WorldWideScience

Sample records for internal symmetry group

  1. Gauging the graded conformal group with unitary internal symmetries

    International Nuclear Information System (INIS)

    Ferrara, S.; Townsend, P.K.; Kaku, M.; Nieuwenhuizen Van, P.

    1977-06-01

    Gauge theories for extended SU(N) conformal supergravity are constructed which are invariant under local scale, chiral, proper conformal, supersymmetry and internal SU(N) transformations. The relation between intrinsic parity and symmetry properties of their generators of the internal vector mesons is established. These theories contain no cosmological constants, but technical problems inherent to higher derivative actions are pointed out

  2. Groups and Symmetry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Groups and Symmetry: A Guide to Discovering Mathematics. Geetha Venkataraman. Book Review Volume 4 Issue 10 October 1999 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Groups and symmetry

    CERN Document Server

    Farmer, David W

    1995-01-01

    In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ

  4. Group analysis and renormgroup symmetries

    International Nuclear Information System (INIS)

    Kovalev, V.F.; Pustovalov, V.V.; Shirkov, D.V.

    1996-01-01

    An original regular approach to constructing special type symmetries for boundary-value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries based on modern group analysis are described. An application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model. 35 refs

  5. Symmetry and group theory in chemistry

    CERN Document Server

    Ladd, M

    1998-01-01

    A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions

  6. Spinor Structure and Internal Symmetries

    Science.gov (United States)

    Varlamov, V. V.

    2015-10-01

    Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.

  7. Group theory approach to unification of gravity with internal symmetry gauge interactions. Part 1

    International Nuclear Information System (INIS)

    Samokhvalov, S.E.; Vanyashin, V.S.

    1990-12-01

    The infinite group of deformed diffeomorphisms of space-time continuum is put into the basis of the Gauge Theory of Gravity. This gives rise to some new ways for unification of gravity with other gauge interactions. (author). 7 refs

  8. Quantum group and quantum symmetry

    International Nuclear Information System (INIS)

    Chang Zhe.

    1994-05-01

    This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs

  9. Symmetries and groups in particle physics

    International Nuclear Information System (INIS)

    Scherer, Stefan

    2016-01-01

    The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to

  10. Deformations of spacetime and internal symmetries

    Directory of Open Access Journals (Sweden)

    Gresnigt Niels G.

    2017-01-01

    Full Text Available Algebraic deformations provide a systematic approach to generalizing the symmetries of a physical theory through the introduction of new fundamental constants. The applications of deformations of Lie algebras and Hopf algebras to both spacetime and internal symmetries are discussed. As a specific example we demonstrate how deforming the classical flavor group S U(3 to the quantum group S Uq(3 ≡ U q (su(3 (a Hopf algebra and taking into account electromagnetic mass splitting within isospin multiplets leads to new and exceptionally accurate baryon mass sum rules that agree perfectly with experimental data.

  11. The priority of internal symmetries in particle physics

    Science.gov (United States)

    Kantorovich, Aharon

    2003-12-01

    In this paper, I try to decipher the role of internal symmetries in the ontological maze of particle physics. The relationship between internal symmetries and laws of nature is discussed within the framework of ;Platonic realism.; The notion of physical ;structure; is introduced as representing a deeper ontological layer behind the observable world. I argue that an internal symmetry is a structure encompassing laws of nature. The application of internal symmetry groups to particle physics came about in two revolutionary steps. The first was the introduction of the internal symmetries of hadrons in the early 1960s. These global and approximate symmetries served as means of bypassing the dynamics. I argue that the realist could interpret these symmetries as ontologically prior to the hadrons. The second step was the gauge revolution in the 1970s, where symmetries became local and exact and were integrated with the dynamics. I argue that the symmetries of the second generation are fundamental in the following two respects: (1) According to the so-called ;gauge argument,; gauge symmetry dictates the existence of gauge bosons, which determine the nature of the forces. This view, which has been recently criticized by some philosophers, is widely accepted in particle physics at least as a heuristic principle. (2) In view of grand unified theories, the new symmetries can be interpreted as ontologically prior to baryon matter.

  12. Group theory of spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Ghaboussi, F.

    1987-01-01

    The connection between the minimality of the Higgs field potential and the maximal little groups of its representation obtained by spontaneous symmetry breaking is analyzed. It is shown that for several representations the lowest minimum of the potential is related to the maximal little group of those representations. Furthermore, a practical necessity criterion is given for the representation of the Higgs field needed for spontaneous symmetry breaking

  13. Group symmetries and information propagation

    International Nuclear Information System (INIS)

    Draayer, J.P.

    1980-01-01

    Spectroscopy concerns itself with the ways in which the Hamiltonian and other interesting operators defined in few-particle spaces are determined or determine properties of many-particle systems. But the action of the central limit theorem (CLT) filters the transmission of information between source and observed so whether propagating forward from a few-particle defining space, as is usual in theoretical studies, or projecting backward to it from measured things, each is only sensitive to averaged properties of the other. Our concern is with the propagation of spectroscopic information in the presence of good symmetries when filtering action of the CLT is effective. Specifically, we propose to address the question, What propagates and how. We begin with some examples, using both scalar and isospin geometries to illustrate simple propagation. Examples of matrix propagation are studied; contact with standard tensor algebra is established and an algorithm put forward for the expansion of any operator in terms of another set, complete or not; shell-model results for 20 Ne using a realistic interaction and two trace-equivalent forms are presented; and some further challenges are mentioned

  14. Symmetry and group theory throughout physics

    Directory of Open Access Journals (Sweden)

    Villain J.

