretic effects in monolith, fixed-bed, and fluidized-bed plasma reactors

    International Nuclear Information System (INIS)

    Morin, T.J.

    1989-01-01

    Pressure gradients and secondary flow fields generated by the passage of electrical current in a d.c. gas discharge or gas laser are topics of longstanding interest in the gaseous electronics literature. These hydrodynamic effects of space charge fields and charged particle density gradients have been principally exploited in the development of gas separation and purification processes. In recent characterization studies of fixed-bed and fluidized-bed plasma reactors several anomalous flow features have been observed. These reactors involve the contacting of a high-frequency, resonantly-sustained, disperse gas discharge with granular solids in a fixed or fluidized bed. Anomalies in the measured pressure drops and fluidization velocities have motivated the development of an appropriate theoretical approach to, and some additional experimental investigations of electrophoretic effects in disperse gas discharges. In this paper, a theory which includes the effects of space charge and diffusion is used to estimate the electric field and charged particle density profiles. These profiles are then used to calculate velocity fields and gas flow rates for monolith, fixed-bed, and fluidized-bed reactors. These results are used to rationalize measurements of gas flow rates and axial pressure gradients in high-frequency disperse gas discharges with and without an additional d.c. axial electric field

  11. Interfacial reaction using particle-immobilized reagents in a fluidized reactor. Determination of glycerol in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Shishov, Andrey, E-mail: andrey.shishov.rus@gmail.com [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation); Zabrodin, Andrey; Moskvin, Leonid [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation); Andruch, Vasil [Department of Analytical Chemistry, University of P.J. Šafárik, SK-04154 Košice (Slovakia); Bulatov, Andrey [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation)

    2016-03-31

    A novel fluidized beads strategy for utilization of particle-immobilized reagents in flow analysis was developed in this study. The performance of the suggested strategy was demonstrated by the determination of glycerol in biodiesel. This analytical task was used as a proof-of-concept example. The method is based on on-line extraction of glycerol from biodiesel into aqueous stationary phase of extraction-chromatographic column, followed by elution and spectrophotometric determination in the form of copper glycerate formed in a fluidized reactor of stepwise injection system. The floating of cation exchange resin Dowex{sup ®} 50WX4, saturated with Cu(II) ions in liquid phase, was accomplished by air-bubbling. The linear range was from 100 to 1000 mg kg{sup −1}, and the limit of detection, calculated as 3s of a blank test (n = 5), was found to be 30 mg kg{sup −1}. The method was successfully applied to the analysis of biodiesel and biodiesel-blend (B 20) samples. - Highlights: • Novel fluidized beds strategy for utilization of particle-immobilized reagents. • First application of fluidized beds condition in SWIA. • Novel approach based on interfacial formation of copper glycerate. • Automated method for glycerol determination in biodiesel.

  12. A review of oxy-fuel combustion in fluidized bed reactors

    CSIR Research Space (South Africa)

    Mathekga, HI

    2016-06-01

    Full Text Available Presently, there is no detailed review that summarizes the current knowledge status on oxy-fuel combustion in fluidized bed combustors. This paper reviewed the existing literature in heat transfer, char combustion and pollutant emissions oxy...

  13. DOLOMITE DESULFURIZATION BEHAVIOR IN A BUBBLING FLUIDIZED BED PILOT PLANT FOR HIGH ASH COAL

    Directory of Open Access Journals (Sweden)

    G. M. F. Gomes

    Full Text Available Abstract Although fluidized bed in situ desulphurization from coal combustion has been widely studied, there are aspects that remain under investigation. Additionally, few publications address Brazilian coal desulphurization via fluidized beds. This study used a 250 kWth bubbling fluidized bed pilot plant to analyze different aspects of the dolomite desulphurization of two Brazilian coals. Superficial velocities of 0.38 and 0.46 m/s, flue gas recycling, Ca/S molar ratios and elutriation were assessed. Results confirmed the influence of the Ca/S molar ratio and superficial velocity - SO2 conversion up to 60.5% was achieved for one coal type, and 70.9% was achieved for the other type. A recycling ratio of 54.6% could increase SO2 conversion up to 86.1%. Elutriation and collection of ashes and Ca-containing products did not present the same behavior because a lower wt. % of CaO was collected by the gas controlled mechanism compared to the ash.

  14. Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper; Holm, Jens Kai

    2012-01-01

    not significantly altered after ash application. SA was generally able to increase the levels of Olsen-P and of the ammonium acetate/acetic acid-extractable K in soil as well as to improve the yield of barley and maize, whereas faba bean did not react positively to ash amendment. CP did not show beneficial effects......Recycling of residual products of bioenergy conversion processes is important for adding value to the technologies and as a potential beneficial soil fertility amendment. In this study, two different ash materials originating from low temperature circulating fluidized bed (LT-CFB) gasification...... of either wheat straw (SA) or residue fibers mainly from citrus peels (CP) were tested regarding their potential to be used as fertilizer on agricultural soils. A soil incubation study, a greenhouse experiment with barley and faba bean, and an accompanying outdoor experiment with maize were carried out...

  15. A nonlinear model for the fluidization of marine mud by waves

    Energy Technology Data Exchange (ETDEWEB)

    Foda, M.A.; Hunt, J.R.; Chou, Hsien-Ter (Univ. of California, Berkeley (United States))

    1993-04-15

    The authors consider the problem of fluidization of mud deposits in shallow waters due to interactions with water waves. This is of increasing interest because of concerns that water pollutants, including heavy metals, pesticides, etc., are often found near surfaces of mud deposits. The authors look at the question of whether the cohesive properties of mud deposits exhibit nonlinear properties when they experience strains from water wave interactions. It is obvious that with large enough wave interactions the deposits become fluidized, and are not in that case truly nonlinear. In their modeling efforts they try to incorporate these ideas into a cohesive model where the magnitude of the water wave-sediment interaction has an influence on the type of response within the system.

  16. Some performance characteristics of a fluidized bed heat recovery unit

    International Nuclear Information System (INIS)

    Militzer, J.; Basu, P.; Adaikkappan, N.

    1985-01-01

    The advantages of using fluidized bed heat recovery units with diesel engines are well documented. Two of those are: significantly less tube fouling and heat transfer coefficient four to five time higher than that of conventional shell and tube heat exchangers. The high concentration of soot in the exhaust gases of diesel engines make fouling a major concern in design of any kind of heat recovery unit. In the experiment a conventional fluidized bed heat exchanger was connected to the exhaust of a diesel engine mounted on a dynamometer. With this arrangement it was possible to test the heat recovery unit under a wide range of operating conditions. The main objective of this experiment was the determination of the performance characteristics of the heat recovery unit, especially with reference to its heat transfer and fouling characteristics. (author)

  17. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia – The impact of new circulating fluidized bed technology

    International Nuclear Information System (INIS)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-01-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated – two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the 238 U ( 238 U, 226 Ra, 210 Pb) and 232 Th ( 232 Th, 228 Ra) family radionuclides and for 40 K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ( 210 Pb and 40 K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ( 238 U, 226 Ra, 210 Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, 226 Ra and 228 Ra. A part of 226 Ra input activity, unlike 228 Ra, was undetectable in the solid

  18. Development of a membrane-assisted fluidized bed reactor - 2 - Experimental demonstration and modeling for the partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    A small laboratory-scale membrane-assisted fluidized bed reactor (MAFBR) was constructed in order to experimentally demonstrate the reactor concept for the partial oxidation of methanol to formaldehyde. Methanol conversion and product selectivities were measured at various overall fluidization

  19. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data ...

