Imaging Internal Structure of Long Bones Using Wave Scattering Theory.
Zheng, Rui; Le, Lawrence H; Sacchi, Mauricio D; Lou, Edmond
2015-11-01
An ultrasonic wavefield imaging method is developed to reconstruct the internal geometric properties of long bones using zero-offset data acquired axially on the bone surface. The imaging algorithm based on Born scattering theory is implemented with the conjugate gradient iterative method to reconstruct an optimal image. In the case of a multilayered velocity model, ray tracing through a smooth medium is used to calculate the traveled distance and traveling time. The method has been applied to simulated and real data. The results indicate that the interfaces of the top cortex are accurately imaged and correspond favorably to the original model. The reconstructed bottom cortex below the marrow is less accurate mainly because of the low signal-to-noise ratio. The current imaging method has successfully recovered the top cortical layer, providing a potential tool to investigate the internal structures of long bone cortex for osteoporosis assessment. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Origin and Structure of Nearshore Internal Tides and Waves: Data Analysis and Linear Theory
National Research Council Canada - National Science Library
Hendershott, Myrl
2001-01-01
Analysis of the data set obtained during the 1996-97 summer and autumn deployments of ADCP and T-logger internal wave antennas of Mission Beach, CA, was the principle activity during the reporting period...
National Research Council Canada - National Science Library
Reynolds, Stephen A; Levine, Murray D
2005-01-01
.... A processing module is developed that takes profile estimates as input and uses numerically simulated linear internal wave displacements to create two-dimensional range-dependent sound speed fields...
Franceschetti, Massimo
2017-01-01
Understand the relationship between information theory and the physics of wave propagation with this expert guide. Balancing fundamental theory with engineering applications, it describes the mechanism and limits for the representation and communication of information using electromagnetic waves. Information-theoretic laws relating functional approximation and quantum uncertainty principles to entropy, capacity, mutual information, rate distortion, and degrees of freedom of band-limited radiation are derived and explained. Both stochastic and deterministic approaches are explored, and applications for sensing and signal reconstruction, wireless communication, and networks of multiple transmitters and receivers are reviewed. With end-of-chapter exercises and suggestions for further reading enabling in-depth understanding of key concepts, it is the ideal resource for researchers and graduate students in electrical engineering, physics and applied mathematics looking for a fresh perspective on classical informat...
DEFF Research Database (Denmark)
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....
Onuki, Y.; Hibiya, T.
2016-02-01
The baroclinic tides are thought to be the dominant energy source for turbulent mixing in the ocean interior. In contrast to the geography of the energy conversion rates from the barotropic to baroclinic tides, which has been clarified in recent numerical studies, the global distribution of the energy sink for the resulting low-mode baroclinic tides remains obscure. A key to resolve this issue is the resonant wave-wave interactions, which transfer part of the baroclinic tidal energy to the background internal wave field enhancing the local energy dissipation rates. Recent field observations and numerical studies have pointed out that parametric subharmonic instability (PSI), one of the resonant interactions, causes significant energy sink of baroclinic tidal energy at mid-latitudes. The purpose of this study is to analyze the quantitative aspect of PSI to demonstrate the global distribution of the intensity of resonant wave interactions, namely, the attenuation rate of low-mode baroclinic tidal energy. Our approach is basically following the weak turbulence theory, which is the standard theory for resonant wave-wave interactions, where techniques of singular perturbation and statistical physics are employed. This study is, however, different from the classical theory in some points; we have reformulated the weak turbulence theory to be applicable to low-mode internal waves and also developed its numerical calculation method so that the effects of stratification profile and oceanic total depth can be taken into account. We have calculated the attenuation rate of low-mode baroclinic tidal waves interacting with the background Garrett-Munk internal wave field. The calculated results clearly show the rapid attenuation of baroclinic tidal energy at mid-latitudes, in agreement with the results from field observations and also show the zonal inhomogeneity of the attenuation rate caused by the density structures associated with the subtropical gyre. This study is expected
Theory of inertial waves in rotating fluids
Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir
2017-04-01
The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E
2006-01-01
Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90
Scattering of internal gravity waves
Leaman Nye, Abigail
2011-01-01
Internal gravity waves play a fundamental role in the dynamics of stably stratified regions of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave breaking and the mixing subsequently produced. Identifying regions where internal gravity waves contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate ...
International business theory and marketing theory
Soldner, Helmut
1984-01-01
International business theory and marketing theory : elements for internat. marketing theory building. - In: Marketing aspects of international business / Gerald M. Hampton ... (eds.). - Boston u.a. : Kluwer, 1984. - S. 25-57
Internal Waves, South China Sea
1983-01-01
Subsurface ocean currents, frequently referred to as internal waves, are frequently seen from space under the right lighting conditions when depth penetration can be achieved. These internal waves observed in the South China Sea off the SE coast of the island of Hainan (18.5N, 110.5E) visibly demonstrate turbidity in the ocean's depths at the confluence of conflicting currents.
Perturbation theory for Alfven wave
International Nuclear Information System (INIS)
Yoshida, Z.; Mahajan, S.M.
1995-01-01
The Alfven wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfven wave propagation along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k parallel ) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfven wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfven resonance constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfven wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-01
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.
Peacock, Thomas
2014-11-01
Orders of magnitude larger than surface waves, and so powerful that their generation impacts the lunar orbit, internal waves, propagating disturbances of a density-stratified fluid, are ubiquitous throughout the ocean and atmosphere. Following the discovery of the phenomenon of ``dead water'' by early Arctic explorers and the classic laboratory visualizations of the curious St. Andrew's Cross internal wave pattern, there has been a resurgence of interest in internal waves, inspired by their pivotal roles in local environmental and global climate processes, and their profound impact on ocean and aerospace engineering. We detail our widespread pursuit of internal waves through theoretical modeling, laboratory experiments and field studies, from the Pacific Ocean one thousand miles north and south of Hawaii, to the South China Sea, and on to the Arctic Ocean. We also describe our recent expedition to surf the most striking internal wave phenomenon of them all: the Morning Glory cloud in remote Northwest Australia. This work was supported by the National Science Foundation through a CAREER Grant OCE-064559 and through Grants OCE-1129757 and OCE-1357434, and by the Office of Naval Research through Grants N00014-09-1-0282, N00014-08-1-0390 and N00014-05-1-0575.
Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi
2013-07-28
We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.
International Nuclear Information System (INIS)
Iyer, Ramakrishnan; Johnson, Clifford V; Pennington, Jeffrey S
2011-01-01
We uncover a remarkable role that an infinite hierarchy of nonlinear differential equations plays in organizing and connecting certain c-hat <1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A, A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A, D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.
Macroscopic quantum waves in non local theories
International Nuclear Information System (INIS)
Ventura, I.
1979-01-01
By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also apear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He. (Author) [pt
Macroscopic quantum waves in non local theories
International Nuclear Information System (INIS)
Ventura, I.
1979-01-01
By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also appear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He [pt
Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides
Schneider, Wilhelm; Trulsen, Karsten
2006-01-01
Waves in Geophysical Fluids describes: the forecasting and risk evaluation of tsunamis by tectonic motion, land slides, explosions, run-up, and maps the tsunami sources in the world's oceans; stochastic Monte-Carlo simulations and focusing mechanisms for rogue waves, nonlinear wave models, breather formulas, and the kinematics of the Draupner wave; the full story about the discovery of the very large oceanic internal waves, how the waves are visible from above through the signatures on the sea surface, and how to compute them; observations of energetic internal tides and hot spots from several field campaigns in all parts of the world's oceans, with interpretation of spectra. An essential work for students, scientists and engineers working with the fundamental and applied aspects of ocean waves.
Water Waves The Mathematical Theory with Applications
Stoker, J J
2011-01-01
Offers an integrated account of the mathematical hypothesis of wave motion in liquids with a free surface, subjected to gravitational and other forces. Uses both potential and linear wave equation theories, together with applications such as the Laplace and Fourier transform methods, conformal mapping and complex variable techniques in general or integral equations, methods employing a Green's function. Coverage includes fundamental hydrodynamics, waves on sloping beaches, problems involving waves in shallow water, the motion of ships and much more.
Spin waves theory and applications
Stancil, Daniel D
2009-01-01
Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magneto static properties of the material, they are called magneto static waves (sometimes 'magnons' or 'magnetic polarons'). This book discusses magnetic properties of materials, and magnetic moments of atoms and ions
Transition operators in electromagnetic-wave diffraction theory - General theory
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
30th International Symposium on Shock Waves
Sadot, Oren; Igra, Ozer
2017-01-01
These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...
Contemporary Theories and International Lawmaking
Venzke, I.; Brölmann, C.; Radi, Y.
2016-01-01
Many contemporary theories approach international law-making with a shift in emphasis from the sources of law towards the communicative practices in which a plethora of actors use, claim and speak international law. The contribution proceeds by sketching the move from sources to communicative
Virtual Seafloor Reduces Internal Wave Generation by Tidal Flow
Zhang, Likun; Swinney, Harry L.
2014-03-01
Our numerical simulations of tidal flow of a stratified fluid over periodic knife-edge ridges and random topography reveal that the time-averaged tidal energy converted into internal gravity wave radiation arises only from the section of a ridge above a virtual seafloor. The average radiated power is approximated by the power predicted by linear theory if the height of the ridge is measured relative to the virtual floor. The concept of a virtual floor can extend the applicability of linear theory to global predictions of the conversion of tidal energy into internal wave energy in the oceans.
Rogue waves, rational solitons and wave turbulence theory
International Nuclear Information System (INIS)
Kibler, Bertrand; Hammani, Kamal; Michel, Claire; Finot, Christophe; Picozzi, Antonio
2011-01-01
Considering a simple one-dimensional nonlinear Schroedinger optical model, we study the existence of rogue wave events in the highly incoherent state of the system and compare them with the recently identified hierarchy of rational soliton solutions. We show that rogue waves can emerge in the genuine turbulent regime and that their coherent deterministic description provided by the rational soliton solutions is compatible with an accurate statistical description of the random wave provided by the wave turbulence theory. Furthermore, the simulations reveal that even in the weakly nonlinear regime, the nonlinearity can play a key role in the emergence of an individual rogue wave event in a turbulent environment. -- Highlights: → Rogue wave events are studied in the highly incoherent regime of interaction. → We show that rogue waves can emerge in the genuine turbulent regime. → Their coherent deterministic description is provided by the rational solutions. → It coexists with a statistical description provided of the random wave. → The nonlinearity plays a key role even in a turbulent environment.
On the theory of internal kink oscillations
International Nuclear Information System (INIS)
Breizman, B.N.; Candy, J.; Berk, H.L.
1997-12-01
In this paper the authors derive a time evolution equation for internal kink oscillations which is valid for both stable and unstable plasma regimes, and incorporates the nonlinear response of an energetic particle population. A linear analysis reveals a parallel between (i) the time evolution of the spatial derivative of the internal kink radial displacement and (ii) the time evolution of the perturbed particle distribution function in the field of an electrostatic wave (Landau problem). They show that diamagnetic drift effects make the asymptotic decay of internal kink perturbations in a stable plasma algebraic rather than exponential. However, under certain conditions the stable root of the dispersion relation can dominate the response of the on-axis displacement for a significant period of time. The form of the evolution equation naturally allows one to include a nonlinear, fully toroidal treatment of energetic particles into the theory of internal kink oscillations
International Conference Approximation Theory XIV
Schumaker, Larry
2014-01-01
This volume developed from papers presented at the international conference Approximation Theory XIV, held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.
International Conference Approximation Theory XV
Schumaker, Larry
2017-01-01
These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22–25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, a...
Leonhard Euler's Wave Theory of Light
DEFF Research Database (Denmark)
Pedersen, Kurt Møller
2008-01-01
Euler's wave theory of light developed from a mere description of this notion based on an analogy between sound and light to a more and more mathematical elaboration on that notion. He was very successful in predicting the shape of achromatic lenses based on a new dispersion law that we now know...... of achromatic lenses, the explanation of colors of thin plates and of the opaque bodies as proof of his theory. When it came to the fundamental issues, the correctness of his dispersion law and the prediction of frequencies of light he was not at all successful. His wave theory degenerated, and it was not until...... is wrong. Most of his mathematical arguments were, however, guesswork without any solid physical reasoning. Guesswork is not always a bad thing in physics if it leads to new experiments or makes the theory coherent with other theories. And Euler tried to find such experiments. He saw the construction...
Model-based internal wave processing
Energy Technology Data Exchange (ETDEWEB)
Candy, J.V.; Chambers, D.H.
1995-06-09
A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.
Internal waves and temperature fronts on slopes
Directory of Open Access Journals (Sweden)
S. A. Thorpe
Full Text Available Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a instabilities advected by the flow (b internal waves propagating along-slope or (c internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c, evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles.
Key words. Oceanography: general (benthic boundary layers; limnology, Oceanography: physical (internal and inertial waves
International Nuclear Information System (INIS)
Vlad, G.
1988-01-01
The linear stability of the electrostatic drift waves in slab geometry has been studied analytically and numerically. The effects of magnetic field with shear, of the finite Larmor radius, of an electron streaming, of a temperature gradient and of collisions have been retained. The analytical solution has been obtained using the matched asymptotic expansion technique, and an expression for the critical streaming parameter has been derived. Finally, assuming that the transport in the Reversed Field Pinches is dominated by this instability, a scaling law for the temperature in such machine is derived
The lifecycle of axisymmetric internal solitary waves
Directory of Open Access Journals (Sweden)
J. M. McMillan
2010-09-01
Full Text Available The generation and evolution of solitary waves by intrusive gravity currents in an approximate two-layer fluid with equal upper- and lower-layer depths is examined in a cylindrical geometry by way of theory and numerical simulations. The study is limited to vertically symmetric cases in which the density of the intruding fluid is equal to the average density of the ambient. We show that even though the head height of the intrusion decreases, it propagates at a constant speed well beyond 3 lock radii. This is because the strong stratification at the interface supports the formation of a mode-2 solitary wave that surrounds the intrusion head and carries it outwards at a constant speed. The wave and intrusion propagate faster than a linear long wave; therefore, there is strong supporting evidence that the wave is indeed nonlinear. Rectilinear Korteweg-de Vries theory is extended to allow the wave amplitude to decay as r^{-p} with p=½ and the theory is compared to the observed waves to demonstrate that the width of the wave scales with its amplitude. After propagating beyond 7 lock radii the intrusion runs out of fluid. Thereafter, the wave continues to spread radially at a constant speed, however, the amplitude decreases sufficiently so that linear dispersion dominates and the amplitude decays with distance as r^{-1}.
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
On Internal Waves in a Density-Stratified Estuary
Kranenburg, C.
1991-01-01
In this article some field observations, made in recent years, of internal wave motions in a density-stratified estuary are presented, In order to facilitate the appreciation of the results, and to make some quantitative comparisons, the relevant theory is also summarized. Furthermore, the origins
The theory of elastic waves and waveguides
Miklowitz, J
1984-01-01
The primary objective of this book is to give the reader a basic understanding of waves and their propagation in a linear elastic continuum. The studies of elastodynamic theory and its application to fundamental value problems should prepare the reader to tackle many physical problems of general interest in engineering and geophysics, and of particular interest in mechanics and seismology.
Leonhard Euler's Wave Theory of Light
DEFF Research Database (Denmark)
Pedersen, Kurt Møller
2008-01-01
is wrong. Most of his mathematical arguments were, however, guesswork without any solid physical reasoning. Guesswork is not always a bad thing in physics if it leads to new experiments or makes the theory coherent with other theories. And Euler tried to find such experiments. He saw the construction......Euler's wave theory of light developed from a mere description of this notion based on an analogy between sound and light to a more and more mathematical elaboration on that notion. He was very successful in predicting the shape of achromatic lenses based on a new dispersion law that we now know...
International Nuclear Information System (INIS)
Naumov, D.V.
2013-01-01
In this paper we discuss some aspects of the theory of wave packets. We consider a popular non-covariant Gaussian model used in various applications and show that it predicts too slow a longitudinal dispersion rate for relativistic particles. We revise this approach by considering a covariant model of Gaussian wave packets, and examine our results by inspecting a wave packet of an arbitrary form. A general formula for the time dependence of the dispersion of a wave packet of an arbitrary form is found. Finally, we give a transparent interpretation of the disappearance of the wave function over time due to the dispersion - a feature often considered undesirable, but which is unavoidable for wave packets. We find, starting with simple examples, proceeding with their generalizations and finally by considering the continuity equation, that the integral over time of both the flux and probability densities is asymptotically proportional to the factor 1/|x| 2 in the rest frame of the wave packet, just as in the case of an ensemble of classical particles
Partial Differential Equations and Solitary Waves Theory
Wazwaz, Abdul-Majid
2009-01-01
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...
Analytical and numerical investigation of nonlinear internal gravity waves
Directory of Open Access Journals (Sweden)
S. P. Kshevetskii
2001-01-01
Full Text Available The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration, we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory
28th International Symposium on Shock Waves
2012-01-01
The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.
Massachusetts Bay - Internal wave packets digitized from SAR imagery
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...
29th International Symposium on Shock Waves
Ranjan, Devesh
2015-01-01
This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
Internally driven inertial waves in geodynamo simulations
Ranjan, A.; Davidson, P. A.; Christensen, U. R.; Wicht, J.
2018-05-01
Inertial waves are oscillations in a rotating fluid, such as the Earth's outer core, which result from the restoring action of the Coriolis force. In an earlier work, it was argued by Davidson that inertial waves launched near the equatorial regions could be important for the α2 dynamo mechanism, as they can maintain a helicity distribution which is negative (positive) in the north (south). Here, we identify such internally driven inertial waves, triggered by buoyant anomalies in the equatorial regions in a strongly forced geodynamo simulation. Using the time derivative of vertical velocity, ∂uz/∂t, as a diagnostic for traveling wave fronts, we find that the horizontal movement in the buoyancy field near the equator is well correlated with a corresponding movement of the fluid far from the equator. Moreover, the azimuthally averaged spectrum of ∂uz/∂t lies in the inertial wave frequency range. We also test the dispersion properties of the waves by computing the spectral energy as a function of frequency, ϖ, and the dispersion angle, θ. Our results suggest that the columnar flow in the rotation-dominated core, which is an important ingredient for the maintenance of a dipolar magnetic field, is maintained despite the chaotic evolution of the buoyancy field on a fast timescale by internally driven inertial waves.
Internal wave attractors: different scenarios of instability
Brouzet, Christophe; Ermanyuk, E. V.; Joubaud, Sylvain; Pillet, Grimaud; Dauxois, Thierry
2017-01-01
International audience; This paper presents an experimental study of different instability scenarios in a parallelogram-shaped internal wave attractor in a trapezoidal domain filled with a uniformly stratified fluid.Energy is injected into the system via the oscillatory motion of a vertical wall of the trapezoidal domain. Whole-field velocity measurements are performed with the conventional PIV technique. In the linear regime, the total kinetic energyof the fluid system is used to quantify th...
Topics in nonlinear wave theory with applications
International Nuclear Information System (INIS)
Tracy, E.R.
1984-01-01
Selected topics in nonlinear wave theory are discussed, and applications to the study of modulational instabilities are presented. A historical survey is given of topics relating to solitons and modulational problems. A method is then presented for generating exact periodic and quasi-periodic solutions to several nonlinear wave equations, which have important physical applications. The method is then specialized for the purposes of studying the modulational instability of a plane wave solution of the nonlinear Schroedinger equation, an equation with general applicability in one-dimensional modulational problems. Some numerical results obtained in conjunction with the analytic study are presented. The analytic approach explains the recurrence phenomena seen in the numerical studies, and the numerical work of other authors. The method of solution (related to the inverse scattering method) is then analyzed within the context of Hamiltonian dynamics where it is shown that the method can be viewed as simply a pair of canonical transformations. The Abel Transformation, which appears here and in the work of other authors, is shown to be a special form of Liouville's transformation to action-angle variables. The construction of closed form solutions of these nonlinear wave equations, via the solution of Jacobi's inversion problem, is surveyed briefly
Identification and modeling of internal waves
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; SujithKumar, S.; Maneesha, K.; Sandhya, K.S.; Prakash, S.S.; Chandramouli, P.; Murthy, K.S.R.
Analyses of Internal Wave (IW) signatures by insitu observations off Visakhapatnam have been presented to study the impact of IWs on acoustic field. Temperature data were collected for 44 hours off Visakhapatnam (17° 26.46’N and 83° 31.20’E...
Superconformal partial waves in Grassmannian field theories
Energy Technology Data Exchange (ETDEWEB)
Doobary, Reza; Heslop, Paul [Department of Mathematical Sciences, Durham University,South Road, Durham, DH1 3LE United Kingdom (United Kingdom)
2015-12-23
We derive superconformal partial waves for all scalar four-point functions on a super Grassmannian space Gr(m|n,2m|2n) for all m,n. This family of four-point functions includes those of all (arbitrary weight) half BPS operators in both N=4 SYM (m=n=2) and in N=2 superconformal field theories in four dimensions (m=2,n=1) on analytic superspace. It also includes four-point functions of all (arbitrary dimension) scalar fields in non-supersymmetric conformal field theories (m=2,n=0) on Minkowski space, as well as those of a certain class of representations of the compact SU(2n) coset spaces. As an application we then specialise to N=4 SYM and use these results to perform a detailed superconformal partial wave analysis of the four-point functions of arbitrary weight half BPS operators. We discuss the non-trivial separation of protected and unprotected sectors for the 〈2222〉, 〈2233〉 and 〈3333〉 cases in an SU(N) gauge theory at finite N. The 〈2233〉 correlator predicts a non-trivial protected twist four sector for 〈3333〉 which we can completely determine using the knowledge that there is precisely one such protected twist four operator for each spin.
Seismic rotation waves: basic elements of theory and recording
Directory of Open Access Journals (Sweden)
P. Palangio
2003-06-01
Full Text Available Returning to the old problem of observed rotation effects, we present the recording system and basic elements of the theory related to the rotation fi eld and its association with seismic waves. There can be many different causes leading to observed/recorded rotation effects; we can group them as follows: generation of micro-displacement motion due to asymmetry of source processes and/or due to interaction between seismic body/surface waves and medium structure; interaction between incident seismic waves and objects situated on the ground surface. New recording techniques and advanced theory of deformation in media with defects and internal (e.g., granular structure make it possible to focus our attention on the fi rst group, related to microdisplacement motion recording, which includes both rotation and twist motions. Surface rotations and twists caused directly by the action of emerging seismic waves on some objects situated on the ground surface are considered here only in the historical aspects of the problem. We present some examples of experimental results related to recording of rotation and twist components at the Ojcow Observatory, Poland, and L'Aquila Observatory, Italy, and we discuss some prospects for further research.
Mathematical problems in wave propagation theory
1970-01-01
The papers comprising this collection are directly or indirectly related to an important branch of mathematical physics - the mathematical theory of wave propagation and diffraction. The paper by V. M. Babich is concerned with the application of the parabolic-equation method (of Academician V. A. Fok and M. A, Leontovich) to the problem of the asymptotic behavior of eigenfunc tions concentrated in a neighborhood of a closed geodesie in a Riemannian space. The techniques used in this paper have been föund useful in solving certain problems in the theory of open resonators. The topic of G. P. Astrakhantsev's paper is similar to that of the paper by V. M. Babich. Here also the parabolic-equation method is used to find the asymptotic solution of the elasticity equations which describes Love waves concentrated in a neighborhood of some surface ray. The paper of T. F. Pankratova is concerned with finding the asymptotic behavior of th~ eigenfunc tions of the Laplace operator from the exact solution for the surf...
KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma
Westerhof, E.
2010-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves: Part II homogeneous plasma
Westerhof, E.
2000-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold
Kinetic theory of plasma waves - Part II: Homogeneous plasma
Westerhof, E.
2008-01-01
The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold
Guided ionization waves: Theory and experiments
International Nuclear Information System (INIS)
Lu, X.; Naidis, G.V.; Laroussi, M.; Ostrikov, K.
2014-01-01
This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves–streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures—sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures—plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g., He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path—the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology
Internal wave structures in abyssal cataract flows
Makarenko, Nikolay; Liapidevskii, Valery; Morozov, Eugene; Tarakanov, Roman
2014-05-01
We discuss some theoretical approaches, experimental results and field data concerning wave phenomena in ocean near-bottom stratified flows. Such strong flows of cold water form everywhere in the Atlantic abyssal channels, and these currents play significant role in the global water exchange. Most interesting wave structures arise in a powerful cataract flows near orographic obstacles which disturb gravity currents by forced lee waves, attached hydraulic jumps, mixing layers etc. All these effects were observed by the authors in the Romanche and Chain fracture zones of Atlantic Ocean during recent cruises of the R/V Akademik Ioffe and R/V Akademik Sergei Vavilov (Morozov et al., Dokl. Earth Sci., 2012, 446(2)). In a general way, deep-water cataract flows down the slope are similar to the stratified flows examined in laboratory experiments. Strong mixing in the sill region leads to the splitting of the gravity current into the layers having the fluids with different densities. Another peculiarity is the presence of critical layers in shear flows sustained over the sill. In the case under consideration, this critical level separates the flow of near-bottom cold water from opposite overflow. In accordance with known theoretical models and laboratory measurements, the critical layer can absorb and reflect internal waves generated by the topography, so the upward propagation of these perturbations is blocked from above. High velocity gradients were registered downstream in the vicinity of cataract and it indicates the existence of developed wave structures beyond the sill formed by intense internal waves. This work was supported by RFBR (grants No 12-01-00671-a, 12-08-10001-k and 13-08-10001-k).
Copepod Behavior Response in an Internal Wave Apparatus
Webster, D. R.; Jung, S.; Haas, K. A.
2017-11-01
This study is motivated to understand the bio-physical forcing in zooplankton transport in and near internal waves, where high levels of zooplankton densities have been observed in situ. A laboratory-scale internal wave apparatus was designed to create a standing internal wave for various physical arrangements that mimic conditions observed in the field. A theoretical analysis of a standing internal wave inside a two-layer stratification system including non-linear wave effects was conducted to derive the expressions for the independent variables controlling the wave motion. Focusing on a case with a density jump of 1.0 σt, a standing internal wave was generated with a clean interface and minimal mixing across the pycnocline. Spatial and frequency domain measurements of the internal wave were evaluated in the context of the theoretical analysis. Behavioral assays with a mixed population of three marine copepods were conducted in control (stagnant homogeneous fluid), stagnant density jump interface, and internal wave flow configurations. In the internal wave treatment, the copepods showed an acrobatic, orbital-like motion in and around the internal wave region (bounded by the crests and the troughs of the waves). Trajectories of passive, neutrally-buoyant particles in the internal wave flow reveal that they generally oscillate back-and-forth along fixed paths. Thus, we conclude that the looping, orbital trajectories of copepods in the region near the internal wave interface are due to animal behavior rather than passive transport.
Internal wave turbulence near a Texel beach.
Directory of Open Access Journals (Sweden)
Hans van Haren
Full Text Available A summer bather entering a calm sea from the beach may sense alternating warm and cold water. This can be felt when moving forward into the sea ('vertically homogeneous' and 'horizontally different', but also when standing still between one's feet and body ('vertically different'. On a calm summer-day, an array of high-precision sensors has measured fast temperature-changes up to 1 °C near a Texel-island (NL beach. The measurements show that sensed variations are in fact internal waves, fronts and turbulence, supported in part by vertical stable stratification in density (temperature. Such motions are common in the deep ocean, but generally not in shallow seas where turbulent mixing is expected strong enough to homogenize. The internal beach-waves have amplitudes ten-times larger than those of the small surface wind waves. Quantifying their turbulent mixing gives diffusivity estimates of 10(-4-10(-3 m(2 s(-1, which are larger than found in open-ocean but smaller than wave breaking above deep sloping topography.
International political theory : varieties of moral discourse
Kamminga, Menno R.
2007-01-01
This article aims to demonstrate the value of James Gustafson's 'varieties of moral discourse' typology for international political theory (IPT), or moral reflection about international politics. Gustafson's typology is defended as entailing an adequate conception of IPT through a threefold
Modeling the SAR Signature of Nonlinear Internal Waves
National Research Council Canada - National Science Library
Lettvin, Ellen E
2008-01-01
Nonlinear Internal Waves are pervasive globally, particularly in coastal waters. The currents and displacements associated with internal waves influence acoustic propagation and underwater navigation, as well as ocean transport and mixing...
Six Decades of Spiral Density Wave Theory
Shu, Frank H.
2016-09-01
The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how the nonlinear response of the interstellar gas, coupled with overlapping subharmonic resonances, might introduce chaotic behavior in the dynamics of the interstellar medium and Population I objects, even though the underlying forces to which they are subject are regular. We then move to a discussion of resonantly forced spiral density waves in a planetary ring and their relationship to the ideas of disk truncation, and the shepherding of narrow rings by satellites orbiting nearby. The back reaction of the rings on the satellites led to the prediction of planet migration in protoplanetary disks, which has had widespread application in the exploding data sets concerning hot Jupiters and extrasolar planetary systems. We then return to the issue of global normal modes in the stellar disk of spiral galaxies and its relationship to the QSSS hypothesis, where the central theoretical concepts involve waves with negative and positive surface densities of energy and angular
Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave
Directory of Open Access Journals (Sweden)
Wei Yi-wen
2015-06-01
Full Text Available The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.
Internal energy relaxation in shock wave structure
International Nuclear Information System (INIS)
Josyula, Eswar; Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash
2013-01-01
The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream
The end of International Relations theory?
DEFF Research Database (Denmark)
Dunne, Tim; Hansen, Lene; Wight, Colin
2013-01-01
With a view to providing contextual background for the Special Issue, this opening article analyses several dimensions of ‘The end of International Relations theory?’ It opens with a consideration of the status of different types of theory. Thereafter, we look at the proliferation of theories...... to the alternatives currently being practised: integrative pluralism. The article ends on a cautiously optimistic note: given the disciplinary competition that now exists in relation to explaining and understanding global social forces, International Relations may find resilience because it has become theory...
International Shock-Wave Database: Current Status
Levashov, Pavel
2013-06-01
Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound
Theory of superfluidity macroscopic quantum waves
International Nuclear Information System (INIS)
Ventura, I.
1978-10-01
A new description of superfluidity is proposed, based upon the fact that Bogoliubov's theory of superfluidity exhibits some so far unsuspected macroscopic quantum waves (MQWs), which have a topological nature and travel within the fluid at subsonic velocities. To quantize the bounded quasi-particles the field theoretic version of the Bohr-Sommerfeld quantization rule, is employed and also resort to a variational computation. In an instantaneous configuration the MQWs cut the condensate into blocks of phase, providing, by analogy with ferromagnetism, a nice explanation of what could be the lambda-transition. A crude estimate of the critical temperature gives T sub(c) approximately equal to 2-4K. An attempt is made to understand Tisza's two-fluid model in terms of the MQWs, and we rise the conjecture that they play an important role in the motion of second. We present also a qualitative prediction concerning to the behavior of the 'phononroton' peak below 1.0K, and propose two experiments to look for MQWs [pt
Parametric instability and wave turbulence driven by tidal excitation of internal waves
Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael
2018-04-01
We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.
International Conference on Category Theory
Pedicchio, Maria; Rosolini, Guiseppe
1991-01-01
With one exception, these papers are original and fully refereed research articles on various applications of Category Theory to Algebraic Topology, Logic and Computer Science. The exception is an outstanding and lengthy survey paper by Joyal/Street (80 pp) on a growing subject: it gives an account of classical Tannaka duality in such a way as to be accessible to the general mathematical reader, and to provide a key for entry to more recent developments and quantum groups. No expertise in either representation theory or category theory is assumed. Topics such as the Fourier cotransform, Tannaka duality for homogeneous spaces, braided tensor categories, Yang-Baxter operators, Knot invariants and quantum groups are introduced and studies. From the Contents: P.J. Freyd: Algebraically complete categories.- J.M.E. Hyland: First steps in synthetic domain theory.- G. Janelidze, W. Tholen: How algebraic is the change-of-base functor?.- A. Joyal, R. Street: An introduction to Tannaka duality and quantum groups.- A. Jo...
Chaos Theory and International Relations
2016-12-01
King Oscar II 12 James E. Glenn, Chaos Theory: The Essentials for Military Applications (Newport, RI...Adolf Hitler in Germany, Alexander’s conquest of the Persian Empire, the arrival of Attila to Europe, the onset of the two Gulf Wars, the Arab Spring
BOOK REVIEW: Gravitational Waves, Volume 1: Theory and Experiments
Poisson, Eric
2008-10-01
discussion is helpful, as it clarifies some of the puzzling aspects of general covariance. Next the treatment becomes more sophisticated: the waves are allowed to propagate in an arbitrary background spacetime, and the energy momentum carried by the wave is identified by the second-order perturbation of the Einstein tensor. In chapter 2 the waves are given a field-theoretic foundation that is less familiar (but refreshing) to a relativist, but would appeal to a practitioner of effective field theories. In an interesting section of chapter 2, the author gives a mass to the (classical) graviton and explores the physical consequences of this proposal. In chapter 3 the author returns to the standard linearized theory and develops the multipolar expansion of the gravitational-wave field in the context of slowly-moving sources; at leading order he obtains the famous quadrupole formula. His treatment is very detailed, and it includes a complete account of symmetric-tracefree tensors and tensorial spherical harmonics. It is, however, necessarily limited to sources with negligible internal gravity. Unfortunately (and this is a familiar complaint of relativists) the author omits to warn the reader of this important limitation. In fact, the chapter opens with a statement of the virial theorem of Newtonian gravity, which may well mislead the reader to believe that the linearized theory can be applied to a system bound by gravitational forces. This misconception is confirmed when, in chapter 4, the author applies the quadrupole formula to gravitationally-bound systems such as an inspiraling compact binary, a rigidly rotating body, and a mass falling toward a black hole. This said, the presentation of these main sources of gravitational waves is otherwise irreproachable, and a wealth of useful information is presented in a clear and lucid manner. For example, the discussion of inspiraling compact binaries includes a derivation of the orbital evolution of circular and eccentric orbits
What’s the Theory in International Practice Theory?
DEFF Research Database (Denmark)
Adler-Nissen, Rebecca
2015-01-01
. This distinction is crucial to determining where we look for practices in international relations and how we study them. I will also argue that symbolic interactionism should be included in the practice theory landscape, as it can help us understand the making and unmaking of international orders....
Wave Energy and Actor-Network Theory: The Irish Case
Cunningham, William
2013-01-01
This paper examines the role of the wave energy sector in Ireland using theories from the field of Science and Technology Studies (STS). Theoretical divisions within the field of STS are examined, particularly the Sociology of Scientific Knowledge (SSK) and Actor-Network Theory (ANT). Any conflicts which these two theories present to each other are examined through the empirical findings of the Irish wave energy sector. In particular, ANT s rejection of macro and micro distinctions when analy...
1995 International Sherwood Fusion Theory Conference
International Nuclear Information System (INIS)
1995-01-01
This book is a guide to the 1995 International Sherwood Fusion Theory Conference. It consists largely of abstracts of the oral and poster presentations that were to be made, and gives some general information about the conference and its schedule
The theory of ionizing shock waves in a magnetic field
International Nuclear Information System (INIS)
Liberman, M.A.; Velikovich, A.L.
1981-01-01
The general theory of ionizing shock waves in a magnetic field is constructed. The theory takes into account precursor ionization of a neutral gas ahead of the shock wave front, caused by photo-ionization, as well as by the impact ionization with electrons accelerated by a transverse electric field induced by the shock front in the incident flow of a neutral gas. The concept of shock wave ionization stability, being basic in the theory of ionizing shock waves in a magnetic field, is introduced. The ionizing shock wave structures are shown to transform from the GD regime at a low shock velocity to the MHD regime at an enhanced intensity of the shock wave. The abruptness of such a transition is determined by precursor photo-ionization. (author)
International conference on string theory
2017-01-01
The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.
Building International Business Theory: A Grounded Theory Approach
Gligor, David; Esmark, Carol; Golgeci, Ismail
2016-01-01
The field of international business (IB) is in need of more theory development (Morck & Yeung, 2007). As such, the main focus of our manuscript was to provide guidance on how to build IB specific theory using grounded theory (GT). Moreover, we contribute to future theory development by identifying areas within IB where GT can be applied and the type of research issues that can be addressed using this methodology. Finally, we make a noteworthy contribution by discussing some of GT’s caveats an...
Modeling internal wave generation by seamounts in oceans
Zhang, L.; Buijsman, M. C.; Comino, E. L.; Swinney, H.
2017-12-01
Recent global bathymetric data at 30 arc-sec resolution has revealed that there are 33,452 seamounts and 138,412 knolls in the oceans. To develop an estimate for the energy converted from tidal flow to internal gravity waves, we have conducted numerical simulations using the Massachusetts Institute of Technology circulation model (MITgcm) to compute the energy conversion by randomly distributed Gaussian-shaped seamounts. We find that for an isolated axisymmetric seamount of height 1100 m and radius 1600 m, which corresponds to the Wessel height-to-radius ratio 0.69, the conversion rate is 100 kW, assuming a tidal speed amplitude 1 cm/s, buoyancy frequency 1e-3 rad/s, and circularly polarized tidal motion, and taking into account the earth's rotation. The 100 kW estimate is about 60% less than the 3-D linear theory prediction because fluid goes around a seamount instead of over it. Our estimate accounts the suppression of energy conversion due to wave interference at the generation site of closely spaced seamounts. We conclude that for randomly distributed Gaussian seamounts of varying widths and separations, separated on average by 18 km as in the oceans, wave interference reduces the energy conversion by seamounts by only about 16%. This result complements previous studies of wave interference for 2-D ridges.
Dynamic Theory: some shock wave and energy implications
International Nuclear Information System (INIS)
Williams, P.E.
1981-02-01
The Dynamic Theory, a unifying five-dimensional theory of space, time, and matter, is examined. The theory predicts an observed discrepancy between shock wave viscosity measurements at low and high pressures in aluminum, a limiting mass-to-energy conversion rate consistent with the available data, and reduced pressures in electromagneticaly contained controlled-fusion plasmas
Introduction:Bourdieu and International Relations theory
2012-01-01
This book rethinks the key concepts of International Relations by drawing on the work of Pierre Bourdieu.The last few years have seen a genuine wave of publications promoting sociology in international relations. Scholars have suggested that Bourdieu’s vocabulary can be applied to study security, diplomacy, migration and global environmental politics. Yet we still lack a systematic and accessible analysis of what Bourdieu-inspired IR might look like. This book provides the answer. It offers a...
Internal space decimation for lattice gauge theories
International Nuclear Information System (INIS)
Flyvbjerg, H.
1984-01-01
By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)
Contemporary Theories and International Law-Making
Venzke, I.
2013-01-01
Many contemporary theories approach international law-making with a shift in emphasis from the sources of law towards the communicative practices in which a plethora of actors use, claim and speak international law. Whereas earlier approaches would look at the sources as the singular moment of
Nonlinear theory of localized standing waves
Denardo, Bruce; Larraza, Andrés; Putterman, Seth; Roberts, Paul
1992-01-01
An investigation of the nonlinear dispersive equations of continuum mechanics reveals localized standing-wave solutions that are domain walls between regions of different wave number. These states can appear even when the dispersion law is a single-valued function of the wave number. In addition, we calculate solutions for kinks in cutoff and noncutoff modes, as well as cutoff breather solitons. Division of Engineering and Geophysics of the Office of Basic Energy Science of U.S. DOE for su...
On gravitational wave energy in Einstein gravitational theory
International Nuclear Information System (INIS)
Folomeshkin, V.N.; Vlasov, A.A.
1978-01-01
By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory
A theory for the Langmuir waves in the electron foreshock
International Nuclear Information System (INIS)
Cairns, I.H.
1987-01-01
A theory for the Langmuir (L) waves observed in the electron foreshock is suggested. Free energy for the Langmuir wave growth is contained in cutoff distributions of energetic electrons streaming from the bow shock. These cutoff distributions drive Langmuir wave growth primarily by the kinetic version of the beam instability, and wave growth is limited by quasi-linear relaxation. The observed bump-on-tail electron distributions are interpreted as the remnants of cutoff distributions after quasi-linear relaxation has limited the wave growth. Only plausibility arguments for this theory are given since suitable treatments of quasi-linear relaxation are not presently available. However, it is shown that the wave processes L ± S → L' and L ± S → T (where S and T denote ion sound and transverse waves, respectively), refraction in steady-state density structures, diffusion due to interactions with ion sound turbulence, and effects due to wave convection and spatial gradients in the beam velocity, are unable to suppress the beam instability. The theory leads to natural interpretations of the Langmuir electric field waveforms observed and of the decrease in the Langmuir wave electric fields with increasing distance from the foreshock boundary. The theory for the beam instability is reviewed, and previous analytic and numerical treatments of the beam instability are related
Liberal Internationalism: Theory, History, Practice
Directory of Open Access Journals (Sweden)
Oliver Stuenkel
2014-01-01
Full Text Available While liberalism keeps adapting to circumstances, its underlying dynamic is the same: Liberalism, Jahn, argues, is a political project that aims to establish individual freedom through private property and to protect and extend this freedom through government by consent - yet, it pursues this goal through the privatization and expropriation of common property and hence requires the production and reproduction of unequal power relations domestically and internationally. Liberalism is thus, in essence, made viable through power politics, with the mere difference that is uses liberal rhetoric as a fig leaf to conceal the ultimate goal: To provide a justification for American hegemony.
International Workshop on Operator Theory and Applications
Jacob, Birgit; Ran, André; Zwart, Hans
2016-01-01
This volume collects a selected number of papers presented at the International Workshop on Operator Theory and its Applications (IWOTA) held in July 2014 at Vrije Universiteit in Amsterdam. Main developments in the broad area of operator theory are covered, with special emphasis on applications to science and engineering. The volume also presents papers dedicated to the eightieth birthday of Damir Arov and to the sixty-fifth birthday of Leiba Rodman, both leading figures in the area of operator theory and its applications, in particular, to systems theory.