    2012-03-01

    Full Text Available As noticed in 1884 by Pierre Curie [1], physical properties of matter are tightly related to the kind of symmetry of the medium. Group theory is a systematic tool, though not always easy to handle, to exploit symmetry properties, for instance to find the eigenvectors and eigenvalues of an operator. Certain properties (optical activity, piezoelectricity are forbidden in molecules or crystals of high symmetry. A few theorems (Noether, Goldstone establish general relations between physical properties and symmetry. Applications of group theory to condensed matter physics, elementary particle physics, quantum mechanics, electromagnetism are reviewed. Group theory is not only a tool, but also a beautiful construction which casts insight into natural phenomena.

  15. The Symmetry Group of the Permutahedron

    Science.gov (United States)

    Crisman, Karl-Dieter

    2011-01-01

    Although it can be visualized fairly easily and its symmetry group is easy to calculate, the permutahedron is a somewhat neglected combinatorial object. We propose it as a useful case study in abstract algebra. It supplies concrete examples of group actions, the difference between right and left actions, and how geometry and algebra can work…

  16. Quregisters, Symmetry Groups and Clifford Algebras

    International Nuclear Information System (INIS)

    Cervantes, D; Morales-Luna, G

    2016-01-01

    Natural one-to-one and two-to-one homomorphisms from SO(3) into SU(2) are built conventionally, and the collection of qubits, is identified with a subgroup of SU(2). This construction is suitable to be extended to corresponding tensor powers. The notions of qubits, quregisters and qugates are translated into the language of symmetry groups. The corresponding elements to entangled states in the tensor product of Hilbert spaces reflect entanglement properties as well, and in this way a notion of entanglement is realised in the tensor product of symmetry groups. (paper)

  17. Lectures on homology with internal symmetries

    International Nuclear Information System (INIS)

    Solovyov, Yu.

    1993-09-01

    Homology with internal symmetries is a natural generalization of cyclic homology introduced, independently, by Connes and Tsygan, which has turned out to be a very useful tool in a number of problems of algebra, geometry topology, analysis and mathematical physics. It suffices to say cycling homology and cohomology are successfully applied in the index theory of elliptic operators on foliations, in the description of the homotopy type of pseudoisotopy spaces, in the theory of characteristic classes in algebraic K-theory. They are also applied in noncommutative differential geometry and in the cohomology of Lie algebras, the branches of mathematics which brought them to life in the first place. Essentially, we consider dihedral homology, which was successfully applied for the description of the homology type of groups of homeomorphisms and diffeomorphisms of simply connected manifolds. (author). 27 refs

  18. Determining Symmetry Properties of Gravitational Fields of Terrestrial Group Planets

    Directory of Open Access Journals (Sweden)

    R.A. Kascheev

    2016-09-01

    Full Text Available Numerous models of gravity fields of the Solar system bodies have been constructed recently owing to successful space missions. These models are sets of harmonic coefficients of gravity potential expansion in series of spherical functions, which is Laplace series. The sets of coefficients are different in quantity of numerical parameters, sources and composition of the initial observational data, methods to obtain and process them, and, consequently, in a variety of properties and accuracy characteristics. For this reason, the task of comparison of different models of celestial bodies considered in the paper is of interest and relevant. The main purpose of this study is comparison of the models of gravitational potential of the Earth, Moon, Mars, and Venus with the quantitative criteria of different types of symmetries developed by us. It is assumed that some particular symmetry of the density distribution function of the planetary body causes similar symmetry of its gravitational potential. The symmetry of gravitational potential, in its turn, imposes additional conditions (restrictions, which must be satisfied by the harmonic coefficients. The paper deals with seven main types of symmetries: central, axial, two symmetries specular relative to the equatorial planes and prime meridian, as well as three rotational symmetries (at π angle around the coordinate system axes. According to the results of calculations carried out for the Earth, Moon, Mars, and Venus, the values of the criteria vary considerably for different types of symmetries and for different planets. It means that the specific value of each criterion corresponding to a particular celestial body is indicative of the properties and internal structure characteristics of the latter and, therefore, it can be used as a tool for comparative planetology. On the basis of the performed calculations, it is possible to distinguish two groups of celestial bodies having similar properties of

  19. Discovering Symmetry in Everyday Environments: A Creative Approach to Teaching Symmetry and Point Groups

    Science.gov (United States)

    Fuchigami, Kei; Schrandt, Matthew; Miessler, Gary L.

    2016-01-01

    A hands-on symmetry project is proposed as an innovative way of teaching point groups to undergraduate chemistry students. Traditionally, courses teaching symmetry require students to identify the point group of a given object. This project asks the reverse: students are instructed to identify an object that matches each point group. Doing so…

  20. Molecular symmetry: Why permutation-inversion (PI) groups don't render the point groups obsolete

    Science.gov (United States)

    Groner, Peter

    2018-01-01

    The analysis of spectra of molecules with internal large-amplitude motions (LAMs) requires molecular symmetry (MS) groups that are larger than and significantly different from the more familiar point groups. MS groups are described often by the permutation-inversion (PI) group method. It is shown that point groups still can and should play a significant role together with the PI groups for a class of molecules with internal rotors. In molecules of this class, several simple internal rotors are attached to a rigid molecular frame. The PI groups for this class are semidirect products like H ^ F, where the invariant subgroup H is a direct product of cyclic groups and F is a point group. This result is used to derive meaningful labels for MS groups, and to derive correlation tables between MS groups and point groups. MS groups of this class have many parallels to space groups of crystalline solids.

  1. Computing the Symmetry Groups of the Platonic Solids With the ...

    Indian Academy of Sciences (India)

    In this article we will determine the symmetry groups of the platonic solids by a combination of some elementary group theory and use of the computer algebra package. Maple. The five platonic solids are the tetrahedron, the cube, the octahedron, the dodecahedron, and the icosa- hedron. By determining a symmetry group, ...