  20. Entropy of Fluidized Bed - a Measure of Particles Mixing

    Czech Academy of Sciences Publication Activity Database

    Punčochář, Miroslav; Drahoš, Jiří

    2003-01-01

    Roč. 58, č. 12 (2003), s. 2515-2518 ISSN 0009-2509 R&D Projects: GA ČR GA104/97/S002 Institutional research plan: CEZ:AV0Z4072921 Keywords : entropy * fluidization * Kolmogorov entropy Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.562, year: 2003

  1. Multicell fluidized bed boiler design construction and test program. Quarterly progress status report, January--March 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-07-01

    The objective of this program is to design, construct, and test a multicell fluidized-bed boiler as a pollution-free method of burning high-sulfur or highly corrosive coals without excessive maintenance problems. The fluidized-bed boiler will provide approximately 300,000 pounds of steam per hour. Steam pressure and temperature conditions were selected to meet requirements of the site at which the boiler was installed.

  2. Segregation and periodic mixing in a fluidized bidisperse suspension

    International Nuclear Information System (INIS)

    Deboeuf, A; Gauthier, G; Martin, J; Salin, D

    2011-01-01

    We address the issue of segregation in bidisperse suspensions of glass beads, by using a liquid fluidized bed in the inertialess regime and an acoustic technique for acquiring the axial composition along the column. Fluidization balances the buoyancy of the particles by a constant uniform upward flow, and therefore enables long-time experiments. From the analysis of the transient segregation fronts, we have collected precise measurements on the sedimentation velocities of small and large beads, U s and U l , in homogeneous suspensions at the same volume fraction, Φ-bar/2, for both the bead species, and for different size ratios, 1.13≤λ≤1.64, and solid concentrations, 25%≤Φ-bar≤50%. Our measurements provide evidence for a difference in the sedimentation velocities, U s and U l , over all the ranges of λ and Φ-bar covered. These results make one expect that a long-term fluidization should then result in a stationary segregated state, which was indeed always obtained for large enough particle size ratios, λ≥1.43. However, at high concentration and for particles of close sizes, λ≤1.41, we observed a surprising pseudo-periodic intermittency of slow segregation and quick mixing phases. The intermittency time is much longer than the batch sedimentation time and becomes noisy at very high concentration, for which metastable states have been observed. The origin of the mixing destabilization remains an open issue, but we note however that the domain of occurrence, λ≤1.41, also corresponds, in our experiments, to a continuous size distribution of the particles.

  3. Thermofluid effect on energy storage in fluidized bed reactor

    Science.gov (United States)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  4. The formation of impurities in fluidized-bed gasification of biomass, peat and coal; Epaepuhtauksien muodostuminen leijukerroskaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Laatikainen-Luntama, J.; Kurkela, M.; Leppaelahti, J.; Koljonen, T.; Oesch, P. [VTT Energy, Espoo (Finland); Alen, R. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The objective of this three-year-long project was to study the effects of different process parameters and bed materials on the formation of impurities in pressurized fluidized-bed gasification. The main emphasis of the project was focused on the formation of tars and nitrogen compounds in wood, peat and coal gasification. The aims of the research were to find out such operating conditions, where the formation of problematic high-molecular-weight tars can be minimised and to create a better understanding on the fate of fuel nitrogen in fluidized-bed gasifiers. Main part of the research was carried out in a bench-scale pressurised fluidized-bed reactor (ID 30 mm), where the effects of pressure, temperature, gas atmosphere and bed material were studied with different feedstocks. Most of the test series were carried out using the same feedstocks as earlier used in the PDU-scale fluidized-bed gasification tests of VTT (pine wood, pine bark, wheat straw, two peats, Rhenish brown coal, Polish and Illinois No.6 bituminous coals). The effects of operating parameters on the product yields (gas components, tars, char) were first studied under inert nitrogen atmosphere. The conversion of fuel nitrogen into ammonia and HCN were also determined for the different feedstocks over the different operating conditions. These studies showed that ammonia is the main fixed nitrogen compound of fluidized-bed pyrolysis with all the feedstocks studied. The conversions of fuel nitrogen into ammonia and HCN was highest with the high volatile fuels and lowest with the two hard coals. Gas atmosphere had a dramatic effect on the conversion of fuel nitrogen; much higher ammonia yields were determined in real gasification gas atmosphere than in inert pyrolysis carried out in N{sub 2} or Argon atmosphere. In addition to the pressurised fluidized-bed pyrolysis tests, laboratory scale pyrolysis research was carried out in order to compare the pyrolysis behaviour of the different feedstocks

  5. Use of Pressure Fluctuations to Determine Online the Regime of Gas-Solids Suspensions from Incipient Fluidization to Transport

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar; Svoboda, Karel

    2009-01-01

    Roč. 48, č. 14 (2009), s. 6830-6835 ISSN 0888-5885 R&D Projects: GA AV ČR IAA400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidized beds * fluidization regimes * pressure fluctuations Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.758, year: 2009

  6. Mass transfer between a fluid and an immersed object in liquid–solid packed and fluidized beds

    Directory of Open Access Journals (Sweden)

    NEVENKA BOSKOVIC-VRAGOLOVIC

    2005-11-01

    Full Text Available Themass transfer coefficient between fluid and an immersed sphere in liquid packed and fluidized beds of inert spherical particles have been studied experimentally using a column 40 mm in diameter. The mass transfer data were obtained by studying the transfer of benzoic acid from the immersed sphere to flowing water using the dissolution method. In all runs, the mass transfer rates were determined in the presence of inert glass particles 0.50-2.98 mm in diameter. The influence of different parameters, such as: liquid velocity, particles size and bed voidage, on the mass transfer in packed and fluidized beds is presented. The obtained experimental data for mass transfer in the packed and particulate fluidized bed were correlated by a single correlation, thus confirming the similarity between the two systems.

  7. A Study of Vertical Gas Jets in a Bubbling Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Ceccio, Steven [Univ. of Michigan, Ann Arbor, MI (United States); Curtis, Jennifer [Univ. of Florida, Gainesville, FL (United States)

    2011-04-15

    A detailed experimental study of a vertical gas jet impinging a fluidized bed of particles has been conducted with the help of Laser Doppler Velocimetry measurements. Mean and fluctuating velocity profiles of the two phases have been presented and analyzed for different fluidization states of the emulsion. The results of this work would be greatly helpful in understanding the complex two-phase mixing phenomenon that occurs in bubbling beds, such as in coal and biomass gasification, and also in building more fundamental gas-solid Eulerian/Lagrangian models which can be incorporated into existing CFD codes. Relevant simulations to supplement the experimental findings have also been conducted using the Department of Energy's open source code MFIX. The goal of these simulations was two-fold. One was to check the two-dimensional nature of the experimental results. The other was an attempt to improve the existing dense phase Eulerian framework through validation with the experimental results. In particular the sensitivity of existing frictional models in predicting the flow was investigated. The simulation results provide insight on wall-bounded turbulent jets and the effect frictional models have on gas-solid bubbling flows. Additionally, some empirical minimum fluidization correlations were validated for non-spherical particles with the idea of extending the present study to non-spherical particles which are more common in industries.

  8. Physical Characteristics of Fluidized Beds via Pressure Fluctuation Analysis

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar

    2008-01-01

    Roč. 54, č. 7 (2008), s. 1761-1769 ISSN 0001-1541 R&D Projects: GA AV ČR IAA400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : gas-solid fluidization * pressure fluctuations * fluctuation characteristics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.883, year: 2008

  9. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass

    International Nuclear Information System (INIS)

    Mahmoudi, Shiva; Baeyens, Jan; Seville, Jonathan P.K.

