WorldWideScience

Sample records for internalization receptor endo180

  1. The collagen receptor uPARAP/Endo180

    DEFF Research Database (Denmark)

    Engelholm, Lars H; Ingvarsen, Signe; Jürgensen, Henrik J

    2009-01-01

    The uPAR-associated protein (uPARAP/Endo180), a type-1 membrane protein belonging to the mannose receptor family, is an endocytic receptor for collagen. Through this endocytic function, the protein takes part in a previously unrecognized mechanism of collagen turnover. uPARAP/Endo180 can bind...... and internalize both intact and partially degraded collagens. In some turnover pathways, the function of the receptor probably involves an interplay with certain matrix-degrading proteases whereas, in other physiological processes, redundant mechanisms involving both endocytic and pericellular collagenolysis seem...... in collagen breakdown seems to be involved in invasive tumor growth Udgivelsesdato: 2009...

  2. The urokinase receptor associated protein (uPARAP/endo180)

    DEFF Research Database (Denmark)

    Engelholm, L H; Nielsen, B S; Danø, K

    2001-01-01

    the biological consequences of this reaction have not yet been verified experimentally, a likely event is ligand internalization because uPARAP is a constitutively recycling internalization receptor. uPARAP also binds at least one component, collagen type V, in the extracellular matrix meshwork, pointing...

  3. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review)

    DEFF Research Database (Denmark)

    Carlsen Melander, Eva Maria; Jürgensen, Henrik J; Madsen, Daniel H

    2015-01-01

    The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen a...... by an in-depth survey of the available knowledge of the expression and role of this receptor in various types of cancer and other degenerative diseases....

  4. The urokinase receptor associated protein (uPARAP/endo180)

    DEFF Research Database (Denmark)

    Engelholm, L H; Nielsen, B S; Danø, K

    2001-01-01

    of this proteolytic system. uPARAP is a high molecular weight type-1 membrane protein, belonging to the macrophage mannose receptor protein family. On the surface of certain cells, uPARAP forms a ternary complex with the pro-form of the urokinase-type plasminogen activator (uPA) and its primary receptor (uPAR). While......The urokinase-mediated plasminogen activation system plays a central role in the extracellular proteolytic degradation reactions in cancer invasion. In this review article we discuss a number of recent findings identifying a new cellular receptor protein, uPARAP, that interacts with components...

  5. The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180)

    DEFF Research Database (Denmark)

    Behrendt, Niels

    2004-01-01

    processes involve a highly organized interplay between proteases and their cellular binding sites as well as specific substrates and internalization receptors. This review article is focused on two components, the urokinase plasminogen activator receptor (uPAR) and the uPAR-associated protein (uPARAP, also...... designated Endo180), that are considered crucially engaged in matrix degradation. uPAR and uPARAP have highly diverse functions, but on certain cell types they interact with each other in a process that is still incompletely understood. uPAR is a glycosyl-phosphatidylinositol-anchored glycoprotein...

  6. The urokinase plasminogen activator receptor-associated protein/endo180 is coexpressed with its interaction partners urokinase plasminogen activator receptor and matrix metalloprotease-13 during osteogenesis

    DEFF Research Database (Denmark)

    Engelholm, L H; Nielsen, B S; Netzel-Arnett, Sarah

    2001-01-01

    The urokinase plasminogen activator receptor-associated protein/Endo180 (uPARAP/Endo180) is a newly discovered member of the macrophage mannose receptor family that was reported to interact with ligand-bound urokinase plasminogen activator receptor (uPAR), matrix metalloprotease-13 (MMP-13), and ...

  7. The collagen receptor uPARAP/Endo180 as a novel target for antibody-drug conjugate mediated treatment of mesenchymal and leukemic cancers

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Fagernæs; van Putten, Sander Maarten; Lund, Ida Katrine

    2017-01-01

    model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types.......A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non......-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly...

  8. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Engelholm, Lars H; Ingvarsen, Signe

    2007-01-01

    The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process in these......The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process...... in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular...... of large collagen fragments. First, we show that collagen that has been pre-cleaved by a mammalian collagenase is taken up much more efficiently than intact, native collagen by uPARAP/Endo180-positive cells. Second, we demonstrate that this preference is governed by the acquisition of a gelatin...

  9. The role of collagen receptors Endo180 and DDR-2 in the foreign body reaction against non-crosslinked collagen and gelatin.

    Science.gov (United States)

    Ye, Qingsong; Harmsen, Martin C; Ren, Yijin; Bank, Ruud A

    2011-02-01

    Despite the use of collagen-derived scaffolds in regenerative medicine, little is known about the degradation mechanisms of these scaffolds in vivo. Non-crosslinked dermal sheep (NDSC) and gelatin disks were implanted subcutaneously in mice. NDSC disks showed a very low degradation rate, despite the presence of high numbers of macrophages and the influx of neutrophils. This was attributed to the presence of the matrix metalloproteinase inhibitor TIMP-1. The limited degradation occurred mainly in the later stages of the foreign body reaction, and could be attributed to (1) phagocytosis by macrophages due to a co-expression of Endo180 and MT1-MMP on these cells (intracellular degradation) and (2) the presence of MMP-13 due to an upregulation of the expression of the DDR-2 receptor (extracellular degradation). In contrast, gelatin disks degraded quickly, due to the efficient formation of large giant cells as well as the presence of MMP-13; the inhibitor TIMP-1 was absent. The DDR-2 receptor was not expressed in the gelatin disks. Endo180 and MT1-MMP were expressed, but at most times no co-expression was seen. We conclude that the physical state of collagen (native or denatured) had a dramatic outcome on the degradation rate and provoked a completely different foreign body reaction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    fibroblasts. Blocking lysosomal cysteine proteases with the inhibitor E64d resulted in strong accumulation of collagen IV in lysosomes in wild-type cells, but only very weak intracellular fluorescence accumulation in uPARAP/endo180-deficient fibroblasts. We conclude that uPARAP/endo180 is critical......Collagen turnover is crucial for tissue homeostasis and remodeling and pathological processes such as cancer invasion, but the underlying molecular mechanisms are poorly understood. A major pathway appears to be internalization and degradation by fibroblasts. We now show that the endocytic...... transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually...

  11. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    Collagen turnover is crucial for tissue homeostasis and remodeling and pathological processes such as cancer invasion, but the underlying molecular mechanisms are poorly understood. A major pathway appears to be internalization and degradation by fibroblasts. We now show that the endocytic...... transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually...... appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...

  12. Increased expression of the collagen internalization receptor uPARAP/Endo180 in the stroma of head and neck cancer

    DEFF Research Database (Denmark)

    Sulek, Jay; Wagenaar-Miller, Rebecca A; Shireman, Jessica

    2007-01-01

    human squamous cell carcinomas and 19 normal or tumor-adjacent head and neck tissue samples from the tongue, gingiva, cheek, tonsils, palate, floor of mouth, larynx, maxillary sinus, upper jaw, nasopharynx/nasal cavity, and lymph nodes. Specificity of detection was verified by staining of serial...

  13. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion

    DEFF Research Database (Denmark)

    Engelholm, Lars H; List, Karin; Netzel-Arnett, Sarah

    2003-01-01

    The uptake and lysosomal degradation of collagen by fibroblasts constitute a major pathway in the turnover of connective tissue. However, the molecular mechanisms governing this pathway are poorly understood. Here, we show that the urokinase plasminogen activator receptor-associated protein (uPAR......, these cells had diminished initial adhesion to a range of different collagens, as well as impaired migration on fibrillar collagen. These studies identify a central function of uPARAP/Endo180 in cellular collagen interactions....

  14. Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy

    DEFF Research Database (Denmark)

    Curino, Alejandro C; Engelholm, Lars H; Yamada, Susan S

    2005-01-01

    We recently reported that uPARAP/Endo180 can mediate the cellular uptake and lysosomal degradation of collagen by cultured fibroblasts. Here, we show that uPARAP/Endo180 has a key role in the degradation of collagen during mammary carcinoma progression. In the normal murine mammary gland, uPARAP/...

  15. AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival

    DEFF Research Database (Denmark)

    Rodriguez-Teja, Mercedes; Gronau, Julian H; Breit, Claudia

    2015-01-01

    in non-transformed PECs via a molecular mechanism linked to cancer progression. This study provides a rationale for targeting CTLD2 in Endo180 in prostate cancer and other pathologies in which increased basal lamina thickness and tissue stiffness are driving factors. © 2014 The Authors. The Journal......Biomechanical strain imposed by age-related thickening of the basal lamina and augmented tissue stiffness in the prostate gland coincides with increased cancer risk. Here we hypothesized that the structural alterations in the basal lamina associated with age can induce mechanotransduction pathways...... in prostate epithelial cells (PECs) to promote invasiveness and cancer progression. To demonstrate this, we developed a 3D model of PEC acini in which thickening and stiffening of basal lamina matrix was induced by advanced glycation end-product (AGE)-dependent non-enzymatic crosslinking of its major...

  16. Differential actions of the endocytic collagen receptor uPARAP/Endo180 and the collagenase MMP-2 in bone homeostasis

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Jürgensen, Henrik J; Ingvarsen, Signe

    2013-01-01

    A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen...

  17. Complex Determinants in Specific Members of the Mannose Receptor Family Govern Collagen Endocytosis

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Johansson, Kristina; Madsen, Daniel H

    2014-01-01

    Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer...... invasion, and fibrosis protection. This functional relationship is suggested by a common endocytic capability and a candidate collagen-binding domain. Here we conducted a comparative investigation of each member's ability to facilitate intracellular collagen degradation. As expected, the family members u......PARAP/Endo180 and MR bound collagens in a purified system and internalized collagens for degradation in cellular settings. In contrast, the remaining family members, PLA2R and DEC-205, showed no collagen binding activity and were unable to mediate collagen internalization. To pinpoint the structural elements...

  18. Hypoxia Induces Internalization of κ-Opioid Receptor.

    Science.gov (United States)

    Xi, Chunhua; Liang, Xuan; Chen, Chunhua; Babazada, Hasan; Li, Tianzuo; Liu, Renyu

    2017-05-01

    It has been demonstrated that κ-opioid receptor agonists can reduce hypoxia-ischemia brain injury in animal models. However, it is unclear how the κ-opioid receptor responds to hypoxia-ischemia. In the current study, the authors used an in vitro model of oxygen-glucose deprivation and reoxygenation to explore how κ-opioid receptors respond to hypoxia and reoxygenation. Mouse neuroblastoma Neuro2A cells were stably transfected with mouse κ-opioid receptor-tdTomato fusion protein or Flag-tagged mouse κ-opioid receptor, divided into several groups (n = 6 to 12), and used to investigate the κ-opioid receptor movement. Observations were performed under normal oxygen, at 30 min to 1 h after oxygen-glucose deprivation and at 1 h after reoxygenation using high-resolution imaging techniques including immunoelectronmicroscopy in the presence and absence of κ-opioid receptor antagonist, dynamin inhibitors, potassium channel blockers, and dopamine receptor inhibitor. Hypoxic conditions caused the κ-opioid receptor to be internalized into the cells. Inhibition of dynamin by Dyngo-4a prevented the receptor internalization. Interestingly, a specific κ-opioid receptor antagonist norbinaltorphimine blocked internalization, suggesting the involvement of activation of a specific κ-opioid receptor. κ-Opioid receptor internalization appears to be reversed by reoxygenation. Quantities of intracellular κ-opioid receptor-associated gold particles as demonstrated by immunoelectron microscopy were increased from 37 to 85% (P internalization. Hypoxia induces reversible κ-opioid receptor internalization, which was inhibited by selective κ-opioid receptor antagonists or dynamin inhibitor, and can be reversed by reoxygenation in neuroblastoma cells, indicating the modulating effects between κ-opioid receptor and hypoxia via κ-opioid receptor activation and the dynamin-dependent mechanism.

  19. Insulin causes insulin-receptor internalization in human erythrocyte ghosts.

    OpenAIRE

    Kelleher, R S; Murray, E F; Peterson, S W

    1987-01-01

    The effect of incubation with insulin on insulin-receptor internalization by erythrocyte ghosts was investigated. The number of surface insulin receptors decreased by 30-40% after incubation of ghosts with insulin. Total insulin-receptor binding to solubilized ghosts was the same in insulin-incubated and control ghosts, whereas insulin binding to an internal vesicular fraction was substantially increased in insulin-incubated ghosts. Our findings suggest that erythrocyte-ghost insulin receptor...

  20. A novel functional role of collagen glycosylation

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Madsen, Daniel H; Ingvarsen, Signe

    2011-01-01

    , the function of which is poorly known. The endocytic collagen receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180 plays an important role in matrix remodeling through its ability to internalize collagen for lysosomal degradation. uPARAP/Endo180 is a member of the mannose....... The molecular basis for this interaction is known to involve the fibronectin type II domain but nothing is known about the function of the lectin domains in this respect. In this study, we have investigated a possible role of the single active lectin domain of uPARAP/Endo180 in the interaction with collagens....... By expressing truncated recombinant uPARAP/Endo180 proteins and analyzing their interaction with collagens with high and low levels of glycosylation we demonstrated that this lectin domain interacts directly with glycosylated collagens. This interaction is functionally important because it was found to modulate...

  1. Modified Receptor Internalization upon Coexpression of 5-HT1B Receptor and 5-HT2B Receptors

    OpenAIRE

    Janoshazi , Agnes; Deraet , Maud; Callebert , Jacques; Setola , Vincent; Guenther , Silke; Saubamea , Bruno; Manivet , Philippe; Launay , Jean-Marie; Maroteaux , Luc

    2007-01-01

    International audience; Serotonin 5-HT(2B) receptors are often coexpressed with 5-HT(1B) receptors, and cross-talk between the two receptors has been reported in various cell types. However, many mechanistic details underlying 5-HT(1B) and 5-HT(2B) receptor cross-talk have not been elucidated. We hypothesized that 5-HT(2B) and 5-HT(1B) receptors each affect the others' signaling by modulating the others' trafficking. We thus examined the agonist stimulated internalization kinetics of fluoresc...

  2. Hierarchical Phosphorylation of δ-Opioid Receptor Regulates Agonist-induced Receptor Desensitization and Internalization*

    OpenAIRE

    Maestri-El Kouhen, Odile; Wang, Guilin; Solberg, Jonathan; Erickson, Laurie J.; Law, Ping-Yee; Loh, Horace H.

    2000-01-01

    Treatment of HEK293 cells expressing the δ-opioid receptor with agonist [d-Pen2,5]enkephalin (DPDPE) resulted in the rapid phosphorylation of the receptor. We constructed several mutants of the potential phosphorylation sites (Ser/Thr) at the carboxyl tail of the receptor in order to delineate the receptor phosphorylation sites and the agonist-induced desensitization and internalization. The Ser and Thr were substituted to alanine, and the corresponding mutants were transiently and stably exp...

  3. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists.

    Science.gov (United States)

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-04-15

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Hypoxia increases pulmonary arterial thromboxane receptor internalization independent of receptor sensitization.

    Science.gov (United States)

    Fediuk, J; Sikarwar, A S; Lizotte, P P; Hinton, M; Nolette, N; Dakshinamurti, S

    2015-02-01

    Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by sustained vasospasm and an increased thromboxane:prostacyclin ratio. Thromboxane (TP) receptors signal via Gαq to mobilize IP3 and Ca(2+), causing pulmonary arterial constriction. We have previously reported increased TP internalization in hypoxic pulmonary arterial (PA) myocytes. Serum-deprived PA myocytes were grown in normoxia (NM) or hypoxia (HM) for 72 h. TP localization was visualized in agonist-naïve and -challenged NM and HM by immunocytochemistry. Pathways for agonist-induced TP receptor internalization were determined by inhibiting caveolin- or clathrin-mediated endocytosis, and caveolar fractionation. Roles of actin and tubulin in TP receptor internalization were assessed using inhibitors of tubulin, actin-stabilizing or -destabilizing agents. PKA, PKC or GRK activation and inhibition were used to determine the kinase responsible for post-agonist receptor internalization. Agonist-naïve HM had decreased cell surface TP, and greater TP internalization after agonist challenge. TP protein did not sort with caveolin-rich fractions. Inhibition of clathrin prevented TP internalization. Both actin-stabilizing and -destabilizing agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. Velocity of TP internalization was unaffected by PKA activity, but PKC activation normalized TP receptor internalization in HM. GRK inhibition had no effect. We conclude that in hypoxic myocytes, TP is internalized faster and to a greater extent than in normoxic controls. Internalization of the agonist-challenged TP requires clathrin, dynamic actin and is sensitive to PKC activity. TP receptor trafficking and signaling in hypoxia are pivotal to understanding increased vasoconstrictor sensitivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Dynamics of Receptor-Mediated Nanoparticle Internalization into Endothelial Cells

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Barakat, Abdul I.

    2015-01-01

    Nanoparticles offer a promising medical tool for targeted drug delivery, for example to treat inflamed endothelial cells during the development of atherosclerosis. To inform the design of such therapeutic strategies, we develop a computational model of nanoparticle internalization into endothelial cells, where internalization is driven by receptor-ligand binding and limited by the deformation of the cell membrane and cytoplasm. We specifically consider the case of nanoparticles targeted against ICAM-1 receptors, of relevance for treating atherosclerosis. The model computes the kinetics of the internalization process, the dynamics of binding, and the distribution of stresses exerted between the nanoparticle and the cell membrane. The model predicts the existence of an optimal nanoparticle size for fastest internalization, consistent with experimental observations, as well as the role of bond characteristics, local cell mechanical properties, and external forces in the nanoparticle internalization process. PMID:25901833

  6. TTP specifically regulates the internalization of the transferrin receptor

    DEFF Research Database (Denmark)

    Tosoni, Daniela; Puri, Claudia; Confalonieri, Stefano

    2005-01-01

    Different plasma membrane receptors are internalized through saturable/noncompetitive pathways, suggesting cargo-specific regulation. Here, we report that TTP (SH3BP4), a SH3-containing protein, specifically regulates the internalization of the transferrin receptor (TfR). TTP interacts...... with endocytic proteins, including clathrin, dynamin, and the TfR, and localizes selectively to TfR-containing coated-pits (CCP) and -vesicles (CCV). Overexpression of TTP specifically inhibits TfR internalization, and causes the formation of morphologically aberrant CCP, which are probably fission impaired....... This effect is mediated by the SH3 of TTP, which can bind to dynamin, and it is rescued by overexpression of dynamin. Functional ablation of TTP causes a reduction in TfR internalization, and reduced cargo loading and size of TfR-CCV. Tyrosine phosphorylation of either TTP or dynamin prevents...

  7. Rapid internalization of the insulin receptor in rat hepatoma cells

    International Nuclear Information System (INIS)

    Backer, J.M.; White, M.F.; Kahn, C.R.

    1987-01-01

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 4 0 C, stimulated with insulin at 37 0 C, and then cooled rapidly, trypsinized at 4 0 C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 37 0 C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 4 0 C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific [ 125 I]insulin binding measured at 4 0 C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways

  8. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists

    OpenAIRE

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-01-01

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in in...

  9. Regulated internalization of NMDA receptors drives PKD1-mediated suppression of the activity of residual cell-surface NMDA receptors.

    Science.gov (United States)

    Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min

    2015-11-19

    Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor

  10. Total Internal Reflection Fluorescence Quantification of Receptor Pharmacology

    Directory of Open Access Journals (Sweden)

    Ye Fang

    2015-04-01

    Full Text Available Total internal reflection fluorescence (TIRF microscopy has been widely used as a single molecule imaging technique to study various fundamental aspects of cell biology, owing to its ability to selectively excite a very thin fluorescent volume immediately above the substrate on which the cells are grown. However, TIRF microscopy has found little use in high content screening due to its complexity in instrumental setup and experimental procedures. Inspired by the recent demonstration of label-free evanescent wave biosensors for cell phenotypic profiling and drug screening with high throughput, we had hypothesized and demonstrated that TIRF imaging is also amenable to receptor pharmacology profiling. This paper reviews key considerations and recent applications of TIRF imaging for pharmacology profiling.

  11. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    Science.gov (United States)

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  12. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization.

    Science.gov (United States)

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Nozaki, Naomi; Kato, Johji

    2012-04-13

    Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [(125)I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr(130)-Val(131) sequence in the RAMP3 TMD with the corresponding sequence (Ile(157)-Pro(158)) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala(130)-Ala(131) did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile-Pro sequence into the RAMP3 TMD may be a strategy for promoting receptor internalization/resensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The pathophysiological consequences of somatostatin receptor internalization and resistance

    NARCIS (Netherlands)

    L.J. Hofland (Leo); S.W.J. Lamberts (Steven)

    2003-01-01

    textabstractSomatostatin receptors expressed on tumor cells form the rationale for somatostatin analog treatment of patients with somatostatin receptor-positive neuroendocrine tumors. Nevertheless, although somatostatin analogs effectively control hormonal hypersecretion by

  14. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity

    OpenAIRE

    Cawston, Erin E.; Harikumar, Kaleeckal G.; Miller, Laurence J.

    2011-01-01

    Receptor ligands, identified as antagonists, based on the absence of stimulation of signaling, can rarely stimulate receptor internalization. d-Tyr-Gly-[(Nle28,31,d-Trp30)CCK-26–32]-2-phenylethyl ester (d-Trp-OPE) is such a ligand that binds to the cholecystokinin (CCK) receptor and stimulates internalization. Here, the molecular basis of this trafficking event is explored, with the assumption that ligand binding initiates conformational change, exposing an epitope to direct endocytosis. Liga...

  15. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    International Nuclear Information System (INIS)

    Androlewicz, M.J.; Straus, D.S.; Brandenburg, D.F.

    1989-01-01

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125 I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degree C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation

  16. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization

    Energy Technology Data Exchange (ETDEWEB)

    Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692 (Japan); Kitamura, Kazuo; Nagata, Sayaka [Division of Circulation and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692 (Japan); Nozaki, Naomi; Kato, Johji [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692 (Japan)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer RAMP3 mediates CLR internalization much less effectively than does RAMP2. Black-Right-Pointing-Pointer The RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization. Black-Right-Pointing-Pointer A new strategy of promoting internalization and resensitization of the receptor was found. -- Abstract: Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [{sup 125}I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr{sup 130}-Val{sup 131} sequence in the RAMP3 TMD with the corresponding sequence (Ile{sup 157}-Pro{sup 158}) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala{sup 130}-Ala{sup 131} did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile-Pro sequence into the RAMP3 TMD may be a

  17. Opiates Modulate Thermosensation by Internalizing Cold Receptor TRPM8

    Directory of Open Access Journals (Sweden)

    George Shapovalov

    2013-08-01

    Full Text Available Stimulation of μ-opioid receptors (OPRMs brings powerful pain relief, but it also leads to the development of tolerance and addiction. Ensuing withdrawal in abstinent patients manifests itself with severe symptoms, including cold hyperalgesia, often preventing addicted patients from successfully completing the rehabilitation. Unsurprisingly, OPRMs have been a central point of many studies. Nonetheless, a satisfactory understanding of the pathways leading to distorted sensory responses during opiate administration and abstinence is far from complete. Here, we present a mechanism that leads to modulation by OPRMs of one of the sensory responses, thermosensation. Activation of OPRM1 leads to internalization of a cold-sensor TRPM8, which can be reversed by a follow-up treatment with the inverse OPRM agonist naloxone. Knockout of TRPM8 protein leads to a decrease in morphine-induced cold analgesia. The proposed pathway represents a universal mechanism that is probably shared by regulatory pathways modulating general pain sensation in response to opioid treatment.

  18. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.

    Science.gov (United States)

    Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E

    2015-02-05

    The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. β-arrestins negatively control human adrenomedullin type 1-receptor internalization.

    Science.gov (United States)

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Sekiguchi, Toshio; Danfeng, Jiang; Murakami, Manabu; Hattori, Yuichi; Kato, Johji

    2017-05-27

    Adrenomedullin (AM) is a potent hypotensive peptide that exerts a powerful variety of protective effects against multiorgan damage through the AM type 1 receptor (AM 1 receptor), which consists of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2). Two β-arrestin (β-arr) isoforms, β-arr-1 and β-arr-2, play a central role in the agonist-induced internalization of many receptors for receptor resensitization. Notably, β-arr-biased agonists are now being tested in phase II clinical trials, targeting acute pain and acute heart failure. Here, we examined the effects of β-arr-1 and β-arr-2 on human AM 1 receptor internalization. We constructed a V5-tagged chimera in which the cytoplasmic C-terminal tail (C-tail) of CLR was replaced with that of the β 2 -adrenergic receptor (β 2 -AR), and it was transiently transfected into HEK-293 cells that stably expressed RAMP2. The cell-surface expression and internalization of the wild-type or chimeric receptor were quantified by flow cytometric analysis. The [ 125 I]AM binding and the AM-induced cAMP production of these receptors were also determined. Surprisingly, the coexpression of β-arr-1 or -2 resulted in significant decreases in AM 1 receptor internalization without affecting AM binding and signaling prior to receptor internalization. Dominant-negative (DN) β-arr-1 or -2 also significantly decreased AM-induced AM 1 receptor internalization. In contrast, the AM-induced internalization of the chimeric AM 1 receptor was markedly augmented by the cotransfection of β-arr-1 or -2 and significantly reduced by the coexpression of DN-β-arr-1 or -2. These results were consistent with those seen for β 2 -AR. Thus, both β-arrs negatively control AM 1 receptor internalization, which depends on the C-tail of CLR. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Molecular characterization of the di-leucine-based internalization motif of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1996-01-01

    Several cell surface receptors including the T cell receptor (TCR) are phosphorylated and down-regulated following activation of protein kinases. We have recently shown that both phosphorylation of Ser-126 and the presence of the di-leucine sequence Leu-131 and Leu-132 in CD3 gamma are required f...... are important. 2) Recognition of phosphorylated CD3 gamma by molecules involved in receptor internalization. In this process Ser(P)-126, Asp-127, Leu-131, and Leu-132 are important....

  1. Receptor activation and 2 distinct COOH-terminal motifs control G-CSF receptor distribution and internalization kinetics

    NARCIS (Netherlands)

    L.H.J. Aarts (Bart); O. Roovers (Onno); A.C. Ward (Alister); I.P. Touw (Ivo)

    2004-01-01

    textabstractWe have studied the intracellular distribution and internalization kinetics of the granulocyte colony-stimulating factor receptor (G-CSF-R) in living cells using fusion constructs of wild-type or mutant G-CSF-R and enhanced green fluorescent protein (EGFP). Under

  2. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    Science.gov (United States)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  3. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  4. Netupitant and palonosetron trigger NK1 receptor internalization in NG108-15 cells.

    Science.gov (United States)

    Thomas, Ajit G; Stathis, Marigo; Rojas, Camilo; Slusher, Barbara S

    2014-08-01

    Current therapy for chemotherapy-induced nausea and vomiting includes the use of both 5-HT3 and NK1 receptor antagonists. Acute emesis has largely been alleviated with the use of 5-HT3 receptor antagonists, while an improvement in preventing delayed emesis has been achieved with NK1 receptor antagonists. Delayed emesis, however, remains a problem with a significant portion of cancer patients receiving highly emetogenic chemotherapy. Like other drugs in its class, palonosetron, a 5-HT3 receptor antagonist, has shown efficacy against acute emesis. However, palonosetron has also shown consistent improvement in the suppression of delayed emesis. Since both 5-HT3 and NK1 receptor antagonists are often simultaneously administered to patients, the question remains if palonosetron's effect on delayed emesis would remain distinct when co-administered with an NK1 receptor antagonist. Recent mechanistic studies using NG108-15 cells have shown that palonosetron and netupitant, an NK1 receptor antagonist currently in phase 3 clinical trials, exhibited synergistic effects when inhibiting the substance P response. The present studies showed that both netupitant and palonosetron-induced NK1 receptor internalization in NG108-15 cells and that when used together receptor internalization was additive. Palonosetron-induced NK1 receptor internalization was dependent on the presence of the 5-HT3 receptor. Results provide a possible explanation for palonosetron's enhancement of the inhibition of the SP response and suggest that the effect of palonosetron and NK1 receptor antagonists on prevention of delayed emesis could be additive.

  5. Tyrosine phosphorylation of the insulin receptor is not required for receptor internalization: studies in 2,4-dinitrophenol-treated cells

    International Nuclear Information System (INIS)

    Backer, J.M.; Kahn, C.R.; White, M.F.

    1989-01-01

    The relation between insulin-stimulated autophosphorylation of the insulin receptor and internalization of the receptor was studied in Fao rat hepatoma cells. Treatment of Fao cells with 2,4-dinitrophenol for 45 min depleted cellular ATP by 80% and equally inhibited insulin-stimulated receptor autophosphorylation, as determined by immunoprecipitation of surface-iodinated or [ 32 P]phosphate-labeled cells with anti-phosphotyrosine antibody. In contrast, internalization of the insulin receptor and internalization and degradation of 125 I-labeled insulin by 2,4-dinitrophenol-treated cells were normal. These data show that autophosphorylation of the insulin receptor is not required for the receptor-mediated internalization of insulin in Fao cells and suggest that insulin receptor recycling is independent of autophosphorylation

  6. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands

    DEFF Research Database (Denmark)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe

    2013-01-01

    after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist....... Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown...... fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand...

  7. The class I scavenger receptor CD163 promotes internalization of ADAMTS13 by macrophages.

    Science.gov (United States)

    Verbij, Fabian C; Sorvillo, Nicoletta; Kaijen, Paul H P; Hrdinova, Johana; Peyron, Ivan; Fijnheer, Rob; Ten Brinke, Anja; Meijer, Alexander B; van Alphen, Floris P J; van den Berg, Timo K; Graversen, Jonas J H; Moestrup, Soren K; Voorberg, Jan

    2017-01-24

    Internalization of ADAMTS13 by macrophages may contribute to its clearance from the circulation. Here we investigated endocytic mechanisms that contribute to the uptake of ADAMTS13 by macrophages. Human monocyte-derived macrophages were used to monitor the uptake of fluorescently labeled recombinant ADAMTS13 by flow cytometry. Internalization of ADAMTS13 was blocked upon addition of the cell-permeable dynamin inhibitor dynasore. Partial blocking of ADAMTS13 uptake was observed by using mannan; however, uptake was not affected by an antibody that blocked binding to the macrophage mannose receptor CD206, which suggests that other endocytic receptors contribute to the internalization of ADAMTS13 by macrophages. A pull-down with ADAMTS13 and subsequent mass spectrometric analysis identified the class I scavenger receptor CD163 as a candidate receptor for ADAMTS13. Blocking experiments with monoclonal anti-CD163 antibody EDHu-1 resulted in decreased ADAMTS13 internalization by macrophages. Pronounced inhibition of ADAMTS13 uptake by EDHu-1 was observed in CD163 high-expressing macrophages. In agreement with these findings, CD163-expressing Chinese hamster ovary cells were capable of rapidly internalizing ADAMTS13. Surface plasmon resonance revealed binding of ADAMTS13 to scavenger receptor cysteine-rich domains 1-9 and 1-5 of CD163. Taken together, our data identify CD163 as a major endocytic receptor for ADAMTS13 on macrophages.

  8. Analyzing the Role of Receptor Internalization in the Regulation of Melanin-Concentrating Hormone Signaling

    Directory of Open Access Journals (Sweden)

    Jay I. Moden

    2013-01-01

    Full Text Available The regulation of appetite is complex, though our understanding of the process is improving. The potential role for the melanin-concentrating hormone (MCH signaling pathway in the treatment of obesity is being explored by many. It was hypothesized that internalization of MCH receptors would act to potently desensitize cells to MCH. Despite potent desensitization of ERK signaling by MCH in BHK-570 cells, we were unable to observe MCH-mediated internalization of MCH receptor 1 (MCHR1 by fluorescence microscopy. A more quantitative approach using a cell-based ELISA indicated only 15% of receptors internalized, which is much lower than that reported in the literature. When -arrestins were overexpressed in our system, removal of receptors from the cell surface was facilitated and signaling to a leptin promoter was diminished, suggesting that internalization of MCHR1 is sensitive to cellular -arrestin levels. A dominant-negative GRK construct completely inhibited loss of receptors from the cell surface in response to MCH, suggesting that the internalization observed is phosphorylation-dependent. Since desensitization of MCH-mediated ERK signaling did not correlate with significant loss of MCHR1 from the cell surface, we hypothesize that in this model system regulation of MCH signaling may be the result of segregation of receptors from signaling components at the plasma membrane.

  9. The mechanisms behind decreased internalization of angiotensin II type 1 receptor.

    Science.gov (United States)

    Bian, Jingwei; Zhang, Suli; Yi, Ming; Yue, Mingming; Liu, Huirong

    2018-02-06

    The internalization of angiotensin II type 1 receptor (AT 1 R) plays an important role in maintaining cardiovascular homeostasis. Decreased receptor internalization is closely related to cardiovascular diseases induced by the abnormal activation of AT 1 R, such as hypertension. However, the mechanism behind reduced AT 1 R internalization is not fully understood. This review focuses on four parts of the receptor internalization process (the combination of agonists and receptors, receptor phosphorylation, endocytosis, and recycling) and summarizes the possible mechanisms by which AT 1 R internalization is reduced based on these four parts of the process. (1) The agonist has a large molecular weight or a stronger ability to hydrolyze phosphatidylinositol 4,5-bisphosphate (PtdIns (4,5) P 2 ), which can increase the consumption of PtdIns (4,5) P 2 . (2) AT 1 R phosphorylation is weakened because of an abnormal function of phosphorylated kinase or changes in phospho-barcoding and GPCR-β-arrestin complex conformation. (3) The abnormal formation of vesicles or AT 1 R heterodimers with fewer endocytic receptors results in less AT 1 R endocytosis. (4) The enhanced activity and upregulated expression of small GTP-binding protein 4 (Rab4) and 11 (Rab11), which regulate receptor recycling, and phosphatidylinositol 3-kinase increase AT 1 R recycling. In addition, lower expression of AT 1 R-associated protein (ATRAP) or higher expression of AT 1 R-associated protein 1 (ARAP1) can reduce receptor internalization. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors

    Science.gov (United States)

    Chazot, Paul L.; Cowart, Marlon; Gutzmer, Ralf; Leurs, Rob; Liu, Wai L. S.; Stark, Holger; Thurmond, Robin L.; Haas, Helmut L.

    2015-01-01

    Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein–coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated. PMID:26084539

  11. Ligand-induced internalization of the type 1 cholecystokinin receptor independent of recognized signaling activity.

    Science.gov (United States)

    Cawston, Erin E; Harikumar, Kaleeckal G; Miller, Laurence J

    2012-02-01

    Receptor ligands, identified as antagonists, based on the absence of stimulation of signaling, can rarely stimulate receptor internalization. d-Tyr-Gly-[(Nle(28,31),d-Trp(30))CCK-26-32]-2-phenylethyl ester (d-Trp-OPE) is such a ligand that binds to the cholecystokinin (CCK) receptor and stimulates internalization. Here, the molecular basis of this trafficking event is explored, with the assumption that ligand binding initiates conformational change, exposing an epitope to direct endocytosis. Ligand-stimulated internalization was studied morphologically using fluorescent CCK and d-Trp-OPE. d-Trp-OPE occupation of Chinese hamster ovary cell receptors stimulated internalization into the same region as CCK. Arrestin-biased action was ruled out using morphological translocation of fluorescent arrestin 2 and arrestin 3, moving to the membrane in response to CCK, but not d-Trp-OPE. Possible roles of the carboxyl terminus were studied using truncated receptor constructs, eliminating the proline-rich distal tail, the serine/threonine-rich midregion, and the remainder to the vicinal cysteines. None of these constructs disrupted d-Trp-OPE-stimulated internalization. Possible contributions of transmembrane segments were studied using competitive inhibition with peptides that also had no effect. Intracellular regions were studied with a similar strategy using coexpressing cell lines. Peptides corresponding to ends of each loop region were studied, with only the peptide at the carboxyl end of the third loop inhibiting d-Trp-OPE-stimulated internalization but having no effect on CCK-stimulated internalization. The region contributing to this effect was refined to peptide 309-323, located below the recognized G protein-association motif. While a receptor in which this segment was deleted did internalize in response to d-Trp-OPE, it exhibited abnormal ligand binding and did not signal in response to CCK, suggesting an abnormal conformation and possible mechanism of internalization

  12. γ-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit*

    Science.gov (United States)

    Hannan, Saad; Wilkins, Megan E.; Dehghani-Tafti, Ebrahim; Thomas, Philip; Baddeley, Stuart M.; Smart, Trevor G.

    2011-01-01

    γ-Aminobutyric acid type B (GABAB) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABAB receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABAB receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABAB receptor. PMID:21724853

  13. Rate of Homologous Desensitization and Internalization of the GLP-1 Receptor.

    Science.gov (United States)

    Shaaban, Ghina; Oriowo, Mabayoje; Al-Sabah, Suleiman

    2016-12-26

    The glucagon-like peptide-1 receptor (GLP-1R) is an important target in the treatment of type 2 diabetes mellitus. The aim of this study was to compare the rate of agonist stimulated desensitization and internalization of GLP-1R. To this end, an N-terminally myc-tagged GLP-1R was stably expressed in HEK-293 cells. Homologous desensitization was assessed by measuring the cAMP response to agonist stimulation following pre-incubation with agonist for up to 120 min. Receptor internalization was monitored using an indirect ELISA-based method and confocal microscopy. Pre-incubation with GLP-1 resulted in a time-dependent loss of response to a second stimulation. Washing cells following pre-incubation failed to bring cAMP levels back to basal. Taking this into account, two desensitization rates were calculated: "apparent" (t 1/2 = 19.27 min) and "net" (t 1/2 = 2.99 min). Incubation of cells with GLP-1 also resulted in a time-dependent loss of receptor cell surface expression (t 1/2 = 2.05 min). Rapid agonist-stimulated internalization of GLP-1R was confirmed using confocal microscopy. Stimulation of GLP-1R with GLP-1 results in rapid desensitization and internalization of the receptor. Interestingly, the rate of "net" desensitization closely matches the rate of internalization. Our results suggest that agonist-bound GLP-1R continues to generate cAMP after it has been internalized.

  14. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology

    Science.gov (United States)

    Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye

    2013-05-01

    We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.

  15. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins.

    Science.gov (United States)

    Tollefson, A E; Toth, K; Doronin, K; Kuppuswamy, M; Doronina, O A; Lichtenstein, D L; Hermiston, T W; Smith, C A; Wold, W S

    2001-10-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  16. Chemerin C9 peptide induces receptor internalization through a clathrin-independent pathway

    Science.gov (United States)

    Zhou, Jun-xian; Liao, Dan; Zhang, Shuo; Cheng, Ni; He, Hui-qiong; Ye, Richard D

    2014-01-01

    Aim: The chemerin receptor CMKLR1 is one type of G protein-coupled receptors abundant in monocyte-derived dendritic cells and macrophages, which plays a key role in the entry of a subset of immunodeficiency viruses including HIV/SIV into lymphocytes and macrophages. The aim of this work was to investigate how CMKLR1 was internalized and whether its internalization affected cell signaling in vitro. Methods: Rat basophilic leukemia RBL-2H3 cells, HEK 293 cells, and HeLa cells were used. CMKLR1 internalization was visualized by confocal microscopy imaging or using a FACScan flow cytometer. Six potential phosphorylation sites (Ser337, Ser343, Thr352, Ser344, Ser347, and Ser350) in CMKLR1 were substituted with alanine using site-directed mutagenesis. Heterologous expression of wild type and mutant CMKLR1 allowed for functional characterization of endocytosis, Ca2+ flux and extracellular signal-regulated kinase (ERK) phosphorylation. Results: Chemerin and the chemerin-derived nonapeptide (C9) induced dose-dependent loss of cell surface CMKLR1-GFP fusion protein and increased its intracellular accumulation in HEK 293 cells and RBL-2H3 cells stably expressing CMKLR1. Up to 90% of CMKLR1 was internalized after treatment with C9 (1 μmol/L). By using different agents, it was demonstrated that clathrin-independent mechanism was involved in CMKLR1 internalization. Mutations in Ser343 for G protein-coupled receptor kinase phosphorylation and in Ser347 for PKC phosphorylation abrogated CMKLR1 internalization. Loss of CMKLR1 internalization partially enhanced the receptor signaling, as shown by increased Ca2+ flux and a shorter latency to peak level of ERK phosphorylation. Conclusion: CMKLR1 internalization occurs in a clathrin-independent manner, which negatively regulated the receptor-mediated Ca2+ flux and ERK phosphorylation. PMID:24658352

  17. The GPRC6A receptor displays constitutive internalization and sorting to the slow recycling pathway.

    Science.gov (United States)

    Jacobsen, Stine Engesgaard; Ammendrup-Johnsen, Ina; Jansen, Anna Mai; Gether, Ulrik; Madsen, Kenneth Lindegaard; Bräuner-Osborne, Hans

    2017-04-28

    The class C G protein-coupled receptor GPRC6A is a putative nutrient-sensing receptor and represents a possible new drug target in metabolic disorders. However, the specific physiological role of this receptor has yet to be identified, and the mechanisms regulating its activity and cell surface availability also remain enigmatic. In the present study, we investigated the trafficking properties of GPRC6A by use of both a classical antibody feeding internalization assay in which cells were visualized using confocal microscopy and a novel internalization assay that is based on real-time measurements of fluorescence resonance energy transfer. Both assays revealed that GPRC6A predominantly undergoes constitutive internalization, whereas the agonist-induced effects were imperceptible. Moreover, postendocytic sorting was investigated by assessing the co-localization of internalized GPRC6A with selected Rab protein markers. Internalized GPRC6A was mainly co-localized with the early endosome marker Rab5 and the long loop recycling endosome marker Rab11 and to a much lesser extent with the late endosome marker Rab7. This suggests that upon agonist-independent internalization, GPRC6A is recycled via the Rab11-positive slow recycling pathway, which may be responsible for ensuring a persistent pool of GPRC6A receptors at the cell surface despite chronic agonist exposure. Distinct trafficking pathways have been reported for several of the class C receptors, and our results thus substantiate that non-canonical trafficking mechanisms are a common feature for the nutrient-sensing class C family that ensure functional receptors in the cell membrane despite prolonged agonist exposure. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Solar advanced internal film receiver; Receptor avanzado de pelicular interna

    Energy Technology Data Exchange (ETDEWEB)

    Torre Cabezas, M. de la

    1990-07-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs.

  19. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors

    DEFF Research Database (Denmark)

    Hamann, Jörg; Aust, Gabriela; Araç, Demet

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic...

  20. Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3.

    Directory of Open Access Journals (Sweden)

    Rocío Alcántara-Hernández

    Full Text Available The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1-3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1-3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes.Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes.

  1. The non-phagocytic route of collagen uptake

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Ingvarsen, Signe; Jürgensen, Henrik J

    2011-01-01

    The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments......, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional...... mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down...

  2. Collagen Type I as a Ligand for Receptor-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Iris Boraschi-Diaz

    2017-05-01

    Full Text Available Collagens form the fibrous component of the extracellular matrix in all multi-cellular animals. Collagen type I is the most abundant collagen present in skin, tendons, vasculature, as well as the organic portion of the calcified tissue of bone and teeth. This review focuses on numerous receptors for which collagen acts as a ligand, including integrins, discoidin domain receptors DDR1 and 2, OSCAR, GPVI, G6b-B, and LAIR-1 of the leukocyte receptor complex (LRC and mannose family receptor uPARAP/Endo180. We explore the process of collagen production and self-assembly, as well as its degradation by collagenases and gelatinases in order to predict potential temporal and spatial sites of action of different collagen receptors. While the interactions of the mature collagen matrix with integrins and DDR are well-appreciated, potential signals from immature matrix as well as collagen degradation products are possible but not yet described. The role of multiple collagen receptors in physiological processes and their contribution to pathophysiology of diseases affecting collagen homeostasis require further studies.

  3. Collagen type I as a ligand for receptor-mediated signaling

    Science.gov (United States)

    Boraschi-Diaz, Iris; Wang, Jennifer; Mort, John S.; Komarova, Svetlana V.

    2017-05-01

    Collagens form the fibrous component of the extracellular matrix in all multi-cellular animals. Collagen type I is the most abundant collagen present in skin, tendons, vasculature, as well as the organic portion of the calcified tissue of bone and teeth. This review focuses on numerous receptors for which collagen acts as a ligand, including integrins, discoidin domain receptors DDR1 and 2, OSCAR, GPVI, G6b-B and Lair-1 of the leukocyte receptor complex and mannose family receptor uPARAP/Endo 180. We explore the process of collagen production and self-assembly, as well as its degradation by collagenases and gelatinases in order to predict potential temporal and spatial sites of action of different collagen receptors. While the interactions of the mature collagen matrix with integrins and DDR are well-appreciated, potential signals from immature matrix as well as collagen degradation products are possible but not yet described. The role of multiple collagen receptors in physiological processes and their contribution to pathophysiology of diseases affecting collagen homeostasis require further studies.

  4. Rate of Homologous Desensitization and Internalization of the GLP-1 Receptor

    Directory of Open Access Journals (Sweden)

    Ghina Shaaban

    2016-12-01

    Full Text Available The glucagon-like peptide-1 receptor (GLP-1R is an important target in the treatment of type 2 diabetes mellitus. The aim of this study was to compare the rate of agonist stimulated desensitization and internalization of GLP-1R. To this end, an N-terminally myc-tagged GLP-1R was stably expressed in HEK-293 cells. Homologous desensitization was assessed by measuring the cAMP response to agonist stimulation following pre-incubation with agonist for up to 120 min. Receptor internalization was monitored using an indirect ELISA-based method and confocal microscopy. Pre-incubation with GLP-1 resulted in a time-dependent loss of response to a second stimulation. Washing cells following pre-incubation failed to bring cAMP levels back to basal. Taking this into account, two desensitization rates were calculated: “apparent” (t1/2 = 19.27 min and “net” (t1/2 = 2.99 min. Incubation of cells with GLP-1 also resulted in a time-dependent loss of receptor cell surface expression (t1/2 = 2.05 min. Rapid agonist-stimulated internalization of GLP-1R was confirmed using confocal microscopy. Stimulation of GLP-1R with GLP-1 results in rapid desensitization and internalization of the receptor. Interestingly, the rate of “net” desensitization closely matches the rate of internalization. Our results suggest that agonist-bound GLP-1R continues to generate cAMP after it has been internalized.

  5. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    Science.gov (United States)

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Dopamine receptor D4 internalization requires a beta-arrestin and a visual arrestin.

    Science.gov (United States)

    Deming, Janise D; Shin, Jung-A; Lim, Kayleen; Lee, Eun-Jin; Van Craenenbroeck, Kathleen; Craft, Cheryl Mae

    2015-10-01

    The G-protein coupled receptor (GPCR) Dopamine Receptor D4 (DRD4) plays an essential role in cAMP regulation and gap junctional coupling in the photoreceptors, where DRD4 expression is under circadian control. Previous in vitro transfection studies of human DRD4 desensitization have reported that DRD4 is not internalized upon dopamine stimulation when beta-arrestin is co-transfected with DRD4. We hypothesized that the visual arrestins, ARR1 and ARR4, play a modulatory role in DRD4 desensitization in the photoreceptors. To test this hypothesis, immunohistochemistry analysis of mouse retinas was used to determine the cellular localization of beta-arrestins and DRD4 in photoreceptors. In vitro studies were performed in HEK293T cells transiently transfected with human DRD4 and arrestins. First, co-immunoprecipitation experiments were executed to test protein-protein interactions and to investigate the effect of dopamine stimulation. Second, immunohistochemistry analysis was implemented to study DRD4 internalization and translocation of ARR4. Immunohistochemistry studies of mouse retinas confirmed the expression of beta-arrestin 2, ARR1 and ARR4, as well as DRD4 in mouse cone photoreceptor inner segments. Co-immunoprecipitation experiments revealed a dopamine-dependent protein-protein interaction between human DRD4 and ARR4. In vitro internalization experiments showed that no detectable internalization of DRD4 was observed with any single arrestin co-transfected. However, a dopamine-dependent internalization of DRD4 was observed with three out of six sets of two arrestins co-transfected with DRD4. Each of these pairs of arrestins contained one visual arrestin and one beta-arrestin, and no internalization was observed with either two visual arrestins or two beta-arrestins. Additional time-course experiments revealed that in vitro, ARR4 translocates to co-localize with DRD4 at the plasma membrane in response to 30min of dopamine stimulation. The results have functional

  7. Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model.