  2. Temperature renormalization group approach to spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Manesis, E.; Sakakibara, S.

    1985-01-01

    We apply renormalization group equations that describe the finite-temperature behavior of Green's functions to investigate thermal properties of spontaneous symmetry breaking. Specifically, in the O(N).O(N) symmetric model we study the change of symmetry breaking patterns with temperature, and show that there always exists the unbroken symmetry phase at high temperature, modifying the naive result of leading order in finite-temperature perturbation theory. (orig.)

  3. Symmetry an introduction to group theory and its applications

    CERN Document Server

    McWeeny, Roy

    2002-01-01

    Well-organized volume develops ideas of group and representation theory in progressive fashion. Emphasis on finite groups describing symmetry of regular polyhedra and of repeating patterns, plus geometric illustrations.

  4. Lie symmetries and differential galois groups of linear equations

    NARCIS (Netherlands)

    Oudshoorn, W.R.; Put, M. van der

    2002-01-01

    For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In

  5. Can the family group be a global symmetry

    International Nuclear Information System (INIS)

    Reiss, D.B.

    1982-01-01

    We consider the possibility that the family group may be a spontaneously broken continuous global symmetry. In the context of grand unification, the couplings of the associated Goldstone bosons to fermions can be sufficiently suppressed so as to satisfy the phenomenological bounds. For a maximal family symmetry this requires a large number of Higgs fields. (orig.)

  6. Surveying the quantum group symmetries of integrable open spin chains

    Science.gov (United States)

    Nepomechie, Rafael I.; Retore, Ana L.

    2018-05-01

    Using anisotropic R-matrices associated with affine Lie algebras g ˆ (specifically, A2n(2), A2n-1 (2) , Bn(1), Cn(1), Dn(1)) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of g ˆ . We show that these transfer matrices also have a duality symmetry (for the cases Cn(1) and Dn(1)) and additional Z2 symmetries that map complex representations to their conjugates (for the cases A2n-1 (2) , Bn(1) and Dn(1)). A key simplification is achieved by working in a certain "unitary" gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.

  7. Physical symmetry groups and associated bundles in field theory

    International Nuclear Information System (INIS)

    Crumeyrolle, A.

    1986-01-01

    A previous paper, ''Some geometrical consequences of physical symmetries'' describes in some detail invariant submanifolds of the linear representation space C /sup 4m/ for the physical symmetry group : SU(2,2)xSU(m) and its subgroup PxSU(m). In this paper the author intends to give a geometric version using homogeneous spaces and a spinorial approach. Some concrete orbits by means of spinor structures considered in the modern scope and some plausible physical consequences are discussed

  8. Computing the Symmetry Groups of the Platonic Solids With the ...

    Indian Academy of Sciences (India)

    group theory and use of the computer algebra package. Maple. The five platonic solids are the tetrahedron, the cube, the octahedron, the dodecahedron, and the icosa- hedron. By determining a symmetry group, we lllean not just to determine its elements but to identify it, up to isomorphism, with a well-known group, such as ...

  9. Singular solutions of renormalization group equations and the symmetry of the lagrangian

    International Nuclear Information System (INIS)

    Kazakov, D.I.; Shirokov, D.V.

    1975-01-01

    On the basis of solution of the differential renormalization group equations the method is proposed for finding out the Lagrangians possessing some king of internal symmetry. It is shown that in the phase space of the invariant charges the symmetry corresponds to the straight-line singular solution of these equations remaining straight-line when taking into account the higher order corrections. We have studied the model of scalar fields with quartic couplings, as well as the set of models containing scalar, pseudoscalar and spinor fields with Yukawa and quartic interactions. Straight-line singular solutions in the first case correspond to isotopic symmetry only. For the second case they correspond to supersymmetry. No other symmetries have been discovered. For the model containing the gauge fields the solution corresponding to supersymmetry is obtained and it is shown that this is also the only symmetry that can be realized in the given set of fields

  10. Architects of symmetry in finite nonabelian groups

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Somer, L.

    2010-01-01

    Roč. 21, č. 4 (2010), s. 307-319 ISSN 0865-4824 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : Abel Prize * sporadic groups * monster Subject RIV: BA - General Mathematics

  11. Renormalisation group improved leptogenesis in family symmetry models

    International Nuclear Information System (INIS)

    Cooper, Iain K.; King, Stephen F.; Luhn, Christoph

    2012-01-01

    We study renormalisation group (RG) corrections relevant for leptogenesis in the case of family symmetry models such as the Altarelli-Feruglio A 4 model of tri-bimaximal lepton mixing or its extension to tri-maximal mixing. Such corrections are particularly relevant since in large classes of family symmetry models, to leading order, the CP violating parameters of leptogenesis would be identically zero at the family symmetry breaking scale, due to the form dominance property. We find that RG corrections violate form dominance and enable such models to yield viable leptogenesis at the scale of right-handed neutrino masses. More generally, the results of this paper show that RG corrections to leptogenesis cannot be ignored for any family symmetry model involving sizeable neutrino and τ Yukawa couplings.

  12. Internal space-time symmetries of massive and massless particles and their unification

    International Nuclear Information System (INIS)

    Kim, Y.S.