    2010-01-01

    Caledonian Paper (CaPa) is a major paper mill, located in Ayr, Scotland. For its steam supply, it previously relied on the use of a Circulating Fluidized Bed Combustor (CFBC) of 58 MW th , burning coal, wood bark and wastewater treatment sludge. It currently uses a bubbling fluidized bed combustor (BFBC) of 102 MW th to generate steam at 99 bar, superheated to 465 o C. The boiler is followed by steam turbines and a 15 kg/s steam circuit into the mill. Whereas previously coal, wood bark and wastewater treatment sludge were used as fuel, currently only plantation wood (mainly spruce), demolition wood, wood bark and sludge are used. Since these biosolids contain nitrogen, fuel NO x is formed at the combustion temperature of 850-900 o C. NO x emissions (NO + NO 2 ) vary on average between 300 and 600 mg/Nm 3 (dry gas). The current emission standard is 350 mg/Nm 3 but will be reduced in the future to a maximum of 233 mg/Nm 3 for stand-alone biomass combustors of capacity between 50 and 300 MW th according to the EU LCP standards. NO x abatement is therefore necessary. In the present paper we firstly review the NO x formation mechanisms, proving that for applications of fluidized bed combustion, fuel NO x is the main consideration, and the contribution of thermal NO x to the emissions insignificant. We then assess the deNO x techniques presented in the literature, with an updated review and special focus upon the techniques that are applicable at CaPa. From these techniques, Selective Non-catalytic Reduction (SNCR) using ammonia or urea emerges as the most appropriate NO x abatement solution. Although SNCR deNO x is a selective reduction, the reactions of NO x reduction by NH 3 in the presence of oxygen, and the oxidation of NH 3 proceed competitively. Both reactions were therefore studied in a lab-scale reactor and the results were transformed into design equations starting from the respective reaction kinetics. An overall deNO x yield can then be predicted for any

  10. Improvements in or relating to a fluidizing process and apparatus for treating comminuted solid materials

    Energy Technology Data Exchange (ETDEWEB)

    1949-02-15

    A fluidizing process of treating comminuted solid materials cyclically with different gaseous materials in different treatment zones, which comprises fluidizing comminuted solid material in contiguous treatment zones with different gaseous materials, and establishing unequal fluid-static heads in said zones to effect cyclic flow of said solid material through said zones which are in communication adjacent their respective top and bottom portions and permit the overflow of said solid material from one of said zones to another.

  11. Adaptation of the continuous cold-trap system of fluidized-bed to the fluoride volatility process

    International Nuclear Information System (INIS)

    1976-01-01

    A continuous cold-trap system consisting of fluidized condensor and stripper has been evaluated with a view to adapt it to the Fluoride Volatility Process in establishing the continuous purification process without radiation decomposition of PuF 6 . Its feasibility is shown by the test with UF 6 -air. Necessary conditions for the cold trap, and performance of the 2-in.-dia. fluidized-bed cold-trap system are presented, and also a model of mist formation in the condensor

  12. Dehydration Behaviour of Borax Pentahydrate to Anhydrous Borax by Multi-Stage Heating in a Fluidized

    OpenAIRE

    ŞAHİN, Ömer

    2002-01-01

    In order to optimize the anhydrous borax process in a fluidized bed calcinator, it is absolutely necessary to study the dehydration behaviour of borax pentahydrate. It was found that the basic feature of the dehydration of borax pentahydrate to anhydrous borax is concerned with the conditions employed. The bulk density and sodium borate content of the end product were determined to be a function of number of stages of temperature of the dehydration period in the fluidized bed. It...

  13. Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed

    International Nuclear Information System (INIS)

    Honda, Ryosuke; Umekawa, Hisashi; Ozawa, Mamoru

    2009-01-01

    Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.

  14. Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Ryosuke [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Umekawa, Hisashi [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)], E-mail: umekawa@kansai-uac.jp; Ozawa, Mamoru [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2009-06-21

    Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.

  15. The characterization of fluidization behavior using a novel multichamber microscale fluid bed

    DEFF Research Database (Denmark)

    Räsänen, Eetu; Rantanen, Jukka; Mannermaa, Jukka-Pekka

    2004-01-01

    In the preformulation stage, there is a special need to determine the process behavior of materials with smaller amounts of samples. The purpose of this study was to assemble a novel automated multichamber microscale fluid bed module with a process air control unit for the characterization...... of fluidization behavior in variable conditions. The results were evaluated on the basis of two common computational methods, the minimum fluidization velocity, and the Geldart classification. The materials studied were different particle sizes of glass beads, microcrystalline cellulose, and silicified......, the utilization of the computational predictions was restricted. The presented setup is a novel approach for studying process behavior with only a few grams of materials....

  16. Population balance modelling of fluidized bed melt granulation: an overview

    NARCIS (Netherlands)

    Tan, H.S.; Goldschmidt, M.J.V.; Boerefijn, R.; Hounslow, M.J.; Salman, A.; Kuipers, J.A.M.

    2005-01-01

    This paper presents an overview of the work undertaken by our group to identify and quantify the rates processes active in fluidized bed melt granulation (FBMG). The process involves the identification and development of physically representative models to mechanistically describe FBMG using both

  17. Industrial pressurized fluidized-bed combustors, 1992

    International Nuclear Information System (INIS)

    Bonk, D.; Hand, T.; Freier, M.

    1992-01-01

    Coal-fired Pressurized Fluidized-Bed Combustion (PFBC) systems offer the advantages of high efficiency removal of sulfur during combustion, and inherently low NO x emissions; advantages which support the National Energy Strategy (NES). The Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE) has recently completed studies of coal-fired PFBC in an industrial setting. In addition to in-house studies, interest in industrial sized PFBC's has emerged in the DOE's Clean Coal Technology demonstration program. Reviewing information from these two areas provides some insight into an industrial market for PFBCs

  18. Autothermal gasification of low-grade fuels in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    A.A. Belyaev [Scientific Center for Comprehensive Processing of Solid Combustible Minerals (IGI), Moscow (Russian Federation). Institute of Combustible Minerals Federal State Unitary Enterprise

    2009-01-15

    Autothermal gasification of high-ash flotation wastes of Grade Zh Kuzbass coal and low-ash fuel in a suspended-spouted (fluidized) bed at atmospheric pressure is investigated, and a comparison is presented of experimental results that indicate that the ash content of fuels has only slight influence on the generator gas heating value.

  19. Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed.