Fundamental theories of waves and particles formulated without classical mass
Fry, J. L.; Musielak, Z. E.
2010-12-01
Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called 'wave mass', which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.
Pilot-wave approaches to quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Struyve, Ward, E-mail: Ward.Struyve@fys.kuleuven.be [Institute of Theoretical Physics, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Institute of Philosophy, K.U.Leuven, Kardinaal Mercierplein 2, B-3000 Leuven (Belgium)
2011-07-08
The purpose of this paper is to present an overview of recent work on pilot-wave approaches to quantum field theory. In such approaches, systems are not only described by their wave function, as in standard quantum theory, but also by some additional variables. In the non-relativistic pilot-wave theory of deBroglie and Bohm those variables are particle positions. In the context of quantum field theory, there are two natural choices, namely particle positions and fields. The incorporation of those variables makes it possible to provide an objective description of nature in which rather ambiguous notions such as 'measurement' and 'observer' play no fundamental role. As such, the theory is free of the conceptual difficulties, such as the measurement problem, that plague standard quantum theory.
Optical Rogue Waves: Theory and Experiments
Taki, M.; Mussot, A.; Kudlinski, A.; Louvergneaux, E.; Kolobov, M.
2010-05-01
In the ocean, giant waves (also called killer waves, freak or rogue waves) are extremely rare and strong events. They are not well understood yet and the conditions which favour their emergence are unclear. Very recently, it was shown that the governing equations [1] as well as the statistical properties of an optical pulse propagating inside an optical fibre [2] mimic very well these gigantic surface waves in the ocean. Here we generate both experimentally and numerically optical rogue waves in a photonic crystal fiber (microstructured fiber) with continuous wave (CW) pumps. This is relevant for establishing an analogy with rogue waves in an open ocean. After recalling fundamental rogue waves [3] known as Akhmediev breathers that are solutions of pure nonlinear Schrödinger (NLS) equation, we analytically demonstrate that a generalized NLS equation, which governs the propagation of light in the fiber, exhibits convective modulationnal instability [4]. The latter provides one of the main explanations of the optical rogue wave extreme sensitivity to noisy initial conditions at the linear stage of their formation [5]. In the highly nonlinear regime, we provide the evidence that optical rogue waves result from soliton collisions leading to the rapid appearance/disappearance of a powerful optical pulse [6]. REFERENCES [1] C. Kharif, E. Pelinovsky, and A. Slunyaev, "Rogue Waves in the ocean", Springer Berlin Heidelberg, 2009 [2] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves" Nature 450, 1054-1058, (2008). [3] N. Akhmediev, A. Ankiewicz, and M. Taki, "Waves that appear from nowhere and disappear without a trace", Phys. Lett. A 373, 675 (2009). [4] A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, Delage, and M. Taki, "Optical fiber systems are convectively unstable", Phys. Rev. Lett. 101, 113904 (2008). [5] M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, "Third-order dispersion for generating optical rogue solitons
Theory analysis and simple calculation of travelling wave burnup scheme
International Nuclear Information System (INIS)
Zhang Jian; Yu Hong; Gang Zhi
2012-01-01
Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)
Electromagnetic waves in dusty magnetoplasmas using two-potential theory
International Nuclear Information System (INIS)
Zubia, K.; Jamil, M.; Salimullah, M.
2009-01-01
The low-frequency long wavelength electromagnetic waves, viz., shear Alfven waves in a cold dusty plasma, have been examined employing two-potential theory and plasma fluid model. The presence of the unmagnetized dust particles and magnetized plasma components gives rise to a new ion-dust lower hybrid cutoff frequency for the electromagnetic shear Alfven wave propagation. The importance and relevance of the present work to the space dusty plasma environments are also pointed out.
Theory of Spin Waves in Strongly Anisotropic Magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Cooke, J. F.
1976-01-01
A new infinite-order perturbation approach to the theory of spin waves in strongly anisotropic magnets is introduced. The system is transformed into one with effective two-ion anisotropy and considerably reduced ground-state corrections. A general expression for the spin-wave energy, valid to any...
Dynamic response of a riser under excitation of internal waves
Lou, Min; Yu, Chenglong; Chen, Peng
2015-12-01
In this paper, the dynamic response of a marine riser under excitation of internal waves is studied. With the linear approximation, the governing equation of internal waves is given. Based on the rigid-lid boundary condition assumption, the equation is solved by Thompson-Haskell method. Thus the velocity field of internal waves is obtained by the continuity equation. Combined with the modified Morison formula, using finite element method, the motion equation of riser is solved in time domain with Newmark-β method. The computation programs are compiled to solve the differential equations in time domain. Then we get the numerical results, including riser displacement and transfiguration. It is observed that the internal wave will result in circular shear flow, and the first two modes have a dominant effect on dynamic response of the marine riser. In the high mode, the response diminishes rapidly. In different modes of internal waves, the deformation of riser has different shapes, and the location of maximum displacement shifts. Studies on wave parameters indicate that the wave amplitude plays a considerable role in response displacement of riser, while the wave frequency contributes little. Nevertheless, the internal waves of high wave frequency will lead to a high-frequency oscillation of riser; it possibly gives rise to fatigue crack extension and partial fatigue failure.
Theories of international labor migration: an overview.
Stahl, C W
1995-01-01
"Emigration pressures are primarily the result of increasing inequalities between countries which, in turn, are the result of factors internal to less developed countries and their relations with developed countries. Both micro (neoclassical) and macrostructural theories of migration are reviewed. It is argued that the neoclassical theory of migration is often unjustly criticized and is sufficiently robust to incorporate those structural considerations which are at the core of macrostructural theories. Moreover, the neoclassical theory, with slight modification, can incorporate the ¿new economics of migration.' The major empirical problem confronting models of international labor migration is that migration flows are constrained by immigration policy. This policy, in turn, is influenced by various special interest groups. The direction and form of migration flows is conditioned by contemporary and historical relationships between source and destination countries." excerpt
Monopolistic competition and international trade theory
Neary, J. Peter
2000-01-01
Almost twenty-five years after the appearance of Dixit and Stiglitz’s paper on monopolistic competition and optimum product diversity, I try to take stock of the progres which has been made in applying their approach to international trade theory. I review the principal applications to trade theory and present a new one: by embedding DS preferences in a specific-factors framework, I sketch a model which shows how multinational corporations can emerge even between countries with similar factor...
Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean
van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.
2016-12-01
One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.
Directory of Open Access Journals (Sweden)
Proshyn Denys
2015-12-01
Full Text Available David Rapoport’s Wave theory of terrorism is one of the most oftencited theories in the literature on terrorist violence. Rapoport is praised for having provided researchers with a universal instrument which allows them to explain the origin and transformation of various historical types of terrorism by applying to them the concept of global waves of terrorist violence driven by universal political impulses. This article, testing the Wave theory against the recent phenomenon of homegrown jihadism in Europe, uncovers this theory’s fundamental weaknesses and questions its real academic and practical value.
The determinants of merger waves: An international perspective
Gugler, Klaus; Mueller, Dennis C.; Weichselbaumer, Michael
2012-01-01
One of the most conspicuous features of mergers is that they come in waves that are correlated with increases in share prices and price/earnings ratios. We use a natural way to discriminate between pure stock market influences on firm decisions and other influences by examining merger patterns for both listed and unlisted firms. If “real” changes in the economy drive merger waves, as some neoclassical theories of mergers predict, both listed and unlisted firms should experience waves. We find significant differences between listed and unlisted firms as predicted by behavioral theories of merger waves. PMID:27346903
Proofs for the Wave Theory of Plants
Wagner, Orvin E.
1997-03-01
Oscillatory behavior in plants. (2)Standing waves observed coming from probes equally spaced up tree trunks and freshly cut live wood samples. (3)Beat frequencies observed while applying AC voltages to plants. (4)Plant length quantization. (5)Plant growth angle and voltage quantization with respect to the gravitational field. (6)The measurement of plant frequences with a low frequency spectrum analyzer which correlate with the frequencies observed by other means such as by measuring plant lengths, considered as half wavelengths, and beat frequencies. (7)Voltages obtained from insulated, isolated from light, diode dies placed in slits in tree trunks. Diodes become relatively low impedance sources for voltages as high as eight volts. Diodes indicate charge separating longitudinal standing waves sweeping up and down a tree trunk. Longitudinal waves also indicated by plant structure. (8)The measured discrete wave velocities appear to be dependent on their direction of travel with respect to the gravitational field. These provide growth references for the plant and a wave guide affect. For references see Wagner Research Laboratory Web Page.
Collins, William
1989-01-01
The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.
Gauge theory description of compactified pp-waves
International Nuclear Information System (INIS)
Bertolini, Matteo; Boer, Jan de; Harmark, Troels; Imeroni, Emiliano; Obers, Niels A.
2003-01-01
We find a new Penrose limit of AdS 5 xS 5 that gives the maximally symmetric pp-wave background of type-IIB string theory in a coordinate system that has a manifest space-like isometry. This induces a new pp-wave/gauge-theory duality which on the gauge theory side involves a novel scaling limit of N=4 SYM theory. The new Penrose limit, when applied to AdS 5 xS 5 /Z M , yields a pp-wave with a space-like circle. The dual gauge theory description involves a triple scaling limit of an N=2 quiver gauge theory. We present in detail the map between gauge theory operators and string theory states including winding states, and verify agreement between the energy eigenvalues obtained from string theory and those computed in gauge theory, at least to one-loop order in the planar limit. We furthermore consider other related new Penrose limits and explain how these limits can be understood as part of a more general framework. (author)
Intermittent large amplitude internal waves observed in Port Susan, Puget Sound
Harris, J. C.; Decker, L.
2017-07-01
A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.
Thirteen international workshop on nuclear theory. Abstracts
International Nuclear Information System (INIS)
1994-01-01
This brochure contains the abstracts of reports delivered by 40 participants at the 13. International Workshop on Nuclear Theory organized by the Nuclear Theory Group in the Institute for Nuclear research and Nuclear Energy of the Bulgarian academy of Sciences. The main topics treated in the lectures were nucleon correlation effects in nuclei, collective nuclear motions, Wigner quantum systems, pre-equilibrium neutron and photon emission from nuclei, particle-nuclei collision processes at high energies, few-body states, optical potential for neutron-nucleus scattering, relativistic generator coordinate calculations and variational nuclear structure calculations. All reports are included in INIS separately
Generalized internal long wave equations: construction, hamiltonian structure and conservation laws
International Nuclear Information System (INIS)
Lebedev, D.R.
1982-01-01
Some aspects of the theory of the internal long-wave equations (ILW) are considered. A general class of the ILW type equations is constructed by means of the Zakharov-Shabat ''dressing'' method. Hamiltonian structure and infinite numbers of conservation laws are introduced. The considered equations are shown to be Hamiltonian in the so-called second Hamiltonian structu
5th International Conference on Operator Theory
Douglas, R; Nagy, B; Voiculescu, D; Arsene, Gr
1981-01-01
The first of the annual Operator Theory conferences in Ti mi~oara held four years ago was a meeting of operator theory spe cialists from the National Institute for Scientific and Techni cal Creation in Bucharest and from the University of Timi~oara. Since then, the participation to these conferences has greatly increased, by being attended first by operator theorists from allover the country and (since 1978) by an increasing number of foreign mathematicians. Thus the 1980 Conference can be regarded as a truly international Operator Theory meeting, fifteen coun tries being represented at it. These conferences are conceived as a means to promote the cooperation between specialists in all areas of Operator Theory. Among the main topics in 1980 were: dilation theory, invariant subspaces, connections with the theory of cX-algebras, subnormal operators, multidimensional functional calculus etc. Though not included in this volume, we would like to mention that in 1980 some special sessions concerning other f...
A theory of coherent propagation of light wave in semiconductors
International Nuclear Information System (INIS)
Zi-zhao, G.; Guo-zhen, Y.
1980-05-01
In this paper, we suggest a theory to describe the pheonmena of coherent propagation of light wave in semiconductors. Basing on two band system and considering the interband and intraband transitions induced by light wave and the interaction between electrons, we obtain the nonlinear equations for the description of interaction between carriers and coherent light wave. We have made use of the equations to analyse the phenomena which arise from the interaction between semiconductors and coherent light, for example, the multiphoton transitions, the saturation of light absorption of exciton, the shift of exciton line in intense light field, and the coherent propagation phenomena such as self-induced transparency, etc. (author)
Quantum field theory in a gravitational shock wave background
International Nuclear Information System (INIS)
Klimcik, C.
1988-01-01
A scalar massless non-interacting quantum field theory on an arbitrary gravitational shock wave background is exactly solved. S-matrix and expectation values of the energy-momentum tensor are computed for an arbitrarily polarized sourceless gravitational shock wave and for a homogeneous infinite planar shell shock wave, all performed in any number of space-time dimensions. Expectation values of the energy density in scattering states exhibit a singularity which lies exactly at the location of the curvature singularity found in the infinite shell collision. (orig.)
Improved distorted wave theory with the localized virial conditions
Hahn, Y. K.; Zerrad, E.
2009-12-01
The distorted wave theory is operationally improved to treat the full collision amplitude, such that the corrections to the distorted wave Born amplitude can be systematically calculated. The localized virial conditions provide the tools necessary to test the quality of successive approximations at each stage and to optimize the solution. The details of the theoretical procedure are explained in concrete terms using a collisional ionization model and variational trial functions. For the first time, adjustable parameters associated with an approximate scattering solution can be fully determined by the theory. A small number of linear parameters are introduced to examine the convergence property and the effectiveness of the new approach.
Third Wave Feminism's Unhappy Marriage of Poststructuralism and Intersectionality Theory
Directory of Open Access Journals (Sweden)
Susan Archer Mann
2013-06-01
Full Text Available This article first traces the history of unhappy marriages of disparate theoretical perspectives in US feminism. In recent decades, US third-wave authors have arranged their own unhappy marriage in that their major publications reflect an attempt to wed poststructuralism with intersectionality theory. Although the standpoint epistemology of intersectionality theory shares some common ground with the epistemology of poststructuralism, their epistemological assumptions conflict on a number of important dimensions. This contested terrain has generated serious debates within the third wave and between second- and thirdwave feminists. The form, content, and political implications of their "unhappy marriage" are the subject of this article.
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
Fourteen international workshop on nuclear theory
International Nuclear Information System (INIS)
1995-01-01
This brochure contains the abstracts of reports delivered by 30 participants at the 14. International Workshop on Nuclear Theory organized by the Nuclear Theory Group in the Institute for Nuclear research and Nuclear Energy of the Bulgarian academy of Sciences. The main topics treated in the lectures were short-range nucleon-nucleon correlations in nuclei, relativistic scaling in nuclear matter and finite nuclei, hadron structure in chiral quark-meson theory, residual interaction strength and surface effects in the multistep reaction calculations, theoretical and experimental studies of heavy ion collisions, quantum algebraic approach to nuclear collective properties, description of low-lying states in even-even nuclei, deformed oscillator potentials, studies of solar neutrinos by I-127 detectors and gamma-ray astronomy of ultra-high energies. All reports are included in INIS separately
Constructing a chinese international relations theory
DEFF Research Database (Denmark)
Kristensen, P.M.; Nielsen, R.T.
2013-01-01
Chinese scholars are debating whether, and how, to innovate a Chinese theory of International Relations (IR). This article examines the driving forces behind this theoretical debate. It challenges the commonsensical link between external events in the subject matter (i.r.) and theorizing (IR......), which suggests that the innovation of a Chinese IR theory is a natural product of China's geopolitical rise, its growing political ambitions, and discontent with Western hegemony. We propose instead a sociological approach to intellectual innovation which opens the black box of knowledge production...... attention from their peers-theorizing a Chinese IR theory being one important way of doing this. The external layer-which ranges from power politics to sociopolitical developments-affects this process indirectly by providing more research funds and autonomy to the more immediate institutional environment...
Theory of bending waves with applications to disk galaxies
International Nuclear Information System (INIS)
Mark, J.W.K.
1982-01-01
A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way
8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications
Warnecke, Gerald
2001-01-01
The Eighth International Conference on Hyperbolic Problems - Theory, Nu merics, Applications, was held in Magdeburg, Germany, from February 27 to March 3, 2000. It was attended by over 220 participants from many European countries as well as Brazil, Canada, China, Georgia, India, Israel, Japan, Taiwan, und the USA. There were 12 plenary lectures, 22 further invited talks, and around 150 con tributed talks in parallel sessions as well as posters. The speakers in the parallel sessions were invited to provide a poster in order to enhance the dissemination of information. Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. Despite considerable progress, the mathematical theory is still strug gling with fundamental open problems concerning systems of such equations in multiple space dimensions. For various applications the development of accurate and efficient numerical schemes for computat...
Directory of Open Access Journals (Sweden)
M. Ettefagh
2018-03-01
Full Text Available One of the new methods for powering low-power electronic devices employed in the sea, is using of mechanical energies of sea waves. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on not implementing the battery charging system. Although, many studies have been done about energy harvesting from sea waves, energy harvesting with considering random JONWSAP wave theory is not fully studied up to now. The random JONSWAP wave model is a more realistic approximation of sea waves in comparison of Airy wave model. Therefore, in this paper a vertical beam with the piezoelectric patches, which is fixed to the seabed, is considered as energy harvester system. The energy harvesting system is simulated by MATLAB software, and then the vibration response of the beam and consequently the generated power is obtained considering the JONWSAP wave theory. In addition, the reliability of the system and the effect of piezoelectric patches uncertainties on the generated power are studied by statistical method. Furthermore, the failure possibility of harvester based on violation criteria is investigated.
The instability of internal gravity waves to localised disturbances
Directory of Open Access Journals (Sweden)
J. Vanneste
1995-02-01
Full Text Available The instability of an internal gravity wave due to nonlinear wave-wave interaction is studied theoretically and numerically. Three different aspects of this phenomenon are examined. 1. The influence of dissipation on both the resonant and the nonresonant interactions is analysed using a normal mode expansion of the basic equations. In particular, the modifications induced in the interaction domain are calculated and as a result some modes are shown to be destabilised by dissipation. 2. The evolution of an initial unstable disturbance of finite vertical extent is described as the growth of two secondary wave packets travelling at the same group velocity. A quasi-linear correction to the basic primary wave is calculated, corresponding to a localised amplitude decrease due to the disturbance growth. 3. Numerical experiments are carried out to study the effect of a basic shear on wave instability. It appears that the growing secondary waves can have a frequency larger than that of the primary wave, provided that the shear is sufficient. The instability of waves with large amplitude and long period, such as tides or planetary waves, could therefore be invoked as a possible mechanism for the generation of gravity waves with shorter period in the middle atmosphere.
A confrontation of density wave theories with observations
International Nuclear Information System (INIS)
Kalnajs, A.J.
1978-01-01
The author proposes that it is a mistake to think that the density wave theories of spiral structure have reached the maturity where they can make unconditional predictions which can be tested. They are still very dependent on observations for help and guidance. (C.F.)
Kinetic theory of surface waves in plasma jets
International Nuclear Information System (INIS)
Shokri, B.
2002-01-01
The kinetic theory analysis of surface waves propagating along a semi-bounded plasma jet is presented. The frequency spectra and their damping rate are obtained in both the high and low frequency regions. Finally, the penetration of the static field in the plasma jet under the condition that the plasma jet velocity is smaller than the sound velocity is studied
Asymptotic solutions and spectral theory of linear wave equations
International Nuclear Information System (INIS)
Adam, J.A.
1982-01-01
This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)
Electromagnetic internal gravity waves in the Earth's ionospheric E-layer
International Nuclear Information System (INIS)
Kaladze, T.D.; Tsamalashvili, L.V.; Kaladze, D.T.
2011-01-01
In the Earth's ionospheric E-layer existence of the new waves connecting with the electromagnetic nature of internal gravity waves is shown. They represent the mixture of the ordinary internal gravity waves and the new type of dispersive Alfven waves. -- Highlights: ► Existence of electromagnetic internal gravity waves in the ionospheric E-layer is shown. ► Electromagnetic nature of internal gravity waves is described. ► Appearance of the new dispersive Alfven waves is shown.
BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas
Porkolab, Miklos
1998-11-01
The linear theory of plasma waves in homogeneous plasma is arguably the most mature and best understood branch of plasma physics. Given the recently revised version of Stix's excellent Waves in Plasmas (1992), one might ask whether another book on this subject is necessary only a few years later. The answer lies in the scope of this volume; it is somewhat more detailed in certain topics than, and complementary in many fusion research relevant areas to, Stix's book. (I am restricting these comments to the homogeneous plasma theory only, since the author promises a second volume on wave propagation in inhomogeneous plasmas.) This book is also much more of a theorist's approach to waves in plasmas, with the aim of developing the subject within the logical framework of kinetic theory. This may indeed be pleasing to the expert and to the specialist, but may be too difficult to the graduate student as an `introduction' to the subject (which the author explicitly states in the Preface). On the other hand, it may be entirely appropriate for a second course on plasma waves, after the student has mastered fluid theory and an introductory kinetic treatment of waves in a hot magnetized `Vlasov' plasma. For teaching purposes, my personal preference is to review the cold plasma wave treatment using the unified Stix formalism and notation (which the author wisely adopts in the present book, but only in Chapter 5). Such an approach allows one to deal with CMA diagrams early on, as well as to provide a framework to discuss electromagnetic wave propagation and accessibility in inhomogeneous plasmas (for which the cold plasma wave treatment is perfectly adequate). Such an approach does lack some of the rigour, however, that the author achieves with the present approach. As the author correctly shows, the fluid theory treatment of waves follows logically from kinetic theory in the cold plasma limit. I only question the pedagogical value of this approach. Otherwise, I welcome this
Theory of magnetohydrodynamic waves: The WKB approximation revisited
International Nuclear Information System (INIS)
Barnes, A.
1992-01-01
Past treatments of the eikonal or WKB theory of the propagation of magnetohydrodynamics waves have assumed a strictly isentropic background. IF in fact there is a gradient in the background entropy, then in second order in the WKB ordering, adiabatic fluctuations (in the Lagrangian sense) are not strictly isentropic in the Eulerian sense. This means that in the second order of the WKB expansion, which determines the variation of wave amplitude along rays, the violation of isentropy must be accounted for. The present paper revisits the derivation of the WKB approximation for small-amplitude magnetohydrodynamic waves, allowing for possible spatial variation of the background entropy. The equation of variation of wave amplitude is rederived; it is a bilinear equation which, it turns out, can be recast in the action conservation form. It is shown that this action conservation equation is in fact equivalent to the action conservation law obtained from Lagrangian treatments
Variational formulation of covariant eikonal theory for vector waves
International Nuclear Information System (INIS)
Kaufman, A.N.; Ye, H.; Hui, Y.
1986-10-01
The eikonal theory of wave propagation is developed by means of a Lorentz-covariant variational principle, involving functions defined on the natural eight-dimensional phase space of rays. The wave field is a four-vector representing the electromagnetic potential, while the medium is represented by an anisotropic, dispersive nonuniform dielectric tensor D/sup μν/(k,x). The eikonal expansion yields, to lowest order, the Hamiltonian ray equations, which define the Lagrangian manifold k(x), and the wave-action conservation law, which determines the wave-amplitude transport along the rays. The first-order contribution to the variational principle yields a concise expression for the transport of the polarization phase. The symmetry between k-space and x-space allows for a simple implementation of the Maslov transform, which avoids the difficulties of caustic singularities
Complex space source theory of partially coherent light wave.
Seshadri, S R
2010-07-01
The complex space source theory is used to derive a general integral expression for the vector potential that generates the extended full Gaussian wave in terms of the input value of the vector potential of the corresponding paraxial beam. The vector potential and the fields are assumed to fluctuate on a time scale that is large compared to the wave period. The Poynting vector in the propagation direction averaged over a wave period is expressed in terms of the cross-spectral density of the fluctuating vector potential across the input plane. The Schell model is assumed for the cross-spectral density. The radiation intensity distribution and the power radiated are determined. The effect of spatial coherence on the radiation intensity distribution and the radiated power are investigated for different values of the physical parameters. Illustrative numerical results are provided to bring out the effect of spatial coherence on the propagation characteristics of the fluctuating light wave.
Internal wave energy radiated from a turbulent mixed layer
Energy Technology Data Exchange (ETDEWEB)
Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)
2014-09-15
We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.
Queer theory, late capitalism, and internalized homophobia.
Kirsch, Max
2006-01-01
The emergence of queer theory represents a transformation in the approach to lesbian, gay, bisexual and transgendered peoples. It has claimed new ground for treating sexuality and gender as worthy subjects in their own rights, rather than offshoots of gay and lesbian studies or of general cultural theory. The author contends, however, that it is doubtful that this approach can lead to social change. Queer theory has dismissed the usefulness of the disciplines that were the foundation of the social movements that initiated gay and lesbian studies, such as political economy, and in doing so, it has surreptitiously mirrored the social relations of reproduction that constitute late capitalism. This mirroring has had unseen consequences for the individual in society, and with queer theory's insistence on the relativity of experience and the dismissal of identity, has set the stage for a benign reinforcement of internalized homophobia. The author argues that this approach can be mediated by recognizing that identity is fluid, and that by focusing on identifying with social movements rather than centering analyses on the problems associated with identifying as a particular category of status and being, we can refocus our energies on the building and maintenance of mutual support and collective recognition that can lead to resolving the stagnation now dominating attempts to develop coalitions around issues that matter.
An overview of gravitational waves theory, sources and detection
Auger, Gerard
2017-01-01
This book describes detection techniques used to search for and analyze gravitational waves (GW). It covers the whole domain of GW science, starting from the theory and ending with the experimental techniques (both present and future) used to detect them. The theoretical sections of the book address the theory of general relativity and of GW, followed by the theory of GW detection. The various sources of GW are described as well as the methods used to analyse them and to extract their physical parameters. It includes an analysis of the consequences of GW observations in terms of astrophysics as well as a description of the different detectors that exist and that are planned for the future. With the recent announcement of GW detection and the first results from LISA Pathfinder, this book will allow non-specialists to understand the present status of the field and the future of gravitational wave science
Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...
Indian Academy of Sciences (India)
tribpo
Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...
Time-domain Hydroelasticity Theory of Ships Responding to Waves
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui
1997-01-01
free surface flow. The general interface boundary condition is used in the mathematical formulation of the fluid motion around the flexible structure. The general time-domain theory is simplified to a slender-body theory for the analysis of wave-induced global responses of monohull ships. The structure...... is represented by a non-uniform beam, while the generalized hydrodynamic coefficients can be obtained from two-dimensional potential flow theory. The linear slender body theory is generalized to treat the non-linear loading effects of rigid motion and structural response of ships travelling in rough seas....... The non-linear hydrostatic restoring force and hydrodynamic momentum action are considered. A numerical solution is presented for the slender body theory. Numerical examples are given for two ship cases with different geometry features, a warship hull and the S175 containership with two different bow...
A Chaos Theory Perspective on International Migration
Directory of Open Access Journals (Sweden)
Anca Tănasie
2017-12-01
Full Text Available This paper aims at providing a different approach to international migration analysis, beyond classical models previously proposed by specialized literature. Chaos theory is getting more and more applied into macroeconomics once traditional linear models or even previous dynamic analysis become less suitable. Modern science sees chaos as unpredictable evolution, maybe even disorder. Still, chaos has got its own rules and can describe many dynamic phenomena within our world. Thus, we test whether international migration data falls under the rules of chaos and whether recent developments within the “European migration crisis” (the total daily migration inflows towards the coasts of Italy, by sea, from January 2014 to April 2017 could be described as chaotic.
A plane-wave final-state theory of ATI
International Nuclear Information System (INIS)
Parker, J.S.; Clark, C.W.
1993-01-01
A Fermi Golden Rule calculation of ionization cross-sections provides us with the simplest example of a plane-wave final-state theory. In this method the final (unbound) state is modeled as a plane wave, an approximation that generally gives best results in the high energy limit in which the affect of the atomic potential on the final state can be neglected. A cross-section is then calculated from the matrix element connecting the bound initial state with the final state. The idea of generalizing this method to model transitions among unbound states is credited to L.V. Keldysh, and a number of related formalisms have been proposed that are consistent with the general features of experimental data. Here we describe a plane-wave final-state model of ATI that is in the spirit of these theories, but differs significantly in its implementation and predictions. We will present a comparison of the predictions of the plane-wave model with those of a full numerical integration of the time-dependent Schrodinger equation for atomic hydrogen in a radiation field. The theory and the numerical integration give good qualitative agreement in their predictions of photoelectron spectra over about 14 orders of magnitude
International conference "Galois Theory and Modular Forms"
Miyake, Katsuya; Nakamura, Hiroaki; Galois Theory and Modular Forms
2004-01-01
This volume is an outgrowth of the research project "The Inverse Ga lois Problem and its Application to Number Theory" which was carried out in three academic years from 1999 to 2001 with the support of the Grant-in-Aid for Scientific Research (B) (1) No. 11440013. In September, 2001, an international conference "Galois Theory and Modular Forms" was held at Tokyo Metropolitan University after some preparatory work shops and symposia in previous years. The title of this book came from that of the conference, and the authors were participants of those meet All of the articles here were critically refereed by experts. Some of ings. these articles give well prepared surveys on branches of research areas, and many articles aim to bear the latest research results accompanied with carefully written expository introductions. When we started our re~earch project, we picked up three areas to investigate under the key word "Galois groups"; namely, "generic poly nomials" to be applied to number theory, "Galois co...
The Curious Events Leading to the Theory of Shock Waves
Salas, Manuel D.
2006-01-01
We review the history of the development of the modern theory of shock waves. Several attempts at an early-theory quickly collapsed for lack of foundations in mathematics and thermodynamics. It is not until the works of Rankine and later Hugoniot that a full theory is established. Rankine is the first to show that within the shock a non-adiabatic process must occur. Hugoniot showed that in the absence of viscosity and heat conduction conservation of energy implies conservation of entropy in smooth regions and a jump in entropy across a shock. Even after the theory is fully developed, old notions continue to pervade the literature well into the early part of the 20th Century.
Current-drive theory II: the lower-hybrid wave
International Nuclear Information System (INIS)
Fisch, N.J.
1986-01-01
The theory of current-drive seeks to predict the efficiency with which an external power source can produce current in a plasma torus. The theory, which is now well supported by experimental data, becomes especially simple in the important limit of lower-hybrid or electron-cyclotron waves interacting with superthermal electrons. The solution of an equation adjoint to the linearized Fokker-Planck equation gives both the steady-state and ramp-up current-drive efficiencies. Other phenomena, such as rf-induced runaway rates, rf-induced radiation, etc., may be calculated by this method, and analytical solutions have been obtained in several limiting cases. 12 refs
Mathematical analogies in physics. Thin-layer wave theory
Directory of Open Access Journals (Sweden)
José M. Carcione
2014-03-01
Full Text Available Field theory applies to elastodynamics, electromagnetism, quantum mechanics, gravitation and other similar fields of physics, where the basic equations describing the phenomenon are based on constitutive relations and balance equations. For instance, in elastodynamics, these are the stress-strain relations and the equations of momentum conservation (Euler-Newton law. In these cases, the same mathematical theory can be used, by establishing appropriate mathematical equivalences (or analogies between material properties and field variables. For instance, the wave equation and the related mathematical developments can be used to describe anelastic and electromagnetic wave propagation, and are extensively used in quantum mechanics. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of a thin layer embedded between dissimilar media, considering the presence of anisotropy and attenuation/viscosity in the viscoelastic case, conductivity in the electromagnetic case and a potential barrier in quantum physics (the tunnel effect. The analogy is mainly illustrated with geophysical examples of propagation of S (shear, P (compressional, TM (transverse-magnetic and TE (transverse-electric waves. The tunnel effect is obtained as a special case of viscoelastic waves at normal incidence.
Study on thermal wave based on the thermal mass theory
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.
Study on thermal wave based on the thermal mass theory
Institute of Scientific and Technical Information of China (English)
HU RuiFeng; CAO BingYang
2009-01-01
The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon pre-dicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.
Self-organized Criticality Model for Ocean Internal Waves
International Nuclear Information System (INIS)
Wang Gang; Hou Yijun; Lin Min; Qiao Fangli
2009-01-01
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)
Deep-water bedforms induced by refracting Internal Solitary Waves
Falcini, Federico; Droghei, Riccardo; Casalbore, Daniele; Martorelli, Eleonora; Mosetti, Renzo; Sannino, Gianmaria; Santoleri, Rosalia; Latino Chiocci, Francesco
2017-04-01
Subaqueous bedforms (or sand waves) are typically observed in those environments that are exposed to strong currents, characterized by a dominant unidirectional flow. However, sand-wave fields may be also observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs), induced by tides, can produce an effective, unidirectional boundary flow filed that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.
Rethinking wave-kinetic theory applied to zonal flows
Parker, Jeffrey
2017-10-01
Over the past two decades, a number of studies have employed a wave-kinetic theory to describe fluctuations interacting with zonal flows. Recent work has uncovered a defect in this wave-kinetic formulation: the system is dominated by the growth of (arbitrarily) small-scale zonal structures. Theoretical calculations of linear growth rates suggest, and nonlinear simulations confirm, that this system leads to the concentration of zonal flow energy in the smallest resolved scales, irrespective of the numerical resolution. This behavior results from the assumption that zonal flows are extremely long wavelength, leading to the neglect of key terms responsible for conservation of enstrophy. A corrected theory, CE2-GO, is presented; it is free of these errors yet preserves the intuitive phase-space mathematical structure. CE2-GO properly conserves enstrophy as well as energy, and yields accurate growth rates of zonal flow. Numerical simulations are shown to be well-behaved and not dependent on box size. The steady-state limit simplifies into an exact wave-kinetic form which offers the promise of deeper insight into the behavior of wavepackets. The CE2-GO theory takes its place in a hierarchy of models as the geometrical-optics reduction of the more complete cumulant-expansion statistical theory CE2. The new theory represents the minimal statistical description, enabling an intuitive phase-space formulation and an accurate description of turbulence-zonal flow dynamics. This work was supported by an NSF Graduate Research Fellowship, a US DOE Fusion Energy Sciences Fellowship, and US DOE Contract Nos. DE-AC52-07NA27344 and DE-AC02-09CH11466.
The universal wave function interpretation of string theory
International Nuclear Information System (INIS)
Gang, Dr. Sha Zhi; Xiu, Rulin
2016-01-01
In this work, we will show that a deeper understanding of space-time provided by both quantum physics and general relativity can lead to a new way to understand string theory. This new way of understanding and applying string theory, the universal wave function interpretation of string theory (UWFIST), may yield to a more powerful string theory and testable prediction. We will show how to derive UWFIST and what new result we can obtain from UWFIST. We will demonstrate that UWFIST indicates that the observed space-time and all phenomena are the projections from the world-sheet hologram. UWFIST provides the possible source for dark energy and dark matter and the explanation about why the dark energy and dark matter is beyond the detection of our current detector. We will show that UWFIST may also yield correct prediction of the cosmological constant to be of the order 10-121 in the unit of Planck scale. It may also help us understand and derive the energy source for inflation and the flatness of our observed 4-dimensional universe. UWFIST may also make other testable predictions that may be detected by interferometers. We conclude that UWFIST has the potential to make string theory a more powerful physics theory that can yield testable predictions. It is worth further investigation by more physicists
On the detectability of internal waves by an imaging lidar
Magalhaes, J.M.; da Silva, J.C.B.; Batista, M.; Gostiaux, L.; Gerkema, T.; New, A.L.; Jeans, D.R.G.
2013-01-01
The first results of a multisensor airborne survey conducted off the western Iberian Coast are presented (including visible, lidar, and infrared imagery) and reveal the presence of internal solitary waves (ISWs) propagating into the nearshore region. For the first time, two-dimensional lidar imagery
Identification of internal waves off Visakhapatnam from Thermister chain
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Rao, M.M.M.; Sadhuram, Y.; SujitKumar, S.; SaiSandhya, K.; Maneesha, K.; Murthy, K.S.R.
An analysis of Internal Wave (IW) signatures by in-situ observations off Visakhapatnam has been presented to study the impact of IWs on acoustic field. Temperature data were collected for 44 hours at an interval of 2 minutes off Visakhapatnam (17...
Quantum Measurement Theory in Gravitational-Wave Detectors
Directory of Open Access Journals (Sweden)
Stefan L. Danilishin
2012-04-01
Full Text Available The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
Quantum Measurement Theory in Gravitational-Wave Detectors.
Danilishin, Stefan L; Khalili, Farid Ya
2012-01-01
The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
Theory and numerics of gravitational waves from preheating after inflation
International Nuclear Information System (INIS)
Dufaux, Jean-Francois; Kofman, Lev; Bergman, Amanda; Felder, Gary; Uzan, Jean-Philippe
2007-01-01
Preheating after inflation involves large, time-dependent field inhomogeneities, which act as a classical source of gravitational radiation. The resulting spectrum might be probed by direct detection experiments if inflation occurs at a low enough energy scale. In this paper, we develop a theory and algorithm to calculate, analytically and numerically, the spectrum of energy density in gravitational waves produced from an inhomogeneous background of stochastic scalar fields in an expanding universe. We derive some generic analytical results for the emission of gravity waves by stochastic media of random fields, which can test the validity/accuracy of numerical calculations. We contrast our method with other numerical methods in the literature, and then we apply it to preheating after chaotic inflation. In this case, we are able to check analytically our numerical results, which differ significantly from previous works. We discuss how the gravity-wave spectrum builds up with time and find that the amplitude and the frequency of its peak depend in a relatively simple way on the characteristic spatial scale amplified during preheating. We then estimate the peak frequency and amplitude of the spectrum produced in two models of preheating after hybrid inflation, which for some parameters may be relevant for gravity-wave interferometric experiments
Density wave theory and the classification of spiral galaxies
International Nuclear Information System (INIS)
Roberts, W.W. Jr.; Roberts, M.S.; Shu, F.H.
1975-01-01
Axisymmetric models of disk galaxies taken together with the density wave theory allow us to distinguish and categorize spiral galaxies by means of two fundamental galactic parameters: the total mass of the galaxy, divided by a characteristic dimension; and the degree of concentration of mass toward the galactic center. These two parameters govern the strength of the galactic shocks in the interstellar gas and the geometry of the spiral wave pattern. In turn, the shock strength and the theoretical pitch angle of the spiral arms play a major role in determining the degree of development of spiral structure in a galaxy and its Hubble type. The application of these results to 24 external galaxies demonstrates that the categorization of galaxies according to this theoretical framework correlates well with the accepted classification of these galaxies within the observed sequences of luminosity class and Hubble type
International Experience in Upper Echelon Theory: Literature Review
Directory of Open Access Journals (Sweden)
Đerđa Dino
2017-09-01
Full Text Available Background: The international experience of top managers is an evolving research within the upper echelon theory; therefore this literature review summarizes everything made so far.
Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael
2017-11-01
We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.
Traveling wave solution of the Reggeon field theory
International Nuclear Information System (INIS)
Peschanski, Robi
2009-01-01
We identify the nonlinear evolution equation in impact-parameter space for the 'Supercritical Pomeron' in Reggeon field theory as a two-dimensional stochastic Fisher-Kolmogorov-Petrovski-Piscounov equation. It exactly preserves unitarity and leads in its radial form to a high-energy traveling wave solution corresponding to a 'universal' behavior of the impact-parameter front profile of the elastic amplitude; its rapidity dependence and form depend only on one parameter, the noise strength, independently of the initial conditions and of the nonlinear terms restoring unitarity. Theoretical predictions are presented for the three typical distinct regimes corresponding to zero, weak, and strong noise.
A reexamination and extension of international strategy-structure theory
Wolf, Joachim; Egelhoff, William G.
2001-01-01
Using a sample of 95 German firms, the study finds general support for the traditional fits of international strategy-structure theory. Employing an information-processing perspective, the study conceptually and empirically extends existing theory (1) to address strategy-structure fit for various types of matrix structure, and (2) by adding two new elements of international strategy to the existing international strategy-structure model: the level of international transfers and level of forei...
Review of research in internal-wave and internal-tide deposits of China: Discussion
Directory of Open Access Journals (Sweden)
G. Shanmugam
2014-10-01
Full Text Available This discussion of a review article by [27], published in the Journal of Palaeogeography (2(1: 56– 65, is aimed at illustrating that interpretations of ten ancient examples in China and one in the central Appalachians (USA as deep-water deposits of internal waves and internal tides are unsustainable. This critical assessment is based on an in-depth evaluation of oceanographic and sedimentologic data on internal waves and internal tides derived from 332 print and online published works during 1838–January 2013, which include empirical data on the physical characteristics of modern internal waves and internal tides from 51 regions of the world’s oceans [108]. In addition, core and outcrop descriptions of deep-water strata from 35 case studies worldwide carried out by the author during 1974–2011, and a selected number of case studies published by other researchers are evaluated for identifying the sedimentological challenges associated with distinguishing types of bottom-current reworked sands in the ancient sedimentary record. The emerging conclusion is that any interpretation of ancient strata as deposits of internal waves and internal tides is premature.