    2001-01-01

    It is noted that the internal space-time symmetries of relativistic particles are dictated by Wigner's little groups. The symmetry of massive particles is like the three-dimensional rotation group, while the symmetry of massless particles is locally isomorphic to the two-dimensional Euclidean group. It is noted also that, while the rotational degree of freedom for a massless particle leads to its helicity, the two translational degrees of freedom correspond to its gauge degrees of freedom. It is shown that the E(2)-like symmetry of of massless particles can be obtained as an infinite-momentum and/or zero-mass limit of the O(3)-like symmetry of massive particles. This mechanism is illustrated in terms of a sphere elongating into a cylinder. In this way, the helicity degree of freedom remains invariant under the Lorentz boost, but the transverse rotational degrees of freedom become contracted into the gauge degree of freedom

  13. Polytope Contractions within Weyl Group Symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Szajewska, Marzena, E-mail: m.szajewska@math.uwb.edu.pl [University of Bialystok, Institute of Mathematics (Poland)

    2016-09-15

    A general scheme for constructing polytopes is implemented here specifically for the classes of the most important 3D polytopes, namely those whose vertices are labeled by integers relative to a particular basis, here called the ω-basis. The actual number of non-isomorphic polytopes of the same group has no limit. To put practical bounds on the number of polytopes to consider for each group we limit our consideration to polytopes with dominant point (vertex) that contains only nonnegative integers in ω-basis. A natural place to start the consideration of polytopes from is the generic dominant weight which were all three coordinates are the lowest positive integer numbers. Contraction is a continuous change of one or several coordinates to zero.

  14. Charge conjugation and internal space time symmetries

    International Nuclear Information System (INIS)

    Pavsic, M.; Recami, E.

    1982-01-01

    The relativistic framework in which fundamental particles are regarded as extended objects is adopted. Then it is shown than the geometrical operation which reflects the internal space time particle is equivalent to the operation C which inverts the sign of all its additive charges

  15. Some symmetries in nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1981-09-01

    Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces

  16. Symmetries and groups in particle physics; Symmetrien und Gruppen in der Teilchenphysik

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Stefan [Mainz Univ. (Germany)

    2016-07-01

    The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to

  17. Internal Einstein spaces and symmetry breaking

    International Nuclear Information System (INIS)

    Coquereaux, R.

    1984-01-01

    We first define a generalised gauge invariant Yang-Mills Lagrangian: the Killing metric -Ksub(αβ) on the group is replaced by a more general metric hsub(αβ)(x); the field hsub(αβ)(x) -a scalar from the space time point of view- is then covariantly coupled to the gauge field Asub(μ)sup(α) and is also self-coupled via a natural scalar potential (no parameters). Non trivial saddle points of this scalar potential, correspond to non standard Einstein metrics on the group C. the associated shifts lead to an entirely computable mass spectrum for the gauge field

  18. The analysis of crystallographic symmetry types in finite groups

    Science.gov (United States)

    Sani, Atikah Mohd; Sarmin, Nor Haniza; Adam, Nooraishikin; Zamri, Siti Norziahidayu Amzee

    2014-06-01

    Undeniably, it is human nature to prefer objects which are considered beautiful. Most consider beautiful as perfection, hence they try to create objects which are perfectly balance in shape and patterns. This creates a whole different kind of art, the kind that requires an object to be symmetrical. This leads to the study of symmetrical objects and pattern. Even mathematicians and ethnomathematicians are very interested with the essence of symmetry. One of these studies were conducted on the Malay traditional triaxial weaving culture. The patterns derived from this technique are symmetrical and this allows for further research. In this paper, the 17 symmetry types in a plane, known as the wallpaper groups, are studied and discussed. The wallpaper groups will then be applied to the triaxial patterns of food cover in Malaysia.

  19. Symmetry groups of state vectors in canonical quantum gravity

    International Nuclear Information System (INIS)

    Witt, D.M.

    1986-01-01

    In canonical quantum gravity, the diffeomorphisms of an asymptotically flat hypersurface S, not connected to the identity, but trivial at infinity, can act nontrivially on the quantum state space. Because state vectors are invariant under diffeomorphisms that are connected to the identity, the group of inequivalent diffeomorphisms is a symmetry group of states associated with S. This group is the zeroth homotopy group of the group of diffeomorphisms fixing a frame of infinity on S. It is calculated for all hypersurfaces of the form S = S 3 /G-point, where the removed point is thought of as infinity on S and the symmetry group S is the zeroth homotopy group of the group of diffeomorphisms of S 3 /G fixing a point and frame, denoted π 0 Diff/sub F/(S 3 /G). Before calculating π 0 Diff/sub F/ (S 3 /G), it is necessary to find π 0 of the group of diffeomorphisms. Once π 0 Diff(S 3 /G) is known, π 0 Diff/sub x/ 0 (S 3 /G) is calculated using a fiber bundle involving Diff(S 3 /G), Diff/sub x/ 0 (S 3 /G), and S 3 /G. Finally, a fiber bundle involving Diff/sub F/(S 3 /G), Diff(S 3 /G), and the bundle of frames over S 3 /G is used along with π 0 Diff/sub x/ 0 (S 3 /G) to calculate π 0 Diff/sub F/(S 3 /G)

  20. Bogolyubov renormalization group and symmetry of solution in mathematical physics

    International Nuclear Information System (INIS)

    Shirkov, D.V.; Kovalev, V.F.

    2000-01-01

    Evolution of the concept known in the theoretical physics as the Renormalization Group (RG) is presented. The corresponding symmetry, that has been first introduced in QFT in mid-fifties, is a continuous symmetry of a solution with respect to transformation involving parameters (e.g., of boundary condition) specifying some particular solution. After short detour into Wilson's discrete semi-group, we follow the expansion of QFT RG and argue that the underlying transformation, being considered as a reparametrization one, is closely related to the self-similarity property. It can be treated as its generalization, the Functional Self-similarity (FS). Then, we review the essential progress during the last decade of the FS concept in application to boundary value problem formulated in terms of differential equations. A summary of a regular approach recently devised for discovering the RG = FS symmetries with the help of the modern Lie group analysis and some of its applications are given. As a main physical illustration, we give application of a new approach to solution for a problem of self-focusing laser beam in a nonlinear medium

  1. Group quantization on configuration space: Gauge symmetries and linear fields

    International Nuclear Information System (INIS)

    Navarro, M.; Aldaya, V.; Calixto, M.