    Science.gov (United States)

    Krüger, B; Mrotzek, A; Wirtz, S

    2014-02-01

    In firing systems of cement production plants and coal-fired power plants, regular fossil fuels are increasingly substituted by alternative fuels. Rising energy prices and ambitious CO2-reduction goals promote the use of alternative fuels as a significant contribution to efficient energy recovery. One possibility to protect energy resources are refuse-derived fuels (RDF), which are produced during the treatment of municipal solid, commercial and industrial waste. The waste fractions suitable for RDF have a high calorific value and are often not suitable for material recycling. With current treatment processes, RDF still contains components which impede the utilization in firing systems or limit the degree of substitution. The content of these undesired components may amount to 4 wt%. These, in most cases incombustible particles which consist of mineral, ceramic and metallic materials can cause damages in the conveying systems (e. g. rotary feeder) or result in contaminations of the products (e. g. cement, chalk). Up-to-date separation processes (sieve machine, magnet separator or air classifier) have individual weaknesses that could hamper a secure separation of these particles. This article describes a new technology for the separation of impurities from refuse derived fuels based on a rotating fluidized bed. In this concept a rotating motion of the particle bed is obtained by the tangential injection of the fluidization gas in a static geometry. The RDF-particles experience a centrifugal force which fluidized the bed radially. The technical principle allows tearing up of particle clusters to single particles. Radially inwards the vertical velocity is much lower thus particles of every description can fall down there. For the subsequent separation of the particles by form and density an additionally cone shaped plate was installed in the centre. Impurities have a higher density and a compact form compared to combustible particles and can be separated with a high

  20. A model for the thermodynamic analysis in a batch type fluidized bed dryer

    International Nuclear Information System (INIS)

    Özahi, Emrah; Demir, Hacımurat

    2013-01-01

    An original model for thermodynamic analysis of a batch type fluidized bed dryer is proposed herein considering two separate systems comprised of drying air medium as a control volume and particles to be dried as a control mass. By means of the proposed model, energetic and exergetic analyses of a drying column of a batch type fluidized bed dryer are carried out as an original contribution to literature since there is no such like model in which the analyses are performed considering two separate systems. The energetic efficiencies evaluated by means of the proposed model using the data in literature are compared with those in literature and a good conformity is satisfied with an acceptable error margin of ±9%. A new correlation is also developed with a mean deviation of ±10% in order to evaluate the energetic efficiency for not only corn drying process but also drying processes of other particles at inlet air temperature of 50 °C. Effects of air mass flow rate, mass of particle and ambient temperature on energetic and exergetic efficiencies are analyzed and some concluding remarks are highlighted for further studies. - Highlights: • Energetic and exergetic analyses of a batch type fluidized bed dryer are developed. • An original model is proposed for thermodynamic analyses in a fluidized bed dryer. • The proposed model is compared with the data in literature with an accuracy of ±9%. • Effect of air mass flow rate is more significant than that of ambient temperature. • Effect of mass of particle is more significant than that of ambient temperature

  1. Adaptation of the continuous cold trap system of fluidized-bed to the fluoride volatility process

    International Nuclear Information System (INIS)

    1976-02-01

    A continuous cold trap system consisting of fluidized condenser and stripper has been evaluated with a view to adapt it to the Fluoride Volatility Process in establishing the continuous purification process without radiation decomposition of PuF 6 . Its feasibility is shown by the test with UF 6 -air. Necessary conditions for the cold trap, and performance of the two inch-dia. fluidized bed cold trap system are presented, and also a model of mist formation in the condenser. (auth.)

  2. Gas distributor for fluidized bed coal gasifier

    Science.gov (United States)

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  3. A blood circulation model for reference man

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W.; Eckerman, K.F. [Oak Ridge National Lab., TN (United States); Williams, L.R. [Indiana Univ., South Bend, IN (United States). Div. of Liberal Arts and Sciences

    1996-12-31

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

  4. A blood circulation model for reference man

    International Nuclear Information System (INIS)

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1996-01-01

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86

  5. Influence of the type of organisms on the biomass hold-up in a fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Timmermans, P.; Haute, A. van

    1984-01-01

    In the last few years, the use of fluidized-bed reactors for biological wastewater treatment has got increasing attention. In 1981, Shieh et al. proposed a model to predict the biomass concentration in a fluidized-bed reactor. From this model one can see that the biofilm density plays a very important role in determining the total biomass hold-up. In this article the influence of the type of carbon source on the biomass concentration, and as a consequence the type of organisms selected, is studied. The growth of a filamentous, budforming bacteria in a reactor treating nitrate rich surface water supplied with methanol as carbon source, results in a biomass concentration only half of the concentration which can normally be obtained in a fluidized-bed reactor treating synthetic wastewater; in this latter case rod-shaped bacteria are enriched which permit a dense packing.

  6. On the solid stress in a fluidized bed

    International Nuclear Information System (INIS)

    Qassim, R.Y.; Souza, R. de.

    1980-09-01

    The existence of solid stress in an incipiently gas-fluidized bed is shown by experimental measurement. This stress is shown to have two components: an isotropic pressure and an extra stress which depends on the relative velocity between fluid and solid. Both the solid pressure and the solid extra stress component are found to be of the same order of magnitude as the fluid pressure. (Author) [pt

  7. High temperature fluidized bed zero valent iron process for flue gas nitrogen monoxide removal

    International Nuclear Information System (INIS)

    Cheng, C.Y.; Chen, S.S.; Tang, C.H.; Chang, Y.M.; Cheng, H.H.; Liu, H.L.

    2008-01-01

    Nitrogen oxides (NO x ) are generated from a variety of sources, and are critical components of photochemical smog. Zero valent iron (ZVI) has been used to remove NO x in a number of studies. The ZVI process requires no extra chemicals or catalysts. In this study, a fluidized ZVI process for removing NO x from flue gases was proposed. The study examined the effects of temperature, ZVI dosage and influent NO concentrations, and observed the kinetic effects between the fluidized ZVI and NO x . A life cycle analysis of the process was also provided. The parametric analysis was conducted in a series of column studies using a continuous emissions monitoring system. Minimum fluidization velocity equations were provided, and the drag coefficient was determined. Capacities of ZVI for NO removal at different temperatures were calculated. Results of the study suggested that temperature, influent concentrations, and flow rates all influenced kinetic coefficients. Different temperatures resulted in different rates of NO removal. It was concluded that between 673 K and 773 K, almost complete NO removals were achieved. 14 refs., 2 tabs., 9 figs

  8. The effects of baffles and gas superficial velocity on a bubble fluidized bed reactor's applications

    International Nuclear Information System (INIS)

    Ghorbanpour, A.; Ghannadi Maragheh, M.; Mallah, M. H.

    2008-01-01

    Baffles are used for decreasing bubbles diameter in order to increase the conversion rate along the bubbling fluidized bed reactors. The appearance of this phenomenon is due to bursting of the bubbles during the pass of bubbles from baffles. In this work, a computerized modeling and simulation have been performed in order to obtain a fundamental knowledge of the influence of the baffles on the bubble diameter and the specific mass transfer area. The height of the bed is 5 meters and its diameter is 0.3 meter. Baffles are located at 1 and 2 meters from the bottom of the bed. A two phase model together with a comprehensive fluid dynamical description of bubbling fluidized is presented. The effects of baffles and gas superficial velocity on the operating behavior of fluidized bed reactors are considered. The results are compared to the previously reported documents, and the experiments which have been carried out. MATLAB software is used in this simulation

  9. Multiscale probability distribution of pressure fluctuations in fluidized beds

    International Nuclear Information System (INIS)

    Ghasemi, Fatemeh; Sahimi, Muhammad; Reza Rahimi Tabar, M; Peinke, Joachim

    2012-01-01

    Analysis of flow in fluidized beds, a common chemical reactor, is of much current interest due to its fundamental as well as industrial importance. Experimental data for the successive increments of the pressure fluctuations time series in a fluidized bed are analyzed by computing a multiscale probability density function (PDF) of the increments. The results demonstrate the evolution of the shape of the PDF from the short to long time scales. The deformation of the PDF across time scales may be modeled by the log-normal cascade model. The results are also in contrast to the previously proposed PDFs for the pressure fluctuations that include a Gaussian distribution and a PDF with a power-law tail. To understand better the properties of the pressure fluctuations, we also construct the shuffled and surrogate time series for the data and analyze them with the same method. It turns out that long-range correlations play an important role in the structure of the time series that represent the pressure fluctuation. (paper)

  10. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  11. State of the art of the fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, F.; Vilhena, M.T.M.B. de; Streck, E.; Borges, V.; Johansson, M.