    Science.gov (United States)

    Liu, Yu; Song, Ge; Shao, Xiao-Xia; Liu, Ya-Li; Guo, Zhan-Yun

    2015-02-01

    Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand-receptor and receptor-receptor interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Internalization of secreted antigen–targeted antibodies by the neonatal Fc receptor for precision imaging of the androgen receptor axis

    Science.gov (United States)

    Thorek, Daniel L. J.; Watson, Philip A.; Lee, Sang-Gyu; Ku, Anson T.; Bournazos, Stylianos; Braun, Katharina; Kim, Kwanghee; Sjöström, Kjell; Doran, Michael G.; Lamminmäki, Urpo; Santos, Elmer; Veach, Darren; Turkekul, Mesruh; Casey, Emily; Lewis, Jason S.; Abou, Diane S.; van Voss, Marise R. H.; Scardino, Peter T.; Strand, Sven-Erik; Alpaugh, Mary L.; Scher, Howard I.; Lilja, Hans; Larson, Steven M.; Ulmert, David

    2017-01-01

    Targeting the androgen receptor (AR) pathway prolongs survival in patients with prostate cancer, but resistance rapidly develops. Understanding this resistance is confounded by a lack of noninvasive means to assess AR activity in vivo. We report intracellular accumulation of a secreted antigen-targeted antibody (SATA) that can be used to characterize disease, guide therapy, and monitor response. AR-regulated human kallikrein-related peptidase 2 (free hK2) is a prostate tissue-specific antigen produced in prostate cancer and androgen-stimulated breast cancer cells. Fluorescent and radio conjugates of 11B6, an antibody targeting free hK2, are internalized and noninvasively report AR pathway activity in metastatic and genetically engineered models of cancer development and treatment. Uptake is mediated by a mechanism involving the neonatal Fc receptor. Humanized 11B6, which has undergone toxicological tests in nonhuman primates, has the potential to improve patient management in these cancers. Furthermore, cell-specific SATA uptake may have a broader use for molecularly guided diagnosis and therapy in other cancers. PMID:27903863

  9. Pharmacokinetic/Pharmacodynamic Modelling of Receptor Internalization with CRTH2 Antagonists to Optimize Dose Selection.

    Science.gov (United States)

    Krause, Andreas; Zisowsky, Jochen; Strasser, Daniel S; Gehin, Martine; Sidharta, Patricia N; Groenen, Peter M A; Dingemanse, Jasper

    2016-07-01

    The chemoattractant receptor-homologous molecule expressed on T helper-2 cells (CRTH2) is a G-protein-coupled receptor for prostaglandin D2 (PGD2), a key mediator in inflammatory disorders. Two selective and potent CRTH2 antagonists currently in clinical development, ACT-453859 and setipiprant, were compared with respect to their (predicted) clinical efficacy. Population pharmacokinetic (PK) and pharmacodynamic (PD) models were developed to characterize how plasma concentrations (PK) of ACT-453859, its active metabolite ACT-463036 and setipiprant related to their effect on blocking PGD2-induced internalization of CRTH2 on eosinophils (PD). Simulations were used to identify doses and dosing regimens leading to 90 % of maximum blockade of CRTH2 internalization at trough. A combined concentration of ACT-453859 and its metabolite ACT-463036, with weights proportional to potency (based on an eosinophil shape change assay), enabled good characterization of the PD effect. The modelling and simulation results facilitated decision making by suggesting an ACT-453859 dose of 400 mg once daily (or 100 mg twice daily) for clinically relevant CRTH2 antagonism. Pharmacometric quantification demonstrated that CRTH2 internalization is a useful new biomarker to study CRTH2 antagonism. Ninety percent of maximum blockade of CRTH2 internalization at trough is suggested as a quantitative PD target in clinical studies.

  10. Unraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor

    Science.gov (United States)

    Wan, Min; Zhang, Wenhua; Tian, Yangli; Xu, Chanjuan; Xu, Tao; Liu, Jianfeng; Zhang, Rongying

    2015-01-01

    Endocytosis and postendocytic sorting of G-protein-coupled receptors (GPCRs) is important for the regulation of both their cell surface density and signaling profile. Unlike the mechanisms of clathrin-dependent endocytosis (CDE), the mechanisms underlying the control of GPCR signaling by clathrin-independent endocytosis (CIE) remain largely unknown. Among the muscarinic acetylcholine receptors (mAChRs), the M4 mAChR undergoes CDE and recycling, whereas the M2 mAChR is internalized through CIE and targeted to lysosomes. Here we investigated the endocytosis and postendocytic trafficking of M2 mAChR based on a comparative analysis of the third cytoplasmic domain in M2 and M4 mAChRs. For the first time, we identified that the sequence 374KKKPPPS380 servers as a sorting signal for the clathrin-independent internalization of M2 mAChR. Switching 374KKKPPPS380 to the i3 loop of the M4 mAChR shifted the receptor into lysosomes through the CIE pathway; and therefore away from CDE and recycling. We also found another previously unidentified sequence that guides CDE of the M2 mAChR, 361VARKIVKMTKQPA373, which is normally masked in the presence of the downstream sequence 374KKKPPPS380. Taken together, our data indicate that endocytosis and postendocytic sorting of GPCRs that undergo CIE could be sequence-dependent. PMID:26094760

  11. Internal hydration increases during activation of the G protein-coupled receptor rhodopsin

    Science.gov (United States)

    Grossfield, Alan; Pitman, Michael C.; Feller, Scott E.; Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    Rhodopsin, the membrane protein responsible for dim-light vision, until recently was the only G protein-coupled receptor (GPCR) with a known crystal structure. As a result, there is enormous interest in studying its structure, dynamics, and function. Here we report the results of three all-atom molecular dynamics simulations, each at least 1.5 microseconds, which predict that substantial changes in internal hydration play a functional role in rhodopsin activation. We confirm that the increased hydration is specific to the Meta-I intermediate with 1H magic angle spinning NMR. The internal waters interact with several conserved residues, suggesting that changes in internal hydration may be important during the activation of other GPCRs. The results serve to illustrate the synergism of long timescale molecular dynamics simulations and NMR in enhancing our understanding of GPCR function. PMID:18585736

  12. Heterologous activation of protein kinase C stimulates phosphorylation of delta-opioid receptor at serine 344, resulting in beta-arrestin- and clathrin-mediated receptor internalization

    DEFF Research Database (Denmark)

    Xiang, B; Yu, G H; Guo, J

    2001-01-01

    The purpose of the current study is to investigate the effect of opioid-independent, heterologous activation of protein kinase C (PKC) on the responsiveness of opioid receptor and the underlying molecular mechanisms. Our result showed that removing the C terminus of delta opioid receptor (DOR......) containing six Ser/Thr residues abolished both DPDPE- and phorbol 12-myristate 13-acetate (PMA)-induced DOR phosphorylation. The phosphorylation levels of DOR mutants T352A, T353A, and T358A/T361A/S363S were comparable to that of the wild-type DOR, whereas S344G substitution blocked PMA-induced receptor......, and ionomycin resulted in DOR internalization that required phosphorylation of Ser-344. Expression of dominant negative beta-arrestin and hypertonic sucrose treatment blocked PMA-induced DOR internalization, suggesting that PKC mediates DOR internalization via a beta-arrestin- and clathrin-dependent mechanism...

  13. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    for cells expressing kinase-negative receptor (A721). Moreover, tyrosine kinase activity of the Dc-123F receptor toward phospholipase C-gamma 1, compared to wild-type receptor, was reduced by 90%. Taken together, these results show that EGF receptor lacking five autophosphorylation sites functions similar...

  14. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A.

    Science.gov (United States)

    Somanna, Naveen K; Mani, Indra; Tripathi, Satyabha; Pandey, Kailash N

    2018-04-01

    Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125 I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand-receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.

  15. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    Science.gov (United States)

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  16. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.

    Science.gov (United States)

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-04-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.

  17. P2X7 receptor cross-talk regulates ATP-induced pannexin 1 internalization.

    Science.gov (United States)

    Boyce, Andrew K J; Swayne, Leigh Anne

    2017-06-13

    In the nervous system, extracellular ATP levels transiently increase in physiological and pathophysiological circumstances, effecting key signalling pathways in plasticity and inflammation through purinergic receptors. Pannexin 1 (Panx1) forms ion- and metabolite-permeable channels that mediate ATP release and are particularly enriched in the nervous system. Our recent study demonstrated that elevation of extracellular ATP triggers Panx1 internalization in a concentration- and time-dependent manner. Notably, this effect was sensitive to inhibition of ionotropic P2X7 purinergic receptors (P2X7Rs). Here, we report our novel findings from the detailed investigation of the mechanism underlying P2X7R-Panx1 cross-talk in ATP-stimulated internalization. We demonstrate that extracellular ATP triggers and is required for the clustering of P2X7Rs and Panx1 on Neuro2a cells through an extracellular physical interaction with the Panx1 first extracellular loop (EL1). Importantly, disruption of P2X7R-Panx1 clustering by mutation of tryptophan 74 within the Panx1 EL1 inhibits Panx1 internalization. Notably, P2X7R-Panx1 clustering and internalization are independent of P2X7R-associated intracellular signalling pathways (Ca 2+ influx and Src activation). Further analysis revealed that cholesterol is required for ATP-stimulated P2X7R-Panx1 clustering at the cell periphery. Taken together, our data suggest that extracellular ATP induces and is required for Panx1 EL1-mediated, cholesterol-dependent P2X7R-Panx1 clustering and endocytosis. These findings have important implications for understanding the role of Panx1 in the nervous system and provide important new insights into Panx1-P2X7R cross-talk. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  18. Internalization of the human CRF receptor 1 is independent of classical phosphorylation sites and of beta-arrestin 1 recruitment

    DEFF Research Database (Denmark)

    Rasmussen, Trine N; Novak, Ivana; Nielsen, Søren M

    2004-01-01

    AMP-dependent protein kinase and protein kinase C are not prerequisites for CRFR1 internalization. Surprisingly, deletion of all putative phosphorylation sites in the C-terminal tail, as well as a cluster of putative phosphorylation sites in the third intracellular loop, did not affect receptor internalization. However......, these mutations almost abolished the recruitment of beta-arrestin 1 following receptor activation. In conclusion, we demonstrate that CRFR1 internalization is independent of phosphorylation sites in the C-terminal tail and third intracellular loop, and the degree of beta-arrestin 1 recruitment....

  19. Internalization and down-regulation of the human epidermal growth factor receptor are regulated by the carboxyl-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Beguinot, L

    1991-01-01

    The C terminus of the epidermal growth factor receptor (EGF-R) contains three tyrosines (Y1068, Y1148, and Y1173) which correspond to the major autophosphorylation sites. To investigate the role of the tyrosines in internalization and down-regulation of the EGF-R, mutational analysis was performed......-R in response to EGF showing a half-life of about 1 h. Degradation of the triple point mutant, however, was impaired and resulted in a half-life of 4 h in the presence of EGF. EGF-dependent down-regulation of surface receptors was decreased in the triple point mutant EGF-R as was internalization and degradation...... of EGF. The specific rate of internalization of the triple point mutant was reduced. By contrast, intracellular processing of ligand previously internalized at 20 degrees C was similar between wild type and mutant receptors. Taken together the data indicate that the delay in degradation observed in cells...

  20. Morphine-induced internalization of the L83I mutant of the rat μ-opioid receptor

    Science.gov (United States)

    Cooke, A E; Oldfield, S; Krasel, C; Mundell, S J; Henderson, G; Kelly, E

    2015-01-01

    BACKGROUND AND PURPOSE Naturally occurring single-nucleotide polymorphisms (SNPs) within GPCRs can result in alterations in various pharmacological parameters. Understanding the regulation and function of endocytic trafficking of the μ-opioid receptor (MOP receptor) is of great importance given its implication in the development of opioid tolerance. This study has compared the agonist-dependent trafficking and signalling of L83I, the rat orthologue of a naturally occurring variant of the MOP receptor. EXPERIMENTAL APPROACH Cell surface elisa, confocal microscopy and immunoprecipitation assays were used to characterize the trafficking properties of the MOP-L83I variant in comparison with the wild-type receptor in HEK 293 cells. Functional assays were used to compare the ability of the L83I variant to signal to several downstream pathways. KEY RESULTS Morphine-induced internalization of the L83I MOP receptor was markedly increased in comparison with the wild-type receptor. The altered trafficking of this variant was found to be specific to morphine and was both G-protein receptor kinase- and dynamin-dependent. The enhanced internalization of L83I variant in response to morphine was not due to increased phosphorylation of serine 375, arrestin association or an increased ability to signal. CONCLUSIONS AND IMPLICATIONS These results suggest that morphine promotes a specific conformation of the L83I variant that makes it more liable to internalize in response to morphine, unlike the wild-type receptor that undergoes significantly less morphine-stimulated internalization, providing an example of a ligand-selective biased receptor. The presence of this SNP within an individual may consequently affect the development of tolerance and analgesic responses. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24697554

  1. Charomers-Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery.

    Science.gov (United States)

    Hahn, Ulrich

    2017-12-06

    Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2'-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers-in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.

  2. Charomers—Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ulrich Hahn

    2017-12-01

    Full Text Available Interleukin-6 (IL-6 is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT. Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2′-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers—in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.

  3. Comparative study of somatostatin-human serum albumin fusion proteins and natural somatostatin on receptor binding, internalization and activation.

    Directory of Open Access Journals (Sweden)

    Ying Peng

    Full Text Available Albumin fusion technology, the combination of small molecular proteins or peptides with human serum albumin (HSA, is an effective method for improving the medicinal values of natural small molecular proteins or peptides. However, comparative studies between HSA-fusion proteins or peptides and the parent small molecules in biological and molecular mechanisms are less reported. In this study, we examined the binding property of two novel somatostatin-HSA fusion proteins, (SST142-HSA and (SST282-HSA, to human SSTRs in stably expressing SSTR1-5 HEK 293 cells; observed the regulation of receptor internalization and internalized receptor recycling; and detected the receptors activation of HSA fusion proteins in stably expressing SSTR2- and SSTR3-EGFP cells. We showed that both somatostatin-HSA fusion proteins had high affinity to all five SSTRs, stimulated the ERK1/2 phosphorylation and persistently inhibited the accumulation of forskolin-stimulated cAMP in SSTR2- and SSTR3-expressing cells; but were less potent than the synthetic somatostatin-14 (SST-14. Our experiments also showed that somatostatin-HSA fusion proteins did not induce the receptors internalization; rather, they accelerated the recycling of the internalized receptors induced by SST-14 to the plasma membrane. Our results indicated that somatostatin-HSA fusion proteins, different from SST-14, exhibit some particular properties in binding, regulating, and activating somatostatin receptors.

  4. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands

    DEFF Research Database (Denmark)

    Pertwee, R G; Howlett, A C; Abood, M E

    2010-01-01

    There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid ¿(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor...

  5. Caenorhabditis elegans reveals a FxNPxY-independent low-density lipoprotein receptor internalization mechanism mediated by epsin1

    Science.gov (United States)

    Kang, Yuan-Lin; Yochem, John; Bell, Leslie; Sorensen, Erika B.; Chen, Lihsia; Conner, Sean D.

    2013-01-01

    Low-density lipoprotein receptor (LDLR) internalization clears cholesterol-laden LDL particles from circulation in humans. Defects in clathrin-dependent LDLR endocytosis promote elevated serum cholesterol levels and can lead to atherosclerosis. However, our understanding of the mechanisms that control LDLR uptake remains incomplete. To identify factors critical to LDLR uptake, we pursued a genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport. In doing so, we discovered an unanticipated requirement for the clathrin-binding endocytic adaptor epsin1 in LDLR endocytosis. Epsin1 depletion reduced LDLR internalization rates in mammalian cells, similar to the reduction observed following clathrin depletion. Genetic and biochemical analyses of epsin in C. elegans and mammalian cells uncovered a requirement for the ubiquitin-interaction motif (UIM) as critical for receptor transport. As the epsin UIM promotes the internalization of some ubiquitinated receptors, we predicted LDLR ubiquitination as necessary for endocytosis. However, engineered ubiquitination-impaired LDLR mutants showed modest internalization defects that were further enhanced with epsin1 depletion, demonstrating epsin1-mediated LDLR endocytosis is independent of receptor ubiquitination. Finally, we provide evidence that epsin1-mediated LDLR uptake occurs independently of either of the two documented internalization motifs (FxNPxY or HIC) encoded within the LDLR cytoplasmic tail, indicating an additional internalization mechanism for LDLR. PMID:23242996

  6. Prolactin receptor-mediated internalization of imaging agents detects epithelial ovarian cancer

    Science.gov (United States)

    Sundaram, Karthik M.

    Epithelial ovarian cancer (EOC) has the highest mortality rate of all gynecologic malignant tumors. Diagnosis of epithelial ovarian cancer (EOC) presents two main challenges. The first challenge is detecting low volume (prolactin receptor (PRLR) - a cell surface tyrosine kinase receptor that is over-expressed in moderate to high levels on > 98% of epithelial ovarian cancers. Upon binding of native ligands to PRLR, the ligand:PRLR complex is internalized by cells. By conjugating gadolinium-chelates, molecules normally used as contrast agents diagnostically, to human placental lactogen (hPL), a native ligand of PRLR, we show that MRI becomes highly sensitive and specific for detecting PRLR (+) tumors in a nude mouse model of EOC. We further establish the adaptability of this approach for fluorescence-based imaging techniques using an hPL conjugated Cy5.5 dye. We conclude that molecular imaging of PRLR with hPL-conjugated imaging agents can address the current challenges that limit EOC diagnosis.

  7. Lupus risk variants in the PXK locus alter B-cell receptor internalization

    Directory of Open Access Journals (Sweden)

    Samuel E. Vaughn

    2015-01-01

    Full Text Available Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus, rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb common haplotype that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3’ UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 x 10-10, OR 0.81 (0.75 – 0.86. Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 200kb.Functionally, we found that PXK operates on the B-cell antigen receptor (BCR; we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity.

  8. Delayed internalization and lack of recycling in a beta2-adrenergic receptor fused to the G protein alpha-subunit

    Directory of Open Access Journals (Sweden)

    Floridi Aristide

    2008-10-01

    Full Text Available Abstract Background Chimeric proteins obtained by the fusion of a G protein-coupled receptor (GPCR sequence to the N-terminus of the G protein α-subunit have been extensively used to investigate several aspects of GPCR signalling. Although both the receptor and the G protein generally maintain a fully functional state in such polypeptides, original observations made using a chimera between the β2-adrenergic receptor (β2AR and Gαs indicated that the fusion to the α-subunit resulted in a marked reduction of receptor desensitization and down-regulation. To further investigate this phenomenon, we have compared the rates of internalization and recycling between wild-type and Gαs-fused β2AR. Results The rate of agonist-induced internalization, measured as the disappearance of cell surface immunofluorescence in HEK293 cells permanently expressing N-terminus tagged receptors, was reduced three-fold by receptor-G protein fusion. However, both fused and non-fused receptors translocated to the same endocytic compartment, as determined by dual-label confocal analysis of cells co-expressing both proteins and transferrin co-localization. Receptor recycling, determined as the reversion of surface immunofluorescence following the addition of antagonist to cells that were previously exposed to agonist, markedly differed between wild-type and fused receptors. While most of the internalized β2AR returned rapidly to the plasma membrane, β2AR-Gαs did not recycle, and the observed slow recovery for the fusion protein immunofluorescence was entirely accounted for by protein synthesis. Conclusion The covalent linkage between β2AR and Gαs does not appear to alter the initial endocytic translocation of the two proteins, although there is reduced efficiency. It does, however, completely disrupt the process of receptor and G protein recycling. We conclude that the physical separation between receptor and Gα is not necessary for the transit to early endosomes

  9. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization.

    Science.gov (United States)

    Kuver, Aarti; Smith, Sheryl S

    2016-01-01

    Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM-100 μM, IC50=∼1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM)+THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ∼60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. ARF6 Activated by the LHCG Receptor through the Cytohesin Family of Guanine Nucleotide Exchange Factors Mediates the Receptor Internalization and Signaling*

    Science.gov (United States)

    Kanamarlapudi, Venkateswarlu; Thompson, Aiysha; Kelly, Eamonn; López Bernal, Andrés

    2012-01-01

    The luteinizing hormone chorionic gonadotropin receptor (LHCGR) is a Gs-coupled GPCR that is essential for the maturation and function of the ovary and testis. LHCGR is internalized following its activation, which regulates the biological responsiveness of the receptor. Previous studies indicated that ADP-ribosylation factor (ARF)6 and its GTP-exchange factor (GEF) cytohesin 2 regulate LHCGR internalization in follicular membranes. However, the mechanisms by which ARF6 and cytohesin 2 regulate LHCGR internalization remain incompletely understood. Here we investigated the role of the ARF6 signaling pathway in the internalization of heterologously expressed human LHCGR (HLHCGR) in intact cells using a combination of pharmacological inhibitors, siRNA and the expression of mutant proteins. We found that human CG (HCG)-induced HLHCGR internalization, cAMP accumulation and ARF6 activation were inhibited by Gallein (βγ inhibitor), Wortmannin (PI 3-kinase inhibitor), SecinH3 (cytohesin ARF GEF inhibitor), QS11 (an ARF GAP inhibitor), an ARF6 inhibitory peptide and ARF6 siRNA. However, Dynasore (dynamin inhibitor), the dominant negative mutants of NM23-H1 (dynamin activator) and clathrin, and PBP10 (PtdIns 4,5-P2-binding peptide) inhibited agonist-induced HLHCGR and cAMP accumulation but not ARF6 activation. These results indicate that heterotrimeric G-protein, phosphatidylinositol (PI) 3-kinase (PI3K), cytohesin ARF GEF and ARF GAP function upstream of ARF6 whereas dynamin and clathrin act downstream of ARF6 in the regulation of HCG-induced HLHCGR internalization and signaling. In conclusion, we have identified the components and molecular details of the ARF6 signaling pathway required for agonist-induced HLHCGR internalization. PMID:22523074

  11. SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner

    Czech Academy of Sciences Publication Activity Database

    Hájková, Alena; Techlovská, Šárka; Dvořáková, Michaela; Chambers, Jayne Nicole; Kumpošt, Jiří; Hubálková, Pavla; Prezeau, L.; Blahoš, Jaroslav

    2016-01-01

    Roč. 107, léto (2016), s. 201-214 ISSN 0028-3908 R&D Projects: GA ČR GAP303/12/2408 Institutional support: RVO:68378050 Keywords : Seven transmembrane receptors * G-protein coupled receptors * Cannabinoid receptor 1 * Protein-protein interactions * Bias signaling * Receptor endocytosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.012, year: 2016

  12. The F-BAR Protein PACSIN2 Regulates Epidermal Growth Factor Receptor Internalization

    NARCIS (Netherlands)

    de Kreuk, Bart-Jan; Anthony, Eloise C.; Geerts, Dirk; Hordijk, Peter L.

    2012-01-01

    Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors

  13. Internalization of Rat FSH and LH/CG Receptors by rec-eCG in CHO-K1 Cells.

    Science.gov (United States)

    Park, Jong-Ju; Seong, Hun-Ki; Kim, Jeong-Soo; Munkhzaya, Byambaragchaa; Kang, Myung-Hwa; Min, Kwan-Sik

    2017-06-01

    Equine chorionic gonadotropin (eCG) is a unique molecule that elicits the response characteristics of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in other species. Previous studies from this laboratory had demonstrated that recombinant eCG (rec-eCG) from Chinese hamster ovary (CHO-K1) cells exhibited both FSH- and LH-like activity in rat granulosa and Leydig cells. In this study, we analyzed receptor internalization through rec-eCGs, wild type eCG (eCGβ/α) and mutant eCG (eCGβ/αΔ56) with an N-linked oligosaccharide at Asn 56 of the α-subunit. Both the rec-eCGs were obtained from CHO-K1 cells. The agonist activation of receptors was analyzed by measuring stimulation time and concentrations of rec-eCGs. Internalization values in the stably selected rat follicle-stimulating hormone receptor (rFSHR) and rat luteinizing/chorionic gonadotropin receptor (rLH/CGR) were highest at 50 min after stimulation with 10 ng of rec-eCGβ/α. The dose-dependent response was highest when 10 ng of rec-eCGβ/α was used. The deglycosylated eCGβ/αΔ56 mutant did not enhance the agonist-stimulated internalization. We concluded that the state of activation of rFSHR and rLH/CGR could be modulated through agonist-stimulated internalization. Our results suggested that the eLH/CGRs are mostly internalized within 60 min by agonist-stimulation by rec-eCG. We also suggested that the lack of responsiveness of the deglycosylated eCGβ/ αΔ56 was likely because the site of glycosylation played a pivotal role in agonist-stimulated internalization in cells expressing rFSHR and rLH/CGR.

  14. Activated scavenger receptor A promotes glial internalization of aβ.

    Science.gov (United States)

    Zhang, He; Su, Ya-jing; Zhou, Wei-wei; Wang, Shao-wei; Xu, Peng-xin; Yu, Xiao-lin; Liu, Rui-tian

    2014-01-01

    Beta-amyloid (Aβ) aggregates have a pivotal role in pathological processing of Alzheimer's disease (AD). The clearance of Aβ monomer or aggregates is a causal strategy for AD treatment. Microglia and astrocytes are the main macrophages that exert critical neuroprotective roles in the brain. They may effectively clear the toxic accumulation of Aβ at the initial stage of AD, however, their functions are attenuated because of glial overactivation. In this study, we first showed that heptapeptide XD4 activates the class A scavenger receptor (SR-A) on the glia by increasing the binding of Aβ to SR-A, thereby promoting glial phagocytosis of Aβ oligomer in microglia and astrocytes and triggering intracellular mitogen-activated protein kinase (MAPK) signaling cascades. Moreover, XD4 enhances the internalization of Aβ monomers to microglia and astrocytes through macropinocytosis or SR-A-mediated phagocytosis. Furthermore, XD4 significantly inhibits Aβ oligomer-induced cytotoxicity to glial cells and decreases the production of proinflammatory cytokines, such as TNF-α and IL-1β, in vitro and in vivo. Our findings may provide a novel strategy for AD treatment by activating SR-A.

  15. Activated scavenger receptor A promotes glial internalization of aβ.

    Directory of Open Access Journals (Sweden)

    He Zhang

    Full Text Available Beta-amyloid (Aβ aggregates have a pivotal role in pathological processing of Alzheimer's disease (AD. The clearance of Aβ monomer or aggregates is a causal strategy for AD treatment. Microglia and astrocytes are the main macrophages that exert critical neuroprotective roles in the brain. They may effectively clear the toxic accumulation of Aβ at the initial stage of AD, however, their functions are attenuated because of glial overactivation. In this study, we first showed that heptapeptide XD4 activates the class A scavenger receptor (SR-A on the glia by increasing the binding of Aβ to SR-A, thereby promoting glial phagocytosis of Aβ oligomer in microglia and astrocytes and triggering intracellular mitogen-activated protein kinase (MAPK signaling cascades. Moreover, XD4 enhances the internalization of Aβ monomers to microglia and astrocytes through macropinocytosis or SR-A-mediated phagocytosis. Furthermore, XD4 significantly inhibits Aβ oligomer-induced cytotoxicity to glial cells and decreases the production of proinflammatory cytokines, such as TNF-α and IL-1β, in vitro and in vivo. Our findings may provide a novel strategy for AD treatment by activating SR-A.

  16. C-terminal of human histamine H1receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling.

    Science.gov (United States)

    Hishinuma, Shigeru; Nozawa, Hiroki; Akatsu, Chizuru; Shoji, Masaru

    2016-11-01

    It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that G q/11 -protein-coupled human histamine H 1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H 1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H 1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [ 3 H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H 1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [ 3 H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H 1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H 1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively. © 2016 International Society for Neurochemistry.

  17. Evidence for ligand and/or receptor-specific mechanisms of internalization and processing in cultured H35 hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, R.I.; Smith, R.M.; Jarett, L.

    1987-05-01

    Total cell associated (TC) and intracellularly accumulated (IC) SVI-labeled insulin (INS) or -2-macroglobulin ( 2M) were assessed in cultured H35 hepatoma cells which were preincubated with various agents. Cytochalasin D or sodium azide, which affect microfilament- or energy-dependent receptor internalization, had no significant effects on INS TC or IC but each decreased 2M TC and IC to 50-75% of control. Monensin and chloroquine, acidotrophic agents, each increased INS TC and IC to 150-300% of control yet decreased TC and IC of 2M to 20-50% of control. Only leupeptin, a lysosomal protease inhibitor, caused an increase in both INS and 2M TC and IC. These data suggest significant differences exist in the biochemical regulation or structural routes of INS and 2M receptors and/or receptor-ligand complexes in their (1) internalization, (2) processing in acidic organelles, (3) recycling to the cell surface or in combinations of the above. Biochemical and ultrastructural studies are being performed on the H35 hepatoma cell which will characterize the processing of INS and 2M receptors and provide an explanation for the differences observed.

  18. Evidence for ligand and/or receptor-specific mechanisms of internalization and processing in cultured H35 hepatoma cells

    International Nuclear Information System (INIS)

    Goldberg, R.I.; Smith, R.M.; Jarett, L.

    1987-01-01

    Total cell associated (TC) and intracellularly accumulated (IC) 125 I-labeled insulin (INS) or α-2-macroglobulin (α2M) were assessed in cultured H35 hepatoma cells which were preincubated with various agents. Cytochalasin D or sodium azide, which affect microfilament- or energy-dependent receptor internalization, had no significant effects on INS TC or IC but each decreased α2M TC and IC to 50-75% of control. Monensin and chloroquine, acidotrophic agents, each increased INS TC and IC to 150-300% of control yet decreased TC and IC of α2M to 20-50% of control. Only leupeptin, a lysosomal protease inhibitor, caused an increase in both INS and α2M TC and IC. These data suggest significant differences exist in the biochemical regulation or structural routes of INS and α2M receptors and/or receptor-ligand complexes in their (1) internalization, (2) processing in acidic organelles, (3) recycling to the cell surface or in combinations of the above. Biochemical and ultrastructural studies are being performed on the H35 hepatoma cell which will characterize the processing of INS and α2M receptors and provide an explanation for the differences observed

  19. Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines.

    Science.gov (United States)

    De Schryver, Marjorie; Leemans, Annelies; Pintelon, Isabel; Cappoen, Davie; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2017-06-01

    Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab') 2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can

  20. Unsaturated fatty acids prevent desensitization of the human growth hormone secretagogue receptor by blocking its internalization

    NARCIS (Netherlands)

    P.J.D. Delhanty (Patric); A. Kerkwijk (Anke); M. Huisman (Martijn); B. van de Zande (Bedette); M. Verhoef-Post (Miriam); C. Gauna (Carlotta); L.J. Hofland (Leo); A.P.N. Themmen (Axel); A-J. van der Lely (Aart-Jan)

    2010-01-01

    textabstractThe composition of the plasma membrane affects the responsiveness of cells to metabolically important hormones such as insulin and vasoactive intestinal peptide. Ghrelin is a metabolically regulated hormone that activates the G protein-coupled receptor GH secretagogue receptor type 1a

  1. The F-BAR protein PACSIN2 regulates epidermal growth factor receptor internalization

    NARCIS (Netherlands)

    B.J. de Kreuk (Bart-Jan); E.C. Anthony (Eloise); D. Geertss (Dirk); P.L. Hordijk (Peter )

    2012-01-01

    textabstractSignaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor

  2. Molecular characterization of the di-leucine-based internalization motif of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1996-01-01

    Several cell surface receptors including the T cell receptor (TCR) are phosphorylated and down-regulated following activation of protein kinases. We have recently shown that both phosphorylation of Ser-126 and the presence of the di-leucine sequence Leu-131 and Leu-132 in CD3 gamma are required...

  3. Identification of phenylalanine 346 in the rat growth hormone receptor as being critical for ligand-mediated internalization and down-regulation

    DEFF Research Database (Denmark)

    Allevato, G; Billestrup, N; Goujon, L

    1995-01-01

    The functional significance of growth hormone (GH) receptor (GHR) internalization is unknown; therefore, we have analyzed domains and individual amino acids in the cytoplasmic region of the rat GHR required for ligand-mediated receptor internalization, receptor down-regulation, and transcriptional......, the ability to stimulate transcription of the serine protease inhibitor 2.1 promoter by the GHR was not affected by the phenylalanine 346 to alanine mutation. These results demonstrate that phenylalanine 346 is essential for GHR internalization and down-regulation but not for transcriptional signaling......, suggesting that ligand-mediated endocytosis is not a prerequisite for GH-induced gene transcription....

  4. Establishment of the first WHO International Standard for etanercept, a TNF receptor II Fc fusion protein: Report of an international collaborative study.

    Science.gov (United States)

    Wadhwa, Meenu; Bird, Chris; Dilger, Paula; Rigsby, Peter; Jia, Haiyan; Gross, Marie Emmanuelle Behr

    2017-08-01

    Etanercept, a recombinant human tumor necrosis factor (TNF) receptor Fc fusion protein is an effective treatment option in adults with rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis or plaque psoriasis and paediatrics with juvenile idiotypic arthritis and plaque psoriasis. Patent expiration in Europe and intense development of various etanercept products worldwide triggered a need for an international reference standard to facilitate determination of biological activity. Therefore, three candidate preparations of etanercept were lyophilized and evaluated in a multi-centre collaborative study comprising twenty eight laboratories from 15 countries for their suitability to serve as an international standard for the bioactivity of TNF receptor II Fc fusion proteins (international nonproprietary name, Etanercept). The preparations were tested for neutralization activity against the third TNF-α international standard (IS) in different in vitro cell-based assays, e.g., cytotoxicity, apoptosis and reporter gene methods. Regardless of the assay and the amount of TNF-α IS used, potency estimates for the different preparations were very similar. An indication of the inhibitory activity of etanercept in terms of the biological activity of the TNF-α IS based on ED50 data derived from a limited number of laboratories using a cytotoxicity assay was also derived. Results indicated that the candidate preparation coded 13/204 was stable and suitable to serve as an international standard for the biological activity of etanercept. Therefore, the preparation coded 13/204 was established by the WHO Expert Committee on Biological Standardization (ECBS) in 2015 as the WHO first International Standard for TNF receptor II Fc fusion protein (INN, etanercept) with an assigned in vitro bioactivity of 10,000IU per ampoule. It should be noted that this first-in-class international standard for a Fc fusion protein, available from the National Institute for Biological

  5. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  6. An internal deletion in the cytoplasmic tail reverses the apical localization of human NGF receptor in transfected MDCK cells.

    Science.gov (United States)

    Le Bivic, A; Sambuy, Y; Patzak, A; Patil, N; Chao, M; Rodriguez-Boulan, E

    1991-11-01

    A cDNA encoding the full-length 75-kD human nerve growth factor receptor was transfected into MDCK cells and its product was found to be expressed predominantly (80%) on the apical membrane, as a result of vectorial targeting from an intracellular site. Apical hNGFR bound NGF with low affinity and internalized it inefficiently (6% of surface bound NGF per hour). Several mutant hNGFRs were analyzed, after transfection in MDCK cells, for polarized surface expression, ligand binding, and endocytosis. Deletionof juxta-membrane attachment sites for a cluster of O-linked sugars did not alter apical localization. A mutant receptor lacking the entire cytoplasmic tail (except for the five proximal amino acids) was also expressed on the apical membrane, suggesting that information for apical sorting was contained in the ectoplasmic or transmembrane domains. However, a 58 amino acid deletion in the hNGFR tail that moved a cytoplasmic tyrosine (Tyr 308) closer to the membrane into a more charged environment resulted in a basolateral distribution of the mutant receptor and reversed vectorial (basolateral) targeting. The basolateral mutant receptor also internalized 125I-NGF rapidly (90% of surface bound NGF per hour), exhibited a larger intracellular fraction and displayed a considerably shortened half-life (approximately 3 h). We suggest that hNGFR with the internal cytoplasmic deletion expresses a basolateral targeting signal, related to endocytic signals, that is dominant over apical targeting information in the ecto/transmembrane domains. These results apparently contradict a current model that postulates that basolateral targeting is a default mechanism.

  7. Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists

    Science.gov (United States)

    Charfi, Iness; Nagi, Karim; Mnie-Filali, Ouissame; Thibault, Dominic; Balboni, Gianfranco; Schiller, Peter W.; Trudeau, Louis-Eric

    2014-01-01

    Signaling bias refers to G protein-coupled receptor ligand ability to preferentially activate one type of signal over another. Bias to evoke signaling as opposed to sequestration has been proposed as a predictor of opioid ligand potential for generating tolerance. Here we measured whether delta opioid receptor agonists preferentially inhibited cyclase activity over internalization in HEK cells. Efficacy (τ) and affinity (KA) values were estimated from functional data and bias was calculated from efficiency coefficients (log τ/KA). This approach better represented the data as compared to alternative methods that estimate bias exclusively from τ values. Log (τ/KA) coefficients indicated that SNC-80 and UFP-512 promoted cyclase inhibition more efficiently than DOR internalization as compared to DPDPE (bias factor for SNC-80: 50 and for UFP-512: 132). Molecular determinants of internalization were different in HEK293 cells and neurons with βarrs contributing to internalization in both cell types, while PKC and GRK2 activities were only involved in neurons. Rank orders of ligand ability to engage different internalization mechanisms in neurons were compared to rank order of Emax values for cyclase assays in HEK cells. Comparison revealed a significant reversal in rank order for cyclase Emax values and βarr-dependent internalization in neurons, indicating that these responses were ligand-specific. Despite this evidence, and because kinases involved in internalization were not the same across cellular backgrounds, it is not possible to assert if the magnitude and nature of bias revealed by rank orders of maximal responses is the same as the one measured in HEK cells. PMID:24022593

  8. Internal image anti-idiotypic antibody: A new strategy for the development a new category of prolactin receptor (PRLR) antagonist.

    Science.gov (United States)

    Lan, Hainan; Hong, Pan; Li, Ruonan; L, Suo; Anshan, Shan; Li, Steven; Zheng, Xin

    2017-07-01

    Over the past decades, a number of prolactin receptor (PRLR) antagonists have been developed, which can be divided into two categories, PRLR analogue and anti-PRLR antibody. However, until now, there have been no commercially available PRLR antagonists. Here, we described a new approach for the preparation of PRLR antagonist, namely internal image anti-idiotypic antibody strategy. The hybridoma technique was used to generate anti-idiotypic antibodies to PRL. Competitive ELISA, competitive receptor-binding analysis and immunofluorescence assay (IFA) were then used to screen and characterize anti-idiotypic antibodies to PRL. One internal image anti-idiotypic antibody, termed MG7, was obtained. A series of experiments demonstrated that MG7 behaved as a typical internal image anti-idiotypic antibody (Ab2β). MG7 exhibited effective antagonistic activity, which not only inhibited PRL binding to PRLR in a dose-dependent manner but also inhibited PRLR-mediated intracellular signalling. Furthermore, MG7 also blocked Nb2 cell proliferation induced by PRL. The current study suggests that MG7 has the potential application in the PRL/PRLR-related studies in future. In addition, this work also suggests that the internal image anti-idiotypic antibody may represent a novel strategy for the development of PRLR antagonist. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori PBAN receptor crucial for ligand-induced internalization

    Science.gov (United States)

    Sex pheromone production in most moths is mediated by the pheromone biosynthesis activating neuropeptide receptor (PBANR). Similar to other rhodopsin-like G protein-coupled receptors, the silkmoth Bombyx mori PBANR (BmPBANR) undergoes agonist-induced internalization. Despite interest in developing...

  10. Identification of phenylalanine 346 in the rat growth hormone receptor as being critical for ligand-mediated internalization and down-regulation

    DEFF Research Database (Denmark)

    Allevato, G; Billestrup, N; Goujon, L

    1995-01-01

    The functional significance of growth hormone (GH) receptor (GHR) internalization is unknown; therefore, we have analyzed domains and individual amino acids in the cytoplasmic region of the rat GHR required for ligand-mediated receptor internalization, receptor down-regulation, and transcriptional...... signaling. When various mutated GHR cDNAs were transfected stably into Chinese hamster ovary cells or transiently into monkey kidney (COS-7) cells, internalization of the GHR was found to be dependent upon a domain located between amino acids 318 and 380. Mutational analysis of aromatic residues...... in this domain revealed that phenylalanine 346 is required for internalization. Receptor down-regulation in transiently transfected COS-7 cells was also dependent upon the phenylalanine 346 residue of the GHR, since no GH-induced down-regulation was observed in cells expressing the F346A GHR mutant. In contrast...

  11. Internalization of EGF receptor following lipid rafts disruption in keratinocytes is delayed and dependent on p38 MAPK activation

    DEFF Research Database (Denmark)

    Lambert, S.; Ameels, H.; Gniadecki, R.

    2008-01-01

    internalization without participation of the ligand under the control of p38 MAPK during stress conditions. Since cholesterol depletion using methyl-beta-cyclodextrin is known to induce ligand-independent activation of EGFR in keratinocytes, we investigated by confocal microscopy and ligand-binding tests...... the processing and localization of EGFR following lipid raft disruption. Here, we report the dimerization and the slow internalization of the receptor accompanied by the delayed phosphorylation of tyrosine 1068 and its degradation by the proteasome. We also demonstrate the involvement of p38 MAPK during...... the process of internalization, which can be considered as a protective response to stress. Moreover, cholesterol-depleted keratinocytes recover their ability to proliferate during the recovery period that follows lipid raft disruption Udgivelsesdato: 2008/12...

  12. Different amounts of ejaculatory activity, a natural rewarding behavior, induce differential mu and delta opioid receptor internalization in the rat's ventral tegmental area.

    Science.gov (United States)

    Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela

    2013-12-06

    Opioid receptors internalize upon specific agonist stimulation. The in vivo significance of receptor internalization is not well established, partly due to the limited in vivo models used to study this phenomenon. Ejaculation promotes endogenous opioid release which activates opioid receptors at the brain, including the mesolimbic system and medial preoptic area. The objective of the present work was to analyze if there was a correlation between the degree of in vivo mu (MOR) and delta opioid receptor (DOR) internalization in the ventral tegmental area and the execution of different amounts of ejaculatory behavior of male rats. To this aim, we analyzed the brains of rats that ejaculated once or six successive times and of sexually exhausted rats with an established sexual inhibition, using immunofluorescence and confocal microscopy. Results showed that MOR and DOR internalization increased as a consequence of ejaculation. There was a relationship between the amount of sexual activity executed and the degree of internalization for MOR, but not for DOR. MOR internalization was larger in rats that ejaculated repeatedly than in animals ejaculating only once. Significant DOR internalization was found only in animals ejaculating once. Changes in MOR, DOR and beta arrestin2 detection, associated to sexual activity, were also found. It is suggested that copulation to satiety might be useful as a model system to study the biological significance of receptor internalization. © 2013 Published by Elsevier B.V.

  13. Nonmuscle Myosin II Is Required for Internalization of the Epidermal Growth Factor Receptor and Modulation of Downstream Signaling*

    Science.gov (United States)

    Kim, Jong Hyun; Wang, Aibing; Conti, Mary Anne; Adelstein, Robert S.

    2012-01-01

    Ligand-induced internalization of the epidermal growth factor receptor (EGFR) is an important process for regulating signal transduction, cellular dynamics, and cell-cell communication. Here, we demonstrate that nonmuscle myosin II (NM II) is required for the internalization of the EGFR and to trigger the EGFR-dependent activation of ERK and AKT. The EGFR was identified as a protein that interacts with NM II by co-immunoprecipitation and mass spectrometry analysis. This interaction requires both the regulatory light chain 20 (RLC20) of NM II and the kinase domain of the EGFR. Two paralogs of NM II, NM II-A, and NM II-B can act to internalize the EGFR, depending on the cell type and paralog content of the cell line. Loss (siRNA) or inhibition (25 μm blebbistatin) of NM II attenuates the internalization of the EGFR and impairs EGFR-dependent activation of ERK and AKT. Both internalization of the EGFR and downstream signaling to ERK and AKT can be partially restored in siRNA-treated cells by introduction of wild type (WT) GFP-NM II, but cannot be restored by motor mutant NM II. Taken together, these results suggest that NM II plays a role in the internalization of the EGFR and EGFR-mediated signaling pathways. PMID:22718763

  14. Hemin inhibits internalization of transferrin by reticulocytes and promotes phosphorylation of the membrane transferrin receptor

    International Nuclear Information System (INIS)

    Cox, T.M.; O'Donnell, M.W.; Aisen, P.; London, I.M.

    1985-01-01

    Addition of hemin to reticulocytes inhibits incorporation of iron from transferrin. Heme also regulates protein synthesis in immature erythroid cells through its effects on phosphorylation of the initiation factor eIF-2. The authors have examined its effects on endocytosis of iron-transferrin and phosphorylation of the transferrin receptor. Hemin reduced iron transport but increased cell-associated transferrin. During uptake of 125 I-labeled transferrin in the steady state, the use of a washing technique to dissociate bound transferrin on the cell membrane showed that radioligand accumulated on the surface of hemin-treated cells. Receptor phosphorylation was investigated by immunoprecipitation of reticulocyte extracts after metabolic labeling with [ 32 P]P/sub i/. In the absence of ligand, phosphorylated receptor was chiefly localized on cell stroma. Exposure to transferrin increased cytosolic phosphorylated receptor from 15-30% to approximately 50% of the total, an effect overcome by hemin treatment. The findings suggest a possible relationship of phosphorylation to endocytosis of the transferrin receptor in reticulocytes

  15. Functional role of the extracellular N-terminal domain of neuropeptide Y subfamily receptors in membrane integration and agonist-stimulated internalization.

    Science.gov (United States)

    Lindner, Diana; Walther, Cornelia; Tennemann, Anja; Beck-Sickinger, Annette G

    2009-01-01

    The N terminus is the most variable element in G protein-coupled receptors (GPCRs), ranging from seven residues up to approximately 5900 residues. For family B and C GPCRs it is described that at least part of the ligand binding site is located within the N terminus. Here we investigated the role of the N terminus in the neuropeptide Y receptor family, which belongs to the class A of GPCRs. We cloned differentially truncated Y receptor mutants, in which the N terminus was partially or completely deleted. We found, that eight amino acids are sufficient for full ligand binding and signal transduction activity. Interestingly, we could show that no specific amino acids but rather the extension of the first transmembrane helix by any residues is sufficient for receptor activity but also for membrane integration in case of the hY(1) and the hY(4) receptors. In contrast, the complete deletion of the N terminus in the hY(2) receptors resulted in a mutant that is fully integrated in the membrane but does not bind the ligand very well and internalizes much slower compared to the wild type receptor. Interestingly, also these effects could be reverted by any N-terminal extension. Accordingly, the most important function of the N termini seems to be the stabilization of the first transmembrane helix to ensure the correct receptor structure, which obviously is essential for ligand binding, integration into the cell membrane and receptor internalization.

  16. Cryptococcus neoformans Is Internalized by Receptor-Mediated or ‘Triggered’ Phagocytosis, Dependent on Actin Recruitment

    Science.gov (United States)

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  17. The GPRC6A Receptor displays Constitutive Internalization and Sorting to the Slow Recycling Pathway

    DEFF Research Database (Denmark)

    Jacobsen, Stine Engesgaard; Ammendrup-Johnsen, Ina; Jansen, Anna Mai

    2017-01-01

    availability also remain enigmatic. In the present study, we investigated the trafficking properties of GPRC6A by use of both a classical antibody feeding internalization assay in which cells were visualized using confocal microscopy and a novel internalization assay that is based on real-time measurements...... of fluorescence resonance energy transfer. Both assays revealed that GPRC6A predominantly undergoes constitutive internalization while the agonist-induced effects were imperceptible. Moreover, post-endocytic sorting was investigated by assessing the co-localization of internalized GPRC6A with selected Rab protein...... markers. Internalized GPRC6A was mainly co-localized with the early endosome marker Rab5 and the long loop recycling endosome marker Rab11 and to a much lesser extent with the late endosome marker Rab7. This suggests that upon agonist-independent internalization, GPRC6A is recycled via the Rab11-positive...