    1997-01-01

    A new, configuration-space picture of a formalism of group quantization, the GAQ formalism, is presented in the context of a previous algebraic generalization. This presentation serves to make a comprehensive discussion in which other extensions of the formalism, principally to incorporate gauge symmetries, are developed as well. Both images are combined in order to analyze, in a systematic manner and with complete generality, the case of linear fields (Abelian current groups). To illustrate these developments we particularize them for several fields and, in particular, we carry out the quantization of the Abelian Chern endash Simons models over an arbitrary closed surface in detail. copyright 1997 American Institute of Physics

  2. de Sitter group as a symmetry for optical decoherence

    International Nuclear Information System (INIS)

    Baskal, S; Kim, Y S

    2006-01-01

    Stokes parameters form a Minkowskian 4-vector under various optical transformations. As a consequence, the resulting two-by-two density matrix constitutes a representation of the Lorentz group. The associated Poincare sphere is a geometric representation of the Lorentz group. Since the Lorentz group preserves the determinant of the density matrix, it cannot accommodate the decoherence process through the decaying off-diagonal elements of the density matrix, which yields to an increase in the value of the determinant. It is noted that the O(3, 2) de Sitter group contains two Lorentz subgroups. The change in the determinant in one Lorentz group can be compensated by the other. It is thus possible to describe the decoherence process as a symmetry transformation in the O(3, 2) space. It is shown also that these two coupled Lorentz groups can serve as a concrete example of Feynman's rest of the universe

  3. New Insights into Viral Architecture via Affine Extended Symmetry Groups

    Directory of Open Access Journals (Sweden)

    T. Keef

    2008-01-01

    Full Text Available Since the seminal work of Caspar and Klug on the structure of the protein containers that encapsulate and hence protect the viral genome, it has been recognized that icosahedral symmetry is crucial for the structural organization of viruses. In particular, icosahedral symmetry has been invoked in order to predict the surface structures of viral capsids in terms of tessellations or tilings that schematically encode the locations of the protein subunits in the capsids. Whilst this approach is capable of predicting the relative locations of the proteins in the capsids, a prediction on the relative sizes of different virus particles in a family cannot be made. Moreover, information on the full 3D structure of viral particles, including the tertiary structures of the capsid proteins and the organization of the viral genome within the capsid are inaccessible with their approach. We develop here a mathematical framework based on affine extensions of the icosahedral group that allows us to address these issues. In particular, we show that the relative radii of viruses in the family of Polyomaviridae and the material boundaries in simple RNA viruses can be determined with our approach. The results complement Caspar and Klug's theory of quasi-equivalence and provide details on virus structure that have not been accessible with previous methods, implying that icosahedral symmetry is more important for virus architecture than previously appreciated.

  4. Characterizing multiple solutions to the time-energy canonical commutation relation via internal symmetries

    International Nuclear Information System (INIS)

    Caballar, Roland Cristopher F.; Ocampo, Leonard R.; Galapon, Eric A.

    2010-01-01

    Internal symmetries can be used to classify multiple solutions to the time-energy canonical commutation relation (TE-CCR). The dynamical behavior of solutions to the TE-CCR possessing particular internal symmetries involving time reversal differ significantly from solutions to the TE-CCR without those particular symmetries, implying a connection between the internal symmetries of a quantum system, its internal unitary dynamics, and the TE-CCR.

  5. Causality and symmetry in cosmology and the conformal group

    International Nuclear Information System (INIS)

    Segal, I.E.

    1977-01-01

    A new theoretic postulate in fundamental physics is considered which is called the chronometric principle because it deals primarily with the nature of time, or its dual or conjugate, energy. Conformality is equivalent to causality. Thus, the group of all local causality-preserving transformations in the vicinity of a point of Minkowski space is, as a local Lie group, identical with the conformal group. The same statement made globally on Minkowski space is: The set of all vector fields on Minkowski space which generate smooth local causality-preserving transformations is identical with the set of all conformal vector fields. The main validation for the chronometric principle is in cosmology or ultramacroscopic physics. Therefore this principle is illustrated along the lines of the red shift. This principle in combination with quantum field theory leads to a convergent and causal description of particle production in which nonlinearities are supplanted by more sophisticated and comprehensive actions for the fundamental symmetry groups. 11 references

  6. On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry

    International Nuclear Information System (INIS)

    Budinich, P.

    1982-01-01

    The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomials of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed, but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an su(2) internal symmetry algebra. Mass is generated by breaking spontaneously the original O(4,2) symmetry of the spinor equation. (author)

  7. On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry

    International Nuclear Information System (INIS)

    Budinich, P.

    1981-09-01

    The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomia of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an SU(2) internal symmetry algebra. Mass is generated by spontaneously breaking the original O(4,2) symmetry of the spinor equation. (author)

  8. The Poincare group as the symmetry group of canonical general relativity

    International Nuclear Information System (INIS)

    Beig, R.; Murchadha, N. o

    1986-01-01

    This work reconsiders the formulation, due to Regge and Teitelboim, of the phase space approach to General Relativity in the asymptotically flat context, phrasing it in the language of symplectic geometry. The necessary boundary conditions at spatial infinity are spelled out in detail. Precise meaning is given to the statement that, as a result of these boundary conditions, the Poincare group acts as a symmetry group on the phase space of G.R. This situation is compared with the spi-picture of Ashtekar and Hansen, where a larger asymptotic symmetry group is obtained. (Author)

  9. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    International Nuclear Information System (INIS)

    Ivanov, Igor P.; Vdovin, E.