    1987-01-01

    A small and simple nuclear reactors with inherent safety using the fluidized bed concept is under research and study. In this paper a brief study neutronics and thermal hydraulics of this reactor concept is presented. (Author) [pt

  12. Improvement of Combustion Characteristics in Fluidized Bed

    International Nuclear Information System (INIS)

    Mohamed, H.S.; El Sourougy, M.R.; Faik, M.

    2009-01-01

    The present investigation is directed towards the experimental study of the effect of a new design of the bed temperature on the overall thermal efficiency and heat transfer by conduction, convection and radiation in gaseous fuel-fluidized bed combustion system. The experiments are performed on a water-cooled fluidized bed model furnace with cylindrical cross-section of 0.25 m diameter and its height is 0.60 m. the fluidising medium used is sand particles with average diameter 1.5 mm. The bed temperature is varied between 700 degree C and 1100 degree C. Measurements f carbon dioxide, carbon monoxide and oxygen concentrations are carried out by using water-cooled sampling probe, and infrared and paramagnetic analyzers. The results obtained show that the bed temperature, the total heat transfer to the wall and the bed combustion efficiency increase with the decrease of the air-fuel ratio. It is also found that 91% of the total heat transfer is in the fluidising part of the bed and most of this heat is transferred by convection from hot sand particles to the wall. Two empirical formulae for the calculation of the wall heat transfer coefficient and the particle convective heat transfer coefficient are proposed. A verification of the proposed empirical formulae is made by comparing the calculated values with the experimental results.

  13. Validation of a two-fluid model used for the simulation of dense fluidized beds; Validation d`un modele a deux fluides applique a la simulation des lits fluidises denses

    Energy Technology Data Exchange (ETDEWEB)

    Boelle, A.

    1997-02-17

    A two-fluid model applied to the simulation of gas-solid dense fluidized beds is validated on micro scale and on macro scale. Phase coupling is carried out in the momentum and energy transport equation of both phases. The modeling is built on the kinetic theory of granular media in which the gas action has been taken into account in order to get correct expressions of transport coefficients. A description of hydrodynamic interactions between particles in high Stokes number flow is also incorporated in the model. The micro scale validation uses Lagrangian numerical simulations viewed as numerical experiments. The first validation case refers to a gas particle simple shear flow. It allows to validate the competition between two dissipation mechanisms: drag and particle collisions. The second validation case is concerted with sedimenting particles in high Stokes number flow. It allows to validate our approach of hydrodynamic interactions. This last case had led us to develop an original Lagrangian simulation with a two-way coupling between the fluid and the particles. The macro scale validation uses the results of Eulerian simulations of dense fluidized bed. Bed height, particles circulation and spontaneous created bubbles characteristics are studied and compared to experimental measurement, both looking at physical and numerical parameters. (author) 159 refs.

  14. A Bubble-Based Drag Model at the Local-Grid Level for Eulerian Simulation of Bubbling Fluidized Beds

    Directory of Open Access Journals (Sweden)

    Kun Hong

    2016-01-01

    Full Text Available A bubble-based drag model at the local-grid level is proposed to simulate gas-solid flows in bubbling fluidized beds of Geldart A particles. In this model, five balance equations are derived from the mass and the momentum conservation. This set of equations along with necessary correlations for bubble diameter and voidage of emulsion phase is solved to obtain seven local structural parameters (uge, upe, εe, δb, ub, db, and ab which describe heterogeneous flows of bubbling fluidized beds. The modified drag coefficient obtained from the above-mentioned structural parameters is then incorporated into the two-fluid model to simulate the hydrodynamics of Geldart A particles in a lab-scale bubbling fluidized bed. The comparison between experimental and simulation results for the axial and radial solids concentration profiles is promising.

  15. Distributed secondary gas injection via a fractal injector : A nature-inspired approach to improving conversion in fluidized bed reactors

    NARCIS (Netherlands)

    Christensen, D.O.

    2008-01-01

    The conversion in bubbling fluidized bed reactors is suppressed because the interphase mass transfer and gas-solid contact in bubbling fluidized bed reactors are often poor. Most of the gas is present in the form of bubbles, which have low surface-to-volume ratios and are nearly devoid of catalyst

  16. Unilateral and bilateral internal carotid artery stenosis or occlusion: a study of the secondary collateral circulation

    International Nuclear Information System (INIS)

    Zhao Yunhui; Ma Zhubin; Zhuang Lei; Liu Jianjun; Zang Jianhua

    2006-01-01

    Objective: It's a study of the collateral circulation secondary to unilateral and bilateral internal carotid artery (ICA) severe stenosis or occlusion using digital subtract angiography (DSA) and magnetic resonance angiography (MRA). Methods: Ninty-five patients with ICA stenosis or occlusion were diagnosed by DSA or MRA. Forty-four patients were assessed by DSA, and fifty-one patients were evaluated by MRA, who were divided into two groups of the unilateral and bilateral involvement. DSA, MRA findings were analyzed, by which the patterns of the collateral circulation were comparatively studied. Results: The presence rate of anterior communicating artery (AcoA) in the unilateral group on DSA and MRA was significantly higher than that in the bilateral group (P 0.05). On DSA, the presence rate of ophthalmic artery (OphA) in the unilateral and bilateral groups had no significant difference between the two groups. The augmentation rate of the OphA in the bilateral group was significantly higher than that in the unilateral group (P<0.05). The presence rate of leptomeningeal anastomosis in the bilateral group was significantly higher than that in the unilateral group on DSA and MRA (P<0.01). Conclusion: In patients with the unilateral and bilateral ICA stenosis or occlusion, the collateral circulation formats in different patterns. The major collateral pathways secondary to the unilateral ICA stenosis or occlusion are AcoA and ispilateral PCoA, while to the bilateral ICA stenosis or' occlusion are PCoA, OPhA, and leptomeningeal anastomosis. (authors)

  17. KAJIAN TEKNIS-EKONOMIS ALAT PENGERING PATI SAGU MODEL CROSS FLOW VIBRO FLUIDIZED BED (Study on Technical-Economic of Sago Starch Dryer Model of Cross Flow Vibro Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Abadi Jading

    2015-02-01

    Full Text Available The purpose of this research was to evaluate performance of vibro cross flow fluidized bed dryer using biomass fuel for drying sago starch. The phase of research were evaluation of dryer heated by a biomass stove using coconut shell as a fuel and observation of the drying temperature, moisture content, drying time, energy analysis, and drying effiviency, as well as calculation of its economic analysis. The dryer has dimension of 200x50x1500 cm for length, width, hight, respectively, and working capacity of 35kg/process. The results showed that biomass fuel consumption for drying sago starch for 7 hours was 12740,00 MJ (70 kg/process and electricity consumption for blower and vibrator was 37,80 MJ. Furthermore, the dryer reduced moisture content of sago starch from 42% (wb to 12% (wb with temperature in the vibrator chamber of 40-60 oC and relative humidity of 50%, as well as ambient temperature of 30 3C and drying efficiency of 46,02%. Economic analysis showed that the dryer had NPV of Rp. 16.002.858, BCR of 1,53, IRR of 35%, and PBP of 3,51 years. Keywords: Cross flow, vibro fluidized bed dryer, biomass stoves, sago starch, financial analysis   ABSTRAK Tujuan penelitian ini adalah melakukan pengujian terhadap alat pengering pati berbasis sagu model cross flow vibrofluidized bed bertenaga biomassa. Tahapan penelitian meliputi pengujian alat pengering menggunakan tungku biomassa berbahan bakar tempurung kelapa dengan melakukan pengamatan suhu selama pengeringan, penurunan kadar air, waktu pengeringan, kebutuhan energi, efisiensi pengering, dan analisis finansial. Konstruksi alat pengering pati sagu model vibro fluidized bed bertenaga biomassa berukuran panjang, lebar dan tinggi masing-masing (200x50x1500 cm, serta memiliki daya tampung atau kapasitas maksimum pati sagu basah 35 kg/proses. Hasil pengujian menunjukkan bahwa alat pengering ini mampu mengeringkan pati sagu selama 7 jam, dengan konsumsi bahan bakar tempurung kelapa sebanyak 70 kg

  18. Gasification of wood in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, L.C. de; Marti, T; Frankenhaeuser, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A first series of gasification experiments with our fluidized bed gasifier was performed using clean sawdust as fuel. The installation and the analytical systems were tested in a parametric study in which gasification temperature and equivalence ratio were varied. The data acquired will serve to establish the differences between the gasification of clean wood and the gasification of Altholz (scrapwood) and wood/plastics mixtures. (author) 1 fig., 3 tabs., 5 refs.