  18. Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals*

    Science.gov (United States)

    Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn

    2011-01-01

    Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661

  19. Effect of fish oil on agonist-induced receptor internalization of the PG F2αreceptor and cell signaling in bovine luteal cells in vitro.

    Science.gov (United States)

    Plewes, M R; Burns, P D

    2018-04-01

    Many receptors span the plasma membrane allowing for signal transduction, converting extracellular signals into intracellular signals. Following ligand-induced activation, membrane-bound receptors are taken into endocytic vesicles, where they are targeted for degradation or recycled back to the plasma membrane. The objectives of the present study were to determine the influence of fish oil on (1) PGF 2α -induced receptor internalization and trafficking of the PGF 2α (FP) receptor, (2) cytoskeletal structural integrity, and (3) PGF 2α -induced mitogen-activated protein kinase (MAPK) signaling in bovine luteal cells. Bovine ovaries were obtained from a local abattoir and corpora lutea (CL; n = 4-6) were digested using collagenase. For all experiments, cells were incubated in either BSA or fish oil-supplemented media for 72 h to allow incorporation of omega-3 fatty acids into biological membranes. Confocal microscopy was used to determine the influence of fish oil on PGF 2α -induced receptor internalization and trafficking of the FP receptor and cytoskeletal structural integrity. In addition, Western blotting was used to determine the effects of fish oil on PGF 2α -induced MAPK signaling in bovine luteal cells. Results from the present study demonstrate that fish oil disrupts the colocalization of G αq with both caveola microdomains and FP receptor as well as PGF 2α -induced MAPK signaling. This disruption of the FP receptor with the G-protein alpha subunit may be one mechanism by which a MAPK signaling is diminished following the addition of PGF 2α . Furthermore, fish oil disrupts FP receptor internalization and endosomal protein trafficking without detectable changes in the cytoskeleton. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Broad G Protein-Coupled Receptor Internalization Assay that Combines SNAP-Tag Labeling, Diffusion-Enhanced Resonance Energy Transfer, and a Highly Emissive Terbium Cryptate.

    Science.gov (United States)

    Levoye, Angélique; Zwier, Jurriaan M; Jaracz-Ros, Agnieszka; Klipfel, Laurence; Cottet, Martin; Maurel, Damien; Bdioui, Sara; Balabanian, Karl; Prézeau, Laurent; Trinquet, Eric; Durroux, Thierry; Bachelerie, Françoise

    2015-01-01

    Although G protein-coupled receptor (GPCR) internalization has long been considered as a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive-induced GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET) between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z'-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS) of compounds that may modulate GPCRs internalization.

  1. Differential requirements of arrestin-3 and clathrin for ligand-dependent and -independent internalization of human G protein-coupled receptor 40.

    Science.gov (United States)

    Qian, Jing; Wu, Chun; Chen, Xiaopan; Li, Xiangmei; Ying, Guoyuan; Jin, Lili; Ma, Qiang; Li, Guo; Shi, Ying; Zhang, Guozheng; Zhou, Naiming

    2014-11-01

    G protein-coupled receptor 40 (GPR40) is believed to be an attractive target to enhance insulin secretion in patients with type 2 diabetes. GPR40 has been found to couple to Gq protein, leading to the activation of phospholipase C and subsequent increases in the intracellular Ca(2+) level. However, the underlying mechanisms that regulate the internalization and desensitization of GPR40 remain to be elucidated. In the present study, a construct of GPR40 fused with enhanced green fluorescent protein (EGFP) at its C-terminus was constructed for direct imaging of the localization and internalization of GPR40 by confocal microscopy. In stably transfected HEK-293 cells, GPR40 receptors underwent rapid agonist-induced internalization and constitutive ligand-independent internalization. Our data demonstrated that the agonist-mediated internalization of GPR40 was significantly blocked by hypertonic sucrose treatment and by siRNA mediated depletion of the heavy chain of clathrin. In contrast, constitutive GPR40 internalization was not affected by hypertonic sucrose or by knock-down of clathrin expression, but it was affected by treatment with methyl-β-cyclodextrin (MβCD) and nystatin. Furthermore, our results using an arrestin-3-EGFP redistribution assay and siRNA-mediated knock-down of arrestin-3 and GRK2 expression revealed that arrestin-3 and GRK2 play an essential role in the regulation of agonist-mediated GPR40 internalization, but are not involved in the regulation of constitutive GPR40 internalization. Additionally, our observation showed that upon activation by agonist, the internalized GPR40 receptors were rapidly recycled back to the plasma membrane via Rab4/Rab5 positive endosomes, whereas the constitutively internalized GPR40 receptors were recycled back to the cell surface through Rab5 positive endosomes. Because FFA receptors exhibit a high level of homology, our observations could be applicable to other members of this family. Copyright © 2014 Elsevier Inc

  2. The carboxy-terminal tail or the intracellular loop 3 is required for β-arrestin-dependent internalization of a mammalian type II GnRH receptor.

    Science.gov (United States)

    Madziva, Michael T; Mkhize, Nonhlanhla N; Flanagan, Colleen A; Katz, Arieh A

    2015-08-15

    The type II GnRH receptor (GnRH-R2) in contrast to mammalian type I GnRH receptor (GnRH-R1) has a cytosolic carboxy-terminal tail. We investigated the role of β-arrestin 1 in GnRH-R2-mediated signalling and mapped the regions in GnRH-R2 required for recruitment of β-arrestin, employing internalization assays. We show that GnRH-R2 activation of ERK is dependent on β-arrestin and protein kinase C. Appending the tail of GnRH-R2 to GnRH-R1 enabled GRK- and β-arrestin-dependent internalization of the chimaeric receptor. Surprisingly, carboxy-terminally truncated GnRH-R2 retained β-arrestin and GRK-dependent internalization, suggesting that β-arrestin interacts with additional elements of GnRH-R2. Mutating serine and threonine or basic residues of intracellular loop 3 did not abolish β-arrestin 1-dependent internalization but a receptor lacking these basic residues and the carboxy-terminus showed no β-arrestin 1-dependent internalization. Our results suggest that basic residues at the amino-terminal end of intracellular loop 3 or the carboxy-terminal tail are required for β-arrestin dependent internalization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Ubiquitylation of an internalized killer cell Ig-like receptor by Triad3A disrupts sustained NF-κB signaling.

    Science.gov (United States)

    Miah, S M Shahjahan; Purdy, Amanda K; Rodin, Nicholas B; MacFarlane, Alexander W; Oshinsky, Jennifer; Alvarez-Arias, Diana A; Campbell, Kerry S

    2011-03-01

    Killer cell Ig-like receptor (KIR) with two Ig-like domains and a long cytoplasmic domain 4 (2DL4; CD158d) is a unique KIR expressed on human NK cells, which stimulates cytokine production, but mechanisms regulating its expression and function are poorly understood. By yeast two-hybrid screening, we identified the E3 ubiquitin ligase, Triad3A, as an interaction partner for the 2DL4 cytoplasmic domain. The protein interaction was confirmed in vivo, and Triad3A expression induced polyubiquitylation and degradation of 2DL4. Overexpression of Triad3A selectively abrogated the cytokine-producing function of 2DL4, whereas Triad3A short hairpin RNA reversed ubiquitylation and restored cytokine production. Expression of Triad3A in an NK cell line did not affect receptor surface expression, internalization, or early signaling, but significantly reduced receptor turnover and suppressed sustained NF-κB activation. 2DL4 endocytosis was found to be vital to stimulate cytokine production, and Triad3A expression diminished localization of internalized receptor in early endosomes. Our results reveal a critical role for endocytosed 2DL4 receptor to generate sustained NF-κB signaling and drive cytokine production. We conclude that Triad3A is a key negative regulator of sustained 2DL4-mediated NF-κB signaling from internalized 2DL4, which functions by promoting ubiquitylation and degradation of endocytosed receptor from early endosomes.

  4. The class I scavenger receptor CD163 promotes internalization of ADAMTS13 by macrophages

    NARCIS (Netherlands)

    Verbij, Fabian C; Sorvillo, Nicoletta; Kaijen, Paul H P; Hrdinova, Johana; Peyron, Ivan; Fijnheer, Rob; Ten Brinke, Anja; Meijer, Sander; van Alphen, Floris P.J.; van den Berg, Timo K; Graversen, Jonas J H; Moestrup, Soren K; Voorberg, Jan

    2017-01-01

    Internalization of ADAMTS13 by macrophages may contribute to its clearance from the circulation. Here we investigated endocytic mechanisms that contribute to the uptake of ADAMTS13 by macrophages. Human monocyte-derived macrophages were used to monitor the uptake of fluorescently labeled recombinant

  5. Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor

    Science.gov (United States)

    Everts, Bart; Hussaarts, Leonie; Driessen, Nicole N.; Meevissen, Moniek H.J.; Schramm, Gabriele; van der Ham, Alwin J.; van der Hoeven, Barbara; Scholzen, Thomas; Burgdorf, Sven; Mohrs, Markus; Pearce, Edward J.; Hokke, Cornelis H.; Haas, Helmut; Smits, Hermelijn H.

    2012-01-01

    Omega-1, a glycosylated T2 ribonuclease (RNase) secreted by Schistosoma mansoni eggs and abundantly present in soluble egg antigen, has recently been shown to condition dendritic cells (DCs) to prime Th2 responses. However, the molecular mechanisms underlying this effect remain unknown. We show in this study by site-directed mutagenesis of omega-1 that both the glycosylation and the RNase activity are essential to condition DCs for Th2 polarization. Mechanistically, we demonstrate that omega-1 is bound and internalized via its glycans by the mannose receptor (MR) and subsequently impairs protein synthesis by degrading both ribosomal and messenger RNA. These experiments reveal an unrecognized pathway involving MR and interference with protein synthesis that conditions DCs for Th2 priming. PMID:22966004

  6. Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization.

    Directory of Open Access Journals (Sweden)

    Dipannita Basu

    Full Text Available The activity of G protein-coupled receptors (GPCRs is intricately regulated by a range of intracellular proteins, including G protein-coupled kinases (GRKs and arrestins. Understanding the effects of ligands on these signaling pathways could provide insights into disease pathophysiologies and treatment. The dopamine D2 receptor is a GPCR strongly implicated in the pathophysiology of a range of neurological and neuropsychiatric disorders, particularly schizophrenia. Previous studies from our lab have shown the preclinical efficacy of a novel allosteric drug, 3(R-[(2(S-pyrrolidinylcarbonylamino]-2-oxo-1-pyrrolidineacetamide (PAOPA, in attenuating schizophrenia-like behavioural abnormalities in rodent models of the disease. As an allosteric modulator, PAOPA binds to a site on the D2 receptor, which is distinct from the endogenous ligand-binding site, in order to modulate the binding of the D2 receptor ligand, dopamine. The exact signaling pathways affected by this allosteric modulator are currently unknown. The objectives of this study were to decipher the in vivo effects, in rats, of chronic PAOPA administration on D2 receptor regulatory and downstream molecules, including GRK2, arrestin-3 and extracellular receptor kinase (ERK 1/2. Additionally, an in vitro cellular model was also used to study PAOPA's effects on D2 receptor internalization. Results from western immunoblots showed that chronic PAOPA treatment increased the striatal expression of GRK2 by 41%, arrestin-3 by 34%, phospho-ERK1 by 51% and phospho-ERK2 by 36%. Results also showed that the addition of PAOPA to agonist treatment in cells increased D2 receptor internalization by 33%. This study provides the foundational evidence of putative signaling pathways, and changes in receptor localization, affected by treatment with PAOPA. It improves our understanding on the diverse mechanisms of action of allosteric modulators, while advancing PAOPA's development into a novel drug for the

  7. Human circulating monocytes internalize 125I-insulin in a similar fashion to rat hepatocytes: relevance to receptor regulation in target and nontarget tissues

    International Nuclear Information System (INIS)

    Grunberger, G.; Robert, A.; Carpentier, J.L.; Dayer, J.M.; Roth, A.; Stevenson, H.C.; Orci, L.; Gorden, P.

    1985-01-01

    Circulating monocytes bind 125 I-insulin in a specific fashion and have been used to analyze the ambient receptor status in humans. When freshly isolated circulating monocytes are incubated with 125 I-insulin and examined by electron microscopic autoradiography, approximately 18% of the labeled material is internalized after 15 minutes at 37 degrees C. By 2 hours at 37 degrees C, approximately one half of the 125 I-insulin is internalized. Internalization occurs also at 15 degrees C but at a slower rate. Furthermore, the monocytes bind and internalize 125 I-insulin in a manner that mirrors that of major target tissues, such as rat hepatocytes. These data suggest that the insulin receptor of the circulating monocyte might be regulated by adsorptive endocytosis in a manner analogous to that of target tissue, such as the liver

  8. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    International Nuclear Information System (INIS)

    Highlights: → Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. → These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. → The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  9. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    Energy Technology Data Exchange (ETDEWEB)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Marco, Ario de, E-mail: ario.demarco@ung.si [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Dept. Environmental Sciences, University of Nova Gorica (UNG), Vipavska 13, P.O. Box 301-SI-5000, Rozna Dolina, Nova Gorica (Slovenia)

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  10. Prolactin Receptor-Mediated Internalization of Imaging Agents Detects Epithelial Ovarian Cancer with Enhanced Sensitivity and Specificity.

    Science.gov (United States)

    Sundaram, Karthik M; Zhang, Yilin; Mitra, Anirban K; Kouadio, Jean-Louis K; Gwin, Katja; Kossiakoff, Anthony A; Roman, Brian B; Lengyel, Ernst; Piccirilli, Joseph A

    2017-04-01

    Poor prognosis of ovarian cancer, the deadliest of the gynecologic malignancies, reflects major limitations associated with detection and diagnosis. Current methods lack high sensitivity to detect small tumors and high specificity to distinguish malignant from benign tissue, both impeding diagnosis of early and metastatic cancer stages and leading to costly and invasive surgeries. Tissue microarray analysis revealed that >98% of ovarian cancers express the prolactin receptor (PRLR), forming the basis of a new molecular imaging strategy. We fused human placental lactogen (hPL), a specific and tight binding PRLR ligand, to magnetic resonance imaging (gadolinium) and near-infrared fluorescence imaging agents. Both in tissue culture and in mouse models, these imaging bioconjugates underwent selective internalization into ovarian cancer cells via PRLR-mediated endocytosis. Compared with current clinical MRI techniques, this targeted approach yielded both enhanced signal-to-noise ratio from accumulation of signal via selective internalization and improved specificity conferred by PRLR upregulation in malignant ovarian cancer. These features endow PRLR-targeted imaging with the potential to transform ovarian cancer detection. Cancer Res; 77(7); 1684-96. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Plasma membrane cholesterol level and agonist-induced internalization of delta-opioid receptors; colocalization study with intracellular membrane markers of Rab family\

    Czech Academy of Sciences Publication Activity Database

    Brejchová, Jana; Vošahlíková, Miroslava; Roubalová, Lenka; Parenti, M.; Mauri, M.; Chernyavskiy, Oleksandr; Svoboda, Petr

    2016-01-01

    Roč. 48, č. 4 (2016), s. 375-396 ISSN 0145-479X R&D Projects: GA ČR(CZ) GAP207/12/0919 Institutional support: RVO:67985823 Keywords : cholesterol * plasma membrane * delta-opioid receptor * internalization * Rab proteins Subject RIV: CE - Biochemistry Impact factor: 2.576, year: 2016

  12. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells.

    Science.gov (United States)

    Luessen, Deborah J; Hinshaw, Tyler P; Sun, Haiguo; Howlett, Allyn C; Marrs, Glen; McCool, Brian A; Chen, Rong

    2016-11-01

    Dysregulated expression and function of dopamine D2 receptors (D2Rs) are implicated in drug addiction, Parkinson's disease and schizophrenia. In the current study, we examined whether D2Rs are modulated by regulator of G protein signaling 2 (RGS2), a member of the RGS family that regulates G protein signaling via acceleration of GTPase activity. Using neuroblastoma 2a (N2A) cells, we found that RGS2 was immunoprecipitated by aluminum fluoride-activated Gαi2 proteins. RGS2 siRNA knockdown enhanced membrane [(35)S] GTPγS binding to activated Gαi/o proteins, augmented inhibition of cAMP accumulation and increased ERK phosphorylation in the presence of a D2/D3R agonist quinpirole when compared to scrambled siRNA treatment. These data suggest that RGS2 is a negative modulator of D2R-mediated Gαi/o signaling. Moreover, RGS2 knockdown slightly increased constitutive D2R internalization and markedly abolished quinpirole-induced D2R internalization assessed by immunocytochemistry. RGS2 knockdown did not compromise agonist-induced β-arrestin membrane recruitment; however, it prevents β-arrestin dissociation from the membrane after prolonged quinpirole treatment during which time β-arrestin moved away from the membrane in control cells. Additionally, confocal microscopy analysis of β-arrestin post-endocytic fate revealed that quinpirole treatment caused β-arrestin to translocate to the early and the recycling endosome in a time-dependent manner in control cells whereas translocation of β-arrestin to these endosomes did not occur in RGS2 knockdown cells. The impaired β-arrestin translocation likely contributed to the abolishment of quinpirole-stimulated D2R internalization in RGS2 knockdown cells. Thus, RGS2 is integral for β-arrestin-mediated D2R internalization. The current study revealed a novel regulation of D2R signaling and internalization by RGS2 proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Internalization and desensitization of the human glucose-dependent-insulinotropic receptor is affected by N-terminal acetylation of the agonist.

    Science.gov (United States)

    Ismail, Sadek; Dubois-Vedrenne, Ingrid; Laval, Marie; Tikhonova, Irina G; D'Angelo, Romina; Sanchez, Claire; Clerc, Pascal; Gherardi, Marie-Julie; Gigoux, Véronique; Magnan, Remi; Fourmy, Daniel

    2015-10-15

    How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modeled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. Internalization of glial cell-derived neurotrophic factor receptor GFR alpha 1 in the absence of the ret tyrosine kinase coreceptor.

    Science.gov (United States)

    Vieira, P; Thomas-Crusells, J; Vieira, A

    2003-02-01

    1. Glial cell-derived neurothrophic factor (GDNF) interacts with a cell surface receptor, GFRalpha1, that is linked via a glycosyl-phosphatidylinositol (GPI) lipid to the cell membrane. The neurotrophic activities of GDNF are mediated by binding to GFRalpha1 and further interaction of the GDNF-GFRalpha1 complex with a coreceptor tyrosine kinase encoded by the c-Ret protooncogene. There is also evidence for the existence of cell signaling by GDNF and GFRalpha1 in the absence of Ret. 2. To further delineate the Ret-dependent and -independent functions of GDNF, cellular internalization of GDNF and GFRalpha1 was examined in cells lines and primary neurons. 3. Relative to other GPI-anchored receptors, efficient endocytosis (approximately 30-40% of total surface-bound ligand internalized after 2 min) of GNDF and GFRalpha1 was observed in neuroblastoma and transfected-fibroblast cell lines that lack Ret. Primary hippocampal neurons from transgenic mice that express a wild-type GFRalpha1 together with a mutant, tyrosine kinase-inactive Ret also internalized GDNF efficiently (approximately 20% of total surface-bound ligand internalized after 2 min). We also observed a ligand dependence for GFRalpha1 internalization in the cell lines that lack Ret. Furthermore, a comparison in the presence and absence of Ret indicates that this coreceptor tyrosine kinase slows internalization at early time points. 4. The data suggest different mechanisms of internalization for GDNF-GFRalpha1 in the absence and presence of the Ret coreceptor.

  15. Steroid hormone receptors: long- and short-term integrators of the internal milieu and the external environment.

    Science.gov (United States)

    Blaustein, J D

    2012-07-01

    Many of the influences of estrogens and progestins on the brain and behavior are mediated by estrogen receptors and progestin receptors, acting as transcriptional regulators. The homologous and heterologous regulation of the concentrations of these receptors by cognate hormones is well established. However, although they were discovered and characterized based on their binding to cognate hormone and their role in transcriptional regulation, steroid hormone receptors have a more complex role and serve many more functions than originally suspected. First, besides being regulated by steroid hormones, the intracellular concentrations of brain steroid hormone receptors are regulated by neurotransmitters, a pathway by which stimuli from the environment, including from conspecific animals, can modulate the concentration of particular steroid hormone receptors in subsets of cells. Further, besides being activated by cognate steroid hormones, the receptors can be activated by a variety of neurotransmitters and phosphorylation pathways, providing a route through which environmental stimulation can activate steroid-receptor-dependent functions in specific cells. In addition, the transcription factor, estrogen receptor-α, produced from the estrogen receptor-α gene, can be modified to be targeted to membranes, where it can signal via kinase pathways. Finally, developmental experiences, such as particular stressors during the pubertal period, can permanently remodel the brain's response to ovarian hormones, most likely by long-term changes in regulation of the receptors mediating those responses. In addition to their function in responding to cognate ligand, it is now more appropriate to think of steroid hormone receptors as integrators of a wide variety of signaling pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  16. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators

    Science.gov (United States)

    2015-01-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID

  17. Follicle-stimulating hormone (FSH activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization

    Directory of Open Access Journals (Sweden)

    Crepieux Pascale

    2006-06-01

    Full Text Available Abstract Background The follicle-stimulating hormone receptor (FSH-R is a seven transmembrane spanning receptor (7TMR which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK. However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418 dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418 construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH.

  18. Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization

    DEFF Research Database (Denmark)

    Torrisi, M R; Lotti, L V; Belleudi, F

    1999-01-01

    role for eps15 in receptor-mediated endocytosis. In this study we show that, upon activation of the EGFR kinase, eps15 undergoes dramatic relocalization consisting of 1) initial relocalization to the plasma membrane and 2) subsequent colocalization with the EGFR in various intracellular compartments......Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential......, suggesting sustained phosphorylation in endocytic compartments. Our results are consistent with a model in which eps15 undergoes cycles of association:dissociation with membranes and suggest multiple roles for this protein in the endocytic pathway....

  19. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    Science.gov (United States)

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rational antibody-drug conjugate design.

    Science.gov (United States)

    de Goeij, Bart E C G; Peipp, Matthias; de Haij, Simone; van den Brink, Edward N; Kellner, Christian; Riedl, Thilo; de Jong, Rob; Vink, Tom; Strumane, Kristin; Bleeker, Wim K; Parren, Paul W H I

    2014-01-01

    The human epidermal growth factor receptor (HER)2 provides an excellent target for selective delivery of cytotoxic drugs to tumor cells by antibody-drug conjugates (ADC) as has been clinically validated by ado-trastuzumab emtansine (Kadcyla(TM)). While selecting a suitable antibody for an ADC approach often takes specificity and efficient antibody-target complex internalization into account, the characteristics of the optimal antibody candidate remain poorly understood. We studied a large panel of human HER2 antibodies to identify the characteristics that make them most suitable for an ADC approach. As a model toxin, amenable to in vitro high-throughput screening, we employed Pseudomonas exotoxin A (ETA') fused to an anti-kappa light chain domain antibody. Cytotoxicity induced by HER2 antibodies, which were thus non-covalently linked to ETA', was assessed for high and low HER2 expressing tumor cell lines and correlated with internalization and downmodulation of HER2 antibody-target complexes. Our results demonstrate that HER2 antibodies that do not inhibit heterodimerization of HER2 with related ErbB receptors internalize more efficiently and show greater ETA'-mediated cytotoxicity than antibodies that do inhibit such heterodimerization. Moreover, stimulation with ErbB ligand significantly enhanced ADC-mediated tumor kill by antibodies that do not inhibit HER2 heterodimerization. This suggests that the formation of HER2/ErbB-heterodimers enhances ADC internalization and subsequent killing of tumor cells. Our study indicates that selecting HER2 ADCs that allow piggybacking of HER2 onto other ErbB receptors provides an attractive strategy for increasing ADC delivery and tumor cell killing capacity to both high and low HER2 expressing tumor cells.

  1. Phosphorylation of the retinoic acid receptor alpha induces a mechanical allosteric regulation and changes in internal dynamics.

    Directory of Open Access Journals (Sweden)

    Yassmine Chebaro

    2013-04-01

    Full Text Available Nuclear receptor proteins constitute a superfamily of proteins that function as ligand dependent transcription factors. They are implicated in the transcriptional cascades underlying many physiological phenomena, such as embryogenesis, cell growth and differentiation, and apoptosis, making them one of the major signal transduction paradigms in metazoans. Regulation of these receptors occurs through the binding of hormones, and in the case of the retinoic acid receptor (RAR, through the binding of retinoic acid (RA. In addition to this canonical scenario of RAR activity, recent discoveries have shown that RAR regulation also occurs as a result of phosphorylation. In fact, RA induces non-genomic effects, such as the activation of kinase signaling pathways, resulting in the phosphorylation of several targets including RARs themselves. In the case of RARα, phosphorylation of Ser369 located in loop L9-10 of the ligand-binding domain leads to an increase in the affinity for the protein cyclin H, which is part of the Cdk-activating kinase complex of the general transcription factor TFIIH. The cyclin H binding site in RARα is situated more than 40 Å from the phosphorylated serine. Using molecular dynamics simulations of the unphosphorylated and phosphorylated forms of the receptor RARα, we analyzed the structural implications of receptor phosphorylation, which led to the identification of a structural mechanism for the allosteric coupling between the two remote sites of interest. The results show that phosphorylation leads to a reorganization of a local salt bridge network, which induces changes in helix extension and orientation that affects the cyclin H binding site. This results in changes in conformation and flexibility of the latter. The high conservation of the residues implicated in this signal transduction suggests a mechanism that could be applied to other nuclear receptor proteins.

  2. Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family.

    Science.gov (United States)

    Brejchova, Jana; Vosahlikova, Miroslava; Roubalova, Lenka; Parenti, Marco; Mauri, Mario; Chernyavskiy, Oleksandr; Svoboda, Petr

    2016-08-01

    Decrease of cholesterol level in plasma membrane of living HEK293 cells transiently expressing FLAG-δ-OR by β-cyclodextrin (β-CDX) resulted in a slight internalization of δ-OR. Massive internalization of δ-OR induced by specific agonist DADLE was diminished in cholesterol-depleted cells. These results suggest that agonist-induced internalization of δ-OR, which has been traditionally attributed exclusively to clathrin-mediated pathway, proceeds at least partially via membrane domains. Identification of internalized pools of FLAG-δ-OR by colocalization studies with proteins of Rab family indicated the decreased presence of receptors in early endosomes (Rab5), late endosomes and lysosomes (Rab7) and fast recycling vesicles (Rab4). Slow type of recycling (Rab11) was unchanged by cholesterol depletion. As expected, agonist-induced internalization of oxytocin receptors was totally suppressed in β-CDX-treated cells. Determination of average fluorescence lifetime of TMA-DPH, the polar derivative of hydrophobic membrane probe diphenylhexatriene, in live cells by FLIM indicated a significant alteration of the overall PM structure which may be interpreted as an increased "water-accessible space" within PM area. Data obtained by studies of HEK293 cells transiently expressing FLAG-δ-OR by "antibody feeding" method were extended by analysis of the effect of cholesterol depletion on distribution of FLAG-δ-OR in sucrose density gradients prepared from HEK293 cells stably expressing FLAG-δ-OR. Major part of FLAG-δ-OR was co-localized with plasma membrane marker Na,K-ATPase and β-CDX treatment resulted in shift of PM fragments containing both FLAG-δ-OR and Na,K-ATPase to higher density. Thus, the decrease in content of the major lipid constituent of PM resulted in increased density of resulting PM fragments.

  3. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling

    OpenAIRE

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2014-01-01

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. ST2L, the receptor for IL-33, is expressed on immune effector cells and lung epithelia, and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system, however its upstream internalization has not been studied. Here, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates S...

  4. Ligand-induced tyrosine phosphorylation of cysteinyl leukotriene receptor 1 triggers internalization and signaling in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Sime, Wondossen; Yudina, Yuliana

    2010-01-01

    Leukotriene D(4) (LTD(4)) belongs to the bioactive lipid group known as eicosanoids and has implications in pathological processes such as inflammation and cancer. Leukotriene D(4) exerts its effects mainly through two different G-protein-coupled receptors, CysLT(1) and CysLT(2). The high affinit...

  5. G protein-coupled receptor quantification using peptide group-specific enrichment combined with internal peptide standard reporter calibration.

    Science.gov (United States)

    Eisen, David; Planatscher, Hannes; Hardie, Darryl B; Kraushaar, Udo; Pynn, Christopher J; Stoll, Dieter; Borchers, Christoph; Joos, Thomas O; Poetz, Oliver

    2013-09-02

    The G protein-coupled receptor (GPCR) super-family comprises the largest and most diverse group of membrane receptors in eukaryotes. GPCRs are involved in a plethora of physiological functions in all kinds of tissues. Detailed knowledge about GPCR presence and expression levels in tissues can be very helpful for drug development as the majority of drugs are designed to modulate membrane receptors. Furthermore, it is known that many adverse drug effects result from GPCR interactions. However, very few satisfactory methods are currently available for the detection and quantification of GPCRs. The detection is complicated by their three-dimensional structure, their hydrophobic properties, and their localization in the plasma membrane with 7-trans-membrane domains and small cytosolic and extracellular domains. Due to these properties it is very difficult to generate specific antibodies directed against GPCRs for sandwich immunoassays and Western blot. We therefore designed an immunoaffinity- and mass spectrometry-based approach to analyze GPCR-specific signature peptides in tryptic digests in rat tissue lysates. The expression levels of four different GPCRs were determined using chemically labeled synthetic standard peptides. Here, we demonstrate for the first time, that peptide immunoaffinity MS-based methods can render a reliable and quantitative analysis of multi-membrane spanning receptor molecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. International

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This rubric reports on 10 short notes about international economical facts about nuclear power: Electricite de France (EdF) and its assistance and management contracts with Eastern Europe countries (Poland, Hungary, Bulgaria); Transnuclear Inc. company (a 100% Cogema daughter company) acquired the US Vectra Technologies company; the construction of the Khumo nuclear power plant in Northern Korea plays in favour of the reconciliation between Northern and Southern Korea; the delivery of two VVER 1000 Russian reactors to China; the enforcement of the cooperation agreement between Euratom and Argentina; Japan requested for the financing of a Russian fast breeder reactor; Russia has planned to sell a floating barge-type nuclear power plant to Indonesia; the control of the Swedish reactor vessels of Sydkraft AB company committed to Tractebel (Belgium); the renewal of the nuclear cooperation agreement between Swiss and USA; the call for bids from the Turkish TEAS electric power company for the building of the Akkuyu nuclear power plant answered by three candidates: Atomic Energy of Canada Limited (AECL), Westinghouse (US) and the French-German NPI company. (J.S.)

  7. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling.

    Science.gov (United States)

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2015-01-15

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. Long form ST2 (ST2L), the receptor for IL-33, is expressed on immune effector cells and lung epithelia and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system; however, its upstream internalization has not been studied. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, and an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2L(S446A)) and phosphorylation site mutant (ST2L(S442A)) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Furthermore, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  8. B Cell Receptor-Mediated Internalization of Salmonella: A Novel Pathway for Autonomous B Cell Activation and Antibody Production

    NARCIS (Netherlands)

    Souwer, Yuri; Griekspoor, Alexander; Jorritsma, Tineke; de Wit, Jelle; Janssen, Hans; Neefjes, Jacques; van Ham, S. Marieke

    2009-01-01

    The present paradigm is that primary B cells are nonphagocytosing cells. In this study, we demonstrate that human primary B cells are able to internalize bacteria when the bacteria are recognized by the BCR. BCR-mediated internalization of Salmonella typhimurium results in B cell differentiation and

  9. Provision of a simplified methodology for determining estradiol and progesterone receptors in human breast tumours. Internal and external quality control

    International Nuclear Information System (INIS)

    Farinate, Z.

    1990-10-01

    A simplified assay for the detection of progesterone receptors (PR) in human breast tissue is described. Tissue storage is at -20 deg. C rather than -70 deg. C and a centrifugation speed of 20,000 rpm avoids requirement of an ultracentrifuge. Cytosol preparations obtained from homogenized oestradiol benzoate primed wistar rat uteri performed satisfactorily as positive controls with stability of two months in liquid nitrogen. The use of iodinated tracer (progesterone 11 alpha glucuronide 125 I iodotyramine) proved disappointing in the progesterone receptor assay in contrast to 125 I oestradiol which worked well in a oestrogen receptor assay, previously developed. Hydroxyl-apatite was a better separating agent than dextran coated charcoal in both assays and yielded better sensitivity, particularly when protein concentrations were low. Five breast cancer specimens assayed yielded, by Scatchard analysis, Kd values between 12 to 22x10 -9 m|h, comparable to the positive controls. However, two of these had binding site capacity of less than 5 fmol/mg cytosol as compared to the three others and the positive controls where values ranged from 47-196 fmol/mg cytosol. 28 refs, 6 figs, 14 tabs

  10. Artesunate Reduces Serum Lipopolysaccharide in Cecal Ligation/Puncture Mice via Enhanced LPS Internalization by Macrophages through Increased mRNA Expression of Scavenger Receptors

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-01-01

    Full Text Available Innate immunity is the first line of defense in human beings against pathogen infection; monocytes/macrophages are the primary cells of the innate immune system. Recently, macrophages/monocytes have been discovered to participate in LPS clearance, and the clearance efficiency determines the magnitude of the inflammatory response and subsequent organ injury. Previously, we reported that artesunate (AS protected sepsis mice against heat-killed E. coli challenge. Herein, we further confirmed that AS protected cecal ligation/puncture (CLP sepsis mice. Its protection on sepsis mice was related to not only reduction of pro-inflammatory cytokines and serum LPS levels but also improvement of liver function. Based on the fact that AS did not directly bind and neutralize LPS, we hypothesized that the reduction of serum LPS level might be related to enhancement of LPS internalization and subsequent detoxification. Our results showed that AS increased FITC-LPS internalization by peritoneal macrophage and liver Kupffer cell, but enhancement of LPS internalization by AS was not related to the clathrin-dependent pathway. However, AS induced mRNA expression of important scavenger receptors (SRs; SR-A and MARCO mRNA expression was upregulated, suggesting that AS enhancement of LPS internalization and inhibition of pro-inflammatory cytokines was related to changes in mRNA expression of SRs.

  11. The p38 mitogen activated protein kinase regulates β-amyloid protein internalization through the α7 nicotinic acetylcholine receptor in mouse brain.

    Science.gov (United States)

    Ma, Kai-Ge; Lv, Jia; Yang, Wei-Na; Chang, Ke-Wei; Hu, Xiao-Dan; Shi, Li-Li; Zhai, Wan-Ying; Zong, Hang-Fan; Qian, Yi-Hua

    2018-03-01

    Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders. Intracellular β-amyloid protein (Aβ) is an early event in AD. It induces the formation of amyloid plaques and neuron damage. The α7 nicotinic acetylcholine receptor (α7nAChR) has been suggested to play an important role in Aβ caused cognition. It has high affinity with Aβ and could mediate Aβ internalization in vitro. However, whether in mouse brain the p38 MAPK signaling pathway is involved in the regulation of the α7nAChR mediated Aβ internalization and their role in mitochondria remains little known. Therefore, in this study, we revealed that Aβ is internalized by cholinergic and GABAergic neurons. The internalized Aβ were found deposits in lysosomes/endosomes and mitochondria. Aβ could form Aβ-α7nAChR complex with α7nAChR, activates the p38 mitogen activated protein kinase (MAPK). And the increasing of α7nAChR could in return mediate Aβ internalization in the cortex and hippocampus. In addition, by using the α7nAChR agonist PNU282987, the p38 phosphorylation level decreases, rescues the biochemical changes which are tightly associated with Aβ-induced apoptosis, such as Bcl2/Bax level, cytochrome c (Cyt c) release. Collectively, the p38 MAPK signaling pathway could regulate the α7nAChR-mediated internalization of Aβ. The activation of α7nAChR or the inhibition of p38 MAPK signaling pathway may be a beneficial therapy to AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    Fibrosis of the liver and its end-stage, cirrhosis, represent major health problems worldwide. In these fibrotic conditions, activated fibroblasts and hepatic stellate cells display a net deposition of collagen. This collagen deposition is a major factor leading to liver dysfunction, thus making...... it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... importance of this collagen receptor in vivo, liver fibrosis was induced in uPARAP/Endo180-deficient mice and littermate wild-type mice by chronic CCl(4) administration. A strong up-regulation of uPARAP/Endo180 was observed in wild-type mice, and a quantitative comparison of collagen deposits in the two...

  13. Role of the Fc gamma receptor IIA polymorphism in the antiphospholipid syndrome - an international meta-analysis

    NARCIS (Netherlands)

    Karassa, FB; Bijl, M; Davies, KA; Kallenberg, CGM; Khamashta, MA; Manger, K; Michel, M; Piette, JC; Salmon, JE; Song, YW; Tsuchiya, N; Yoo, DH; Ioannidis, JPA

    Objective. To assess the impact of the FcgammaRIIA-R/H131 polymorphism on the risk for antiphospholipid syndrome (APS), both primary and secondary to systemic lupus erythematosus (SLE). Methods. This international meta-analysis combined data from 9 research teams. FcgammaRIIA-R/H131 genotypes were

  14. Multivalent interactions between streptavidin-based pretargeting fusion proteins and cell receptors impede efficient internalization of biotinylated nanoparticles.

    Science.gov (United States)

    Parker, Christina L; Yang, Qi; Yang, Bing; McCallen, Justin D; Park, Steven I; Lai, Samuel K

    2017-11-01

    Pretargeting represents a promising strategy to enhance delivery of nanoparticles. The strategy involves first introducing bispecific antibodies or fusion proteins (BFP) that can bind specific epitopes on target cells with one arm, and use the other arm to capture subsequently administered effector molecules, such as radionuclides or drug-loaded nanoparticles. Nevertheless, it remains unclear whether BFP that bind slowly- or non-internalizing epitopes on target cells can facilitate efficient intracellular delivery. Here, we investigated the cellular uptake of biotin-functionalized nanoparticles with streptavidin-scFv against TAG-72, a membrane protein on Jurkat T-cell leukemia cells. Unlike conventional active-targeted nanoparticles, we found that pretargeting resulted in preferential retention of ∼100nm nanoparticles at the plasma membrane rather than internalization into cells. We found no improvement in nanoparticle internalization by simply reducing nanoparticle concentration or surface biotin density. Interestingly, by adding both the BFP and a monoclonal antibody against TAG-72, we observed a twofold improvement in internalization of pretargeted nanoparticles. Our work illustrates that the cellular fate of pretargeted nanoparticles can be controlled by carefully tuning the interactions between pretargeting molecules and nanoparticles on the cell surface. Pretargeting is a multi-step strategy that utilizes bispecific proteins that recognize both cellular epitopes and subsequently administered therapeutic molecules. This approach has been extensively studied for radiotherapy of blood cancers; however, pretargeting remains largely underexplored for nanoparticle targeting, including whether pretargeting can facilitate efficient intracellular delivery. Here, we found that high density of targeting proteins on the cell surface can effectively limit internalization of pretargeted nanoparticles. Our work underscores the need to carefully assess specific cell

  15. In vivo biodistribution of 125IPIP and internal dosimetry of 123IPIP radioiodinated agents selective to the muscarinic acetylcholinergic receptor complex.

    Science.gov (United States)

    Breeden, W K; Hamby, D M; Carey, J E; Eckerman, K F; McPherson, D W; Knapp, F F

    2000-04-01

    The development of new radioiodinated ligands for imaging the muscarinic acetylcholinergic complex (mAChR) using single photon emission computed tomography (SPECT) requires the evaluation of human organ doses prior to approval for human use. Animal biodistribution and excretion data were obtained and evaluated for IPIP, a new mAChR agent. Preliminary biodistribution studies were performed on four different stereoisomers of IPIP. A biokinetic model of the Z-(S)-IPIP stereoisomer was constructed for the rat and used to estimate the internal absorbed dose in humans based on an extrapolation of the rat model. The thyroid is the critical organ for this radiopharmaceutical, with an absorbed dose estimate of 2.4 mGy/MBq for both males and females, when labeled with 123I. Even when blocked, the thyroid is still the critical organ, yet with a 90% dose reduction. The heart and brain receive the next highest doses in both males and females. Effective dose estimates for the use of pure 123I-PIP in humans are 0.16 mSv/MBq for males and 0.14 mSv/MBq for females. The biodistribution studies of the Z-(S)-IPIP stereoisomer showed the most promise as a successful agent for imaging muscarinic receptor sites in the heart and brain. IPIP also demonstrated potential as a therapeutic radiopharmaceutical for some colon carcinomas where muscarinic receptor sites are expressed in the tumor cells. These results provide preliminary data for use of IPIP in clinical studies on humans.

  16. Ligand binding and internalization by the rat hepatic asialoglycoprotein receptor does not generate polyphosphoinositide derived second messengers

    International Nuclear Information System (INIS)

    Medh, J.D.; Haynes, P.A.; Weigel, P.H.; LaBelle, E.F.

    1989-01-01

    We have studied the effects of asialoorosomucoid (ASOR) on the hydrolysis of [ 32 P]-inositol phospholipids in isolated rat hepatocytes. When internalization of ASOR is maximal at 310 molecules/cell/sec, there is neither a decrease in the amount of [ 32 P]-phosphatidylinositol-4,5-bisphosphate (PIP 2 ) not an increase in [ 32 P]-phosphatidic acid (PA) up to 30 min after stimulation. On the other hand, 10- 6 M vasopressin, which was used as a positive control, caused a 35-40% decrease in the level of [ 32 P]-PIP 2 and a 70-80% increase in [ 32 P]-PA within 30 sec. Addition of orosomucoid or ASOR, even at concentrations 1000-times the K d , did not change the levels of any of the six phospholipids tested. Similarly, addition of ASOR did not increase the levels of soluble [ 3 H]-inositol phosphates, whereas vasopressin caused a 6-fold increase in [ 3 H]-inositol-1,4-diphosphate (IP 2 ) and a 4-fold increase in [ 3 H]-inositol-1,4,5-triphosphate (IP 3 ) in isolated rat hepatocytes prelabeled with [ 3 H]-inositol

  17. Insulin receptors

    International Nuclear Information System (INIS)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  18. Proceedings of the International Symposium on Subtypes of Muscarinic Receptors (5th), Held in Newport Beach, California, October 22-24, 1992.

    Science.gov (United States)

    1993-02-22

    Humana Press, Clifton (1989). 11. C. MELLIN, H.M. VARGAS and B. RINGDAHL, J. Med. Chem. 32 1590-1593 (1989). 121. B.M. NILSSON, H.M. VARGAS and U. HACKSELL...muscarinic receptor. References 1. B. RINGDAHL, The Muscarinic Receptor: J. H. Brown (ed), 151-218, The Humana Press, Clifton, New Jersey (1989) and...Istituto di Fisiologia Umana II, Universita di Milano, Milano, Italy Our previous papersý, 2 suggested that specific muscarinic receptor subtypes (M

  19. Comparison of the binding and internalization properties of 12 DOTA-coupled and ¹¹¹In-labelled CCK2/gastrin receptor binding peptides: a collaborative project under COST Action BM0607.

    Science.gov (United States)

    Aloj, Luigi; Aurilio, Michela; Rinaldi, Valentina; D'ambrosio, Laura; Tesauro, Diego; Peitl, Petra Kolenc; Maina, Theodosia; Mansi, Rosalba; von Guggenberg, Elisabeth; Joosten, Lieke; Sosabowski, Jane K; Breeman, Wouter A P; De Blois, Erik; Koelewijn, Stuart; Melis, Marleen; Waser, Beatrice; Beetschen, Karin; Reubi, Jean Claude; de Jong, Marion

    2011-08-01

    Specific overexpression of cholecystokinin 2 (CCK2)/gastrin receptors has been demonstrated in several tumours of neuroendocrine origin. In some of these cancer types, such as medullary thyroid cancer (MTC), a sensitive diagnostic modality is still unavailable and therapeutic options for inoperable lesions are needed. Peptide receptor radionuclide therapy (PRRT) may be a viable therapeutic strategy in the management of these patients. Several CCK2R-targeted radiopharmaceuticals have been described in recent years. As part of the European Union COST Action BM0607 we studied the in vitro and in vivo characteristics of 12 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CCK2R binding peptides. In the present study, we analysed binding and internalization characteristics. Stability, biodistribution and imaging studies have been performed in parallel by other centres involved in the project. Determination of IC(50) values was performed using autoradiography, with DOTA-peptides displacing (125)I-CCK from receptors on tissue sections from human tumours. Saturation binding and internalization experiments were performed using (111)In-labelled peptides. The rat AR42J cell line and the human A431-CCK2R transfected cell line were utilized for in vitro experiments; dissociation constants (K(d)) and apparent number of binding sites (B(max)) were determined. Internalization was determined in receptor-expressing cells by incubating with tracer amounts of peptide at 37 and 4°C for different times up to 120 min. Surface-bound peptide was then stripped either by acid wash or subsequent incubation with 1 μM unlabelled peptide at 4°C. All peptides showed high receptor affinity with IC(50) values ranging from 0.2 to 3.4 nM. Saturation experiments also showed high affinity with K(d) values in the 10(-9)-10(-8) M range. B(max) values estimated in A431-CCK2R cells ranged from 0.6 to 2.2 × 10(6) per cell. All peptides showed high levels of internalization when

  20. Comparison of the binding and internalization properties of 12 DOTA-coupled and 111In-labelled CCK2/gastrin receptor binding peptides: a collaborative project under COST Action BM0607

    International Nuclear Information System (INIS)

    Aloj, Luigi; Aurilio, Michela; Rinaldi, Valentina; D'Ambrosio, Laura; Tesauro, Diego; Peitl, Petra Kolenc; Maina, Theodosia; Mansi, Rosalba; Guggenberg, Elisabeth von; Joosten, Lieke; Sosabowski, Jane K.; Breeman, W.A.P.; Blois, Erik de; Koelewijn, Stuart; Melis, Marleen; Jong, Marion de; Waser, Beatrice; Beetschen, Karin; Reubi, Jean Claude

    2011-01-01

    Specific overexpression of cholecystokinin 2 (CCK2)/gastrin receptors has been demonstrated in several tumours of neuroendocrine origin. In some of these cancer types, such as medullary thyroid cancer (MTC), a sensitive diagnostic modality is still unavailable and therapeutic options for inoperable lesions are needed. Peptide receptor radionuclide therapy (PRRT) may be a viable therapeutic strategy in the management of these patients. Several CCK2R-targeted radiopharmaceuticals have been described in recent years. As part of the European Union COST Action BM0607 we studied the in vitro and in vivo characteristics of 12 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CCK2R binding peptides. In the present study, we analysed binding and internalization characteristics. Stability, biodistribution and imaging studies have been performed in parallel by other centres involved in the project. Determination of IC 50 values was performed using autoradiography, with DOTA-peptides displacing 125 I-CCK from receptors on tissue sections from human tumours. Saturation binding and internalization experiments were performed using 111 In-labelled peptides. The rat AR42J cell line and the human A431-CCK2R transfected cell line were utilized for in vitro experiments; dissociation constants (K d ) and apparent number of binding sites (B max ) were determined. Internalization was determined in receptor-expressing cells by incubating with tracer amounts of peptide at 37 and 4 C for different times up to 120 min. Surface-bound peptide was then stripped either by acid wash or subsequent incubation with 1 μM unlabelled peptide at 4 C. All peptides showed high receptor affinity with IC 50 values ranging from 0.2 to 3.4 nM. Saturation experiments also showed high affinity with K d values in the 10 -9 -10 -8 M range. B max values estimated in A431-CCK2R cells ranged from 0.6 to 2.2 x 10 6 per cell. All peptides showed high levels of internalization when incubated

  1. Comparison of the binding and internalization properties of 12 DOTA-coupled and {sup 111}In-labelled CCK2/gastrin receptor binding peptides: a collaborative project under COST Action BM0607

    Energy Technology Data Exchange (ETDEWEB)

    Aloj, Luigi; Aurilio, Michela; Rinaldi, Valentina; D' Ambrosio, Laura [Istituto Nazionale Tumori, Fondazione ' ' G. Pascale' ' , AF Medicina Nucleare, Naples (Italy); Tesauro, Diego [Universita ' ' Federico II' ' , CIRPeB, Naples (Italy); Peitl, Petra Kolenc [University Medical Centre Ljubljana, Department of Nuclear Medicine, Ljubljana (Slovenia); Maina, Theodosia [National Center for Scientific Research Demokritos, Molecular Radiopharmacy, Institute of Radioisotopes-Radiodiagnostic Products, Athens (Greece); Mansi, Rosalba [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Guggenberg, Elisabeth von [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); Joosten, Lieke [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Institute of Cancer, Barts and the London Queen Mary' s School of Medicine and Dentistry, Centre for Molecular Oncology and Imaging, London (United Kingdom); Breeman, W.A.P.; Blois, Erik de; Koelewijn, Stuart; Melis, Marleen; Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Waser, Beatrice; Beetschen, Karin; Reubi, Jean Claude [University of Berne, Berne (Switzerland)

    2011-08-15

    Specific overexpression of cholecystokinin 2 (CCK2)/gastrin receptors has been demonstrated in several tumours of neuroendocrine origin. In some of these cancer types, such as medullary thyroid cancer (MTC), a sensitive diagnostic modality is still unavailable and therapeutic options for inoperable lesions are needed. Peptide receptor radionuclide therapy (PRRT) may be a viable therapeutic strategy in the management of these patients. Several CCK2R-targeted radiopharmaceuticals have been described in recent years. As part of the European Union COST Action BM0607 we studied the in vitro and in vivo characteristics of 12 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CCK2R binding peptides. In the present study, we analysed binding and internalization characteristics. Stability, biodistribution and imaging studies have been performed in parallel by other centres involved in the project. Determination of IC{sub 50} values was performed using autoradiography, with DOTA-peptides displacing {sup 125}I-CCK from receptors on tissue sections from human tumours. Saturation binding and internalization experiments were performed using {sup 111}In-labelled peptides. The rat AR42J cell line and the human A431-CCK2R transfected cell line were utilized for in vitro experiments; dissociation constants (K{sub d}) and apparent number of binding sites (B{sub max}) were determined. Internalization was determined in receptor-expressing cells by incubating with tracer amounts of peptide at 37 and 4 C for different times up to 120 min. Surface-bound peptide was then stripped either by acid wash or subsequent incubation with 1 {mu}M unlabelled peptide at 4 C. All peptides showed high receptor affinity with IC{sub 50} values ranging from 0.2 to 3.4 nM. Saturation experiments also showed high affinity with K{sub d} values in the 10{sup -9}-10{sup -8} M range. B{sub max} values estimated in A431-CCK2R cells ranged from 0.6 to 2.2 x 10{sup 6} per cell. All peptides

  2. A supra-cellular model for coupling of bone resorption to formation during remodeling

    DEFF Research Database (Denmark)

    Jensen, Pia Rosgaard; Andersen, Thomas Levin; Pennypacker, Brenda L

    2014-01-01

    follows resorption during these respective treatments. Furthermore, canopy cells exhibit uPARAP/Endo180, a receptor able to bind the collagen made available by osteoclasts, and reported to mediate osteoblast recruitment. Overall these observations support a mechanism where the recruitment of bone forming...