Numerical Simulation of Internal Waves in the Andaman Sea
Mohanty, Sachiko; Devendra Rao, Ambarukhana
2017-04-01
The interactions of barotropic tides with irregular bottom topography generate internal waves with high amplitude known as large-amplitude internal waves (LAIW) in the Andaman Sea. These waves are an important phenomena in the ocean due to their influence on the density structure and energy transfer into the region. These waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing, biogeochemical processes, etc. over the shelf-slope region. In the present study, energetics analysis of M2 internal tides over the Andaman Sea is carried out in detail by using a three-dimensional MIT general circulation ocean model (MITgcm). In-situ observations of temperature, conductivity and currents with high temporal resolution are used to validate the model simulations. From the spectral energy estimate of density, it is found that the peak estimate is associated with the semi-diurnal frequency at all the depths in both observations and model simulations. The baroclinic velocity characteristics, suggests that a multi-mode features of baroclinic tides are present at the buoy location. To understand the generation and propagation of internal tides over this region, energy flux and barotropic-to-baroclinic M2 tidal energy conversion rates are examined. The model simulation suggests that the internal tide is generated at multiple sites and propagate off of their respective generation sources. Most of the energy propagation in the Andaman Sea follows the 1000m isobath. The maximum horizontal kinetic energy follows the energy flux pattern over the domain and the available potential energy is found to be maximum in the north of the Andaman Sea.
On the Chemical Mixing Induced by Internal Gravity Waves
Energy Technology Data Exchange (ETDEWEB)
Rogers, T. M. [School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)
2017-10-10
Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.
Internal conversion theory of gamma radiation in unfilled atomic shells
International Nuclear Information System (INIS)
Anderson, Eh.M.; Trusov, V.F.; Ehglajs, M.O.
1980-01-01
The internal conversion theory of gamma radiation in unfilled shells, when the atom is in a state with certain energy and momentum, is considered. A formula for the conversion coefficient between the atom and ion levels is obtained. This coefficient turns to be dependent on genealogic characteristics of the atom. It is discussed when the conversion coefficients are proportional to the numbers of filling subshells in the atom. Exact calculations have been carried out in the multiconfigurational approximation taking into account intermediate coupling for the d-shell of the Fe atom Single-electron radial wave functions have been calculated on the basis of the relativistic method of the Hartree-Fock-Dirak self-consistent field. Conversion coefficients on certain subshells as well as submatrix elements of the production operator are calculated. The electric coefficient of internal conversion (CIC) in the calculation for one electron does not depend on spin orientation. That is why the electric CIC from the level will not depend on filling number distribution by subshells. For magnetic CIC the dependence on the atom state is significant. Using multiconfiguration basis for calculating energy matrix and its succeeding diagonalization means the account of the intermediate coupling type, which takes place for the unfilled shells
Statistical lamb wave localization based on extreme value theory
Harley, Joel B.
2018-04-01
Guided wave localization methods based on delay-and-sum imaging, matched field processing, and other techniques have been designed and researched to create images that locate and describe structural damage. The maximum value of these images typically represent an estimated damage location. Yet, it is often unclear if this maximum value, or any other value in the image, is a statistically significant indicator of damage. Furthermore, there are currently few, if any, approaches to assess the statistical significance of guided wave localization images. As a result, we present statistical delay-and-sum and statistical matched field processing localization methods to create statistically significant images of damage. Our framework uses constant rate of false alarm statistics and extreme value theory to detect damage with little prior information. We demonstrate our methods with in situ guided wave data from an aluminum plate to detect two 0.75 cm diameter holes. Our results show an expected improvement in statistical significance as the number of sensors increase. With seventeen sensors, both methods successfully detect damage with statistical significance.
A general theory of two-wave mixing in nonlinear media
DEFF Research Database (Denmark)
Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael
2009-01-01
A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...
Africa and the Principles and Theories of International Relations ...
African Journals Online (AJOL)
To what extent have the principles and theories of international relations (as formulated) accommodated the specific needs and circumstances of Africa? In other words, how can the circumstances and peculiarities of Africa be made to shape and influence the established principles and theories of international relations as ...
Weak turbulence theory of Langmuir waves: A reconsideration of validity of quasilinear theory
International Nuclear Information System (INIS)
Liang, Y.M.; Diamond, P.H.
1991-01-01
The weak turbulence theory of Langmuir waves in a one-dimensional, one-species plasma is discussed. Analytical calculations using the theory of two-point correlation functions show that in the weak turbulence regime τ ac much-lt min[τ tr , γ k -1 ], the nonlinear enhancement of the mode growth rate relative to the linear Landau mode growth rate γ k L is rather weak, and quasilinear theory is reproduced at the lowest order. Hence this work also proves the validity of the quasilinear theory. Here τ ac ∼ (kΔv ph ) -1 is the phase-mixing time or the auto-correlation time, and τ tr ∼ (k 2 D ql ) -1/3 is the particle decorrelation time or the turbulence trapping time. In particular, the lowest order nonlinear correction to γ k L in the regime τ ac much-lt τ tr much-lt γ k -1 is proportional to (1/ω k τ tr )γ k L . Both corrections are additive, not multiplicative, and are of higher order in the weak turbulence expansion. The smallness of the corrections is due to the fact that the only mechanism for the relaxation of the plasma distribution function in a one-dimensional, one-species plasma is momentum exchange between waves and particles, which is exactly the interaction considered in the quasilinear theory. No like-like particle momentum exchange is allowed due to momentum conservation constraints. Similar calculations are also done for the traveling wave tube, which can be used to test this theory experimentally, especially for the case of bump-on-tail instability. A comparison of theoretical predictions with experimental results is presented. 3 refs
Shoaling internal solitary waves of depression over gentle slopes
Rivera, Gustavo; Diamessis, Peter
2017-11-01
The shoaling of an internal solitary wave (ISW) of depression over gentle slopes is explored through fully nonlinear and non-hydrostatic simulations using a high resolution/accuracy deformed spectral multidomain penalty method. During shoaling, the wave does not disintegrate as in the case of steeper slope but, instead, maintains its symmetric shape. At the core of the wave, an unstable region forms, characterized by the entrapment of heavier-over-light fluid. The formation of this convective instability is attributed to the vertical stretching by the ISW of the near-surface vorticity layer associated with the baroclinic background current. According to recent field observations in the South China Sea, the unstable region drives localized turbulent mixing within the wave, estimated to be up to four times larger than that in the open ocean, in the form of a recirculating trapped core. In this talk, emphasis is placed on the structure of the unstable region and the persistence of a possible recirculating core using simulations which capture 2D wave propagation combined with 3D representation of the transition to turbulence. As such, a preliminary understanding of the underlying fluid mechanics and the potential broader oceanic significance of ISWs with trapped cores is offered. Financial support gratefully acknowledged to NSF OCE Grant 1634257.
Theory of electromagnetic wave propagation in ferromagnetic Rashba conductor
Shibata, Junya; Takeuchi, Akihito; Kohno, Hiroshi; Tatara, Gen
2018-02-01
We present a comprehensive study of various electromagnetic wave propagation phenomena in a ferromagnetic bulk Rashba conductor from the perspective of quantum mechanical transport. In this system, both the space inversion and time reversal symmetries are broken, as characterized by the Rashba field α and magnetization M, respectively. First, we present a general phenomenological analysis of electromagnetic wave propagation in media with broken space inversion and time reversal symmetries based on the dielectric tensor. The dependence of the dielectric tensor on the wave vector q and M is retained to first order. Then, we calculate the microscopic electromagnetic response of the current and spin of conduction electrons subjected to α and M, based on linear response theory and the Green's function method; the results are used to study the system optical properties. First, it is found that a large α enhances the anisotropic properties of the system and enlarges the frequency range in which the electromagnetic waves have hyperbolic dispersion surfaces and exhibit unusual propagations known as negative refraction and backward waves. Second, we consider the electromagnetic cross-correlation effects (direct and inverse Edelstein effects) on the wave propagation. These effects stem from the lack of space inversion symmetry and yield q-linear off-diagonal components in the dielectric tensor. This induces a Rashba-induced birefringence, in which the polarization vector rotates around the vector (α ×q ) . In the presence of M, which breaks time reversal symmetry, there arises an anomalous Hall effect and the dielectric tensor acquires off-diagonal components linear in M. For α ∥M , these components yield the Faraday effect for the Faraday configuration q ∥M and the Cotton-Mouton effect for the Voigt configuration ( q ⊥M ). When α and M are noncollinear, M- and q-induced optical phenomena are possible, which include nonreciprocal directional dichroism in the
Internal wave-mediated shading causes frequent vertical migrations in fishes
Kaartvedt, Stein; Klevjer, TA; Aksnes, Dag L.
2012-01-01
We provide evidence that internal waves cause frequent vertical migrations (FVM) in fishes. Acoustic data from the Benguela Current revealed that pelagic scattering layers of fish below ~140 m moved in opposite phases to internal waves, ascending
9th International Conference on Operator Theory
Pearcy, C; Sz-Nagy, B; Vasilescu, F-H; Voiculescu, Dan; Arsene, Gr
1986-01-01
The annual Operator Theory conferences, organized by the Department of Mathematics of INC REST and the University of Timi?oara, are intended to promote cooperation and exchange of information between specialists in all areas of operator theory. This volume consists of papers contributed by the participants of the 1984 Conference. They reflect a great variety of topics, dealt with by the modern operator theory, including very recent advances in the invariant subspace problem, subalgebras of operator algebras, hyponormal, Hankel and other special classes of operators, spectral decompositions, aspects of dilation theory and so on. The research contracts of the Department of Mathematics of INCREST with the National Council for Science and Technology of Romania provided the means for developing the research activity in mathematics; they represent the generous framework of these meetings, too. It is our pleasure to acknowledge the financial support of UNESCO which also contibuted to the success of this meeting. We ...
Theory of second order tide forces and gravitational wave experiment
International Nuclear Information System (INIS)
Tammelo, R.R.
1989-01-01
Theory of tide forces square by vector radius is presented. The mechanism of 10 18 time gravitational wave pressure increase in case of radiation from pulsars and 10 15 time one in case of standard burst of radiation from astrophysical catastrophe is proposed. This leads to secular shifts of longitudinally free receivers by 10 -16 cm during 10 5 s in the first case and by 10 -19 cm during 10 s in the second one. A possibility of increase effect modulation is available. It is indicated that it is possible to construct a device which produces more energy at the expense of square tide forces than at the expense of linear ones. 21 refs
Internal wave focusing revisited; a reanalysis and new theoretical links
International Nuclear Information System (INIS)
Lam, Frans-Peter A; Maas, Leo R M
2008-01-01
An experiment which discussed the appearance of an internal wave attractor in a uniformly stratified, free-surface fluid [Maas, L.R.M., Benielli, D., Sommeria, J., Lam, F.-P.A., 1997. Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388(6642), 557-561] is revisited. This is done in order to give a more detailed and more accurate description of the underlying focusing process. Evolution of the attractor can now be quantified. For the tank with one sloping sidewall, and for the parameter regime (density stratification, forcing frequency) studied, the inverse exponential growth rate determined at several locations in the fluid turns out to be 122 s always. Only the start and duration of the growth differed: away from the attractor region it appeared later and of shorter duration. Here, these features are interpreted by employing a new theoretical basis that incorporates an external forcing via a surface boundary condition (an infinitesimal barotropic seiche) and that describes the solution in terms of propagating waves.
Homogeneous internal wave turbulence driven by tidal flows
Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team
2017-11-01
We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).
Internal Universes in Models of Homotopy Type Theory
DEFF Research Database (Denmark)
Licata, Daniel R.; Orton, Ian; Pitts, Andrew M.
2018-01-01
We show that universes of fibrations in various models of homotopy type theory have an essentially global character: they cannot be described in the internal language of the presheaf topos from which the model is constructed. We get around this problem by extending the internal language with a mo...... that the interval in cubical sets does indeed have. This leads to a completely internal development of models of homotopy type theory within what we call crisp type theory.......We show that universes of fibrations in various models of homotopy type theory have an essentially global character: they cannot be described in the internal language of the presheaf topos from which the model is constructed. We get around this problem by extending the internal language...
Theory of ion Bernstein wave induced shear suppression of turbulence
Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.
1994-06-01
The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.
Theory of Bernstein waves coupling with loop antennas
International Nuclear Information System (INIS)
Brambilla, M.
1987-04-01
We present a fully three-dimensional theory of antenna coupling to Ion Bernstein Waves near the first harmonic of the ion cyclotron resonance in tokamak plasmas. The boundary conditions in vacuum are solved analytically for arbitrary orientation of the antenna and Faraday screen conductors. The wave equations in the plasma, which include Finite Larmor Radius and finite electron inertia effects, cyclotron and harmonic damping by the ions, and Landau and collisional damping by the electrons, are solved numerically using a Finite Elements discretisation with cubic Hermite interpolating functions. Applications to Alcator C give reasonably good agreement between the calculated and measured radiation resistance in the range in which efficient heating is observed; outside this range the calculated resistance is lower than the experimental one. In general, the coupling efficiency is found to be very sensitive to the edge plasma density, good coupling requiring a low density plasma layer in the vicinity of the Faraday screen. Coupling also improves with increasing scrape-off ion temperature, and is appreciably better for antisymmetric than for symmetric toroidal current distributions in the antenna. (orig.)
Does the source energy change when gravitaion waves are emitted in the einstein's gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Folomeshkin, V.N.
1977-01-01
It is shown that in the Einstein's gravitation theory the total ''energy'' of a plane gravitational wave calculated with any pseudotensor is equal to zero. The known Einstein's result, according to which the energy of a sourceis decreased when plane weak gravitational waves are emitted, have no place in the Einstein's gravitational theory. The examples are given of exact wave solutions for which the pseudotensor is strictly equal to zero. The energy-momentum of any weak gravitational waves is always equal to zero in the Einstein's gravitation theory. When such waves are emitted the energy of the source cannot change, although these waves are real curvature waves. By the means in the Einstein's gravitation theory the energy, e, is in essenc generated from nothing
Theory of longitudinal plasma waves with allowance for ion mobility
International Nuclear Information System (INIS)
Kichigin, G.N.
2003-01-01
One studies propagation of stationary longitudinal plasma wave of high amplitude in collisionless cold plasma with regard to motion of electrons and ions in a wave. One derived dependences of amplitudes of electric field, potential, frequency and length of wave on the speed of wave propagation and on the parameter equal to the ration of ion mass to electron mass. Account of motion of ions in the wave with maximum possible amplitude resulted in nonmonotone dependence of frequency on wave speed [ru
International Nuclear Information System (INIS)
Silva, H.V. da.
1984-01-01
The results of investigations in parastatistical theories and in their applications to the internal symmetries of elementary particles are present. The paraquantization and the 'generalized paraquantization' (of Levine and Tomozawa) of the relativistic Schroedinger wave equations for non-zero mass and arbitrary spin (s), involving locally covariant wave functions, Ψ o,s + Ψ s,o are executed, and the restrictions resulting from the criterion of microscopic causality and the manner of establishment of the connection between spin and statistics in these quantizations are explicitly demonstrated. (Author) [pt
Hypothetical Mine Hunting Sonar - Internal Wave Impact on Performance
2014-12-09
5e-02 1 OeOO~. ?’•’~~~·0 0 20 40 60 SE dB 80 100 120 Histogrilm of SE45200 FM=174 w=BO 11e-01l 5 e-0 2 I n. nUn ~ OeOO -4...question its use as a reliable mine detection system. This signal excess variability study needs to be improved in a number of ways: 1. the impact of...profile and its perturbation by the seasonally changing internal wave fields needs to be addressed and 4. acoustic signal propagation studies focused
24th International Workshop in Operator Theory and its Applications
Dritschel, Michael
2015-01-01
This volume gathers contributions from the International Workshop on Operator Theory and Its Applications (IWOTA) held in Bangalore, India, in December 2013. All articles were written by experts and cover a broad range of original material at the cutting edge of operator theory and its applications. Topics include multivariable operator theory, operator theory on indefinite metric spaces (Krein and Pontryagin spaces) and its applications, spectral theory with applications to differential operators, the geometry of Banach spaces, scattering and time varying linear systems, and wavelets and coherent states.
Quantum field theory and the internal states of elementary particles
CSIR Research Space (South Africa)
Greben, JM
2011-01-01
Full Text Available A new application of quantum field theory is developed that gives a description of the internal dynamics of dressed elementary particles and predicts their masses. The fermionic and bosonic quantum fields are treated as interdependent fields...
The Correlation between Game Theory and International Trade
Directory of Open Access Journals (Sweden)
Simona-Valeria TOMA
2012-08-01
Full Text Available The Correlation between Game Theory and International TradeAbstract:Game theory, in its most basic form, considers two or more players and analyses the different strategies that they can use and the effect that these strategies will have on each player. International trade allows countries to use better their resources (labor, technology or capital. Since countries have different capital or natural resources, some of them will produce a good more efficiently than others and therefore could sell it cheaper than other countries. By using game theory in international trade we could determine if the Heckscher-Ohlin-Samuelson model is correct and what would be the best specialization for each country. The aim of this paper is to test if game theory could be successfully used in a thorough analysis of international trade specialization.
Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C
2013-11-01
An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.
THE THEORY OF INTERNATIONAL FINANCIAL CONTAGION
Directory of Open Access Journals (Sweden)
Iulia LUPU
2012-12-01
Full Text Available Financial contagion is a complex and multivariate process, with no widely accepted definition and an accurate measurement methodology. Contagion became more and more the central idea of research studies because it is perceived as a problem, and often associated with financial crises. The reason for that international diversification of investment portfolios is applied to protect against country risk, is no longer valid, correlations between markets largely vanishing its benefits. In this article we intend to present the ways in which the subject of international financial contagion was approached.
On phase, action and canonical conservation laws in kinematic-wave theory
International Nuclear Information System (INIS)
Maugin, G.A.
2008-01-01
Canonical equations of energy and momentum are constructed in the kinematic-wave theory of waves in a continuum. This is done in analogy with what is achieved in nonlinear continuum mechanics. The starting point is a generalized balance of wave action. The standard formulas are recovered when the system follows from the averaged-Lagrangian variational formulation of Whitham
Rethinking social identity theory in international encounters:
DEFF Research Database (Denmark)
Lauring, Jakob
2008-01-01
In a globalized business environment, interaction across linguistic boundaries is becoming a normal part of everyday life. In these encounters language differences may affect the formation of social identities among organization members. While studies based on Social Identity Theory perceive...... the link between identity and language to be linear, this article takes a different approach. By drawing on anthropological theories on ethnic identity it is argued that the relation between language and social identity is negotiated in interaction. In the empirical analysis the article focuses...... on the encounter between expatriates and local employees of a Danish subsidiary in England. The findings show that identity making may be actualized by competition for resources and recognition. This can be done by investing certain objects such as the symbolic application of language with certain identifications...
Directory of Open Access Journals (Sweden)
Qicheng Meng
2016-04-01
Full Text Available A third-order KdV solution to the internal solitary wave is derived by a new method based on the weakly nonlinear assumptions in a rigid-lid two-layer system. The solution corrects an error by Mirie and Su (1984. A two-dimensional numerical wave tank has been established with the help of the open source CFD library OpenFOAM and the third-party software waves2Foam. Various analytical solutions, including the first-order to third-order KdV solutions, the eKdV solution and the MCC solution, have been used to initialise the flow fields in the CFD simulations of internal solitary waves. Two groups including 11 numerical cases have been carried out. In the same group, the initial wave amplitudes are the same but the implemented analytical solutions are different. The simulated wave profiles at different moments have been presented. The relative errors in terms of the wave amplitude between the last time step and the initial input have been analysed quantitatively. It is found that the third-order KdV solution results in the most stable internal solitary wave in the numerical wave tank for both small-amplitude and finite-amplitude cases. The finding is significant for the further simulations involving internal solitary waves.
Gravitational Wave Polarizations in f (R Gravity and Scalar-Tensor Theory
Directory of Open Access Journals (Sweden)
Gong Yungui
2018-01-01
Full Text Available The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in f (R gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar + and × polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.
International Partnerships: A Game Theory Perspective
Jie, Yiyun
2010-01-01
Institutions of higher education in China and the United States are increasingly seeking international partners to deliver degree programs to the Chinese populace. This article illustrates how shared and divergent partner motivations and outcome expectations in a Chinese cross-border higher education program have created synergy and challenged the…
Reflections on Dead Theory in International Relations
Thakur, Vineet
2016-01-01
In this short autobiographical essay, I trace my journey in the discipline of International Relations. While entering the discipline, I, along with a host of my classmates, were enamoured by the exciting possibilities of thinking theoretically. Almost a decade later, those promises look bleak. From the perspective of a student in the discipline, I…
Internal wave patterns in enclosed density-stratified and rotating fluids
Manders, A.M.A.
2003-01-01
Stratified fluids support internal waves, which propagate obliquely through the fluid. The angle with respectto the stratification direction is contrained: it is purely determined by the wave frequency and the strength of the density stratification (internal gravity waves) or the rotation rate
Thin film characterization by resonantly excited internal standing waves
Energy Technology Data Exchange (ETDEWEB)
Di Fonzio, S [SINCROTRONE TRIESTE, Trieste (Italy)
1996-09-01
This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.
Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea
Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich
2014-01-01
Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1–2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs. PMID:24948180
Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.
Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich
2014-06-20
Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.
Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation
Hinson, D. P.; Tyler, G. L.
1983-01-01
The radio scintillations caused by scattering from small-scale irregularities in Titan's neutral atmosphere during a radio occultation of Voyager 1 by Titan are investigated. Intensity and frequency fluctuations occurred on time scales from about 0.1 to 1.0 sec at 3.6 and 13 cm wavelengths whenever the radio path passed within 90 km of the surface, indicating the presence of variations in refractivity on length scales from a few hundred meters to a few kilometers. Above 25 km, the altitude profile of intensity scintillations closely agrees with the predictions of a simple theory based on the characteristics of internal gravity waves propagating with little or no attenuation through the vertical stratification in Titan's atmosphere. These observations support a hypothesis of stratospheric gravity waves, possibly driven by a cloud-free convective region in the lowest few kilometers of the stratosphere.
Particle dispersion and mixing induced by breaking internal gravity waves
Bouruet-Aubertot, Pascale; Koudella, C.; Staquet, C.; Winters, K. B.
2001-01-01
The purpose of this paper is to analyze diapycnal mixing induced by the breaking of an internal gravity wave — the primary wave — either standing or propagating. To achieve this aim we apply two different methods. The first method consists of a direct estimate of vertical eddy diffusion from particle dispersion while the second method relies upon potential energy budgets [Winters, K.B., Lombard, P.N., Riley, J.J., D'Asaro, E.A., 1995. J. Fluid Mech. 289, 115-128; Winters, K.B., D'Asaro, E.A., 1996. J. Fluid Mech. 317, 179-193]. The primary wave we consider is of small amplitude and is statically stable, a case for which the breaking process involves two-dimensional instabilities. The dynamics of the waves have been previously analyzed by means of two-dimensional direct numerical simulations [Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1995. J. Fluid Mech. 285, 265-301; Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1996. Dyn. Atmos. Oceans 29, 41-63; Koudella, C., Staquet, C., 1998. In: Davis, P. (Ed.), Proceedings of the IMA Conference on Mixing and Dispersion on Stably-stratified Flows, Dundee, September 1996. IMA Publication]. High resolution three-dimensional calculations of the same wave are also reported here [Koudella, C., 1999]. A local estimate of mixing is first inferred from the time evolution of sets of particles released in the flow during the breaking regime. We show that, after an early evolution dominated by shear effects, a diffusion law is reached and the dispersion coefficient is fairly independent of the initial seeding location of the particles in the flow. The eddy diffusion coefficient, K, is then estimated from the diapycnal diffusive flux. A good agreement with the value inferred from particle dispersion is obtained. This finding is of particular interest regarding the interpretation of in situ estimates of K inferred either from tracer dispersion or from microstructure measurements. Computation of the Cox number, equal to the
Electromagnetic wave theory for boundary-value problems an advanced course on analytical methods
Eom, Hyo J
2004-01-01
Electromagnetic wave theory is based on Maxwell's equations, and electromagnetic boundary-value problems must be solved to understand electromagnetic scattering, propagation, and radiation. Electromagnetic theory finds practical applications in wireless telecommunications and microwave engineering. This book is written as a text for a two-semester graduate course on electromagnetic wave theory. As such, Electromagnetic Wave Theory for Boundary-Value Problems is intended to help students enhance analytic skills by solving pertinent boundary-value problems. In particular, the techniques of Fourier transform, mode matching, and residue calculus are utilized to solve some canonical scattering and radiation problems.
International Conference on Semigroups, Algebras and Operator Theory
Meakin, John; Rajan, A
2015-01-01
This book discusses recent developments in semigroup theory and its applications in areas such as operator algebras, operator approximations and category theory. All contributing authors are eminent researchers in their respective fields, from across the world. Their papers, presented at the 2014 International Conference on Semigroups, Algebras and Operator Theory in Cochin, India, focus on recent developments in semigroup theory and operator algebras. They highlight current research activities on the structure theory of semigroups as well as the role of semigroup theoretic approaches to other areas such as rings and algebras. The deliberations and discussions at the conference point to future research directions in these areas. This book presents 16 unpublished, high-quality and peer-reviewed research papers on areas such as structure theory of semigroups, decidability vs. undecidability of word problems, regular von Neumann algebras, operator theory and operator approximations. Interested researchers will f...
6th International Conference on Operator Theory
Douglas, R; Sz-Nagy, B; Voiculescu, D; Arsene, Gr
1982-01-01
The annual Operator Theory conferences in Timigoara are conceived as a means to promote cooperation and exchange of in formation between specialists in all areas of Operator Theory. The present volume consist of papers contributed by the partici pants of the 1981 Conference. Since many of these papers contain results on the invariant subspace problem or are related to the role of invariant subspaces in the study of operators or operator systems, we thought it appropiate to mention this in the title of the volume, though the "other topics" have a wide range. As in past years, special sessions concerning other fields of Functio nal Analysis were organized at the 1981 Conference, but contri butions to these sessions are not included in the present volume. The research contracts of the Department of Mathematics of INCREST with the National Council for Sciences and Technology of Romaliia provided the means for developping the research activity in Functional Analysis; these contracts constitute the generous...
International Nuclear Information System (INIS)
Sati, Priti; Tripathi, V. K.
2012-01-01
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.
Maier-Rigaud, Remi
2008-01-01
In this paper, the implicit and explicit conceptualizations of international organizations found in the three major theories of international relations are outlined and compared. It turns out that in a neorealist framework, international organizations can be explained; however, they exhibit no autonomy and cannot therefore be conceptualized as a corporate actor. Principally, the same applies to rational choice institutionalism, although limited autonomy is conceivable. Both theories are reduc...
Shock waves in collective field theories for many particle systems
Energy Technology Data Exchange (ETDEWEB)
Oki, F; Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K
1980-10-01
We find shock wave solutions to collective field equations for quantum mechanical many particle system. Importance of the existence of a ''tension'' working on the surface of the shock-wave front is pointed out.
Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets
Shimahara, Hiroshi
2018-04-01
We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.
Multidimensional Wave Field Signal Theory: Transfer Function Relationships
Directory of Open Access Journals (Sweden)
Natalie Baddour
2012-01-01
Full Text Available The transmission of information by propagating or diffusive waves is common to many fields of engineering and physics. Such physical phenomena are governed by a Helmholtz (real wavenumber or pseudo-Helmholtz (complex wavenumber equation. Since these equations are linear, it would be useful to be able to use tools from signal theory in solving related problems. The aim of this paper is to derive multidimensional input/output transfer function relationships in the spatial domain for these equations in order to permit such a signal theoretic approach to problem solving. This paper presents such transfer function relationships for the spatial (not Fourier domain within appropriate coordinate systems. It is shown that the relationships assume particularly simple and computationally useful forms once the appropriate curvilinear version of a multidimensional spatial Fourier transform is used. These results are shown for both real and complex wavenumbers. Fourier inversion of these formulas would have applications for tomographic problems in various modalities. In the case of real wavenumbers, these inversion formulas are presented in closed form, whereby an input can be calculated from a given or measured wavefield.
Linear theory of plasma filled backward wave oscillator
Indian Academy of Sciences (India)
An analytical and numerical study of backward wave oscillator (BWO) in linear regime is presented to get an insight into the excitation of electromagnetic waves as a result of the interaction of the relativistic electron beam with a slow wave structure. The effect of background plasma on the BWO instability is also presented.
McWilliams, J. C.; Lane, E.; Melville, K.; Restrepo, J.; Sullivan, P.
2004-12-01
Oceanic surface gravity waves are approximately irrotational, weakly nonlinear, and conservative, and they have a much shorter time scale than oceanic currents and longer waves (e.g., infragravity waves) --- except where the primary surface waves break. This provides a framework for an asymptotic theory, based on separation of time (and space) scales, of wave-averaged effects associated with the conservative primary wave dynamics combined with a stochastic representation of the momentum transfer and induced mixing associated with non-conservative wave breaking. Such a theory requires only modest information about the primary wave field from measurements or operational model forecasts and thus avoids the enormous burden of calculating the waves on their intrinsically small space and time scales. For the conservative effects, the result is a vortex force associated with the primary wave's Stokes drift; a wave-averaged Bernoulli head and sea-level set-up; and an incremental material advection by the Stokes drift. This can be compared to the "radiation stress" formalism of Longuet-Higgins, Stewart, and Hasselmann; it is shown to be a preferable representation since the radiation stress is trivial at its apparent leading order. For the non-conservative breaking effects, a population of stochastic impulses is added to the current and infragravity momentum equations with distribution functions taken from measurements. In offshore wind-wave equilibria, these impulses replace the conventional surface wind stress and cause significant differences in the surface boundary layer currents and entrainment rate, particularly when acting in combination with the conservative vortex force. In the surf zone, where breaking associated with shoaling removes nearly all of the primary wave momentum and energy, the stochastic forcing plays an analogous role as the widely used nearshore radiation stress parameterizations. This talk describes the theoretical framework and presents some
JET internal transport barriers: experiment vs theory
Energy Technology Data Exchange (ETDEWEB)
Esposito, B [Associazione Euratom - ENEA sulla Fusione, C.R. Frascati, CP 65, I-00040, Frascati, Rome (Italy); Crisanti, F [Associazione Euratom - ENEA sulla Fusione, C.R. Frascati, CP 65, I-00040, Frascati, Rome (Italy); Parail, V [Euratom/UKAEA Fusion Association, Cuhlam Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Maget, P [Association Euratom - CEA pour la Fusion, CEA Cadarache, F-13108 Saint Paul-lez-Durance Cedex (France); Baranov, Y [Euratom/UKAEA Fusion Association, Cuhlam Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Becoulet, A [Association Euratom - CEA pour la Fusion, CEA Cadarache, F-13108 Saint Paul-lez-Durance Cedex (France); Castaldo, C [Associazione Euratom - ENEA sulla Fusione, C.R. Frascati, CP 65, I-00040, Frascati, Rome (Italy); Challis, C D [Euratom/UKAEA Fusion Association, Cuhlam Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Angelis, R De [Associazione Euratom - ENEA sulla Fusione, C.R. Frascati, CP 65, I-00040, Frascati, Rome (Italy); Garbet, X [Association Euratom - CEA pour la Fusion, CEA Cadarache, F-13108 Saint Paul-lez-Durance Cedex (France); Giroud, C [Association Euratom - CEA pour la Fusion, CEA Cadarache, F-13108 Saint Paul-lez-Durance Cedex (France); Hawkes, N [Euratom/UKAEA Fusion Association, Cuhlam Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Joffrin, E [Association Euratom - CEA pour la Fusion, CEA Cadarache, F-13108 Saint Paul-lez-Durance Cedex (France); Litaudon, X [Association Euratom - CEA pour la Fusion, CEA Cadarache, F-13108 Saint Paul-lez-Durance Cedex (France); Mazon, D [Association Euratom - CEA pour la Fusion, CEA Cadarache, F-13108 Saint Paul-lez-Durance Cedex (France); Riva, M [Associazione Euratom - ENEA sulla Fusione, C.R. Frascati, CP 65, I-00040, Frascati, Rome (Italy); Zastrow, K D [Euratom/UKAEA Fusion Association, Cuhlam Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)
2003-06-01
A large variety of JET discharges with internal transport barriers (ITBs) has been analysed in order to determine the main features which characterize turbulence stabilization at the barrier. It is found that the location of barriers is well correlated with regions where the ExB flow shearing rate exceeds the linear growth rate of the ion temperature gradient mode instability ({gamma}{sub {eta}{sub i}}). A key point is the dependence of {gamma}{sub {eta}{sub i}} on the magnetic shear: in the discharges of this database the reduction of {gamma}{sub {eta}{sub i}} associated to very low or null magnetic shear favours the formation of an ITB. After the ITB formation a positive feedback occurs in which the ExB flow shear mechanism has the leading role and the position of the barrier may be no longer linked to the low shear region.
Surface flute waves in plasmas theory and applications
Girka, Volodymyr; Thumm, Manfred
2014-01-01
The book presents results of a comprehensive study of various features of eigen electromagnetic waves propagating across the axis of plasma filled metal waveguides with cylindrical geometry. The authors collected in one book material on various features of surface flute waves, i. e. impact of waveguide design on wave dispersion, wave damping influenced by various reasons, impact of plasma density and external magnetic field inhomogeneity on the wave, and impact of waveguide corrugation and electric current on the wave. A variety of present surface waves applications and possible future applications is also included. Using the method of successive approximations it is shown how one can solve problems, which concern real experimental devices, starting from simple models. The book applies to both professionals dealing with problems of confined plasmas and to graduate and post-graduate students specializing in the field of plasma physics and related applications.
The essential theory of fast wave current drive with full wave method
International Nuclear Information System (INIS)
Liu Yan; Gong Xueyu; Yang Lei; Yin Chenyan; Yin Lan
2007-01-01
The full wave numerical method is developed for analyzing fast wave current drive in the range of ion cyclotron waves in tokamak plasmas, taking into account finite larmor radius effects and parallel dispersion. the physical model, the dispersion relation on the assumption of Finite Larmor Radius (FLR) effects and the form of full wave be used for computer simulation are developed. All of the work will contribute to further study of fast wave current drive. (authors)
Propagation of internal gravity waves in the inhomogeneous atmosphere
International Nuclear Information System (INIS)
Deminov, M.G.; Ponomareva, L.I.
1988-01-01
Equations for disturbances of the density, temperature and speed of large-scale horizontally propagating internal gravity wave (IGM) wind are presented with regard to non-linearity, dispersion, molecular viscosity, thermal conductivity and background horizontal density and wind speed gradients. It is shown that values of wind speed and background atmosphere density decrease, typical of night conditions, provide for IGV amplitude increase near 250 km above the equator about 1.5 times, which with regard to the both hemispheres, fully compensates the effect of viscosity and thermal conductivity under increased solar activity. Speed and density decrease along IGW propagation can be provided both by background distribution of thermosphere parameters and by the front of a large-scale IGW on the background of which isolated IGW amplitude can grow
The "institutional factor" in the theory of international trade: new vs. old trade theories
Parrinello, Sergio
2000-01-01
Abstract The New Trade Theory presents novel perspectives compared to the Old Theories of international trade. Increasing returns and different institutional arrangements can explain the international specialization and trade flows even between countries which are identical in terms of factor endowments, technology and preferences for private goods. In this context the pattern of trade cannot be determined by a price/cost comparison of isolated countries. Comparative advantages can be affe...
Coding Theory and Applications : 4th International Castle Meeting
Malonek, Paula; Vettori, Paolo
2015-01-01
The topics covered in this book, written by researchers at the forefront of their field, represent some of the most relevant research areas in modern coding theory: codes and combinatorial structures, algebraic geometric codes, group codes, quantum codes, convolutional codes, network coding and cryptography. The book includes a survey paper on the interconnections of coding theory with constrained systems, written by an invited speaker, as well as 37 cutting-edge research communications presented at the 4th International Castle Meeting on Coding Theory and Applications (4ICMCTA), held at the Castle of Palmela in September 2014. The event’s scientific program consisted of four invited talks and 39 regular talks by authors from 24 different countries. This conference provided an ideal opportunity for communicating new results, exchanging ideas, strengthening international cooperation, and introducing young researchers into the coding theory community.
A wave propagation matrix method in semiclassical theory
International Nuclear Information System (INIS)
Lee, S.Y.; Takigawa, N.
1977-05-01
A wave propagation matrix method is used to derive the semiclassical formulae of the multiturning point problem. A phase shift matrix and a barrier transformation matrix are introduced to describe the processes of a particle travelling through a potential well and crossing a potential barrier respectively. The wave propagation matrix is given by the products of phase shift matrices and barrier transformation matrices. The method to study scattering by surface transparent potentials and the Bloch wave in solids is then applied
International Conference on Frontiers of Intelligent Computing : Theory and Applications
Bhateja, Vikrant; Udgata, Siba; Pattnaik, Prasant
2017-01-01
The book is a collection of high-quality peer-reviewed research papers presented at International Conference on Frontiers of Intelligent Computing: Theory and applications (FICTA 2016) held at School of Computer Engineering, KIIT University, Bhubaneswar, India during 16 – 17 September 2016. The book presents theories, methodologies, new ideas, experiences and applications in all areas of intelligent computing and its applications to various engineering disciplines like computer science, electronics, electrical and mechanical engineering.
International Nuclear Information System (INIS)
Roy Choudhury, S.
2007-01-01
The Ostrovsky equation is an important canonical model for the unidirectional propagation of weakly nonlinear long surface and internal waves in a rotating, inviscid and incompressible fluid. Limited functional analytic results exist for the occurrence of one family of solitary-wave solutions of this equation, as well as their approach to the well-known solitons of the famous Korteweg-de Vries equation in the limit as the rotation becomes vanishingly small. Since solitary-wave solutions often play a central role in the long-time evolution of an initial disturbance, we consider such solutions here (via the normal form approach) within the framework of reversible systems theory. Besides confirming the existence of the known family of solitary waves and its reduction to the KdV limit, we find a second family of multihumped (or N-pulse) solutions, as well as a continuum of delocalized solitary waves (or homoclinics to small-amplitude periodic orbits). On isolated curves in the relevant parameter region, the delocalized waves reduce to genuine embedded solitons. The second and third families of solutions occur in regions of parameter space distinct from the known solitary-wave solutions and are thus entirely new. Directions for future work are also mentioned
A theory of viscoplasticity accounting for internal damage
Freed, A. D.; Robinson, D. N.
1988-01-01
A constitutive theory for use in structural and durability analyses of high temperature isotropic alloys is presented. Constitutive equations based upon a potential function are determined from conditions of stability and physical considerations. The theory is self-consistent; terms are not added in an ad hoc manner. It extends a proven viscoplastic model by introducing the Kachanov-Rabotnov concept of net stress. Material degradation and inelastic deformation are unified; they evolve simultaneously and interactively. Both isotropic hardening and material degradation evolve with dissipated work which is the sum of inelastic work and internal work. Internal work is a continuum measure of the stored free energy resulting from inelastic deformation.
A Game Theory Approach for Product Specialization in International Trade
Directory of Open Access Journals (Sweden)
Ioana-Veronica ALEXA
2011-11-01
Full Text Available Game theory, in its most basic form, considers two players and analyses the different strategies that they can use and the effect that these strategies will have on each player. International trade allows countries to use better their resources (labor, technology or capital. Since countries have different capital or natural resources, some of them will produce a good more efficiently than others and therefore could sell it cheaper than other countries. By using game theory in international trade we could determine if the H-O-S model is correct and what would be the best specialization for each country.
The Concept of Security in International Relations Theory
Directory of Open Access Journals (Sweden)
Gabriel Orozco
2006-01-01
Full Text Available The end of the Cold War and the emergence of globalisation have transformed the reality of International Relations, which has meant a change in the theories which this reality had assumed. The concept of security reveals itself as an organisational idea on the different phenomena of globalisation, carrying out a programme of research that goes beyond the realistic presumptions of military power or of the idealistic principles of research for peace. This article explores the new meanings of security for International Relations theory and discusses the theoretical models that influence policy design and that aim to confront the problems and challenges of security in globalisation.
THE CONCEPT OF INTERNATIONAL TRADE AND MAIN CLASSIC THEORIES
Directory of Open Access Journals (Sweden)
Elena Ramona TERZEA
2016-07-01
Full Text Available Taking into account the major impact that international trade has on the economy and on the people’s lives, and considering its effects on the economic growth, the foreign commerce has to be well understood so that the commercial policies have to be well elaborated, implemented and followed. The theories of international trade are extremely important in order to determine the flows, but especially in the anticipation of the evolution of the forces that influences its dymanic. The theories regarding the foreign trade are used also by the big companies, by their managers, in their attempt to identify the most advantageous strategies of internationalizations, on the most promising markets.
Internal wave emission from baroclinic jets: experimental results
Borcia, Ion D.; Rodda, Costanza; Harlander, Uwe
2016-04-01
Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating-annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modeling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Here we show first results from a small rotating annulus experiments and we will further present our new experimental facility to study wave emission from jets and fronts.
Analysis of graphic representations of activity theory in international journals
Directory of Open Access Journals (Sweden)
Marco André Mazzarotto
2016-05-01
Full Text Available Activity theory is a relevant framework for the Design field, and their graphic representations are cognitive artifacts that aid the understanding, use and communication of this theory. However, there is a lack of consistency around the graphics and labels used in these representations. Based on this, the aim of this study was to identify, analyze and evaluate these differences and propose a representation that aims to be more suitable for the theory. For this, uses as method a literature review based on Engeström (2001 and its three generations of visual models, combined with graphical analysis of representations collected in a hundred papers from international journals.
Theory of International Relations In The Mirror of Contemporary Russian International Studies
Marina M. Lebedeva; Maxim V. Harkevich
2016-01-01
The article deals with the evolution of Western theories of international relations in the postSoviet Russia, it analyzes the world view of Russian international scholars, as well as their reflection on the epistemological foundations of the probable Russian IR school. It states that pluralization of theoretical approaches continues in Russia, while liberalism is gradually givingup to realism on the way to the dominant theory. Constructivism is gaining popularity and postmodernism remains wit...