    2013-01-01

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the Z 4 symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM. (orig.)

  10. Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases

    International Nuclear Information System (INIS)

    Perez-Mato, J M; Aroyo, M I; Ribeiro, J L; Petricek, V

    2012-01-01

    Superspace symmetry has been for many years the standard approach for the analysis of non-magnetic modulated crystals because of its robust and efficient treatment of the structural constraints present in incommensurate phases. For incommensurate magnetic phases, this generalized symmetry formalism can play a similar role. In this context we review from a practical viewpoint the superspace formalism particularized to magnetic incommensurate phases. We analyse in detail the relation between the description using superspace symmetry and the representation method. Important general rules on the symmetry of magnetic incommensurate modulations with a single propagation vector are derived. The power and efficiency of the method is illustrated with various examples, including some multiferroic materials. We show that the concept of superspace symmetry provides a simple, efficient and systematic way to characterize the symmetry and rationalize the structural and physical properties of incommensurate magnetic materials. This is especially relevant when the properties of incommensurate multiferroics are investigated. (topical review)

  11. EXECUTIVE SUMMARY OF THE SNOWMASS 2001 WORKING GROUP : ELECTROWEAK SYMMETRY BREAKING

    International Nuclear Information System (INIS)

    CARENA, M.; GERDES, D.W.; HABER, H.E.; TURCOT, A.S.; ZERWAS, P.M.

    2001-01-01

    In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity e + e - linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the μ + μ - collider and VLHC for further elucidating the physics of electroweak symmetry breaking

  12. Quantum group and symmetry of the heat equation

    International Nuclear Information System (INIS)

    Jha, P.K.; Tripathy, K.C.

    1992-07-01

    The symmetry associated with the heat equation is re-examined using Lie's method. Under suitable choice of the arbitrary parameters in the Lie field, it is shown that the system exhibits SL(2,R) symmetry. On inspection of the q-analogue of the principal solution, we find broadening of the Gaussian-flow curve when q is varied from 1 to 0.002. The q-analogue of the general solution predicts the existence of additional degeneracy. (author). 8 refs, 1 fig

  13. Additivity of Feature-based and Symmetry-based Grouping Effects in Multiple Object Tracking

    Directory of Open Access Journals (Sweden)

    Chundi eWang

    2016-05-01

    Full Text Available Multiple object tracking (MOT is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the laws of perceptual organization proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. Additive effect refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The where and what pathways might have played an important role in the additive grouping effect.

  14. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    Science.gov (United States)

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  15. On the representation of symmetry group transformation operators in the interaction picture

    International Nuclear Information System (INIS)

    Jorjadze, G.P.; Khvedelidze, A.M.; Kvinikhidze, A.H.

    1987-01-01

    The representation similar to that of Dyson, is obtained in the form of a chronologically (antichronologically) ordered exponent for operators of any symmetry group transformations of an interacting quantum field system. The exponent is given by an integral of the interaction Hamiltonian density in Dirac's picture. The domain of integration is determined by the symmetry transformation considered. 3 refs.; 2 figs

  16. 6th International Symposium on Symmetries in Subatomic Physics

    CERN Document Server

    2015-01-01

    The scientific program is devoted to recent accomplishments exploring fundamental symmetries in theory and experiment in atomic, nuclear, and particle physics and thus spans a wide variety of interesting and connected topics.

  17. Some New Lie Symmetry Groups of Differential-Difference Equations Obtained from a Simple Direct Method

    International Nuclear Information System (INIS)

    Zhi Hongyan

    2009-01-01

    In this paper, based on the symbolic computing system Maple, the direct method for Lie symmetry groups presented by Sen-Yue Lou [J. Phys. A: Math. Gen. 38 (2005) L129] is extended from the continuous differential equations to the differential-difference equations. With the extended method, we study the well-known differential-difference KP equation, KZ equation and (2+1)-dimensional ANNV system, and both the Lie point symmetry groups and the non-Lie symmetry groups are obtained.

  18. On the labeling and symmetry adaptation of the solvable finite groups representations

    International Nuclear Information System (INIS)

    Caride, A.O.; Zanette, S.I.; Nogueira, S.R.A.

    1987-01-01

    We propose a method to simultaneously perform a symmetry adaptation and a labeling of the bases of the irreducible representations of the solvable finite groups. It is performed by difining a self-adjoint operator with ligenvalues which evidence the descent in symmetry of the group-subgroups sequences. We also prove two theorems on the canonicity of the cpomposition series of the solvable groups. (author) [pt

  19. Spinorial charges and their role in the fusion of internal and space-time symmetries

    International Nuclear Information System (INIS)

    Daniel, M.; Ktorides, C.N.

    1976-01-01

    The advent of supersymmetry immediately led to speculations that a non-trivial mixing of internal and space-time symmetries could be achieved within its framework. In fact, the well-known no-go theorems do not apply to the supersymmetry algebra due to the presence, in the latter, of (anticommuting) spinorial charges. However, not until the recent work of Haag, Lopuszanski and Sohnius did a clearcut picture emerge as to how the aforementioned nontrivial mixing can take place. Most notably, the presence of the conformal algebra within the supersymmetry algebra turns out to be vital. The findings of Haag et al. are solidified through an explicit construction which uses as underlying space the pseudo-Euclidean space E(4, 2), i.e. the space for which the conformal group is the group of rotations, and which employs as main tools the spinors associated with the space E(4, 2). The algebro-geometric approach of Cartan is followed in order to understand both the introduction and the properties of these spinors. In this manner, many insights are gained regarding the mathematical foundations of supersymmetry. Thus, the emergence of the anticommutator, rather than the commutator, among spinor charges is fully understood as a natural algebraic consequence and not as an a priori given fact. In addition, it is clearly seen how an (internal) unitary symmetry group can make its appearance within the supersymmetry scheme and verify, via this explicit construction, the results of Haag et al. (Auth.)