  3. THE ROLE OF INOSITOL 1,3,4,5-TETRAKISPHOSPHATE IN INTERNAL CA2+ MOBILIZATION FOLLOWING HISTAMINE H-1 RECEPTOR STIMULATION IN DDT1 MF-2 CELLS

    NARCIS (Netherlands)

    VANDERZEE, L; SIPMA, H; NELEMANS, A; DENHERTOG, A

    1995-01-01

    Receptor-activated formation of inositol phosphates results in mobilization of intracellular stored Ca2+ in a variety of cells, including vas deferens derived DDT1 MF-2 cells. Stimulation of the histamine H-1 receptor on these cells caused a pronounced formation of inositol 1,3,4,5-tetrakisphosphate

  4. Distinct cytoplasmic domains of the growth hormone receptor are required for glucocorticoid- and phorbol ester-induced decreases in growth hormone (GH) binding. These domains are different from that reported for GH-induced receptor internalization

    DEFF Research Database (Denmark)

    King, A P; Tseng, M J; Logsdon, C D

    1996-01-01

    to be required for maximal DEX-induced inhibition of GH binding. DEX decreased GH binding to a GHR mutant F346A, which is reported to be deficient in ligand-induced internalization, suggesting that DEX decreases GH binding by a mechanism distinct from that of ligand-induced GHR internalization. PMA reduced GH...

  5. The p38 mitogen-activated protein kinase signaling pathway is involved in regulating low-density lipoprotein receptor-related protein 1-mediated β-amyloid protein internalization in mouse brain.

    Science.gov (United States)

    Ma, Kai-Ge; Lv, Jia; Hu, Xiao-Dan; Shi, Li-Li; Chang, Ke-Wei; Chen, Xin-Lin; Qian, Yi-Hua; Yang, Wei-Na; Qu, Qiu-Min

    2016-07-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Proceedings of the International Symposium on Subtypes of Muscarinic Receptors 2 (2nd) Held in Boston, Massachusetts on August 22-24 1985

    Science.gov (United States)

    1986-04-30

    mediate intrinsic gastrointestinal display uniform membrane properties,K 16.20 with the reflexes (e.g. peristalsis ) which underlie the co-ordinated...innervation to the gastrointestinal (Fig. I). The muscarinic depolarization in submucous epithelia is extrinsic, via sympathetic axons which come...termed M1 , while the receptors current in smooth muscle cells to a standard dose of ACh on gastrointestinal smooth muscle are designated K.3940

  7. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette

    2003-01-01

    therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing....... The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo......-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype...

  8. Activatory and Inhibitory Fcγ Receptors Augment Rituximab-mediated Internalization of CD20 Independent of Signaling via the Cytoplasmic Domain*

    Science.gov (United States)

    Vaughan, Andrew T.; Chan, Claude H. T.; Klein, Christian; Glennie, Martin J.; Beers, Stephen A.; Cragg, Mark S.

    2015-01-01

    Type I anti-CD20 mAb such as rituximab and ofatumumab engage with the inhibitory FcγR, FcγRIIb on the surface of B cells, resulting in immunoreceptor tyrosine-based inhibitory motif (ITIM) phosphorylation. Internalization of the CD20·mAb·FcγRIIb complex follows, the rate of which correlates with FcγRIIb expression. In contrast, although type II anti-CD20 mAb such as tositumomab and obinutuzumab also interact with and activate FcγRIIb, this interaction fails to augment the rate of CD20·mAb internalization, raising the question of whether ITIM phosphorylation plays any role in this process. We have assessed the molecular requirements for the internalization process and demonstrate that in contrast to internalization of IgG immune complexes, FcγRIIb-augmented internalization of rituximab-ligated CD20 occurs independently of the FcγRIIb ITIM, indicating that signaling downstream of FcγRIIb is not required. In transfected cells, activatory FcγRI, FcγRIIa, and FcγRIIIa augmented internalization of rituximab-ligated CD20 in a similar manner. However, FcγRIIa mediated a slower rate of internalization than cells expressing equivalent levels of the highly homologous FcγRIIb. The difference was maintained in cells expressing FcγRIIa and FcγRIIb lacking cytoplasmic domains and in which the transmembrane domains had been exchanged. This difference may be due to increased degradation of FcγRIIa, which traffics to lysosomes independently of rituximab. We conclude that the cytoplasmic domain of FcγR is not required for promoting internalization of rituximab-ligated CD20. Instead, we propose that FcγR provides a structural role in augmenting endocytosis that differs from that employed during the endocytosis of immune complexes. PMID:25568316

  9. Distinct cytoplasmic domains of the growth hormone receptor are required for glucocorticoid- and phorbol ester-induced decreases in growth hormone (GH) binding. These domains are different from that reported for GH-induced receptor internalization

    DEFF Research Database (Denmark)

    King, A P; Tseng, M J; Logsdon, C D

    1996-01-01

    Glucocorticoids inhibit growth in children and antagonize the growth-promoting action of GH in peripheral tissues. Recently, they have been shown to decrease GH binding. In this study we examine the molecular mechanisms by which the glucocorticoid dexamethasone (DEX) and the phorbol ester phorbol...... myristate acetate (PMA) decrease cellular GH binding. In 3T3-F442A fibroblasts, DEX and PMA decrease the number of GH receptors (GHRs) capable of binding GH by 50% (t1/2 = 6 h) and 70% (t1/2 = 15 min), respectively. Neither appear to decrease the total number of cellular GHR. Rather, they appear...... to redistribute GHRs away from the plasma membrane or inactivate GHRs on the membrane such that they cannot bind GH. DEX and PMA also decrease GH-induced tyrosyl phosphorylation of GHR and JAK2 with a magnitude and time course correlating with that of inhibition of GH binding. DEX- and PMA-induced reductions...

  10. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette

    2003-01-01

    therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing......- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non......-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype...

  11. Activatory and inhibitory Fcγ receptors augment rituximab-mediated internalization of CD20 independent of signaling via the cytoplasmic domain.

    Science.gov (United States)

    Vaughan, Andrew T; Chan, Claude H T; Klein, Christian; Glennie, Martin J; Beers, Stephen A; Cragg, Mark S

    2015-02-27

    Type I anti-CD20 mAb such as rituximab and ofatumumab engage with the inhibitory FcγR, FcγRIIb on the surface of B cells, resulting in immunoreceptor tyrosine-based inhibitory motif (ITIM) phosphorylation. Internalization of the CD20·mAb·FcγRIIb complex follows, the rate of which correlates with FcγRIIb expression. In contrast, although type II anti-CD20 mAb such as tositumomab and obinutuzumab also interact with and activate FcγRIIb, this interaction fails to augment the rate of CD20·mAb internalization, raising the question of whether ITIM phosphorylation plays any role in this process. We have assessed the molecular requirements for the internalization process and demonstrate that in contrast to internalization of IgG immune complexes, FcγRIIb-augmented internalization of rituximab-ligated CD20 occurs independently of the FcγRIIb ITIM, indicating that signaling downstream of FcγRIIb is not required. In transfected cells, activatory FcγRI, FcγRIIa, and FcγRIIIa augmented internalization of rituximab-ligated CD20 in a similar manner. However, FcγRIIa mediated a slower rate of internalization than cells expressing equivalent levels of the highly homologous FcγRIIb. The difference was maintained in cells expressing FcγRIIa and FcγRIIb lacking cytoplasmic domains and in which the transmembrane domains had been exchanged. This difference may be due to increased degradation of FcγRIIa, which traffics to lysosomes independently of rituximab. We conclude that the cytoplasmic domain of FcγR is not required for promoting internalization of rituximab-ligated CD20. Instead, we propose that FcγR provides a structural role in augmenting endocytosis that differs from that employed during the endocytosis of immune complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  13. 5-Hydroxytryptamine type 7 receptor neuroprotection against NMDA-induced excitotoxicity is PDGFβ receptor dependent.

    Science.gov (United States)

    Vasefi, Maryam S; Kruk, Jeff S; Heikkila, John J; Beazely, Michael A

    2013-04-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the hippocampus. Long-term (2-24 h) activation of 5-HT7 receptors regulates growth factor receptor expression, including the expression of platelet-derived growth factor (PDGF) β receptors. Direct activation of PDGFβ receptors in primary hippocampal and cortical neurons inhibits NMDA receptor activity and attenuates NMDA receptor-induced neurotoxicity. Our objective was to investigate whether the 5-HT7 receptor-induced increase in PDGFβ receptor expression would be similarly neuroprotective. We demonstrate that 5-HT7 receptor agonist treatment in primary hippocampal neurons also increases the expression of phospholipase C (PLC) γ, a downstream effector of PDGFβ receptors associated with the inhibition of NMDA receptor activity. To determine if the up-regulation of PDGFβ receptors is neuroprotective, primary hippocampal neurons were incubated with the 5-HT7 receptor agonist, LP 12, for 24 h. Indeed, LP 12 treatment prevented NMDA-induced neurotoxicity and this effect was dependent on PDGFβ receptor kinase activity. Treatment of primary neurons with LP 12 also differentially altered NMDA receptor subunit expression, reducing the expression of NR1 and NR2B, but not NR2A. These findings demonstrate the potential for providing growth factor receptor-dependent neuroprotective effects using small-molecule ligands of G protein-coupled receptors. © 2013 International Society for Neurochemistry.

  14. Genetics of taste receptors.

    Science.gov (United States)

    Bachmanov, Alexander A; Bosak, Natalia P; Lin, Cailu; Matsumoto, Ichiro; Ohmoto, Makoto; Reed, Danielle R; Nelson, Theodore M

    2014-01-01

    Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.

  15. N-terminal truncation of the dopamine transporter abolishes phorbol ester- and substance P receptor-stimulated phosphorylation without impairing transporter internalization

    DEFF Research Database (Denmark)

    Granas, Charlotta; Ferrer, Jasmine; Loland, Claus Juul

    2003-01-01

    The structural basis of phosphorylation and its putative role in internalization were investigated in the human dopamine transporter (hDAT). Activation of protein kinase C (PKC) was achieved either directly by treatment with 4-alpha-phorbol 12-myristate 13-acetate (PMA) or by activating the Galpha...

  16. Anti-alpha4beta1 integrin antibody induces receptor internalization and does not impair the function of circulating neutrophilic leukocytes.

    Science.gov (United States)

    Fleming, Jennifer C; Bao, Feng; Cepinskas, Gediminas; Weaver, Lynne C

    2010-08-01

    A compelling strategy for treatment of spinal cord injury is the blockade of integrin-mediated leukocyte extravasation using a monoclonal antibody (mAb) against the alpha4 subunit of the alpha4beta1-integrin. However, little is known with respect to neutrophil function following anti-alpha4 mAb treatment. This study assessed the effects of anti-alpha4 mAb binding on neutrophil activation [reactive oxygen species (ROS) production], function (phagocytic activity) and anti-alpha4-mAb/alpha4beta1-integrin-complex internalization. Resting, primed or stimulated rat neutrophils were incubated ex vivo with anti-alpha4 mAb or isotype-control antibody. ROS production, phagocytic activity, and anti-alpha4-mAb/alpha4beta1-integrin-complex internalization were determined by flow cytometry using dihydrorhodamine (DHR1,2,3), fluorescent microspheres, and indirect immunolabeling, respectively. Brief (0.5 h) incubation of resting, primed or activated neutrophils with anti-alpha4 mAb had no effect on ROS production and did not change neutrophil phagocytic activity. However, prolonged incubation (2 h), assessed only in resting neutrophils, increased ROS production. The anti-alpha4-mAb/alpha4beta1-integrin-complex was internalized after 1 h of anti-alpha4 mAb treatment and remained internalized up to 6 h. Neutrophil ROS production and phagocytic function remain unaltered after brief anti-alpha4 mAb exposure, demonstrating that use of this mAb as a treatment should not adversely affect important beneficial roles of these cells.

  17. International Retrospective Chart Review of Treatment Patterns in Severe Familial Mediterranean Fever, Tumor Necrosis Factor Receptor-Associated Periodic Syndrome, and Mevalonate Kinase Deficiency/Hyperimmunoglobulinemia D Syndrome.

    Science.gov (United States)

    Ozen, Seza; Kuemmerle-Deschner, Jasmin B; Cimaz, Rolando; Livneh, Avi; Quartier, Pierre; Kone-Paut, Isabelle; Zeft, Andrew; Spalding, Steve; Gul, Ahmet; Hentgen, Veronique; Savic, Sinisa; Foeldvari, Ivan; Frenkel, Joost; Cantarini, Luca; Patel, Dony; Weiss, Jeffrey; Marinsek, Nina; Degun, Ravi; Lomax, Kathleen G; Lachmann, Helen J

    2017-04-01

    Periodic fever syndrome (PFS) conditions are characterized by recurrent attacks of fever and localized inflammation. This study examined the diagnostic pathway and treatments at tertiary centers for familial Mediterranean fever (FMF), tumor necrosis factor receptor-associated periodic syndrome (TRAPS), and mevalonate kinase deficiency (MKD)/hyperimmunoglobulinemia D syndrome (HIDS). PFS specialists at medical centers in the US, the European Union, and the eastern Mediterranean participated in a retrospective chart review, providing de-identified data in an electronic case report form. Patients were treated between 2008 and 2012, with at least 1 year of followup; all had clinical and/or genetically proven disease and were on/eligible for biologic treatment. A total of 134 patients were analyzed: FMF (n = 49), TRAPS (n = 47), and MKD/HIDS (n = 38). Fever was commonly reported as severe across all indications. Other frequently reported severe symptoms were serositis for FMF patients and elevated acute-phase reactants and gastrointestinal upset for TRAPS and MKD/HIDS. A long delay from disease onset to diagnosis was seen within TRAPS and MKD/HIDS (5.8 and 7.1 years, respectively) compared to a 1.8-year delay in FMF patients. An equal proportion of TRAPS patients first received anti-interleukin-1 (anti-IL-1) and anti-tumor necrosis factor (anti-TNF) biologic agents, whereas IL-1 blockade was the main choice for FMF patients resistant to colchicine and MKD/HIDS patients. For TRAPS patients, treatment with anakinra versus anti-TNF treatments as first biologic agent resulted in significantly higher clinical and biochemical responses (P = 0.03 and P patterns and diagnostic delays highlight the need for greater awareness and improved diagnostics for PFS. This real-world treatment assessment supports the need for further refinement of treatment practices. © 2016, American College of Rheumatology.

  18. HLA-DQA1*0505 sharing and killer immunoglobulin-like receptors in sub fertile couples: report from the 15th International Histocompatibility Workshop.

    Science.gov (United States)

    Varla-Leftherioti, M; Keramitsoglou, T; Parapanissiou, E; Kurpisz, M; Kontopoulou-Antonopoulou, V; Tsekoura, C; Kamieniczna, M; Novokowska, B; Paparistidis, N; Vrani, V; Daniilidis, M; Spyropoulou-Vlachou, M

    2010-06-01

    This aim of the study was to investigate whether human leukocyte antigen (HLA)-DQA1*0505 sharing or the maternal killer immunoglobulin-like receptor (KIR) repertoire is associated with recurrent spontaneous abortion (RSA) or repeated implantation failure (RIF). The study included 224 couples with RSA, 61 couples with RIF, 182 fertile couples, and 10 couples with successful in vitro fertilization and embryo transfer (IVF)/ET at first cycle. HLA-DQA1*0505 typing using polymerase chain reaction-sequence-specific oligonucleotide (PCR-SSO) was performed in 185 RSA (117 with alloimmune abnormalities and 68 of autoimmune etiology), 61 RIF and 182 control couples, and KIR genotyping using polymerase chain reaction-sequence-specific primer (PCR-SSP) in 167 RSA and 55 RIF cases as well as 46 RSA and 10 IVF controls. No differences in DQA1*0505 sharing were found between patients and controls. In RSA and RIF women, the ratio of inhibitory to activating KIRs was slightly lower (1.53 and 1.85 vs 2.03 in controls). The analysis of maternal inhKIR and fetal HLA-C molecule pairs showed that the 'less inhibiting' combination KIR2DL3-C1 was found in higher percentage in subfertile (mainly RIF) than in fertile couples. In contrast, the percentage of cases possessing the 'strong inhibiting' combination KIR2DL1-C2 was lower in the RSA and RIF groups in comparison with that in the control groups (17.36% vs 23.91 and 16.36% vs 40%, respectively). In women with >or= 6 implantation failures, the KIR2DL1-C2 combination was not found in any of them (P = 0.0014), and the KIR2DL3-C1 combination was not found in the control IVF group. The results oppose the suggestion that increased HLA-DQA1*0505 sharing predispose to RSA or RIF. The KIR2DL3-C1 combination (or lack of the KIR2DL1-C2 one) is associated with implantation failure.

  19. Discussion of the changing attitudes and regulations on the international scene toward the use of the ocean as a receptor of waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Garber, W.F.; Storrs, P.N.

    1987-01-01

    Although it is recognized that the title of this session is ''Petroleum and the Ocean Environment,'' the concern of the authors' is for changing attitudes and regulations on the international scene. This subject can best be traced by considering the ''environmental'' laws covering all wastes including petroleum and because there has been more litigation involved, the treatment and discharge of mixed domestic, industrial, and commercial wastes from cities. The major part of this discussion, therefore, considers these sources of information. The authors believe that there is a greater possibility that science and engineering will be used where wastes are to be discharged to the ocean in other nations, than in the United States at the present time. The realities of the resources available tend to force realistic environmental evaluations, and tend to blunt uniformed ''environmental'' group influence. The ''environmental'' group approach now seems to have the greatest political and, thus, public decision making impact. In terms of ocean dischargers, severe energy intensive treatment procedures are being mandated, solids monitoring to be a queer mixture of parameters that may be some environmental value mixed with those that seem to be required for political reasons.

  20. A transient receptor potential channel expressed in taste receptor cells.

    Science.gov (United States)

    Pérez, Cristian A; Huang, Liquan; Rong, Minqing; Kozak, J Ashot; Preuss, Axel K; Zhang, Hailin; Max, Marianna; Margolskee, Robert F

    2002-11-01

    We used differential screening of cDNAs from individual taste receptor cells to identify candidate taste transduction elements in mice. Among the differentially expressed clones, one encoded Trpm5, a member of the mammalian family of transient receptor potential (TRP) channels. We found Trpm5 to be expressed in a restricted manner, with particularly high levels in taste tissue. In taste cells, Trpm5 was coexpressed with taste-signaling molecules such as alpha-gustducin, Ggamma13, phospholipase C-beta2 (PLC-beta2) and inositol 1,4,5-trisphosphate receptor type III (IP3R3). Our heterologous expression studies of Trpm5 indicate that it functions as a cationic channel that is gated when internal calcium stores are depleted. Trpm5 may be responsible for capacitative calcium entry in taste receptor cells that respond to bitter and/or sweet compounds.

  1. Glutamate receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Geballe, Matthew T; Snyder, James P

    2006-01-01

    Fast excitatory synaptic transmission in the CNS relies almost entirely on the neurotransmitter glutamate and its family of ion channel receptors. An appreciation of the coupling between agonist binding and channel opening has advanced rapidly during the past five years, largely as a result of ne...

  2. Checking the STEP-Associated Trafficking and Internalization of Glutamate Receptors for Reduced Cognitive Deficits: A Machine Learning Approach-Based Cheminformatics Study and Its Application for Drug Repurposing.

    Directory of Open Access Journals (Sweden)

    Salma Jamal

    Full Text Available Alzheimer's disease, a lethal neurodegenerative disorder that leads to progressive memory loss, is the most common form of dementia. Owing to the complexity of the disease, its root cause still remains unclear. The existing anti-Alzheimer's drugs are unable to cure the disease while the current therapeutic options have provided only limited help in restoring moderate memory and remain ineffective at restricting the disease's progression. The striatal-enriched protein tyrosine phosphatase (STEP has been shown to be involved in the internalization of the receptor, N-methyl D-aspartate (NMDR and thus is associated with the disease. The present study was performed using machine learning algorithms, docking protocol and molecular dynamics (MD simulations to develop STEP inhibitors, which could be novel anti-Alzheimer's molecules.The present study deals with the generation of computational predictive models based on chemical descriptors of compounds using machine learning approaches followed by substructure fragment analysis. To perform this analysis, the 2D molecular descriptors were generated and machine learning algorithms (Naïve Bayes, Random Forest and Sequential Minimization Optimization were utilized. The binding mechanisms and the molecular interactions between the predicted active compounds and the target protein were modelled using docking methods. Further, the stability of the protein-ligand complex was evaluated using MD simulation studies. The substructure fragment analysis was performed using Substructure fingerprint (SubFp, which was further explored using a predefined dictionary.The present study demonstrates that the computational methodology used can be employed to examine the biological activities of small molecules and prioritize them for experimental screening. Large unscreened chemical libraries can be screened to identify potential novel hits and accelerate the drug discovery process. Additionally, the chemical libraries can be

  3. Up-regulation of endothelin type B receptors in the human internal mammary artery in culture is dependent on protein kinase C and mitogen-activated kinase signaling pathways

    DEFF Research Database (Denmark)

    Nilsson, David; Gustafsson, Lotta; Wackenfors, Angelica

    2008-01-01

    Up-regulation of vascular endothelin type B (ETB) receptors is implicated in the pathogenesis of cardiovascular disease. Culture of intact arteries has been shown to induce similar receptor alterations and has therefore been suggested as a suitable method for, ex vivo, in detail delineation of th...

  4. Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics

    Directory of Open Access Journals (Sweden)

    María S. Aymerich

    2011-01-01

    Full Text Available Understanding the trafficking of G-protein-coupled receptors (GPCRs and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08 μm/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.

  5. Final 10-year results of the Breast International Group 2-98 phase III trial and the role of Ki67 in predicting benefit of adjuvant docetaxel in patients with oestrogen receptor positive breast cancer.

    Science.gov (United States)

    Sonnenblick, Amir; Francis, Prudence A; Azim, Hatem A; de Azambuja, Evandro; Nordenskjöld, Bo; Gutiérez, Jorge; Quinaux, Emmanuel; Mastropasqua, Mauro G; Ameye, Lieveke; Anderson, Michael; Lluch, Ana; Gnant, Michael; Goldhirsch, Aron; Di Leo, Angelo; Barnadas, Agusti; Cortes-Funes, Hernan; Piccart, Martine; Crown, John

    2015-08-01

    Breast International Group (BIG) 2-98 is a randomised phase III trial that tested the effect of adding docetaxel, either in sequence to or in combination with anthracycline-based adjuvant chemotherapy, in women with node-positive breast cancer (BC). Here, we present the 10-year final trial safety and efficacy analyses. We also report an exploratory analysis on the predictive value of Ki67 for docetaxel efficacy, in the BIG 2-98 and using a pooled analysis of three other randomised trials. 2887 patients were randomly assigned in a 2×2 trial design to one of four treatments. The primary objective was to evaluate the overall efficacy of docetaxel on disease free survival (DFS). Secondary objectives included comparisons of sequential docetaxel versus sequential control arm, safety and overall survival (OS). Ki67 expression was centrally evaluated by immunohistochemistry. After a median follow-up of 10.1years, the addition of docetaxel did not significantly improve DFS or OS (hazard ratio (HR)=0.91, 95% confidence interval (CI)=0.81-1.04; P=0.16 and HR=0.88, 95% CI=0.76-1.03; P=0.11, respectively). Sequential docetaxel did not improve DFS compared to the sequential control arm (HR=0.86, 95% CI=0.72-1.03; P=0.10). In oestrogen receptor (ER)-positive tumours with Ki67⩾14%, the addition of docetaxel resulted in 5.4% improvement in 10-year OS (P=0.03, test for interaction=0.1). In a multivariate model, there was a trend for improved DFS and OS in ER-positive patients with high Ki67 and treated with docetaxel (HR=0.79, 95% CI=0.63-1.01; P=0.05 and HR=0.76, 95% CI=0.57-1.01; P=0.06, respectively). A pooled analysis of four randomised trials showed a benefit of taxanes in highly proliferative ER-positive disease but not in low proliferating tumours (interaction test P=0.01). The DFS benefit previously demonstrated with sequential docetaxel is no longer observed at 10years. However, an exploratory analysis suggested a benefit of docetaxel in patients with highly

  6. Purinergic Receptors in Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  7. Kinetic Profile of Neuropeptide-Receptor Interactions.

    Science.gov (United States)

    Nederpelt, Indira; Bunnik, Julia; IJzerman, Adriaan P; Heitman, Laura H

    2016-12-01

    Currently, drug discovery focusses only on quantifying pharmacological parameters, sometimes including binding kinetics, of drug candidates. For a complete understanding of a drug's desired binding kinetics, the kinetics of both the target and its endogenous ligands should be considered. This is because the release and binding kinetics of endogenous ligands in addition to receptor internalization rates are significant contributors to drug-target interactions. Here, we discuss the kinetic profile of three neuropeptides and their receptors; gonadotropin-releasing hormone receptor (GnRHR), neuropeptide Y receptors, and corticotropin-releasing factor receptor 1 (CRF 1 R). These three examples provide new insights into the importance of kinetic profiles which could improve the understanding of desired drug-target binding kinetics and advance drug discovery for various neurological and psychiatric illnesses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells

    Science.gov (United States)

    Tan, Y; Chiow, KH; Huang, D; Wong, SH

    2010-01-01

    Background and purpose: Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. Experimental approach: We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Key results: Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. Conclusion and implications: This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death. PMID:20233216

  9. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells.

    Science.gov (United States)

    Tan, Y; Chiow, K H; Huang, D; Wong, S H

    2010-04-01

    Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death.

  10. Recycling of photoaffinity-labeled insulin receptors in rat adipocytes. Dissociation of insulin-receptor complexes is not required for receptor recycling

    International Nuclear Information System (INIS)

    Huecksteadt, T.; Olefsky, J.M.; Brandenberg, D.; Heidenreich, K.A.

    1986-01-01

    We have used an iodinated, photoreactive analog of insulin, 125 I-B2(2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, to covalently label insulin receptors on the cell surface of isolated rat adipocytes. Following internalization of the labeled insulin-receptor complexes at 37 0 C, we measured the rate and extent of recycling of these complexes using trypsin to distinguish receptors on the cell surface from those inside the cell. The return of internalized photoaffinity-labeled receptors to the cell surface was very rapid at 37 0 C proceeding with an apparent t 1/2 of 6 min. About 95% of the labeled receptors present in the cell 20 min after the initiation of endocytosis returned to the cell surface by 40 min. Recycling was slower at 25 and 16 0 C compared to 37 0 C and essentially negligible at 12 0 C or in the presence of energy depleters. Addition of excess unlabeled insulin had no effect on the recycling of photoaffinity-labeled insulin receptor complexes, whereas monensin, chloroquine, and Tris partially inhibited this process. These data indicate that dissociation of insulin from internalized receptors is not necessary for insulin receptor recycling. Furthermore, agents which have been shown to prevent vesicular acidification inhibit the recycling of insulin receptors by a mechanism other than prevention of ligand dissociation

  11. Crystal structures of the ligand-binding region of uPARAP

    DEFF Research Database (Denmark)

    Yuan, Cai; Jürgensen, Henrik J; Engelholm, Lars H

    2016-01-01

    The proteins of the mannose receptor (MR) family share a common domain organization and have a broad range of biological functions. Urokinase plasminogen activator receptor-associated protein (uPARAP) (or Endo180) is a member of this family and plays an important role in extracellular matrix...... remodelling through interaction with its ligands, including collagens and urokinase plasminogen activator receptor (uPAR). We report the crystal structures of the first four domains of uPARAP (also named the ligand-binding region, LBR) at pH 7.4 in Ca(2+)-bound and Ca(2+)-free forms. The first domain...

  12. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.A. [Laboratório de Metabolismo de Lípides, Instituto do Coração, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Departamento de Ginecologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Hegg, R. [Departamento de Ginecologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Freitas, F.R.; Tavares, E.R.; Almeida, C.P. [Laboratório de Metabolismo de Lípides, Instituto do Coração, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Baracat, E.C. [Departamento de Ginecologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Maranhão, R.C. [Laboratório de Metabolismo de Lípides, Instituto do Coração, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP (Brazil); Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-05-04

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy.

  13. Fucosylation and protein glycosylation create functional receptors for cholera toxin

    DEFF Research Database (Denmark)

    Wands, Amberlyn M; Fujita, Akiko; McCombs, Janet E

    2015-01-01

    Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we...... in normal human intestinal epithelia and could play a role in cholera....

  14. Lipophorin Receptor: The Insect Lipoprotein Receptor

    Indian Academy of Sciences (India)

    IAS Admin

    physiology and develop- mental biology of silkworms, and use of silk in industrial applications. The low-density lipoprotein receptor (LDLR), one of the best characterized cell-surface receptors, mediates cholesterol ho- meostasis and other functions in mammals. The members of the LDLR superfamily are structurally related ...

  15. Lipophorin Receptor: The Insect Lipoprotein Receptor

    Indian Academy of Sciences (India)

    Permanent link: http://www.ias.ac.in/article/fulltext/reso/018/08/0748-0755. Keywords. Low-density lipoprotein receptor; lipophorin; lipophorin receptor; insects. Author Affiliations. G Ravikumar1 N B Vijayaprakash1. Seri-biotech Research Laboratory Central Silk Board Kodathi, Carmelaram Post Bangalore 560 035, India.

  16. Acetylcholine receptor antibody

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  17. Androgen receptor abnormalities

    NARCIS (Netherlands)

    A.O. Brinkmann (Albert); G.G.J.M. Kuiper (George); C. Ris-Stalpers (Carolyn); H.C.J. van Rooij (Henri); G. Romalo (G.); G. Trifiro (Gianluca); E. Mulder (Eppo); L. Pinsky (L.); H.U. Schweikert (H.); J. Trapman (Jan)

    1991-01-01

    markdownabstract__Abstract__ The human androgen receptor is a member of the superfamily of steroid hormone receptors. Proper functioning of this protein is a prerequisite for normal male sexual differentiation and development. The cloning of the human androgen receptor cDNA and the elucidation of

  18. Androgen receptor abnormalities

    NARCIS (Netherlands)

    Brinkmann, A. O.; Kuiper, G. G.; Ris-Stalpers, C.; van Rooij, H. C.; Romalo, G.; Trifiro, M.; Mulder, E.; Pinsky, L.; Schweikert, H. U.; Trapman, J.

    1991-01-01

    The human androgen receptor is a member of the superfamily of steroid hormone receptors. Proper functioning of this protein is a prerequisite for normal male sexual differentiation and development. The cloning of the human androgen receptor cDNA and the elucidation of the genomic organization of the

  19. Pairwise comparison of {sup 89}Zr- and {sup 124}I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Cheal, Sarah M.; Punzalan, Blesida; Doran, Michael G.; Osborne, Joseph R. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Evans, Michael J. [Memorial Sloan-Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, NY (United States); Lewis, Jason S. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Radiochemistry and Imaging Sciences Service, New York, NY (United States); Zanzonico, Pat [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Therapy Service, New York, NY (United States); Memorial-Sloan Kettering Cancer Center, New York, NY (United States); Larson, Steven M. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Program in Molecular Pharmacology and Chemistry, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Molecular Pharmacology and Therapy Service, New York, NY (United States)

    2014-05-15

    The PET tracer, {sup 124}I-cG250, directed against carbonic anhydrase IX (CAIX) shows promise for presurgical diagnosis of clear-cell renal cell carcinoma (ccRCC) (Divgi et al. in Lancet Oncol 8:304-310, 2007; Divgi et al. in J Clin Oncol 31:187-194, 2013). The radiometal {sup 89}Zr, however, may offer advantages as a surrogate PET nuclide over {sup 124}I in terms of greater tumor uptake and retention (Rice et al. in Semin Nucl Med 41:265-282, 2011). We have developed a nonlinear immunokinetic model to facilitate a quantitative comparison of absolute uptake and antibody turnover between {sup 124}I-cG250 and {sup 89}Zr-cG250 using a human ccRCC xenograft tumor model in mice. We believe that this unique model better relates quantitative imaging data to the salient biological features of tumor antibody-antigen binding and turnover. We conducted experiments with {sup 89}Zr-cG250 and {sup 124}I-cG250 using a human ccRCC cell line (SK-RC-38) to characterize the binding affinity and internalization kinetics of the two tracers in vitro. Serial PET imaging was performed in mice bearing subcutaneous ccRCC tumors to simultaneously detect and quantify time-dependent tumor uptake in vivo. Using the known specific activities of the two tracers, the equilibrium rates of antibody internalization and turnover in the tumors were derived from the PET images using nonlinear compartmental modeling. The two tracers demonstrated virtually identical tumor cell binding and internalization but showed markedly different retentions in vitro. Superior PET images were obtained using {sup 89}Zr-cG250, owing to the more prolonged trapping of the radiolabel in the tumor and simultaneous washout from normal tissues. Estimates of cG250/CAIX complex turnover were 1.35 - 5.51 x 10{sup 12} molecules per hour per gram of tumor (20 % of receptors internalized per hour), and the ratio of {sup 124}I/{sup 89}Zr atoms released per unit time by tumor was 17.5. Pairwise evaluation of {sup 89}Zr-cG250 and {sup

  20. Entropic Control of Receptor Recycling Using Engineered Ligands.

    Science.gov (United States)

    DeGroot, Andre C M; Busch, David J; Hayden, Carl C; Mihelic, Samuel A; Alpar, Aaron T; Behar, Marcelo; Stachowiak, Jeanne C

    2018-03-27

    Receptor internalization by endocytosis regulates diverse cellular processes, from the rate of nutrient uptake to the timescale of essential signaling events. The established view is that internalization is tightly controlled by specific protein-binding interactions. However, recent work suggests that physical aspects of receptors influence the process in ways that cannot be explained by biochemistry alone. Specifically, work from several groups suggests that increasing the steric bulk of receptors may inhibit their uptake by multiple types of trafficking vesicles. How do biochemical and biophysical factors work together to control internalization? Here, we show that receptor uptake is well described by a thermodynamic trade-off between receptor-vesicle binding energy and the entropic cost of confining receptors within endocytic vesicles. Specifically, using large ligands to acutely increase the size of engineered variants of the transferrin receptor, we demonstrate that an increase in the steric bulk of a receptor dramatically decreases its probability of uptake by clathrin-coated structures. Further, in agreement with a simple thermodynamic analysis, all data collapse onto a single trend relating fractional occupancy of the endocytic structure to fractional occupancy of the surrounding plasma membrane, independent of receptor size. This fundamental scaling law provides a simple tool for predicting the impact of receptor expression level, steric bulk, and the size of endocytic structures on receptor uptake. More broadly, this work suggests that bulky ligands could be used to drive the accumulation of specific receptors at the plasma membrane surface, providing a biophysical tool for targeted modulation of signaling and metabolism from outside the cell. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan); Kitamura, Kazuo; Nagata, Sayaka; Hikosaka, Tomomi [Division of Circulation and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan); Kato, Johji [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan)

    2010-02-12

    Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.

  2. Internal and International Corruption

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Mario Antinucci

    2015-06-01

    Full Text Available This subject, whence the name of this paper originates from, must be addressed with courage and intellectual integrity by all of us, the different parts of the civil society, the public institutions, the entrepreneurs and the legal professionals, the youth and the new generations. All the public policies of the European governments share the belief of a direct correlation between the criminal density connected to corruption of States political and economic protagonists and the lack of availability of investments on young talents, new generations, both in the entrepreneurial and in the professional fields. In most Member States, anticorruption policies have gained an increased prominence in government agendas and the financial crisis has drawn attention to the integrity and accountability of policy-makers. Most Member States that are currently in serious financial difficulties have acknowledged the seriousness of issues related to corruption and have created (or are planning anticorruption programs in order to deal with the risks deriving from this issue and with the diversion of public funds. In some Member States, the economic adjustment programs provide for explicit obligations related to anti-corruption policies. Even when not formally connected to adjustment programs, anticorruption policies complement the adjustment measures, especially in those countries in which corruption is a serious issue.  During the European Semester of economic policy coordination, recommendations for efficiently fighting corruption have been laid out; Among the most vulnerable sectors, urban development and building projects are certainly very exposed to corruption risks and to infiltration of internal and transnational organized crime.

  3. Functional Consequences of Glucagon-like Peptide-1 Receptor Cross-talk and Trafficking

    DEFF Research Database (Denmark)

    Roed, Sarah Noerklit; Nøhr, Anne Cathrine; Wismann, Pernille

    2015-01-01

    The signaling capacity of seven-transmembrane/G-protein-coupled receptors (7TM/GPCRs) can be regulated through ligand-mediated receptor trafficking. Classically, the recycling of internalized receptors is associated with resensitization, whereas receptor degradation terminates signaling. We have......) and glucagon (GCGR) receptors. The interaction and cross-talk between coexpressed receptors is a wide phenomenon of the 7TM/GPCR superfamily. Numerous reports show functional consequences for signaling and trafficking of the involved receptors. On the basis of the high structural similarity and tissue...... coexpression, we here investigated the potential cross-talk between GLP-1R and GIPR or GCGR in both trafficking and signaling pathways. Using a real-time time-resolved FRET-based internalization assay, we show that GLP-1R, GIPR, and GCGR internalize with differential properties. Remarkably, upon coexpression...

  4. International arbejdsdeling

    DEFF Research Database (Denmark)

    Henten, Anders

    1998-01-01

    Article dealing with the implications of informátion and communication technologies on the international division of labour.......Article dealing with the implications of informátion and communication technologies on the international division of labour....

  5. MARC International

    Directory of Open Access Journals (Sweden)

    Richard E. Coward

    1969-12-01

    Full Text Available The cooperative development of the Library of Congress MARC II Profect and the British National Bibliography MARC II Project is described and presented as the forerunner of an international MARC network. Emphasis is placed on the necessity for a standard MARC record for international exchange and for acceptance of international standards of cataloging.

  6. Internal Communication

    OpenAIRE

    Rathouský, Tomáš

    2015-01-01

    The diploma thesis focuses on characteristics of internal communication, its implementation in various forms in different companies and analysis of the internal communication in one selected company. After the analysis of its current state in the multinational company, the thesis will recommend improvements to the areas of internal communication and human resources, with the main focus of global implementation of these recommendations.

  7. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  8. GABA receptor imaging

    International Nuclear Information System (INIS)

    Lee, Jong Doo

    2007-01-01

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA A -receptor that allows chloride to pass through a ligand gated ion channel and GABA B -receptor that uses G-proteins for signaling. The GABA A -receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA A -receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11 C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18 F-fluoroflumazenil (FFMZ) has been developed to overcome 11 C's short half-life. 18 F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1 1 C-FMZ PET instead of 18 F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA A receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  9. International law

    CERN Document Server

    Shaw, Malcolm N

    2017-01-01

    International Law is the definitive and authoritative text on the subject, offering Shaw's unbeatable combination of clarity of expression and academic rigour and ensuring both understanding and critical analysis in an engaging and authoritative style. Encompassing the leading principles, practice and cases, and retaining and developing the detailed references which encourage and assist the reader in further study, this new edition motivates and challenges students and professionals while remaining accessible and engaging. Fully updated to reflect recent case law and treaty developments, this edition contains an expanded treatment of the relationship between international and domestic law, the principles of international humanitarian law, and international criminal law alongside additional material on international economic law.

  10. Dengue virus receptor

    OpenAIRE

    Hidari, Kazuya I.P.J.; Suzuki, Takashi

    2011-01-01

    Dengue virus is an arthropod-borne virus transmitted by Aedes mosquitoes. Dengue virus causes fever and hemorrhagic disorders in humans and non-human primates. Direct interaction of the virus introduced by a mosquito bite with host receptor molecule(s) is crucial for virus propagation and the pathological progression of dengue diseases. Therefore, elucidation of the molecular mechanisms underlying the interaction between dengue virus and its receptor(s) in both humans and mosquitoes is essent...

  11. Therapeutic androgen receptor ligands

    Science.gov (United States)

    Allan, George F.; Sui, Zhihua

    2003-01-01

    In the past several years, the concept of tissue-selective nuclear receptor ligands has emerged. This concept has come to fruition with estrogens, with the successful marketing of drugs such as raloxifene. The discovery of raloxifene and other selective estrogen receptor modulators (SERMs) has raised the possibility of generating selective compounds for other pathways, including androgens (that is, selective androgen receptor modulators, or SARMs). PMID:16604181

  12. International marketing

    OpenAIRE

    T Cannon

    1989-01-01

    The international marketplace has been transformed in recent years by shifts in trading patterns and practices. These changes have been reinforced by new technologies and evolving economic relationships. This paper is an attempt to integrate these developments into the burgeoning literature on international marketing as well as recent research findings. The research emphasis within the subject has evolved alongside changes in the stress given to key aspects of international trade. The preoccu...

  13. Internal branding

    OpenAIRE

    Rijal, Ramesh; Dhakal, Rajendra

    2015-01-01

    The project report provides an insight into internal branding of two different leading firms – Coca-Cola and Google. The aim of this project report is to study how these two companies use internal branding to promote or build brand performance of the company. This report follows a qualitative research method. The report is deductive in nature and hence, it is guided by the literatures of internal branding. The project report conducted research on brand identity, brand commitment and brand loy...

  14. International Perspectives.

    Science.gov (United States)

    Allen, Kenn; Habermann, Ulla; Chowdhury, Omar Faruque; Guerra, Iraida Manzanilla

    1998-01-01

    Includes "Introduction to International Perspectives" (Allen); "Volunteerism in the Welfare State: The Case of Denmark" (Habermann); "Grassroots Organizing in Bangladesh" (Chowdhury); and "Volunteerism in Latin America" (Guerra). (SK)

  15. Structure-function relationships for the interleukin 2 receptor system

    Directory of Open Access Journals (Sweden)

    Richard J. Robb

    1987-01-01

    Full Text Available Receptors for interleukin 2 (IL-2 esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta] chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.

  16. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor.

    Science.gov (United States)

    Laprairie, R B; Bagher, A M; Kelly, M E M; Denovan-Wright, E M

    2015-10-01

    Cannabidiol has been reported to act as an antagonist at cannabinoid CB1 receptors. We hypothesized that cannabidiol would inhibit cannabinoid agonist activity through negative allosteric modulation of CB1 receptors. Internalization of CB1 receptors, arrestin2 recruitment, and PLCβ3 and ERK1/2 phosphorylation, were quantified in HEK 293A cells heterologously expressing CB1 receptors and in the STHdh(Q7/Q7) cell model of striatal neurons endogenously expressing CB1 receptors. Cells were treated with 2-arachidonylglycerol or Δ(9)-tetrahydrocannabinol alone and in combination with different concentrations of cannabidiol. Cannabidiol reduced the efficacy and potency of 2-arachidonylglycerol and Δ(9)-tetrahydrocannabinol on PLCβ3- and ERK1/2-dependent signalling in cells heterologously (HEK 293A) or endogenously (STHdh(Q7/Q7)) expressing CB1 receptors. By reducing arrestin2 recruitment to CB1 receptors, cannabidiol treatment prevented internalization of these receptors. The allosteric activity of cannabidiol depended upon polar residues being present at positions 98 and 107 in the extracellular amino terminus of the CB1 receptor. Cannabidiol behaved as a non-competitive negative allosteric modulator of CB1 receptors. Allosteric modulation, in conjunction with effects not mediated by CB1 receptors, may explain the in vivo effects of cannabidiol. Allosteric modulators of CB1 receptors have the potential to treat CNS and peripheral disorders while avoiding the adverse effects associated with orthosteric agonism or antagonism of these receptors. © 2015 The British Pharmacological Society.

  17. Eleventh international symposium on radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry

  18. Eleventh international symposium on radiopharmaceutical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  19. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player...

  20. Angiotensin type 2 receptors

    DEFF Research Database (Denmark)

    Sumners, Colin; de Kloet, Annette D; Krause, Eric G

    2015-01-01

    In most situations, the angiotensin AT2-receptor (AT2R) mediates physiological actions opposing those mediated by the AT1-receptor (AT1R), including a vasorelaxant effect. Nevertheless, experimental evidence vastly supports that systemic application of AT2R-agonists is blood pressure neutral...

  1. Design, conduct, and analyses of Breast International Group (BIG) 1-98: a randomized, double-blind, phase-III study comparing letrozole and tamoxifen as adjuvant endocrine therapy for postmenopausal women with receptor-positive, early breast cancer.