Extension of love wave transformation theory to laterally heterogeneous structures
International Nuclear Information System (INIS)
Romanelli, F.; Panza, G.F.
1993-08-01
By means of the spherical-to-flat transformations for torsional waves, all the flat-transformed components of motion (two for displacement and five for stress) have been derived. This provides the formal basis necessary to treat the propagation of torsional waves in spherical 3-D structures, by using the existing flat-structure computational techniques. (author). 8 refs, 1 fig., 1 tab
The „Collateral Estoppel” Theory in International Law
Directory of Open Access Journals (Sweden)
Claudia ANDRIŢOI
2011-08-01
Full Text Available The objectives of the article are represented by the fact that the interdependence of the two legal orders, internal and international, refers to the fact that, international law without internal law signifies federalization, which the contrary situation signifies the impossibility of establishing an international community. The rules of international law are applied to national court according to national constitutions and for domestic purposed. According to the theory of the act of state, even if it would seem that, at least internal acts of implementation of international rules are subjected to internal jurisdictions, the resolutions implemented often touch the problem of security and public order that escapes the judicial competencies. But, sometimes, the refuse of controlling the resolutions of the SC has been justified according to the UN Charta supremacy. In this case, national courts have been in the position of interpreting the CS resolutions. In conclusion it results that international law will efficiency the application of positive law being at least, an instrument of interpreting, and, on the other side, national law represents an exclusive means of transposing international regulation on a state plan.
Monitoring internal organ motion with continuous wave radar in CT
International Nuclear Information System (INIS)
Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc
2013-01-01
Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the
Introduction of the chronon in the theory of electron and the wave-particle duality
International Nuclear Information System (INIS)
Caldirola, P.
1984-01-01
The author summarizes the more important results obtained in the electron theory based on the chronon and stresses some peculiarities of the wave-particle duality directly connected with the introduction of the chronon. (Auth.)
An X-ray wave theory for heavily distorted crystals. 1
International Nuclear Information System (INIS)
Ohkawa, T.; Hashimoto, H.
1985-01-01
An X-ray diffraction theory is developed of monochromatic waves having spherical wave front, which is applicable to an interpretation of divergent X-ray diffraction images of crystals containing arbitral types of strain field. The theory is divided into two parts. In part I, Takagi's theory is expanded by introducing amplitude and phase correction functions and a new improved representation for the X-ray diffraction theory is given. In part II dispersion surfaces in heavily distorted crystals are discussed, and in the discussion the resonance shift functions are introduced. These formulations can lead to a complete understanding of the extinction phenomena. (author)
Ramakrishnan, B
2009-01-01
This collection of articles contains the proceedings of the two international conferences (on Number Theory and Cryptography) held at the Harish - Chandra Research Institute. In recent years the interest in number theory has increased due to its applications in areas like error-correcting codes and cryptography. These proceedings contain papers in various areas of number theory, such as combinatorial, algebraic, analytic and transcendental aspects, arithmetic algebraic geometry, as well as graph theory and cryptography. While some papers do contain new results, several of the papers are expository articles that mention open questions, which will be useful to young researchers.
Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects
Energy Technology Data Exchange (ETDEWEB)
Vigeesh, G.; Steiner, O. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany); Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de [New Mexico State University, Department of Astronomy, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003 (United States)
2017-02-01
Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.
MOTIVATION INTERNALIZATION AND SIMPLEX STRUCTURE IN SELF-DETERMINATION THEORY.
Ünlü, Ali; Dettweiler, Ulrich
2015-12-01
Self-determination theory, as proposed by Deci and Ryan, postulated different types of motivation regulation. As to the introjected and identified regulation of extrinsic motivation, their internalizations were described as "somewhat external" and "somewhat internal" and remained undetermined in the theory. This paper introduces a constrained regression analysis that allows these vaguely expressed motivations to be estimated in an "optimal" manner, in any given empirical context. The approach was even generalized and applied for simplex structure analysis in self-determination theory. The technique was exemplified with an empirical study comparing science teaching in a classical school class versus an expeditionary outdoor program. Based on a sample of 84 German pupils (43 girls, 41 boys, 10 to 12 years old), data were collected using the German version of the Academic Self-Regulation Questionnaire. The science-teaching format was seen to not influence the pupils' internalization of identified regulation. The internalization of introjected regulation differed and shifted more toward the external pole in the outdoor teaching format. The quantification approach supported the simplex structure of self-determination theory, whereas correlations may disconfirm the simplex structure.
Information Architecture without Internal Theory: An Inductive Design Process.
Haverty, Marsha
2002-01-01
Suggests that information architecture design is primarily an inductive process, partly because it lacks internal theory and partly because it is an activity that supports emergent phenomena (user experiences) from basic design components. Suggests a resemblance to Constructive Induction, a design process that locates the best representational…
Optimized Perturbation Theory for Wave Functions of Quantum Systems
International Nuclear Information System (INIS)
Hatsuda, T.; Tanaka, T.; Kunihiro, T.
1997-01-01
The notion of the optimized perturbation, which has been successfully applied to energy eigenvalues, is generalized to treat wave functions of quantum systems. The key ingredient is to construct an envelope of a set of perturbative wave functions. This leads to a condition similar to that obtained from the principle of minimal sensitivity. Applications of the method to the quantum anharmonic oscillator and the double well potential show that uniformly valid wave functions with correct asymptotic behavior are obtained in the first-order optimized perturbation even for strong couplings. copyright 1997 The American Physical Society
Experimental observation of strong mixing due to internal wave focusing over sloping terrain
Swart, A.; Manders, A.; Harlander, U.; Maas, L.R.M.
2010-01-01
This paper reports on experimental observation of internal waves that are focused due to a sloping topography. A remarkable mixing of the density field was observed. This result is of importance for the deep ocean, where internal waves are believed to play a role in mixing. The experiments were
XII International Conference on the Theory of Machines and Mechanisms
Bílek, Martin; Žabka, Petr
2017-01-01
This book presents the most recent advances in the research of machines and mechanisms. It collects 54 reviewed papers presented at the XII International Conference on the Theory of Machines and mechanisms (TMM 2016) held in Liberec, Czech Republic, September 6-8, 2016. This volume offers an international selection of the most important new results and developments, grouped in six different parts, representing a well-balanced overview, and spanning the general theory of machines and mechanisms, through analysis and synthesis of planar and spatial mechanisms, linkages and cams, robots and manipulators, dynamics of machines and mechanisms, rotor dynamics, computational mechanics, vibration and noise in machines, optimization of mechanisms and machines, mechanisms of textile machines, mechatronics to the control and monitoring systems of machines. This conference is traditionally organised every four year under the auspices of the international organisation IFToMM and the Czech Society for Mechanics.
7th International Conference on Elementary and Analytic Number Theory
Steuding, Jörn; Steuding, Rasa
2016-01-01
This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany. Ranging from the theory of arithmetical functions to diophantine problems, to analytic aspects of zeta-functions, the various research and survey articles cover the broad interests of the well-known number theorist and cherished colleague Wolfgang Schwarz (1934-2013), who contributed over one hundred articles on number theory, its history and related fields. Readers interested in elementary or analytic number theory and related fields will certainly find many fascinating topical results among the contributions from both respected mathematicians and up-and-coming young researchers. In addition, some biographical articles highlight the life and mathematical works of Wolfgang Schwarz.
26th International Workshop on Operator Theory and its Applications
Kaashoek, Marinus; Vasilevski, Nikolai; Vinnikov, Victor; IWOTA 2015; Operator theory in different settings and related applications
2018-01-01
This book provides a selection of reports and survey articles on the latest research in the area of single and multivariable operator theory and related fields. The latter include singular integral equations, ordinary and partial differential equations, complex analysis, numerical linear algebra, and real algebraic geometry – all of which were among the topics presented at the 26th International Workshop in Operator Theory and its Applications, held in Tbilisi, Georgia, in the summer of 2015. Moreover, the volume includes three special commemorative articles. One of them is dedicated to the memory of Leiba Rodman, another to Murray Marshall, and a third to Boris Khvedelidze, an outstanding Georgian mathematician and one of the founding fathers of the theory of singular integral equations. The book will be of interest to a broad range of mathematicians, from graduate students to researchers, whose primary interests lie in operator theory, complex analysis and applications, as well as specialists in mathemati...
Internal wave energy flux from density perturbations in nonlinear stratifications
Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.
2017-11-01
Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.
A simplified method of evaluating the stress wave environment of internal equipment
Colton, J. D.; Desmond, T. P.
1979-01-01
A simplified method called the transfer function technique (TFT) was devised for evaluating the stress wave environment in a structure containing internal equipment. The TFT consists of following the initial in-plane stress wave that propagates through a structure subjected to a dynamic load and characterizing how the wave is altered as it is transmitted through intersections of structural members. As a basis for evaluating the TFT, impact experiments and detailed stress wave analyses were performed for structures with two or three, or more members. Transfer functions that relate the wave transmitted through an intersection to the incident wave were deduced from the predicted wave response. By sequentially applying these transfer functions to a structure with several intersections, it was found that the environment produced by the initial stress wave propagating through the structure can be approximated well. The TFT can be used as a design tool or as an analytical tool to determine whether a more detailed wave analysis is warranted.
Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories
Ghodrati, Behnam; Yaghootian, Amin; Ghanbar Zadeh, Afshin; Mohammad-Sedighi, Hamid
2018-01-01
In this paper, Lamb wave propagation in a homogeneous and isotropic non-classical micro/nano-plates is investigated. To consider the effect of material microstructure on the wave propagation, three size-dependent models namely indeterminate-, modified- and consistent couple stress theories are used to extract the dispersion equations. In the mentioned theories, a parameter called 'characteristic length' is used to consider the size of material microstructure in the governing equations. To generalize the parametric studies and examine the effect of thickness, propagation wavelength, and characteristic length on the behavior of miniature plate structures, the governing equations are nondimensionalized by defining appropriate dimensionless parameters. Then the dispersion curves for phase and group velocities are plotted in terms of a wide frequency-thickness range to study the lamb waves propagation considering microstructure effects in very high frequencies. According to the illustrated results, it was observed that the couple stress theories in the Cosserat type material predict more rigidity than the classical theory; so that in a plate with constant thickness, by increasing the thickness to characteristic length ratio, the results approach to the classical theory, and by reducing this ratio, wave propagation speed in the plate is significantly increased. In addition, it is demonstrated that for high-frequency Lamb waves, it converges to dispersive Rayleigh wave velocity.
Addendum to foundations of multidimensional wave field signal theory: Gaussian source function
Directory of Open Access Journals (Sweden)
Natalie Baddour
2018-02-01
Full Text Available Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.
Addendum to foundations of multidimensional wave field signal theory: Gaussian source function
Baddour, Natalie
2018-02-01
Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.
Theory of spin and lattice wave dynamics excited by focused laser pulses
Shen, Ka; Bauer, Gerrit E. W.
2018-06-01
We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
Apocrypha of standard scattering theory (SST) and quantum mechanics of the de Broglie wave packet
International Nuclear Information System (INIS)
Ignatovich, V.K.
2001-01-01
It is shown that the Standard Scattering Theory (SST) does not correspond to the principles of Standard Quantum Mechanics (SQM). A more consistent theory is formulated. Some new results are obtained. Reflection and transmission of the de Broglie wave packet by thin layers of matter is considered
Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher
1998-01-01
. Based on this time-domain strip theory, an efficient non-linear hyroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented by the Timoshenko beam theory. Numerical calculations are presented for the S175...
Theory of reflection reflection and transmission of electromagnetic, particle and acoustic waves
Lekner, John
2016-01-01
This book deals with the reflection of electromagnetic and particle waves by interfaces. The interfaces can be sharp or diffuse. The topics of the book contain absorption, inverse problems, anisotropy, pulses and finite beams, rough surfaces, matrix methods, numerical methods, reflection of particle waves and neutron reflection. Exact general results are presented, followed by long wave reflection, variational theory, reflection amplitude equations of the Riccati type, and reflection of short waves. The Second Edition of the Theory of Reflection is an updated and much enlarged revision of the 1987 monograph. There are new chapters on periodically stratified media, ellipsometry, chiral media, neutron reflection and reflection of acoustic waves. The chapter on anisotropy is much extended, with a complete treatment of the reflection and transmission properties of arbitrarily oriented uniaxial crystals. The book gives a systematic and unified treatment reflection and transmission of electromagnetic and particle...
A pair density functional theory utilizing the correlated wave function
International Nuclear Information System (INIS)
Higuchi, M; Higuchi, K
2009-01-01
We propose a practical scheme for calculating the ground-state pair density (PD) by utilizing the correlated wave function. As the correlated wave function, we adopt a linear combination of the single Slater determinants that are constructed from the solutions of the initial scheme [Higuchi M and Higuchi K 2007 Physica B 387, 117]. The single-particle equation is derived by performing the variational principle within the set of PDs that are constructed from such correlated wave functions. Since the search region of the PD is substantially extended as compared with the initial scheme, it is expected that the present scheme can cover more correlation effects. The single-particle equation is practical, and may be easily applied to actual calculations.
Asymptotic boundary conditions for dissipative waves: General theory
Hagstrom, Thomas
1990-01-01
An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Asymptotic boundary conditions for dissipative waves - General theory
Hagstrom, Thomas
1991-01-01
An outstanding issue in computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.
Field theory of the spinning electron: Internal motions
Salesi, Giovanni; Recami, Erasmo
1996-01-01
We present here a field theory of the spinning electron, by writing down a new equation for the 4-velocity field v^mu (different from that of Dirac theory), which allows a classically intelligible description of the electron. Moreover, we make explicit the noticeable kinematical properties of such velocity field (which also result different from the ordinary ones). At last, we analyze the internal zitterbewegung (zbw) motions, for both time-like and light-like speeds. We adopt in this paper t...
Theories of International Relations and the Explanation of Foreign Aid
Directory of Open Access Journals (Sweden)
PAUSELLI, Gino
2013-06-01
Full Text Available 50 years after the publication of the first and influential article in international relations (IR analyzing foreign aid motivations, A theory of foreign aid, by Hans Morgenthau, IR scholarship has not yet accomplished a consistent theoretical body explaining international development cooperation. Most of the empirical studies on foreign aid have been contributions from other disciplines, especially economics. Research from the field of international relations has been mostly descriptive or poorly connected with IR paradigms.This article proposes to analyze motivations of foreign aid allocations decisions of donors. These motivations will be examined from the theoretical perspective of the international relations scholarship. In this way, it is sought to contribute, from the discipline of IR, to the explanation of the process in which developed countries make transfers of resources to developing countries.
International Nuclear Information System (INIS)
Lemons, Don S.
2012-01-01
We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone.
A wave optics approach to the theory of the Michelson-Morley experiment
Smid, Thomas
2017-11-01
A consistent classical wave optics approach to the theory of the Michelson-Morley experiment shows that the original theory as applied by Michelson and Morley and others does not calculate the optical paths of the two beams correctly, primarily because of incorrectly assuming a right angle reflection in the instrument’s reference frame for the transverse beam, but also because of the incorrect assumption of aberration for the wave fronts. The theory presented in this work proves the expected variation of the phase difference when rotating the interferometer to be more than twice as large and also strongly asymmetrical around the zero line.
Density-functional theory for internal magnetic fields
Tellgren, Erik I.
2018-01-01
A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.
Third-order theory for multi-directional irregular waves
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2012-01-01
A new third-order solution for multi-directional irregular water waves in finite water depth is presented. The solution includes explicit expressions for the surface elevation, the amplitude dispersion and the vertical variation of the velocity potential. Expressions for the velocity potential at...
Gay-Balmaz, François; Putkaradze, Vakhtang
2018-01-01
We present a theory for the three-dimensional evolution of tubes with expandable walls conveying fluid. Our theory can accommodate arbitrary deformations of the tube, arbitrary elasticity of the walls, and both compressible and incompressible flows inside the tube. We also present the theory of propagation of shock waves in such tubes and derive the conservation laws and Rankine-Hugoniot conditions in arbitrary spatial configuration of the tubes, and compute several examples of particular sol...
Internal and vorticity waves in decaying stratified flows
Matulka, A.; Cano, D.
2009-04-01
Most predictive models fail when forcing at the Rossby deformation Radius is important and a large range of scales have to be taken into account. When mixing of reactants or pollutants has to be accounted, the range of scales spans from hundreds of Kilometers to the Bachelor or Kolmogorov sub milimiter scales. We present some theoretical arguments to describe the flow in terms of the three dimensional vorticity equations, using a lengthscale related to the vorticity (or enstrophy ) transport. Effect of intermittent eddies and non-homogeneity of diffusion are also key issues in the environment because both stratification and rotation body forces are important and cause anisotropy/non-homogeneity. These problems need further theoretical, numerical and observational work and one approach is to try to maximize the relevant geometrical information in order to understand and therefore predict these complex environmental dispersive flows. The importance of the study of turbulence structure and its relevance in diffusion of contaminants in environmental flows is clear when we see the effect of environmental disasters such as the Prestige oil spill or the Chernobil radioactive cloud spread in the atmosphere. A series of Experiments have been performed on a strongly stratified two layer fluid consisting of Brine in the bottom and freshwater above in a 1 square meter tank. The evolution of the vortices after the passage of a grid is video recorded and Particle tracking is applied on small pliolite particles floating at the interface. The combination of internal waves and vertical vorticity produces two separate time scales that may produce resonances. The vorticity is seen to oscilate in a complex way, where the frecuency decreases with time.
International Conference on Automorphic Forms and Number Theory
Al-Baali, Mehiddin; Ibukiyama, Tomoyoshi; Rupp, Florian
2014-01-01
This edited volume presents a collection of carefully refereed articles covering the latest advances in Automorphic Forms and Number Theory, that were primarily developed from presentations given at the 2012 “International Conference on Automorphic Forms and Number Theory,” held in Muscat, Sultanate of Oman. The present volume includes original research as well as some surveys and outlines of research altogether providing a contemporary snapshot on the latest activities in the field and covering the topics of: Borcherds products Congruences and Codes Jacobi forms Siegel and Hermitian modular forms Special values of L-series Recently, the Sultanate of Oman became a member of the International Mathematical Society. In view of this development, the conference provided the platform for scientific exchange and collaboration between scientists of different countries from all over the world. In particular, an opportunity was established for a close exchange between scientists and students of Germany, Oman, and J...
Lex mercatoria in international arbitration theory and practice
ELCIN, Mert
2012-01-01
Defence date: 26 November 2012 Examining Board: Professor Fabrizio Cafaggi (EUI Supervisor) Professor Francesco Francioni (EUI) Professor Sandrine Clavel Université de Versailles-Saint Quentin Professor Fabrizio Marrella Università Cà Foscari di Venezia. First made available online: 2 August 2016 This dissertation suggests a new theory of lex mercatoria that takes into account the complex and spontaneous order of international commerce. Since the emphasis is put on the nature of t...
Arctic Sovereignty Disputes: International Relations Theory in the High North
2011-12-01
Russians continue to retain their long-range strategic bombing fleets, consisting of the TU-160 Supersonic ( Blackjack ), an all-weather aircraft with...icebreakers, and the only operational heavy icebreaker, it is already beyond service life expectations and recently suffered a major engine failure...DISPUTES: INTERNATIONAL RELATIONS THEORY IN THE HIGH NORTH by Darrin D. Davis December 2011 Thesis Co-Advisors: Anne L. Clunan
DEFF Research Database (Denmark)
Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak
2016-01-01
A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...
Theory of International Relations In The Mirror of Contemporary Russian International Studies
Directory of Open Access Journals (Sweden)
Marina M. Lebedeva
2016-01-01
Full Text Available The article deals with the evolution of Western theories of international relations in the postSoviet Russia, it analyzes the world view of Russian international scholars, as well as their reflection on the epistemological foundations of the probable Russian IR school. It states that pluralization of theoretical approaches continues in Russia, while liberalism is gradually givingup to realism on the way to the dominant theory. Constructivism is gaining popularity and postmodernism remains without followers. Russian international studies are structured by a long-standing debate about the identity of Russia. "Westerners" continue to argue with "Slavophiles."Sometimes these arguments translate into a cry for building independent national school of international relations, thereby exacerbating the problem of epistemological relativism. The bases for the school may be found in Russian spiritual philosophy, the Tartu-Moscow school of semiotics, Russian cultural studies, postcolonial tradition of national historical science.
Kinematic parameters of internal waves of the second mode in the South China Sea
Directory of Open Access Journals (Sweden)
O. Kurkina
2017-10-01
Full Text Available Spatial distributions of the main properties of the mode function and kinematic and non-linear parameters of internal waves of the second mode are derived for the South China Sea for typical summer conditions in July. The calculations are based on the Generalized Digital Environmental Model (GDEM climatology of hydrological variables, from which the local stratification is evaluated. The focus is on the phase speed of long internal waves and the coefficients at the dispersive, quadratic and cubic terms of the weakly non-linear Gardner model. Spatial distributions of these parameters, except for the coefficient at the cubic term, are qualitatively similar for waves of both modes. The dispersive term of Gardner's equation and phase speed for internal waves of the second mode are about a quarter and half, respectively, of those for waves of the first mode. Similarly to the waves of the first mode, the coefficients at the quadratic and cubic terms of Gardner's equation are practically independent of water depth. In contrast to the waves of the first mode, for waves of the second mode the quadratic term is mostly negative. The results can serve as a basis for expressing estimates of the expected parameters of internal waves for the South China Sea.
Linear theory of sound waves with evaporation and condensation
International Nuclear Information System (INIS)
Inaba, Masashi; Watanabe, Masao; Yano, Takeru
2012-01-01
An asymptotic analysis of a boundary-value problem of the Boltzmann equation for small Knudsen number is carried out for the case when an unsteady flow of polyatomic vapour induces reciprocal evaporation and condensation at the interface between the vapour and its liquid phase. The polyatomic version of the Boltzmann equation of the ellipsoidal statistical Bhatnagar–Gross–Krook (ES-BGK) model is used and the asymptotic expansions for small Knudsen numbers are applied on the assumptions that the Mach number is sufficiently small compared with the Knudsen number and the characteristic length scale divided by the characteristic time scale is comparable with the speed of sound in a reference state, as in the case of sound waves. In the leading order of approximation, we derive a set of the linearized Euler equations for the entire flow field and a set of the boundary-layer equations near the boundaries (the vapour–liquid interface and simple solid boundary). The boundary conditions for the Euler and boundary-layer equations are obtained at the same time when the solutions of the Knudsen layers on the boundaries are determined. The slip coefficients in the boundary conditions are evaluated for water vapour. A simple example of the standing sound wave in water vapour bounded by a liquid water film and an oscillating piston is demonstrated and the effect of evaporation and condensation on the sound wave is discussed. (paper)
International Summer School on Mathematical Systems Theory and Economics
Szegö, G
1969-01-01
The International Summer School on Mathematical Systems Theory and Economics was held at the Villa Monastero in Varenna, Italy, from June 1 through June 12, 1967. The objective of this Summer School was to review the state of the art and the prospects for the application of the mathematical theory of systems to the study and the solution of economic problems. Particular emphasis was given to the use of the mathematical theory of control for the solution of problems in economics. It was felt that the publication of a volume collecting most of the lectures given at the school would show the current status of the application of these methods. The papers are organized into four sections arranged into two volumes: basic theories and optimal control of economic systems which appear in the first volume, and special mathematical problems and special applications which are contained in the second volume. Within each section the papers follow in alphabetical order by author. The seven papers on basic theories are a rat...
10th International Workshop on Condensed Matter Theories
Kalia, Rajiv; Bishop, R
1987-01-01
The second volume of Condensed Matter Theories contains the proceedings of the 10th International Workshop held at Argonne National Laboratory, Argonne, IL, U.S.A. during the week of July 21, 1986. The workshop was attended by high-energy, nuclear and condensed-matter physicists as well as materials scientists. This diverse blend of participants was in keeping with the flavor of the previous workshops. This annual series of international workshops was"started in 1977 in Sao Paulo, Brazil. Subsequent'workshops were held in Trieste (Italy), Buenos Aires (Argentina), Caracas (Venezuela), Altenberg (West Germany), Granada (Spain), and San Francisco (U.S.A.). What began as a meeting of the physicists from the Western Hemisphere has expanded in the last three years into an international conference of scientists with diverse interests and backgrounds. This diversity has promoted a healthy exchange of ideas from different branches of physics and also fruitful interactions among the participants. The present volume is...
Facilitating internalization: the self-determination theory perspective.
Deci, E L; Eghrari, H; Patrick, B C; Leone, D R
1994-03-01
Self-determination theory (Deci & Ryan, 1985) posits that (a) people are inherently motivated to internalize the regulation of uninteresting though important activities; (b) there are two different processes through which such internalization can occur, resulting in qualitatively different styles of self-regulation; and (c) the social context influences which internalization process and regulatory style occur. The two types of internalization are introjection, which entails taking in a value or regulatory process but not accepting it as one's own, and integration, through which the regulation is assimilated with one's core sense of self. Introjection results in internally controlling regulation, whereas integration results in self-determination. An experiment supported our hypothesis that three facilitating contextual factors--namely, providing a meaningful rationale, acknowledging the behaver's feelings, and conveying choice--promote internalization, as evidenced by the subsequent self-regulation of behavior. This experiment also supported our expectation that when the social context supports self-determination, integration tends to occur, whereas when the context does not support self-determination, introjection tends to occur.
“The West” and “Non-West” in the Space of International Relations Theory
Directory of Open Access Journals (Sweden)
Tatyana Aleksandrovna Alekseeva
2017-12-01
Full Text Available Recently the question of “pro-Western” orientation of the IR theory turned to become in the center of the academic discussions. Its critics as well as the adherents of “non-Western” theories are partly right. Really, during more than one and a half century the theory of international relations, born and developed mostly in the West had been mostly supporting the ideas, being forms first in Europe, later in the USA. The Anglo-Saxon authors are still dominating in the discipline, not only quantitatively (the huge scale of the publications of literature and professional magazines in English plus influence of the universities and scientific centers as well as qualitatively (impressive financing opens the possibilities for the working out of the new ideas and the development of the ideas of different “schools” of thought - political realism, liberalism, constructivism, postmodernism, post-Marxism etc.. In the theories of IR was felt ideological biases. But on the wave of decolonization and later, in the context of the rising of Asian and other countries in world politics, the “Western” dominance was challenged by the IR-scholars from PR of Chine, India etc., who try to construct their own theories of international relations. The balance is slowly but continuously changing. But “Non-Western” theories are also not free from the ideological biases. Quite often they reject or severely criticize “Western” theories just because of their origin. Even more often they in fact continue to develop the same “Western” ideas, just adding to them the local thinker’s names or mentioning some national traditions or religious and cultural heritage. But if the Theory of international relations is a science, then, strictly speaking, in what country its main personalities were born and what language they were speaking, is not important. Obviously, the elements of ideology would be present. Just like any other social science, which deals not
Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.
Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura
2016-07-12
A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.
Comparison of classical and modern theories of longitudinal wave propagation in elastic rods
CSIR Research Space (South Africa)
Shatalov, M
2011-01-01
Full Text Available Conference on Computational and Applied Mechanics SACAM10 Pretoria, 10?13 January 2010 ? SACAM COMPARISON OF CLASSICAL AND MODERN THEORIES OF LONGITUDINAL WAVE PROPAGATION IN ELASTIC RODS M. Shatalov*,?,?? , I. Fedotov? 1 , HM. Tenkam? 2, J. Marais..., Pretoria, 0001 FIN-40014, South Africa 1fedotovi@tut.ac.za, 2djouosseutenkamhm@tut.ac.za ?? Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa Keywords: Elastic rod, wave propagation, classical...
Theory of fidelity measure in degenerate four-wave mixing
International Nuclear Information System (INIS)
Bochove, E.J.
1983-01-01
Phase-conjugate beam fidelity is studied in degenerate four-wave mixing with spatially varying pump beams. The analysis includes the effects of probe depletion, diffracting non-linear phase variation focussing, and finally that of losses. Relatively simple algebraic expressions are found for the phase conjugate reflectivity for the cases of collinear and near-collinear beam gemetries. It is found that by focussing the probe beam into the mixing medium, the fraction of energy in the phase conjugate beam which was transferred to other modes, may typically be reduced by one order of magnitude. (Author) [pt
Hydromagnetic theory of solar sectors: slow hydromagnetic waves
International Nuclear Information System (INIS)
Suess, S.T.
1975-01-01
Magnetic sectors on the sun are a feature, when the solar dipole field is subtracted, reminiscent of grapefruit sections in terms of the boundaries described by the magnetic field polarity change. One possible suggestion for the origin of these sectors is that they are hydromagnetic waves controlled by the rotation, toroidal magnetic field, and stratification within the convection zone of the sun. The merits of this suggestion are evaluated with respect to the observations and a specific theoretical model. 4 figs, 38 refs. (U.S.)
Theory of steady-state plane tunneling-assisted impact ionization waves
International Nuclear Information System (INIS)
Kyuregyan, A. S.
2013-01-01
The effect of band-to-band and trap-assisted tunneling on the properties of steady-state plane ionization waves in p + -n-n + structures is theoretically analyzed. It is shown that such tunneling-assisted impact ionization waves do not differ in a qualitative sense from ordinary impact ionization waves propagating due to the avalanche multiplication of uniformly distributed seed electrons and holes. The quantitative differences of tunneling-assisted impact ionization waves from impact ionization waves are reduced to a slightly different relation between the wave velocity u and the maximum field strength E M at the front. It is shown that disregarding impact ionization does not exclude the possibility of the existence of tunneling-assisted ionization waves; however, their structure radically changes, and their velocity strongly decreases for the same E M . A comparison of the dependences u(E M ) for various ionization-wave types makes it possible to determine the conditions under which one of them is dominant. In conclusion, unresolved problems concerning the theory of tunneling-assisted impact ionization waves are discussed and the directions of further studies are outlined
Nonlinear internal gravity waves and their interaction with the mean wind
International Nuclear Information System (INIS)
Grimshaw, R.
1975-01-01
The interaction of a wave packet of internal gravity waves with the mean wind is investigated, for the case when there is a region of wind shear and hence a critical level. The principal equations are the Doppler-shifted dispersion relation, the equation for conservation of wave action and the mean momentum equation, in which the mean wind is accelerated by a 'radiation stress' tensor, due to the waves. These equations are integrated numerically to study the behaviour of a wave packet approaching a critical level, where the horizontal phase speed matches the mean wind. The results demonstrate the exchange of energy from the waves to the mean wind in the vicinity of the critical level. The interaction between the waves and the mean wind is also studied in the absence of any initial wind shear. (author)
On the generation and evolution of internal solitary waves in the southern Red Sea
Guo, Daquan; Akylas, T. R.; Zhan, Peng; Kartadikaria, Aditya R.; Hoteit, Ibrahim
2016-01-01
Satellite observations recently revealed trains of internal solitary waves (ISWs) in the off-shelf region between 16.0 degrees N and 16.5 degrees N in the southern Red Sea. The generation mechanism of these waves is not entirely clear, though
Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure
Directory of Open Access Journals (Sweden)
Taro Kakinuma
2012-01-01
Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.
Gravitational-wave physics and astronomy an introduction to theory, experiment and data analysis
Creighton, Jolien D E
2011-01-01
This most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitation
Theory of s-wave superconductor containing impurities with retarded interaction with quasiparticles
International Nuclear Information System (INIS)
K V Grigorishin
2014-01-01
We propose a perturbation theory and diagram technique for a disordered metal when scattering of quasiparticles by nonmagnetic impurities is caused with a retarded interaction. The perturbation theory generalizes a case of elastic scattering in a disordered metal. Eliashberg equations for s-wave superconductivity are generalized for such a disordered superconductor. Anderson's theorem is found to be violated in the sense that embedding of the impurities into an s-wave superconductor increases its critical temperature. We show that the amplification of superconducting properties is a result of nonelastic effects in a scattering by the impurities. (paper)
Numerical assessment of factors affecting nonlinear internal waves in the South China Sea
Li, Qiang
2014-02-01
Nonlinear internal waves in the South China Sea exhibit diverse characteristics, which are associated with the complex conditions in Luzon Strait, such as the double ridge topography, the Earth’s rotation, variations in stratification and the background current induced by the Kuroshio. These effects are individually assessed using the MITgcm. The performance of the model is first validated through comparison with field observations. Because of in-phased ray interaction, the western ridge in Luzon Strait intensifies the semidiurnal internal tides generated from the eastern ridge, thus reinforcing the formation of nonlinear internal waves. However, the ray interaction for K1 forcing becomes anti-phased so that the K1 internal tide generation is reduced by the western ridge. Not only does the rotational dispersion suppress internal tide generation, it also inhibits nonlinear steepening and consequent internal solitary wave formation. As a joint effect, the double ridges and the rotational dispersion result in a paradoxical phenomenon: diurnal barotropic tidal forcing is dominant in Luzon Strait, but semidiurnal internal tides prevail in the deep basin of the South China Sea. The seasonal variation of the Kuroshio is consistent with the seasonal appearance of nonlinear internal waves in the South China Sea. The model results show that the westward inflow due to the Kuroshio intrusion reduces the amplitude of internal tides in the South China Sea, causing the weakening or absence of internal solitary waves. Winter stratification cannot account for the significant reduction of nonlinear internal waves, because the amplitude growth of internal tides due to increased thermocline tilting counteracts the reduced nonlinearity caused by thermocline deepening.
Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions
Ablowitz, Mark J.
2009-09-01
Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.
Experimental determination of radiated internal wave power without pressure field data
Lee, Frank M.; Paoletti, M. S.; Swinney, Harry L.; Morrison, P. J.
2014-01-01
We present a method to determine, using only velocity field data, the time-averaged energy flux $\\left$ and total radiated power $P$ for two-dimensional internal gravity waves. Both $\\left$ and $P$ are determined from expressions involving only a scalar function, the stream function $\\psi$. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method...
Competition in electricity spot markets. Economic theory and international experience
Energy Technology Data Exchange (ETDEWEB)
Fehr, Nils-Henrik von der; Harbord, David
1998-09-01
This publication gives a survey of economic theory and international experience connected to electricity spot markets. The main purpose is to consider the attempts that have been made to apply economic theory and empirical methods to the analysis of electricity markets, and to evaluate them in light of theoretical considerations and empirical evidence. The publication describes in simple terms the basic pool pricing mechanism, and experience with pools in a number of countries. It is worth emphasizing that it is not the purpose to treat in extensive detail the structure of electricity pools around the world. Key factors of the markets in England and Wales, Norway and Australia are described in order to allow for a comparison of design issues and evaluation of competitive performance. 80 refs., 14 figs., 15 tabs.
International Conference Modern Stochastics: Theory and Applications III
Limnios, Nikolaos; Mishura, Yuliya; Sakhno, Lyudmyla; Shevchenko, Georgiy; Modern Stochastics and Applications
2014-01-01
This volume presents an extensive overview of all major modern trends in applications of probability and stochastic analysis. It will be a great source of inspiration for designing new algorithms, modeling procedures, and experiments. Accessible to researchers, practitioners, as well as graduate and postgraduate students, this volume presents a variety of new tools, ideas, and methodologies in the fields of optimization, physics, finance, probability, hydrodynamics, reliability, decision making, mathematical finance, mathematical physics, and economics. Contributions to this Work include those of selected speakers from the international conference entitled “Modern Stochastics: Theory and Applications III,” held on September 10 –14, 2012 at Taras Shevchenko National University of Kyiv, Ukraine. The conference covered the following areas of research in probability theory and its applications: stochastic analysis, stochastic processes and fields, random matrices, optimization methods in probability, st...
Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier
Erickson, R. P.; Pappas, D. P.
2017-03-01
We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).
Preliminary assessment of combustion modes for internal combustion wave rotors
Nalim, M. Razi
1995-01-01
Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.
da Silva, Jose C. B.; Magalhaes, J. M.; Buijsman, M. C.; Garcia, C. A. E.
2016-08-01
Mode-2 internal waves are usually not as energetic as larger mode-1 Internal Solitary Waves (ISWs), but they have attracted a great deal of attention in recent years because they have been identified as playing a significant role in mixing shelf waters [1]. This mixing is particularly effective for mode-2 ISWs because the location of these waves in the middle of the pycnocline plays an important role in eroding the barrier between the base of the surface mixed layer and the stratified deep layer below. An urgent problem in physical oceanography is therefore to account for the magnitude and distribution of ISW-driven mixing, including mode-2 ISWs. Several generation mechanisms of mode-2 ISWs have been identified. These include: (1) mode-1 ISWs propagating onshore (shoaling) and entering the breaking instability stage, or propagating over a steep sill; (2) a mode-1 ISW propagating offshore (antishoaling) over steep slopes of the shelf break, and undergoing modal transformation; (3) intrusion of the whole head of a gravity current into a three-layer fluid; (4) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (5) nonlinear disintegration of internal tide modes; (6) lee wave mechanism. In this paper we provide methods to identify internal wave features denominated "Wave Tails" in SAR images of the ocean surface, which are many times associated with second mode internal waves. The SAR case studies that are presented portray evidence of the aforementioned generation mechanisms, and we further discuss possible methods to discriminate between the various types of mode-2 ISWs in SAR images, that emerge from these physical mechanisms. Some of the SAR images correspond to numerical simulations with the MITgcm in fully nonlinear and nonhydrostatic mode and in a 2D configuration with realistic stratification, bathymetry and other environmental conditions.Results of a global survey with some of these observations are presented
Non-Western International Relations Theory: Myth or Reality?
Directory of Open Access Journals (Sweden)
Marina Mikhailovna Lebedeva
2017-12-01
Full Text Available In recent years, Russian and foreign literature increasingly raises the question on national theories of international relations. A special interest is manifested towards non-Western theories of international relations. The article analyzes the reasons for such interest. It is noted that the main motive for scholars to search for national schools is the transformation of the political organization of the world that emerged in the West and was developing largely on the Western model. This transformation encompasses three levels of political organization of the modern world: the Westphalian system, the system of international (interstate relations and the political systems of a state. Three levels of political organization of the world changing at the same time today reinforce each other and generate synergies. With such a large-scale transformation, when all three levels are “moving”, the world is facing for the first time, although the change of the second and especially the third levels were before. As far as the system of political organization of the world undergoes major changes, IR theories, which appeared in the West, are in crisis. Researchers’ attention to non-Western, primarily Asian TMO to find answers due to the following reasons: 1 the rapid economic growth of the region; 2 the development of scientific research in Asia; 3 the crisis of the Western model of political organization in the world that encourages the search for solutions in other civilizational structures. The article substantiates the necessity and possibility of “project activities” for reforming the political organization of the world and include practices that exist in different regions of the world. In order to implement such activities, the work of specialists from different brunches of social sciences is required.
Theory for stationary nonlinear wave propagation in complex magnetic geometry
International Nuclear Information System (INIS)
Watanabe, T.; Hojo, H.; Nishikawa, Kyoji.
1977-08-01
We present our recent efforts to derive a systematic calculation scheme for nonlinear wave propagation in the self-consistent plasma profile in complex magnetic-field geometry. Basic assumptions and/or approximations are i) use of the collisionless two-fluid model with an equation of state; ii) restriction to a steady state propagation and iii) existence of modified magnetic surface, modification due to Coriolis' force. We discuss four situations: i) weak-field propagation without static flow, ii) arbitrary field strength with flow in axisymmetric system, iii) weak field limit of case ii) and iv) arbitrary field strength in nonaxisymmetric torus. Except for case iii), we derive a simple variation principle, similar to that of Seligar and Whitham, by introducing appropriate coordinates. In cases i) and iii), we derive explicit results for quasilinear profile modification. (auth.)
Leadership in applied psychology: Three waves of theory and research.
Lord, Robert G; Day, David V; Zaccaro, Stephen J; Avolio, Bruce J; Eagly, Alice H
2017-03-01
Although in the early years of the Journal leadership research was rare and focused primarily on traits differentiating leaders from nonleaders, subsequent to World War II the research area developed in 3 major waves of conceptual, empirical, and methodological advances: (a) behavioral and attitude research; (b) behavioral, social-cognitive, and contingency research; and (c) transformational, social exchange, team, and gender-related research. Our review of this work shows dramatic increases in sophistication from early research focusing on personnel issues associated with World War I to contemporary multilevel models and meta-analyses on teams, shared leadership, leader-member exchange, gender, ethical, abusive, charismatic, and transformational leadership. Yet, many of the themes that characterize contemporary leadership research were also present in earlier research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
High intensity surface plasma waves, theory and PIC simulations
Raynaud, M.; Héron, A.; Adam, J.-C.
2018-01-01
With the development of intense (>1019 W cm-2) short pulses (≤25 fs) laser with very high contrast, surface plasma wave (SPW) can be explored in the relativistic regime. As the SPW propagates with a phase velocity close to the speed of light it may results in a strong acceleration of electron bunches along the surface permitting them to reach relativistic energies. This may be important e.g. for applications in the field of plasma-based accelerators. We investigate in this work the excitation of SPWs on grating preformed over-dense plasmas for laser intensities ranging from 1019 up to 1021 W cm-2. We discuss the nature of the interaction with respect to the solid case in which surface plasmon can be resonantly excited with weak laser intensity. In particular, we show the importance of the pulse duration and focalization of the laser beam on the amplitude of the SPW.
Cyborg pantocrator: international relations theory from decisionism to rational choice.
Guilhot, Nicolas
2011-01-01
International relations theory took shape in the 1950s in reaction to the behavioral social science movement, emphasizing the limits of rationality in a context of high uncertainty, weak rules, and the possibility of lethal conflict. Yet the same discipline rapidly developed "rational choice" models applied to foreign policy decision making or nuclear strategy. This paper argues that this transformation took place almost seamlessly around the concept of "decision." Initially associated with an antirationalist or "decisionist" approach to politics, the sovereign decision became the epitome of political rationality when it was redescribed as "rational choice," thus easing the cultural acceptance of political realism in the postwar years. © 2011 Wiley Periodicals, Inc.