  19. Experimental investigation of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors

    International Nuclear Information System (INIS)

    Nam, Hyungseok; Capareda, Sergio C.; Ashwath, Nanjappa; Kongkasawan, Jinjuta

    2015-01-01

    Energy conversion efficiencies of three pyrolysis reactors (bench-scale auger, batch, and fluidized bed) were investigated using rice straw as the feedstock at a temperature of 500 °C. The highest bio-oil yield of 43% was obtained from the fluidized bed reactor, while the maximum bio-char yield of 48% was obtained from the batch reactor. Similar bio-oil yields were obtained from the auger and batch type reactors. The GCMS and FTIR were used to evaluate the liquid products from all reactors. The best quality bio-oil and bio-char from the batch reactor was determined to have a heating value of 31 MJ/kg and 19 MJ/kg, respectively. The highest alkali mineral was found in the bio-char produced from the auger reactor. The energy conversion efficiencies of the three reactors indicated that the majority of the energy (50–64%) was in the bio-char products from the auger and batch reactors, while the bio-oil from the fluidized bed reactor contained the highest energy (47%). A Sankey diagram has been produced to show the flows of product energy from each pyrolysis process. The result will help determine which conversion process would be optimal for producing specific products of bio-char, bio-oil, and gas depending on the needs. - Highlights: • Pyrolysis products from auger, batch, and fluidized bed reactor were examined. • O/C ratios of bio-oils stayed in specific ranges depending on the process reactors. • The largest quantity of bio-oil from fluidized, while the best quality from batch. • The highest alkali concentration of 37 g/kg included in the auger based bio-char. • Sankey diagram was used to understand the energy distribution from reactors.

  20. Experimental investigations on drying behaviour of Bulgarian brown coal in steam fluidized bed

    International Nuclear Information System (INIS)

    Buschsieweke, F.; Koenig, J.

    1999-01-01

    The main targets were: to investigate the parameters for optimizing the drying process as steam pressure, fluidization velocity and particle size; to identify the cost of drying and combustion processes considering the necessity of milling the coal (raw or dried). Test series with Bulgarian brown coal from Maritsa-East has been made. Two fractions with different particle size was got: A from 0 to 1.6 mm (0.5 mm average) and B, resp. 1.6 to 6.3 (1.7 mm). The particle size is depending on the coal moisture. The fluidized bed process with the both fractions was performed at variations of the following parameters: steam velocity (0.07 to 1.7 m/s); raw coal feed rate (4 to 16 kg/h); raw moisture (18 to 43 wt %) and pressure (1.3 and 5 bar). Also the shrinking behaviour of the coal in different pore sizes was tested. Comparing pore size of the oven dried coal to the fluidized bed dried coal, significantly higher inner surface for the oven dried coal was established. To indicate the pore size of raw coal samples were made by freeze drying. Ice expanding should cause higher inner surface compared to oven drying method but no significant difference was established. A significant increase of heat transfer of the particles from A fraction (300 to 350 W/m 2 K0 compared to B (200 to 230 W/m 2 K) was determined. The heat transfer coefficient increased at increasing of the raw coal feed rate, mostly significant for A, due to higher particle contact. In conclusion: the particle convective mechanism is predominant for the heat transfer; development of pressurized fluidized bed drying is not of interest and the question about the total expenditure for crushing and milling remains open

  1. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  2. Study of immersed heat exchange surface for high efficiency heat recovery from wire rim tires in a fluidized bed boiler; Hai tire nado kara no kokoritsu netsukaishuyo ryudosho boiler no sonai dennetsukan no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Oshita, T; Nagato, S; Miyoshi, N; Hosoda, S [Ebara Corp., Tokyo (Japan)

    1996-07-10

    In an ICFB boiler, the fluidized bed is separated by a partition into the main combustion and the heat recovery chambers. The flows in these chambers are generated by using silica sand as the fluidizing medium. To determine the overall heat transfer coefficient (HTC) of the boiler`s panel type immersed heat transfer tulles, combustion tests were performed with wire rim tires. The overall HTC of a panel tube array was lower than that of a zigzag tube arrangement. In practice, the heat absorbed by the fins makes the coefficients of either type of tube array almost identical. The air flow rate in the circulating bed at the loot Tom of the heat recovery chamber can be changed to control the overall HTC to a value virtually identical with that of a zigzag tube array. The combustion of wire rim tires leads to a buildup of wires in the zigzag array hampering the transfer of heat. Yet, the panel type array showed no buildup so that it was possible to maintain steady operation with this type of tube arrangement. 8 refs., 10 figs., 2 tabs.

  3. Performance of Fluidized bed Fenton process in Degrading Acid Blue 113

    Science.gov (United States)

    Bello, M. M.; Raman, A. A.

    2017-06-01

    The performance of a fluidized bed Fenton process in degrading Acid Blue 113 (AB 113) was investigated. Fluidized bed Fenton process is a modification of conventional Fenton oxidation, aimed at reducing sludge generation and improving process performance. Response surface methodology was used to study the effects of operational parameter on the color removal from the dye. Dimensionless factors, Dye/Fe2+, H2O2/Fe2+ and pH were used as the independent variables in Box-Behnken Design (BDD). Reduced quadratic model was developed to predict the color removal. The process could remove up to 99 % of the initial color. The most significant factor for color removal was found to be Dye/Fe2+, followed by H2O2/Fe2+. Unlike conventional Fenton, the initial pH of the solution does not have a significant effect on the color removal.

  4. Incineration of Sludge in a Fluidized-Bed Combustor

    OpenAIRE

    Chien-Song Chyang; Yu-Chi Wang

    2017-01-01

    For sludge disposal, incineration is considered to be better than direct burial because of regulations and space limitations in Taiwan. Additionally, burial after incineration can effectively prolong the lifespan of a landfill. Therefore, it is the most satisfactory method for treating sludge at present. Of the various incineration technologies, the fluidized bed incinerator is a suitable choice due to its fuel flexibility. In this work, sludge generated from industrial plants was treated in ...