    Science.gov (United States)

    Giobbie-Hurder, Anita; Price, Karen N; Gelber, Richard D

    2009-06-01

    Aromatase inhibitors provide superior disease control when compared with tamoxifen as adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer. To present the design, history, and analytic challenges of the Breast International Group (BIG) 1-98 trial: an international, multicenter, randomized, double-blind, phase-III study comparing the aromatase inhibitor letrozole with tamoxifen in this clinical setting. From 1998-2003, BIG 1-98 enrolled 8028 women to receive monotherapy with either tamoxifen or letrozole for 5 years, or sequential therapy of 2 years of one agent followed by 3 years of the other. Randomization to one of four treatment groups permitted two complementary analyses to be conducted several years apart. The first, reported in 2005, provided a head-to-head comparison of letrozole versus tamoxifen. Statistical power was increased by an enriched design, which included patients who were assigned sequential treatments until the time of the treatment switch. The second, reported in late 2008, used a conditional landmark approach to test the hypothesis that switching endocrine agents at approximately 2 years from randomization for patients who are disease-free is superior to continuing with the original agent. The 2005 analysis showed the superiority of letrozole compared with tamoxifen. The patients who were assigned tamoxifen alone were unblinded and offered the opportunity to switch to letrozole. Results from other trials increased the clinical relevance about whether or not to start treatment with letrozole or tamoxifen, and analysis plans were expanded to evaluate sequential versus single-agent strategies from randomization. Due to the unblinding of patients assigned tamoxifen alone, analysis of updated data will require ascertainment of the influence of selective crossover from tamoxifen to letrozole. BIG 1-98 is an example of an enriched design, involving complementary analyses addressing different questions several years

  2. International skatteret

    DEFF Research Database (Denmark)

    Winther-Sørensen, Niels; Wittendorff, Jens

    1996-01-01

    De seneste 6 måneders udvikling indenfor international skatteret beskrives. NW-S har skrevet artiklens afsnit om udvalgte afgørelser og om EU-skatteret.......De seneste 6 måneders udvikling indenfor international skatteret beskrives. NW-S har skrevet artiklens afsnit om udvalgte afgørelser og om EU-skatteret....

  3. International cooperation

    International Nuclear Information System (INIS)

    2008-01-01

    In this chapter international cooperation of the Division for Radiation Safety, NPP Decommissioning and Radwaste Management of the VUJE, a. s. is presented. Very important is cooperation with the International Atomic Energy Agency. This cooperation has various forms - national and regional projects of technical cooperation, coordinated research activities, participation of our experts in preparation of the IAEA documentation etc.

  4. International relations

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Concerning international relations, the different meetings in the field of nuclear safety are reported (Western european nuclear regulator association or Wenra, Nea, IAEA, northern dimension environmental partnership or N.D.E.P., nuclear safety and security group or N.S.S.G., international nuclear regulators association or I.N.R.A.). (N.C.)

  5. International indsats

    DEFF Research Database (Denmark)

    Sachs, Therese

    En analyse af Beredskabsstyrelsens internationale engagement og muligheder for international indsats fremover. Forslag til struktur logistisk og materielt samt til udvikling af personel-kompetencer......En analyse af Beredskabsstyrelsens internationale engagement og muligheder for international indsats fremover. Forslag til struktur logistisk og materielt samt til udvikling af personel-kompetencer...

  6. International Curriculums.

    Science.gov (United States)

    Neal, Larry L.

    This workshop presentation on international curriculums in the field of parks, recreation, leisure, cultural services, and travel/tourism comments that the literature is replete with articles addressing what the field is about, but not about curriculum issues, models, and structure. It reports an international survey of 12 college educators…

  7. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  8. International Relations:

    DEFF Research Database (Denmark)

    This is the textbook for the Open University module International Relations: Continuity and Change in Global Politics. Instead of leading with a succession of theoretical 'isms', the module structures its presentation of the subject around six teaching ‘blocks’, each of which explores a dilemma......: Flat or uneven? Change and transformation in the international system • Block 3: Just or unjust? Intervention and inequality in the international system • Block 4: Top-down or bottom-up? Governance in the international system • Block 5: Secure or insecure? Pursuing security in the international system...... • Block 6: Continuity or change in global politics? Each block introduces new IR theories through discussions of the substantive dilemmas and adds in a layered way levels of analysis and conceptual complexity....

  9. International Specialization

    DEFF Research Database (Denmark)

    Kleindienst, Ingo; Geisler Asmussen, Christian; Hutzschenreuter, Thomas

    2012-01-01

    arbitrage strategy is characterized by specialization versus replication and argue that these different strategies may have differential impact on profitability and risk reduction. Developing a sophisticated measure of international specialization and using a unique panel data set of 92 German MNEs to test......Whether and how international diversification and cross-border arbitrage affects firm performance remains one of the major unresolved research questions in the strategy and international business literatures. We propose that knowing how much a firm has internationally diversified tells us very...... little about performance implications, if we do not know, and do not ask, how the firm has diversified. Therefore, building on the two broad arguments of operating flexibility and location-specific commitment, we develop a theoretical framework that focuses on the extent to which a firm's international...

  10. P2X receptors.

    Science.gov (United States)

    North, R Alan

    2016-08-05

    Extracellular adenosine 5'-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2X receptors have a widespread tissue distribution. On some smooth muscle cells, P2X receptors mediate the fast excitatory junction potential that leads to depolarization and contraction. In the central nervous system, activation of P2X receptors allows calcium to enter neurons and this can evoke slower neuromodulatory responses such as the trafficking of receptors for the neurotransmitter glutamate. In primary afferent nerves, P2X receptors are critical for the initiation of action potentials when they respond to ATP released from sensory cells such as taste buds, chemoreceptors or urothelium. In immune cells, activation of P2X receptors triggers the release of pro-inflammatory cytokines such as interleukin 1β. The development of selective blockers of different P2X receptors has led to clinical trials of their effectiveness in the management of cough, pain, inflammation and certain neurodegenerative diseases.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. © 2016 The Author(s).

  11. Cutaneous corpuscular receptors of the human glans clitoris: descriptive characteristics and comparison with the glans penis.

    Science.gov (United States)

    Shih, Cheryl; Cold, Christopher J; Yang, Claire C

    2013-07-01

    The female genital sensory pathways that initiate sexual arousal reflexes begin with cutaneous corpuscular receptors in the glabrous genital skin, including those of the glans clitoris. The aim of this study is to characterize the corpuscular receptors of the glans clitoris. In addition, we compared basic features with the receptors of the glans penis. Number of stained receptors. Five cadaveric vulvectomy specimens and four cadaveric penile specimens were used. They were serially sectioned and stained with hematoxylin and eosin. Selected blocks were stained with Masson's trichrome, and immunohistochemical staining was done with neuronal markers S-100 and neurofilament. Using the three stains, we identified an abundance of corpuscular receptors within the glans clitoris, as compared with the surrounding prepuce. These receptors were of varied arrangements, situated in the subepithelial tissues of the glans clitoris. They were indistinguishable from the receptors of the glans penis. The number of receptors per 100× high-powered field ranged from 1 to 14, whereas the receptor density in the glans penis ranged from 1 to 3. A second type of receptor, the Pacinian corpuscle, was identified within the suspensory ligament along the trunks of the dorsal nerve but not within the glans itself. The glans clitoris is densely innervated with cutaneous corpuscular receptors, and these receptors are morphologically similar to the corpuscular receptors of the glans penis. The glans clitoris has greater variability in receptor density compared with the glans penis. © 2013 International Society for Sexual Medicine.

  12. Muscarinic receptor oligomerization.

    Science.gov (United States)

    Marsango, Sara; Ward, Richard J; Alvarez-Curto, Elisa; Milligan, Graeme

    2017-11-14

    G protein-coupled receptors (GPCRs) have been classically described as monomeric entities that function by binding in a 1:1 stoichiometric ratio to both ligand and downstream signalling proteins. However, in recent years, a growing number of studies has supported the hypothesis that these receptors can interact to form dimers and higher order oligomers although the molecular basis for these interactions, the overall quaternary arrangements and the functional importance of GPCR oligomerization remain topics of intense speculation. Muscarinic acetylcholine receptors belong to class A of the GPCR family. Each muscarinic receptor subtype has its own particular distribution throughout the central and peripheral nervous systems. In the central nervous system, muscarinic receptors regulate several sensory, cognitive, and motor functions while, in the peripheral nervous system, they are involved in the regulation of heart rate, stimulation of glandular secretion and smooth muscle contraction. Muscarinic acetylcholine receptors have long been used as a model for the study of GPCR structure and function and to address aspects of GPCR dimerization using a broad range of approaches. In this review, the prevailing knowledge regarding the quaternary arrangement for the various muscarinic acetylcholine receptors has been summarized by discussing work ranging from initial results obtained using more traditional biochemical approaches to those generated with more modern biophysical techniques. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Induction of Anti-Tumor Immune Responses by Peptide Receptor Radionuclide Therapy with (177)Lu-DOTATATE in a Murine Model of a Human Neuroendocrine Tumor

    DEFF Research Database (Denmark)

    Wu, Yin; Pfeifer, Andreas Klaus; Myschetzky, Rebecca

    2013-01-01

    Peptide receptor radionuclide therapy (PRRT) is a relatively new mode of internally targeted radiotherapy currently in clinical trials. In PRRT, ionizing radioisotopes conjugated to somatostatin analogues are targeted to neuroendocrine tumors (NETs) via somatostatin receptors. Despite promising...

  14. International Health

    Science.gov (United States)

    ... create refugee populations with immediate and long-term health problems. Some of the major diseases currently affecting ... also an international problem which can affect people's health. Many countries and health organizations are working together ...

  15. Juris International

    CERN Document Server

    A database on international trade law aimed at lawyers and legal counsel in developing and transition economies. Juris International is a multilingual collection (English, Spanish, and French) of legal information on international trade. Juris International aims to facilitate and reduce the work involved in research for business lawyers, advisers and in-house counsel, and state organizations in developing nd transition economies, by providing access to texts which have often been difficult to obtain. Its objective is to gather a large quantity of basic information at one site (favoring complete legal texts), without the need to send for the information, and consequently without excessive communication costs for users who d benefit from an efficient and cheap telecommunications network.

  16. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  17. P2X receptors

    OpenAIRE

    North, R. Alan

    2016-01-01

    Extracellular adenosine 5′-triphosphate (ATP) activates cell surface P2X and P2Y receptors. P2X receptors are membrane ion channels preferably permeable to sodium, potassium and calcium that open within milliseconds of the binding of ATP. In molecular architecture, they form a unique structural family. The receptor is a trimer, the binding of ATP between subunits causes them to flex together within the ectodomain and separate in the membrane-spanning region so as to open a central channel. P2...

  18. Serotonin Receptors in Hippocampus

    Science.gov (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  19. Particle compositions with a pre-selected cell internalization mode

    Science.gov (United States)

    Decuzzi, Paolo (Inventor); Ferrari, Mauro (Inventor)

    2012-01-01

    A method of formulating a particle composition having a pre-selected cell internalization mode involves selecting a target cell having surface receptors and obtaining particles that have i) surface moieties, that have an affinity for or are capable of binding to the surface receptors of the cell and ii) a preselected shape, where a surface distribution of the surface moieties on the particles and the shape of the particles are effective for the pre-selected cell internalization mode.

  20. Somatostatin receptor skintigrafi

    DEFF Research Database (Denmark)

    Rasmussen, Karin; Nielsen, Jørn Theil; Rehling, Michael

    2005-01-01

    Somatostatin receptor scintigraphy (SRS) is a very valuable imaging technique for visualisation of a diversity of neuroendocrine tumours. The sensitivity for localisation of carcinoid tumours is high, but somewhat lower for other neuroendocrine tumours. The methodology, multiple clinical aspects ...

  1. Muscarinic receptor oligomerization

    OpenAIRE

    Marsango, Sara; Ward, Richard J.; Alvarez-Curto, Elisa; Milligan, Graeme

    2017-01-01

    G protein-coupled receptors (GPCRs) have been classically described as monomeric entities that function by binding in a 1:1 stoichiometric ratio to both ligand and downstream signalling proteins. However, in recent years, a growing number of studies has supported the hypothesis that these receptors can interact to form dimers and higher order oligomers although the molecular basis for these interactions, the overall quaternary arrangements and the functional importance of GPCR oligomerization...

  2. Adenosine receptor neurobiology: overview.

    Science.gov (United States)

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases. © 2014 Elsevier Inc. All rights reserved.

  3. Investigating Internalization and Intracellular Trafficking of GPCRs

    DEFF Research Database (Denmark)

    Foster, Simon R; Bräuner-Osborne, Hans

    2017-01-01

    for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal...... independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies...... that have been used to investigate internalization and intracellular signaling of GPCRs, with a particular focus on emerging real-time techniques. These recent developments have improved our understanding of the complexities of GPCR internalization and intracellular signaling and suggest that the broader...

  4. International Criminalization of International Terrorizm

    Directory of Open Access Journals (Sweden)

    Alexander Grigoryevich Volevodz

    2014-01-01

    Full Text Available Analysis and studying of the terrorism in all its facets is a complex entangled problem with less clear legal regulation that it might seem at first glance, especially after its transformation from local phenomenon into a world threat. Hitherto terrorism and actions connected to it have been criminalized by the majority of states. There are in modern criminal law whole systems of rules on criminal liability for terrorism which differs considerably from country to country. Terrorism has been criminalized in numerous international regional and universal antiterrorist legal instruments. The author notes that differences in definitions that are enshrined in them hinders international cooperation in criminal matters with respect to terrorist cases. Difficulties reside in the necessity to meet the dual criminality requirement and in the political offense exception. These difficulties can only be overcome through elaboration of a universally recognized definition of the notion of international terrorism and making it legally binding via its inclusion into a universal convention. The issue of definition of international terrorism is an important part of an efficient mutual assistance among states in fight against this crime. In this article the author accounts of actual ways of tackling by the international community of the issue of criminalization of international terrorism and of factors influencing them.

  5. Microvesicle transfer of kinin B1-receptors is a novel inflammatory mechanism in vasculitis.

    Science.gov (United States)

    Kahn, Robin; Mossberg, Maria; Ståhl, Anne-Lie; Johansson, Karl; Lopatko Lindman, Ingrid; Heijl, Caroline; Segelmark, Mårten; Mörgelin, Matthias; Leeb-Lundberg, L M Fredrik; Karpman, Diana

    2017-01-01

    During vasculitis, activation of the kinin system induces inflammation, whereby the kinin B1-receptor is expressed and activated after ligand binding. Additionally, activated blood cells release microvesicles into the circulation. Here we determined whether leukocyte-derived microvesicles bear B1-kinin receptors during vasculitis, and if microvesicles transfer functional B1-receptors to recipient cells, thus promoting inflammation. By flow cytometry, plasma from patients with vasculitis were found to contain high levels of leukocyte-derived microvesicles bearing B1-receptors. Importantly, renal biopsies from two patients with vasculitis showed leukocyte-derived microvesicles bearing B1-receptors docking on glomerular endothelial cells providing in vivo relevance. Microvesicles derived from B1-receptor-transfected human embryonic kidney cells transferred B1-receptors to wild-type human embryonic kidney cells, lacking the receptor, and to glomerular endothelial cells. The transferred B1-receptors induced calcium influx after B1-receptor agonist stimulation: a response abrogated by a specific B1-receptor antagonist. Microvesicles derived from neutrophils also transferred B1-receptors to wild-type human embryonic kidney cells and induced calcium influx after stimulation. Thus, we found a novel mechanism by which microvesicles transfer functional receptors and promote kinin-associated inflammation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. International collaboration

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the wake of the demise of the US Superconducting Supercollider (SSC) project last year which empoverished both US and world science, some rapid scene shifting is going on. The SSC may be dead, but the underlying physics quest lives on. In the US, the 'future vision' subpanel of the High Energy Physics Advisory Board (HEPAP) is at work formulating its recommendations. On the international front, the International Committee for Future Accelerators (ICFA) at a special meeting in Vancouver in January drafted a statement

  7. Scintigraphic portrayal of β receptors in the heart

    International Nuclear Information System (INIS)

    Sisson, J.C.; Wieland, D.M.; Koeppe, R.A.; Normolle, D.; Frey, K.A.; Bolgos, G.; Johnson, J.; Van Dort, M.E.; Gildersleeve, D.L.

    1991-01-01

    Myocardial β adrenergic receptors play important roles in physiology and disease, but the receptors have not before been portrayed. The β antagonist, iodocyanopindolol (ICYP), was used to develop a scintigraphic method for depicting the receptors in the living heart. Labeled with 125I, ICYP bound firmly to β receptors in the rat heart; the data conformed to a mathematical model. In vivo saturation kinetics indicated binding sites with two affinities. Inhibition of ICYP binding by beta antagonists of different potency and different selectivity for β-1 and β-2 receptors produced the expected pharmacologic effects. Inhibition by lipophilic and hydrophilic antagonists gave no evidence that ICYP was appreciably bound to internalized receptors. Fractional binding by tracer quantities of (-) ICYP and ± ICYP demonstrated stereospecificity. Labeled with 123I, ICYP bound to the hearts of intact dogs so that scintigraphic tomographs depicted ventricular myocardium. Small doses of beta antagonists selectively reduced the binding of ICYP to lung enabling better visualization of the heart. Thus, 123I-ICYP appears to portray the beta receptors in the living heart, and the characteristics of binding permit the development of mathematical models and lay the basis for quantifying this receptor binding

  8. International Illiquidity

    DEFF Research Database (Denmark)

    Malkhozov, Aytek; Mueller, Philippe; Vedolin, Andrea

    We build a parsimonious international asset pricing model in which deviations of government bond yields from a fitted yield curve of a country measure the tightness of investors' capital constraints. We compute these measures at daily frequency for six major markets and use them to test the model...

  9. Transparency International

    NARCIS (Netherlands)

    Hulten, van M. (Michel)

    2009-01-01

    Established in 1993, Transparency International (TI) defines itself as “the global civil society organization leading the fight against corruption, that brings people together in a powerful worldwide coalition to end the devastating impact of corruption on men, women and children around the

  10. Interne evalueringer

    DEFF Research Database (Denmark)

    Hansson, Finn

    Det er en gennemgående tese i denne undersøgelse af interne evalueringer, at en af de vigtigste kendetegn ved den New Public Management -dominerede udvikling af den offentlige sektors reguleringspolitik, som Danmark såvel som en række andre OECD lande har gennemlevet, er en omfattende brug af alle...

  11. Cooperating Internationally.

    Science.gov (United States)

    Anderson, Wayne

    1999-01-01

    A number of college and university consortia have embarked on international educational cooperation ventures, providing valuable experiences and benefits for faculty, students, alumni, and the community. For these programs to be effective, they must have high-level institutional support, equal opportunities to participate, effective marketing and…

  12. An ultrasensitive sorting mechanism for EGF Receptor Endocytosis

    Directory of Open Access Journals (Sweden)

    Dikic Ivan

    2008-04-01

    Full Text Available Abstract Background The Epidermal Growth Factor (EGF receptor has been shown to internalize via clathrin-independent endocytosis (CIE in a ligand concentration dependent manner. From a modeling point of view, this resembles an ultrasensitive response, which is the ability of signaling networks to suppress a response for low input values and to increase to a pre-defined level for inputs exceeding a certain threshold. Several mechanisms to generate this behaviour have been described theoretically, the underlying assumptions of which, however, have not been experimentally demonstrated for the EGF receptor internalization network. Results Here, we present a mathematical model of receptor sorting into alternative pathways that explains the EGF-concentration dependent response of CIE. The described mechanism involves a saturation effect of the dominant clathrin-dependent endocytosis pathway and implies distinct steady-states into which the system is forced for low vs high EGF stimulations. The model is minimal since no experimentally unjustified reactions or parameter assumptions are imposed. We demonstrate the robustness of the sorting effect for large parameter variations and give an analytic derivation for alternative steady-states that are reached. Further, we describe extensibility of the model to more than two pathways which might play a role in contexts other than receptor internalization. Conclusion Our main result is that a scenario where different endocytosis routes consume the same form of receptor corroborates the observation of a clear-cut, stimulus dependent sorting. This is especially important since a receptor modification discriminating between the pathways has not been found experimentally. The model is not restricted to EGF receptor internalization and might account for ultrasensitivity in other cellular contexts.

  13. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  14. Endogenous 5-HT2B receptor activation regulates neonatal respiratory activity in vitro

    OpenAIRE

    Günther , Silke; Maroteaux , Luc; Schwarzacher , Stephan W.

    2006-01-01

    International audience; An implication of 5-HT 2B receptors in central nervous system has not yet been clearly elucidated. We studied the role of different 5-HT 2 receptor subtypes in the medullary breathing center, the pre-Bötzinger complex, and on hypoglossal motoneur-ons in rhythmically active transversal slice preparations of neonatal rats and mice. Local microinjection of 5-HT 2 receptor agonists revealed tonic excitation of hypoglossal motoneurons. Excitatory effects of the 5-HT 2B rece...

  15. GRK2 protein-mediated transphosphorylation contributes to loss of function of μ-opioid receptors induced by neuropeptide FF (NPFF2) receptors.

    Science.gov (United States)

    Moulédous, Lionel; Froment, Carine; Dauvillier, Stéphanie; Burlet-Schiltz, Odile; Zajac, Jean-Marie; Mollereau, Catherine

    2012-04-13

    Neuropeptide FF (NPFF) interacts with specific receptors to modulate opioid functions in the central nervous system. On dissociated neurons and neuroblastoma cells (SH-SY5Y) transfected with NPFF receptors, NPFF acts as a functional antagonist of μ-opioid (MOP) receptors by attenuating the opioid-induced inhibition of calcium conductance. In the SH-SY5Y model, MOP and NPFF(2) receptors have been shown to heteromerize. To understand the molecular mechanism involved in the anti-opioid activity of NPFF, we have investigated the phosphorylation status of the MOP receptor using phospho-specific antibody and mass spectrometry. Similarly to direct opioid receptor stimulation, activation of the NPFF(2) receptor by [D-Tyr-1-(NMe)Phe-3]NPFF (1DMe), an analog of NPFF, induced the phosphorylation of Ser-377 of the human MOP receptor. This heterologous phosphorylation was unaffected by inhibition of second messenger-dependent kinases and, contrarily to homologous phosphorylation, was prevented by inactivation of G(i/o) proteins by pertussis toxin. Using siRNA knockdown we could demonstrate that 1DMe-induced Ser-377 cross-phosphorylation and MOP receptor loss of function were mediated by the G protein receptor kinase GRK2. In addition, mass spectrometric analysis revealed that the phosphorylation pattern of MOP receptors was qualitatively similar after treatment with the MOP agonist Tyr-D-Ala-Gly (NMe)-Phe-Gly-ol (DAMGO) or after treatment with the NPFF agonist 1DMe, but the level of multiple phosphorylation was more intense after DAMGO. Finally, NPFF(2) receptor activation was sufficient to recruit β-arrestin2 to the MOP receptor but not to induce its internalization. These data show that NPFF-induced heterologous desensitization of MOP receptor signaling is mediated by GRK2 and could involve transphosphorylation within the heteromeric receptor complex.

  16. Transparency International

    OpenAIRE

    Hulten, van, M. (Michel)

    2009-01-01

    Established in 1993, Transparency International (TI) defines itself as “the global civil society organization leading the fight against corruption, that brings people together in a powerful worldwide coalition to end the devastating impact of corruption on men, women and children around the world”. Its stated goal is “to take action to combat corruption and prevent criminal activities arising from corruption so as to help build a world in which Government, politics, business...

  17. Teaching International Law: Concepts in International Relations

    Science.gov (United States)

    Starbird, Caroline; Pettit, Jenny; Singleton, Laurel

    2004-01-01

    This book is designed to introduce students to public international law. Topics covered include international public organizations, such as the United Nations and World Trade Organization, international courts, international human rights law, international trade law, and international environmental law. The goal of each study is to examine how…

  18. Impact of TNF-R1 and CD95 internalization on apoptotic and antiapoptotic signaling.

    Science.gov (United States)

    Schütze, Stefan; Schneider-Brachert, Wulf

    2009-01-01

    Internalization of cell surface receptors has long been regarded as a pure means to terminate signaling via receptor degradation. A growing body of information points to the fact that many internalized receptors are still in their active state and that signaling continues along the endocytic pathway. Thus endocytosis orchestrates cell signaling by coupling and integrating different cascades on the surface of endocytic vesicles to control the quality, duration, intensity, and distribution of signaling events. The death receptors tumor necrosis factor-receptor 1 (TNF-R1) and CD95 (Fas, APO-1) are known not only to signal for cell death via apoptosis but are also capable of inducing antiapoptotic signals via transcription factor NF-kappaB induction or activation of the proliferative mitogen-activated protein kinase (MAPK)/ERK (extracellular signal-regulated kinase) protein kinase cascades, resulting in cell protection and tissue regeneration. A clue to the understanding of these contradictory biological phenomena may arise from recent findings which reveal a regulatory role of receptor internalization and intracellular receptor trafficking in selectively transmitting signals, which lead either to apoptosis or to the survival of the cell. In this chapter, we discuss the dichotomy of pro- and antiapoptotic signaling of the death receptors TNF-R1 and CD95. First, we will address the role of lipid rafts and post-translational modifications of death receptors in regulating the formation of receptor complexes. Then, we will discuss the role of internalization in determining the fate of the receptors and subsequently the specificity of signaling events. We propose that fusion of internalized TNF-receptosomes with trans-Golgi vesicles should be recognized as a novel mechanism to transduce death signals along the endocytic route. Finally, the lessons learnt from the strategy of adenovirus to escape apoptosis by targeting death receptor internalization demonstrate the

  19. International cooperation

    International Nuclear Information System (INIS)

    Barisich, A.

    1992-01-01

    Europe is certainly the part of the world where the largest number of international arrangements have been established for dealing with international cooperation in cases of major oil spills at sea. Let me list the most important of these multilateral arrangements: Bonn Agreement: covers the North Sea Contracting Parties: riparian states and the EEC Barcelona Convention: (protocol for emergency situations) covers the Mediterranean Sea Contracting Parties: riparian states and the EEC; Helsinki Convention: covers the Baltic Sea Contracting Parties: riparian states and (soon) the EEC; Lisbon Agreement: covers the NE Atlantic Contracting Parties: France, Spain, Portugal, Morocco and the EEC; Community Action Plan: covers the whole community waters; EEC; Members States participate in this plan. It should be underlined that, in addition to these large multilateral agreements a number of bilateral or trilateral arrangements have been set up, such as the Copenhagen Agreement, Denger Plan, Manche Plan, etc. The Commission involvement in these international frameworks is very important: as an example, it is presently chairing the Bonn Agreement Contracting Parties meeting. In addition, being the only contracting party to all these agreements, it is able to play a unique role of coordination and information to avoid duplications and contradictions. Having given this overview, I would now focus on the Community Action Plan

  20. Conceptualizing international education : From international student to international study

    NARCIS (Netherlands)

    Madge, Clare; Raghuram, Parvati; Noxolo, Pat

    2015-01-01

    In a rapidly changing transnational eduscape, it is timely to consider how best to conceptualize international education. Here we argue for a conceptual relocation from international student to international study as a means to bridge the diverse literatures on international education. International

  1. Scavenger Receptor-AI-Targeted Iron Oxide Nanoparticles for In Vivo MRI Detection of Atherosclerotic Lesions

    NARCIS (Netherlands)

    Segers, Filip M. E.; den Adel, Brigit; Bot, Ilze; van der Graaf, Linda M.; van der Veer, Eric P.; Gonzalez, Walter; Raynal, Isabelle; de Winther, Menno; Wodzig, Will K.; Poelmann, Robert E.; van Berkel, Theo J. C.; van der Weerd, Louise; Biessen, Erik A. L.

    2013-01-01

    In search of molecular imaging modalities for specific detection of inflammatory atherosclerotic plaques, we explored the potential of targeting scavenger receptor-AI (SR-AI), which is highly expressed by lesional macrophages and linked to effective internalization machinery. Ultrasmall

  2. Adenosine A(2A) receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC.

    Science.gov (United States)

    Brand, Frank; Klutz, Athena M; Jacobson, Kenneth A; Fredholm, Bertil B; Schulte, Gunnar

    2008-08-20

    G protein-coupled receptors, such as the adenosine A(2A) receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A(2A) receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A(2A) (K(i)=149+/-27 nM) as well as A(3) receptors (K(i)=240+/-160 nM) but not to adenosine A(1) receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand's functionality at adenosine A(2A) but not A(2B) receptors. In live-cell imaging studies, Alexa488-APEC-induced adenosine A(2A) receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A(2A) receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A(2A) receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC described here showed that it provides a useful tool for tracing adenosine A(2A) receptors in vitro.

  3. Tracking Cell Surface GABAB Receptors Using an α-Bungarotoxin Tag*

    Science.gov (United States)

    Wilkins, Megan E.; Li, Xinyan; Smart, Trevor G.

    2008-01-01

    GABAB receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABAB receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABAB receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, α-bungarotoxin. By using the α-bungarotoxin binding site-tagged GABAB R1a subunit (R1aBBS), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, α-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABAB receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors. PMID:18812318

  4. Tracking cell surface GABAB receptors using an alpha-bungarotoxin tag.

    Science.gov (United States)

    Wilkins, Megan E; Li, Xinyan; Smart, Trevor G

    2008-12-12

    GABA(B) receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABA(B) receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABA(B) receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, alpha-bungarotoxin. By using the alpha-bungarotoxin binding site-tagged GABA(B) R1a subunit (R1a(BBS)), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, alpha-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABA(B) receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors.

  5. KDEL Receptors Assist Dengue Virus Exit from the Endoplasmic Reticulum

    Directory of Open Access Journals (Sweden)

    Ming Yuan Li

    2015-03-01

    Full Text Available Membrane receptors at the surface of target cells are key host factors for virion entry; however, it is unknown whether trafficking and secretion of progeny virus requires host intracellular receptors. In this study, we demonstrate that dengue virus (DENV interacts with KDEL receptors (KDELR, which cycle between the ER and Golgi apparatus, for vesicular transport from ER to Golgi. Depletion of KDELR by siRNA reduced egress of both DENV progeny and recombinant subviral particles (RSPs. Coimmunoprecipitation of KDELR with dengue structural protein prM required three positively charged residues at the N terminus, whose mutation disrupted protein interaction and inhibited RSP transport from the ER to the Golgi. Finally, siRNA depletion of class II Arfs, which results in KDELR accumulation in the Golgi, phenocopied results obtained with mutagenized prME and KDELR knockdown. Our results have uncovered a function for KDELR as an internal receptor involved in DENV trafficking.

  6. Parasitic Infections: A Role for C-Type Lectins Receptors

    Directory of Open Access Journals (Sweden)

    Alicia Vázquez-Mendoza

    2013-01-01

    Full Text Available Antigen-presenting cells (APCs sense the microenvironment through several types of receptors that recognize pathogen-associated molecular patterns. In particular, C-type lectins receptors (CLRs, which are expressed by distinct subsets of dendritic cells (DCs and macrophages (MØs, recognize and internalize specific carbohydrate antigens in a Ca2+-dependent manner. The targeting of these receptors is becoming an efficient strategy for parasite recognition. However, relatively little is known about how CLRs are involved in both pathogen recognition and the internalization of parasites. The role of CLRs in parasite infections is an area of considerable interest because this research will impact our understanding of the initiation of innate immune responses, which influences the outcome of specific immune responses. This paper attempts to summarize our understanding of the effects of parasites’ interactions with CLRs.

  7. adrenergic receptor with preeclampsia

    African Journals Online (AJOL)

    User

    2011-05-09

    May 9, 2011 ... expenditure and lipolysis. The mechanisms underlying lipolytic resistance to catecholamines in obesity are not clear and may include desensitization of ADRB2 function. (Yamada et al., 1999). Many studies have reported on the relationship between obesity and genetic variants in β-2 adrenergic receptors ...

  8. Ginkgolides and glycine receptors

    DEFF Research Database (Denmark)

    Jaracz, Stanislav; Nakanishi, Koji; Jensen, Anders A.

    2004-01-01

    Ginkgolides from the Ginkgo biloba tree are diterpenes with a cage structure consisting of six five-membered rings and a unique tBu group. They exert a variety of biological properties. In addition to being antagonists of the platelet activating factor receptor (PAFR), it has recently been shown ...

  9. Meeting report: nuclear receptors

    DEFF Research Database (Denmark)

    Tuckermann, Jan; Bourguet, William; Mandrup, Susanne

    2010-01-01

    The biannual European Molecular Biology Organization (EMBO) conference on nuclear receptors was organized by Beatrice Desvergne and Laszlo Nagy and took place in Cavtat near Dubrovnik on the Adriatic coast of Croatia September 25-29, 2009. The meeting brought together researchers from all over...

  10. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  11. PTH receptor-1 signalling—mechanistic insights and therapeutic prospects

    Science.gov (United States)

    Cheloha, Ross W.; Gellman, Samuel H.; Vilardaga, Jean-Pierre; Gardella, Thomas J.

    2015-01-01

    Parathyroid hormone/parathyroid hormone-related protein receptor (PTH/PTHrP type 1 receptor; commonly known as PTHR1) is a family B G-protein-coupled receptor (GPCR) that regulates skeletal development, bone turnover and mineral ion homeostasis. PTHR1 transduces stimuli from PTH and PTHrP into the interior of target cells to promote diverse biochemical responses. Evaluation of the signalling properties of structurally modified PTHR1 ligands has helped to elucidate determinants of receptor function and mechanisms of downstream cellular and physiological responses. Analysis of PTHR1 responses induced by structurally modified ligands suggests that PTHR1 can continue to signal through a G-protein-mediated pathway within endosomes. Such findings challenge the longstanding paradigm in GPCR biology that the receptor is transiently activated at the cell membrane, followed by rapid deactivation and receptor internalization. Evaluation of structurally modified PTHR1 ligands has further led to the identification of ligand analogues that differ from PTH or PTHrP in the type, strength and duration of responses induced at the receptor, cellular and organism levels. These modified ligands, and the biochemical principles revealed through their use, might facilitate an improved understanding of PTHR1 function in vivo and enable the treatment of disorders resulting from defects in PTHR1 signalling. This Review discusses current understanding of PTHR1 modes of action and how these findings might be applied in future therapeutic agents. PMID:26303600

  12. International Competitiveness.

    OpenAIRE

    Fagerberg, Jan

    1988-01-01

    This paper develops and tests a model of differing trends in international competi tiveness and economic growth across countries. The model relates the development of market shares at home and abroad to the three sets of factors: the ability to compete in technology, the ability to compete in delivery (capacity), and the ability to compete in price. The tes t, using data for fifteen OECD countries for the period 1961-83, show s that, in the medium and long run, factors related to technology a...

  13. International Competitiveness

    OpenAIRE

    Jan Fagerberg

    1988-01-01

    This paper develops and tests a model of differing trends in international competitiveness and economic growth across countries. The model relates the development of market shares at home and abroad to three sets of factors: the ability to compete in technology, the ability to compete in delivery(capacity) and the ability to compete in price. The test, using data for 15 OECD countries for the period 1961-1983, shows that in the medium and long run, factors related to technology and capacity a...

  14. Immune inhibitory receptors in viral infection and cancer

    NARCIS (Netherlands)

    Karnam, G.

    2014-01-01

    We are protected from external and internal dangers by our immune system. Immune responses need to be balanced to prevent uncontrolled inflammation and/or autoimmunity. Cell growth inhibition, apoptosis, and down regulation of receptor signals are all part of the inhibitory tools used by the immune

  15. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striking...... the phenomenon of blockade of angiotensin-(1-7) [Ang-(1-7)] actions by AT2R antagonists and vice versa. Such mechanisms may comprise dimerization of the receptors or dimerization-independent mechanisms such as lack of specificity of the receptor ligands used in the experiments or involvement of the Ang-(1...

  16. Internal education

    Directory of Open Access Journals (Sweden)

    Anita Zagorc

    2016-09-01

    Full Text Available Research Question (RQ: The importance of internal trainings in an organization. Purpose: The purpose of research is to examine and present internal trainings in an organization and their contribution to greater success of an organization. The paper studies employee training in a company, how the organization itself looks after its employees during training, how trainings contribute to further development of organization and the advancement of knowledge for successful operation of organization. Method: How to achieve the purpose of research, used methods and theoretical approach. Results: Specific examples and opinions of employees. Results show the importance of trainings for an organization. We can see that all employees are fairly motivated and ready to participate in trainings and can adapt to changing business environment very well. The results demonstrate that all trainings in the organization are very important and welcome. Only with continuous learning, the organization can be successful and survive in the market despite strong competition. Organization: Trainings are designed for all employees inside an organization. Different employees participate in trainings in a different way as all trainings are divided into certain work and fields that are important for each individual or department in an organization. Society: Trainings have an impact on the whole organization by contributing to its development. Originality: The originality of study is what was new in the research, what is the value and originality of research. Limitations/Future Research: Research was limited to a small number of sources.

  17. Expression and functional properties of α7 acetylcholine nicotinic receptors are modified in the presence of other receptor subunits.

    Science.gov (United States)

    Criado, Manuel; Valor, Luis M; Mulet, José; Gerber, Susana; Sala, Salvador; Sala, Francisco

    2012-11-01

    Although α7 nicotinic receptors are predominantly homopentamers, previous reports have indicated that α7 and β2 subunits are able to form heteromers. We have studied whether other nicotinic receptor subunits can also assemble with α7 subunits and the effect of this potential association. Coexpression of α7 with α2, α3, or β4 subunits reduced to about half, surface α-bungarotoxin binding sites and acetylcholine-gated currents. This is probably because of inhibition of membrane trafficking, as the total amount of α7 subunits was similar in all cases and a significant proportion of mature α7 receptors was present inside the cell. Only β4 subunits appeared to directly associate with α7 receptors at the membrane and these heteromeric receptors showed some kinetic and pharmacological differences when compared with homomeric α7 receptors. Finally, we emulated the situation of bovine chromaffin cells in Xenopus laevis oocytes by using the same proportion of α3, β4, α5, and α7 mRNAs, finding that α-bungarotoxin binding was similarly reduced in spite of increased currents, apparently mediated by α3β4(α5) receptors. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  18. Characterization of glucagon-like peptide-1 receptor beta-arrestin 2 interaction: a high-affinity receptor phenotype

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Martini, Lene; Schwartz, Thue W

    2005-01-01

    for the fusion constructs was observed. We conclude that the glucagon-like peptide 1 fusion construct mimics the natural interaction of the receptor with (beta)arr2 with respect to binding peptide ligands, G protein-mediated signaling and internalization, and that this distinct molecular phenotype is reminiscent...

  19. The second and fourth cluster of class A cysteine-rich repeats of the low density lipoprotein receptor-related protein share ligand-binding properties

    NARCIS (Netherlands)

    Neels, J. G.; van den Berg, B. M.; Lookene, A.; Olivecrona, G.; Pannekoek, H.; van Zonneveld, A. J.

    1999-01-01

    The low density lipoprotein receptor-related protein (LRP) is a multifunctional endocytic cell-surface receptor that binds and internalizes a diverse array of ligands. The receptor contains four putative ligand-binding domains, generally referred to as clusters I, II, III, and IV. In this study,

  20. Prostaglandin Receptor Signaling in Disease

    Directory of Open Access Journals (Sweden)

    Toshiyuki Matsuoka

    2007-01-01

    Full Text Available Prostanoids, consisting of the prostaglandins (PGs and the thromboxanes (TXs, are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. They are released outside of the cells immediately after synthesis, and exert their actions by binding to a G-protein coupled rhodopsin-type receptor on the surface of target cells. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP, four subtypes of the PGE receptor (EP1, EP2, EP3, and EP4, the PGF receptor (FP, PGI receptor (IP, and TXA receptor (TP. Recently, mice deficient in each of these prostanoid receptors were generated and subjected to various experimental models of disease. These studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.

  1. Receptors for enterovirus 71.

    Science.gov (United States)

    Yamayoshi, Seiya; Fujii, Ken; Koike, Satoshi

    2014-07-01

    Enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease (HFMD). Occasionally, EV71 infection is associated with severe neurological diseases, such as acute encephalitis, acute flaccid paralysis and cardiopulmonary failure. Several molecules act as cell surface receptors that stimulate EV71 infection, including scavenger receptor B2 (SCARB2), P-selectin glycoprotein ligand-1 (PSGL-1), sialylated glycan, heparan sulfate and annexin II (Anx2). SCARB2 plays critical roles in attachment, viral entry and uncoating, and it can facilitate efficient EV71 infection. The three-dimensional structures of the mature EV71 virion, procapsid and empty capsid, as well as the exofacial domain of SCARB2, have been elucidated. This structural information has greatly increased our understanding of the early steps of EV71 infection. Furthermore, SCARB2 plays essential roles in the development of EV71 neurological disease in vivo. Adult mice are not susceptible to infection by EV71, but transgenic mice that express human SCARB2 become susceptible to EV71 infection and develop similar neurological diseases to those found in humans. This mouse model facilitates the in vivo investigation of many issues related to EV71. PSGL-1, sialylated glycan, heparan sulfate and Anx2 are attachment receptors, which enhance viral infection by retaining the virus on the cell surface. These molecules also contribute to viral infection in vitro either by interacting with SCARB2 or independently of SCARB2. However, the cooperative effects of these receptors, and their contribution to EV71 pathogenicity in vivo, remain to be elucidated.

  2. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  3. An anti-HIV-1 gp120 antibody expressed as an endocytotic transmembrane protein mediates internalization of HIV-1

    International Nuclear Information System (INIS)

    Tan, Yee-Joo; Lim, S.-P.; Ting, Anthony E.; Goh, Phuay-Yee; Tan, Y.H.; Lim, Seng Gee; Hong Wanjin

    2003-01-01

    In this study, we used HIV-1 as a model to demonstrate a novel approach for receptor-independent cell entry of virus. The heavy chain of an anti-HIV-1 gp120 antibody was engineered with endocytotic and transmembrane motifs from either the cation-independent mannose 6-phospate receptor or the low-density lipoprotein receptor. Flow cytometry and immunofluorescence studies showed that the chimeric antibodies were expressed on the cell surface and can undergo rapid internalization. Furthermore, one of the chimeric antibodies was able to bind and internalize HIV-1. Using a luciferase reporter HIV-1, we further showed that internalized viruses could undergo replication. Therefore, we have demonstrated a proof-of-principle of a novel method that can be used to internalize virus into cells, without prior knowledge of the cellular receptor for the virus. We propose that this approach would be particularly useful for studying viruses whose cellular receptor(s) is not known

  4. International recommendations

    International Nuclear Information System (INIS)

    Lindell, Bo

    1986-01-01

    Full text: This short presentation will indicate the general radiation protection background to protective measures against foodstuffs contaminated with radioactive substances. A number of international organizations are involved in various aspects of radiation protection, for example, the International Atomic Energy Agency (IAEA), the United Nations Food and Agriculture Organization (FAO), the United Nations Environment Programme (UNEP), and the World Health Organization (WHO). Two international organizations, however, provide the basic background. These are the International Commission on Radiological Protection (ICRP) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR provides the scientific information on radiation levels and effects. It consists of 21 member countries, with truly international coverage. It issues reports to the UN General Assembly, including comprehensive scientific annexes. Its latest comprehensive report was issued in 1982, the next is expected to be published in 1988. That report will include an assessment of the radiological consequences of the Chernobyl accident. The ICRP is a non-governmental organization. It has issued recommendations on radiation protection since 1928. The postulated biological basis for radiation protection recommendations involves two types of biological effects. The so-called non-stochastic effects, mainly due to cell death, appear only when the radiation doses exceed a certain threshold value. These effects, therefore, can only appear after high accidental exposures. After the Chernobyl accident, they only affected about 200 individuals involved in fire extinction and rescue work at the damaged nuclear power plant. Stochastic effects, with some simplification, may be seen as the result of initial changes in the genetic code of some surviving cells. If these cells are germ cells, this may lead to hereditary harm. If they are somatic cells, the result could be cancer

  5. International relations

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The French nuclear safety authority (A.S.N.) has participated at different meeting in European Union as nuclear decommissioning assistance programme(N.D.A.P.), Regulatory assistance management group (R.A.M.G.) and Instrument for nuclear safety cooperation (I.N.S.C.). The members of Western European nuclear regulator association (W.E.N.R.A.) met and discussed about the future of W.E.N.R.A. and its representativeness and its cooperation with European nuclear safety regulator group (E.N.S.R.E.G.) and head of European radiation control authorities (H.E.R.C.A.). About International relations it is to noticed a meeting at the invitation of IAEA to discuss about the possibility to resort to the Ines scale for medical events. An audit mission under the IAEA aegis stood at Fessenheim, O.S.A.R.T. for operational safety review team. Two years and a half passed by between the audit mission Integrated regulatory review service (I.R.S.S.) welcome by A.S.N. in november 2006 and the audit mission follow up in 2009, 12 experts from 11 different countries and coordinated by three representatives of IAEA worked, the conclusions were that 90% of recommendations made to A.S.N. in 2006 were treated in a satisfying way; the evaluation gives three new recommendations, 7 new suggestions and 11 new correct practices. A meeting of the commission on safety standards (C.S.S.) stood in april 2009. Some others meeting are to be noticed: nuclear safety and security group (N.S.S.G.), expert group on nuclear and radiation safety (E.G.N.R.S.) instituted by the council of the Baltic sea states (C.B.S.S.) treats data exchange on the national networks of dose rates and surveillance of radioactivity in air. International nuclear regulator association (I.N.R.A.) held its first meeting in april 2009 at Seoul (Korea). Bilateral relations with Poland, Italy, Ukraine and Germany planed cooperation or information exchange in the field of nuclear safety. Participation to conference in Usa, meetings with United

  6. Insulin internalization in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Galan, J.; Trankina, M.; Noel, R.; Ward, W.

    1990-01-01

    This project was designed to determine whether neomycin, an aminoglycoside antibiotic, has a significant effect upon the pathways of ligand endocytosis in isolated rat hepatocytes. The pathways studied include receptor-mediated endocytosis and fluid-phase endocytosis. Neomycin causes a dose-dependent acceleration of 125 I-insulin internalization. Since fluid-phase endocytosis can also be a significant factor in 125 I-insulin internalization, lucifer yellow (LY), a marker for fluid-phase endocytosis, was incorporated into an assay similar to the 125 I-insulin internalization procedure. In the presence of 5 mM neomycin, a significant increase in LY uptake was evident at 0.2 and 0.4 mg/ml of LY. At 0.8 mg/ml, a decrease in LY uptake was observed. The increased rate of 125 I-insulin internalization in the presence of neomycin was intriguing. Since one action of neomycin is to inhibit phosphoinositidase C, it suggests that the phosphotidylinositol cycle may be involved in ligand internalization by hepatocytes. At low insulin concentrations, receptor-mediated uptake predominates. Fluid-phase uptake can become an important uptake route as insulin concentrations are increased. Since neomycin stimulates fluid-phase endocytosis, it must also be taken into account when measuring ligand internalization

  7. Insulin internalization in isolated rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Galan, J.; Trankina, M.; Noel, R.; Ward, W. (St. Mary' s Univ., San Antonio, TX (United States))

    1990-02-26

    This project was designed to determine whether neomycin, an aminoglycoside antibiotic, has a significant effect upon the pathways of ligand endocytosis in isolated rat hepatocytes. The pathways studied include receptor-mediated endocytosis and fluid-phase endocytosis. Neomycin causes a dose-dependent acceleration of {sup 125}I-insulin internalization. Since fluid-phase endocytosis can also be a significant factor in {sup 125}I-insulin internalization, lucifer yellow (LY), a marker for fluid-phase endocytosis, was incorporated into an assay similar to the {sup 125}I-insulin internalization procedure. In the presence of 5 mM neomycin, a significant increase in LY uptake was evident at 0.2 and 0.4 mg/ml of LY. At 0.8 mg/ml, a decrease in LY uptake was observed. The increased rate of {sup 125}I-insulin internalization in the presence of neomycin was intriguing. Since one action of neomycin is to inhibit phosphoinositidase C, it suggests that the phosphotidylinositol cycle may be involved in ligand internalization by hepatocytes. At low insulin concentrations, receptor-mediated uptake predominates. Fluid-phase uptake can become an important uptake route as insulin concentrations are increased. Since neomycin stimulates fluid-phase endocytosis, it must also be taken into account when measuring ligand internalization.

  8. Evolutionary analysis of functional divergence among chemokine receptors, decoy receptors and viral receptors

    Directory of Open Access Journals (Sweden)

    Hiromi eDaiyasu

    2012-07-01

    Full Text Available Chemokine receptors (CKRs function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologues with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback-Leibler (KL information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand-binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors.

  9. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  10. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    International Nuclear Information System (INIS)

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced 155 Eu: 3+ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor

  11. Atypical B cell receptor signaling: straddling immune diseases and cancer.

    Science.gov (United States)

    Faris, Mary

    2013-08-01

    The B-cell receptor (BCR) signaling pathway plays an essential role in the survival, proliferation, differentiation and trafficking of lymphocytic. Recent findings associate aberrant BCR signaling with specific disease pathologies, including B-cell malignancies and autoimmune disorders. Inhibition of the BCR signaling pathway may therefore provide promising new strategies for the treatment of B-cell diseases. This special issue of International Reviews of Immunology focuses on atypical B-cell receptor signaling, its role in immune diseases and cancer, and its implications for potential therapeutic intervention.