International Conference on Frontiers of Intelligent Computing : Theory and Applications
Udgata, Siba; Biswal, Bhabendra
2013-01-01
The volume contains the papers presented at FICTA 2012: International Conference on Frontiers in Intelligent Computing: Theory and Applications held on December 22-23, 2012 in Bhubaneswar engineering College, Bhubaneswar, Odissa, India. It contains 86 papers contributed by authors from the globe. These research papers mainly focused on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc for various engineering applications such as data mining, image processing, cloud computing, networking etc.
International Conference on Frontiers of Intelligent Computing : Theory and Applications
Udgata, Siba; Biswal, Bhabendra
2014-01-01
This volume contains the papers presented at the Second International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA-2013) held during 14-16 November 2013 organized by Bhubaneswar Engineering College (BEC), Bhubaneswar, Odisha, India. It contains 63 papers focusing on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc for various engineering applications such as data mining, Fuzzy systems, Machine Intelligence and ANN, Web technologies and Multimedia applications and Intelligent computing and Networking etc.
Relationalism or why diplomats find international relations theory strange
DEFF Research Database (Denmark)
Adler-Nissen, Rebecca
2015-01-01
In this conclusion, which reflects critically on the relational approach to diplomacy and its wider consequences, I argue that diplomats are estranged from IR theory and vice versa - because International Relations scholars generally subscribe to substantialism, whereas diplomats tend to think...... by diplomatic scholars). Relationalism takes as its point of departure the idea that social phenomena making up world politics always develop in relation to other social phenomena. Thus, for example, states are not born into' this world as fully developed states that then "exist"; states are made in continuous...... scholarship and diplomatic knowledge and practice are important for how we understand (and construct) world politics, including war, international cooperation, and responses to human and natural catastrophes....
Reconstruction of boundary conditions from internal conditions using viability theory
Hofleitner, Aude; Claudel, Christian G.; Bayen, Alexandre M.
2012-01-01
This article presents a method for reconstructing downstream boundary conditions to a HamiltonJacobi partial differential equation for which initial and upstream boundary conditions are prescribed as piecewise affine functions and an internal condition is prescribed as an affine function. Based on viability theory, we reconstruct the downstream boundary condition such that the solution of the Hamilton-Jacobi equation with the prescribed initial and upstream conditions and reconstructed downstream boundary condition satisfies the internal value condition. This work has important applications for estimation in flow networks with unknown capacity reductions. It is applied to urban traffic, to reconstruct signal timings and temporary capacity reductions at intersections, using Lagrangian sensing such as GPS devices onboard vehicles.
Reconstruction of boundary conditions from internal conditions using viability theory
Hofleitner, Aude
2012-06-01
This article presents a method for reconstructing downstream boundary conditions to a HamiltonJacobi partial differential equation for which initial and upstream boundary conditions are prescribed as piecewise affine functions and an internal condition is prescribed as an affine function. Based on viability theory, we reconstruct the downstream boundary condition such that the solution of the Hamilton-Jacobi equation with the prescribed initial and upstream conditions and reconstructed downstream boundary condition satisfies the internal value condition. This work has important applications for estimation in flow networks with unknown capacity reductions. It is applied to urban traffic, to reconstruct signal timings and temporary capacity reductions at intersections, using Lagrangian sensing such as GPS devices onboard vehicles.
Linear spin-wave theory of incommensurably modulated magnets
DEFF Research Database (Denmark)
Ziman, Timothy; Lindgård, Per-Anker
1986-01-01
Calculations of linearized theories of spin dynamics encounter difficulties when applied to incommensurable magnetic phases: lack of translational invariance leads to an infinite coupled system of equations. The authors resolve this for the case of a `single-Q' structure by mapping onto the problem......: at higher frequency there appear bands of response sharply defined in frequency, but broad in momentum transfer; at low frequencies there is a response maximum at the q vector corresponding to the modulation vector. They discuss generalizations necessary for application to rare-earth magnets...
Multi-scale phenomena of rotation-modified mode-2 internal waves
Deepwell, David; Stastna, Marek; Coutino, Aaron
2018-03-01
We present high-resolution, three-dimensional simulations of rotation-modified mode-2 internal solitary waves at various rotation rates and Schmidt numbers. Rotation is seen to change the internal solitary-like waves observed in the absence of rotation into a leading Kelvin wave followed by Poincaré waves. Mass and energy is found to be advected towards the right-most side wall (for a Northern Hemisphere rotation), leading to increased amplitude of the leading Kelvin wave and the formation of Kelvin-Helmholtz (K-H) instabilities on the upper and lower edges of the deformed pycnocline. These fundamentally three-dimensional instabilities are localized within a region near the side wall and intensify in vigour with increasing rotation rate. Secondary Kelvin waves form further behind the wave from either resonance with radiating Poincaré waves or the remnants of the K-H instability. The first of these mechanisms is in accord with published work on mode-1 Kelvin waves; the second is, to the best of our knowledge, novel to the present study. Both types of secondary Kelvin waves form on the same side of the channel as the leading Kelvin wave. Comparisons of equivalent cases with different Schmidt numbers indicate that while adopting a numerically advantageous low Schmidt number results in the correct general characteristics of the Kelvin waves, excessive diffusion of the pycnocline and various density features precludes accurate representation of both the trailing Poincaré wave field and the intensity and duration of the Kelvin-Helmholtz instabilities.
[A probability wave theory on the ion movement across cell membrane].
Zhang, Hui; Xu, Jiadong; Niu, Zhongqi
2007-04-01
The ionic quantity across the channel of the cell membrane decides the cell in a certain life state. The theory analysis that existed on the bio-effects of the electro-magnetic field (EMF) does not unveil the relationship between the EMF exerted on the cell and the ionic quantity across the cell membrane. Based on the cell construction, the existed theory analysis and the experimental results, an ionic probability wave theory is proposed in this paper to explain the biological window-effects of the electromagnetic wave. The theory regards the membrane channel as the periodic potential barrier and gives the physical view of the ion movement across cell-membrane. The theory revises the relationship between ion's energy in cell channel and the frequency exerted EMF. After the application of the concept of the wave function, the ionic probability across the cell membrane is given by the method of the quantum mechanics. The numerical results analyze the physical factors that influences the ion's movement across the cell membrane. These results show that the theory can explain the phenomenon of the biological window-effects.
Advection of pollutants by internal solitary waves in oceanic and atmospheric stable stratifications
Directory of Open Access Journals (Sweden)
G. W. Haarlemmer
1998-01-01
Full Text Available When a pollutant is released into the ocean or atmosphere under turbulent conditions, even a steady release is captured by large eddies resulting in localized patches of high concentration of the pollutant. If such a cloud of pollutant subsequently enters a stable stratification-either a pycnocline or thermocline-then internal waves are excited. Since large solitary internal waves have a recirculating core, pollutants may be trapped in the sclitary wave, and advected large distances through the waveguide provided by the stratification. This paper addresses the mechanisms, through computer and physical simulation, by which a localized release of a dense pollutant results in solitary waves that trap the pollutant or disperse the pollutant faster than in the absence of the waves.
The next waves: migration theory for a changing world.
Zolberg, A R
1989-01-01
In the last quarter of a century, migration theory has undergone fundamental change, moving from the classic "individual relocation" genre initiated by Ravenstein a century ago, to a variety of new approaches which nevertheless share important elements: they tend to be historical, structural, globalist, and critical. Historicization implies a constant modification of theoretical concerns and emphases in the light of changing social realities, and a commitment to a critical approach entails a view of research as 1 element in a broader project concerned with the elucidation of social and political conditions. The article uses elements from 2 major theoretical traditions - a modified world-systems approach and state theory - to project current trends. Global inequality is considered as a structural given. The article then reviews major topics, including the persistence of restrictive immigration policies as barriers to movement, changing patterns of exploitation of foreign labor, liberalization of exit from the socialist world, and the refugee crisis in the developing world. It concludes with a brief consideration of the normative implications of these trends.
SU (N ) spin-wave theory: Application to spin-orbital Mott insulators
Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin
2018-05-01
We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.
Statistical theory of resistive drift-wave turbulence and transport
International Nuclear Information System (INIS)
Hu, G.; Krommes, J.A.; Bowman, J.C.
1997-01-01
Resistive drift-wave turbulence in a slab geometry is studied by statistical closure methods and direct numerical simulations. The two-field Hasegawa endash Wakatani (HW) fluid model, which evolves the electrostatic potential and plasma density self-consistently, is a paradigm for understanding the generic nonlinear behavior of multiple-field plasma turbulence. A gyrokinetic derivation of the HW model is sketched. The recently developed Realizable Markovian Closure (RMC) is applied to the HW model; spectral properties, nonlinear energy transfers, and turbulent transport calculations are discussed. The closure results are also compared to direct numerical simulation results; excellent agreement is found. The transport scaling with the adiabaticity parameter, which measures the strength of the parallel electron resistivity, is analytically derived and understood through weak- and strong-turbulence analyses. No evidence is found to support previous suggestions that coherent structures cause a large depression of saturated transport from its quasilinear value in the hydrodynamic regime of the HW model. Instead, the depression of transport is well explained by the spectral balance equation of the (second-order) statistical closure when account is taken of incoherent noise. copyright 1997 American Institute of Physics
Analysis of supercritical vapor explosions using thermal detonation wave theory
Energy Technology Data Exchange (ETDEWEB)
Shamoun, B.I.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)
1995-09-01
The interaction of certain materials such as Al{sub 2}O{sub 3} with water results in vapor explosions with very high (supercritical) pressures and propagation velocities. A quasi-steady state analysis of supercritical detonation in one-dimensional multiphase flow was applied to analyze experimental data of the KROTOS (26-30) set of experiments conducted at the Joint Research Center at Ispra, Italy. In this work we have applied a new method of solution which allows for partial fragmentation of the fuel in the shock adiabatic thermodynamic model. This method uses known experiment values of the shock pressure and propagation velocity to estimate the initial mixing conditions of the experiment. The fuel and coolant were both considered compressible in this analysis. In KROTOS 26, 28, 29, and 30 the measured values of the shock pressure by the experiment were found to be higher than 25, 50, 100, and 100 Mpa respectively. Using the above data for the wave velocity and our best estimate for the values of the pressure, the predicted minimum values of the fragmented mass of the fuel were found to be 0.026. 0.04, 0.057, and 0.068 kg respectively. The predicted values of the work output corresponding to the above fragmented masses of the fuel were found to be 40, 84, 126, and 150 kJ respectively, with predicted initial void fractions of 112%, 12.5%, 8%, and 6% respectively.
Vertical Transport of Momentum by the Inertial-Gravity Internal Waves in a Baroclinic Current
Directory of Open Access Journals (Sweden)
A. A. Slepyshev
2017-08-01
Full Text Available When the internal waves break, they are one of the sources of small-scale turbulence. Small-scale turbulence causes the vertical exchange in the ocean. However, internal waves with regard to the Earth rotation in the presence of vertically inhomogeneous two-dimensional current are able to contribute to the vertical transport. Free inertial-gravity internal waves in a baroclinic current in a boundless basin of a constant depth are considered in the Bussinesq approximation. Boundary value problem of linear approximation for the vertical velocity amplitude of internal waves has complex coefficients when current velocity component, which is transversal to the wave propagation direction, depends on the vertical coordinate (taking into account the rotation of the Earth. Eigenfunction and wave frequency are complex, and it is shown that a weak wave damping takes place. Dispersive relation and wave damping decrement are calculated in the linear approximation. At a fixed wave number damping decrement of the second mode is larger (in the absolute value than the one of the first mode. The equation for vertical velocity amplitude for real profiles of the Brunt – Vaisala frequency and current velocity are numerically solved according to implicit Adams scheme of the third order of accuracy. The dispersive curves of the first two modes do not reach inertial frequency in the low-frequency area due to the effect of critical layers in which wave frequency of the Doppler shift is equal to the inertial one. Termination of the second mode dispersive curves takes place at higher frequency than the one of the first mode. In the second order of the wave amplitude the Stokes drift speed is determined. It is shown that the Stokes drift speed, which is transversal to the wave propagation direction, differs from zero if the transversal component of current velocity depends on the vertical coordinate. In this case, the Stokes drift speed in the second mode is lower than
Time-dependent density-functional theory in the projector augmented-wave method
DEFF Research Database (Denmark)
Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri
2008-01-01
We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...
Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory
International Nuclear Information System (INIS)
Benyoussef, A.
1996-10-01
The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs
Propagation of gravitational waves in the generalized tensor-vector-scalar theory
International Nuclear Information System (INIS)
Sagi, Eva
2010-01-01
Efforts are underway to improve the design and sensitivity of gravitational wave detectors, with the hope that the next generation of these detectors will observe a gravitational wave signal. Such a signal will not only provide information on dynamics in the strong gravity regime that characterizes potential sources of gravitational waves, but will also serve as a decisive test for alternative theories of gravitation that are consistent with all other current experimental observations. We study the linearized theory of the tensor-vector-scalar theory of gravity with generalized vector action, an alternative theory of gravitation designed to explain the apparent deficit of visible matter in galaxies and clusters of galaxies without postulating yet-undetected dark matter. We find the polarization states and propagation speeds for gravitational waves in vacuum, and show that in addition to the usual transverse-traceless propagation modes, there are two more mixed longitudinal-transverse modes and two trace modes, of which at least one has longitudinal polarization. Additionally, the propagation speeds are different from the speed of light.
Non-linear wave loads and ship responses by a time-domain strip theory
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher
1998-01-01
. Based on this time-domain strip theory, an efficient non-linear hydroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented as a Timoshenko beam. Numerical calculations are presented for the S175 Containership...
Long-wave theory for a new convective instability with exponential growth normal to the wall.
Healey, J J
2005-05-15
A linear stability theory is presented for the boundary-layer flow produced by an infinite disc rotating at constant angular velocity in otherwise undisturbed fluid. The theory is developed in the limit of long waves and when the effects of viscosity on the waves can be neglected. This is the parameter regime recently identified by the author in a numerical stability investigation where a curious new type of instability was found in which disturbances propagate and grow exponentially in the direction normal to the disc, (i.e. the growth takes place in a region of zero mean shear). The theory describes the mechanisms controlling the instability, the role and location of critical points, and presents a saddle-point analysis describing the large-time evolution of a wave packet in frames of reference moving normal to the disc. The theory also shows that the previously obtained numerical solutions for numerically large wavelengths do indeed lie in the asymptotic long-wave regime, and so the behaviour and mechanisms described here may apply to a number of cross-flow instability problems.
Barros, Marilene; University of California Santa Barbara
2013-01-01
Following the structure of Wendt’s book, I will present in this article the main arguments of his social theory, and then explain how Wendt applies them to international politics. This account will render a critique those points to the problems and promises of Wendt’s social constructivism. I argue that despite flaws in his constitutive approach, his focus on the domestic-international aspect of agency and its relation to structure (of the state system) renders a significant contribution to ...
The formation and fate of internal waves in the South China Sea
Alford, Matthew H.; Peacock, Thomas; MacKinnon, Jennifer A.; Nash, Jonathan D.; Buijsman, Maarten C.; Centuroni, Luca R.; Chao, Shenn-Yu; Chang, Ming-Huei; Farmer, David M.; Fringer, Oliver B.; Fu, Ke-Hsien; Gallacher, Patrick C.; Graber, Hans C.; Helfrich, Karl R.; Jachec, Steven M.; Jackson, Christopher R.; Klymak, Jody M.; Ko, Dong S.; Jan, Sen; Johnston, T. M. Shaun; Legg, Sonya; Lee, I.-Huan; Lien, Ren-Chieh; Mercier, Matthieu J.; Moum, James N.; Musgrave, Ruth; Park, Jae-Hun; Pickering, Andrew I.; Pinkel, Robert; Rainville, Luc; Ramp, Steven R.; Rudnick, Daniel L.; Sarkar, Sutanu; Scotti, Alberto; Simmons, Harper L.; St Laurent, Louis C.; Venayagamoorthy, Subhas K.; Wang, Yu-Huai; Wang, Joe; Yang, Yiing J.; Paluszkiewicz, Theresa; (David) Tang, Tswen-Yung
2015-05-01
Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.
Analytical theory of frequency-multiplying gyro-traveling-wave-tubes
International Nuclear Information System (INIS)
Nusinovich, G.S.; Chen, W.; Granatstein, V.L.
2001-01-01
The theory is developed which describes analytically the gain and bandwidth in frequency-multiplying gyro-traveling-wave-tubes. In this theory the input waveguide is considered in the small-signal approximation. Then, in the drift region separating the input and output waveguides, the electron ballistic bunching evolves which causes the appearance in the electron current density of the harmonics of the signal frequency. The excitation of the output waveguide by one of these harmonics is considered in a specified current approximation. This makes the analytical study of a large-signal operation possible. The theory is illustrated by using it to analyze the performance of an existing experimental tube
Real-space quasilinear theory of drift waves in a sheared magnetic field
International Nuclear Information System (INIS)
1977-02-01
A real-space quasilinear theory is developed for the collisional and the collisionless drift waves in a plasma with a sheared magnetic field of slab geometry. The equation obtained describes the interaction between many localized modes around different rational surfaces through the density modulation of the energy source region of each mode. The wave amplitudes approach to the stationary values through a relaxation oscillation process. When the width x sub(s) of the energy source region becomes comparable to the spacing Δx of the two adjacent rational surfaces, diffusion coefficient due to the wave is enhanced over the classical value, while the nonlocal heat transport due to the wave propagation is shown to be negligible compared to that associated with the diffusion process. (auth.)
Nonlinear theory of ion-acoustic waves in an ideal plasma with degenerate electrons
International Nuclear Information System (INIS)
Dubinov, A. E.; Dubinova, A. A.
2007-01-01
A nonlinear theory is constructed that describes steady-state ion-acoustic waves in an ideal plasma in which the electron component is a degenerate Fermi gas and the ion component is a classical gas. The parameter ranges in which such a plasma can exist are determined, and dispersion relations for ion-acoustic waves are obtained that make it possible to find the linear ion-acoustic velocity. Analytic gas-dynamic models of ion sound are developed for a plasma with the ion component as a cold, an isothermal, or an adiabatic gas, and moreover, the solutions to the equations of all the models are brought to a quadrature form. Profiles of a subsonic periodic and a supersonic solitary wave are calculated, and the upper critical Mach numbers of a solitary wave are determined. For a plasma with cold ions, the critical Mach number is expressed by an explicit exact formula
Analytic perturbation theory for screened Coulomb potential: full continuum wave function
International Nuclear Information System (INIS)
Bechler, A.; Ennan, Mc J.; Pratt, R.H.
1979-01-01
An analytic perturbation theory developed previously is used to find a continuum screened-Coulomb wave function characterized by definite asymptotic momentum. This wave function satisfies an inhomogeneous partial differential equation which is solved in parabolic coordinates; the solution depends on both parabolic variables. We calculate partial wave projections of this solution and show that we can choose to add a solution of the homogeneous equation such that the partial wave projections become equal to the normalized continuum radial function found previously. However, finding the unique solution with given asymptotic linear momentum will require either using boundary conditions to determine the unique needed solution of the homogeneous equation or equivalently specifying the screened-Coulomb phase-shifts. (author)
Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory
International Nuclear Information System (INIS)
Ghorbanpour Arani, A.; Kolahchi, R.; Vossough, H.
2012-01-01
Based on the strain gradient and Eringen’s piezoelasticity theories, wave propagation of an embedded double-walled boron nitride nanotube (DWBNNT) conveying fluid is investigated using Euler-Bernoulli beam model. The elastic medium is simulated by the Pasternak foundation. The van der Waals (vdW) forces between the inner and outer nanotubes are taken into account. Since, considering electro-mechanical coupling made the nonlinear motion equations, a numerical procedure is proposed to evaluate the upstream and downstream phase velocities. The results indicate that the effect of nonlinear terms in motion equations on the phase velocity cannot be neglected at lower wave numbers. Furthermore, the effect of fluid-conveying on wave propagation of the DWBNNT is significant at lower wave numbers.
Effective gravitational wave stress-energy tensor in alternative theories of gravity
International Nuclear Information System (INIS)
Stein, Leo C.; Yunes, Nicolas
2011-01-01
The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.
Djakou, Audrey Kamta; Darmon, Michel; Fradkin, Larissa; Potel, Catherine
2015-11-01
Diffraction phenomena studied in electromagnetism, acoustics, and elastodynamics are often modeled using integrals, such as the well-known Sommerfeld integral. The far field asymptotic evaluation of such integrals obtained using the method of steepest descent leads to the classical Geometrical Theory of Diffraction (GTD). It is well known that the method of steepest descent is inapplicable when the integrand's stationary phase point coalesces with its pole, explaining why GTD fails in zones where edge diffracted waves interfere with incident or reflected waves. To overcome this drawback, the Uniform geometrical Theory of Diffraction (UTD) has been developed previously in electromagnetism, based on a ray theory, which is particularly easy to implement. In this paper, UTD is developed for the canonical elastodynamic problem of the scattering of a plane wave by a half-plane. UTD is then compared to another uniform extension of GTD, the Uniform Asymptotic Theory (UAT) of diffraction, based on a more cumbersome ray theory. A good agreement between the two methods is obtained in the far field.
Internal wave-mediated shading causes frequent vertical migrations in fishes
Kaartvedt, Stein
2012-04-25
We provide evidence that internal waves cause frequent vertical migrations (FVM) in fishes. Acoustic data from the Benguela Current revealed that pelagic scattering layers of fish below ~140 m moved in opposite phases to internal waves, ascending ~20 m towards the wave trough and descending from the wave crest. At the trough, the downward displacement of upper waters and the upward migration of fish created an overlapping zone. Near-bottom fish correspondingly left the benthic boundary zone at the wave trough, ascending into an acoustic scattering layer likely consisting of zooplankton and then descending to the benthic boundary zone at the wave crest. We suggest that this vertical fish migration is a response to fluctuations in light intensity of 3 to 4 orders of magnitude caused by shading from a turbid surface layer that had chlorophyll a values of 3 to 4 mg m−3 and varied in thickness from ~15 to 50 m at a temporal scale corresponding to the internal wave period (30 min). This migration frequency thus is much higher than that of the common and widespread light-associated diel vertical migration. Vertical movements affect prey encounters, growth, and survival. We hypothesize that FVM increase the likelihood of prey encounters and the time for safe visual foraging among planktivorous fish, thereby contributing to efficient trophic transfer in major upwelling areas.
A Note on Standing Internal Inertial Gravity Waves of Finite Amplitude
Thorpe, S. A.
2003-01-01
The effects of finite amplitude are examined in two-dimensional, standing, internal gravity waves in a rectangular container which rotates about a vertical axis at frequency f/2. Expressions are given for the velocity components, density fluctuations and isopycnal displacements to second order in the wave steepness in fluids with buoyancy frequency, N, of general form, and the effect of finite amplitude on wave frequency is given in an expansion to third order. The first order solutions, and the solutions to second order in the absence of rotation, are shown to conserve energy during a wave cycle. Analytical solutions are found to second order for the first two modes in a deep fluid with N proportional to sech(az), where z is the upward vertical coordinate and a is scaling factor. In the absence of rotation, results for the first mode in the latter stratification are found to be consistent with those for interfacial waves. An analytical solution to fourth order in a fluid with constant N is given and used to examine the effects of rotation on the development of static instability or of conditions in which shear instability may occur. As in progressive internal waves, an effect of rotation is to enhance the possibility of shear instability for waves with frequencies close to f. The analysis points to a significant difference between the dynamics of standing waves in containers of limited size and progressive internal waves in an unlimited fluid; the effect of boundaries on standing waves may inhibit the onset of instability. A possible application of the analysis is to transverse oscillations in long, narrow, steep-sided lakes such as Loch Ness, Scotland.
Dynamics of Nearshore Sand Bars and Infra-gravity Waves: The Optimal Theory Point of View
Bouchette, F.; Mohammadi, B.
2016-12-01
It is well known that the dynamics of near-shore sand bars are partly controlled by the features (location of nodes, amplitude, length, period) of the so-called infra-gravity waves. Reciprocally, changes in the location, size and shape of near-shore sand bars can control wave/wave interactions which in their turn alter the infra-gravity content of the near-shore wave energy spectrum. The coupling infra-gravity / near-shore bar is thus definitely two ways. Regarding numerical modelling, several approaches have already been considered to analyze such coupled dynamics. Most of them are based on the following strategy: 1) define an energy spectrum including infra-gravity, 2) tentatively compute the radiation stresses driven by this energy spectrum, 3) compute sediment transport and changes in the seabottom elevation including sand bars, 4) loop on the computation of infra-gravity taking into account the morphological changes. In this work, we consider an alternative approach named Nearshore Optimal Theory, which is a kind of breakdown point of view for the modeling of near-shore hydro-morphodynamics and wave/ wave/ seabottom interactions. Optimal theory applied to near-shore hydro-morphodynamics arose with the design of solid coastal defense structures by shape optimization methods, and is being now extended in order to model dynamics of any near-shore system combining waves and sand. The basics are the following: the near-shore system state is through a functional J representative of the energy of the system in some way. This J is computed from a model embedding the physics to be studied only (here hydrodynamics forced by simple infra-gravity). Then the paradigm is to say that the system will evolve so that the energy J tends to minimize. No really matter the complexity of wave propagation nor wave/bottom interactions. As soon as J embeds the physics to be explored, the method does not require a comprehensive modeling. Near-shore Optimal Theory has already given
Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)
Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo
2016-11-01
A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).
Xu, Jian-Jun
1989-01-01
The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.
Tsai, Shirley C; Tsai, Chen S
2013-08-01
A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.
International Nuclear Information System (INIS)
1996-01-01
This brochure contains the abstracts of reports delivered by 22 participants at the 15. International Workshop on Nuclear Theory organized by the Institute for Nuclear Research and Nuclear Energy, Bulgaria. The main topics discussed are: hot giant dipole resonance problem, nuclear dynamics in the phase space, heavy ion collisions, ground state correlations beyond RPA, short-range nucleon-nucleon correlation effects in various applications (semiclassical models, magnetic form factors, nucleon momentum distributions, charge densities), nucleon-nucleon interactions in the frame of the semiclassical distorted wave model and O(8) model , nuclear surface in preequilibrium reactions at low energies, magnetic excitations in deformed nuclei, particle decay and E2 transitions, fragmentation at near-barrier energies in heavy ion reactions, IBM models, representations of deformed groups and HF method. All items are recorded in INIS separately
International Conference on Dynamical Systems : Theory and Applications
2016-01-01
The book is a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.
11th International Workshop on Condensed Matter Theories
Bishop, R; Manninen, Matti; Condensed Matter Theories : Volume 3
1988-01-01
This book is the third volume in an approximately annual series which comprises the proceedings of the International Workshops on Condensed Matter Theories. The first of these meetings took place in 1977 in Sao Paulo, Brazil, and successive workshops have been held in Trieste, Italy (1978), Buenos Aires, Argentina (1979), Caracas, Venezuela (1980), Mexico City, Mexico (1981), St. Louis, USA (1982), Altenberg, Federal Republic of Germany (1983), Granada, Spain (1984), San Francisco, USA (1985), and Argonne, USA (1986). The present volume contains the proceedings of the Eleventh Workshop which took place in Qulu, Finland during the period 27 July - 1 August, 1987. The original motivation and the historical evolution of the series of Workshops have been amply described in the preface to the first volume in the present series. An important objective throughout has been to work against the ever-present trend for physics to fragment into increasingly narrow fields of specialisation, between which communication is d...
International Conference on Dynamical Systems : Theory and Applications
2016-01-01
The book is the second volume of a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.
Backward wave oscillators with rippled wall resonators: Analytic theory and numerical simulation
International Nuclear Information System (INIS)
Swegle, J.A.; Poukey, J.W.
1985-01-01
The 3-D analytic theory is based on the approximation that the device is infinitely long. In the absence of an electron beam, the theory is exact and allows us to compute the dispersion characteristics of the cold structure. With the inclusion of a thin electron beam, we can compute the growth rates resulting from the interaction between a waveguide mode of the structure and the slower space charge wave on the beam. In the limit of low beam currents, the full dispersion relation based on an electromagnetic analysis can be placed in correspondence with the circuit theory of Pierce. Numerical simulations permit us to explore the saturated, large amplitude operating regime for TM axisymmetric modes. The scaling of operating frequency, peak power, and operating efficiency with beam and resonator parameters is examined. The analytic theory indicates that growth rates are largest for the TM 01 modes and decrease with both the radial and azimuthal mode numbers. Another interesting trend is that for a fixed cathode voltage and slow wave structure, growth rates peak for a beam current below the space charge limiting value and decrease for both larger and smaller currents. The simulations show waves that grow from noise without any input signal, so that the system functions as an oscillator. The TM 01 mode predominates in all simulations. While a minimum device length is required for the start of oscillations, it appears that if the slow wave structure is too long, output power is decreased by a transfer of wave energy back to the electrons. Comparisons have been made between the analytical and numerical results, as well as with experimental data obtained at Sandia National Laboratories
Second-Order Moller-Plesset Perturbation Theory for Molecular Dirac-Hartree-Fock Wave Functions
Dyall, Kenneth G.; Arnold, James O. (Technical Monitor)
1994-01-01
Moller-Plesset perturbation theory is developed to second order for a selection of Kramers restricted Dirac-Hartree-Fock closed and open-shell reference wave functions. The open-shell wave functions considered are limited to those with no more than two electrons in open shells, but include the case of a two-configuration SCF reference. Denominator shifts are included in the style of Davidson's OPT2 method. An implementation which uses unordered integrals with labels is presented, and results are given for a few test cases.
Datler, Georg; Jagodzinski, Wolfgang; Schmidt, Peter
2013-01-01
In the last decades value research has produced a vast number of theoretical concepts. However, it is unclear how the different value theories relate to each other. This study makes a first step toward a systematic comparison of value theories. It focuses on the individual level of the two approaches that are, at present, probably the most prominent in international research - the theory of basic human values of Shalom Schwartz and the postmodernization theory of Ronald Inglehart. Using data ...
The International Pulsar Timing Array project: using pulsars as a gravitational wave detector
Energy Technology Data Exchange (ETDEWEB)
Hobbs, G; Burke-Spolaor, S; Champion, D [Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710 (Australia); Archibald, A [Department of Physics, McGill University, Montreal, PQ, H3A 2T8 (Canada); Arzoumanian, Z [CRESST/USRA, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Backer, D [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Bailes, M; Bhat, N D R [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn VIC 3122 (Australia); Burgay, M [Universita di Cagliari, Dipartimento di Fisica, SP Monserrato-Sestu km 0.7, 09042 Monserrato (Canada) (Italy); Cognard, I; Desvignes, G; Ferdman, R D [Station de Radioastronomie de Nanay, Observatoire de Paris, 18330 Nancay (France); Coles, W [Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA (United States); Cordes, J [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Demorest, P [National Radio Astronomy Observatory (NRAO), Charlottesville, VA 22903 (United States); Finn, L [Center for Gravitational Wave Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Freire, P [Max-Planck-Institut fuer Radioastronomie, Auf Dem Huegel 69, 53121, Bonn (Germany); Gonzalez, M [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Hessels, J [Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam (Netherlands); Hotan, A, E-mail: george.hobbs@csiro.a [Department of Imaging and Applied Physics, Curtin University, Bentley, WA (Australia)
2010-04-21
The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (approx 10{sup -9}-10{sup -8} Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.
Directory of Open Access Journals (Sweden)
O. Onishchenko
2013-03-01
Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.
Arvelyna, Yessy; Oshima, Masaki
2005-01-01
This paper studies the effect of internal wave in the Lombok Strait to chlorophyll distribution in the surrounded areas using ERS SAR, ASTER, SeaWiFS and AVHRR-NOAA images data during 1996-2004 periods. The observation results shows that the internal waves were propagated to the south and the north of strait and mostly occurred during transitional season from dry to wet and wet season (rainy season) between September to December when the layers are strongly stratified. Wavelet transform of image using Meyer wavelet analysis is applied for internal wave detection in ERS SAR and ASTER images, for symmetric extension of data at the image boundaries, to prevent discontinuities by a periodic wrapping of data in fast algorithm and space-saving code. Internal wave created elongated pattern in detail and approximation of image from level 2 to 5 and retained value between 2-4.59 times compared to sea surface, provided accuracy in classification over than 80%. In segmentation process, the Canny edge detector is applied on the approximation image at level two to derive internal wave signature in image. The proposed method can extract the internal wave signature, maintain the continuity of crest line while reduce small strikes from noise. The segmentation result, i.e. the length between crest and trough, is used to compute the internal wave induced current using Korteweg-de Vries (KdV) equation. On ERS SAR data contains surface signature of internal wave (2001/8/20), we calculated that internal wave propagation speed was 1.2 m/s and internal wave induced current was 0.56 m/s, respectively. From the observation of ERS SAR and SeaWiFS images data, we found out that the distribution of maximum chlorophyll area at southern coastline off Bali Island when strong internal wave induced current occurred in south of the Lombok Strait was distributed further to westward, i.e. from 9.25°-10.25°LS, 115°-116.25°SE to 8.8°-10.7°LS, 114.5°-116°SE, and surface chlorophyll concentration
Martin, Alexandre; Torrent, Marc; Caracas, Razvan
2015-03-01
A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).
Directory of Open Access Journals (Sweden)
A. M. Abd-Alla
2013-01-01
Full Text Available Estimation is done to investigate the gravitational and rotational parameters effects on surface waves in fibre-reinforced thermoelastic media. The theory of generalized surface waves has been firstly developed and then it has been employed to investigate particular cases of waves, namely, Stoneley waves, Rayleigh waves, and Love waves. The analytical expressions for surface waves velocity and attenuation coefficient are obtained in the physical domain by using the harmonic vibrations and four thermoelastic theories. The wave velocity equations have been obtained in different cases. The numerical results are given for equation of coupled thermoelastic theory (C-T, Lord-Shulman theory (L-S, Green-Lindsay theory (G-L, and the linearized (G-N theory of type II. Comparison was made with the results obtained in the presence and absence of gravity, rotation, and parameters for fibre-reinforced of the material media. The results obtained are displayed by graphs to clear the phenomena physical meaning. The results indicate that the effect of gravity, rotation, relaxation times, and parameters of fibre-reinforced of the material medium is very pronounced.
International Nuclear Information System (INIS)
Holland, P.
2001-01-01
Pursuing the Hamiltonian formulation of the De Broglie-Bohm (deBB) theory presented in the preceding paper, the Hamilton-Jacobi (HJ) theory of the wave-particle system is developed. It is shown how to derive a HJ equation for the particle, which enables trajectories to be computed algebraically using Jacobi's method. Using Liouville's equation in the HJ representation it was found the restriction on the Jacobi solutions which implies the quantal distribution. This gives a first method for interpreting the deBB theory in HJ terms. A second method proceeds via an explicit solution of the field+particle HJ equation. Both methods imply that the quantum phase may be interpreted as an incomplete integral. Using these results and those of the first paper it is shown how Schroedinger's equation can be represented in Liouvilian terms, and vice versa. The general theory of canonical transformations that represent quantum unitary transformations is given, and it is shown in principle how the trajectory theory may be expressed in other quantum representations. Using the solution found for the total HJ equation, an explicit solution for the additional field containing a term representing the particle back-reaction is found. The conservation of energy and momentum in the model is established, and weak form of the action-reaction principle is shown to hold. Alternative forms for the Hamiltonian are explored and it is shown that, within this theoretical context, the deBB theory is not unique. The theory potentially provides an alternative way of obtaining the classical limit
Internal structure of relativistic astrophysical objects in the wave approximation
International Nuclear Information System (INIS)
Bogdanov, I.V.; Demkov, Yu.N.
1987-01-01
Spherically symmetric inverse problems for the scattering of quantum particles by a static gravitational field are considered within the framework of general relativity theory. Methods are developed for determining the metric tensor on the basis of scattering data for a fixed energy or zero angular momentum for the Klein-Fock-Gordon equation in the Schwarzschild metric. The relation between the S-matrix and squared 4-momentum operator in curved space is investigated. The main elements of the algorithms developed are two definite nonlinear ordinary differential equations of the third and fourth order based on the scattering data. On the one hand, the inverse problems studied extend the classical inverse problems for the gravitational field, solved previously, to the quantum case. On the other hand, they extend the Marchenko and Regge-Newton methods familiar in quantum theory to the case of a gravitational field. An analogy is established between the motion of a scalar particle in a strong gravitational field and the motion in a field with a potential depending on the angular momentum or energy in nonrelativistic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Xie, Wenqiu; He, Fangming [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zicheng; Luo, Jirun; Zhao, Ding; Liu, Qinglun [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-04-15
Based on a rectilinear sheet electron beam propagating through the tunnel of a staggered double-grating arrays waveguide (SDGAW) slow-wave structure (SWS), a three dimensional field theory for describing the modes and the beam-wave interaction is presented, in which the higher order terms inside the grooves are retained. The fields' distribution and the conductivity losses are also calculated utilizing the theoretical model. With the optimized parameters of the SWS and the electron beam, a 1 THz SDGAW Cerenkov traveling wave amplifier may obtain a moderate net gain (the peak gain is 12.7 dB/cm) and an ultra 3 dB wideband (0.19 THz) considering the serious Ohmic losses. The theoretical results have been compared with those calculated by 3D HFSS code and CST STUDIO particle-in-cell simulations.
Kinetic theory of interaction of high frequency waves with a rotating plasma
International Nuclear Information System (INIS)
Chiu, S. C.; Chan, V. S.; Chu, M. S.; Lin-Liu, Y. R.
2000-01-01
The equations of motion of charged particles of a strongly magnetized flowing plasma under the influence of high frequency waves are derived in the guiding center approximation. A quasilinear theory of the interactions of waves with rotating plasmas is formulated. This is applied to investigate the effect of radio frequency waves on a rotating tokamak plasma with a heated minority species. The angular momentum drive is mainly due to the rf-induced radial minority current. The return current by the bulk plasma gives an equal and opposite rotation drive on the bulk. Using moment equations and a small banana width approximation, the JxB drive was evaluated for the bulk plasma. Quite remarkably, although collisions are included, the net rotation drive is due to a term which can be obtained by neglecting collisions. (c) 2000 American Institute of Physics
A multiple scattering theory for EM wave propagation in a dense random medium
Karam, M. A.; Fung, A. K.; Wong, K. W.
1985-01-01
For a dense medium of randomly distributed scatterers an integral formulation for the total coherent field has been developed. This formulation accounts for the multiple scattering of electromagnetic waves including both the twoand three-particle terms. It is shown that under the Markovian assumption the total coherent field and the effective field have the same effective wave number. As an illustration of this theory, the effective wave number and the extinction coefficient are derived in terms of the polarizability tensor and the pair distribution function for randomly distributed small spherical scatterers. It is found that the contribution of the three-particle term increases with the particle size, the volume fraction, the frequency and the permittivity of the particle. This increase is more significant with frequency and particle size than with other parameters.
Wave scattering theory and the absorption problem for a black hole
International Nuclear Information System (INIS)
Sanchez, N.
1977-01-01
The general problem of scattering and absorption of waves from a Schwarzschild black hole is investigated. A scattering absorption amplitude is introduced. The unitarity theorem for this problem is derived from the wave equation and its boundary conditions. The formulation of the problem, within the formal scattering theory approach, is also given. The existence of a singularity in space-time is related explicitly to the presence of a nonzero absorption cross section. Another derivation of the unitarity theorem for our problem is given by operator methods. The reciprocity relation is also proved; that is, for the scattering of waves the black hole is a reciprocal system. Finally, the elastic scattering problem is considered, and the elastic scattering amplitude is calculated for high frequencies and small scattering angles
Proceedings of the international colloquium on modern quantum field theory II
International Nuclear Information System (INIS)
Das, S.R.; Mandal, G.; Mukhi, S.; Wadia, S.R.
1995-01-01
In the second International Colloquium on Modern Quantum Field Theory an attempt was made to cover a broad spectrum of topics in theoretical physics that included string theory, quantum gravity, statistical mechanics, condensed matter theory, complexity, lattice gauge theory and epistemological aspects of quantum mechanics. Papers relevant to INIS in the published proceedings are indexed separately
On the generation and evolution of internal solitary waves in the southern Red Sea
Guo, Daquan
2015-04-01
Satellite observations recently revealed the existence of trains of internal solitary waves in the southern Red Sea between 16.0°N and 16.5°N, propagating from the centre of the domain toward the continental shelf [Da silva et al., 2012]. Given the relatively weak tidal velocity in this area and their generation in the central of the domain, Da Silva suggested three possible mechanisms behind the generation of the waves, namely Resonance and disintegration of interfacial tides, Generation of interfacial tides by impinging, remotely generated internal tidal beams and for geometrically focused and amplified internal tidal beams. Tide analysis based on tide stations data and barotropic tide model in the Red Sea shows that tide is indeed very weak in the centre part of the Red Sea, but it is relatively strong in the northern and southern parts (reaching up to 66 cm/s). Together with extreme steep slopes along the deep trench, it provides favourable conditions for the generation of internal solitary in the southern Red Sea. To investigate the generation mechanisms and study the evolution of the internal waves in the off-shelf region of the southern Red Sea we have implemented a 2-D, high-resolution and non-hydrostatic configuration of the MIT general circulation model (MITgcm). Our simulations reproduce well that the generation process of the internal solitary waves. Analysis of the model\\'s output suggests that the interaction between the topography and tidal flow with the nonlinear effect is the main mechanism behind the generation of the internal solitary waves. Sensitivity experiments suggest that neither tidal beam nor the resonance effect of the topography is important factor in this process.