  5. Survey report for fiscal 2000 on survey of high-efficiency gasification technology of catalyst utilization type; 2000 nendo chosa hokokusho. Shokubai riyo gata kokoritsu gas ka gijutsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Survey and experimental research have been carried out on coal gasification using a pressurized internal circulation fluidized bed, spouted bed hydrogenation pyrolysis, supercritical water gasification, and a possibility of efficiency improvement by utilization of catalyst in chemical raw material production spouted bed gasification system. In the coal gasification using the pressurized internal circulation fluidized bed, an experiment was performed by using active alumina and Ni catalyst, where outstanding effect was identified. In the spouted bed hydrogenation pyrolysis, an experiment was executed by using iron hydroxide catalyst, but no noticeable effect was recognized. In the supercritical water gasification, an experiment was carried out by using Na{sub 2}CO2 and K{sub 2}CO{sub 3} catalysts, where it was found that the effect of the catalysts is little in the supercritical gasification reaction area of 800 degrees C. The power generation system composite with the chemical raw material production spouted bed gasification is a one-path system in which coal is gasified by the spouted bed gasification furnace, catalyst and steam are put into a heat exchanger to perform DME synthesis, and non-reacted gas is supplied as gas turbine fuel. Estimation was made on the possibility by an on-the-desk study, which requires experiments in the future. (NEDO)

  6. Co-combustion of waste materials using fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    M. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Boavida; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2004-07-01

    There is growing interest in using renewable fuels in order to sustain the CO{sub 2} accumulation. Several waste materials can be used as coal substitutes as long as they contain significant combustible matter, as for example MSW and sewage sludge. Besides the outcome of the energetic valorization of such materials, combustion must be regarded as a pre-treatment process, contributing to the safe management of wastes. Landfilling is an expensive management option and requires a previous destruction of the organic matter present in residues, since its degradation generates greenhouse gases and produces acidic organic leachates. Fluidized bed combustion is a promising technology for the use of mixtures of coal and combustible wastes. This paper presents INETI's experience in the co-combustion of coal with this kind of residues performed in a pilot fluidized bed. Both the RDF (from MSW and sewage sludge) and sewage sludge combustion problems were addressed, relating the gaseous emissions, the behaviour of metals and the leachability of ashes and a comparison was made between co-combustion and mono-combustion in order to verify the influence of the utilization of coal. 9 refs., 1 fig., 3 tabs.

  7. Characterization of limestone reactivity with SO{sub 2} and sulfur capture modelling under fluidized bed combustion conditions; Bestaemning av kalkstensreaktivitet med avseende paa SO{sub 2} och modellering av avsvavling foer foerbraenning i fluidiserad baedd

    Energy Technology Data Exchange (ETDEWEB)

    Mattisson, T. [Chalmers Univ. of Technology and Univ. of Goeteborg, Goeteborg (Sweden). Dept. of Inorganic Chemistry; Lyngfelt, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1996-12-01

    During combustion of fossil fuels, SO{sub 2} is released to the atmosphere. Because of environmental concern with acid rain, the capture of SO{sub 2} is a very important process. Fluidized bed combustion (FBC) is a combustion method where limestone may be added to the furnace chamber to capture SO{sub 2} as the stable product CaSO{sub 4}. In the present work a relatively simple laboratory method has been developed for characterizing limestone reactivity with SO{sub 2}. The reactivity data from such investigations are used, together with residence time and particle size distribution, in a sulfur capture model for fluidized bed boilers that predicts the sulfur capture as a function of the Ca/S molar ratio. In addition, the model predicts the conversion of CaO to CaSO{sub 4} for all particle sizes present in a boiler. The model was developed and verified using data from two boilers, a 12 and a 40 MW circulating fluidized bed boiler, and showed reasonable agreement for both boilers. In addition to the development of a sulfur capture model, the effects of SO{sub 2} and CO{sub 2} concentrations, particle size, temperature variations, and reducing conditions on the sulfation reaction was studied using a fixed-bed quartz reactor. The sulfation reaction was also studied for long periods of time, up to 60 hours. This was done because of the long residence times of certain particle sizes that may exist in a fluidized bed boiler. From the parameter study it was found that particle size and variations between oxidizing and reducing conditions had a large effect on the sulfation behaviour. The investigation of long sulfation times showed that the reaction continued even at high degrees of conversion, although at a very slow rate. CO{sub 2} concentration had a moderate effect on the sulfation reaction while temperature variations showed no effect on the final conversion between CaO and CaSO{sub 4}. 29 refs, 25 figs, 4 tabs

  8. Experimental and theoretical investigation of anaerobic fluidized bed biofilm reactors

    Directory of Open Access Journals (Sweden)

    M. Fuentes

    2009-09-01

    Full Text Available This work presents an experimental and theoretical investigation of anaerobic fluidized bed reactors (AFBRs. The bioreactors are modeled as dynamic three-phase systems. Biochemical transformations are assumed to occur only in the fluidized bed zone. The biofilm process model is coupled to the system hydrodynamic model through the biofilm detachment rate; which is assumed to be a first-order function of the energy dissipation parameter and a second order function of biofilm thickness. Non-active biomass is considered to be particulate material subject to hydrolysis. The model includes the anaerobic conversion for complex substrate degradation and kinetic parameters selected from the literature. The experimental set-up consisted of two mesophilic (36±1ºC lab-scale AFBRs (R1 and R2 loaded with sand as inert support for biofilm development. The reactor start-up policy was based on gradual increments in the organic loading rate (OLR, over a four month period. Step-type disturbances were applied on the inlet (glucose and acetic acid substrate concentration (chemical oxygen demand (COD from 0.85 to 2.66 g L-1 and on the feed flow rate (from 3.2 up to 6.0 L d-1 considering the maximum efficiency as the reactor loading rate switching. The predicted and measured responses of the total and soluble COD, volatile fatty acid (VFA concentrations, biogas production rate and pH were investigated. Regarding hydrodynamic and fluidization aspects, variations of the bed expansion due to disturbances in the inlet flow rate and the biofilm growth were measured. As rate coefficients for the biofilm detachment model, empirical values of 3.73⋅10(4 and 0.75⋅10(4 s² kg-1 m-1 for R1 and R2, respectively, were estimated.

  9. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    Science.gov (United States)

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  10. Scoping study of flowpath of simulated fission products during secondary burning of crushed HTGR fuel in a quartz fluidized-bed burner

    International Nuclear Information System (INIS)

    Rindfleisch, J.A.; Barnes, V.H.

    1976-04-01

    The results of four experimental runs in which isotopic tracers were used to simulate fission products during fluidized bed secondary burning of HTGR fuel were studied. The experimental tests provided insight relative to the flow path of fission products during fluidized-bed burning of HTGR fuel

  11. N2O emission under fluidized bed combustion condition

    International Nuclear Information System (INIS)

    Shen, B.X.; Yao, Q.; Mi, T.; Liu, D.C.; Feng, B.; Winter, Franz

    2003-01-01

    In this paper, many rules about N 2 O and NO x emission under fluidized bed combustion conditions were found by experiments. The research results indicate that CaO, CaSO 4 , Fe 2 O 3 and char have important influence on decomposition of N 2 O; co-combustion of coal and biomass are effective measures to low N 2 O and NO x emission

  12. Early stages in biofilm development in methanogenic fluidized-bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lauwers, A.M.; Heinen, W.; Gorris, L.G.M.; Drift, C. van der (Katholieke Univ. Nijmegen (Netherlands). Dept. of Microbiology and Evolution Biology)

    1990-06-01

    Biofilm development in methanogenic fluidized-bed reactors with sand as the carrier was studied on a laboratory scale. The microorganisms present in consecutive layers of the biofilm of mature sludge granules were prelimilarily characterized on the basis of their morphology, element composition and adhesion capacity and were compared to bacteria which take part in the initial colonization of sand. The early phase of biofilm development was monitored with reactors receiving waste-waters containing different mixtures of volatile fatty acids and inoculated with fluidized-bed reactor effluent for different lengths of time. The results obtained indicate that facultative anaerobic bacteria abundantly present in the outermost biofilm layers of mature sludge granules are probably the main primary colonizers of the sand. Methanothrix spp. or other methanogens were rarely observed among the primary colonizers. The course of biofilm formation was comparable under the various start-up conditions employed including variations in waste-water composition, inoculation and anaerobicity. However, omission of waste-water and thus of substrate resulted in rapid wash-out of the attached biomass. (orig.).