  12. β-Arrestin Mediates β1-Adrenergic Receptor-Epidermal Growth Factor Receptor Interaction and Downstream Signaling*

    Science.gov (United States)

    Tilley, Douglas G.; Kim, Il-Man; Patel, Priyesh A.; Violin, Jonathan D.; Rockman, Howard A.

    2009-01-01

    β1-Adrenergic receptor (β1AR) stimulation confers cardioprotection via β-arrestin-de pend ent transactivation of epidermal growth factor receptors (EGFRs), however, the precise mechanism for this salutary process is unknown. We tested the hypothesis that the β1AR and EGFR form a complex that differentially directs intracellular signaling pathways. β1AR stimulation and EGF ligand can each induce equivalent EGFR phos pho ryl a tion, internalization, and downstream activation of ERK1/2, but only EGF ligand causes translocation of activated ERK to the nucleus, whereas β1AR-stimulated/EGFR-transactivated ERK is restricted to the cytoplasm. β1AR and EGFR are shown to interact as a receptor complex both in cell culture and endogenously in human heart, an interaction that is selective and undergoes dynamic regulation by ligand stimulation. Although catecholamine stimulation mediates the retention of β1AR-EGFR interaction throughout receptor internalization, direct EGF ligand stimulation initiates the internalization of EGFR alone. Continued interaction of β1AR with EGFR following activation is dependent upon C-terminal tail GRK phos pho ryl a tion sites of the β1AR and recruitment of β-arrestin. These data reveal a new signaling paradigm in which β-arrestin is required for the maintenance of a β1AR-EGFR interaction that can direct cytosolic targeting of ERK in response to catecholamine stimulation. PMID:19509284

  13. Characterization of methadone as a β-arrestin-biased μ-opioid receptor agonist

    Science.gov (United States)

    Doi, Seira; Mori, Tomohisa; Uzawa, Naoki; Arima, Takamichi; Takahashi, Tomoyuki; Uchida, Masashi; Yawata, Ayaka; Narita, Michiko; Uezono, Yasuhito; Suzuki, Tsutomu

    2016-01-01

    Background Methadone is a unique µ-opioid receptor agonist. Although several researchers have insisted that the pharmacological effects of methadone are mediated through the blockade of NMDA receptor, the underlying mechanism by which methadone exerts its distinct pharmacological effects compared to those of other µ-opioid receptor agonists is still controversial. In the present study, we further investigated the pharmacological profile of methadone compared to those of fentanyl and morphine as measured mainly by the discriminative stimulus effect and in vitro assays for NMDA receptor binding, µ-opioid receptor-internalization, and µ-opioid receptor-mediated β-arrestin recruitment. Results We found that fentanyl substituted for the discriminative stimulus effects of methadone, whereas a relatively high dose of morphine was required to substitute for the discriminative stimulus effects of methadone in rats. Under these conditions, the non-competitive NMDA receptor antagonist MK-801 did not substitute for the discriminative stimulus effects of methadone. In association with its discriminative stimulus effect, methadone failed to displace the receptor binding of MK801 using mouse brain membrane. Methadone and fentanyl, but not morphine, induced potent µ-opioid receptor internalization accompanied by the strong recruitment of β-arrestin-2 in µ-opioid receptor-overexpressing cells. Conclusions These results suggest that methadone may, at least partly, produce its pharmacological effect as a β-arrestin-biased µ-opioid receptor agonist, similar to fentanyl, and NMDA receptor blockade is not the main contributor to the pharmacological profile of methadone. PMID:27317580

  14. Flavivirus Entry Receptors: An Update

    Directory of Open Access Journals (Sweden)

    Manuel Perera-Lecoin

    2013-12-01

    Full Text Available Flaviviruses enter host cells by endocytosis initiated when the virus particles interact with cell surface receptors. The current model suggests that flaviviruses use at least two different sets of molecules for infectious entry: attachment factors that concentrate and/or recruit viruses on the cell surface and primary receptor(s that bind to virions and direct them to the endocytic pathway. Here, we present the currently available knowledge regarding the flavivirus receptors described so far with specific attention to C-type lectin receptors and the phosphatidylserine receptors, T-cell immunoglobulin and mucin domain (TIM and TYRO3, AXL and MER (TAM. Their role in flavivirus attachment and entry as well as their implication in the virus biology will be discussed in depth.

  15. Receptor concentration and diffusivity control multivalent binding of Sv40 to membrane bilayers.

    Directory of Open Access Journals (Sweden)

    Oliwia M Szklarczyk

    Full Text Available Incoming Simian Virus 40 particles bind to their cellular receptor, the glycolipid GM1, in the plasma membrane and thereby induce membrane deformation beneath the virion leading to endocytosis and infection. Efficient membrane deformation depends on receptor lipid structure and the organization of binding sites on the internalizing particle. To determine the role of receptor diffusion, concentration and the number of receptors required for stable binding in this interaction, we analyze the binding of SV40 to GM1 in supported membrane bilayers by computational modeling based on experimental data. We measure the diffusion rates of SV40 virions in solution by fluorescence correlation spectroscopy and of the receptor in bilayers by single molecule tracking. Quartz-crystal microbalance with dissipation (QCM-D is used to measure binding of SV40 virus-like particles to bilayers containing the viral receptor GM1. We develop a phenomenological stochastic dynamics model calibrated against this data, and use it to investigate the early events of virus attachment to lipid membranes. Our results indicate that SV40 requires at least 4 attached receptors to achieve stable binding. We moreover find that receptor diffusion is essential for the establishment of stable binding over the physiological range of receptor concentrations and that receptor concentration controls the mode of viral motion on the target membrane. Our results provide quantitative insight into the initial events of virus-host interaction at the nanoscopic level.

  16. Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V

    OpenAIRE

    Schmees, C.; Villaseñor, R.; Zheng, W.; Ma, H.; Zerial, M.; Heldin, C.-H.; Hellberg, C.

    2012-01-01

    Receptor tyrosine kinase (RTK) signaling is frequently increased in tumor cells, sometimes as a result of decreased receptor down-regulation. The extent to which the endocytic trafficking routes can contribute to such RTK hyperactivation is unclear. Here, we show for the first time that fibroblast transformation by H-RasG12V induces the internalization of platelet-derived growth factor β-receptor (PDGFRβ) by macropinocytosis, enhancing its signaling activity and increasing anchorage-independe...

  17. Dimerization of nuclear receptors.

    Science.gov (United States)

    Germain, Pierre; Bourguet, William

    2013-01-01

    Multicellular organisms require specific intercellular communication to properly organize the complex body plan during embryogenesis and maintain its properties and functions during the entire life. While growth factors, neurotransmitters, and peptide hormones bind to membrane receptors, thereby inducing the activity of intracellular kinase cascades or the JAK-STAT signaling pathways, other small signaling compounds such as steroid hormones, certain vitamins, and metabolic intermediates enter, or are generated, within the target cells and bind to members of a large family of nuclear receptors (NRs). NRs are ligand-inducible transcription factors that control a plethora of biological phenomena, thus orchestrating complex events like development, organ homeostasis, immune function, and reproduction. NR-NR interactions are of major importance in these regulatory processes, as NRs regulate their target genes by binding to cognate DNA response elements essentially as homo- or heterodimers. A number of structural and functional studies have provided significant insights as to how combinatorial NRs rely on protein-protein contacts that discriminate geometric features of their DNA response elements, thereby allowing both binding site diversity and physiological specificity. Here, we will review our current understanding of NR-NR interactions and provide protocols for a number of experimental approaches that are useful for their study. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. The crystal structure of the interleukin 21 receptor bound to interleukin 21 reveals that a sugar chain interacting with the WSXWS motif is an integral part of the interleukin 21 receptor

    DEFF Research Database (Denmark)

    Hamming, Ole Jensen; Kang, Lishan; Svensson, Anders

    2012-01-01

    is the class I cytokine receptor signature motif (WSXWS). The exact role of this motif has not been determined yet, however, it has been implicated in diverse functions including ligand binding, receptor internalization, proper folding, and export as well as signal transduction. Furthermore, the WXXW is known...

  19. Receptor studies in biological psychiatry

    International Nuclear Information System (INIS)

    Fujiwara, Yutaka

    1992-01-01

    Recent advances in the pharmacological treatment of endogenous psychosis have led to the development of biological studies in psychiatry. Studies on neurotransmitter receptors were reviewed in order to apply positron-emission tomograph (PET) for biological psychiatry. The dopamine (DA) hypothesis for schizophrenia was advanced on the basis of the observed effects of neuroleptics and methamphetamine, and DA(D 2 ) receptor supersensitivity measured by PET and receptor binding in the schizophrenic brain. The clinical potencies of neuroleptics for schizophrenia were correlated with their abilities to inhibit the D 2 receptor, and not other receptors. The σ receptor was expected to be a site of antipsychotic action. However, the potency of drugs action on it was not correlated with clinical efficacy. Haloperidol binds with high affinity to the σ receptor, which may mediate acute dystonia, an extrapyramidal side effect of neuroleptics. Behavioral and neurochemical changes induced by methamphetamine treatment were studied as an animal model of schizophrenia, and both a decrease of D 2 receptor density and an increase of DA release were detected. The monoamine hypothesis for manic-depressive psychosis was advanced on the basis of the effect of reserpine, monoamine oxidase inhibitor and antidepressants. 3 H-clonidine binding sites were increased in platelet membranes of depressive patients, 3 H-imipramine binding sites were decreased. The GABA A receptor is the target site for the action of anxiolytics and antiepileptics such as benzodiazepines and barbiturates. Recent developments in molecular biology techniques have revealed the structure of receptor proteins, which are classified into two receptor families, the G-protein coupled type (D 2 ) and the ion-channel type (GABA A ). (J.P.N.)

  20. Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease

    Directory of Open Access Journals (Sweden)

    Luigi F. Agnati

    2007-01-01

    Full Text Available It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers, but clusters of receptors (receptor mosaics, altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.

  1. Differential regulation by agonist and phorbol ester of cloned m1 and m2 muscarinic acetylcholine receptors in mouse Y1 adrenal cells and in Y1 cells deficient in cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Scherer, N.M.; Nathanson, N.M.

    1990-01-01

    Cloned muscarinic acetylcholine m1 and m2 receptors were expressed in stably transfected mouse Y1 adrenal cells and in a variant Y1 line, Kin-8, which is deficient in cAMP-dependent protein kinase activity (PKA - ). m1 and m2 receptors were rapidly internalized following exposure of transfected PKA + or PKA - cells to the muscarinic agonist carbachol. Thus, agonist-dependent internalization of m1 and m2 did not require PKA activity. A differential effect of PKA on regulation by agonist of the m2 receptor, but not the m1 receptor, was unmasked in PKA - cells. These data indicate that the basal activity of PKA may modulate the agonist-dependent internalization of the m2 receptor, but not the m1 receptor. The internalization of the m1 and m2 receptors in both PKA + and PKA - cells was accompanied by desensitization of functional responses. Exposure of PKA + cells to 10 -7 M phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, resulted in a 30 ± 9% decrease in the number of m1 receptors on the cell surface. The m2 receptor was not internalized following treatment of either PKA + or PKA - cells with PMA. Thus, the m1 and m2 receptors show differential sensitivity to internalization by PMA. Agonist-dependent internalization of the m1 receptor appeared to be independent of activation of PKC because (1) agonist-dependent internalization of m1 was not attenuated in PKA - cells, (2) the rate and extent of internalization of m1 in cells exposed to PMA were less than those in cells exposed to agonist, and (3) treatment of cells with concanavalin A selectivity blocked internalization of m1 in cells exposed to PMA, but not to agonist. The effects of agonist and PMA on receptor internalization were not additive. Exposure of PKA + or PKA - cells to PMA reduced the magnitude of pilocarpine-stimulated PI hydrolysis by about 25%

  2. Scavenger Receptor Structure and Function in Health and Disease

    Directory of Open Access Journals (Sweden)

    Izma Abdul Zani

    2015-05-01

    Full Text Available Scavenger receptors (SRs are a ‘superfamily’ of membrane-bound receptors that were initially thought to bind and internalize modified low-density lipoprotein (LDL, though it is currently known to bind to a variety of ligands including endogenous proteins and pathogens. New family of SRs and their properties have been identified in recent years, and have now been classified into 10 eukaryote families, defined as Classes A-J. These receptors are classified according to their sequences, although in each class they are further classified based in the variations of the sequence. Their ability to bind a range of ligands is reflected on the biological functions such as clearance of modified lipoproteins and pathogens. SR members regulate pathophysiological states including atherosclerosis, pathogen infections, immune surveillance, and cancer. Here, we review our current understanding of SR structure and function implicated in health and disease.

  3. Requirement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor for selected GH-stimulated function

    DEFF Research Database (Denmark)

    Lobie, P E; Allevato, G; Norstedt, G

    1995-01-01

    We have examined the involvement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor in the cellular response to GH. Stable Chinese hamster ovary (CHO) cell clones expressing a receptor with tyrosine residues at position 333 and 338 of the receptor substituted for phenylalanine...... (CHO-GHR1-638 Y333F, Y338F) were generated by cDNA transfection. Compared with the wild type receptor the Y333F,Y338F mutant possessed normal high affinity ligand binding, hormone internalization, and ligand-induced receptor down-regulation. GH activation of mitogen-associated protein kinase was also...... similar in CHO clones expressing similar wild type and Y333F,Y338F receptor number. However, two GH-regulated cellular events (lipogenesis, and protein synthesis) were deficient in the tyrosine substituted receptor. In contrast, transcriptional regulation by GH (as evidenced by chloramphenicol...

  4. Peptide Receptor Radionuclide Therapy & Oncology

    NARCIS (Netherlands)

    H. Bergsma (Hendrik)

    2017-01-01

    markdownabstractNeuroendocrine tumors (NETs) are rare neoplasms with differences in clinical presentation, course and prognosis. Most of the NETs express the somatostatine receptor, which can be utilized for imaging and therapy. Radiolabeled somatostatin analogs can be used for peptide receptor

  5. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting

  6. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.

    2015-01-01

    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  7. Quantification of GPCR internalization by single-molecule microscopy in living cells.

    NARCIS (Netherlands)

    Serge, A.; Keijzer, S. de; Hemert, F. Van; Hickman, M.R.; Hereld, D.; Spaink, H.P.; Schmidt, T.; Snaar-Jagalska, B.E.

    2011-01-01

    Receptor internalization upon ligand stimulation is a key component of a cell's response and allows a cell to correctly sense its environment. Novel fluorescent methods have enabled the direct visualization of the agonist-stimulated G-protein-coupled receptors (GPCR) trafficking in living cells.

  8. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  9. Probing Biased Signaling in Chemokine Receptors

    DEFF Research Database (Denmark)

    Amarandi, Roxana Maria; Hjortø, Gertrud Malene; Rosenkilde, Mette Marie

    2016-01-01

    The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptor...

  10. Dopamine Receptors and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Shin Hisahara

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive extrapyramidal motor disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS. In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.

  11. Ryanodine receptor channelopathies

    Science.gov (United States)

    Betzenhauser, Matthew J.

    2010-01-01

    Ryanodine receptors (RyR) are intracellular Ca2+-permeable channels that provide the sarcoplasmic reticulum Ca2+ release required for skeletal and cardiac muscle contractions. RyR1 underlies skeletal muscle contraction, and RyR2 fulfills this role in cardiac muscle. Over the past 20 years, numerous mutations in both RyR isoforms have been identified and linked to skeletal and cardiac diseases. Malignant hyperthermia, central core disease, and catecholaminergic polymorphic ventricular tachycardia have been genetically linked to mutations in either RyR1 or RyR2. Thus, RyR channelopathies are both of interest because they cause significant human diseases and provide model systems that can be studied to elucidate important structure–function relationships of these ion channels. PMID:20179962

  12. Molecular characterization of opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Howard, A.D.

    1986-01-01

    The aim of this research was to purify and characterize active opioid receptors and elucidate molecular aspects of opioid receptor heterogeneity. Purification to apparent homogeneity of an opioid binding protein from bovine caudate was achieved by solubilization in the non-ionic detergent, digitonin, followed by sequential chromatography on the opiate affinity matrix, ..beta..-naltrexylethylenediamine-CH-Sepharose 4B, and on the lectine affinity matrix, wheat germ agglutinin-agarose. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) followed by autoradiography revealed that radioiodinated purified receptor gave a single band. Purified receptor preparations showed a specific activity of 12,000-15,000 fmol of opiate bound per mg of protein. Radioiodinated human beta-endorphin (/sup 125/I-beta-end/sub H/) was used as a probe to investigate the ligand binding subunits of mu and delta opioid receptors. /sup 125/I-beta-end/sub H/ was shown to bind to a variety of opioid receptor-containing tissues with high affinity and specificity with preference for mu and delta sites, and with little, if any, binding to kappa sites. Affinity crosslinking techniques were employed to covalently link /sup 125/I-beta-end/sub H/ to opioid receptors, utilizing derivatives of bis-succinimidyl esters that are bifunctional crosslinkers with specificities for amino and sulfhydryl groups. This, and competition experiments with high type-selective ligands, permitted the assignment of two labeled peptides to their receptor types, namely a peptide of M/sub r/ = 65,000 for mu receptors and one of M/sub r/ = 53,000 for delta receptors.

  13. Odin (ANKS1A modulates EGF receptor recycling and stability.

    Directory of Open Access Journals (Sweden)

    Jiefei Tong

    Full Text Available The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable.

  14. Community College Internal Auditors: Internal Audit Guidebook.

    Science.gov (United States)

    Jones, Ronna; And Others

    This guidebook includes information compiled by the "Audit Manual" committee of Community College Internal Auditors (CCIA) from several California community college districts regarding their internal auditing practices. The first section of the guidebook discusses the purpose of internal audits, indicating that audits assist members of…

  15. Nuclear fuel cycle: international market, international constraints and international cooperation

    International Nuclear Information System (INIS)

    Imai, R.

    1977-01-01

    Some of the constraints on the nuclear fuel cycle are ones arising from economic and financial reasons, those caused by uranium resources and their distribution, those arising from technical reasons, issues of public acceptance, and those quite independent of normal industrial considerations, but caused by elements of international politics. The nuclear fuel cycle and the international market, matters of nuclear non-proliferation, and international cooperation are discussed

  16. Correlated receptor transport processes buffer single-cell heterogeneity.

    Science.gov (United States)

    Kallenberger, Stefan M; Unger, Anne L; Legewie, Stefan; Lymperopoulos, Konstantinos; Klingmüller, Ursula; Eils, Roland; Herten, Dirk-Peter

    2017-09-01

    Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  17. Heterodimeric coiled-coil interactions of human GABAB receptor.

    Science.gov (United States)

    Burmakina, Svetlana; Geng, Yong; Chen, Yan; Fan, Qing R

    2014-05-13

    Metabotropic GABAB receptor is a G protein-coupled receptor that mediates inhibitory neurotransmission in the CNS. It functions as an obligatory heterodimer of GABAB receptor 1 (GBR1) and GABAB receptor 2 (GBR2) subunits. The association between GBR1 and GBR2 masks an endoplasmic reticulum (ER) retention signal in the cytoplasmic region of GBR1 and facilitates cell surface expression of both subunits. Here, we present, to our knowledge, the first crystal structure of an intracellular coiled-coil heterodimer of human GABAB receptor. We found that polar interactions buried within the hydrophobic core determine the specificity of heterodimer pairing. Disruption of the hydrophobic coiled-coil interface with single mutations in either subunit impairs surface expression of GBR1, confirming that the coiled-coil interaction is required to inactivate the adjacent ER retention signal of GBR1. The coiled-coil assembly buries an internalization motif of GBR1 at the heterodimer interface. The ER retention signal of GBR1 is not part of the core coiled-coil structure, suggesting that it is sterically shielded by GBR2 upon heterodimer formation.

  18. Correlated receptor transport processes buffer single-cell heterogeneity.

    Directory of Open Access Journals (Sweden)

    Stefan M Kallenberger

    2017-09-01

    Full Text Available Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.

  19. Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis

    International Nuclear Information System (INIS)

    Ceridono, Mara; Belleudi, Francesca; Ceccarelli, Simona; Torrisi, Maria Rosaria

    2005-01-01

    Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCγ binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCγ as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR

  20. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance?

    Science.gov (United States)

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.

  1. Estradiol-induced estrogen receptor-alpha trafficking.

    Science.gov (United States)

    Bondar, Galyna; Kuo, John; Hamid, Naheed; Micevych, Paul

    2009-12-02

    Estradiol has rapid actions in the CNS that are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca(2+)](i)) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERalpha has an extracellular portion. In addition to the full-length ERalpha [apparent molecular weight (MW), 66 kDa], surface biotinylation labeled an ERalpha-immunoreactive protein (MW, approximately 52 kDa) identified by both COOH- and NH(2)-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 and 52 kDa ERalpha. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24-48 h reduced ERalpha levels, suggesting receptor downregulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERalpha-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERalpha trafficking to and from the membrane. Estradiol-induced [Ca(2+)](i) flux was also significantly increased at the time of peak ERalpha activation/internalization. These results demonstrate that ERalpha is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERalpha are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERalpha to augment and then terminate membrane-initiated signaling.

  2. Estradiol-induced estrogen receptor-α trafficking

    Science.gov (United States)

    Bondar, Galyna; Kuo, John; Hamid, Naheed; Micevych, Paul

    2010-01-01

    Estradiol has rapid actions in the central nervous system, which are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca2+]i) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERα has an extracellular portion. In addition to the full length ERα (apparent M.W. 66 kDa), surface biotinylation labeled an ERα-immunoreactive protein (M.W. ~ 52 kDa) identified by both COOH- and NH2-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 kDa and 52 kDa ERα. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24–48 hr reduced ERα levels, suggesting receptor down-regulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERα-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERα trafficking to and from the membrane. Estradiol-induced [Ca2+]i flux was also significantly increased at the time of peak ERα activation/internalization. These results demonstrate that ERα is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERα are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERα to augment and then terminate membrane-initiated signaling. PMID:19955385

  3. Multistep change in epidermal growth factor receptors during spontaneous neoplastic progression in Chinese hamster embryo fibroblasts

    International Nuclear Information System (INIS)

    Wakshull, E.; Kraemer, P.M.; Wharton, W.

    1985-01-01

    Whole Chinese hamster embryo lineages have been shown to undergo multistep spontaneous neoplastic progression during serial passage in culture. The authors have studied the binding, internalization, and degradation of 125 I-labeled epidermal growth factor at four different stages of transformation. The whole Chinese hamster embryo cells lost cell surface epidermal growth factor receptors gradually during the course of neoplastic progression until only 10% of the receptor number present in the early-passage cells (precrisis) were retained in the late-passage cells (tumorigenic). No differences in internalization rates, chloroquine sensitivity, or ability to degrade hormone between the various passage levels were seen. No evidence for the presence in conditioned medium of transforming growth factors which might mask or down-regulate epidermal growth factor receptor was obtained. These results suggest that a reduction in cell surface epidermal growth factor receptor might be an early event during spontaneous transformation in whole Chinese hamster embryo cells

  4. Ninth international symposium on radiopharmacology

    International Nuclear Information System (INIS)

    1995-01-01

    The goal of this Symposium is to provide a forum for those international scientists involved in applying the principles of pharmacology and radiation biology to the development of agents for the diagnosis and treatment of disease. The program will highlight state-of-the-art progress in the development of those agents used in conjunction with some form of radiation such as radiopharmaceuticals, radiopaques, photo- and radiosensitizing drugs, and neutron capture agents. An underlying pharmacokinetic parameter associated with all these agents is the need for site-specific delivery to an organ or tumor. Therefore, a major goal of the symposium will be to address those pharmacologic principles for targeting molecules to specific tissue sites. Accordingly, session themes will include receptor-mediated processes, membrane transporters, antibody interactions, metabolic trapping, and oligonucleotide-antisense mechanisms

  5. Ninth international symposium on radiopharmacology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The goal of this Symposium is to provide a forum for those international scientists involved in applying the principles of pharmacology and radiation biology to the development of agents for the diagnosis and treatment of disease. The program will highlight state-of-the-art progress in the development of those agents used in conjunction with some form of radiation such as radiopharmaceuticals, radiopaques, photo- and radiosensitizing drugs, and neutron capture agents. An underlying pharmacokinetic parameter associated with all these agents is the need for site-specific delivery to an organ or tumor. Therefore, a major goal of the symposium will be to address those pharmacologic principles for targeting molecules to specific tissue sites. Accordingly, session themes will include receptor-mediated processes, membrane transporters, antibody interactions, metabolic trapping, and oligonucleotide-antisense mechanisms.

  6. Melanoma International Foundation

    Science.gov (United States)

    ... the state of Pennsylvania, certificate #29498 © 2013 Melanoma International Foundation. All Rights Reserved. Privacy Policy | Terms of Use Toll-free: 866-463-6663 International: 610-942-3432 Melanoma International Foundation 250 Mapleflower ...

  7. Corticosteroids decrease glomerular angiotensin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, J.G.

    1987-03-01

    Angiotensin II (ANG II) receptors of glomerular mesangial cells are regulated in vivo by changes in Na balance, effects that are presumed to be secondary to changes in circulating ANG II. However, since changes in ANG II were accompanied by parallel changes in plasma aldosterone in all models tested, it is possible that aldosterone may have also participated in the modulation of glomerular ANG II receptors. To test this hypothesis, short-term aldosterone infusions within the physiological range were employed to favor actions that would be mediated through a high-affinity mineralocorticoid receptor. The glucocorticoid, dexamethasone, was also tested to determine the mineralocorticoid specificity of the response. Two infusion rates were associated with a decrease in glomerular /sup 125/I ANG II receptor density of 33 and 45%, respectively. Serum potassium and urinary Na/K ratio were lower in the aldosterone group. Spironolactone abolished the effect of aldosterone consistent with an action mediated through a specific mineralocorticoid receptor. These studies support the hypothesis that corticosteroids modulate glomerular ANG II receptors and validate the complexity of glomerular receptor modulation. The downregulation observed would be expected to diminish the ability of ANG II to influence glomerular hemodynamics in models such as mineralocorticoid and glucocorticoid-induced hypertension.

  8. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  9. Lysophospholipid receptors in drug discovery.

    Science.gov (United States)

    Kihara, Yasuyuki; Mizuno, Hirotaka; Chun, Jerold

    2015-05-01

    Lysophospholipids (LPs), including lysophosphatidic acid (LPA), sphingosine 1-phospate (S1P), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LysoPS), are bioactive lipids that transduce signals through their specific cell-surface G protein-coupled receptors, LPA1-6, S1P1-5, LPI1, and LysoPS1-3, respectively. These LPs and their receptors have been implicated in both physiological and pathophysiological processes such as autoimmune diseases, neurodegenerative diseases, fibrosis, pain, cancer, inflammation, metabolic syndrome, bone formation, fertility, organismal development, and other effects on most organ systems. Advances in the LP receptor field have enabled the development of novel small molecules targeting LP receptors for several diseases. Most notably, fingolimod (FTY720, Gilenya, Novartis), an S1P receptor modulator, became the first FDA-approved medicine as an orally bioavailable drug for treating relapsing forms of multiple sclerosis. This success is currently being followed by multiple, mechanistically related compounds targeting S1P receptor subtypes, which are in various stages of clinical development. In addition, an LPA1 antagonist, BMS-986020 (Bristol-Myers Squibb), is in Phase 2 clinical development for treating idiopathic pulmonary fibrosis, as a distinct compound, SAR100842 (Sanofi) for the treatment of systemic sclerosis and related fibrotic diseases. This review summarizes the current state of drug discovery in the LP receptor field. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. T cell receptor zeta allows stable expression of receptors containing the CD3gamma leucine-based receptor-sorting motif

    DEFF Research Database (Denmark)

    Dietrich, J; Geisler, C

    1998-01-01

    The leucine-based motif in the T cell receptor (TCR) subunit CD3gamma constitutes a strong internalization signal. In fully assembled TCR this motif is inactive unless phosphorylated. In contrast, the motif is constitutively active in CD4/CD3gamma and Tac/CD3gamma chimeras independently of phosph......The leucine-based motif in the T cell receptor (TCR) subunit CD3gamma constitutes a strong internalization signal. In fully assembled TCR this motif is inactive unless phosphorylated. In contrast, the motif is constitutively active in CD4/CD3gamma and Tac/CD3gamma chimeras independently...... to mask the CD3gamma leucine-based motif. By studying CD4/CD3gamma and CD16/CD3gamma chimeras, we found that CD16/CD3gamma chimeras associated with TCRzeta. The CD16/CD3gamma-TCRzeta complexes were stably expressed at the cell surface and had a low spontaneous internalization rate, indicating...... that the leucine-based motif in these complexes was inactive. In contrast, the CD4/CD3gamma chimeras did not associate with TCRzeta, and the leucine-based motif in these chimeras was constitutively active resulting in a high spontaneous internalization rate and low expression of the chimeras at the cell surface...

  11. Megalin functions as an endocytic sonic hedgehog receptor.

    Science.gov (United States)

    McCarthy, Robert A; Barth, Jeremy L; Chintalapudi, Mastan R; Knaak, Christian; Argraves, W Scott

    2002-07-12

    Embryos deficient in the morphogen Sonic hedgehog (Shh) or the endocytic receptor megalin exhibit common neurodevelopmental abnormalities. Therefore, we have investigated the possibility that a functional relationship exists between the two proteins. During embryonic development, megalin was found to be expressed along the apical surfaces of neuroepithelial cells and was coexpressed with Shh in the ventral floor plate of the neural tube. Using enzyme-linked immunosorbent assay, homologous ligand displacement, and surface plasmon resonance techniques, it was found that the amino-terminal fragment of Shh (N-Shh) bound to megalin with high affinity. Megalin-expressing cells internalized N-Shh through a mechanism that was inhibited by antagonists of megalin, viz. anti-receptor-associated protein and anti-megalin antibodies. Heparin also inhibited N-Shh endocytosis, implicating proteoglycans in the internalization process, as has been described for other megalin ligands. Use of chloroquine to inhibit lysosomal proteinase activity showed that N-Shh endocytosed via megalin was not efficiently targeted to the lysosomes for degradation. The ability of megalin-internalized N-Shh to bypass lysosomes may relate to the finding that the interaction between N-Shh and megalin was resistant to dissociation with low pH. Together, these findings show that megalin is an efficient endocytic receptor for N-Shh. Furthermore, they implicate megalin as a new regulatory component of the Shh signaling pathway.

  12. Disruption of the 37-kDa/67-kDa laminin receptor gene in bovine ...

    African Journals Online (AJOL)

    The 37-kDa/67-kDa laminin receptor (LRP/LR), also known as ribosomal protein SA (RPSA), acts as a cell surface receptor for prions and plays an important role in internalization of cellular prion protein. In this study, we knocked out the part of prion binding sites (aa 161-205) by gene targeting in the bovine fetal fibroblasts ...

  13. Synthesis of fluorogenic polymers for visualizing cellular internalization.

    Science.gov (United States)

    Mangold, Shane L; Carpenter, Rachael T; Kiessling, Laura L

    2008-07-17

    The binding of a polymeric ligand to a cell surface receptor can promote its internalization. Methods to track and visualize multivalent ligands within a cell can give rise to new therapeutic strategies and illuminate signaling processes. We have used the features of the ring-opening metathesis polymerization (ROMP) to develop a general strategy for synthesizing multivalent ligands equipped with a latent fluorophore. The utility of ligands of this type is highlighted by visualizing multivalent antigen internalization in live B cells.

  14. Studying the Dynamics of TCR Internalization at the Immune Synapse.

    Science.gov (United States)

    Calleja, Enrique; Alarcón, Balbino; Oeste, Clara L

    2017-01-01

    Establishing a stable interaction between a T cell and an antigen presenting cell (APC) involves the formation of an immune synapse (IS). It is through this structure that the T cell can integrate all the signals provided by the APC. The IS also serves as a mechanism for TCR downregulation through internalization. Here, we describe methods for visualizing MHC-engaged T cell receptor (TCR) internalization from the IS in human cell lines and mouse primary T cells by confocal fluorescence microscopy techniques.

  15. Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors-A Consequence of Evolutionary Pressure?

    DEFF Research Database (Denmark)

    Mølleskov-Jensen, Ann-Sofie; Sparre-Ulrich, Alexander Hovard; Davis-Poynter, Nicholas

    2012-01-01

    Several herpes- and poxviruses have captured chemokine receptors from their hosts and modified these to their own benefit. The human and viral chemokine receptors belong to class A 7 transmembrane (TM) receptors which are characterized by several structural motifs like the DRY-motif in TM3...... and the C-terminal tail. In the DRY-motif, the arginine residue serves important purposes by being directly involved in G protein coupling. Interestingly, among the viral receptors there is a greater diversity in the DRY-motif compared to their endogenous receptor homologous. The C-terminal receptor tail...... constitutes another regulatory region that through a number of phosphorylation sites is involved in signaling, desensitization, and internalization. Also this region is more variable among virus-encoded 7TM receptors compared to human class A receptors. In this review we will focus on these two structural...

  16. Quantitative receptor radioautography in the study of receptor-receptor interactions in the nucleus tractus solitarii

    Directory of Open Access Journals (Sweden)

    Fior-Chadi D.R.

    1998-01-01

    Full Text Available The nucleus tractus solitarii (NTS in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II, neuropeptide Y (NPY and noradrenaline (NA are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on a2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of a2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the a2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II at1 receptors and NPY receptor subtypes with the a2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the a2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension

  17. Implication of 5-HT2B receptors in the serotonin syndrome

    OpenAIRE

    Diaz, Silvina Laura; Maroteaux, Luc

    2011-01-01

    International audience; The serotonin (5-HT) syndrome occurs in humans after antidepressant overdose or combination of drugs inducing a massive increase in extracellular 5-HT. Several 5-HT receptors are known to participate in this syndrome in humans and animal models. The 5-HT(2B) receptor has been proposed as a positive modulator of serotonergic activity, but whether it is involved in 5-HT syndrome has not yet been studied. We analyzed here, a putative role of 5-HT(2B) receptors in this dis...

  18. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...... or slightly lower potencies than (S)-AA [e.g., EC(50) = 76 microM for (2S,4S)-4-methyl-AA (5a) as compared to EC(50) = 35 microM for (S)-AA]. The position of the methyl substituent had a profound effect on the observed pharmacology, whereas the absolute stereochemistry at the methylated carbon atom had a very......) analogs, and the synthesis, stereochemistry, and enantiopharmacology of 3-methyl-AA (4a-d), 4-methyl-AA (5a-d), 5-methyl-AA (6a-d), and (E)-Delta(4)-5-methyl-AA (7a and 7b) are reported. The compounds were resolved using chiral HPLC and the configurational assignments of the enantiomers were based on X...

  19. Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor

    DEFF Research Database (Denmark)

    Holliday, Nicholas D; Holst, Birgitte; Rodionova, Elena A

    2007-01-01

    and substantially decreased agonist-induced internalization in transiently transfected HEK293 cells. Internalized GhrelinR and GhR-39 were predominantly localized to recycling compartments, identified with transferrin and the monomeric G proteins Rab5 and Rab11. Both the inverse agonist [d-Arg(1), d-Phe(5), d-Trp(7....... Furthermore the interaction between phosphorylated receptors and beta-arrestin adaptor proteins has been examined. Replacement of the FLAG-tagged GhrelinR C tail with the equivalent GPR39 domain (GhR-39 chimera) preserved G(q) signaling. However in contrast to the GhrelinR, GhR-39 receptors exhibited no basal....... In contrast, agonist-stimulated GhrelinRs recruited the clathrin adaptor green fluorescent protein-tagged beta-arrestin2 to endosomes, coincident with increased receptor phosphorylation. Thus, GhrelinR internalization to recycling compartments depends on C-terminal motifs and constitutive activity...

  20. Nuclear Receptor Signaling Atlas (NURSA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  1. L-glutamate Receptor In Paramecium

    Science.gov (United States)

    Bernal-Martínez, Juan; Ortega-Soto, Arturo

    2004-09-01

    Behavioral, electrophysiological and biochemical experiments were performed in order to establish the presence of a glutamate receptor in the ciliate Paramecium. It was found that an AMPA/KA receptor is functionally expressed in Paramecium and that this receptor is immunologically and fillogenetically related to the AMPA/KA receptor present in vertebrates.

  2. Receptor-targeted metalloradiopharmaceuticals. Final technical report

    International Nuclear Information System (INIS)

    Green, Mark A.

    2000-01-01

    Copper (II) and platinum (II) coordination complexes were prepared and characterized. These complexes were designed to afford structural homology with steroidal and non-steroidal estrogens for possible use as receptor-targeted radiopharmaceuticals. While weak affinity for the estrogen receptor was detectable, none would appear to have sufficient receptor-affinity for estrogen-receptor-targeted imaging or therapy

  3. [The receptor theory of atherosclerosis].

    Science.gov (United States)

    Likhoded, V G; Bondarenko, V M; Gintsburg, A L

    2010-01-01

    Lipopolysaccharides of Gram-negative bacteria can interact with Toll-like receptor 4 (TLR4) and induce atheroma formation. The risk of atherosclerosis is decreased in case of TLR4 mutation. Other bacterial ligands and endogenous ligands of TLRs can also be involved in induction of atherogenesis. The general concept of atherosclerosis pathogentsis is presented. According to this concept atherogenesis can be initiated by some reactions resulting from interaction of exogenous and endogenous microbial ligands with Toll-like receptors.

  4. Odorant Receptor Desensitization in Insects

    Directory of Open Access Journals (Sweden)

    Hao Guo

    2017-12-01

    Full Text Available Insects and other arthropods transmit devastating human diseases, and these vectors use chemical senses to target humans. Understanding how these animals detect, respond, and adapt to volatile odorants may lead to novel ways to disrupt host localization or mate recognition in these pests. The past decade has led to remarkable progress in understanding odorant detection in arthropods. Insects use odorant-gated ion channels, first discovered in Drosophila melanogaster , to detect volatile chemicals. In flies, 60 “tuning” receptor subunits combine with a common subunit, Orco ( o dorant r eceptor co receptor to form ligand-gated ion channels. The mechanisms underlying odorant receptor desensitization in insects are largely unknown. Recent work reveals that dephosphorylation of serine 289 on the shared Orco subunit is responsible for slow, odor-induced receptor desensitization. Dephosphorylation has no effect on the localization of the receptor protein, and activation of the olfactory neurons in the absence of odor is sufficient to induce dephosphorylation and desensitization. These findings reveal a major component of receptor modulation in this important group of disease vectors, and implicate a second messenger feedback mechanism in this process.

  5. Nuclear Receptors, RXR, and the Big Bang.

    Science.gov (United States)

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Models og International Entrepreneurship

    DEFF Research Database (Denmark)

    Rask, Morten; Servais, Per

    2015-01-01

    on International Entrepreneurship, and specifically but not exclusively, International New Ventures (INVs). The three resulting ‘meta-models’ depict the activities and loci of such firms, the motivating factors that give rise to such firms and their growth modalities and strategies. These models reflect the merger...... of entrepreneurship and international business into the field of international entrepreneurship....

  7. The International Criminal Court

    DEFF Research Database (Denmark)

    Damgaard, Ciara Therése

    This article considers whether acts of international terrorism can and should be prosecuted before the International Criminal Court as crimes against humanity.......This article considers whether acts of international terrorism can and should be prosecuted before the International Criminal Court as crimes against humanity....

  8. The Internal Audit Outsourcing

    Directory of Open Access Journals (Sweden)

    Grzegorz Gołębiowski

    2010-06-01

    Full Text Available The article explores an issue of the internal audit outsourcing. It indicates the differences between internal audit, outsourcing and cosourcing of this service as well as their advantages and disadvantages. Drawing from the research on internal audit outsourcing the recent market trends were identified as well as motivations for choosing different forms of internal auditing.

  9. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  10. Modulation of the arcuate nucleus-medial preoptic nucleus lordosis regulating circuit: a role for GABAB receptors

    Science.gov (United States)

    Sinchak, Kevin; Dewing, Phoebe; Ponce, Laura; Gomez, Liliana; Christensen, Amy; Berger, Max; Micevych, Paul

    2013-01-01

    Estradiol rapidly activates a microcircuit in the arcuate nucleus of the hypothalamus (ARH) that is needed for maximal female sexual receptivity. Membrane estrogen receptor-α complexes with and signals through the metabotropic glutamate receptor-1a stimulating NPY release within the ARH activating proopiomelanocortin (POMC) neurons. These POMC neurons project to the medial preoptic nucleus (MPN) and release β-endorphin. Estradiol treatment induces activation/internalization of MPN μ-opioid receptors (MOR) to inhibit lordosis. Estradiol membrane action modulates ARH gamma-aminobutyric acid receptor-B (GABAB) activity. We tested the hypothesis that ARH GABAB receptors mediate estradiol-induced MOR activation and facilitation of sexual receptivity. Double label immunohistochemistry revealed expression of GABAB receptors in NPY, ERα and POMC expressing ARH neurons. Approximately 70% of POMC neurons expressed GABAB receptors. Because estradiol initially activates an inhibitory circuit and maintains activation of this circuit, the effects of blocking GABAB receptors were evaluated before estradiol benzoate (EB) treatment and after at the time of lordosis testing. Bilateral infusions of the GABAB receptor antagonist, CGP52432, into the ARH prior to EB treatment of ovariectomized rats prevented estradiol-induced activation/internalization of MPN MOR, and the rats remained unreceptive. However, in EB treated rats, bilateral CGP52432 infusions 30 minutes before behavior testing attenuated MOR internalization and facilitated lordosis. These results indicated that GABAB receptors were located within the lordosis-regulating ARH microcircuit and are necessary for activation and maintenance of the estradiol inhibition of lordosis behavior. Although GABAB receptors positively influence estradiol signaling, they negatively regulate lordosis behavior since GABAB activity maintains the estradiol-induced inhibition. PMID:23756153

  11. Toll-like receptors in neonatal sepsis.

    LENUS (Irish Health Repository)

    O'Hare, Fiona M

    2013-06-01

    Toll-like receptors are vital transmembrane receptors that initiate the innate immune response to many micro-organisms. The discovery of these receptors has improved our understanding of host-pathogen interactions, and these receptors play an important role in the pathogenesis of multiple neonatal conditions such as sepsis and brain injury. Toll-like receptors, especially TLRs 2 and 4, are associated with necrotizing enterocolitis, periventricular leukomalacia and sepsis.

  12. NMDA receptor signaling: death or survival?

    OpenAIRE

    LUO, Tong; WU, Wei-Hua; CHEN, Bo-Shiun

    2011-01-01

    Glutamate-induced neuronal damage is mainly caused by overactivation of N-methyl-D-aspartate (NMDA) receptors. Conversely, normal physiological brain function and neuronal survival require adequate activation of NMDA receptors. Studies have revealed that NMDA receptor-induced neuronal death or survival is mediated through distinct subset of NMDA receptors triggering different intracellular signaling pathways. Here we discuss recent advances in the characterization of NMDA receptors in neurona...

  13. Regulation of NMDA Receptors by Phosphorylation

    OpenAIRE

    Chen, Bo-Shiun; Roche, Katherine W.

    2007-01-01

    N-methyl-D-aspartate (NMDA) receptors are critical for neuronal development and synaptic plasticity. The molecular mechanisms underlying the synaptic localization and functional regulation of NMDA receptors have been the subject of extensive studies. In particular, phosphorylation has emerged as a fundamental mechanism that regulates NMDA receptor trafficking and can alter the channel properties of NMDA receptors. Here we summarize recent advances in the characterization of NMDA receptor phos...

  14. The Air Quality Model Evaluation International Initiative ...

    Science.gov (United States)

    This presentation provides an overview of the Air Quality Model Evaluation International Initiative (AQMEII). It contains a synopsis of the three phases of AQMEII, including objectives, logistics, and timelines. It also provides a number of examples of analyses conducted through AQMEII with a particular focus on past and future analyses of deposition. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  15. Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor.

    Directory of Open Access Journals (Sweden)

    Vanessa Chantreau

    Full Text Available The thyrotropin receptor (TSHR is a G protein-coupled receptor (GPCR that is member of the leucine-rich repeat subfamily (LGR. In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors.

  16. Studies on insulin receptor, 2

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125 I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125 I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  17. Models of international entrepreneurship

    DEFF Research Database (Denmark)

    Rask, Morten; Servais, Per

    2012-01-01

    The purpose with this article is to review models used to describe and explain the establishment and development of international new ventures in order to investigate how and why international new ventures are established and developed. This article attempts an integration of extant theory...... on International Entrepreneurship, and specifically but not exclusively, International New Ventures (INVs). The three resulting ‘meta-models’ depict the activities and loci of such firms (Figure 1), the motivating factors that give rise to such firms (Figure 2) and their growth modalities and strategies (Figure 3......). These models reflect the merger of entrepreneurship and international business into the field of international entrepreneurship. Managers in international entrepreneurial firms and students in international business and entrepreneurship can use the models as framework for understanding international...

  18. Oxidation inhibits PTH receptor signaling and trafficking.

    Science.gov (United States)

    Ardura, Juan A; Alonso, Verónica; Esbrit, Pedro; Friedman, Peter A

    2017-01-22

    Reactive Oxygen Species (ROS) increase during aging, potentially affecting many tissues including brain, heart, and bone. ROS alter signaling pathways and constitute potential therapeutic targets to limit oxidative damaging effects in aging-associated diseases. Parathyroid hormone receptors (PTHR) are widely expressed and PTH is the only anabolic therapy for osteoporosis. The effects of oxidative stress on PTHR signaling and trafficking have not been elucidated. Here, we used Fluorescence Resonance Energy Transfer (FRET)-based cAMP, ERK, and calcium fluorescent biosensors to analyze the effects of ROS on PTHR signaling and trafficking by live-cell imaging. PTHR internalization and recycling were measured in HEK-293 cells stably transfected with HA-PTHR. PTH increased cAMP production, ERK phosphorylation, and elevated intracellular calcium. Pre-incubation with H 2 O 2 reduced all PTH-dependent signaling pathways. These inhibitory effects were not a result of PTH oxidation since PTH incubated with H 2 O 2 triggered similar responses. PTH promoted internalization and recycling of the PTHR. Both events were significantly reduced by H 2 O 2 pre-incubation. These findings highlight the role of oxidation on PTHR signaling and trafficking, and suggest the relevance of ROS as a putative target in diseases associated with oxidative stress such as age-related osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Cloning and expression of the VHDL receptor from fat body of the corn ear worm, Helicoverpa zea

    Directory of Open Access Journals (Sweden)

    Deryck R. Persaud

    2004-02-01

    Full Text Available In Noctuids, storage proteins are taken up into fat body by receptor-mediated endocytosis. These include arylphorin and a second, structurally unrelated very high-density lipoprotein (VHDL. Previously, we have isolated a single storage protein receptor from the corn earworm, Helicoverpa zea, which binds both VHDL and arylphorin. The receptor protein is a basic, N-terminally blocked, ?80 kDa protein that is associated with fat body membranes. Microsequencing of proteolytic fragments of the isolated receptor protein revealed internal sequences that were used to clone the complete cDNA of the VHDL receptor by 3' and 5' RACE techniques. The receptor protein, when expressed in vitro via a suitable insect expression vector, reacted with antibodies against the native VHDL receptor and bound strongly to its ligand VHDL, thus confirming that the cloned cDNA represents indeed the previously purified VHDL receptor. The receptor protein and a second, similar protein also found associated with the fat body membrane show considerable homology to putative basic juvenile hormone suppressible proteins cloned previously from other Noctuid species. Sequence analysis revealed that the receptor is likely a peripheral membrane protein that may mediate the selective uptake of VHDL.