Witten, Matthew
1983-01-01
Hyperbolic Partial Differential Equations, Volume 1: Population, Reactors, Tides and Waves: Theory and Applications covers three general areas of hyperbolic partial differential equation applications. These areas include problems related to the McKendrick/Von Foerster population equations, other hyperbolic form equations, and the numerical solution.This text is composed of 15 chapters and begins with surveys of age specific population interactions, populations models of diffusion, nonlinear age dependent population growth with harvesting, local and global stability for the nonlinear renewal eq
Kinetic theory for radiation interacting with sound waves in ultrarelativistic pair plasmas
International Nuclear Information System (INIS)
Marklund, Mattias; Shukla, Padma K.; Stenflo, Lennart
2006-01-01
A kinetic theory for radiation interacting with sound waves in an ultrarelativistic electron-positron plasma is developed. It is shown that the effect of a spatial spectral broadening of the electromagnetic pulse is to introduce a reduction of the growth rates for the decay and modulational instabilities. Such spectral broadening could be due to a finite pulse coherence length, or through the use of random phase filters, and would stabilize the propagation of electromagnetic pulses
Properties of partial-wave amplitudes in conformal invariant field theories
Ferrara, Sergio; Grillo, A F
1975-01-01
Analyticity properties of partial-wave amplitudes of the conformal group O/sub D,2/ (D not necessarily integer) in configuration space are investigated. The presence of Euclidean singularities in the Wilson expansion in conformal invariant field theories is discussed, especially in connection with the program of formulating dynamical bootstrap conditions coming from the requirement of causality. The exceptional case of D-2 is discussed in detail. (18 refs).
Perturbation theory for the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.; Litskevich, I.K.
1990-01-01
The completeness and orthogonality of the solutions of the Bethe-Salpeter equation is proven. A correct derivation of perturbation-theory equations is given. A generalization that includes the field of a plane electromagnetic wave is proposed. The rate of one-photon annihilation of positronium in this field is calculated. If the one-photon decay is allowed, the stationary states of the system are found (states of light-positronium)
Internal waves and modern and ancient hiatuses in pelagic caps of Pacific guyots and seamounts
Mitchell, Neil; Simmons, Harper; Lear, Carrie
2013-04-01
Locations of recent non-deposition and ancient hiatuses in the pelagic caps of guyots and seamounts are compared with paleotemperature and physiographic information to speculate on the character of internal tidal waves in the upper Pacific Ocean through the Cenozoic. Internal tidal waves are generated where the ocean barotropic tide passes over the Hawaiian and other major ridges in the Pacific basin. Drill core and geophysical evidence for sediment accumulation, non-deposition or erosion are used to classify broadly sites as either accumulating or eroding/non-depositing in the recent geological past. When these classified sites are compared against results of a numerical model of the internal tide field (Simmons, Ocean Mod. 2008), the sites accumulating particles over the past few million years are all found to lie away from beams of the modeled internal tide, while those that have not been accumulating are in areas of high internal wave energy. Given the correspondence to modern internal wave conditions, we examine whether internal tides can explain ancient hiatuses at the drill sites. For example, Late Cenozoic pelagic caps on guyots among the Marshall Islands contain two hiatuses of broadly similar age, but the dates of the first pelagic sediments deposited following each hiatus do not correlate between guyots, suggesting that they originate not from universal factors (e.g., water chemistry) but local, probably physical factors, such as internal tides. We investigate how changing boundary conditions such as ocean temperature and basin physiography may have affected the geometry and vigour of internal tides through the Cenozoic. Changes in the geometry of ridges underlying the Solomon, Bonin and Marianas Island chains caused by plate tectonics and subsidence may be responsible for sediment hiatuses at these far-field guyot sites.
Mitri, Farid
2014-11-01
The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent.
Internal wave mixing in the Baltic Sea: Near-inertial waves in the absence of tides
van der Lee, E. M.; Umlauf, L.
2011-10-01
The dynamics of near-inertial motions, and their relation to mixing, is investigated here with an extensive data set, including turbulence and high-resolution velocity observations from two cruises conducted in 2008 (summer) and 2010 (winter) in the Bornholm Basin of the Baltic Sea. In the absence of tides, it is found that the basin-scale energetics are governed by inertial oscillations and low-mode near-inertial wave motions that are generated near the lateral slopes of the basin. These motions are shown to be associated with persistent narrow shear-bands, strongly correlated with bands of enhanced dissipation rates that are the major source of mixing inside the permanent halocline of the basin. In spite of different stratification, near-inertial wave structure, and atmospheric forcing during summer and winter conditions, respectively, the observed dissipation rates were found to scale with local shear and stratification in a nearly identical way. This scaling was different from the Gregg-Henyey-type models used for the open ocean, but largely consistent with the MacKinnon-Gregg scaling developed for the continental shelf.
International Nuclear Information System (INIS)
Lashmore-Davies, C.N.; Dendy, R.O.
1990-01-01
The gyrokinetic theory of ion cyclotron resonance is extended to include propagation at arbitrary angles to a straight equilibrium magnetic field with a linear perpendicular gradient in strength. The case of the compressional Alfven wave propagating in a D( 3 He) plasma is analyzed in detail, for arbitrary concentrations of the two species. A self-consistent local dispersion relation is obtained using a single mode description; this approach enables three-dimensional effects to be included and permits efficient calculation of the transmission coefficient. The dependence of this quantity on the species density ratio, minority temperature, plasma density, magnetic field and equilibrium scale length is obtained. A self-consistent treatment of the variation of the field polarization across the resonant region is included. Families of transmission curves are given as a function of the normalized parallel wave number for parameters relevant to Joint European Torus. Perpendicular absorption by the minority ions is also discussed, and shown to depend on a single parameter, the ratio of the ion thermal velocity to the Alfven speed. (author)
Directory of Open Access Journals (Sweden)
O. D. Shishkina
2013-10-01
Full Text Available An interaction of internal solitary waves with the shelf edge in the time periods related to the presence of a pronounced seasonal pycnocline in the Red Sea and in the Alboran Sea is analysed via satellite photos and SAR images. Laboratory data on transformation of a solitary wave of depression while passing along the transverse bottom step were obtained in a tank with a two-layer stratified fluid. The certain difference between two characteristic types of hydrophysical phenomena was revealed both in the field observations and in experiments. The hydrological conditions for these two processes were named the "deep" and the "shallow" shelf respectively. The first one provides the generation of the secondary periodic short internal waves – "runaway" edge waves – due to change in the polarity of a part of a soliton approaching the shelf normally. Another one causes a periodic shear flow in the upper quasi-homogeneous water layer with the period of incident solitary wave. The strength of the revealed mechanisms depends on the thickness of the water layer between the pycnocline and the shelf bottom as well as on the amplitude of the incident solitary wave.
Colosi, John A
2008-09-01
While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.
International Nuclear Information System (INIS)
Takahashi, K.; McEntire, R.W.; Cheng, C.Z.; Kistler, L.M.
1990-01-01
The properties of 23 magnetic pulsation events observed by the AMPTE CCE spacecraft are studies. The events have a second harmonic period of 80-600 s (roughly the Pc 5 range), are observed in cluster in the dawn (0300-0800 magnetic local time, MLT) and dusk (1,600 -2,100 MLT) sectors, and are localized near the magnetic equator. Although the azimuthal wave number, m, estimated from an ion finite Larmor radius effect, is generally large (|m| ∼ 50), there is a marked difference between the events observed in the dawn and dusk sectors. In the dawn sector the waves have low frequencies (1-5 mHz), indicate right-hand polarization, and propagate westward. The authors suggest that the waves are all westward propagating in the plasma rest frame and that local-time-dependent Doppler shift is the reason for the local time dependence of the wave properties. The drift mirror instability is considered to be the mechanism for exciting the westward propagation waves. An analytical formula for the ion flux oscillations is derived on the basis of the nonlinear gyrokinetic theory. The observed correlation between the ion flux and the parallel magnetic field perturbation δB parallel can be adequately explained with this analytical formula
A Dirac sea pilot-wave model for quantum field theory
International Nuclear Information System (INIS)
Colin, S; Struyve, W
2007-01-01
We present a pilot-wave model for quantum field theory in which the Dirac sea is taken seriously. The model ascribes particle trajectories to all the fermions, including the fermions filling the Dirac sea. The model is deterministic and applies to the regime in which fermion number is superselected. This work is a further elaboration of work by Colin, in which a Dirac sea pilot-wave model is presented for quantum electrodynamics. We extend his work to non-electromagnetic interactions, we discuss a cut-off regularization of the pilot-wave model and study how it reproduces the standard quantum predictions. The Dirac sea pilot-wave model can be seen as a possible continuum generalization of a lattice model by Bell. It can also be seen as a development and generalization of the ideas by Bohm, Hiley and Kaloyerou, who also suggested the use of the Dirac sea for the development of a pilot-wave model for quantum electrodynamics
Directory of Open Access Journals (Sweden)
Zhenyu Han
2018-04-01
Full Text Available The detection technique of component defects is currently only realized to detect offline defects and online surface defects during automated fiber placement (AFP. The characteristics of stress waves can be effectively applied to identify and detect internal defects in material structure. However, the correlation mechanism between stress waves and internal defects remains unclear during the AFP process. This paper proposes a novel experimental method to test stress waves, where continuous loading induced by process itself is used as an excitation source without other external excitation. Twenty-seven groups of thermosetting prepreg laminates under different processing parameters are manufactured to obtain different void content. In order to quantitatively estimate the void content in the prepreg structure, the relation model between the void content and ultrasonic attenuation coefficient is revealed using an A-scan ultrasonic flaw detector and photographic methods by optical microscope. Furthermore, the high-frequency noises of stress waves are removed using Haar wavelet transform. The peaks, the Manhattan distance and mean stress during the laying process are analyzed and evaluated. Partial conclusions in this paper could provide theoretical support for online real-time detection of internal defects based on stress wave characteristics.
Varma, Dheeraj; Mathur, Manikandan
2017-11-01
Internal tides generated by barotropic tides on bottom topography or the spatially compact near-inertial mixed layer currents excited by surface winds can be conveniently represented in the linear regime as a superposition of vertical modes at a given frequency in an arbitrarily stratified ocean of finite depth. Considering modes (m , n) at a frequency ω in the primary wave field, we derive the weakly nonlinear solution, which contains a secondary wave at 2 ω that diverges when it forms a resonant triad with the primary waves. In nonuniform stratifications, resonant triads are shown to occur when the horizontal component of the classical RTI criterion k->1 +k->2 +k->3 = 0 is satisfied along with a non-orthogonality criterion. In nonuniform stratifications with a pycnocline, infinitely more pairs of primary wave modes (m , n) result in RTI when compared to a uniform stratification. Further, two nearby high modes at around the near-inertial frequency often form a resonant triad with a low mode at 2 ω , reminiscent of the features of PSI near the critical latitude. The theoretical framework is then adapted to investigate RTI in two different scenarios: low-mode internal tide scattering over topography, and internal wave beams incident on a pycnocline. The authors thank the Ministry of Earth Sciences, Government of India for financial support under the Monsoon Mission Grant MM/2014/IND-002.
Characterizing the nonlinear internal wave climate in the northeastern South China Sea
Directory of Open Access Journals (Sweden)
S. R. Ramp
2010-09-01
Full Text Available Four oceanographic moorings were deployed in the South China Sea from April 2005 to June 2006 along a transect extending from the Batanes Province, Philippines in the Luzon Strait to just north of Dong-Sha Island on the Chinese continental slope. The purpose of the array was to observe and track large-amplitude nonlinear internal waves (NIWs from generation to shoaling over the course of one full year. The basin and slope moorings observed velocity, temperature (T and salinity (S at 1–3 min intervals to observe the waves without aliasing. The Luzon mooring observed velocity at 15 min and T and S at 3 min, primarily to resolve the tidal forcing in the strait.
The observed waves travelled WNW towards 282–288 degrees with little variation. They were predominantly mode-1 waves with orbital velocities exceeding 100 cm s^{−1} and thermal displacements exceeding 100 m. Consistent with earlier authors, two types of waves were observed: the a-waves arrived diurnally and had a rank-ordered packet structure. The b-waves arrived in between, about an hour later each day similar to the pattern of the semi-diurnal tide. The b-waves were weaker than the a-waves, usually consisted of just one large wave, and were often absent in the deep basin, appearing as NIW only upon reaching the continental slope. The propagation speed of both types of waves was 323±31 cm s^{−1} in the deep basin and 222±18 cm s^{−1} over the continental slope. These speeds were 11–20% faster than the theoretical mode-1 wave speeds for the observed stratification, roughly consistent with the additional contribution from the nonlinear wave amplitude. The observed waves were clustered around the time of the spring tide at the presumed generation site in the Luzon Strait, and no waves were observed at neap tide. A remarkable feature was the distinct lack of waves during the winter months, December 2005 through February
On theory and simulation of heaving-buoy wave-energy converters with control
Energy Technology Data Exchange (ETDEWEB)
Eidsmoen, H.
1995-12-01
Heaving-buoy wave-energy converters with control were studied. The buoy is small compared to the wavelength. The resonance bandwidth is then narrow and the energy conversion in irregular waves can be significantly increased if the oscillatory motion of the device can be actively controlled, and the power output from the converter will vary less with time than the wave power transport. A system of two concentric cylinders of the same radius, oscillating in heave only, is analysed in the frequency-domain. The mathematical model can be used to study a tight-moored buoy, as well as a buoy reacting against a submerged body. The knowledge of the frequency-domain hydrodynamic parameters is used to develop frequency-domain and time-domain mathematical models of heaving-buoy wave energy converters. The main emphasis is on using control to maximize the energy production and to protect the machinery of the wave-energy converter in very large waves. Three different methods are used to study control. (1) In the frequency-domain explicit analytical expressions for the optimum oscillation are found, assuming a continuous sinusoidal control force, and from these expressions the optimum time-domain oscillation can be determined. (2) The second method uses optimal control theory, using a control variable as the instrument for the optimisation. Unlike the first method, this method can include non-linearities. But this method gives numerical time series for the state variables and the control variable rather than analytical expressions for the optimum oscillation. (3) The third method is time-domain simulation. Non-linear forces are included, but the method only gives the response of the system to a given incident wave. How the different methods can be used to develop real-time control is discussed. Simulations are performed for a tight-moored heaving-buoy converter with a high-pressure hydraulic system for energy production and motion control. 147 refs., 38 figs., 22 tabs.
The internal wave field in Sau reservoir : Observation and modeling of a third vertical mode
Vidal Hurtado, Javier; Casamitjana, Xavier; Colomer, Jordi; Serra Putellas, Teresa
2005-01-01
Water withdrawal from Mediterranean reservoirs in summer is usually very high. Because of this, stratification is often continuous and far from the typical two-layered structure, favoring the excitation of higher vertical modes. The analysis of wind, temperature, and current data from Sau reservoir (Spain) shows that the third vertical mode of the internal seiche (baroclinic mode) dominated the internal wave field at the beginning of September 2003. We used a continuous stratification two-dim...
Internal conversion coefficients of high multipole transitions: Experiment and theories
International Nuclear Information System (INIS)
Gerl, J.; Vijay Sai, K.; Sainath, M.; Gowrishankar, R.; Venkataramaniah, K.
2008-01-01
A compilation of the available experimental internal conversion coefficients (ICCs), α T , α K , α L , and ratios K/L and K/LM of high multipole (L > 2) transitions for a number of elements in the range 21 ≤ Z ≤ 94 is presented. Our listing of experimental data includes 194 data sets on 110 E3 transitions, 10 data sets on 6 E4 transitions, 11 data sets on 7 E5 transitions, 38 data sets on 21 M3 transitions, and 132 data sets on 68 M4 transitions. Data with less than 10% experimental uncertainty have been selected for comparison with the theoretical values of Hager and Seltzer [R.S. Hager, E.C. Seltzer, Nucl. Data Tables A 4 (1968) 1], Rosel et al. [F. Roesel, H.M. Fries, K. Alder, H.C. Pauli, At. Data Nucl. Data Tables 21 (1978) 91], and BRICC. The relative percentage deviations (%Δ) have been calculated for each of the above theories and the averages (%Δ-bar) are estimated. The Band et al. [I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor Jr., P.O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81 (2002) 1] tables, using the BRICC interpolation code, are seen to give theoretical ICCs closest to experimental values
Theory of condensed matter. Lectures presented at an international course
International Nuclear Information System (INIS)
1968-01-01
The International Centre for Theoretical Physics, since its inception, has striven to maintain an interdisciplinary character in its research and training programme as far as different branches of theoretical physics are concerned. in pursuance of this aim the Centre has followed a policy of organizing extended research seminars with a comprehensive and synoptic coverage on varying disciplines. The first of these — lasting over a month — was held in 1964 on fluids of ionized particles and plasma physics; the second, lasting for two months, was concerned with physics of elementary particles and high-energy physics; the third, of three months’ duration, October — December 1966, covered nuclear theory; the fourth, bringing the series through a complete cycle, was a course on condensed matter held from 3 October to 16 December 1967. The present volume records the proceedings of this research seminar. The publication is divided into four parts containing 29 papers. Part I — General Courses, Part II - Dynamical lattice properties; Part III — Liquids and molecules; Part IV — Electronic properties
13th International Workshop on Condensed Matter Theories
1990-01-01
This volume gathers the invited talks of the XIII International Work shop on Condensed Matter Theories which took place in Campos do Jordao near Sao Paulo, Brazil, August 6-12, 1989. It contains contributions in a wide variety of fields including neutral quantum and classical fluids, electronic systems, composite materials, plasmas, atoms, molecules and nuclei, and as this year's workshop reflected the natural preoccupation in materials science with its spectacular prospect for mankind, room tempera ture super-conductivity. All topics are treated from a common viewpoint: that of many-body physics, whether theoretical or simu1ational. Since the very first workshop, held at the prestigious Instituto de Fisica Teorica in Sao Paulo, and organized by the same organizer of the 1989 workshop, Professor Valdir Casaca Aguilera-Navarro, the meeting has taken place annually six times in Latin America, four in Europe and three in the United States. Its principal objective has been to innitiate and nurture collaborati...
Expression for time travel based on diffusive wave theory: applicability and considerations
Aguilera, J. C.; Escauriaza, C. R.; Passalacqua, P.; Gironas, J. A.
2017-12-01
Prediction of hydrological response is of utmost importance when dealing with urban planning, risk assessment, or water resources management issues. With the advent of climate change, special care must be taken with respect to variations in rainfall and runoff due to rising temperature averages. Nowadays, while typical workstations have adequate power to run distributed routing hydrological models, it is still not enough for modeling on-the-fly, a crucial ability in a natural disaster context, where rapid decisions must be made. Semi-distributed time travel models, which compute a watershed's hydrograph without explicitly solving the full shallow water equations, appear as an attractive approach to rainfall-runoff modeling since, like fully distributed models, also superimpose a grid on the watershed, and compute runoff based on cell parameter values. These models are heavily dependent on the travel time expression for an individual cell. Many models make use of expressions based on kinematic wave theory, which is not applicable in cases where watershed storage is important, such as mild slopes. This work presents a new expression for concentration times in overland flow, based on diffusive wave theory, which considers not only the effects of storage but also the effects on upstream contribution. Setting upstream contribution equal to zero gives an expression consistent with previous work on diffusive wave theory; on the other hand, neglecting storage effects (i.e.: diffusion,) is shown to be equivalent to kinematic wave theory, currently used in many spatially distributed time travel models. The newly found expression is shown to be dependent on plane discretization, particularly when dealing with very non-kinematic cases. This is shown to be the result of upstream contribution, which gets larger downstream, versus plane length. This result also provides some light on the limits on applicability of the expression: when a certain kinematic threshold is reached, the
Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.
Badiey, Mohsen; Katsnelson, Boris G; Lin, Ying-Tsong; Lynch, James F
2011-04-01
Simultaneous measurements of acoustic wave transmissions and a nonlinear internal wave packet approaching an along-shelf acoustic path during the Shallow Water 2006 experiment are reported. The incoming internal wave packet acts as a moving frontal layer reflecting (or refracting) sound in the horizontal plane. Received acoustic signals are filtered into acoustic normal mode arrivals. It is shown that a horizontal multipath interference is produced. This has previously been called a horizontal Lloyd's mirror. The interference between the direct path and the refracted path depends on the mode number and frequency of the acoustic signal. A mechanism for the multipath interference is shown. Preliminary modeling results of this dynamic interaction using vertical modes and horizontal parabolic equation models are in good agreement with the observed data.
Near-surface current meter array measurements of internal gravity waves
Energy Technology Data Exchange (ETDEWEB)
Jones, H.B.E. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
We have developed various processing algorithms used to estimate the wave forms produced by hydrodynamic Internal Waves. Furthermore, the estimated Internal Waves are used to calculate the Modulation Transfer Function (MTF) which relates the current and strain rate subsurface fields to surface scattering phenomenon imaged by radar. Following a brief discussion of LLNL`s measurement platform (a 10 sensor current meter array) we described the generation of representative current and strain rate space-time images from measured or simulated data. Then, we present how our simulation capability highlighted limitations in estimating strain rate. These limitations spurred the application of beamforming techniques to enhance our estimates, albeit at the expense of collapsing our space-time images to 1-D estimates. Finally, we discuss progress with regard to processing the current meter array data captured during the recent Loch Linnhe field trials.
Atmospheric gravity waves observed by an international network of micro-barographs
International Nuclear Information System (INIS)
Marty, Julien
2010-01-01
The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) manages an international network of forty-two operational infra-sound stations recording the pressure fluctuations produced at the ground surface by infrasonic waves. This thesis demonstrates that most of these stations also accurately detect the pressure fluctuations in the entire gravity wave band. This work includes carrying out and analyzing several metrological laboratory experiments and a field campaign (M2008) in Mongolia in 2008. The layout of the experiments as well as the interpretation of their results gave rise to the development of a new linear spectral numerical model able to simulate the generation and propagation of gravity waves. This model was used to quantify the gravity waves produced by the atmospheric cooling that occurs during solar eclipses. The pressure fluctuations expected at ground level were estimated and compared to the data recorded during the 1 August 2008 solar eclipse by the CTBTO and M2008 stations. A detailed data analysis reveals two waves with similar time-frequency characteristics to those simulated for a stratospheric and tropospheric cooling. This constitutes, to our knowledge, a unique result. The validation of worldwide and pluri-annual pressure measurements in the entire gravity wave band allowed the statistical study of gravity wave spectra and atmospheric tides. The work presented throughout this thesis has led to the publication of two articles. A third one is in the drafting process. (author)
Internal waves over the shelf in the western Bay of Bengal: A case study
Digital Repository Service at National Institute of Oceanography (India)
Joshi, M.; Rao, A.D.; Mohanty, S.; Pradhan, H.K.; Murty, V.S.N.; RamPrasad, K.V.S.
.csr.2005.04.011 Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex fourier series. Math Comput 19:297–301 D’Asaro EA, Lien R-C, Henyey F (2007) High-frequency internal waves on the oregon continental shelf. J Phys Oceanogr 37...
DEFF Research Database (Denmark)
Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim
2017-01-01
This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ...
A statistical study of variations of internal gravity wave energy characteristics in meteor zone
Gavrilov, N. M.; Kalov, E. D.
1987-01-01
Internal gravity wave (IGW) parameters obtained by the radiometer method have been considered by many other researchers. The results of the processing of regular radiometeor measurements taken during 1979 to 1980 in Obninsk (55.1 deg N, 36.6 deg E) are presented.
The International Pulsar Timing Array project: using pulsars as a gravitational wave detector
Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; Coles, W.; Cordes, J.; Demorest, P.; Desvignes, G.; Ferdman, R.D.; Finn, L.; Freire, P.; Gonzalez, M.; Hessels, J.; Hotan, A.; Janssen, G.; Jenet, F.; Jessner, A.; Jordan, C.; Kaspi, V.; Kramer, M.; Kondratiev, V.; Lazio, J.; Lazaridis, K.; Lee, K.J.; Levin, Y.; Lommen, A.; Lorimer, D.; Lynch, R.; Lyne, A.; Manchester, R.; McLaughlin, M.; Nice, D.; Oslowski, S.; Pilia, M.; Possenti, A.; Purver, M.; Ransom, S.; Reynolds, J.; Sanidas, S.; Sarkissian, J.; Sesana, A.; Shannon, R.; Siemens, X.; Stairs, I.; Stappers, B.; Stinebring, D.; Theureau, G.; van Haasteren, R.; van Straten, W.; Verbiest, J.P.W.; Yardley, D.R.B.; You, X.P.
2010-01-01
The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to
Interference of Locally Forced Internal Waves in Non-Uniform Stratifications
Supekar, Rohit; Peacock, Thomas
2017-11-01
Several studies have investigated the effect of constructive or destructive interference on the transmission of internal waves propagating through non-uniform stratifications. Such studies have been performed for internal waves that are spatiotemporally harmonic. To understand the effect of localization, we perform a theoretical and experimental study of the transmission of two-dimensional internal waves that are generated by a spatiotemporally localized boundary forcing. This is done by considering an idealized problem and applying a weakly viscous semi-analytic linear model. Parametric studies using this model show that localization leads to the disappearance of transmission peaks and troughs that would otherwise be present for a harmonic forcing. Laboratory experiments that we perform provide a clear indication of this physical effect. Based on the group velocity and angle of propagation of the internal waves, a practical criteria that assesses when the transmission peaks or troughs are evident, is obtained. It is found that there is a significant difference in the predicted energy transfer due to a harmonic and non-harmonic forcing which has direct implications to various physical forcings such as a storm over the ocean.
Algebraic internal wave solitons and the integrable Calogero--Moser--Sutherland N-body problem
International Nuclear Information System (INIS)
Chen, H.H.; Lee, Y.C.; Pereira, N.R.
1979-01-01
The Benjamin--Ono equation that describes nonlinear internal waves in a stratified fluid is solved by a pole expansion method. The dynamics of poles which characterize solitons is shown to be identical to the well-known integrable N-body problem of Calogero, Moser, and Sutherland
Target continuum distorted-wave theory for collisions of fast protons with atomic hydrogen
International Nuclear Information System (INIS)
Crothers, D.S.F.; Dunseath, K.M.
1990-01-01
By considering the target continuum distorted-wave (TCDW) theory as the high-energy limit of the half-way house variational continuum distorted-wave theory, it is shown not only that there is no intermediate elastic divergence but also that the second-order amplitude based on a purely elastic intermediate state is of order υ -6 and is thus negligible. The residual inelastic TCDW theory is developed to second-order at high velocities. It is used to describe charge exchange during collisions of fast protons with atomic hydrogen. Using an on-shell peaking approximation and considering 1s-1s capture it is shown that the residual purely second-order transition amplitude comprises two terms, one real term of order υ -6 and one purely imaginary term of order υ -7 ln υ. At 5 MeV laboratory energy, it is shown that these are negligible. It is also shown that the υ -5 first-order term gives a differential cross section in very good agreement with an experiment at all angles including forward, interference minimum, Thomas maximum and large angles, particularly having folded our theory over experimental resolution. (author)
Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory
Zeng, Yuehua
2017-01-01
This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors. First, we develop a stable numerical procedure to simulate nonisotropic scattering waves based on the 3D nonisotropic scattering theory proposed by Sato (1995). By applying the simulation method to the inversion of M 4.3 Wells aftershock recordings, we find that a nonisotropic scattering model, dominated by forward scattering, provides the best fit to the observed high‐frequency direct S waves and S‐wave coda velocity envelopes. The scattering process is governed by a Gaussian autocorrelation function, suggesting a Gaussian random heterogeneous structure for the Nevada crust. The model successfully explains the common decay of seismic coda independent of source–station locations as a result of energy leaking from multiple strong forward scattering, instead of backscattering governed by the diffusion solution at large lapse times. The model also explains the pulse‐broadening effect in the high‐frequency direct and early arriving S waves, as other studies have found, and could be very important to applications of high‐frequency wave simulation in which scattering has a strong effect. We also find that regardless of its physical implications, the isotropic scattering model provides the same effective scattering coefficient and intrinsic attenuation estimates as the forward scattering model, suggesting that the isotropic scattering model is still a viable tool for the study of seismic scattering and intrinsic attenuation coefficients in the Earth.
Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions
International Nuclear Information System (INIS)
Ishikawa, Y.; Quiney, H.M.
1993-01-01
A relativistic many-body perturbation theory based on the Dirac-Fock-Breit wave functions has been developed and implemented by employing analytic basis sets of Gaussian-type functions. The instantaneous Coulomb and low-frequency Breit interactions are treated using a unified formalism in both the construction of the Dirac-Fock-Breit self-consistent-field atomic potential and in the evaluation of many-body perturbation-theory diagrams. The relativistic many-body perturbation-theory calculations have been performed on the helium atom and ions of the helium isoelectronic sequence up to Z=50. The contribution of the low-frequency Breit interaction to the relativistic correlation energy is examined for the helium isoelectronic sequence
Transition operators in electromagnetic-wave diffraction theory. II - Applications to optics
Hahne, G. E.
1993-01-01
The theory developed by Hahne (1992) for the diffraction of time-harmonic electromagnetic waves from fixed obstacles is briefly summarized and extended. Applications of the theory are considered which comprise, first, a spherical harmonic expansion of the so-called radiation impedance operator in the theory, for a spherical surface, and second, a reconsideration of familiar short-wavelength approximation from the new standpoint, including a derivation of the so-called physical optics method on the basis of quasi-planar approximation to the radiation impedance operator, augmented by the method of stationary phase. The latter includes a rederivation of the geometrical optics approximation for the complete Green's function for the electromagnetic field in the presence of a smooth- and a convex-surfaced perfectly electrically conductive obstacle.
International Nuclear Information System (INIS)
Casati, Alessandro; Mantica, P.; Eester, D. van; Hawkes, N.; De Vries, P.; Imbeaux, F.; Joffrin, E.; Marinoni, A.; Ryter, F.; Salmi, A.; Tala, T.
2007-01-01
New results on electron heat wave propagation using ion cyclotron resonance heating power modulation in the Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)] plasmas characterized by internal transport barriers (ITBs) are presented. The heat wave generated outside the ITB, and traveling across it, always experiences a strong damping in the ITB layer, demonstrating a low level of transport and loss of stiffness. In some cases, however, the heat wave is strongly inflated in the region just outside the ITB, showing features of convective-like behavior. In other cases, a second maximum in the perturbation amplitude is generated close to the ITB foot. Such peculiar types of behavior can be explained on the basis of the existence of a critical temperature gradient length for the onset of turbulent transport. Convective-like features appear close to the threshold (i.e., just outside the ITB foot) when the value of the threshold is sufficiently high, with a good match with the theoretical predictions for the trapped electron mode threshold. The appearance of a second maximum is due to the oscillation of the temperature profile across the threshold in the case of a weak ITB. Simulations with an empirical critical gradient length model and with the theory based GLF23 [R. E. Waltz et al., Phys. Plasmas, 4, 2482 (1997)] model are presented. The difference with respect to previous results of cold pulse propagation across JET ITBs is also discussed
Three-nucleon force contribution in the distorted-wave theory of (d ,p ) reactions
Timofeyuk, N. K.
2018-05-01
The distorted-wave theory of A (d ,p )B reactions, widely used to analyze experimental data, is based on a Hamiltonian that includes only two-nucleon interactions. However, numerous studies of few-nucleon systems and many modern developments in nuclear structure theory show the importance of the three-nucleon (3 N ) force. The purpose of this paper is to study the contribution of the 3 N force of the simplest possible form to the A (d ,p )B reaction amplitude. This contribution is given by a new term that accounts for the interaction of the neutron and proton in the incoming deuteron with one of the target nucleons. This term involves a new type of nuclear matrix elements containing an infinite number of target excitations in addition to the main part associated with the traditional overlap function between A and B . The nuclear matrix elements are calculated for double-closed shell targets within a mean field theory where target excitations are shown to be equivalent to exchanges between valence and core nucleons. These matrix elements can be readily incorporated into available reaction codes if the 3 N interaction has a spin-independent zero-range form. Distorted-wave calculations are presented for a contact 3 N force with the volume integral fixed by the chiral effective field theory at the next-to-next-to-leading order. For this particular choice, the 3 N contribution is noticeable, especially at high deuteron incident energies. No 3 N effects are seen for incident energies below the Coulomb barrier. The finite range can significantly affect the 3 N contribution to the (d ,p ) cross sections. Finite-range studies require new formal developments and, therefore, their contribution is preliminarily assessed within the plane-wave Born approximation, together with sensitivity to the choice of the deuteron model.
Experimental study of the propgation and dispersion of internal atmospheric gravity waves
International Nuclear Information System (INIS)
Ballard, K.A.
1981-01-01
Traveling ionospheric disturbances (TID's) appear as large-scale transverse waves in the F-region (150 to 1000 km altitude), with frequencies on the order of 0.005 to 0.005 cycles per minute, which propagate horizontally over hundreds or even thousands of kilometers. These disturbances have been observed by various radiowave techniques over the past thirty-five years and are now generally accepted as being the manifestation, in the ionized medium, of internal atmospheric gravity waves. A model describing the propagation of gravity waves in an isothermal atmosphere is presented here. The dispersion relation is derived from fundamental principles, and the relation between phase velocity and group velocity is examined. The effects of the Coriolis force and horizontally stratified winds on wave propagation are also analyzed. Conservation of energy in the gravity wave requires increasing amplitude with increasing altitude, inasmuch as the atmospheric density decreases with height. However, this is counteracted by dissipation of wave energy by ion drag, thermal conductivity, and viscous damping. The production of TID's (in the ionized medium) by gravity waves (in the neutral medium) is discussed in quantitative terms, and the vertical predictive function is derived. Dartmouth College has operated a three-station ionosonde network in northern New Hampshire and Vermont on an intermittent basis since 1968. Seven large TID's, found in the 1969 data, are reexamined here in an exhaustive and successful comparison with the gravity wave model. Iso-true-height contours of electron density are used to determine several pertinent TID wave parameters as a function of height
Parisi, Laura; Ferreira, Ana M.G.
2016-01-01
The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface
The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form
International Nuclear Information System (INIS)
Mourad, J.; Sazdjian, H.
1994-01-01
The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs
Chen, Zhenhua; Hoffmann, Mark R
2012-07-07
A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4
First Test of Stochastic Growth Theory for Langmuir Waves in Earth's Foreshock
Cairns, Iver H.; Robinson, P. A.
1997-01-01
This paper presents the first test of whether stochastic growth theory (SGT) can explain the detailed characteristics of Langmuir-like waves in Earth's foreshock. A period with unusually constant solar wind magnetic field is analyzed. The observed distributions P(logE) of wave fields E for two intervals with relatively constant spacecraft location (DIFF) are shown to agree well with the fundamental prediction of SGT, that P(logE) is Gaussian in log E. This stochastic growth can be accounted for semi-quantitatively in terms of standard foreshock beam parameters and a model developed for interplanetary type III bursts. Averaged over the entire period with large variations in DIFF, the P(logE) distribution is a power-law with index approximately -1; this is interpreted in terms of convolution of intrinsic, spatially varying P(logE) distributions with a probability function describing ISEE's residence time at a given DIFF. Wave data from this interval thus provide good observational evidence that SGT can sometimes explain the clumping, burstiness, persistence, and highly variable fields of the foreshock Langmuir-like waves.
Shot- and angle-domain wave-equation traveltime inversion of reflection data: Theory
Zhang, Sanzong
2015-05-26
The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we have developed a wave-equation method that inverts the traveltimes of reflection events, and so it is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function was a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag, which maximized the crosscorrelation amplitude, represented the reflection-traveltime residual (RTR) that was back projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions were introduced to estimate the RTR by semblance analysis and scanning. In theory, only the traveltime information was inverted and there was no need to precisely fit the amplitudes or assume a high-frequency approximation. Results with synthetic data and field records revealed the benefits and limitations of wave-equation reflection traveltime inversion.
Wave-particle duality through an extended model of the scale relativity theory
International Nuclear Information System (INIS)
Ioannou, P D; Nica, P; Agop, M; Paun, V; Vizureanu, P
2008-01-01
Considering that the chaotic effect of associated wave packet on the particle itself results in movements on the fractal (continuous and non-differentiable) curves of fractal dimension D F , wave-particle duality through an extension of the scale relativity theory is given. It results through an equation of motion for the complex speed field, that in a fractal fluid, the convection, dissipation and dispersion are reciprocally compensating at any scale (differentiable or non-differentiable). From here, for an irrotational movement, a generalized Schroedinger equation is obtained. The absence of dispersion implies a generalized Navier-Stokes type equation, whereas, for the irrotational movement and the fractal dimension, D F = 2, the usual Schroedinger equation results. The absence of dissipation implies a generalized Korteweg-de Vries type equation. In such conjecture, at the differentiable scale, the duality is achieved through the flowing regimes of the fractal fluid, i.e. the wave character by means of the non-quasi-autonomous flowing regime and the particle character by means of the quasi-autonomous flowing regime. These flowing regimes are separated by '0.7 structure'. At the non-differentiable scale, a fractal potential acts as an energy accumulator and controls through the coherence the duality. The correspondence between the differentiable and non-differentiable scales implies a Cantor space-time. Moreover, the wave-particle duality implies at any scale a fractal.
International Nuclear Information System (INIS)
Doncheski, M.A.; Robinett, R.W.
2002-01-01
Using the fact that the energy eigenstates of the equilateral triangle infinite well (or billiard) are available in closed form, we examine the connections between the energy eigenvalue spectrum and the classical closed paths in this geometry, using both periodic orbit theory and the short-term semi-classical behavior of wave packets. We also discuss wave packet revivals and show that there are exact revivals, for all wave packets, at times given by T rev =9μa 2 /4(h/2π) where a and μ are the length of one side and the mass of the point particle, respectively. We find additional cases of exact revivals with shorter revival times for zero-momentum wave packets initially located at special symmetry points inside the billiard. Finally, we discuss simple variations on the equilateral (60 deg. -60 deg. -60 deg. ) triangle, such as the half equilateral (30 deg. -60 deg. -90 deg.) triangle and other 'foldings', which have related energy spectra and revival structures
Theory of charged particle heating by low-frequency Alfven waves
International Nuclear Information System (INIS)
Guo Zehua; Crabtree, Chris; Chen, Liu
2008-01-01
The heating of charged particles by a linearly polarized and obliquely propagating shear Alfven wave (SAW) at frequencies a fraction of the charged particle cyclotron frequency is demonstrated both analytically and numerically. Applying Lie perturbation theory, with the wave amplitude as the perturbation parameter, the resonance conditions in the laboratory frame are systematically derived. At the lowest order, one recovers the well-known linear cyclotron resonance condition k parallel v parallel -ω-nΩ=0, where v parallel is the particle velocity parallel to the background magnetic field, k parallel is the parallel wave number, ω is the wave frequency, Ω is the gyrofrequency, and n is any integer. At higher orders, however, one discovers a novel nonlinear cyclotron resonance condition given by k parallel v parallel -ω-nΩ/2=0. Analytical predictions on the locations of fixed points, widths of resonances, and resonance overlapping criteria for global stochasticity are also found to agree with those given by computed Poincare surfaces of section
Shot- and angle-domain wave-equation traveltime inversion of reflection data: Theory
Zhang, Sanzong; Luo, Yi; Schuster, Gerard T.
2015-01-01
The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we have developed a wave-equation method that inverts the traveltimes of reflection events, and so it is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function was a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag, which maximized the crosscorrelation amplitude, represented the reflection-traveltime residual (RTR) that was back projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions were introduced to estimate the RTR by semblance analysis and scanning. In theory, only the traveltime information was inverted and there was no need to precisely fit the amplitudes or assume a high-frequency approximation. Results with synthetic data and field records revealed the benefits and limitations of wave-equation reflection traveltime inversion.
Analysis of internal stress and anelasticity in the shock-compressed state from unloading wave data
International Nuclear Information System (INIS)
Johnson, J.N.; Lomdahl, P.S.; Wills, J.M.
1991-01-01
This paper reports on time resolved shock-wave measurements have often been used to infer microstructural behavior in crystalline solids. The authors apply this approach to an interpretation of the release-wave response of an aluminum alloy (6061-T6) as it is dynamically unloaded from a shock-compressed state of 20.7 GPa. The anelastic behavior in the initial portion of the unloading wave is attributed to the accumulation of internal stresses created by the shock process. Specific internal-stress models which are investigated are the double pile-up, the single pile-up, and single dislocation loops between pinning points. It is found that the essential characteristics of double and single pile-ups can be represented by a single dislocation between two pinned dislocations of like sing. Calculations of anelastic wave speeds at constant unloading strain rate are then compared with experimental data. The results suggest that the residual internal stress is due to pinned loops of density 10 15 M - 2 , and the viscous drag coefficient in the shock-compressed state is on the order of 10 - 7 MPa s (approximately two orders of magnitude greater than expected under ambient conditions)
The international workshop on wave hindcasting and forecasting and the coastal hazards symposium
Breivik, Øyvind; Swail, Val; Babanin, Alexander V.; Horsburgh, Kevin
2015-05-01
Following the 13th International Workshop on Wave Hindcasting and Forecasting and 4th Coastal Hazards Symposium in October 2013 in Banff, Canada, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the history of the conference since its inception in 1986 and of the progress made in the fields of wind-generated ocean waves and the modelling of coastal hazards before we summarize the main results of the papers that have appeared in the topical collection.