  20. The Exceptional Lie symmetry groups hierarchy and the expected number of Higgs bosons

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    New insights into the structure of various exceptional Lie symmetry groups hierarchies are utilized to shed light on various problems pertinent to the standard model of high energy physics and the Higgs

  1. Group theoretical symmetries and generalized Bäcklund transformations for integrable systems

    Science.gov (United States)

    Haak, Guido

    1994-05-01

    A notion of symmetry for 1+1-dimensional integrable systems is presented which is consistent with their group theoretic description. It is shown how a group symmetry may be used together with a dynamical reduction to produce new generalizations of the Bäcklund transformation for the Korteweg-de Vries equation to its SL(n,C) generalization. An additional application to the relativistic invariance of the Leznov-Saveliev systems is given.

  2. The 2-group of symmetries of a split chain complex

    OpenAIRE

    Elgueta, Josep

    2010-01-01

    We explicitly compute the 2-group of self-equivalences and (homotopy classes of) chain homotopies between them for any {\\it split} chain complex $A_{\\bullet}$ in an arbitrary $\\kb$-linear abelian category ($\\kb$ any commutative ring with unit). In particular, it is shown that it is a {\\it split} 2-group whose equivalence class depends only on the homology of $A_{\\bullet}$, and that it is equivalent to the trivial 2-group when $A_\\bullet$ is a split exact sequence. This provides a description ...

  3. Generating Lie Point Symmetry Groups of (2+1)-Dimensional Broer-Kaup Equation via a Simple Direct Method

    International Nuclear Information System (INIS)

    Ma Hongcai

    2005-01-01

    Using the (2+1)-dimensional Broer-Kaup equation as an simple example, a new direct method is developed to find symmetry groups and symmetry algebras and then exact solutions of nonlinear mathematical physical equations.

  4. sl (6,r) as the group of symmetries for non relativistic quantum systems

    African Journals Online (AJOL)

    It is shown that the 13 one parameter generators of the Lie group SL(6, R) are the maximal group of symmetries for nonrelativistic quantum systems. The group action on the set of states S Ĥ (H complex Hilbert space) preserves transition probabilities as well as the dynamics of the system. By considering a prolongation of ...

  5. Quantum group symmetry of classical and noncommutative geometry

    Indian Academy of Sciences (India)

    Debashish Goswami

    2016-07-01

    Jul 1, 2016 ... universal enveloping algebra U(L) of a Lie algebra L, (iv) ... Kustermans defined locally compact quantum groups too. .... There are other versions of quantum isometries formulated by me ..... classical connected spaces when either the space is ..... Etingof-Walton's paper, we have : (i) M0 is open and dense,.

  6. Fourier-space TEM reconstructions with symmetry adapted functions for all rotational point groups.

    Science.gov (United States)

    Trapani, Stefano; Navaza, Jorge

    2013-05-01

    A general-purpose and simple expression for the coefficients of symmetry adapted functions referred to conveniently oriented symmetry axes is given for all rotational point groups. The expression involves the computation of reduced Wigner-matrix elements corresponding to an angle specific to each group and has the computational advantage of leading to Fourier-space TEM (transmission electron microscopy) reconstruction procedures involving only real valued unknowns. Using this expression, a protocol for ab initio view and center assignment and reconstruction so far used for icosahedral particles has been tested with experimental data in other point groups. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. A generalized Wigner function for quantum systems with the SU(2) dynamical symmetry group

    International Nuclear Information System (INIS)

    Klimov, A B; Romero, J L

    2008-01-01

    We introduce a Wigner-like quasidistribution function to describe quantum systems with the SU(2) dynamic symmetry group. This function is defined in a three-dimensional group manifold and can be used to represent the states defined in several SU(2) invariant subspaces. The explicit differential Moyal-like form of the star product is found and analyzed in the semiclassical limit

  8. The 27 Possible Intrinsic Symmetry Groups of Two-Component Links

    Directory of Open Access Journals (Sweden)

    Jason Parsley

    2012-02-01

    Full Text Available We consider the “intrinsic” symmetry group of a two-component link L, defined to be the image ∑(L of the natural homomorphism from the standard symmetry group MCG(S3, L to the product MCG(S3 × MCG(L. This group, first defined by Whitten in 1969, records directly whether L is isotopic to a link L′ obtained from L by permuting components or reversing orientations; it is a subgroup of Γ2, the group of all such operations. For two-component links, we catalog the 27 possible intrinsic symmetry groups, which represent the subgroups of Γ2 up to conjugacy. We are able to provide prime, nonsplit examples for 21 of these groups; some are classically known, some are new. We catalog the frequency at which each group appears among all 77,036 of the hyperbolic two-component links of 14 or fewer crossings in Thistlethwaite’s table. We also provide some new information about symmetry groups of the 293 non-hyperbolic two-component links of 14 or fewer crossings in the table.