  20. Cloning and expression of the VHDL receptor from fat body of the corn ear worm, Helicoverpa zea.

    Science.gov (United States)

    Persaud, Deryck R; Haunerland, Norbert H

    2004-01-01

    In Noctuids, storage proteins are taken up into fat body by receptor-mediated endocytosis. These include arylphorin and a second, structurally unrelated very high-density lipoprotein (VHDL). Previously, we have isolated a single storage protein receptor from the corn earworm, Helicoverpa zea, which binds both VHDL and arylphorin. The receptor protein is a basic, N-terminally blocked, approximately 80 kDa protein that is associated with fat body membranes. Microsequencing of proteolytic fragments of the isolated receptor protein revealed internal sequences that were used to clone the complete cDNA of the VHDL receptor by 3' and 5' RACE techniques. The receptor protein, when expressed in vitro via a suitable insect expression vector, reacted with antibodies against the native VHDL receptor and bound strongly to its ligand VHDL, thus confirming that the cloned cDNA represents indeed the previously purified VHDL receptor. The receptor protein and a second, similar protein also found associated with the fat body membrane show considerable homology to putative basic juvenile hormone suppressible proteins cloned previously from other Noctuid species. Sequence analysis revealed that the receptor is likely a peripheral membrane protein that may mediate the selective uptake of VHDL.

  1. [What's new in internal medecine?

    Science.gov (United States)

    Jachiet, M; Rybojad, M; Bouaziz, J-D

    2016-12-01

    Answering the question « what's new in internal medecine in 2016? » is very challenging. We used 3 methods of article selection to reduce the selection bias: 3 authors, a systematic review of the articles discussed in the weekly bibliographic meeting of our unit (Dermatology department, Saint-Louis Hospital, Paris, France) and a selection of the best articles by several internal medecine practitioners in Paris. Eleven « hot topics » were analyzed: i/lowering cholesterol level but not blood blessure has a significant impact on cardiovascular morbi-mortality in cardiovascular intermediate risk patients; ii/the « treat to treat target » is efficient in psoriatic arthritis; iii/ a genotype/ phenotype correlation favors the separation of ileal Crohn's disease, colonic Crohn's disease and ulcerative colitis; iv/ tocilizumab treatment (anti-IL-6 monoclonal antibody ) is very efficient in giant cell arteritis and slightly efficient in systemic sclerosis; v/ combination therapy using methotrexate plus steroids compared with steroids alone becomes the « gold standard » treatment for juvenile dermatomyositis; vi/ dupilumab treatment (antibody blocking IL-4 and IL-13 receptors) is not only efficient in atopic dermatitis but also in asthma; vii/ think of eosinophilic oesophagitis in a patient with atopic dermatitis and dypshagia or food impaction; viii/ genetic A2 protein dysfunction induces NF-kB hyperactivation and an autoinflammatory disorder with features similar to Behcet's disease; ix/ no new biotherapies have shown high efficacy in systemic lupus erythematosus; x/ nanoparticles loaded with autoantigens induce Tregs and Bregs and may be a promising therapeutic option to treat auto-immune disease in the future; xi/ ipilimumab treatment (anti-CTLA4 antibody, immune checkpoint inhibitor) may induce complete remission in acute myeloid leukemia patients relapsing after haematological stem cell transplantation. Year 2016 is full of great discoveries in internal medicine

  2. Sulfated polysaccharides identified as inducers of neuropilin-1 internalization and functional inhibition of VEGF165 and semaphorin3A

    OpenAIRE

    Narazaki, Masashi; Segarra, Marta; Tosato, Giovanna

    2008-01-01

    Neuropilin-1 (NRP1) and NRP2 are cell surface receptors shared by class 3 semaphorins and vascular endothelial growth factor (VEGF). Ligand interaction with NRPs selects the specific signal transducer, plexins for semaphorins or VEGF receptors for VEGF, and promotes NRP internalization, which effectively shuts down receptor-mediated signaling by a second ligand. Here, we show that the sulfated polysaccharides dextran sulfate and fucoidan, but not others, reduce endothelial cell-surface levels...

  3. Models og International Entrepreneurship

    DEFF Research Database (Denmark)

    Rask, Morten; Servais, Per

    2015-01-01

    The purpose with this article is to review models used to describe and explain the establishment and development of international new ventures in order to investigate how and why international new ventures are established and developed. This article attempts an integration of extant theory...... on International Entrepreneurship, and specifically but not exclusively, International New Ventures (INVs). The three resulting ‘meta-models’ depict the activities and loci of such firms, the motivating factors that give rise to such firms and their growth modalities and strategies. These models reflect the merger...... of entrepreneurship and international business into the field of international entrepreneurship....

  4. Photo-antagonism of the GABAA receptor.

    Science.gov (United States)

    Mortensen, Martin; Iqbal, Favaad; Pandurangan, Arun P; Hannan, Saad; Huckvale, Rosemary; Topf, Maya; Baker, James R; Smart, Trevor G

    2014-07-29

    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation.

  5. Scavenger receptors in homeostasis and immunity.

    Science.gov (United States)

    Canton, Johnathan; Neculai, Dante; Grinstein, Sergio

    2013-09-01

    Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.

  6. Identification and mechanism of ABA receptor antagonism

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric (NU Sinapore); (Van Andel); (UCR)

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  7. Regulation of G Protein-Coupled Receptors by Ubiquitination

    Directory of Open Access Journals (Sweden)

    Kamila Skieterska

    2017-04-01

    Full Text Available G protein-coupled receptors (GPCRs comprise the largest family of membrane receptors that control many cellular processes and consequently often serve as drug targets. These receptors undergo a strict regulation by mechanisms such as internalization and desensitization, which are strongly influenced by posttranslational modifications. Ubiquitination is a posttranslational modification with a broad range of functions that is currently gaining increased appreciation as a regulator of GPCR activity. The role of ubiquitination in directing GPCRs for lysosomal degradation has already been well-established. Furthermore, this modification can also play a role in targeting membrane and endoplasmic reticulum-associated receptors to the proteasome. Most recently, ubiquitination was also shown to be involved in GPCR signaling. In this review, we present current knowledge on the molecular basis of GPCR regulation by ubiquitination, and highlight the importance of E3 ubiquitin ligases, deubiquitinating enzymes and β-arrestins. Finally, we discuss classical and newly-discovered functions of ubiquitination in controlling GPCR activity.

  8. Ontogeny of somatostatin receptors in the rat somatosensory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, B.J.; Leroux, P.; Bodenant, C.; Vaudry, H. (Groupe de Recherche en Endocrinologie Moleculaire, CNRS URA 650, Unite Affiliee a l' INSERM, Mont-Saint-Aignan, (France))

    1991-03-08

    The distribution and density of SRIF receptors (SRIF-R) were studied during development in the rat somatosensory cortex by in vitro autoradiography with monoiodinated (Tyr0-DTrp8)S14. In 16-day-old fetuses (E16), intense labeling was evident in the intermediate zone of the cortex while low concentrations of SRIF-R were detected in the marginal and ventricular zones. The highest density of SRIF-R was measured in the intermediate zone at E18. At this stage, labeling was also intense in the internal part of the developing cortical plate; in contrast, the concentration of binding sites associated with the marginal and ventricular zones remained relatively low. Profound modifications in the distribution of SRIF-R appeared at birth. In particular, a transient reduction of receptor density occurred in the cortical plate. During the first postnatal week, the density of receptors measured in the intermediate zone decreased gradually; conversely, high levels of SRIF-R were observed in the developing cortical layers (II to VI). At postpartum day 13 (P13), a stage which just precedes completion of cell migration in the parietal cortex, the most intensely labeled regions were layers V-VI and future layers II-III. From P13 to adulthood, the concentrations of SRIF-R decreased in all cortical layers (I to VI) and the pattern of distribution of receptors at P21 was similar to that observed in the adults.

  9. The evolution of the class A scavenger receptors

    Directory of Open Access Journals (Sweden)

    Whelan Fiona J

    2012-11-01

    Full Text Available Abstract Background The class A scavenger receptors are a subclass of a diverse family of proteins defined based on their ability to bind modified lipoproteins. The 5 members of this family are strikingly variable in their protein structure and function, raising the question as to whether it is appropriate to group them as a family based on their ligand binding abilities. Results To investigate these relationships, we defined the domain architecture of each of the 5 members followed by collecting and annotating class A scavenger receptor mRNA and amino acid sequences from publicly available databases. Phylogenetic analyses, sequence alignments, and permutation tests revealed a common evolutionary ancestry of these proteins, indicating that they form a protein family. We postulate that 4 distinct gene duplication events and subsequent domain fusions, internal repeats, and deletions are responsible for the diverse protein structures and functions of this family. Despite variation in domain structure, there are highly conserved regions across all 5 members, indicating the possibility that these regions may represent key conserved functional motifs. Conclusions We have shown with significant evidence that the 5 members of the class A scavenger receptors form a protein family. We have indicated that these receptors have a common origin which may provide insight into future functional work with these proteins.

  10. Modulation of Xenobiotic Receptors by Steroids

    Directory of Open Access Journals (Sweden)

    Delira Robbins

    2013-06-01

    Full Text Available Nuclear receptors (NRs are ligand-activated transcription factors that regulate the expression of their target genes. NRs play important roles in many human diseases, including metabolic diseases and cancer, and are therefore a key class of therapeutic targets. Steroids play important roles in regulating nuclear receptors; in addition to being ligands of steroid receptors, steroids (and their metabolites also regulate other NRs, such as the pregnane X receptor and constitutive androstane receptor (termed xenobiotic receptors, which participate in steroid metabolism. Xenobiotic receptors have promiscuous ligand-binding properties, and their structurally diverse ligands include steroids and their metabolites. Therefore, steroids, their metabolism and metabolites, xenobiotic receptors, steroid receptors, and the respective signaling pathways they regulate have functional interactions. This review discusses these functional interactions and their implications for activities mediated by steroid receptors and xenobiotic receptors, focusing on steroids that modulate pathways involving the pregnane X receptor and constitutive androstane receptor. The emphasis of the review is on structure-function studies of xenobiotic receptors bound to steroid ligands.

  11. Internal Control: Peran Dan Perkembangannya

    OpenAIRE

    Murtin, Alek

    2000-01-01

    Perhatian terhadap pentingnya internal control dalam organisasi berjalan dari waktu ke waktu untuk meningkatkan fungsi internal control yang disesuaikan dengan perkembangan lingkungan organisasi, dimulai dengan adanya internal check, kemudian internal control system, internal control structure dan terakhir adalah internal control-integrated framework. Internal control system sempat berkembang beberapa tahun di Indonesia yang selanjutnya digantikan oleh internal control structure yang digunaka...

  12. [What's new in internal medicine?].

    Science.gov (United States)

    Blétry, O; Sene, T; Kahn, J-E; Ackermann, F; Charles, P; Leport, J; Piette, A-M

    2009-12-01

    Among diagnostic progress over the last three years in internal medicine, Antisynthetase Syndrome is now more easily recognised with the diffusion of laboratory tests for research of antibodies against tRNA synthetases (Anti JO1, anti PL7, Anti PL12). In two third of cases, these antibodies are found despite absence of antinuclear antibodies. Hence, we have to search them specifically in patients with polyarthritis associated with myositis, cutaneous manifestations (Raynaud phenomenom and "mechanic'hands") and interstitial lung disease. Discovery of asymptomatic mutation in the L ferritin coding sequence help us to better understand the "unexplained" hyperferritinemia. Initially described by japonese gastroenterologists, auto immune pancreatitis in fact a part of a systemic sclerosing disease with a biochemical hallmark: in crease of a subclass of immunoglobulins G (IgG4). A new pediatric disease due to a deficiency of the interleukin1 receptor antagonist (multifocal aseptic osteitis, periostitis, stomatitis, disseminated pustulosis) help us to better understand unexplained auto inflammatory diseases. The therapeutic progress is primarily due to an explosion of biological therapies, particularly four of them very useful for internists (in an off label use) : Interleukin 1 inhibitors (anakinra, Canakinumab) to treat some auto inflammatory diseases (cryopirin associated periodic syndromes and deficency of interleukin 1 receptor antagonist), monoclonal antibody against interleukin 5 (mepolizumab) to treat some hypereosinophilic syndromes and Churg and Strauss angiitis, interleukin 6 inhibitiors to treat multifocal Castleman's disease and adult Still disease, a monoclonal antibody against vascular endothelial growth factor (Bevacizumab) to treat hereditary hemorrhagic telangiectasia. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  13. Prolactin receptors in uterine leiomyomas

    International Nuclear Information System (INIS)

    Baban, Rayah S.; Farid, Yahya Y.; Al-Zuheiri, Shatha T.

    2008-01-01

    Objective was to identify the location of prolactin receptors in patientswith uterine leiomyomas and their host myometrium as well as normalmyometrium. A case control study was conducted at the College of MedicineAl-Nahrain University, Baghdad, Iraq during the period from 2004-2006. Thesamples were collected at Obstetrics and Gynecological Departments of 4hospitals in Baghdad City (Al-Khadimiya Teaching Hospital, Al-Noor,Al-Kharch, and Al-Sadoon Hospital). Sections from large and small tumors(n=53) with their host myometriums and from normal myometriums (n=40) werestained immunohistochemically for prolactin receptors. Prolactin receptorswere positively seen in all cases examined including patient and comparisontissues, in the form of dark brown staining. Staining was heterogeneous andvaried in intensity from one case to another and sometimes from one are toanother in the same section. The increase in prolactin receptors in leiomyomais expected given that the underlying host myometrium abnormal. (author)

  14. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands.

    Science.gov (United States)

    Gliemann, J

    1998-01-01

    The LDL receptor family members are endocytic receptors composed of repeated protein modules, including clusters of ligand binding LDL receptor class A (LA) repeats. The large (approximately 600 kDa) members LRP and megalin bind numerous structurally unrelated and often complex ligands at different combinations of sites. LRP is expressed in a wide but restricted set of cell types including hepatocytes, macrophages, smooth muscle cells, and neurons of the CNS. Megalin is expressed in various epithelia including proximal kidney tubules, intestine, and ependymal cells. The two receptors share a multitude of ligands, and their function in vivo is therefore to a large extent determined by their expression pattern. For example, both receptors can endocytose lipoproteins, but this function appears mainly relevant for LRP. In addition, LRP helps regulating urokinase receptor expression on the cell surface via ligand-mediated internalization followed by return of the naked urokinase receptor to the cell surface. Both receptors also have specialist functions. LRP is specific for binding of alpha2-macroglobulin-proteinase complexes and provides clearance of the complexes and of peptides, e.g. cytokines, associated with the complex. Megalin has important functions in vitamin B12 homeostasis since it specifically mediates uptake of the vitamin B12-transcobalamin complex and helps building a storage pool for the vitamin in the kidneys. Moreover, megalin binds cubilin, the recently identified receptor for B12-intrinsic factor complex, thus providing a mechanism for uptake of dietary vitamin B12. Finally, megalin specifically mediates uptake of apolipoprotein J/clusterin, a binding protein for the Abeta peptide implicated in Alzheimer's disease. The binding of multiple complex ligands that belong to distinct physiological systems provides a challenge in future studies aiming at elucidating the role of LRP and megalin in disease mechanisms.

  15. International energy outlook, 2010

    Science.gov (United States)

    2010-07-01

    This report presents international energy projections through 2035, : prepared by the U.S. Energy Information Administration, including outlooks : for major energy fuels and associated carbon dioxide emissions. The International Energy Outlook 2010 (...

  16. Economics and International Understanding.

    Science.gov (United States)

    Chandra, Ramesh

    1983-01-01

    A methodology linking the teaching of economics to the promotion of international understanding is discussed. The content of a course dealing with the new international economic order is examined. (Author/RM)

  17. International trade and environment

    International Nuclear Information System (INIS)

    Posada L, Luis Guillermo

    2000-01-01

    Topics are presented as economic theory and theory of the international trade, international dimension of the environmental problems, economic prosperity, environmental quality and lineament are given for an alternative, among others

  18. International images: business cards.

    Science.gov (United States)

    Gaston, S; Pucci, J

    1991-01-01

    Nursing specialists engage in a variety of international professional activities. Business cards are an important aspect of establishing a professional image. This article presents recommended business card contents, international etiquette, card design and production, and cared innovations.

  19. International aspects of fusion

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1979-12-01

    International collaborative efforts in magnetic confinement fusion in which the USA is involved are reviewed. These efforts are carried under the auspices of international agencies and through bilateral agreements

  20. International diversification and Microfinance

    NARCIS (Netherlands)

    Galema, Rients; Lensink, Robert; Spierdijk, Laura

    International commercial banks, institutional investors, and private investors have become increasingly interested in financing microfinance institutions (MFIs). This paper investigates whether adding microfinance funds to a portfolio of risky international assets yields diversification gains. By

  1. International diversification and Microfinance

    NARCIS (Netherlands)

    Galema, R.; Lensink, B.W.; Spierdijk, L.

    2011-01-01

    International commercial banks, institutional investors, and private investors have become increasingly interested in financing microfinance institutions (MFIs). This paper investigates whether adding microfinance funds to a portfolio of risky international assets yields diversification gains. By

  2. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, Mohammad Akbar Hosain

    2014-12-04

    Various examples are provided for generalized internal multiple imaging (GIMI). In one example, among others, a method includes generating a higher order internal multiple image using a background Green\\'s function and rendering the higher order internal multiple image for presentation. In another example, a system includes a computing device and a generalized internal multiple imaging (GIMI) application executable in the computing device. The GIMI application includes logic that generates a higher order internal multiple image using a background Green\\'s function and logic that renders the higher order internal multiple image for display on a display device. In another example, a non-transitory computer readable medium has a program executable by processing circuitry that generates a higher order internal multiple image using a background Green\\'s function and renders the higher order internal multiple image for display on a display device.

  3. Apolipoprotein D Internalization Is a Basigin-dependent Mechanism*

    Science.gov (United States)

    Najyb, Ouafa; Brissette, Louise; Rassart, Eric

    2015-01-01

    Apolipoprotein D (apoD), a member of the lipocalin family, is a 29-kDa secreted glycoprotein that binds and transports small lipophilic molecules. Expressed in several tissues, apoD is up-regulated under different stress stimuli and in a variety of pathologies. Numerous studies have revealed that overexpression of apoD led to neuroprotection in various mouse models of acute stress and neurodegeneration. This multifunctional protein is internalized in several cells types, but the specific internalization mechanism remains unknown. In this study, we demonstrate that the internalization of apoD involves a specific cell surface receptor in 293T cells, identified as the transmembrane glycoprotein basigin (BSG, CD147); more particularly, its low glycosylated form. Our results show that internalized apoD colocalizes with BSG into vesicular compartments. Down-regulation of BSG disrupted the internalization of apoD in cells. In contrast, overexpression of basigin in SH-5YSY cells, which poorly express BSG, restored the uptake of apoD. Cyclophilin A, a known ligand of BSG, competitively reduced apoD internalization, confirming that BSG is a key player in the apoD internalization process. In summary, our results demonstrate that basigin is very likely the apoD receptor and provide additional clues on the mechanisms involved in apoD-mediated functions, including neuroprotection. PMID:25918162

  4. Apolipoprotein D Internalization Is a Basigin-dependent Mechanism.

    Science.gov (United States)

    Najyb, Ouafa; Brissette, Louise; Rassart, Eric

    2015-06-26

    Apolipoprotein D (apoD), a member of the lipocalin family, is a 29-kDa secreted glycoprotein that binds and transports small lipophilic molecules. Expressed in several tissues, apoD is up-regulated under different stress stimuli and in a variety of pathologies. Numerous studies have revealed that overexpression of apoD led to neuroprotection in various mouse models of acute stress and neurodegeneration. This multifunctional protein is internalized in several cells types, but the specific internalization mechanism remains unknown. In this study, we demonstrate that the internalization of apoD involves a specific cell surface receptor in 293T cells, identified as the transmembrane glycoprotein basigin (BSG, CD147); more particularly, its low glycosylated form. Our results show that internalized apoD colocalizes with BSG into vesicular compartments. Down-regulation of BSG disrupted the internalization of apoD in cells. In contrast, overexpression of basigin in SH-5YSY cells, which poorly express BSG, restored the uptake of apoD. Cyclophilin A, a known ligand of BSG, competitively reduced apoD internalization, confirming that BSG is a key player in the apoD internalization process. In summary, our results demonstrate that basigin is very likely the apoD receptor and provide additional clues on the mechanisms involved in apoD-mediated functions, including neuroprotection. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. International double taxation

    OpenAIRE

    Odarčenko, Michal

    2015-01-01

    1 Summary This thesis deals with the issue of international double taxation of income and capital and methods for its solution. International double taxation is an issue which states began to deal with in the late 19th century. This interest intensified after the First World War when also the League of Nations (predecessor of the United Nations) began to deal with international double taxation. Most attention the phenomenon of double taxation of income and capital with an international elemen...

  6. Internal wave interferometry.

    Science.gov (United States)

    Mathur, Manikandan; Peacock, Thomas

    2010-03-19

    Internal waves are a ubiquitous and significant means of momentum and energy transport in the oceans, atmosphere, and astrophysical bodies. Here, we show that internal wave propagation in nonuniform density stratifications, which are prevalent throughout nature, has a direct mathematical analogy with the classical optical problem of a Fabry-Perot multiple-beam light interferometer. We rigorously establish this correspondence, and furthermore provide the first experimental demonstration of an internal wave interferometer, based on the theory of resonant transmission of internal waves.

  7. International Courts and Tribunals

    NARCIS (Netherlands)

    Amaya Castro, J.M.; Cali, B.

    2010-01-01

    This chapter introduces a type of institution that is very important in the field of international law: international courts. The last few decades have seen an enormous rise in the number and importance of such courts, not just for states but for all (international) actors. Increasingly, what

  8. Petroleum and international policy

    International Nuclear Information System (INIS)

    Pertuzio, A.

    2002-01-01

    To illustrate the relation between the petroleum and the international policy, the author presents the place of the petroleum industry in the international relations by an analysis of the historical aspects, the states and international organizations interventions and the prices evolution. (A.L.B.)

  9. National and International Views.

    Science.gov (United States)

    Kilgour, David

    1992-01-01

    Discusses Canadian government policy dealing with internal matters of party politics and international questions of human rights. Describes the political situation in Burma as an oppressive military regime. Urges the Canadian government to take a firmer stand to influence the international community against tolerating regimes that are guilty of…

  10. A Latin American Perspective on G Protein-Coupled Receptors.

    Science.gov (United States)

    Pupo, André S; García-Sáinz, J Adolfo

    2016-11-01

    G protein-coupled receptors are sensors that interact with a large variety of elements, including photons, ions, and large proteins. Not surprisingly, these receptors participate in the numerous normal physiologic processes that we refer to as health and in its perturbations that constitute disease. It has been estimated that a large percentage of drugs currently used in therapeutics target these proteins, and this percentage is larger when illegal drugs are included. The state of the art in this field can be defined with the oxymoron "constant change," and enormous progress has been made in recent years. A group of scientists working in Latin America were invited to contribute minireviews for this special section to present some of the work performed in this geographical region and foster further international collaboration. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Peptide receptor radionuclide therapy for advanced neuroendocrine tumors.

    Science.gov (United States)

    Bodei, Lisa; Cremonesi, Marta; Kidd, Mark; Grana, Chiara M; Severi, Stefano; Modlin, Irvin M; Paganelli, Giovanni

    2014-08-01

    Peptide receptor radionuclide therapy (PRRT) consists of the systemic administration of a synthetic peptide, labeled with a suitable β-emitting radionuclide, able to irradiate tumors and their metastases via internalization through a specific receptor (usually somatostatin S2), over-expressed on the cell membrane. After almost 2 decades of experience, PRRT, with either (90)Y-octreotide or (177)Lu-octreotate, has established itself to be an efficient and effective therapeutic modality. As a treatment, it is relatively safe up to the known thresholds of absorbed and bio-effective isotope dosages and the renal and hematological toxicity profiles are acceptable if adequate protective measures are undertaken. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion.

    Directory of Open Access Journals (Sweden)

    Andrea Koenen

    Full Text Available The CXC-chemokine receptor 6 (CXCR6 is a class A GTP-binding protein-coupled receptor (GPCRs that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16, and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.

  13. Windows® Internals

    CERN Document Server

    Russinovich, Mark E; Ionescu, Alex

    2009-01-01

    See how the core components of the Windows operating system work behind the scenes-guided by a team of internationally renowned internals experts. Fully updated for Windows Server 2008 and Windows Vista, this classic guide delivers key architectural insights on system design, debugging, performance, and support-along with hands-on experiments to experience Windows internal behavior firsthand.Delve inside Windows architecture and internals:Understand how the core system and management mechanisms work-from the object manager to services to the registryExplore internal system data structures usin

  14. The Role of G Protein-coupled Receptor Kinases in Cancer

    Science.gov (United States)

    Yu, Shan; Sun, Litao; Jiao, Yufei; Lee, Leo Tsz On

    2018-01-01

    G protein-coupled receptors (GPCRs) are the largest family of plasma membrane receptors. Emerging evidence demonstrates that signaling through GPCRs affects numerous aspects of cancer biology such as vascular remolding, invasion, and migration. Therefore, development of GPCR-targeted drugs could provide a new therapeutic strategy to treating a variety of cancers. G protein-coupled receptor kinases (GRKs) modulate GPCR signaling by interacting with the ligand-activated GPCR and phosphorylating its intracellular domain. This phosphorylation initiates receptor desensitization and internalization, which inhibits downstream signaling pathways related to cancer progression. GRKs can also regulate non-GPCR substrates, resulting in the modulation of a different set of pathophysiological pathways. In this review, we will discuss the role of GRKs in modulating cell signaling and cancer progression, as well as the therapeutic potential of targeting GRKs. PMID:29483837

  15. [Expression and function of receptors for advanced glycation end products in bovine corneal endothelial cells].

    Science.gov (United States)

    Kaji, Yuichi

    2005-11-01

    Corneal endothelial cell loss is a change that occurs with age, but its mechanism is still unclear. We postulated that interaction between advanced glycation end product(AGE) and its receptors is implicated in the corneal endothelial cell loss with age. We investigated the expression of AGE receptors: receptors for AGE(RAGE) and galectin-3 in bovine corneal endothelial cells by reverse transcription-polymerase chain reaction(RT-PCR) and immunohistochemistry. In addition, we investigated the effect of AGE on the cultured corneal endothelial cells. Expression of RAGE and galectin-3 was detected in bovine corneal endothelial cells. Galectin-3 was important in the internalization of AGE. In contrast, RAGE was important in the generation of reactive oxygen species and induction of apoptosis. Based on these data, the interaction of AGE in aqueous humor and AGE receptors expressed on the corneal endothelial cells was speculated to have a role in the corneal endothelial cell loss with age.

  16. Biased signaling of the angiotensin II type 1 receptor can be mediated through distinct mechanisms

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Hansen, Jonas Tind; Sanni, Samra Joke

    2010-01-01

    molecular mechanisms remain largely unresolved. For instance, it is unclear whether such selective G protein-uncoupling is caused by a lack of ability to interact with G proteins or rather by an increased ability of the receptor to recruit β-arrestins. Since uncoupling of G proteins by increased ability......Seven transmembrane receptors (7TMRs) can adopt different active conformations facilitating a selective activation of either G protein or β-arrestin-dependent signaling pathways. This represents an opportunity for development of novel therapeutics targeting selective biological effects of a given...... receptor. Several studies on pathway separation have been performed, many of these on the Angiotensin II type 1 receptor (AT1R). It has been shown that certain ligands or mutations facilitate internalization and/or recruitment of β-arrestins without activation of G proteins. However, the underlying...

  17. Biased signaling of the angiotensin II type 1 receptor can be mediated through distinct mechanisms

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Hansen, Jonas Tind; Sanni, Samra Joke

    2010-01-01

    molecular mechanisms remain largely unresolved. For instance, it is unclear whether such selective G protein-uncoupling is caused by a lack of ability to interact with G proteins or rather by an increased ability of the receptor to recruit ß-arrestins. Since uncoupling of G proteins by increased ability......Seven transmembrane receptors (7TMRs) can adopt different active conformations facilitating a selective activation of either G protein or ß-arrestin-dependent signaling pathways. This represents an opportunity for development of novel therapeutics targeting selective biological effects of a given...... receptor. Several studies on pathway separation have been performed, many of these on the Angiotensin II type 1 receptor (AT1R). It has been shown that certain ligands or mutations facilitate internalization and/or recruitment of ß-arrestins without activation of G proteins. However, the underlying...

  18. Mechanism for the activation of glutamate receptors

    Science.gov (United States)

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  19. Genetics Home Reference: leptin receptor deficiency

    Science.gov (United States)

    ... People with leptin receptor deficiency also have hypogonadotropic hypogonadism, which is a condition caused by reduced production ... weight gain associated with this disorder. Because hypogonadotropic hypogonadism occurs in leptin receptor deficiency , researchers suggest that ...

  20. Attracting International Hotels

    DEFF Research Database (Denmark)

    Assaf, A. George; Josiassen, Alexander; Agbola, Frank Wogbe

    2015-01-01

    With the increased international competition facing hotel chains, it is essential that the next destination they enter is the most attractive option possible. The host destinations too have a keen interest in strategically positioning themselves in order to attract international hotels since thei...... for international hotels. We then rank these. The results show that welcomeness, infrastructure, and crime rate are the three most important factors that influence the location of international hotels in host destinations.......With the increased international competition facing hotel chains, it is essential that the next destination they enter is the most attractive option possible. The host destinations too have a keen interest in strategically positioning themselves in order to attract international hotels since...... their presence has several positive effects. Using, for the first time, actual on-location data we investigate the factors that matter most for international hotels when selecting host destinations. Specifically, we identify 23 factors that make a destination an attractive (or unattractive) location...

  1. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation...

  2. Pharmacological approach of the receptors

    International Nuclear Information System (INIS)

    Puech, A.J.

    1989-01-01

    This paper explains the three main goals for clinical positron emission tomography (PET) studies: detection of receptor abnormalities in groups of patients to propose therapeutic indication of new ligands; validation of current hypothesis of drug effect; rational clinical drug development specially for dose-finding studies. (H.W.)

  3. Are olfactory receptors really olfactive?

    DEFF Research Database (Denmark)

    Giorgi, Franco; Maggio, Roberto; Bruni, Luis Emilio

    2011-01-01

    Any living organism interacts with and responds specifically to environmental molecules by expressing specific olfactory receptors. This specificity will be first examined in causal terms with particular emphasis on the mechanisms controlling olfactory gene expression, cell-to-cell interactions a...

  4. Cannabinoid receptor localization in brain

    Energy Technology Data Exchange (ETDEWEB)

    Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. (National Institute of Mental Health, Bethesda, MD (USA))

    1990-03-01

    (3H)CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of (3H)CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

  5. Ligand-guided receptor optimization.

    Science.gov (United States)

    Katritch, Vsevolod; Rueda, Manuel; Abagyan, Ruben

    2012-01-01

    Receptor models generated by homology or even obtained by crystallography often have their binding pockets suboptimal for ligand docking and virtual screening applications due to insufficient accuracy or induced fit bias. Knowledge of previously discovered receptor ligands provides key information that can be used for improving docking and screening performance of the receptor. Here, we present a comprehensive ligand-guided receptor optimization (LiBERO) algorithm that exploits ligand information for selecting the best performing protein models from an ensemble. The energetically feasible protein conformers are generated through normal mode analysis and Monte Carlo conformational sampling. The algorithm allows iteration of the conformer generation and selection steps until convergence of a specially developed fitness function which quantifies the conformer's ability to select known ligands from decoys in a small-scale virtual screening test. Because of the requirement for a large number of computationally intensive docking calculations, the automated algorithm has been implemented to use Linux clusters allowing easy parallel scaling. Here, we will discuss the setup of LiBERO calculations, selection of parameters, and a range of possible uses of the algorithm which has already proven itself in several practical applications to binding pocket optimization and prospective virtual ligand screening.

  6. Molecular imaging of estrogen receptors

    NARCIS (Netherlands)

    van Kruchten, Michel

    2015-01-01

    For patients with estrogen receptor (ER) positive breast cancer, endocrine therapy plays a major role in both the adjuvant and palliative setting. For adequate treatment decision-making it is crucial to obtain up-to-date information on the ER-status of the tumor(s), since ER-expression is the sole

  7. Stability of solubilized benzodiazepine receptors

    NARCIS (Netherlands)

    Janssen, M.J; Ensing, K; de Zeeuw, R.A

    1997-01-01

    According to the observations of other researchers, benzodiazepine receptors solubilized with sodium deoxycholate are unstable, but stability can be improved by exchanging deoxycholate for Triton X-100. In our experiments we conclude that the choice of detergent is not the restrictive factor for the

  8. Uncompetitive antagonism of AMPA receptors

    DEFF Research Database (Denmark)

    Andersen, Trine F; Tikhonov, Denis B; Bølcho, Ulrik

    2006-01-01

    Philanthotoxins are uncompetitive antagonists of Ca2+-permeable AMPA receptors presumed to bind to the pore-forming region, but a detailed molecular mechanism for this interaction is missing. Here a small library of novel philanthotoxins was designed and synthesized using a solid-phase strategy. ...

  9. New horizons for lipoprotein receptors

    DEFF Research Database (Denmark)

    Andersen, Olav M.; Dagil, Robert; Kragelund, Birthe Brandt

    2013-01-01

    , this dogma has transformed with the observation that β-propellers of some LRs actively engage in complex formation too. Based on an in-depth decomposition of current structures and sequences, we suggest that exploitation of the β-propellers as binding targets depends on receptor subgroups. In particular, we...

  10. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets....

  11. Variation in mothers' arginine vasopressin receptor 1a and dopamine receptor D4 genes predicts maternal sensitivity via social cognition.

    Science.gov (United States)

    Leerkes, E M; Su, J; Calkins, S; Henrich, V C; Smolen, A

    2017-02-01

    We examined the extent to which the arginine vasopressin receptor 1a (AVPR1a) and dopamine receptor D4 (DRD4) were related to sensitive maternal behavior directly or indirectly via maternal social cognition. Participants were 207 (105 European-American and 102 African-American) mothers and their children (52% females). Sensitive maternal behavior was rated and aggregated across a series of tasks when infants were 6 months, 1 year and 2 years old. At 6 months, mothers were interviewed about their empathy, attributions about infant behavior and beliefs about crying to assess their parenting-related social cognition. Mothers with long alleles for AVPR1a and DRD4 engaged in more mother-oriented social cognition (i.e. negative attributions and beliefs about their infants' crying, β = 0.13, P social cognition. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  12. Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis.

    Science.gov (United States)

    Kohlhaas, Susan L; Craxton, Andrew; Sun, Xiao-Ming; Pinkoski, Michael J; Cohen, Gerald M

    2007-04-27

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is selectively toxic to tumor compared with normal cells. Other members of the TNF family of death ligands (TNF, CD95L) engage their respective receptors (TNF-R1 and CD95), resulting in internalization of receptor and ligand and recruitment of adaptor proteins to the caspase activation platform known as the death-inducing signaling complex (DISC). Recently, TNF-R1 and CD95 have been shown to induce apoptosis with an absolute requirement for internalization of their corresponding receptors in the formation of a DISC. We show that TRAIL and its receptors are rapidly endocytosed in a time- and concentration-dependent manner. Blockade of receptor internalization with hyperosmotic sucrose did not inhibit TRAIL-induced apoptosis but, rather, amplified the apoptotic signaling of TRAIL. Plate-bound and soluble TRAIL induced similar levels of apoptosis. Together these results suggest that neither ligand nor receptor internalization is required for TRAIL-induced apoptosis. Internalization of TRAIL is mediated primarily by clathrin-dependent endocytosis and also by clathrin-independent pathways. Inhibition of clathrin-dependent internalization by overexpression of dominant negative forms of dynamin or AP180 did not inhibit TRAIL-induced apoptosis. Consistent with the finding that neither internalization of TRAIL nor its receptors is required for transmission of its apoptotic signal, recruitment of FADD (Fas-associated death domain) and procaspase-8 to form the TRAIL-associated DISC occurred at 4 degrees C, independent of endocytosis. Our findings demonstrate that TRAIL and TRAIL receptor 1/2, unlike TNF-TNF-R1 or CD95L-CD95, do not require internalization for formation of the DISC, activation of caspase-8, or transmission of an apoptotic signal in BJAB type I cells.

  13. Design and synthesis of small molecule agonists of EphA2 receptor.

    Science.gov (United States)

    Petty, Aaron; Idippily, Nethrie; Bobba, Viharika; Geldenhuys, Werner J; Zhong, Bo; Su, Bin; Wang, Bingcheng

    2018-01-01

    Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor. Published by Elsevier Masson SAS.

  14. Multiple inhibitory actions of lidocaine on Torpedo nicotinic acetylcholine receptors transplanted to Xenopus oocytes.

    Science.gov (United States)

    Alberola-Die, Armando; Martinez-Pinna, Juan; González-Ros, José Manuel; Ivorra, Isabel; Morales, Andrés

    2011-06-01

    Lidocaine is a local anaesthetic that blocks sodium channels, but also inhibits several ligand-gated ion-channels. The aim of this work was to unravel the mechanisms by which lidocaine blocks Torpedo nicotinic receptors transplanted to Xenopus oocytes. Acetylcholine-elicited currents were reversibly blocked by lidocaine, in a concentration dependent manner. At doses lower than the IC(50) , lidocaine blocked nicotinic receptors only at negative potentials, indicating an open-channel blockade; the binding site within the channel was at about 30% of the way through the electrical field across the membrane. In the presence of higher lidocaine doses, nicotinic receptors were blocked both at positive and negative potentials, acetylcholine dose-response curve shifted to the right and lidocaine pre-application, before its co-application with acetylcholine, enhanced the current inhibition, indicating all together that lidocaine also blocked resting receptors; besides, it increased the current decay rate. When lidocaine, at low doses, was co-applied with 2-(triethylammonio)-N-(2,6-dimethylphenyl) acetamide bromide, edrophonium or 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide, which are quaternary-ammonium molecules that also blocked nicotinic receptors, there was an additive inhibitory effect, indicating that these molecules bound to different sites within the channel pore. These results prove that lidocaine blocks nicotinic receptors by several independent mechanisms and evidence the diverse and complex modulation of this receptor by structurally related molecules. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  15. Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits

    DEFF Research Database (Denmark)

    Kazazic, Maja; Bertelsen, Vibeke; Pedersen, Ketil Winther

    2008-01-01

    . Furthermore, RNAi-mediated knock down of epsin 1 was found to inhibit internalization of the EGFR, while having no effect on endocytosis of the transferrin receptor. Additionally, upon knock down of epsin 1, translocation of the EGFR to central parts of clathrin-coated pits was inhibited. This supports...

  16. Exploring the biology of G protein-coupled receptors from in vitro to in vivo

    NARCIS (Netherlands)

    Bohn, Laura M; Lohse, Martin J; Nitabach, Michael N; Taghert, Paul H; Smit, Martine J.

    2015-01-01

    In August 2014, an international group of researchers gathered for 5 days at the Lorentz Center in Leiden, The Netherlands, to explore the technical and conceptual issues associated with the analysis of G protein-coupled receptor functions utilizing information from crystal structure models to the

  17. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, BRK; Korte, SM; Buwalda, B; la Fleur, SE; Bohus, B; Luiten, PGM

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  18. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, B. R.; Korte, S. M.; Buwalda, B.; La Fleur, S. E.; Bohus, B.; Luiten, P. G.

    1998-01-01

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  19. The substance P/NK-1 receptor system: NK-1 receptor antagonists ...

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  20. Devil's Claw to suppress appetite--ghrelin receptor modulation potential of a Harpagophytum procumbens root extract.

    Directory of Open Access Journals (Sweden)

    Cristina Torres-Fuentes

    Full Text Available Ghrelin is a stomach-derived peptide that has been identified as the only circulating hunger hormone that exerts a potent orexigenic effect via activation of its receptor, the growth hormone secretagogue receptor (GHS-R1a. Hence, the ghrelinergic system represents a promising target to treat obesity and obesity-related diseases. In this study we analysed the GHS-R1a receptor activating potential of Harpagophytum procumbens, popularly known as Devil's Claw, and its effect on food intake in vivo. H. procumbens is an important traditional medicinal plant from Southern Africa with potent anti-inflammatory and analgesic effects. This plant has been also used as an appetite modulator but most evidences are anecdotal and to our knowledge, no clear scientific studies relating to appetite modulation have been done to this date. The ghrelin receptor activation potential of an extract derived from the dried tuberous roots of H. procumbens was analysed by calcium mobilization and receptor internalization assays in human embryonic kidney cells (Hek stably expressing the GHS-R1a receptor. Food intake was investigated in male C57BL/6 mice following intraperitoneal administration of H. procumbens root extract in ad libitum and food restricted conditions. Exposure to H. procumbens extract demonstrated a significant increased cellular calcium influx but did not induce subsequent GHS-R1a receptor internalization, which is a characteristic for full receptor activation. A significant anorexigenic effect was observed in male C57BL/6 mice following peripheral administration of H. procumbens extract. We conclude that H. procumbens root extract is a potential novel source for potent anti-obesity bioactives. These results reinforce the promising potential of natural bioactives to be developed into functional foods with weight-loss and weight maintenance benefits.

  1. Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors.

    OpenAIRE

    Popa, Daniela; Léna, Clément; Fabre, Véronique; Prenat, Caroline; Gingrich, Jay; Escourrou, Pierre; Hamon, Michel; Adrien, Joëlle

    2005-01-01

    International audience; Serotonin (5-hydroxytryptamine; 5-HT) plays key roles in sleep-wakefulness regulation. Evidence indicates that 5-HT2 receptors are involved mainly in non-rapid eye movement sleep (NREMS) regulation and respiratory control. Here, we investigated the relative contribution of 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptor subtypes to NREMS and breathing during sleep, using 5-HT2 subtype-selective ligands in wild-type (5-HT(2A)+/+) and knock-out (5-HT(2A)-/-) mice that do not e...

  2. Muscarinic receptors and drugs in cardiovascular medicine

    NARCIS (Netherlands)

    van Zwieten, P. A.; Doods, H. N.

    1995-01-01

    The parasympathetic system and its associated muscarinic receptors have been the subject of a renaissance of interest for the following two main reasons: (1) the association of endothelial muscarinic receptors and the nitric oxide (NO) pathway; (2) the discovery of several muscarinic receptor

  3. A new family of insect tyramine receptors

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Klærke, Dan Arne; Grimmelikhuijzen, Cornelis J P

    2005-01-01

    in the genomic databases from the malaria mosquito Anopheles gambiae and the honeybee Apis mellifera. These four tyramine or tyramine-like receptors constitute a new receptor family that is phylogenetically distinct from the previously identified insect octopamine/tyramine receptors. The Drosophila tyramine...

  4. Metabotropic glutamate receptors in glial cells

    NARCIS (Netherlands)

    D'Antoni, Simona; Berretta, Antonio; Bonaccorso, Carmela Maria; Bruno, Valeria; Aronica, Eleonora; Nicoletti, Ferdinando; Catania, Maria Vincenza

    2008-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and exerts its actions via a number of ionotropic glutamate receptors/channels and metabotropic glutamate (mGlu) receptors. In addition to being expressed in neurons, glutamate receptors are expressed in

  5. Neurotransmitter Receptor Binding in Bovine Cerebral Microvessels

    Science.gov (United States)

    Peroutka, Stephen J.; Moskowitz, Michael A.; Reinhard, John F.; Synder, Solomon H.

    1980-05-01

    Purified preparations of microvessels from bovine cerebral cortex contain substantial levels of alpha-adrenergic, beta-adrenergic, and histamine 1 receptor binding sites but only negligible serotonin, muscarinic cholinergic, opiate, and benzodiazepine receptor binding. Norepinephrine and histamine may be endogenous regulators of the cerebral microcirculation at the observed receptors.

  6. Imaging of receptors in clinical neurosciences

    NARCIS (Netherlands)

    Korf, J

    This article deals with the question why should one determine receptors in the brain with positron and single photon emission tomography (PET and SPECT, respectively). Radiopharmaceuticals for a wide variety of receptors are available now. Receptors studies with PET and SPECT have thus far focused

  7. Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V.

    Science.gov (United States)

    Schmees, C; Villaseñor, R; Zheng, W; Ma, H; Zerial, M; Heldin, C-H; Hellberg, C

    2012-07-01

    Receptor tyrosine kinase (RTK) signaling is frequently increased in tumor cells, sometimes as a result of decreased receptor down-regulation. The extent to which the endocytic trafficking routes can contribute to such RTK hyperactivation is unclear. Here, we show for the first time that fibroblast transformation by H-RasG12V induces the internalization of platelet-derived growth factor β-receptor (PDGFRβ) by macropinocytosis, enhancing its signaling activity and increasing anchorage-independent proliferation. H-RasG12V transformation and PDGFRβ activation were synergistic in stimulating phosphatidylinositol (PI) 3-kinase activity, leading to receptor macropinocytosis. PDGFRβ macropinocytosis was both necessary and sufficient for enhanced receptor activation. Blocking macropinocytosis by inhibition of PI 3-kinase prevented the increase in receptor activity in transformed cells. Conversely, increasing macropinocytosis by Rabankyrin-5 overexpression was sufficient to enhance PDGFRβ activation in nontransformed cells. Simultaneous stimulation with PDGF-BB and epidermal growth factor promoted macropinocytosis of both receptors and increased their activation in nontransformed cells. We propose that H-Ras transformation promotes tumor progression by enhancing growth factor receptor signaling as a result of increased receptor macropinocytosis.

  8. Pharmacological or genetic blockade of the dopamine D3 receptor increases cell proliferation in the hippocampus of adult mice.

    Science.gov (United States)

    Egeland, Martin; Zhang, Xiaoqun; Millan, Mark J; Mocaer, Elisabeth; Svenningsson, Per

    2012-12-01

    Dopamine plays an important role in cellular processes controlling the functional and structural plasticity of neurons, as well as their generation and proliferation, both in the developing and the adult brain. The precise roles of individual dopamine receptors subtypes in adult neurogenesis remain poorly defined, although D3 receptors are known to be involved in neurogenesis in the subventricular zone. By contrast, very few studies have addressed the influence of dopamine and D3 receptors upon neurogenesis in the subgranular zone of the hippocampus, an issue addressed herein employing constitutive D3 receptor knockout mice, or chronic exposure to the preferential D3 receptor antagonist, S33138. D3 receptor knockout mice revealed increased baseline levels of cell proliferation and ongoing neurogenesis, as measured both using Ki-67 and doublecortin, whereas there was no difference in cell survival as measured by BrdU (5-bromo-2'-deoxyuridine). Chronic administration of S33138 was shown to be functionally active in enhancing levels of the plasticity-related molecule, delta-FosB, in the D3 receptor-rich nucleus accumbens. In accordance with the stimulated neurogenesis seen in D3 receptor knockout mice, S33138 increased proliferation in wild-type mice. These observations suggest that D3 receptors exert a tonic, constitutive inhibitory influence upon adult hippocampal neurogenesis. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  9. Triheteromeric NMDA Receptors at Hippocampal Synapses

    Science.gov (United States)

    Tovar, Kenneth R.; McGinley, Matthew J.; Westbrook, Gary L.

    2013-01-01

    NMDA receptors are composed of two GluN1 (N1) and two GluN2 (N2) subunits. Constituent N2 subunits control the pharmacological and kinetic characteristics of the receptor. NMDA receptors in hippocampal or cortical neurons are often thought of as diheteromeric, i.e., containing only one type of N2 subunit. However, triheteromeric receptors with more than one type of N2 subunit also have been reported and the relative contribution of di- and triheteromeric NMDA receptors at synapses has been difficult to assess. Because wild-type hippocampal principal neurons express N1, N2A and N2B, we used cultured hippocampal principal neurons from N2A and N2B-knockout mice as templates for diheteromeric synaptic receptors. Summation of N1/N2B and N1/N2A excitatory postsynaptic currents could not account for the deactivation kinetics of wild-type excitatory postsynaptic currents (EPSCs) however. To make a quantitative estimate of NMDA receptor subtypes at wild-type synapses, we used the deactivation kinetics, as well as the effects of the competitive antagonist NVP-AAM077. Our results indicate that three types of NMDA receptors contribute to the wild-type EPSC, with at least two-thirds being triheteromeric receptors. Functional isolation of synaptic triheteromeric receptors revealed deactivation kinetics and pharmacology distinct from either diheteromeric receptor subtype. Because of differences in open probability, synaptic triheteromeric receptors outnumbered N1/N2A receptors by 5.8 to 1 and N1/N2B receptors by 3.2 to 1. Our results suggest that triheteromeric NMDA receptors must be either preferentially assembled or preferentially localized at synapses. PMID:23699525

  10. Differential mechanisms of activation of the Ang peptide receptors AT1, AT2, and MAS: using in silico techniques to differentiate the three receptors.