  13. Subsidence by liquefaction-fluidization in man-made strata around Tokyo bay, Japan: from geological survey on damaged part at the 2011 off the Pacific Coast of Tohoku Earthquake

    Science.gov (United States)

    Kazaoka, O.; Kameyama, S.; Shigeno, K.; Suzuki, Y.; Morisaki, M.; Kagawa, A.; Yoshida, T.; Kimura, M.; Sakai, Y.; Ogura, T.; Kusuda, T.; Furuno, K.

    2015-11-01

    Geological disaster by liquefaction-fluidization happened on southern part of the Quaternary Paleo-Kanto submarine basin at the 2011 Earthquake off the Pacific Coast of Tohoku. Liquefaction-fluidization phenomena occurred mainly in man-made strata over shaking 5+ intensity of Japan Meteorological Agency scale. Many subsided spots, 10-50 m width, 20-100 m length and less than 1 m depth, by liquefaction-fluidization distributed on reclaimed land around northern Tokyo bay. Large amount of sand and groundwater spouted out in the terrible subsided parts. But there are little subsidence and no jetted sand outside the terrible subsided part. Liquefaction-fluidization damaged part at the 1987 earthquake east off Chiba prefecture re-liquefied and fluidized in these parts at the 2011 great earthquake. The damaged area were more wide on the 2011 earthquake than the 1987 quake. Detailed classification maps of subsidence by liquefaction-fluidization on the 2011 grate earthquake were made by fieldwork in Chiba city around Tokyo bay. A mechanism of subsidence by liquefaction-fluidization in man-made strata was solved by geological survey with continuous large box cores on the ACE Liner and large relief peals of the cores at a typical subsided part.

  14. CFD-DEM simulation of a conceptual gas-cooled fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Almeida, Lucilla C.; Su, Jian

    2015-01-01

    Several conceptual designs of the fluidized-bed nuclear reactor have been proposed due to its many advantages over conventional nuclear reactors such as PWRs and BWRs. Amongst their characteristics, the enhanced heat transfer and mixing enables a more uniform temperature distribution, reducing the risk of hot-spot and excessive fuel temperature, in addition to resulting in a higher burnup of the fuel. Furthermore, the relationship between the bed height and reactor neutronics turns the coolant flow rate control into a power production mechanism. Moreover, the possibility of removing the fuel by gravity from the movable core in case of a loss-of-cooling accident increases its safety. High-accuracy modeling of particles and coolant flow in fluidized bed reactors is needed to evaluate reliably the thermal-hydraulic efficiency and safety margin. The two-way coupling between solid and fluid can account for high-fidelity solid-solid interaction and reasonable accuracy in fluid calculation and fluid-solid interaction. In the CFD-DEM model, the particles are modeled as a discrete phase, following the DEM approach, whereas the fluid flow is treated as a continuous phase, described by the averaged Navier-Stokes equations on a computational cell scale. In this work, the coupling methodology between Fluent and Rocky is described. The numerical approach was applied to the simulation of a bubbling fluidized bed and the results were compared to experimental data and showed good agreement. (author)

  15. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    International Nuclear Information System (INIS)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-01-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization. The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2-5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved

  16. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-11-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process

  17. Preparation and Characterization of Inorganic PCM Microcapsules by Fluidized Bed Method

    Directory of Open Access Journals (Sweden)

    Svetlana Ushak

    2016-01-01

    Full Text Available The literature shows that inorganic phase change materials (PCM have been very seldom microencapsulated, so this study aims to contribute to filling this research gap. Bischofite, a by-product from the non-metallic industry identified as having good potential to be used as inorganic PCM, was microencapsulated by means of a fluidized bed method with acrylic as polymer and chloroform as solvent, after compatibility studies of both several solvents and several polymers. The formation of bischofite and pure MgCl2·6H2O microcapsules was investigated and analyzed. Results showed an efficiency in microencapsulation of 95% could be achieved when using 2 min of fluidization time and 2 kg/h of atomization flow. The final microcapsules had excellent melting temperatures and enthalpy compared to the original PCM, 104.6 °C and 95 J/g for bischofite, and 95.3 and 118.3 for MgCl2·6H2O.

  18. Carbon conversion predictor for fluidized bed gasification of biomass fuels - from TGA measurements to char gasification particle model

    Energy Technology Data Exchange (ETDEWEB)

    Konttinen, J.T. [University of Jyvaeskylae, Department of Chemistry, Renewable Energy Programme, POB 35, Jyvaeskylae (Finland); Moilanen, A. [VTT Technical Research Centre of Finland, POB 1000, Espoo (Finland); Martini, N. de; Hupa, M. [Abo Akademi University, Process Chemistry Centre, Combustion and Materials Chemistry, Turku (Finland)

    2012-09-15

    When a solid fuel particle is injected into a hot fluidized bed, the reactivity of fuel char in gasification reactions (between char carbon and steam and CO{sub 2}) plays a significant role for reaching a good carbon conversion. In this paper, the gasification reactivity data of some solid waste recovered fuels (SRF) obtained from thermogravimetric analysis (TGA) experiments is presented. Gas mixtures (H{sub 2}O, H{sub 2}, CO{sub 2}, CO), were used in the experiments to find the inhibitive effects of CO and H{sub 2}. Average char gasification reactivity values are determined from the TGA results. Kinetic parameters for char carbon gasification reactivity correlations are determined from this data. The Uniform Conversion model is used to account for the change of gasification reaction rate as function of carbon conversion. Some discrepancies, due to complicated ash-carbon interactions, are subjects of further research. In the carbon conversion predictor, laboratory measured reactivity numbers are converted into carbon conversion numbers in a real-scale fluidized bed gasifier. The predictor is a relatively simple and transparent tool for the comparison of the gasification reactivity of different fuels in fluidized bed gasification. The residence times for solid fuels in fluidized bed gasifiers are simulated. Simulations against some pilot-scale results show reasonable agreement. (orig.)

  19. Cold flow model study of an oxyfuel combustion pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Guio-Perez, D.C.; Tondl, G.; Hoeltl, W.; Proell, T.; Hofbauer, H. [Vienna University of Technology, Institute of Chemical Engineering, Vienna (Austria)

    2011-12-15

    The fluid-dynamic behavior of a circulating fluidized bed pilot plant for oxyfuel combustion was studied in a cold flow model, down-scaled using Glicksman's criteria. Pressures along the unit and the global circulation rate were used for characterization. The analysis of five operating parameters and their influence on the system was carried out; namely, total solids inventory and the air velocity of primary, secondary, loop seal and support fluidizations. The cold flow model study shows that the reactor design allows stable operation at a wide range of fluidization rates, with results that agree well with previous observations described in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. On the entrainment of solid particles from a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Sciazko, M. (Institute of Chemical Processing of Coal, Zabrze (Poland)); Bandrowski, J.; Raczek, J. (Politechnika Slaska, Gliwice (Poland). Inst. of Chemical Engineering and Apparatus Construction)

    1991-04-01

    This paper presents a generalized approach to the phenomenon of entrainment of solids from a fluidized bed. Starting with the discussion of the transport disengaging height (TDH) and of the elutriation of particles above the TDH, one arrives finally at the relationship between the elutriation rate constant, saturation carrying capacity and choking parameters of pneumatic transport. (orig.).