Planar plane-wave matrix theory at the four loop order: integrability without BMN scaling
International Nuclear Information System (INIS)
Fischbacher, Thomas; Klose, Thomas; Plefka, Jan
2005-01-01
We study SU(N) plane-wave matrix theory up to fourth perturbative order in its large N planar limit. The effective hamiltonian in the closed su(2) subsector of the model is explicitly computed through a specially tailored computer program to perform large scale distributed symbolic algebra and generation of planar graphs. The number of graphs here was in the deep billions. The outcome of our computation establishes the four-loop integrability of the planar plane-wave matrix model. To elucidate the integrable structure we apply the recent technology of the perturbative asymptotic Bethe ansatz to our model. The resulting S-matrix turns out to be structurally similar but nevertheless distinct to the so far considered long-range spin-chain S-matrices of Inozemtsev, Beisert-Dippel-Staudacher and Arutyunov-Frolov-Staudacher in the AdS/CFT context. In particular our result displays a breakdown of BMN scaling at the four-loop order. That is, while there exists an appropriate identification of the matrix theory mass parameter with the coupling constant of the N=4 superconformal Yang-Mills theory which yields an eighth order lattice derivative for well separated impurities (naively implying BMN scaling) the detailed impurity contact interactions ruin this scaling property at the four-loop order. Moreover we study the issue of 'wrapping' interactions, which show up for the first time at this loop-order through a Konishi descendant length four operator. (author)
Directory of Open Access Journals (Sweden)
Denny Nugroho Sugianto
2015-02-01
archipelagic countries in the world, therefore port has vital role in economic development. Port is not just as a complement to the infrastructure, but it must be planned and managed properly and attention to the dynamics of marine phenomena such as ocean wave patterns. Ocean wave data become important factors in planning coastal building, since it is influenced by wave height, tides and waves transformation. The purpose of this study was to analyse characteristic and forms wave transformations for planning of international hub port at Kuala Tanjung, Baru Bara District North Sumatra. This port is one of two Indonesian government's plan in the development of international hub port. Quantitative method was used in this study by statistical calculations and mathematical modeling with hydrodinamic modules and spectral wave to determine the direction of wave propagation and transformation. Results show that based on ECMWF data during 1999-June 2014, known significant wave height (Hs maximum of 1.69 m and maximum period (Ts of 8 secs. The classification wave characteristics iswave transition (d.L-1: 0.27–0.48 and by the period are classified as gravitational waves. Wave transformation occurs due to the soaling, withKs 0.93–0.98 and the wave refraction Kr 0.97–0.99. Whereas Hb of 1.24 meters anddb 1.82 meters. The effectiveness of the design of the terminal building at the Port of Kuala Tanjung overall for the season amounted to 79.8%, which is quite effective in reducing the wave. Keywords: wave transformation, wave height and period, Port of Kuala Tanjung
Relativistic n-body wave equations in scalar quantum field theory
International Nuclear Information System (INIS)
Emami-Razavi, Mohsen
2006-01-01
The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields
Laboratory and numerical simulation of internal wave attractors and their instability.
Brouzet, Christophe; Dauxois, Thierry; Ermanyuk, Evgeny; Joubaud, Sylvain; Sibgatullin, Ilias
2015-04-01
Internal wave attractors are formed as result of focusing of internal gravity waves in a confined domain of stably stratified fluid due to peculiarities of reflections properties [1]. The energy injected into domain due to external perturbation, is concentrated along the path formed by the attractor. The existence of attractors was predicted theoretically and proved both experimentally and numerically [1-4]. Dynamics of attractors is greatly influenced by geometrical focusing, viscous dissipation and nonlinearity. The experimental setup features Schmidt number equal to 700 which impose constraints on resolution in numerical schemes. Also for investigation of stability on large time intervals (about 1000 periods of external forcing) numerical viscosity may have significant impact. For these reasons, we have chosen spectral element method for investigation of this problem, what allows to carefully follow the nonlinear dynamics. We present cross-comparison of experimental observations and numerical simulations of long-term behavior of wave attractors. Fourier analysis and subsequent application of Hilbert transform are used for filtering of spatial components of internal-wave field [5]. The observed dynamics shows a complicated coupling between the effects of local instability and global confinement of the fluid domain. The unstable attractor is shown to act as highly efficient mixing box providing the efficient energy pathway from global-scale excitation to small-scale wave motions and mixing. Acknowledgement, IS has been partially supported by Russian Ministry of Education and Science (agreement id RFMEFI60714X0090) and Russian Foundation for Basic Research, grant N 15-01-06363. EVE gratefully acknowledges his appointment as a Marie Curie incoming fellow at Laboratoire de physique ENS de Lyon. This work has been partially supported by the ONLITUR grant (ANR-2011-BS04-006-01) and achieved thanks to the resources of PSMN from ENS de Lyon 1. Maas, L. R. M. & Lam, F
Africa and the Principles and Theories of International Relations ...
African Journals Online (AJOL)
DrNneka
history and diplomacy, political and administrative sciences, strategic studies and international relations, international law and organizations, and general readers ...... to assess others without considerations for historical and social differences.
International Nuclear Information System (INIS)
Kong, Ling-Bao; Wang, Hong-Yu; Hou, Zhi-Ling; Jin, Hai-Bo; Du, Chao-Hai
2013-01-01
The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained
Energy Technology Data Exchange (ETDEWEB)
Kong, Ling-Bao, E-mail: konglingbao@gmail.com [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Hong-Yu [School of Physics, Anshan Normal University, Anshan 114005 (China); Hou, Zhi-Ling, E-mail: houzl@mail.buct.edu.cn [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Jin, Hai-Bo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Du, Chao-Hai [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained.
ONETEP: linear-scaling density-functional theory with plane-waves
International Nuclear Information System (INIS)
Haynes, P D; Mostof, A A; Skylaris, C-K; Payne, M C
2006-01-01
This paper provides a general overview of the methodology implemented in onetep (Order-N Electronic Total Energy Package), a parallel density-functional theory code for largescale first-principles quantum-mechanical calculations. The distinctive features of onetep are linear-scaling in both computational effort and resources, obtained by making well-controlled approximations which enable simulations to be performed with plane-wave accuracy. Titanium dioxide clusters of increasing size designed to mimic surfaces are studied to demonstrate the accuracy and scaling of onetep
Dispersion and damping of two-dimensional dust acoustic waves: theory and simulation
International Nuclear Information System (INIS)
Upadhyaya, Nitin; Miskovic, Z L; Hou, L-J
2010-01-01
A two-dimensional generalized hydrodynamics (GH) model is developed to study the full spectrum of both longitudinal and transverse dust acoustic waves (DAW) in strongly coupled complex (dusty) plasmas, with memory-function-formalism being implemented to enforce high-frequency sum rules. Results are compared with earlier theories (such as quasi-localized charge approximation and its extended version) and with a self-consistent Brownian dynamics simulation. It is found that the GH approach provides a good account, not only of dispersion relations, but also of damping rates of the DAW modes in a wide range of coupling strengths, an issue hitherto not fully addressed for dusty plasmas.
LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG
Directory of Open Access Journals (Sweden)
J.W. Moffat
2016-12-01
Full Text Available The nature of gravitational waves in a generalized gravitation theory is investigated. The linearized field equations and the metric tensor quadrupole moment power and the decrease in radius of an inspiralling binary system of two compact objects are derived. The generalized Kerr metric describing a spinning black hole is determined by its mass M and the spin parameter a=cS/GM2. The LIGO-Virgo collaboration data is fitted with smaller binary black hole masses in agreement with the current electromagnetic, observed X-ray binary upper bound for a black hole mass, M≲10M⊙.
Theory building in Music Therapy, an International Archive
DEFF Research Database (Denmark)
Pedersen, I.N.
2004-01-01
In this introduction I present the frames in where the author developed the morphological theory. I shortly presents the origins of the theory as coming from Goethe's perspective of 'artistic aspects to scientific questions'. I also presents four developmental steps in the way of understanding...
Large-amplitude internal tides, solitary waves, and turbulence in the central Bay of Biscay
Xie, X. H.; Cuypers, Y.; Bouruet-Aubertot, P.; Ferron, B.; Pichon, A.; LourençO, A.; Cortes, N.
2013-06-01
and fine-scale measurements collected in the central Bay of Biscay during the MOUTON experiment are analyzed to investigate the dynamics of internal waves and associated mixing. Large-amplitude internal tides (ITs) that excite internal solitary waves (ISWs) in the thermocline are observed. ITs are dominated by modes 3 and 4, while ISWs projected on mode 1 that is trapped in the thermocline. Therein, ITs generate a persistent narrow shear band, which is strongly correlated with the enhanced dissipation rate in the thermocline. This strong dissipation rate is further reinforced in the presence of ISWs. Dissipation rates during the period without ISWs largely agree with the MacKinnon-Gregg scaling proposed for internal wavefields dominated by a low-frequency mode, while they show poor agreement with the Gregg-Henyey parameterization valid for internal wavefields close to the Garrett-Munk model. The agreement with the MacKinnon-Gregg scaling is consistent with the fact that turbulent mixing here is driven by the low-frequency internal tidal shear.
Scattering of a light wave by a thin fiber on or near a prism: experiment and analytical theory.
Tajima, Fumiaki; Nishiyama, Yoshio
2012-06-01
We have performed an experiment of the scattering of the near field on a prism created by a laser wave, evanescent wave (EW), or plane wave (PW) of an incident angle slightly larger than or smaller than the critical angle, by a thin fiber of subwavelength diameter set above the prism, and we made an analytical theory of an adapted model for the experiment. We have been able to analyze the experimental data exactly by the model theory better than any other theory we have ever known. The importance of the multiple interaction of the wave between the fiber and the surface and also the close similarity of the scattering characteristics between the EW and the PW mentioned above have been acknowledged by the analysis of the data obtained.
Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.
McAnally, Michael O; McMahon, Jeffrey M; Van Duyne, Richard P; Schatz, George C
2016-09-07
We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.
An analysis of current drive by travelling wave based on theory of intrinsic stochasticity
International Nuclear Information System (INIS)
Murakami, Akihiko; Midzuno, Yukio.
1982-04-01
The mechanism of the current generation in a collisionless plasma by a train of travelling mirrors with modulated phase velocity is studied based on the theory of intrinsic stochasticity. It is shown that, if the phase modulation is small, the main contribution to the current generation comes from the phase mixing of the trajectories of trapped electrons in each Fourier component of a driving wave. For the case of a moderate phase modulation, however, formation of a large stochastic region due to the overlapping of primary resonances is very effective for increasing the generated current. Large phase modulation has little advantage in the current generation because the stochastic regions are formed, so to speak, at random in the phase plane. The results of analytical evaluation based on the above theory agree quite well with results of numerical experiments. (author)
International Nuclear Information System (INIS)
Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Lepilliez, Mathieu; Cid, Emmanuel
2014-01-01
Internal solitary waves (ISWs) are large amplitude stable waves propagating in regions of high density gradients such as the ocean pycnocline. Their dynamics has often been investigated in two-dimensional approaches, however, their three-dimensional evolution is still poorly known. Experiments have been conducted in the large stratified water tank of CNRM-GAME to study the generation of ISWs in two academic configurations inspired by oceanic regimes. First, ultrasonic probes are used to measure the interfacial displacement in the two configurations. In the primary generation case for which the two layers are of constant density, the generation of ISWs is investigated in two series of experiments with varying amplitude and forcing frequency. In the secondary generation case for which the lower layer is stratified, the generation of ISWs from the impact of an internal wave beam on the pycnocline and their subsequent dynamics is studied. The dynamics of ISWs in these two regimes accords well with analytical approaches and numerical simulations performed in analogous configurations. Then, recent developments of a stereo correlation technique are used to describe the three-dimensional structure of propagating ISWs. In the primary generation configuration, small transverse effects are observed in the course of the ISW propagation. In the secondary generation configuration, larger transverse structures are observed in the interfacial waves dynamics. The interaction between interfacial troughs and internal waves propagating in the lower stratified layer are a possible cause for the generation of these structures. The magnitude of these transverse structures is quantified with a nondimensional parameter in the two configurations. They are twice as large in the secondary generation case as in the primary generation case
Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch
2007-01-01
We study Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions, changing the exchange field and the angles between the normal to the interfaces and the crystal axes of d-wave superconductors. We find a 0–π transition at a certain value of the exchange field.
Internal inspection of reinforced concrete for nuclear structures using shear wave tomography
International Nuclear Information System (INIS)
Scott, David B.
2013-01-01
Highlights: • Aging of reinforced concrete used for worldwide nuclear structures is increasing and necessitating evaluation. • Nondestructive evaluation is a tool for assessing the condition of reinforced concrete of nuclear structures. • Ultrasonic shear wave tomography as a stress wave technique has begun to be utilized for investigation of concrete material. • A study using ultrasonic shear wave tomography indicates anomalies vital to the long-term operation of the structure. • The use of this technique has shown to successfully evaluate the internal state of reinforced concrete members. - Abstract: Reinforced concrete is important for nuclear related structures. Therefore, the integrity of structural members consisting of reinforced concrete is germane to the safe operation and longevity of these facilities. Many issues that reduce the likelihood of safe operation and longevity are not visible on the surface of reinforced concrete material. Therefore, an investigation of reinforced concrete material should include techniques which will allow peering into the concrete member and determining its internal state. The performance of nondestructive evaluations is pursuant to this goal. Some of the categories of nondestructive evaluations are electrochemical, magnetism, ground penetrating radar, and ultrasonic testing. A specific ultrasonic testing technique, namely ultrasonic shear wave tomography, is used to determine presence and extent of voids, honeycombs, cracks perpendicular to the surface, and/or delamination. This technique, and others similar to it, has been utilized in the nuclear industry to determine structural conditions
Zhang, Congyao; Churazov, Eugene; Schekochihin, Alexander A.
2018-05-01
Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees that a bubble loses most of its energy to the ICM after crossing several pressure scale heights. However, actual processes responsible for transferring the energy to the ICM are still being debated. One attractive possibility is the excitation of internal waves, which are trapped in the cluster's core and eventually dissipate. Here we show that a sufficient condition for efficient excitation of these waves in stratified cluster atmospheres is flattening of the bubbles in the radial direction. In our numerical simulations, we model the bubbles phenomenologically as rigid bodies buoyantly rising in the stratified cluster atmosphere. We find that the terminal velocities of the flattened bubbles are small enough so that the Froude number Fr ≲ 1. The effects of stratification make the dominant contribution to the total drag force balancing the buoyancy force. Clear signs of internal waves are seen in the simulations. These waves propagate horizontally and downwards from the rising bubble, spreading their energy over large volumes of the ICM. If our findings are scaled to the conditions of the Perseus cluster, the expected terminal velocity is ˜100 - 200 km s-1 near the cluster cores, which is in broad agreement with direct measurements by the Hitomi satellite.
Response of internal solitary waves to tropical storm Washi in the northwestern South China Sea
Directory of Open Access Journals (Sweden)
Z. H. Xu
2011-11-01
Full Text Available Based on in-situ time series data from an array of temperature sensors and an acoustic Doppler current profiler on the continental shelf of the northwestern South China Sea, a sequence of internal solitary waves (ISWs were observed during the passage of tropical storm Washi in the summer of 2005, which provided a unique opportunity to investigate the ISW response to the tropical cyclone. The passing tropical storm is found to play an important role in affecting the stratification structure of the water column, and consequently leading to significant variability in the propagating features of the ISWs, such as the polarity reversal and amplitude variations of the waves. The response of the ISWs to Washi can be divided into two stages, direct forcing by the strong wind (during the arrival of Washi and remote forcing via the near-inertial internal waves induced by the tropical storm (after the passage of Washi. The field observations as well as a theoretical analysis suggest that the variations of the ISWs closely coincide with the changing stratification structure and shear currents in accompanied by the typhoon wind and near-inertial waves. This study presents the first observations and analysis of the ISW response to the tropical cyclone in the South China Sea.
Jia, T.; Liang, J. J.; Li, X.-M.; Sha, J.
2018-01-01
The refraction and reconnection of internal solitary waves (ISWs) around the Dongsha Atoll (DSA) in the northern South China Sea (SCS) are investigated based on spaceborne synthetic aperture radar (SAR) observations and numerical simulations. In general, a long ISW front propagating from the deep basin of the northern SCS splits into northern and southern branches when it passes the DSA. In this study, the statistics of Envisat Advanced SAR (ASAR) images show that the northern and southern wave branches can reconnect behind the DSA, but the reconnection location varies. A previously developed nonlinear refraction model is set up to simulate the refraction and reconnection of the ISWs behind the DSA, and the model is used to evaluate the effects of ocean stratification, background currents, and incoming ISW characteristics at the DSA on the variation in reconnection locations. The results of the first realistic simulation agree with consecutive TerraSAR-X (TSX) images captured within 12 h of each other. Further sensitivity simulations show that ocean stratification, background currents, and initial wave amplitudes all affect the phase speeds of wave branches and therefore shift their reconnection locations while shapes and locations of incoming wave branches upstream of the DSA profoundly influence the subsequent propagation paths. This study clarifies the variation in reconnection locations of ISWs downstream of the DSA and reveals the important mechanisms governing the reconnection process, which can improve our understanding of the propagation of ISWs near the DSA.
Dickinson, Nicholas; White, Nicholas Jeremiah; Caulfield, Colm-cille Patrick
2017-01-01
Bright reflections are observed within the upper 1000~m of the water column along a seismic reflection profile that traverses the northern margin of the Gulf of Mexico. Independent hydrographic calibration demonstrates that these reflections are primarily caused by temperature changes associated with different water masses that are entrained into the Gulf along the Loop Current. The internal wave field is analyzed by automatically tracking 1171 reflections, each of which is greater th...
International Nuclear Information System (INIS)
Bhatnagar, V.P.; Start, D.F.H.; Jacquinot, J.; Chaland, F.; Cherubini, A.; Porcelli, F.
1994-01-01
When an ion cyclotron resonance heating (ICRH) antenna array is phased (Δ Φ ≠ 0 or π), the excited asymmetric k parallel spectrum can drive non-inductive currents by interaction of fast waves both with electrons (transit time magnetic pumping (e-TTMP) and Landau damping (e-LD)) and with ions at minority (fundamental) or harmonic cyclotron resonances, depending upon the scenario. On the basis of earlier theories, a simplified description is presented that includes the minority ion and electron current drive effects simultaneously in a 3-D ray tracing calculation in the tokamak geometry. The experimental results of sawtooth stabilization or destabilization in JET using the minority ion current drive scheme are presented. This scheme allows a modification of the local current density gradient (or the magnetic shear) at the q = 1 surface resulting in a control of a sawteeth. The predictions of the above model of current drive and its effects on sawtooth period calculated in conjunction with a model of stability of internal resistive kink modes, that encompasses the effects of both the fast particle pressure and the local (q = 1) magnetic shear, are found to be qualitatively in good agreement with the experimental results. Further, the results are discussed of our model of fast wave current drive scenarios of magnetic shear reversal with a view to achieving long duration high confinement regimes in the forthcoming experimental campaign on JET. Finally, the results are presented of minority current drive for sawtooth control in next step devices such as the International Thermonuclear Experimental Reactor (ITER). (author). 44 refs, 23 figs, 3 tabs
Key Elasticities in Job Search Theory : International Evidence
Addison, John T.; Centeno, Mário; Portugal, Pedro
2004-01-01
This paper exploits the informational value of search theory, after Lancaster and Chesher (1983), in conjunction with survey data on the unemployed to calculate key reservation wage and duration elasticities for most EU-15 nations.
A New International Standard for "Actions from Waves and Currents on Coastal Structures"
DEFF Research Database (Denmark)
Tørum, Alf; Burcharth, Hans F.; Goda, Yoshimi
2007-01-01
The International Organization for Standardization (ISO) is going to issue a new standard concerning "Actions from Waves and Currents on Coastal Structures," which becomes the first international standard in coastal engineering. It is composed of a normative part (29 pages), an informative part (80...... pages) and Bibliography ( 17 pages). The normative part describes what is considered as the norm of the matters in concern, while the informative part provides the information on recommended practice. The paper introduces the main points of the normative part and discusses the influence of the new...
Xu, Jiexin; Chen, Zhiwu; Xie, Jieshuo; Cai, Shuqun
2016-03-01
In this paper, the generation and evolution of seaward propagating internal solitary waves (ISWs) detected by satellite image in the northwestern South China Sea (SCS) are investigated by a fully nonlinear, non-hydrostatic, three-dimensional Massachusetts Institute of Technology general circulation model (MITgcm). The three-dimensional (3D) modeled ISWs agree favorably with those by satellite image, indicating that the observed seaward propagating ISWs may be generated by the interaction of barotropic tidal flow with the arc-like continental slope south of Hainan Island. Though the tidal current is basically in east-west direction, different types of internal waves are generated by tidal currents flowing over the slopes with different shaped shorelines. Over the slope where the shoreline is straight, only weak internal tides are generated; over the slope where the shoreline is seaward concave, large-amplitude internal bores are generated, and since the concave isobaths of the arc-like continental slope tend to focus the baroclinic tidal energy which is conveyed to the internal bores, the internal bores can efficiently disintegrate into a train of rank-ordered ISWs during their propagation away from the slope; while over the slope where the shoreline is seaward convex, no distinct internal tides are generated. It is also implied that the internal waves over the slope are generated due to mixed lee wave mechanism. Furthermore, the effects of 3D model, continental slope curvature, stratification, rotation and tidal forcing on the generation of ISWs are discussed, respectively. It is shown that, the amplitude and phase speed of ISWs derived from a two-dimensional (2D) model are smaller than those from the 3D one, and the 3D model has an advantage over 2D one in simulating the ISWs generated by the interaction between tidal currents and 3D curved continental slope; the reduced continental slope curvature hinders the extension of ISW crestline; both weaker stratification
Cheng, Jin; Yu, Kuang; Libisch, Florian; Dieterich, Johannes M; Carter, Emily A
2017-03-14
Quantum mechanical embedding theories partition a complex system into multiple spatial regions that can use different electronic structure methods within each, to optimize trade-offs between accuracy and cost. The present work incorporates accurate but expensive correlated wave function (CW) methods for a subsystem containing the phenomenon or feature of greatest interest, while self-consistently capturing quantum effects of the surroundings using fast but less accurate density functional theory (DFT) approximations. We recently proposed two embedding methods [for a review, see: Acc. Chem. Res. 2014 , 47 , 2768 ]: density functional embedding theory (DFET) and potential functional embedding theory (PFET). DFET provides a fast but non-self-consistent density-based embedding scheme, whereas PFET offers a more rigorous theoretical framework to perform fully self-consistent, variational CW/DFT calculations [as defined in part 1, CW/DFT means subsystem 1(2) is treated with CW(DFT) methods]. When originally presented, PFET was only tested at the DFT/DFT level of theory as a proof of principle within a planewave (PW) basis. Part 1 of this two-part series demonstrated that PFET can be made to work well with mixed Gaussian type orbital (GTO)/PW bases, as long as optimized GTO bases and consistent electron-ion potentials are employed throughout. Here in part 2 we conduct the first PFET calculations at the CW/DFT level and compare them to DFET and full CW benchmarks. We test the performance of PFET at the CW/DFT level for a variety of types of interactions (hydrogen bonding, metallic, and ionic). By introducing an intermediate CW/DFT embedding scheme denoted DFET/PFET, we show how PFET remedies different types of errors in DFET, serving as a more robust type of embedding theory.
Stratified flows and internal waves in the Vema Fracture Zone of the Mid Atlantic Ridge
Makarenko, Nikolay; Morozov, Eugene; Tarakanov, Roman; Demidova, Tatiana; Frey, Dmitri; Grigorenko, Klim
2017-04-01
In this paper, we study stratified flows and internal waves in the Vema fracture zone of the Mid Atlantic Ridge. This fracture provides intense transportation of cold abyssal waters from the West Atlantic to the equatorial region of the East Atlantic [1]. The results of measurements [2,3] carried out in the cruises of RV Akademik Sergey Vavilov in 2014-2016 are presented. The structure of the near-bottom flow is studied experimentally on the basis of CTD- and LADCP profiling. Theoretical analysis involves mathematical formulation of stratified fluid flow which uses CTD-data obtained from field observation. Spectral properties and kinematic characteristics of internal waves are calculated and discussed. This work was supported by RFBR (grants No 15-01-03942, 16-35-50158). References [1] Morozov E., Demidov A., Tarakanov R. and Zenk W. Abyssal Channels in the Atlantic Ocean: Water Structure and Flows, Springer, Dordrecht, 2010. [2] Morozov E.G., Tarakanov R.Yu., and Makarenko N.I. Flows of Antarctic Bottom Water through fractures in the southern part of the North Mid Atlantic Ridge, Oceanology, 2015, 55, 796-800. [3] Grigorenko K.S., Makarenko N.I., Morozov E.G., Tarakanov R.Yu., and Frey D.I. Stratified flows and internal waves in the Central West Atlantic, J. Physics: Conf. Series, 2016, 722, 012011.
Issues in International Climate Policy: Theory and Policy
Ierland, van E.C.; Gupta, J.; Kok, M.T.J.
2003-01-01
Climate change is currently at the center of scientific and political debate, and the need for well-designed international climate policies is widely recognized. Despite this, the complexity of both the climate change problem and the international negotiation process has resulted in a large number
War and Peace in International Relations Theory: A Classroom Simulation
Sears, Nathan Alexander
2018-01-01
Simulations are increasingly common pedagogical tools in political science and international relations courses. This article develops a classroom simulation that aims to facilitate students' theoretical understanding of the topic of war and peace in international relations, and accomplishes this by incorporating important theoretical concepts…
7th International Conference on Hyperbolic Problems Theory, Numerics, Applications
Jeltsch, Rolf
1999-01-01
These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phe...
Generalized spin-wave theory: Application to the bilinear-biquadratic model
Muniz, Rodrigo A.; Kato, Yasuyuki; Batista, Cristian D.
2014-08-01
We present a mathematical framework for the multi-boson approach that has been used several times for treating spin systems. We demonstrate that the multi-boson approach corresponds to a generalization of the traditional spin-wave theory from SU(2) to SU(N), where N is the number of states of the local degree of freedom. Low-energy excitations are waves of the local order parameter that fluctuates in the SU(N) space of unitary transformations of the local spin states, instead of the SU(2) space of local spin rotations. Since the generators of the SU(N) group can be represented as bilinear forms in N-flavored bosons, the low-energy modes of the generalized spin-wave theory (GSWT) are described with N-1 different bosons, which provide a more accurate description of low-energy excitations even for the usual ferromagnetic and antiferromagnetic phases. The generalization enables the treatment of quantum spin systems whose ground states exhibit multipolar ordering as well as the detection of instabilities of magnetically ordered states (dipolar ordering) towards higher multipolar orderings. We illustrate the advantages of the GSWT by applying it to a bilinear-biquadratic model of arbitrary spin S on hypercubic lattices, and then analyzing the spectrum of dipolar phases in order to find their instabilities. In contrast to the known results for S=1 when the biquadratic term in the Hamiltonian is negative, we find that there is no nematic phase between the ferromagnetic or antiferromagnetic orderings for S>1.
Gómez, Eduardo J
2013-10-01
Of recent interest is the capacity of international health agencies to adapt to changes in the global health environment and country needs. Yet, little is known about the potential benefits of using social science institutional theory, such as path dependency and institutional change theory, to explain why some international agencies, such as the WHO and the Global Fund to Fight AIDS, Tuberculosis and Malaria, fail to adapt, whereas others, such as the World Bank and UNAIDS, have. This article suggests that these institutional theories can help to better understand these differences in international agency adaptive capacity, while highlighting new areas of policy research and analysis.
The Impact of Internal Wave Seasonality on the Continental Shelf Energy Budget
Wihsgott, Juliane U.; Sharples, Jonathan; Hopkins, Joanne; Palmer, Matthew R.; Mattias Green, J. A.
2017-04-01
Heating-stirring models are widely used to simulate the timing and strength of stratification in continental shelf environments. Such models are based on bulk potential energy (PE) budgets: the loss of PE due to thermal stratification is balanced by wind and tidal mixing. The model often fails to accurately predict the observed vertical structure, as it only considers forces acting on the surface and bottom boundary of the water column. This highlights the need for additional internal energy sources to close this budget, and produce an accurate seasonal cycle of stratification. We present new results that test the impact of boundary layer and internal wave forcing on stratification and vertical density structure in continental shelves. A new series of continuous measurements of full water depth vertical structure, dynamics and meteorological data spanning 17 months (March'14-July'15) provide unprecedented coverage over a full seasonal cycle at a station 120 km north-east from the continental shelf break. We observe a highly variable but energetic internal wave field from the onset of stratification that suggests a continuous supply of internal PE. The heating-stirring model reproduces bulk characteristics of the seasonal cycle. While it accurately predicts the timing of the onset in spring and peak stratification in late summer there is a persistent 20 J m-3 positive offset between the model and observations throughout this period. By including a source of internal energy in the model we improve the prediction for the strength of stratification and the vertical distribution of heat. Yet a constant source of PE seems to result in a seasonal discrepancy resulting in too little mixing during strong stratification and too much mixing during transient periods. The discrepancy seen in the model is consistent with the seasonality observed in the internal wave field. We will establish the role that changing stratification (N2) exerts on the internal wave field and vice
Initial-value problem for the Gardner equation applied to nonlinear internal waves
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of
International Conference on Ergodic Theory and Related Topics
Richter, Karin; Warstat, Volker
1992-01-01
The purpose of the conference was to represent recent developments in measure theoretic, differentiable and topological dynamical systems as well as connections to probability theory, stochastic processes, operator theory and statistical physics. Only original research papers that do not appear elsewhere are included in the proceedings. Their topics include: C(2)-diffeomorphisms of compact Riemann manifolds, geodesic flows, chaotic behaviour in billards, nonlinear ergodic theory, central limit theorems for subadditive processes, Hausdorff measures for parabolic rational maps, Markov operators, periods of cycles, Julia sets, ergodic theorems. From the Contents: L.A. Bunimovich: On absolutely focusing mirrors.- M. Denker, M. Urbanski: The dichotomy of Hausdorff measures and equilibrium states for parabolic rational maps.- F. Ledrappier: Ergodic properties of the stable foliations.- U. Wacker: Invariance principles and central limit theorems for nonadditive stationary processes.- J. Schmeling, R. Siegmund-Schult...
Dickinson, Alex; White, N. J.; Caulfield, C. P.
2017-12-01
Bright reflections are observed within the upper 1,000 m of the water column along a seismic reflection profile that traverses the northern margin of the Gulf of Mexico. Independent hydrographic calibration demonstrates that these reflections are primarily caused by temperature changes associated with different water masses that are entrained into the Gulf along the Loop Current. The internal wave field is analyzed by automatically tracking 1,171 reflections, each of which is greater than 2 km in length. Power spectra of the horizontal gradient of isopycnal displacement, ϕξx, are calculated from these tracked reflections. At low horizontal wave numbers (kxcpm), ϕξx∝kx-0.2±0.6, in agreement with hydrographic observations of the internal wave field. The turbulent spectral subrange is rarely observed. Diapycnal diffusivity, K, is estimated from the observed internal wave spectral subrange of each tracked reflection using a fine-scale parametrization of turbulent mixing. Calculated values of K vary between 10-8 and 10-4 m2 s-1 with a mean value of K˜4×10-6 m2 s-1. The spatial distribution of turbulent mixing shows that K˜10-7 m2 s-1 away from the shelf edge in the upper 300 m where stratification is strong. Mixing is enhanced by up to 4 orders of magnitude adjacent to the shoaling bathymetry of the continental slope. This overall pattern matches that determined by analyzing nearby suites of CTD casts. However, the range of values recovered by spectral analysis of the seismic image is greater as a consequence of significantly better horizontal resolution.
EMPLOYEES MOTIVATION THEORIES DEVELOPED AT AN INTERNATIONAL LEVEL
Directory of Open Access Journals (Sweden)
Manolescu Aurel
2009-05-01
Full Text Available International specialized literature speaks about motivational strategies, about methods of increasing the employees\\' satisfaction at work and of obtaining the best results by increasing work motivation. But what does motivation really represent? Whic
Theory and practice of internalization of external costs
International Nuclear Information System (INIS)
Bonus, H.
1995-01-01
External costs are those parts of total costs which bypass the market. To internalize them means to confront economic agents with the true costs and benefits of their economic activities. The concept of internalization does not really meet the requirements of preserving ecological equilibrium. Defining ecological constraints fits the needs much better. Implicit in ecological constraints are shadow prices. To let them emerge, markets for tradable emission permits would be appropriate. Carbon dioxide is used as an example. (author) 7 refs
Joint Varenna-Lausanne International Workshop on the Theory of Fusion Plasmas 2016
International Nuclear Information System (INIS)
2016-01-01
The joint Varenna-Lausanne international workshop on the theory of fusion plasmas took place in Varenna from August 29 to September 2 2016. Several issues of interest for fusion plasmas were addressed, namely MHD stability, RF heating, collisional and turbulent transport, plasma wall interaction, and physics of burning plasmas. The articles published in this special issue illustrate nicely the well balanced combination of physics, applied mathematics, and computer sciences that characterizes this workshop. Let us mention several attractive topics, which are addressed in this issue. The question of 3D MHD equilibrium in tokamaks has received a great deal of attention, in connection with external resonant magnetic perturbations in tokamaks, and also stochastic edge in stellarators. The reader will also find some recent developments related to the effect of current drive and heating on the stability of tearing modes. As usual, turbulent transport is addressed in much detail. Several papers address specific numerical aspects of fluid and gyrokinetic codes, including code optimisation. Physics issues are abundantly dealt with, such as the impact of fast particles on turbulence, and particle transport. New numerical techniques to model wave propagation are presented, which provide significant advances in the field. Refinements such as the effect of density fluctuation on wave propagation, or the interaction between particles and the electromagnetic field near antennas, have also been studied in depth. Finally, specific issues such as nonlocal transport, decay of zonal flows, and the effect of neutrals on rotation have been investigated. A striking feature of the 2016 edition was the large number of young faces among the participants. This is a great satisfaction for the organizers since a new generation of scientists is certainly needed whilst several devices come to operation, or will do so in a foreseeable future. The diversity and quality of the papers published in
Yang, Chen
2018-05-01
The transitions from classical theories to quantum theories have attracted many interests. This paper demonstrates the analogy between the electromagnetic potentials and wave-like dynamic variables with their connections to quantum theory for audiences at advanced undergraduate level and above. In the first part, the counterpart relations in the classical electrodynamics (e.g. gauge transform and Lorenz condition) and classical mechanics (e.g. Legendre transform and free particle condition) are presented. These relations lead to similar governing equations of the field variables and dynamic variables. The Lorenz gauge, scalar potential and vector potential manifest a one-to-one similarity to the action, Hamiltonian and momentum, respectively. In the second part, the connections between the classical pictures of electromagnetic field and particle to quantum picture are presented. By characterising the states of electromagnetic field and particle via their (corresponding) variables, their evolution pictures manifest the same algebraic structure (isomorphic). Subsequently, pictures of the electromagnetic field and particle are compared to the quantum picture and their interconnections are given. A brief summary of the obtained results are presented at the end of the paper.
Ekstrom, David N.; Sigurdsson, Hrafn Oli
2002-01-01
An international educational exchange program involving nursing students was examined using Habermas' theory of communicative action. Politics and economics were found to inhibit active communication and the potential benefits of shared understanding through interaction. (Contains 20 references.) (SK)
Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer
International Nuclear Information System (INIS)
Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio; Wang Bin; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Hatai, Keigo; Fukui, Akihiro; Arakawa, Yoshihiro
2011-01-01
Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n e and the electron temperature T e profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO 2 laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n e and T e were, respectively, about 2 x 10 24 m -3 and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measured properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n e at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.
International shock-wave database project : report of the requirements workshop.
Energy Technology Data Exchange (ETDEWEB)
Aidun, John Bahram (Institute of Problems of chemical Physics of Russian Academy of Sciences); Lomonosov, Igor V. (Institute of Problems of chemical Physics of Russian Academy of Sciences); Levashov, Pavel R. (Joint Institute for High Temperatures of Russian Academy of Sciences)
2012-03-01
We report on the requirements workshop for a new project, the International Shock-Wave database (ISWdb), which was held October 31 - November 2, 2011, at GSI, Darmstadt, Germany. Participants considered the idea of this database, its structure, technical requirements, content, and principles of operation. This report presents the consensus conclusions from the workshop, key discussion points, and the goals and plan for near-term and intermediate-term development of the ISWdb. The main points of consensus from the workshop were: (1) This international database is of interest and of practical use for the shock-wave and high pressure physics communities; (2) Intermediate state information and off-Hugoniot information is important and should be included in ISWdb; (3) Other relevant high pressure and auxiliary data should be included to the database, in the future; (4) Information on the ISWdb needs to be communicated, broadly, to the research community; and (5) Operating structure will consist of an Advisory Board, subject-matter expert Moderators to vet submitted data, and the database Project Team. This brief report is intended to inform the shock-wave research community and interested funding agencies about the project, as its success, ultimately, depends on both of these groups finding sufficient value in the database to use it, contribute to it, and support it.
Internal-wave reflection from uniform slopes: higher harmonics and Coriolis effects
Directory of Open Access Journals (Sweden)
T. Gerkema
2006-01-01
Full Text Available Weakly nonlinear reflection of internal waves from uniform slopes produces higher harmonics and mean fields; the expressions are here derived for constant stratification and with Coriolis effects fully included, i.e. the horizontal component of the earth rotation vector (referred to as 'non-traditional'' is taken into account. Uniformity in one of the horizontal directions is assumed. It is shown that solutions can be as readily derived with as without ; hence there is no need to make the so-called Traditional Approximation. Examples of reflecting internal-wave beams are presented for super-inertial, inertial and sub-inertial frequencies. The problem of resonant and non-resonant forcing of the second harmonic is studied for single plane waves; unlike under the Traditional Approximation, the problem of reflection from a horizontal bottom no longer forms a singular case. Non-traditional effects are favourable to resonant forcing at near-tidal rather than near-inertial frequencies, and generally increase the intensity of the second harmonic. Strong stratification tends to suppress non-traditional effects, but a near-total suppression is only attained for high values of stratification that are characteristic of the seasonal thermocline; in most parts of the ocean, non-traditional effects can therefore be expected to be important.
Arshad, Kashif; Poedts, Stefaan; Lazar, Marian
2017-04-01
Nowadays electromagnetic (EM) fields have various applications in fundamental research, communication, and home appliances. Even though, there are still some subtle features of electromagnetic field known to us a century ago, yet to be utilized. It is because of the technical complexities to sense three dimensional electromagnetic field. An important characteristic of electromagnetic field is its orbital angular momentum (OAM). The angular momentum consists of two distinct parts; intrinsic part associated with the wave polarization or spin, and the extrinsic part associated with the orbital angular momentum (OAM). The orbital angular momentum (OAM) is inherited by helically phased light or helical (twisted) electric field. The investigations of Allen on lasers carrying orbital angular momentum (OAM), has initiated a new scientific and technological advancement in various growing fields, such as microscopy and imaging, atomic and nano-particle manipulation, ultra-fast optical communications, quantum computing, ionospheric radar facility to observe 3D plasma dynamics in ionosphere, photonic crystal fibre, OAM entanglement of two photons, twisted gravitational waves, ultra-intense twisted laser pulses and astrophysics. Recently, the plasma modes are also investigated with orbital angular momentum. The production of electron vortex beams and its applications are indicated by Verbeeck et al. The magnetic tornadoes (rotating magnetic field structures) exhibit three types of morphology i.e., spiral, ring and split. Leyser pumped helical radio beam carrying OAM into the Ionospheric plasma under High Frequency Active Auroral Research Program (HAARP) and characteristic ring shaped morphology is obtained by the optical emission spectrum of pumped plasma turbulence. The scattering phenomenon like (stimulated Raman and Brillouin backscattering) is observed to be responsible for the interaction between electrostatic and electromagnetic waves through orbital angular momentum. The
Energy Technology Data Exchange (ETDEWEB)
Takayama, K. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science
1999-11-05
Outlined herein are the topics at the 22nd. International Symposium on Shock Waves, held in July 1999 in London. Prof. Takayama of Tohoku University gave an invited lecture on application of shock waves to medical area, stressing significance of shock waves on a human body. A total of 81 papers were presented from Japan. Number of Japanese papers and number of Japanese attendees both accounted for approximately 25%. The themes of these papers are centered by behavior of shock waves (e.g., propagation, reflection, and diffraction), extreme supersonic flows, interference between shock wave and boundary layer, aerodynamics (e.g., interference between vortex and shock wave), numerical simulation of shock wave phenomena, development of a new shock wave tube and measurement method, researches on elementary steps in chemical reactions, shock wave phenomena in condensed media and multi-phase media, shock wave noise produced while a high-speed train is running in a tunnel, and application of shock waves to industrial and medical areas. Japan contributes much to the application to medical area, and a method dispensing with injection is reported. Japan's aerospace-related researches include interference between shock wave and boundary layer, in which the real gas effect is taken into consideration, designs for protection from heat during the re-entry into the atmosphere, and construction of the world largest free-piston type wind tunnel. (NEDO)
National Research Council Canada - National Science Library
Reeves, Justin M
2008-01-01
...) was conducted from 13 - 15 April 2005 on the continental shelf in the northeast portion of the South China Sea to study the effects of nonlinear internal waves on the transmission of a 400-Hz signal...
Directory of Open Access Journals (Sweden)
Liu Yongjun
2015-01-01
Full Text Available In this thesis, the influence of complete Coriolis force (the model includes both the vertical and horizontal components of Coriolis force on the dispersion relation of ocean internal-wave under background currents field are studied, it is important to the study of ocean internal waves in density-stratified ocean. We start from the control equation of sea water movement in the background of the non-traditional approximation, and the vertical velocity solution is derived where buoyancy frequency N(z gradually varies with the ocean depth z. The results show that the influence of complete Coriolis force on the dispersion relation of ocean internal-wave under background currents field is obvious, and these results provide strong evidence for the understanding of dynamic process of density stratified ocean internal waves.
National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface for Massachusetts Bay. The...
A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids
Ciancio, Vincenzo; Palumbo, Annunziata
2018-04-01
In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.