    Directory of Open Access Journals (Sweden)

    Jeremy W Prokop

    Full Text Available The renin-angiotensin system is involved in multiple conditions ranging from cardiovascular disorders to cancer. Components of the pathway, including ACE, renin and angiotensin receptors are targets for disease treatment. This study addresses three receptors of the pathway: AT1, AT2, and MAS and how the receptors are similar and differ in activation by angiotensin peptides. Combining biochemical and amino acid variation data with multiple species sequence alignments, structural models, and docking site predictions allows for visualization of how angiotensin peptides may bind and activate the receptors; allowing identification of conserved and variant mechanisms in the receptors. MAS differs from AT1 favoring Ang-(1-7 and not Ang II binding, while AT2 recently has been suggested to preferentially bind Ang III. A new model of Ang peptide binding to AT1 and AT2 is proposed that correlates data from site directed mutagenesis and photolabled experiments that were previously considered conflicting. Ang II binds AT1 and AT2 through a conserved initial binding mode involving amino acids 111 (consensus 325 of AT1 (Asn interacting with Tyr (4 of Ang II and 199 and 256 (consensus 512 and 621, a Lys and His respectively interacting with Phe (8 of Ang II. In MAS these sites are not conserved, leading to differential binding and activation by Ang-(1-7. In both AT1 and AT2, the Ang II peptide may internalize through Phe (8 of Ang II propagating through the receptors' conserved aromatic amino acids to the final photolabled positioning relative to either AT1 (amino acid 294, Asn, consensus 725 or AT2 (138, Leu, consensus 336. Understanding receptor activation provides valuable information for drug design and identification of other receptors that can potentially bind Ang peptides.

  11. Upregulation of dopamine D3, not D2, receptors correlates with tardive dyskinesia in a primate model.

    Science.gov (United States)

    Mahmoudi, Souha; Lévesque, Daniel; Blanchet, Pierre J

    2014-08-01

    Tardive dyskinesia (TD) is a delayed and potentially irreversible motor complication arising in patients chronically exposed to centrally active dopamine D2 receptor antagonists, including antipsychotic drugs and metoclopramide. The classical dopamine D2 receptor supersensitivity hypothesis in TD, which stemmed from rodent studies, lacks strong support in humans. To investigate the neurochemical basis of TD, we chronically exposed adult capuchin monkeys to haloperidol (median, 18.5 months; n = 11) or clozapine (median, 6 months; n = 6). Six unmedicated animals were used as controls. Five haloperidol-treated animals developed mild TD movements, and no TD was observed in the clozapine group. Using receptor autoradiography, we measured striatal dopamine D1, D2, and D3 receptor levels. We also examined the D3 receptor/preprotachykinin messenger RNA (mRNA) co-expression, and quantified preproenkephalin mRNA levels, in striatal sections. Unlike clozapine, haloperidol strongly induced dopamine D3 receptor binding sites in the anterior caudate-putamen, particularly in TD animals, and binding levels positively correlated with TD intensity. Interestingly, the D3 receptor upregulation was observed in striatonigral neurons. In contrast, D2 receptor binding was comparable to controls, and dopamine D1 receptor binding was reduced in the anterior putamen. Enkephalin mRNA widely increased in all animals, but to a greater extent in TD-free animals. These results suggest for the first time that upregulated striatal D3 receptors correlate with TD in nonhuman primates, adding new insights to the dopamine receptor supersensitivity hypothesis. The D3 receptor could provide a novel target for drug intervention in human TD. © 2014 International Parkinson and Movement Disorder Society.

  12. Serotonin 5-HT2B receptors are required for bone-marrow contribution to pulmonary arterial hypertension.

    OpenAIRE

    Launay , Jean-Marie; Hervé , Philippe; Callebert , Jacques; Mallat , Ziad; Collet , Corinne; Doly , Stéphane; Belmer , Arnauld; Diaz , Silvina ,; Hatia , Sarah; Côté , Francine; Humbert , Marc; Maroteaux , Luc

    2012-01-01

    International audience; Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial dysfunction and vascular remodeling. Recently, bone marrow progenitor cells have been localized to PAH lungs, raising the question of their role in disease progression. Independently, serotonin (5-HT) and its receptors have been identified as contributors to the PAH pathogenesis. We hypothesized that 1 of these receptors, 5-HT(2B), is involved in bone marrow stem cell mobil...

  13. Some theoretical aspects of hormone receptor determination

    International Nuclear Information System (INIS)

    Sluiter, W.J.

    1981-01-01

    Suitable antisera for determination of hormone receptors are not available for the majority of hormone receptors. Therefore, the determination of hormone receptors is mostly performed in terms of binding capacity for the appropriate hormone, using radioactive hormone labels. Some theoretical aspects of such a receptor determination are discussed including the length of incubation (total or unoccupied receptor concentration), single point or multiple point (Scatchard) analysis (regarding the influence of other specific binders), the correction procedure for non-specific binding and the influence of the circulating hormone level. (Auth.)

  14. International safeguards data authentication

    Energy Technology Data Exchange (ETDEWEB)

    Melton, R.B.; Smith, C.E.; DeLand, S.M.; Manatt, D.R.

    1996-07-01

    The International Safeguards community is becoming increasingly reliant on information stored in electronic form. In international monitoring and related activities it must be possible to verify and maintain the integrity of this electronic information. This paper discusses the use of data authentication technology to assist in accomplishing this task. The paper provides background information, identifies the relevance to international safeguards, discusses issues related to export controls, algorithm patents, key management and the use of commercial vs. custom software.

  15. School of International Relations

    OpenAIRE

    Michail M. Narinskii

    2014-01-01

    International Relations have been and remain not only one of the basic academic disciplines, but also one of the main directions of research work at MGIMO. Doing IR is closely intertwined with theory and practice, history and current events, the desire to combine a deep knowledge of the factual material and research-based evaluation in accordance with objective laws found in international life. Training of highly qualified specialists in international relations is impossible without a fundame...

  16. International New Ventures

    OpenAIRE

    Knudsen, Thorbjørn; Koed Madsen, Tage

    2004-01-01

    The label ‘International New Ventures’ has been used to designate firms, which from their inception are oriented towards the international market place. The present article aims to test empirically whether such a type of manufacturing firms differ from comparable firms with respect to some basic characteristics. The motivation for doing so is to evaluate the usefulness of studying International New Ventures as a distinct form of economic organization.

  17. Characterization of collagenase-3 binding and internalization by rabbit chondrocytes

    International Nuclear Information System (INIS)

    Raggatt, L.J.; Choundhury, I.; Williams, S.

    2002-01-01

    Full text: Collagenase-3 (MMP-13) is an extracellular matrix metalloproteinase that cleaves type II collagen, the major protein component of cartilage, with high specificity. Several studies have identified increased levels of MMP-13 in arthritic synovial fluid where it may contribute to matrix destruction in this disease. Our laboratory has previously documented a process where by osteoblastic cells remove MMP-13 from the surrounding milieu by binding the enzyme to a specific receptor. The enzyme is then internalized and degraded through the actions of the endocytotic receptor, the low-density lipoprotein receptor-related protein (LRP). Such a mechanism provides for a controlled elimination of a potentially destructive enzyme from the extracellular environment. This process of MMP-13 internalization also occurs in chondrocytes and is significantly reduced in OA chondrocytes. We are currently characterizing the internalization of MMP-13 in normal rabbit chondrocytes. Primary rabbit chondrocytes were harvested and cultured in monolayers for three passages. Reverse transcription polymerase chain reaction (RT-PCR) was used to asses the cell phenotype during the culture period and the rabbit chondrocytes were found to express the cartilage specific genes aggrecan and type II collagen throughout this time. 125I-MMP-13 was used to assess the ability of the rabbit chondrocytes to bind MMP-13. Appreciable specific cell-association of MMP-13 was detected after 10 mm of exposure to the ligand and equilibrium was obtained after 2 h. After identifying the time to equilibrium we determined whether binding was saturable by incubating the chondrocytes with increasing concentrations of 125I-MMP-13 ranging from 0 to 100 nM at 4 deg C for 2h. The amount of specifically associated MMP-13 approached saturation at 75 nM, allowing assessment of the receptor kinetics. Finally, we have assessed the ability of rabbit chondrocytes to internalize a single cohort of 125I-MMP-13 over time at

  18. International Research Chairs Initiative | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The International Research Chairs Initiative (IRCI) is a seven-year, CA$8 million research program that pairs top research talent from universities in Canada with their counterparts in developing countries to address key development challenges. These specialists share their advanced skills and knowledge to confront issues ...

  19. International Ecohealth Forum 2008 | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    It will be hosted by the National Institute of Public Health (INSP) in Mérida, Mexico, 1-4 December 2008. The Forum is expected to bring together more than 700 participants from around the world and will constitute a seminal step toward consolidating an international community of practitioners with a holistic perspective ...

  20. Characterization of a disease-causing Glu119-Lys mutation in the low-density lipoprotein receptor gene in two Danish families with heterozygous familial hypercholesterolemia

    DEFF Research Database (Denmark)

    Jensen, H K; Jensen, T G; Jensen, L G

    1994-01-01

    acid residue 119 in the third repeat of the cysteine-rich ligand binding domain of the mature LDL receptor. Disruption of LDL receptor function by the Glu119-Lys mutation was confirmed by site-directed mutagenesis and expression in COS-7 cells. By Western blotting the mutation was found to affect...... the processing of the LDL receptor protein. Using flow cytometric analysis of the transfected cells a decreased binding and internalization of LDL by the mutant receptor was documented. By means of a mutation-specific PCR-based assay the Glu119-Lys mutation was not detected in another 85 apparently unrelated...

  1. Membrane cholesterol effect on the 5-HT2A receptor: Insights into the lipid-induced modulation of an antipsychotic drug target.

    Science.gov (United States)

    Ramírez-Anguita, Juan Manuel; Rodríguez-Espigares, Ismael; Guixà-González, Ramon; Bruno, Agostino; Torrens-Fontanals, Mariona; Varela-Rial, Alejandro; Selent, Jana

    2018-01-01

    The serotonin 5-hydroxytryptamine 2A (5-HT 2A ) receptor is a G-protein-coupled receptor (GPCR) relevant for the treatment of CNS disorders. In this regard, neuronal membrane composition in the brain plays a crucial role in the modulation of the receptor functioning. Since cholesterol is an essential component of neuronal membranes, we have studied its effect on the 5-HT 2A receptor dynamics through all-atom MD simulations. We find that the presence of cholesterol in the membrane increases receptor conformational variability in most receptor segments. Importantly, detailed structural analysis indicates that conformational variability goes along with the destabilization of hydrogen bonding networks not only within the receptor but also between receptor and lipids. In addition to increased conformational variability, we also find receptor segments with reduced variability. Our analysis suggests that this increased stabilization is the result of stabilizing effects of tightly bound cholesterol molecules to the receptor surface. Our finding contributes to a better understanding of membrane-induced alterations of receptor dynamics and points to cholesterol-induced stabilizing and destabilizing effects on the conformational variability of GPCRs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  2. International Rehabilitation Network

    National Research Council Canada - National Science Library

    Smith, William

    2001-01-01

    The International Rehabilitation Network's goal is to improve the quality of services for land mine survivors and other amputee's through the dissemination of educational programs to rehabilitation professionals...

  3. EM International. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    It is the intent of EM International to describe the Office of Environmental Restoration and Waste Management`s (EM`s) various roles and responsibilities within the international community. Cooperative agreements and programs, descriptions of projects and technologies, and synopses of visits to international sites are all highlighted in this semiannual journal. Focus on EM programs in this issue is on international collaboration in vitrification projects. Technology highlights covers: in situ sealing for contaminated sites; and remote sensors for toxic pollutants. Section on profiles of countries includes: Arctic contamination by the former Soviet Union, and EM activities with Germany--cooperative arrangements.

  4. SME International Business Models

    DEFF Research Database (Denmark)

    Child, John; Hsieh, Linda; Elbanna, Said

    2017-01-01

    This paper addresses two questions through a study of 180 SMEs located in contrasting industry and home country contexts. First, which business models for international markets prevail among SMEs and do they configure into different types? Second, which factors predict the international business...... models that SMEs follow? Three distinct international business models (traditional market-adaptive, technology exploiter, and ambidextrous explorer) are found among the SMEs studied. The likelihood of SMEs adopting one business model rather than another is to a high degree predictable with reference...... to a small set of factors: industry, level of home economy development, and decision-maker international experience....

  5. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes

    Science.gov (United States)

    Carvajal-González, Alexander; Leite, M. Isabel; Waters, Patrick; Woodhall, Mark; Coutinho, Ester; Balint, Bettina; Lang, Bethan; Pettingill, Philippa; Carr, Aisling; Sheerin, Una-Marie; Press, Raomand; Lunn, Michael P.; Lim, Ming; Maddison, Paul; Meinck, H.-M.; Vandenberghe, Wim

    2014-01-01

    The clinical associations of glycine receptor antibodies have not yet been described fully. We identified prospectively 52 antibody-positive patients and collated their clinical features, investigations and immunotherapy responses. Serum glycine receptor antibody endpoint titres ranged from 1:20 to 1:60 000. In 11 paired samples, serum levels were higher than (n = 10) or equal to (n = 1) cerebrospinal fluid levels; there was intrathecal synthesis of glycine receptor antibodies in each of the six pairs available for detailed study. Four patients also had high glutamic acid decarboxylase antibodies (>1000 U/ml), and one had high voltage-gated potassium channel-complex antibody (2442 pM). Seven patients with very low titres (antibodies activated complement on glycine receptor-transfected human embryonic kidney cells at room temperature, and caused internalization and lysosomal degradation of the glycine receptors at 37°C. Immunoglobulin G antibodies bound to rodent spinal cord and brainstem co-localizing with monoclonal antibodies to glycine receptor-α1. Ten glycine receptor antibody positive samples were also identified in a retrospective cohort of 56 patients with stiff person syndrome and related syndromes. Glycine receptor antibodies are strongly associated with spinal and brainstem disorders, and the majority of patients have progressive encephalomyelitis with rigidity and myoclonus. The antibodies demonstrate in vitro evidence of pathogenicity and the patients respond well to immunotherapies, contrasting with earlier studies of this syndrome, which indicated a poor prognosis. The presence of glycine receptor antibodies should help to identify a disease that responds to immunotherapies, but these treatments may need to be sustained, relapses can occur and maintenance immunosuppression may be required. PMID:24951641

  6. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    Chemokine receptors belong to the large family of 7-transmembrane (7TM) G-protein-coupled receptors. These receptors are targeted and activated by a variety of different ligands, indicating that activation is a result of similar molecular mechanisms but not necessarily similar modes of ligand...... binding. Attempts to unravel the activation mechanism of 7TM receptors have led to the conclusion that activation involves movements of the transmembrane segments VI and VII in particular, as recently gathered in the Global Toggle Switch Model. However, to understand the activation mechanism completely......, more research has to be done in this field. Chemokine receptors are interesting tools in this matter. First, the chemokine system has a high degree of promiscuity that allows several chemokines to target one receptor in different ways, as well as a single chemokine ligand to target several receptors...

  7. DMPD: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15379975 Signal transduction by the lipopolysaccharide receptor, Toll-like receptor... Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. PubmedID 15379975 Title Signa...l transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Authors

  8. Further characterization of tuftsin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bump, N.J.; Lee, J.; Najjar, V.A.

    1986-03-05

    Tuftsin receptor was purified from rabbit peritoneal granulocytes by affinity chromatography. The pentapeptide analog, Thr-Lys-Pro-Pro-Arg was covalently linked to a solid support column. Rabbit granulocyte membrane was prepared, dissolved in 8 mM CHAPS and run through the column, eluted with 20 eta M free pentapeptide and subjected to dialysis concentration. When this was run on SDS-PAGE, two bands were obtained at a migration equivalent to Mr 60 and 62 K. These were electroblotted on nitrocellulose paper which showed two corresponding (/sup 3/H)-tuftsin binding bands. After reduction, and boiling, SDS-PAGE runs showed two bands Mr 85 and 70 K. When the purified receptor was reduced, alkylated and treated with endo-..beta..-N-acetylglucosaminidase H, only one band was obtained at Mr of about 90 K.

  9. Ketamine: NMDA Receptors and Beyond

    OpenAIRE

    Zorumski, Charles F.; Izumi, Yukitoshi; Mennerick, Steven

    2016-01-01

    Human studies examining the effects of the dissociative anesthetic ketamine as a model for psychosis and as a rapidly acting antidepressant have spurred great interest in understanding ketamine's actions at molecular, cellular, and network levels. Although ketamine has unequivocal uncompetitive inhibitory effects on N-methyl-d-aspartate receptors (NMDARs) and may preferentially alter the function of NMDARs on interneurons, recent work has questioned whether block of NMDARs is critical for its...

  10. Assay for the glucagon receptor

    International Nuclear Information System (INIS)

    Rojas, F.J.; Birnbaumer, L.

    1985-01-01

    A new iodination procedure for glucagon using 1,3,4,6-tetracholoro-3α,6α-diphenylglycouril (Iodogen) as the oxidizing agent, and the subsequent separation in pure form of [ 125 I-Tyr 10 ]mono-iodoglucagon by reverse-phase high-pressure liquid chromatography (HPLC) over C 18 -μ Bondapak columns is described. The newly synthesized [ 125 I]mono-iodoglucagon is shown to be a suitable probe for studying structural and functional properties of glucagon receptors

  11. Keratinocyte cytokine and chemokine receptors.

    Science.gov (United States)

    Tüzün, Yalçin; Antonov, Meltem; Dolar, Neslihan; Wolf, Ronni

    2007-10-01

    Chemokines are a superfamily of small, secreted proteins that regulate cell traffic in homeostatic and inflammatory conditions. Keratinocytes synthesize many chemokines, including members of the CC and CXC subfamilies, such as regulated on activation of normal T-cell expressed and secreted, gamma-interferon inducible protein-10, monokine induced by gamma-interferon, and thymus- and activation-regulated chemokine. They also express some chemokine receptors that mediate the inflammatory or immune response by attracting various kinds of leukocytes.

  12. Insulin receptor in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-01-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound 125 I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to 125 I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to 125 I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development

  13. PAF receptor structure: a hypothesis.

    Science.gov (United States)

    Godfroid, J J; Dive, G; Lamotte-Brasseur, J; Batt, J P; Heymans, F

    1991-12-01

    Different hypotheses of the structure of platelet-activating factor (PAF) receptor based on structure-activity relationships of agonists and antagonists are reviewed. For an agonistic effect, strong hydrophobic interactions and an ether function are required in position-1 of the glycerol backbone; chain length limitations and steric hindrance demand a small group in position-2. The unusual structural properties of non-PAF-like antagonists required 3-D electrostatic potential calculations. This method applied to seven potent antagonists suggests a strong "Cache-orielles" (ear-muff) effect, i.e., two strong electronegative wells (isocontour at -10 Kcal/mole) are located at 180 degrees to each other and at a relatively constant distance. Initial consideration of the "Cache-oreilles" effect implied the structure of a bipolarized cylinder of 10-12 A diameter for the receptor. However, very recent results on studies with agonists and antagonists structurally similar to PAF suggest that the receptor may in fact be a multi-polarized cylinder.

  14. NGA/Insulin receptor scanning

    International Nuclear Information System (INIS)

    Kurtaran, A.; Virgolini, I.

    1994-01-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of 'cold spots' for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of 'cold spots' identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author)

  15. Lymphocyte receptors for pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.G.; Armstrong, G.D. (Univ. of Alberta, Edmonton (Canada))

    1990-12-01

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, and Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes.

  16. Nuclear receptors for thyroid hormones

    International Nuclear Information System (INIS)

    Ricketts, M.H.; Groenewald, J. de W.; Wilson, B.D.

    1980-01-01

    The thyroid hormones, T 3 and T 4 , modulate a vast number of metabolic processes in mammalian tissues. High affinity, low capacity binding sites for T 3 and T 4 have been demonstrated in cell nuclei of target organs using both in vivo and in vitro labelling techniques. The displacement of [ 125 I]T 3 from nuclear binding sites by thyroid hormone analogues correlates well with the thyromimetic activities of the analogues tested. Dose-response relationships between T 3 occupancy and growth hormone secretion as a function of free T 3 concentration have been established with the GH 1 cell line. The equilibrium dissociation constant of the equation which describes how T 3 binds to the nuclei of intact cells is essentially the same as the free T 3 concentration that elicits the half-maximal biological response of the hormone. It is becoming apparent that these nuclear binding sites represent specific thyroid hormone receptors, whose function may be to regulate gene activity in target tissues. This report concerns the binding of the rat liver nuclear receptor to duplex and random coil DNA as well as to non-mammalian and synthetic DNAs. We postulate that the receptor binds in vivo to native DNA in the minor groove of the DNA helix

  17. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor

    Directory of Open Access Journals (Sweden)

    Chanjuan eXU

    2014-02-01

    Full Text Available The main inhibitory neurotransmitter, GABA, acts on both ligand-gated and G protein-coupled receptors, the GABAA/C and GABAB receptors, respectively. The later play important roles in modulating many synapses, both at the pre- and post-synaptic levels, and are then still considered as interesting targets to treat a number of brain diseases, including addiction. For many years, several subtypes of GABAB receptors were expected, but cloning revealed only two genes that work in concert to generate a single type of GABAB receptor composed of two subunits. Here we will show that the signaling complexity of this unit receptor type can be largely increased through various ways, including receptor stoichiometry, subunit isoforms, membrane expression and localization, crosstalk with other receptors or interacting proteins. These recent data revealed how complexity of a receptor unit can be increased, observation that certainly are not unique to the GABAB receptor.

  18. Archives: Animal Research International

    African Journals Online (AJOL)

    Items 1 - 40 of 40 ... Archives: Animal Research International. Journal Home > Archives: Animal Research International. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 40 of 40 ...

  19. International Student Success

    Science.gov (United States)

    Smith, Clayton

    2016-01-01

    This article, with a focus on North American postsecondary education, identifies international students as a strategic enrollment management institutional priority; presents themes in the international student retention, satisfaction, and success research literature; and describes related best practices. It also presents the findings from an…

  20. Publishing International Counseling Articles

    Science.gov (United States)

    Hohenshil, Thomas H.; Amundson, Norman E.

    2011-01-01

    This article begins with a rationale for including international articles in the "Journal of Counseling & Development." Then, 2 general categories of international articles are described. First are articles that provide a general overview of counseling in a particular country. The 2nd category is more general and might involve international…

  1. International Perspectives. Chapter 2.

    Science.gov (United States)

    Acampora, Alfonso P., Ed.; Nebelkopf, Ethan, Ed.

    This document contains seven papers from the ninth World Conference of Therapeutic Communities that provide an international perspective on the therapeutic community (TC) movement as it is today. Papers include: (1) "What's Happening on an International Level" (William B. O'Brien); (2) "Therapeutic Communities of America"…

  2. OCRWM international procedures

    International Nuclear Information System (INIS)

    1986-03-01

    These international procedures provide guidance and assistance for the Office of Civilian Radioactive Waste Management (OCRWM) and for OCRWM Project Offices, contractors and subcontractors in conducting international activities. They supplement the relevant Department of Energy (DOE) orders (which are referenced), not supplant them

  3. International Geomagnetic Reference Field

    DEFF Research Database (Denmark)

    Finlay, Chris; Maus, S.; Beggan, C. D.

    2010-01-01

    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2009 by the International Association of Geomagnetism and Aeronomy Working Group V‐MOD. It updates the previous IGRF generation with a definitive main field model for epoch 2005.0, a main field...

  4. International Entrepreneurship and Sourcing

    DEFF Research Database (Denmark)

    Servais, Per; Zucchella, Antonella; Palamera, Giada

    2006-01-01

    This contribution focuses on international sourcing as an entrepreneurial act and aims at demonstrating that it is actually at the core of internationalization processes of small firms, both established and international new ventures. Another issue of this research is to understand how these firms...

  5. International Resource Management.

    Science.gov (United States)

    Schabel, H. G.

    The International Resource Management program enables undergraduate students of the University of Wisconsin, Stevens Point, College of Natural Resources to complete an academic minor in International Resource Management. The program attempts to alert students and faculty to global environmental issues and their interconnectedness with a variety of…

  6. INTERNAL AUDIT CHARTER

    International Development Research Centre (IDRC) Digital Library (Canada)

    sblanchard

    2015-03-30

    Mar 30, 2015 ... The Chief Audit Executive, staff and consultants do not assume any responsibility or authority over any Centre activities outside of the. Risk Management and Internal Audit unit. The performance of internal audit activities does not relieve management of any of their assigned responsibilities. The Chief Audit ...

  7. Modeling Internal Radiation Therapy

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Theo E.; Pellegrini, M.; Fred, A.; Filipe, J.; Gamboa, H.

    2011-01-01

    A new technique is described to model (internal) radiation therapy. It is founded on morphological processing, in particular distance transforms. Its formal basis is presented as well as its implementation via the Fast Exact Euclidean Distance (FEED) transform. Its use for all variations of internal

  8. Research in International Education

    Science.gov (United States)

    Dolby, Nadine; Rahman, Aliya

    2008-01-01

    Until recently, international education has existed at the margins of educational research. However, in the current context of globalization, international education has moved closer to the center of educational research throughout the world. In this article, the authors identify, describe, and analyze six distinct research approaches to…

  9. International skatteret 2. udgave

    DEFF Research Database (Denmark)

    Michelsen, Aage

    Bogen redegør for de grundlæggende principper i den internationale skatteret, der omfatter intern dansk udlandsskatteret, herunder samspillet med fremmed ret, dobbeltbeskatningsaftalerne , herunder samspillet med dansk ret, samt EU-skatteretten, herunder samspillet mellem intern dansk ret og EU...

  10. [Internal quality control].

    Science.gov (United States)

    Giroud, C; Arnaud, J; Adjidé, V; Vassault, A

    2010-12-01

    The internal quality control is a key technical requirement through accreditation by the NF EN ISO 15189. This document presents recommendations to assist the medical laboratory to design, implement and operate daily and retrospectively an efficient system of internal control quality. It identifies the important issues attached to these different steps.

  11. International Trade and Protectionism.

    Science.gov (United States)

    Stanford Univ., CA. Stanford Program on International and Cross Cultural Education.

    This unit is designed to investigate the reasons for international trade and the issue of trade protectionism by focusing on the case study of the U.S. trade relationship with Taiwan. The unit begins with a simulation that highlights the concepts of global interdependence, the need for international trade, and the distribution of the world's…

  12. International Youth Nuclear Congress

    International Nuclear Information System (INIS)

    Fern, A.

    2017-01-01

    International Youth Nuclear Congress (IYNC) was Initiated by an international YG group of enthusiasts in 1997. Mission statement developed at ENC1998 in Nice, France Growth in enthusiasm and support: IAEA, Nuclear Societies, companies. IYNC run by the Young Generation with full support of experienced advisors, nuclear societies and companies. First came to African continent when IYNC 2010 was hosted by South Africa

  13. International mercury conference

    CSIR Research Space (South Africa)

    Leaner, J

    2006-10-01

    Full Text Available Mercury (Hg) affects human health and the environment, it calls for immediate action. Action is needed at local, regional and international level to reduce the risk associated with mercury, which is a global international problem, as it is a...

  14. A New International Program

    Science.gov (United States)

    Abelson, Philip H.

    1973-01-01

    Comments on the cooperative spirit of geophysicists which resulted in the largest scientific cooperative project ever conducted: the International Geophysical Year. Describes a new international venture (called Geodynamics Project) that is designed to exploit the many opportunities for new insights resulting from recent advances in earth science.…

  15. Sulfated polysaccharides identified as inducers of neuropilin-1 internalization and functional inhibition of VEGF165 and semaphorin3A.

    Science.gov (United States)

    Narazaki, Masashi; Segarra, Marta; Tosato, Giovanna

    2008-04-15

    Neuropilin-1 (NRP1) and NRP2 are cell surface receptors shared by class 3 semaphorins and vascular endothelial growth factor (VEGF). Ligand interaction with NRPs selects the specific signal transducer, plexins for semaphorins or VEGF receptors for VEGF, and promotes NRP internalization, which effectively shuts down receptor-mediated signaling by a second ligand. Here, we show that the sulfated polysaccharides dextran sulfate and fucoidan, but not others, reduce endothelial cell-surface levels of NRP1, NRP2, and to a lesser extent VEGFR-1 and VEGFR-2, and block the binding and in vitro function of semaphorin3A and VEGF(165). Administration of fucoidan to mice reduces VEGF(165)-induced angiogenesis and tumor neovascularization in vivo. We find that dextran sulfate and fucoidan can bridge the extracellular domain of NRP1 to that of the scavenger receptor expressed by endothelial cells I (SREC-I), and induce NRP1 and SREC-I coordinate internalization and trafficking to the lysosomes. Overexpression of SREC-I in SREC-I-negative cells specifically reduces cell-surface levels of NRP1, indicating that SREC-I mediates NRP1 internalization. These results demonstrate that engineered receptor internalization is an effective strategy for reducing levels and function of cell-surface receptors, and identify certain sulfated polysaccharides as "internalization inducers."

  16. The two-state dimer receptor model: a general model for receptor dimers.

    Science.gov (United States)

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  17. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  18. International New Venture Legitimation

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    2013-01-01

    There is limited theoretical understanding and empirical evidence for how international new ventures legitimate. Drawing from legitimation theory, this study fills in this gap by exploring how international new ventures legitimate and strive for survival in the face of critical events during...... the process of their emergence. It is a longitudinal, multiple-case study research that employs critical incident technique for data collection, analysis and interpretation. Following theory driven sampling, five international new ventures were selected that were operating in the software sector in the UK...... types of legitimation strategies: technology, operating, and anchoring. Studying international new ventures through theoretical lenses of legitimation is a promising area of research that would contribute to the advancement of international entrepreneurship theory....

  19. Immunity of international organizations

    CERN Document Server

    Schrijver, Nico

    2015-01-01

    Immunity rules are part and parcel of the law of international organizations. It has long been accepted that international organizations and their staff need to enjoy immunity from the jurisdiction of national courts. However, it is the application of these rules in practice that increasingly causes controversy. Claims against international organizations are brought before national courts by those who allegedly suffer from their activities. These can be both natural and legal persons such as companies. National courts, in particular lower courts, have often been less willing to recognize the immunity of the organization concerned than the organization s founding fathers. Likewise, public opinion and legal writings frequently criticize international organizations for invoking their immunity and for the lack of adequate means of redress for claimants. It is against this background that an international conference was organized at Leiden University in June 2013. A number of highly qualified academics and practit...

  20. UNCLOS and International Law

    DEFF Research Database (Denmark)

    Martinez Romera, Beatriz; Coelho, Nelson F.

    2018-01-01

    here is that of unilateral state practice and that practice has been relying, at least to some extent, on general public international law. This chapter explains how it is important to revisit international law to better understand the relative relevance of the UNCLOS in oceans governance today. Indeed......, treaty law is only one of many sources of the law that governs international relations, the others being customary international law and principles of law. The main conclusion of this chapter is that states may have to wake up to the limitations of the UNCLOS and that this will require understanding......The UNCLOS has been since its signature in 1982 the fundamental international legal reference for oceans governance. Indeed, this treaty was written “in pursuit of our common dream of writing a constitution for the oceans”. Yet much alike any dream, reality sooner or later catches up. The reality...

  1. Internal Social Media

    DEFF Research Database (Denmark)

    Madsen, Vibeke Thøis

    2018-01-01

    Internal social media is a web-based communication arena that provides all organizational members with a communication opportunity. The media has emerged in organizations since 2004, and is increasingly seen as a way of giving employees a voice in organizations which can benefit the organization...... in terms of knowledge sharing, collaboration, and employee participation and engagement. The first wave of studies of internal social media was primarily from an information-systems perspective and focused more on its adoption, its affordances, and the outcome of its introduction. The second wave...... of studies was more concerned with studying the dynamics of communication on internal social media, in order to understand coworkers as strategic communicators and how communication on internal social media can constitute the organization. With a successful introduction of internal social media, coworkers...

  2. FINANCING OF INTERNATIONAL TRANSACTIONS

    Directory of Open Access Journals (Sweden)

    RADU NICOLAE BĂLUNĂ

    2013-02-01

    Full Text Available Financing (funding is essentially the purchase of funds necessary for a business. This can be done from internal sources (company’s own funds or external (borrowed funds. The high value of goods traded in international trade makes revenues generated from internal resources not sufficient to settle the value of the goods. Thus, it is frequent to resort to borrowed funds. In International Business Transactions, external financing is done both by classical techniques of credit (credit supplier and buyer credit and modern techniques of financing (factoring, forfeiting, leasing all trade tailored. In terms of the length of financing, accounting funding is short-term (1-12 months and long-term financing (over a year. In principle, export and import operations prevailing short-term financing techniques, while international investment and industrial cooperation actions are specific long-term funding

  3. Cancer from internal emitters

    International Nuclear Information System (INIS)

    Boecker, B.B.; Griffith, W.C. Jr.

    1995-01-01

    Irradiation from internal emitters, or internally deposited radionuclides, is an important component of radiation exposures encountered in the workplace, home, or general environment. Long-term studies of human populations exposed to various internal emitters by different routes of exposure are producing critical information for the protection of workers and members of the general public. The purpose of this report is to examine recent developments and discuss their potential importance for understanding lifetime cancer risks from internal emitters. The major populations of persons being studied for lifetime health effects from internally deposited radionuclides are well known: Lung cancer in underground miners who inhaled Rn progeny, liver cancer from persons injected with the Th-containing radiographic contrast medium Thorotrast, bone cancer from occupational or medical intakes of 226 Ra or medical injections of 224 Ra, and thyroid cancer from exposures to iodine radionuclides in the environment or for medical purposes

  4. Exploring Links between Internal and International Migration in Albania : a View from Internal Migrants

    NARCIS (Netherlands)

    Caro, Erka; Bailey, Ajay; Van Wissen, Leo J. G.

    Over the last 20years, Albania has experienced sweeping economic and social changes, caused in part by increasing internal and international migration flows. Migration trajectories of Albanians represent a combination of internal, international, and return migration. Whereas scholars have previously

  5. Genomic testing in international guidelines

    Directory of Open Access Journals (Sweden)

    Peter Kern

    2013-10-01

    Full Text Available Human breast cancer was solely classified based on clinical and immunohistochemical (IHC findings in the past. A growing body of evidence suggests that these categorisations are rendered more precisely by intrinsic subtyping with the aim of an introduction of personalised medicine. Especially in breast cancer with the uncertain potential of disease spread, such as T1-2, Grade 2 and oestrogen receptor-positive (ER+ve tumours, the value of chemotherapy applied to every patient has been questioned and the need for additional information on the tumour´s specific risk of recurrence is overt. It is estimated that the average risk for recurrence is 15% at 10 years in hormone-receptor-positive breast cancer. Thus, a relatively small proportion of these patients would need chemotherapy, and the main task is to stratify which patients of this cohort are at high-risk and will benefit from cytotoxic agents. Ki67, as a proliferation marker classifying high-risk tumours, has been demonstrated as a continuous marker, but not as a clear cut risk-defining instrument in recent publications. Thus, the difficulties are perceived especially at the threshold of the low to high-risk area of this marker. Reproducibility of Ki67 is to some extent uncertain considering there is inter and intra-institutional variability of up to 30% of the results. Several multi gene arrays, such as MammaPrint®, Oncotype DX®, Endopredict®, and PAM50 have demonstrated clinical utility and experienced validation. The aim of this review is the description of the implementation of genomic testing in international guidelines (North American and European, with regard to incorporation of multigene arrays into the decision-making process in different clinical settings (including tumor size and IHC status. Data cut-off was 1st October, 2013. It seems that North America and some European countries have initiated a shift towards a personalised medicine with multigene arrays based on RT-PCR or

  6. Endocytosis of GPI-linked membrane folate receptor-alpha.

    Science.gov (United States)

    Rijnboutt, S; Jansen, G; Posthuma, G; Hynes, J B; Schornagel, J H; Strous, G J

    1996-01-01

    GPI-linked membrane folate receptors (MFRs) have been implicated in the receptor-mediated uptake of reduced folate cofactors and folate-based chemotherapeutic drugs. We have studied the biosynthetic transport to and internalization of MFR isoform alpha in KB-cells. MFR-alpha was synthesized as a 32-kD protein and converted in a maturely glycosylated 36-38-kD protein 1 h after synthesis. 32-kD MFR-alpha was completely soluble in Triton X-100 at 0 degree C. In contrast, only 33% of the 36-38-kD species could be solubilized at these conditions whereas complete solubilization was obtained in Triton X-100 at 37 degrees C or in the presence of saponin at 0 degree C. Similar solubilization characteristics were found when MFR-alpha at the plasma membrane was labeled with a crosslinkable 125I-labeled photoaffinity-analog of folic acid as a ligand. Triton X-100-insoluble membrane domains containing MFR-alpha could be separated from soluble MFR-alpha on sucrose flotation gradients. Only Triton X-100 soluble MFR-alpha was internalized from the plasma membrane. The reduced-folate-carrier, an integral membrane protein capable of translocating (anti-)folates across membranes, was completely excluded from the Triton X-100-resistant membrane domains. Internalized MFR-alpha recycled slowly to the cell surface during which it remained soluble in Triton X-100 at 0 degree C. Using immunoelectron microscopy, we found MFR-alpha along the entire endocytic pathway: in clathrin-coated buds and vesicles, and in small and large endosomal vacuoles. In conclusion, our data indicate that a large fraction, if not all, of internalizing MFR-alpha bypasses caveolae.

  7. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  8. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  9. Protein Connectivity in Chemotaxis Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Stephan Eismann

    2015-12-01

    Full Text Available The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures.

  10. Amphipathic benzenes are designed inhibitors of the estrogen receptor alpha/steroid receptor coactivator interaction.

    Science.gov (United States)

    Gunther, Jillian R; Moore, Terry W; Collins, Margaret L; Katzenellenbogen, John A

    2008-05-16

    We report here on the design, synthesis, and evaluation of small molecule inhibitors of the interaction between a steroid receptor coactivator and estrogen receptor alpha. These inhibitors are based upon an amphipathic benzene scaffold whose hydrophobic face mimics the leucine-rich alpha-helical consensus sequence on the steroid receptor coactivators that interacts with a shallow groove on estrogen receptor alpha. Several of these molecules are among the most potent inhibitors of this interaction described to date and are active at low micromolar concentrations in both in vitro models of estrogen receptor action and in cell-based assays of estrogen receptor-mediated coactivator interaction and transcription.

  11. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...... an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased...... in dorsal hippocampus (77 +/- 35%, p effect of GR activation on 5-HT2A receptor...

  12. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1

    DEFF Research Database (Denmark)

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila

    2015-01-01

    have previously found that the atypical antipsychotics clozapine and olanzapine inhibited G protein activation and, surprisingly, induced both internalization and lysosomal degradation of 5-HT7 receptors. Here, we aimed to determine the mechanism of clozapine- and olanzapine-mediated degradation of 5......-HT7 receptors. In the C-terminus of the 5-HT7 receptor, we identified two YXXΦ motifs, LR residues, and a palmitoylated cysteine anchor as potential sites involved in receptor trafficking to lysosomes followed by receptor degradation. Mutating either of these sites inhibited clozapine- and olanzapine...... of clozapine or olanzapine to the 5-HT7 receptor leads to antagonist-mediated lysosomal degradation by exposing key residues in the C-terminal tail that interact with GASP-1....

  13. Endocytosis as a biological response in receptor pharmacology: evaluation by fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Víctor M Campa

    Full Text Available The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method -the Q-Endosomes algorithm- that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution.

  14. Ca2+-dependent down-regulation of human histamine H1receptors in Chinese hamster ovary cells.

    Science.gov (United States)

    Hishinuma, Shigeru; Komazaki, Hiroshi; Tsukamoto, Hayato; Hatahara, Hirokazu; Fukui, Hiroyuki; Shoji, Masaru

    2018-01-01

    G q/11 protein-coupled human histamine H 1 receptors in Chinese hamster ovary cells stimulated with histamine undergo clathrin-dependent endocytosis followed by proteasome/lysosome-mediated down-regulation. In this study, we evaluated the effects of a sustained increase in intracellular Ca 2+ concentrations induced by a receptor-bypassed stimulation with ionomycin, a Ca 2+ ionophore, on the endocytosis and down-regulation of H 1 receptors in Chinese hamster ovary cells. All cellular and cell-surface H 1 receptors were detected by the binding of [ 3 H]mepyramine to intact cells sensitive to the hydrophobic and hydrophilic H 1 receptor ligands, mepyramine and pirdonium, respectively. The pretreatment of cells with ionomycin markedly reduced the mepyramine- and pirdonium-sensitive binding sites of [ 3 H]mepyramine, which were completely abrogated by the deprivation of extracellular Ca 2+ and partially by a ubiquitin-activating enzyme inhibitor (UBEI-41), but were not affected by inhibitors of calmodulin (W-7 or calmidazolium) and protein kinase C (chelerythrine or GF109203X). These ionomycin-induced changes were also not affected by inhibitors of receptor endocytosis via clathrin (hypertonic sucrose) and caveolae/lipid rafts (filipin or nystatin) or by inhibitors of lysosomes (E-64, leupeptin, chloroquine, or NH 4 Cl), proteasomes (lactacystin or MG-132), and a Ca 2+ -dependent non-lysosomal cysteine protease (calpain) (MDL28170). Since H 1 receptors were normally detected by confocal immunofluorescence microscopy with an antibody against H 1 receptors, even after the ionomycin treatment, H 1 receptors appeared to exist in a form to which [ 3 H]mepyramine was unable to bind. These results suggest that H 1 receptors are apparently down-regulated by a sustained increase in intracellular Ca 2+ concentrations with no process of endocytosis and lysosomal/proteasomal degradation of receptors. © 2017 International Society for Neurochemistry.

  15. NASA International Environmental Partnerships

    Science.gov (United States)

    Lewis, Pattie; Valek, Susan

    2010-01-01

    For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.

  16. Common structural basis for constitutive activity of the ghrelin receptor family

    DEFF Research Database (Denmark)

    Holst, Birgitte; Holliday, Nicholas D; Bach, Anders

    2004-01-01

    activity through the inositol phosphate and cAMP response element pathways. In contrast, GPR39 signaled with the highest constitutive activity in respect of activation of serum response element-dependent transcription, in part, possibly, through G(12/13) and Rho kinase. Antibody feeding experiments...... demonstrated that the epitope-tagged ghrelin receptor was constitutively internalized but could be trapped at the cell surface by an inverse agonist, whereas GPR39 remained at the cell surface. Mutational analysis showed that the constitutive activity of both the ghrelin receptor and GPR39 could systematically...

  17. Generalized internal multiple imaging

    KAUST Repository

    Zuberi, M. A. H.

    2014-08-05

    Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not have sharp contrasts to reproduce such scattering in the Green’s function through forward modeling. If properly imaged, internal multiples (internally scattered energy) can enhance the seismic image. Conventionally, to image internal multiples, accurate, sharp contrasts in the velocity model are required to construct a Green’s function with all the scattered energy. As an alternative, we have developed a generalized internal multiple imaging procedure that images any order internal scattering using the background Green’s function (from the surface to each image point), constructed from a smooth velocity model, usually used for conventional imaging. For the first-order internal multiples, the approach consisted of three steps, in which we first back propagated the recorded surface seismic data using the background Green’s function, then crosscorrelated the back-propagated data with the recorded data, and finally crosscorrelated the result with the original background Green’s function. This procedure images the contribution of the recorded first-order internal multiples, and it is almost free of the single-scattering recorded energy. The cost includes one additional crosscorrelation over the conventional single-scattering imaging application. We generalized this method to image internal multiples of any order separately. The resulting images can be added to the conventional single-scattering image, obtained, e.g., from Kirchhoff or reverse-time migration, to enhance the image. Application to synthetic data with reflectors illuminated by multiple scattering (double scattering) demonstrated the effectiveness of the approach.

  18. A receptor for infectious and cellular prion protein

    Directory of Open Access Journals (Sweden)

    V.R. Martins

    1999-07-01

    Full Text Available Prions are an unconventional form of infectious agents composed only of protein and involved in transmissible spongiform encephalopathies in humans and animals. The infectious particle is composed by PrPsc which is an isoform of a normal cellular glycosyl-phosphatidylinositol (GPI anchored protein, PrPc, of unknown function. The two proteins differ only in conformation, PrPc is composed of 40% a helix while PrPsc has 60% ß-sheet and 20% a helix structure. The infection mechanism is trigged by interaction of PrPsc with cellular prion protein causing conversion of the latter's conformation. Therefore, the infection spreads because new PrPsc molecules are generated exponentially from the normal PrPc. The accumulation of insoluble PrPsc is probably one of the events that lead to neuronal death. Conflicting data in the literature showed that PrPc internalization is mediated either by clathrin-coated pits or by caveolae-like membranous domains. However, both pathways seem to require a third protein (a receptor or a prion-binding protein either to make the connection between the GPI-anchored molecule to clathrin or to convert PrPc into PrPsc. We have recently characterized a 66-kDa membrane receptor which binds PrPc in vitro and in vivo and mediates the neurotoxicity of a human prion peptide. Therefore, the receptor should have a role in the pathogenesis of prion-related diseases and in the normal cellular process. Further work is necessary to clarify the events triggered by the association of PrPc/PrPsc with the receptor.

  19. Opposing roles of prostaglandin D2 receptors in ulcerative colitis.

    Science.gov (United States)

    Sturm, Eva M; Radnai, Balazs; Jandl, Katharina; Stančić, Angela; Parzmair, Gerald P; Högenauer, Christoph; Kump, Patrizia; Wenzl, Heimo; Petritsch, Wolfgang; Pieber, Thomas R; Schuligoi, Rufina; Marsche, Gunther; Ferreirós, Nerea; Heinemann, Akos; Schicho, Rudolf

    2014-07-15

    Proresolution functions were reported for PGD2 in colitis, but the role of its two receptors, D-type prostanoid (DP) and, in particular, chemoattractant receptor homologous molecule expressed on Th2 cells (CRTH2), is less well defined. We investigated DP and CRTH2 expression and function during human and murine ulcerative colitis (UC). Expression of receptors was measured by flow cytometry on peripheral blood leukocytes and by immunohistochemistry and immunoblotting in colon biopsies of patients with active UC and healthy individuals. Receptor involvement in UC was evaluated in a mouse model of dextran sulfate sodium colitis. DP and CRTH2 expression changed in leukocytes of patients with active UC in a differential manner. In UC patients, DP showed higher expression in neutrophils but lower in monocytes as compared with control subjects. In contrast, CRTH2 was decreased in eosinophils, NK, and CD3(+) T cells but not in monocytes and CD3(+)/CD4(+) T cells. The decrease of CRTH2 on blood eosinophils clearly correlated with disease activity. DP correlated positively with disease activity in eosinophils but inversely in neutrophils. CRTH2 internalized upon treatment with PGD2 and 11-dehydro TXB2 in eosinophils of controls. Biopsies of UC patients revealed an increase of CRTH2-positive cells in the colonic mucosa and high CRTH2 protein content. The CRTH2 antagonist CAY10595 improved, whereas the DP antagonist MK0524 worsened inflammation in murine colitis. DP and CRTH2 play differential roles in UC. Although expression of CRTH2 on blood leukocytes is downregulated in UC, CRTH2 is present in colon tissue, where it may contribute to inflammation, whereas DP most likely promotes anti-inflammatory actions. Copyright © 2014 by The American Association of Immunologists, Inc.

  20. International Students in Turkey

    Directory of Open Access Journals (Sweden)

    Mahmut ÖZER

    2012-01-01

    Full Text Available There are over three million international students worldwide, and in recent years higher education institutions compete with each other in order to receive these students to their institutions. International students are now one of the most important indicator of the internationalization of the higher education systems and institutions. In this context, the detection of the status of this indicator in our higher education system and institutions is of great importance as our higher education system shows a large expansion. This study, discusses the status of international students in our country.