Coercive Sanctions and International Conflicts: A Sociological Theory
DEFF Research Database (Denmark)
Jaeger, Mark Daniel
international sanctions work, and more substantially, what are the social conditions within sanctions conflicts that are conducive to either cooperation or non-cooperation? Arguing that coercive sanctions and international conflicts are socially-constructed facts, the book explores the processes involved......Perhaps the most common question raised in the literature on coercive international sanctions is: "Do sanctions work?" Unsurprisingly, the answer to such a sweeping question remains inconclusive. Instead of asking whether sanctions work, this book addresses a more basic question: How do coercive......, and to its potential transformation. Thus it is premature to ‘predict’ the political effectiveness of sanctions simply on the basis of their economic impact. The book presents analyses of the sanctions conflicts between China and Taiwan and over Iran’s nuclear program, illustrating how negative sanctions...
A New Institutionalism? The English School as International Sociological Theory
DEFF Research Database (Denmark)
Schouenborg, Laust
2011-01-01
In this article I engage with the theoretical opening provided by Barry Buzan’s From International to World Society? I present an argument for five functional categories, which should be able to encompass all the institutions identified by English School scholars throughout history. Their introdu......In this article I engage with the theoretical opening provided by Barry Buzan’s From International to World Society? I present an argument for five functional categories, which should be able to encompass all the institutions identified by English School scholars throughout history....... Their introduction should point the way towards a sounder analytical framework for the study of what Buzan believes should be the new subject of the discipline of International Relations (IR). This subject is defined as second-order societies, meaning societies ‘where the members are not individual human beings...
Harnessing International Relations Theory to Security Cooperation Program Design
2012-03-22
behavior. One of the most famous Liberal theorists is the philosopher Immanuel Kant , whose theory of “Perpetual Peace” centered on a vision where “free...democratic states would retain their sovereignty while working together to avoid war.”17 Kant ‟s vision has repeatedly been channeled into a desire...Interdependence and Liberal Institutionalist thinkers share roots with Grotius and Kant , and believe that there is a larger civil society where interstate
Field theory of the spinning electron: I - Internal motions
International Nuclear Information System (INIS)
Salesi, Giovanni; Recami, Erasmo; Universidade Estadual de Campinas, SP
1994-05-01
One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v μ , which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs
Field theory of the spinning electron: I - Internal motions
Energy Technology Data Exchange (ETDEWEB)
Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada
1994-05-01
One of the most satisfactory picture of spinning particles is the Barut-Zanghi (BZ) classical theory for the relativistic electron, that relates the electron spin with the so-called Zitterbewegung (zbw). The BZ theory has been recently studied in the Lagrangian and Hamiltonian symplectic formulations, both in flat and in curved space-time. The BZ motion equations constituted the starting point for two recent works about spin and electron structure, co-authored by us, which adopted the Clifford algebra formalism. In this letter, by employing on the contrary the ordinary tensorial language, we first write down a meaningful (real) equation of motion, describing particle classical paths, quite different from the corresponding (complex) equation of the standard Dirac theory. As a consequence, we succeed in regarding the electron as an extended-type object with a classically intelligible structure (thus overcoming some long-standing, well-known problems). Second, we make explicit the kinematical properties of the 4-velocity field v{sup {mu}}, which also result to be quite different from the ordinary ones, valid for scalar particles. At last, we analyze the inner zbw motions, both time-like and light-like, as functions of the initial conditions (in particular, for the case of classical uniform motions, the z component of spin s is shown to be quantized). In so doing, we make explicit the strict correlation existing between electron polarization and zbw kinematics. (author). 9 refs.
Toward a Hermeneutical Theory of International Human Rights Education
Al-Daraweesh, Fuad; Snauwaert, Dale T.
2013-01-01
The purpose of this essay is to articulate and defend the epistemological foundations of international human rights education from the perspective of a hermeneutical interpretive methodology. Fuad Al-Daraweesh and Dale Snauwaert argue here that this methodology potentially alleviates the challenges that face the cross-cultural implementation of…
Xu, Jian-Jun
2017-01-01
This comprehensive work explores interfacial instability and pattern formation in dynamic systems away from the equilibrium state in solidification and crystal growth. Further, this significantly expanded 2nd edition introduces and reviews the progress made during the last two decades. In particular, it describes the most prominent pattern formation phenomena commonly observed in material processing and crystal growth in the framework of the previously established interfacial wave theory, including free dendritic growth from undercooled melt, cellular growth and eutectic growth in directional solidification, as well as viscous fingering in Hele-Shaw flow. It elucidates the key problems, systematically derives their mathematical solutions by pursuing a unified, asymptotic approach, and finally carefully examines these results by comparing them with the available experimental results. The asymptotic approach described here will be useful for the investigation of pattern formation phenomena occurring in a much b...
Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab
International Nuclear Information System (INIS)
Angus, J. R.; Krasheninnikov, S. I.; Smolyakov, A. I.
2010-01-01
The effects of electromagnetic plane waves obliquely incident on a warm bounded plasma slab of finite length L are studied by solving the coupled Vlasov-Maxwell set of equations. It is shown that the solution can be greatly simplified in the limit where thermal effects are most important by expanding in small parameters and introducing self-similar variables. These solutions reveal that the coupling of thermal effects with the angle of incidence is negligible in the region of bounce resonance and anomalous skin effect. In the region of the anomalous skin effect, the heating is shown to scale linearly with the anomalous skin depth δ a when δ a a >>L, the heating is shown to decay with 1/δ a 3 . The transmission is found to be exponentially larger than that predicted from a local theory in the appropriate region of the anomalous skin effect.
BCS wave function, matrix product states, and the Ising conformal field theory
Montes, Sebastián; Rodríguez-Laguna, Javier; Sierra, Germán
2017-11-01
We present a characterization of the many-body lattice wave functions obtained from the conformal blocks (CBs) of the Ising conformal field theory (CFT). The formalism is interpreted as a matrix product state using continuous ancillary degrees of freedom. We provide analytic and numerical evidence that the resulting states can be written as BCS states. We give a complete proof that the translationally invariant 1D configurations have a BCS form and we find suitable parent Hamiltonians. In particular, we prove that the ground state of the finite-size critical Ising transverse field (ITF) Hamiltonian can be obtained with this construction. Finally, we study 2D configurations using an operator product expansion (OPE) approximation. We associate these states to the weak pairing phase of the p +i p superconductor via the scaling of the pairing function and the entanglement spectrum.
Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization
Kitano, Ryuichiro; Li, Tianjun
2003-06-01
A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group.
Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines
International Nuclear Information System (INIS)
Jia, Weile; Fu, Jiyun; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; Wang, Lin-Wang
2013-01-01
Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP
One-dimensional nonlinear theory for rectangular helix traveling-wave tube
Energy Technology Data Exchange (ETDEWEB)
Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong; Ju, Yongfeng [Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai' an 223003 (China); Wei, Yanyu [School of Physical Electronics, University of Electronic and Technology of China, Chengdu 610054 (China)
2016-08-15
A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numerically using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.
Realization of low-scattering metamaterial shell based on cylindrical wave expanding theory.
Wu, Xiaoyu; Hu, Chenggang; Wang, Min; Pu, Mingbo; Luo, Xiangang
2015-04-20
In this paper, we demonstrate the design of a low-scattering metamaterial shell with strong backward scattering reduction and a wide bandwidth at microwave frequencies. Low echo is achieved through cylindrical wave expanding theory, and such shell only contains one metamaterial layer with simultaneous low permittivity and permeability. Cut-wire structure is selected to realize the low electromagnetic (EM) parameters and low loss on the resonance brim region. The full-model simulations show good agreement with theoretical calculations, and illustrate that near -20dB reduction is achieved and the -10 dB bandwidth can reach up to 0.6 GHz. Compared with the cloak based on transformation electromagnetics, the design possesses advantage of simpler requirement of EM parameters and is much easier to be implemented when only backward scattering field is cared.
Conformal field theory construction for non-Abelian hierarchy wave functions
Tournois, Yoran; Hermanns, Maria
2017-12-01
The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey non-Abelian fusion rules of type su (q)k . For a subset of these states we are able to derive the conformal field theory description that makes the topological properties—in particular braiding—of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.
Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization
International Nuclear Information System (INIS)
Kitano, Ryuichiro; Li Tianjun
2003-01-01
A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group
Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.
2016-11-01
Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.
Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.
2018-05-01
Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.
The role of the wave function in the GRW matter density theory
Energy Technology Data Exchange (ETDEWEB)
Egg, Matthias [University of Lausanne (Switzerland)
2014-07-01
Every approach to quantum mechanics postulating some kind of primitive ontology (e.g., Bohmian particles, a mass density field or flash-like collapse events) faces the challenge of clarifying the ontological status of the wave function. More precisely, one needs to spell out in what sense the wave function ''governs'' the behaviour of the primitive ontology, such that the empirical predictions of standard quantum mechanics are recovered. For Bohmian mechanics, this challenge has been addressed in recent papers by Belot and Esfeld et al. In my talk, I do the same for the matter density version of the Ghirardi-Rimini-Weber theory (GRWm). Doing so will highlight relevant similarities and differences between Bohmian mechanics and GRWm. The differences are a crucial element in the evaluation of the relative strengths and weaknesses of the two approaches, while the similarities can shed light on general characteristics of the primitive ontology approach, as opposed to other interpretative approaches to quantum mechanics.
Gravitational waves in Einstein-æther and generalized TeVeS theory after GW170817
Gong, Yungui; Hou, Shaoqi; Liang, Dicong; Papantonopoulos, Eleftherios
2018-04-01
In this work we discuss the polarization contents of Einstein-æther theory and the generalized tensor-vector-scalar (TeVeS) theory, as both theories have a normalized timelike vector field. We derive the linearized equations of motion around the flat spacetime background using the gauge-invariant variables to easily separate physical degrees of freedom. We find the plane wave solutions and identify the polarizations by examining the geodesic deviation equations. We find that there are five polarizations in Einstein-æther theory and six polarizations in the generalized TeVeS theory. In particular, the transverse breathing mode is mixed with the pure longitudinal mode. We also discuss the experimental tests of the extra polarizations in Einstein-æther theory using pulsar timing arrays combined with the gravitational-wave speed bound derived from the observations on GW 170817 and GRB 170817A. It turns out that it might be difficult to use pulsar timing arrays to distinguish different polarizations in Einstein-æther theory. The same speed bound also forces one of the propagating modes in the generalized TeVeS theory to travel much faster than the speed of light. Since the strong coupling problem does not exist in some parameter subspaces, the generalized TeVeS theory is excluded in these parameter subspaces.
Möller, Jens; Müller-Kalthoff, Hanno; Helm, Friederike; Nagy, Nicole; Marsh, Herb W.
2016-01-01
The dimensional comparison theory (DCT) focuses on the effects of internal, dimensional comparisons (e.g., "How good am I in math compared to English?") on academic self-concepts with widespread consequences for students' self-evaluation, motivation, and behavioral choices. DCT is based on the internal/external frame of reference model…
Progress in Research and Theory: Eleven Years of International Public Relations Articles.
Coombs, W. Timothy
Public relations has been caught up in the drive to internationalize business. Organizations are now dealing with global constituencies on a more frequent basis, which increases the demand for international public relations. One concern raised by this development is whether or not theory and research are keeping pace with the international needs…
Moradi, Bonnie; van den Berg, Jacob J.; Epting, Franz R.
2009-01-01
Building on G. A. Kelly's (1991a, 1991b) personal construct theory, this study introduced concepts of threat and guilt as different manifestations of internalized antilesbian and gay prejudice. Results with 102 lesbian and gay participants indicated that internalized threat and guilt each accounted for unique variance in global internalized…
International Nuclear Information System (INIS)
Harada, Masayasu; Kikukawa, Yoshio; Yamawaki, Koichi
2003-01-01
This issue presents the important recent progress in both theoretical and phenomenological issues of strong coupling gauge theories, with/without supersymmetry and extra dimensions, etc. Emphasis in a placed on dynamical symmetry breaking with large anomalous dimensions governed by the dynamics near the nontrivial fixed point. Also presented are recent developments of the corresponding effective field theories. The 43 of the presented papers are indexed individually. (J.P.N)
Directory of Open Access Journals (Sweden)
Oxana E. Kurkina
2017-11-01
Full Text Available The properties and dynamics of internal waves in the ocean crucially depend on the vertical structure of water masses. We present detailed analysis of the impact of spatial and seasonal variations in the density-driven stratification in the Sea of Okhotsk on the properties of the classic kinematic and nonlinear parameters of internal waves in this water body. The resulting maps of the phase speed of long internal waves and coefficients at various terms of the underlying Gardner’s equation make it possible to rapidly determine the main properties of internal solitary waves in the region and to choose an adequate set of parameters of the relevant numerical models. It is shown that the phase speed of long internal waves almost does not depend on the particular season. The coefficient at the quadratic term of the underlying evolution equation is predominantly negative in summer and winter and therefore internal solitons usually have negative polarity. Numerical simulations of the formation of internal solitons and solibores indicate that seasonal variations in the coefficient at the cubic term of Gardner’s equation lead to substantial variations in the shape of solibores.
International Nuclear Information System (INIS)
1996-09-01
In this report eight invited and contributed papers of the theory group are included which were presented at joint Varenna-Lausanne international workshop on 'theory of fusion plasmas'. (author) figs., tabs., refs
Energy Technology Data Exchange (ETDEWEB)
Múnera, Héctor A., E-mail: hmunera@hotmail.com [Centro Internacional de Física (CIF), Apartado Aéreo 4948, Bogotá, Colombia, South America (Colombia); Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America (Colombia)
2016-07-07
It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.
SU(2 Yang–Mills Theory: Waves, Particles, and Quantum Thermodynamics
Directory of Open Access Journals (Sweden)
Ralf Hofmann
2016-08-01
Full Text Available We elucidate how Quantum Thermodynamics at temperature T emerges from pure and classical S U ( 2 Yang–Mills theory on a four-dimensional Euclidean spacetime slice S 1 × R 3 . The concept of a (deconfining thermal ground state, composed of certain solutions to the fundamental, classical Yang–Mills equation, allows for a unified addressation of both (classical wave- and (quantum particle-like excitations thereof. More definitely, the thermal ground state represents the interplay between nonpropagating, periodic configurations which are electric-magnetically (antiselfdual in a non-trivial way and possess topological charge modulus unity. Their trivial-holonomy versions—Harrington–Shepard (HS (anticalorons—yield an accurate a priori estimate of the thermal ground state in terms of spatially coarse-grained centers, each containing one quantum of action ℏ localized at its inmost spacetime point, which induce an inert adjoint scalar field ϕ ( | ϕ | spatio-temporally constant. The field ϕ , in turn, implies an effective pure-gauge configuration, a μ gs , accurately describing HS (anticaloron overlap. Spatial homogeneity of the thermal ground-state estimate ϕ , a μ gs demands that (anticaloron centers are densely packed, thus representing a collective departure from (antiselfduality. Effectively, such a “nervous” microscopic situation gives rise to two static phenomena: finite ground-state energy density ρ gs and pressure P gs with ρ gs = − P gs as well as the (adjoint Higgs mechanism. The peripheries of HS (anticalorons are static and resemble (antiselfdual dipole fields whose apparent dipole moments are determined by | ϕ | and T, protecting them against deformation potentially caused by overlap. Such a protection extends to the spatial density of HS (anticaloron centers. Thus the vacuum electric permittivity ϵ 0 and magnetic permeability μ 0 , supporting the propagation of wave-like disturbances in the U ( 1 Cartan
31st International Symposium on Lattice Field Theory
2013-01-01
The annual lattice symposium brings together a global community of researchers from theoretical particle physics and beyond, who employ numerical and computational methods to study the properties of strongly interacting physical systems, above all Quantum Chromodynamics (QCD), the theory describing the interactions of quarks and gluons. Topics include studies of the spectrum and structure of hadrons, lattice studies of matter under extreme conditions, hadronic contributions to weak decay amplitudes, as well as recent developments in simulation algorithms and computer hardware. The 2013 conference in Mainz was attended by over 500 participants from all over the globe, making it the biggest in this series so far. This proceedings volume is dedicated to the memory of Nobel Laureate Kenneth G. Wilson (June 8, 1936 - June 15, 2013).
Energy Technology Data Exchange (ETDEWEB)
McHugh, John P. [The University of New Hampshire, Department of Mechanical Engineering, Kingsbury Hall, Durham, NH (United States)
2008-04-15
Internal waves propagating in an idealized two-layer atmosphere are studied numerically. The governing equations are the inviscid anelastic equations for a perfect gas atmosphere. The numerical formulation eliminates all variables in the linear terms except vertical velocity, which are then treated implicitly. Nonlinear terms are treated explicitly. The basic state is a two-layer flow with continuous density at the interface. Each layer has a unique constant for the Brunt-Vaeisaelae frequency. Waves are forced at the bottom of the domain, are periodic in the horizontal direction, and form a finite wave packet in the vertical. The results show that the wave packet forms a mean flow that is confined to the interface region that persists long after the wave packet has moved away. Large-amplitude waves are forced to break beneath the interface. (orig.)
Propagation of 3D internal gravity wave beams in a slowly varying stratification
Fan, Boyu; Akylas, T. R.
2017-11-01
The time-mean flows induced by internal gravity wave beams (IGWB) with 3D variations have been shown to have dramatic implications for long-term IGWB dynamics. While uniform stratifications are convenient both theoretically and in the laboratory, stratifications in the ocean can vary by more than an order of magnitude over the ocean depth. Here, in view of this fact, we study the propagation of a 3D IGWB in a slowly varying stratification. We assume that the stratification varies slowly relative to the local variations in the wave profile. In the 2D case, the IGWB bends in response to the changing stratification, but nonlinear effects are minor even in the finite amplitude regime. For a 3D IGWB, in addition to bending, we find that nonlinearity results in the transfer of energy from waves to a large-scale time-mean flow associated with the mean potential vorticity, similar to IGWB behavior in a uniform stratification. In a weakly nonlinear setting, we derive coupled evolution equations that govern this process. We also use these equations to determine the stability properties of 2D IGWB to 3D perturbations. These findings indicate that 3D effects may be relevant and possibly fundamental to IGWB dynamics in nature. Supported by NSF Grant DMS-1512925.
Czech Academy of Sciences Publication Activity Database
Riley, K. E.; Pitoňák, Michal; Jurečka, P.; Hobza, Pavel
2010-01-01
Roč. 110, č. 9 (2010), s. 5023-5063 ISSN 0009-2665 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : non covalent interactions * wave function theories * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 33.033, year: 2010
International Markets: Malaysian Construction Contractors and the Stage Theory
Directory of Open Access Journals (Sweden)
Ahmed Awil
2012-11-01
Full Text Available Reduced demand for services, lack of finances for projects and idle resources at homehave resulted in loss of business for Malaysian construction contractors. Among the optionsthat are explored in this paper is internationalisation of services to help the contractorsgainfully employ their resources and diversify their markets. Integration of worldmarkets, faster transportation and improved means of communication have made it possiblefor contractors to undertake work in international markets. It was found that contractorswere motivated to internationalise by need to make the firm a viable one byconsidering the long-term profitability. Reputation and size of the firm were found to befactors that help contractors in winning contracts overseas. Most non-exporters were concernedwith provision of market intelligence and export credit finance. It was found thatproviding relevant market information, accessible to both exporter and non-exporters, canhelp firms make informed decisions. Any assistance provided should match the firm to thestage the firm has reached in exporting
HIMAWARI-8 Geostationary Satellite Observation of the Internal Solitary Waves in the South China Sea
Gao, Q.; Dong, D.; Yang, X.; Husi, L.; Shang, H.
2018-04-01
The new generation geostationary meteorological satellite, Himawari-8 (H-8), was launched in 2015. Its main payload, the Advanced Himawari Imager (AHI), can observe the earth with 10-minute interval and as high as 500-m spatial resolution. This makes the H-8 satellite an ideal data source for marine and atmospheric phenomena monitoring. In this study, the propagation of internal solitary waves (ISWs) in the South China Sea is investigated using AHI imagery time series for the first time. Three ISWs cases were studied at 3:30-8:00 UTC on 30 May, 2016. In all, 28 ISWs were detected and tracked between the time series image pairs. The propagation direction and phase speeds of these ISWs are calculated and analyzed. The observation results show that the properties of ISW propagation not stable and maintains nonlinear during its lifetime. The resultant ISW speeds agree well with the theoretical values estimated from the Taylor-Goldstein equation using Argo dataset. This study has demonstrated that the new generation geostationary satellite can be a useful tool to monitor and investigate the oceanic internal waves.
Energy Technology Data Exchange (ETDEWEB)
Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nielsen, Kim [Ramboll, Copenhagen (Denmark); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bunnik, Tim [MARIN (Netherlands); Touzon, Imanol [Tecnalia (Spain); Nam, Bo Woo [KRISO (Korea, Rep. of); Kim, Jeong Seok [KRISO (Korea, Rep. of); Janson, Carl Erik [Chalmers University (Sweden); Jakobsen, Ken-Robert [EDRMedeso (Norway); Crowley, Sarah [WavEC (Portugal); Vega, Luis [Hawaii Natural Energy Institute (United States); Rajagopalan, Krishnakimar [Hawaii Natural Energy Institute (United States); Mathai, Thomas [Glosten (United States); Greaves, Deborah [Plymouth University (United Kingdom); Ransley, Edward [Plymouth University (United Kingdom); Lamont-Kane, Paul [Queen' s University Belfast (United Kingdom); Sheng, Wanan [University College Cork (Ireland); Costello, Ronan [Wave Venture (United Kingdom); Kennedy, Ben [Wave Venture (United Kingdom); Thomas, Sarah [Floating Power Plant (Denmark); Heras, Pilar [Floating Power Plant (Denmark); Bingham, Harry [Technical University of Denmark (Denmark); Kurniawan, Adi [Aalborg University (Denmark); Kramer, Morten Mejlhede [Aalborg University (Denmark); Ogden, David [INNOSEA (France); Girardin, Samuel [INNOSEA (France); Babarit, Aurelien [EC Nantes (France); Wuillaume, Pierre-Yves [EC Nantes (France); Steinke, Dean [Dynamic Systems Analysis (Canada); Roy, Andre [Dynamic Systems Analysis (Canada); Beatty, Scott [Cascadia Coast Research (Canada); Schofield, Paul [ANSYS (United States); Kim, Kyong-Hwan [KRISO (Korea, Rep. of); Jansson, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden); BCAM (Spain); Hoffman, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden)
2017-10-16
This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper.
Experimental determination of radiated internal wave power without pressure field data
Lee, Frank M.; Paoletti, M. S.; Swinney, Harry L.; Morrison, P. J.
2014-04-01
We present a method to determine, using only velocity field data, the time-averaged energy flux left and total radiated power P for two-dimensional internal gravity waves. Both left and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.
The internal waves and Rayleigh-Taylor instability in compressible quantum plasmas
International Nuclear Information System (INIS)
Lu, H. L.; Qiu, X. M.
2011-01-01
In this paper, we investigate the quantum effect on internal waves and Rayleigh-Taylor (RT) instability in compressible quantum plasmas. First of all, let us consider the case of the limit of short wavelength perturbations. In the case, the dispersion relation including quantum and compressibility effects and the RT instability growth rate can be derived using Wentzel-Kramers-Brillouin method. The results show that the internal waves can propagate along the transverse direction due to the quantum effect, which was first pointed out by Bychkov et al.[Phys. Lett. A 372, 3042 (2008)], and the coupling between it and compressibility effect, which is found out in this paper. Then, without making the approximation assumption of short wavelength limit, we examine the linearized perturbation equation following Qiu et al.'s solving process [Phys. Plasmas 10, 2956 (2003)]. It is found that the quantum effect always stabilizes the RT instability in either incompressible or compressible quantum plasmas. Moreover, in the latter case, the coupling between it and compressibility effect makes this stabilization further enhance.
Experimental determination of radiated internal wave power without pressure field data
International Nuclear Information System (INIS)
Lee, Frank M.; Morrison, P. J.; Paoletti, M. S.; Swinney, Harry L.
2014-01-01
We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data
On the generation and evolution of internal solitary waves in the southern Red Sea
Guo, Daquan
2016-11-28
Satellite observations recently revealed trains of internal solitary waves (ISWs) in the off-shelf region between 16.0 degrees N and 16.5 degrees N in the southern Red Sea. The generation mechanism of these waves is not entirely clear, though, as the observed generation sites are far away (50 km) from the shelf break and tidal currents are considered relatively weak in the Red Sea. Upon closer examination of the tide properties in the Red Sea and the unique geometry of the basin, it is argued that the steep bathymetry and a relatively strong tidal current in the southern Red Sea provide favorable conditions for the generation of ISWs. To test this hypothesis and further explore the evolution of ISWs in the basin, 2-D numerical simulations with the nonhydrostatic MIT general circulation model (MITgcm) were conducted. The results are consistent with the satellite observations in regard to the generation sites, peak amplitudes and the speeds of first-mode ISWs. Moreover, our simulations suggest that the generation process of ISWs in the southern Red Sea is similar to the tide-topography interaction mechanism seen in the South China Sea. Specifically, instead of ISWs arising in the immediate vicinity of the shelf break via a hydraulic lee wave mechanism, a broad, energetic internal tide is first generated, which subsequently travels away from the shelf break and eventually breaks down into ISWs. Sensitivity runs suggest that ISW generation may also be possible under summer stratification conditions, characterized by an intermediate water intrusion from the strait of Bab el Mandeb.
A new double-scaling limit of N = 4 super-Yang-Mills theory and pp-wave strings
DEFF Research Database (Denmark)
Kristjansen, C.; Plefka, J.; Semenoff, G. W.
2002-01-01
. In this paper we shall show that, contrary to widespread expectation, non-planar diagrams survive this limiting procedure in the gauge theory. Using matrix model techniques as well as combinatorial reasoning it is demonstrated that a subset of diagrams of arbitrary genus survives and that a non-trivial double......The metric of a spacetime with a parallel plane (pp)-wave can be obtained in a certain limit of the space AdS5 × S5. According to the AdS/CFT correspondence, the holographic dual of superstring theory on that background should be the analogous limit of N = 4 supersymmetric Yang-Mills theory...
DEFF Research Database (Denmark)
Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.
2013-01-01
, 171–186] is extended to include the second-order dispersive correction. The new formulation is presented in a unified form that includes both progressive and evanescent modes and covers wavemaker configurations of the piston- and flap-type. The second order paddle stroke correction allows for improved...... nonlinear wave generation in the physical wave tank based on target numerical solutions. The performance and efficiency of the new model is first evaluated theoretically based on second order Stokes waves. Due to the complexity of the problem, the proposed method has been truncated at 2D and the treatment...... that the new second-order coupling theory provides an improvement in the quality of nonlinear wave generation when compared to existing techniques....
Masson, Marie-Hélène
2012-01-01
The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions have been the starting points of many important developments, including the Transferable Belief Model and the Theory of Hints. The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well understood connections to other frameworks such as probability, possibility and imprecise probability theories. This volume contains the proceedings of the 2nd International Conference on Belief Functions that was held in Compiègne, France on 9-11 May 2012. It gathers 51 contributions describing recent developments both on theoretical issues (including approximation methods, combination rules, continuous belief functions, graphical models and independence concepts) an...
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
ABINIT: Plane-Wave-Based Density-Functional Theory on High Performance Computers
Torrent, Marc
2014-03-01
For several years, a continuous effort has been produced to adapt electronic structure codes based on Density-Functional Theory to the future computing architectures. Among these codes, ABINIT is based on a plane-wave description of the wave functions which allows to treat systems of any kind. Porting such a code on petascale architectures pose difficulties related to the many-body nature of the DFT equations. To improve the performances of ABINIT - especially for what concerns standard LDA/GGA ground-state and response-function calculations - several strategies have been followed: A full multi-level parallelisation MPI scheme has been implemented, exploiting all possible levels and distributing both computation and memory. It allows to increase the number of distributed processes and could not be achieved without a strong restructuring of the code. The core algorithm used to solve the eigen problem (``Locally Optimal Blocked Congugate Gradient''), a Blocked-Davidson-like algorithm, is based on a distribution of processes combining plane-waves and bands. In addition to the distributed memory parallelization, a full hybrid scheme has been implemented, using standard shared-memory directives (openMP/openACC) or porting some comsuming code sections to Graphics Processing Units (GPU). As no simple performance model exists, the complexity of use has been increased; the code efficiency strongly depends on the distribution of processes among the numerous levels. ABINIT is able to predict the performances of several process distributions and automatically choose the most favourable one. On the other hand, a big effort has been carried out to analyse the performances of the code on petascale architectures, showing which sections of codes have to be improved; they all are related to Matrix Algebra (diagonalisation, orthogonalisation). The different strategies employed to improve the code scalability will be described. They are based on an exploration of new diagonalization
Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda
2018-05-01
High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.
Some recent developments in the endochronic theory of plasticity - the concept of internal barriers
International Nuclear Information System (INIS)
Valanis, K.C.
1977-01-01
In this paper the author introduces to the field of irreversible thermodynamics the concept of internal barriers. The concept is usually associated with physical events at the atomic level. The introduction of barriers at the phenomenological level lends another element of commonality between internal variables and molecular processes. Application to plasticity shows rewarding results, in terms of a realistic analytical representation of the mechanical response of metals to repeated loading-unloading histories. These results have been accomplished by assigning to each internal variable an intrinsic time scale which is exclusively defined in terms of the changes of the internal variable alone. Thus each internal variable is 'autonomous'. The author has named this version of the endochronic theory AUTOCHRONIC. It is shown that yield can be encompassed by the endochronic theory, in a fashion which is more akin, yet basically and fundamentally different, to Mroz's concept of multiple yield surfaces, whose mode of motion must be specified. Moreover, a single yield event is replaced by a sequence of yield events, where such a sequence may be made continuous, in a limiting sense, if so desired. In this paper the analytical representation of successive yielding events is accomplished by the introduction of the concept of INTERNAL BARRIERS. These ensure that an internal variable qsub(r) will not become activated until a barrier of magnitude μ has been overcome. The resulting theory is shown to describe with remarkable accuracy loading, unloading and cross behaviour of common metals. (Auth.)
Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.
Jia, Han; Lu, Lijun; Cao, Yiqing
2018-01-10
A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.
Directory of Open Access Journals (Sweden)
Shymanska K.V.
2017-03-01
Full Text Available The need for transformation of Ukraine's migration policy based on globalized world development trends and in response to the challenges of European integration transformations causes the need of researching the theoretical and methodological basis of migration studies, and the regulations of existing theories of international migration. The bibliometric analysis of scientific publications on international migration in cites indexes found that the recent researches on these problems acquire interdisciplinary character. It necessitates the transformation of migration study approaches basing on economic, social, institutional theories and concepts synthesis. The article is devoted to the study of theoretical regulations of existing international migration theories in the context of the evolution of scientists’ views on this phenomenon. The author found that the existing theories of international migration should be divided into three categories (microeconomic, macroeconomic, globalizational that contributes to their understanding in the context of implementation possibilities in migrational public administration practice. It allows to determine the theories which should be used for Ukrainian state migration policy constructing and eliminating or reducing the external migration negative effects.
Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model
Sun, Weitao; Ba, Jing; Carcione, José M.
2016-04-01
Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic properties of rocks and fluid patch distributions is important to interpret the observed seismic wave phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation process in a double-porosity media saturated with two immiscible fluids. The double-porosity rock consists of a solid matrix with unique host porosity and inclusions which contain the second type of pores. Two immiscible fluids are considered in concentric spherical patches, where the inner pocket and the outer sphere are saturated with different fluids. The kinetic and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated through oscillations in spherical coordinates. The wave propagation equations of the TLP model are based on Biot's theory and the corresponding Lagrangian equations. The P-wave dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow (related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis from the Christoffel equations. Numerical examples and laboratory measurements indicate that P-wave dispersion and attenuation are significantly influenced by the spatial distributions of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in reasonably good agreement with White's and Johnson's models. However, differences in phase velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distribution should be taken into account when describing the P-wave dispersion and attenuation in partially saturated rocks.
Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.
2017-12-01
Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum
Theory building trends in international management research: an archival review of preferred methods
Directory of Open Access Journals (Sweden)
Drikus Kriek
2011-08-01
Full Text Available A number of distinguished scholars believe that for theory development to occur within a field, qualitative research must precede quantitative research in order for the field to progress toward maturity. The purpose of this study was to investigate the international management literature from 1991-2007 to ascertain current levels of use of qualitative, quantitative, conceptual and joint (quantitative and qualitative research methods in the field. Results indicate scholars employ quantitative methods more than qualitative methods. The implications of these findings for future theory development and the generation of context relevant international management knowledge are discussed.
The internal consistency of the standard gamble: tests after adjusting for prospect theory.
Oliver, Adam
2003-07-01
This article reports a study that tests whether the internal consistency of the standard gamble can be improved upon by incorporating loss weighting and probability transformation parameters in the standard gamble valuation procedure. Five alternatives to the standard EU formulation are considered: (1) probability transformation within an EU framework; and, within a prospect theory framework, (2) loss weighting and full probability transformation, (3) no loss weighting and full probability transformation, (4) loss weighting and no probability transformation, and (5) loss weighting and partial probability transformation. Of the five alternatives, only the prospect theory formulation with loss weighting and no probability transformation offers an improvement in internal consistency over the standard EU valuation procedure.
Hahne, G. E.
1991-01-01
A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.
Directory of Open Access Journals (Sweden)
Sarah A. Birken
2017-10-01
Full Text Available Abstract Background Theories provide a synthesizing architecture for implementation science. The underuse, superficial use, and misuse of theories pose a substantial scientific challenge for implementation science and may relate to challenges in selecting from the many theories in the field. Implementation scientists may benefit from guidance for selecting a theory for a specific study or project. Understanding how implementation scientists select theories will help inform efforts to develop such guidance. Our objective was to identify which theories implementation scientists use, how they use theories, and the criteria used to select theories. Methods We identified initial lists of uses and criteria for selecting implementation theories based on seminal articles and an iterative consensus process. We incorporated these lists into a self-administered survey for completion by self-identified implementation scientists. We recruited potential respondents at the 8th Annual Conference on the Science of Dissemination and Implementation in Health and via several international email lists. We used frequencies and percentages to report results. Results Two hundred twenty-three implementation scientists from 12 countries responded to the survey. They reported using more than 100 different theories spanning several disciplines. Respondents reported using theories primarily to identify implementation determinants, inform data collection, enhance conceptual clarity, and guide implementation planning. Of the 19 criteria presented in the survey, the criteria used by the most respondents to select theory included analytic level (58%, logical consistency/plausibility (56%, empirical support (53%, and description of a change process (54%. The criteria used by the fewest respondents included fecundity (10%, uniqueness (12%, and falsifiability (15%. Conclusions Implementation scientists use a large number of criteria to select theories, but there is little
Birken, Sarah A; Powell, Byron J; Shea, Christopher M; Haines, Emily R; Alexis Kirk, M; Leeman, Jennifer; Rohweder, Catherine; Damschroder, Laura; Presseau, Justin
2017-10-30
Theories provide a synthesizing architecture for implementation science. The underuse, superficial use, and misuse of theories pose a substantial scientific challenge for implementation science and may relate to challenges in selecting from the many theories in the field. Implementation scientists may benefit from guidance for selecting a theory for a specific study or project. Understanding how implementation scientists select theories will help inform efforts to develop such guidance. Our objective was to identify which theories implementation scientists use, how they use theories, and the criteria used to select theories. We identified initial lists of uses and criteria for selecting implementation theories based on seminal articles and an iterative consensus process. We incorporated these lists into a self-administered survey for completion by self-identified implementation scientists. We recruited potential respondents at the 8th Annual Conference on the Science of Dissemination and Implementation in Health and via several international email lists. We used frequencies and percentages to report results. Two hundred twenty-three implementation scientists from 12 countries responded to the survey. They reported using more than 100 different theories spanning several disciplines. Respondents reported using theories primarily to identify implementation determinants, inform data collection, enhance conceptual clarity, and guide implementation planning. Of the 19 criteria presented in the survey, the criteria used by the most respondents to select theory included analytic level (58%), logical consistency/plausibility (56%), empirical support (53%), and description of a change process (54%). The criteria used by the fewest respondents included fecundity (10%), uniqueness (12%), and falsifiability (15%). Implementation scientists use a large number of criteria to select theories, but there is little consensus on which are most important. Our results suggest that the
Physics Colloquium: Theory of the spin wave Seebeck effect in magnetic insulators
Université de Genève
2011-01-01
Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Lundi 28 février 2011 17h00 - École de Physique, Auditoire Stückelberg Theory of the spin wave Seebeck effect in magnetic insulators Prof. Gerrit Bauer Delft University of Technology The subfield of spin caloritronics addresses the coupling of heat, charge and spin currents in nanostructures. In the center of interest is here the spin Seebeck effect, which was discovered in an iron-nickel alloy. Uchida et al. recently observed the effect also in an electrically insulating Yttrium Iron Garnett (YIG) thin magnetic film. To our knowledge this is the first observation of a Seebeck effect generated by an insulator, implying that the physics is fundamentally different from the conventional Seebeck effect in metals. We explain the experiments by the pumping of a spin current into the detecting contacts by the thermally excited magnetization dynamics. In this talk I will give a brief overview over the state o...
Theory for beam-plasma millimeter-wave radiation source experiments
International Nuclear Information System (INIS)
Rosenberg, M.; Krall, N.A.
1989-01-01
This paper reports on theoretical studies for millimeter-wave plasma source experiments. In the device, millimeter-wave radiation is generated in a plasma-filled waveguide driven by counter-streaming electron beams. The beams excite electron plasma waves which couple to produce radiation at twice the plasma frequency. Physics topics relevant to the high electron beam current regime are discussed
International Nuclear Information System (INIS)
Jiang Lina; Wang Hongyu; Sun Peng
2014-01-01
The theory of slow backward-wave amplifications is developed based on electron cyclotron maser (ECM) mechanism employing an initially rectilinear beam. A nonlinear evolution equation is derived to describe the electron energy. Numerical calculations show that the saturated interaction efficiency in this system may exceed 20%, and the saturated interaction length spans 3–6 centimeters. The distinctive interaction mechanism is promising for the design of compact backward microwave amplification devices. Numerical studies are also presented for the slow-wave ECM efficiency with inclusion of Gaussian beam electron velocity spread. It is shown that the velocity spread reduces the interaction efficiency. (basic plasma phenomena)
Critical Reflection on the Reception of Vygotsky’s Theory in the International Academic Communities
Directory of Open Access Journals (Sweden)
Dafermos M.,
2016-12-01
Full Text Available This paper is an attempt to analyze various types of the reception of Vygotsky’s theory in the international academic communities. The paper develops a critical analysis of three widespread theoretical frameworks of interpretation of Vygotsky’s theory: cognitivism, culturalism, cultural-historical activity theory. It is argues that fragmented readings of particular ideas of Vygotsky, without enough understanding of the theoretical programme in which these ideas have been included dominates in North-Atlantic research. The paper proposes the reconstruction of the theoretical programme of cultural-historical psychology in the social and scientific context of its formation.
Breivik, Øyvind; Alves, Jose Henrique; Greenslade, Diana; Horsburgh, Kevin; Swail, Val
2017-04-01
Following the 14th International Workshop on Wave Hindcasting and Forecasting and 5th Coastal Hazards Symposium in November 2014 in Key West, Florida, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the 16 papers published in this topical collection as well as an overview of the widening scope of the conference in recent years. A general trend in the field has been towards closer integration between the wave and ocean modelling communities. This is also seen in this topical collection, with several papers exploring the interaction between surface waves and mixed layer dynamics and sea ice.
Well-posedness of the Cauchy problem for models of large amplitude internal waves
International Nuclear Information System (INIS)
Guyenne, Philippe; Lannes, David; Saut, Jean-Claude
2010-01-01
We consider in this paper the 'shallow-water/shallow-water' asymptotic model obtained in Choi and Camassa (1999 J. Fluid Mech. 396 1–36), Craig et al (2005 Commun. Pure. Appl. Math. 58 1587–641) (one-dimensional interface) and Bona et al (2008 J. Math. Pures Appl. 89 538–66) (two-dimensional interface) from the two-layer system with rigid lid, for the description of large amplitude internal waves at the interface of two layers of immiscible fluids of different densities. For one-dimensional interfaces, this system is of hyperbolic type and its local well-posedness does not raise serious difficulties, although other issues (blow-up, loss of hyperbolicity, etc) turn out to be delicate. For two-dimensional interfaces, the system is nonlocal. Nevertheless, we prove that it conserves some properties of 'hyperbolic type' and show that the associated Cauchy problem is locally well posed in suitable Sobolev classes provided some natural restrictions are imposed on the data. These results are illustrated by numerical simulations with emphasis on the formation of shock waves
Climate modulates internal wave activity in the Northern South China Sea
DeCarlo, Thomas M.; Karnauskas, Kristopher B.; Davis, Kristen A.; Wong, George T. F.
2015-02-01
Internal waves (IWs) generated in the Luzon Strait propagate into the Northern South China Sea (NSCS), enhancing biological productivity and affecting coral reefs by modulating nutrient concentrations and temperature. Here we use a state-of-the-art ocean data assimilation system to reconstruct water column stratification in the Luzon Strait as a proxy for IW activity in the NSCS and diagnose mechanisms for its variability. Interannual variability of stratification is driven by intrusions of the Kuroshio Current into the Luzon Strait and freshwater fluxes associated with the El Niño-Southern Oscillation. Warming in the upper 100 m of the ocean caused a trend of increasing IW activity since 1900, consistent with global climate model experiments that show stratification in the Luzon Strait increases in response to radiative forcing. IW activity is expected to increase in the NSCS through the 21st century, with implications for mitigating climate change impacts on coastal ecosystems.