  9. Similar Symmetries: The Role of Wallpaper Groups in Perceptual Texture Similarity

    Directory of Open Access Journals (Sweden)

    Fraser Halley

    2011-05-01

    Full Text Available Periodic patterns and symmetries are striking visual properties that have been used decoratively around the world throughout human history. Periodic patterns can be mathematically classified into one of 17 different Wallpaper groups, and while computational models have been developed which can extract an image's symmetry group, very little work has been done on how humans perceive these patterns. This study presents the results from a grouping experiment using stimuli from the different wallpaper groups. We find that while different images from the same wallpaper group are perceived as similar to one another, not all groups have the same degree of self-similarity. The similarity relationships between wallpaper groups appear to be dominated by rotations.

  10. More on PT-Symmetry in (Generalized Effect Algebras and Partial Groups

    Directory of Open Access Journals (Sweden)

    J. Paseka

    2011-01-01

    Full Text Available We continue in the direction of our paper on PT-Symmetry in (Generalized Effect Algebras and Partial Groups. Namely we extend our considerations to the setting of weakly ordered partial groups. In this setting, any operator weakly ordered partial group is a pasting of its partially ordered commutative subgroups of linear operators with a fixed dense domain over bounded operators. Moreover, applications of our approach for generalized effect algebras are mentioned.

  11. Broken symmetry of Lie groups of transformation generating general relativistic theories of gravitation

    International Nuclear Information System (INIS)

    Halpern, L.

    1981-01-01

    Invariant varieties of suitable semisimple groups of transformations can serve as models of the space-time of the universe. The metric is expressible in terms of the basis vectors of the group. The symmetry of the group is broken by introducing a gauge formalism in the space of the basis vectors with the adjoint group as gauge group. The gauge potentials are expressible in terms of the basis vectors for the case of the De Sitter group. The resulting gauge theory is equivalent to De Sitter covariant general relativity. Group covariant generalizations of gravitational theory are discussed. (Auth.)

  12. Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem

    NARCIS (Netherlands)

    de Klerk, E.; Sotirov, R.

    2007-01-01

    We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: [R.E. Burkard,

  13. Superspace group descriptions of the symmetries of incommensurate urea inclusion compounds

    NARCIS (Netherlands)

    vanSmaalen, S; Harris, KDM

    1996-01-01

    Urea inclusion compounds are a class of incommensurate composite crystals. The urea molecules form a three-dimensionally connected network, with approximate space group symmetry P6(1)22. This network contains tunnels (channels), which accommodate guest molecules. The periodicities of the urea

  14. Structure of Symmetry Groups via Cartan's Method: Survey of Four Approaches

    Directory of Open Access Journals (Sweden)

    Oleg I. Morozov

    2005-10-01

    Full Text Available In this review article we discuss four recent methods for computing Maurer-Cartan structure equations of symmetry groups of differential equations. Examples include solution of the contact equivalence problem for linear hyperbolic equations and finding a contact transformation between the generalized Hunter-Saxton equation and the Euler-Poisson equation.

  15. Laughlin states on the Poincare half-plane and its quantum group symmetry

    OpenAIRE

    Alimohammadi, M.; Sadjadi, H. Mohseni

    1996-01-01

    We find the Laughlin states of the electrons on the Poincare half-plane in different representations. In each case we show that there exist a quantum group $su_q(2)$ symmetry such that the Laughlin states are a representation of it. We calculate the corresponding filling factor by using the plasma analogy of the FQHE.

  16. Symmetry Groups for the Decomposition of Reversible Computers, Quantum Computers, and Computers in between

    Directory of Open Access Journals (Sweden)

    Alexis De Vos

    2011-06-01

    Full Text Available Whereas quantum computing circuits follow the symmetries of the unitary Lie group, classical reversible computation circuits follow the symmetries of a finite group, i.e., the symmetric group. We confront the decomposition of an arbitrary classical reversible circuit with w bits and the decomposition of an arbitrary quantum circuit with w qubits. Both decompositions use the control gate as building block, i.e., a circuit transforming only one (qubit, the transformation being controlled by the other w−1 (qubits. We explain why the former circuit can be decomposed into 2w − 1 control gates, whereas the latter circuit needs 2w − 1 control gates. We investigate whether computer circuits, not based on the full unitary group but instead on a subgroup of the unitary group, may be decomposable either into 2w − 1 or into 2w − 1 control gates.

  17. A re-examination of symmetry/Group relationships as applied ot the elementary particles

    International Nuclear Information System (INIS)

    Byrd, K.; Cole R.

    1993-01-01

    The purpose of this investigation is to apply Group Theory to the elementary particles. Group Theory is a mathematical discipline used to predict the existence of elementary particles by physicists. Perhaps, the most famous application of Group Theory to the elementary particles was by Murray Gell-Mann in 1964. Gell-Mann used the theory to predict the existence and characteristics of the then undiscovered Omega Minus Particle. Group Theory relies heavily on symmetry relationships and expresses them in terms of geometry. Existence and the characteristics of a logical intuitable, but unobserved member of a group are given by extrapolation of the geometric relationships and characteristics of the known members of the group. In this study, the Delta, Sigma, Chi and Omega baryons are used to illustrate how physicists apply geometry and symmetrical relationships to predict new particles. The author's hypothesis is that by using the D3 crystal symmetry group and Gell-Mann's baryons, three new particles will be predicted. The results of my new symmetry predicts the Omega 2, Omega 3, and Chi 3. However, the Chi 3 does not have characteristics consistent with those of the other known group members

  18. Hidden Uq (sl(2)) Uq (sl(2)) Quantum Group Symmetry in Two Dimensional Gravity

    Science.gov (United States)

    Cremmer, Eugène; Gervais, Jean-Loup; Schnittger, Jens

    1997-02-01

    In a previous paper, the quantum-group-covariant chiral vertex operators in the spin 1/2 representation were shown to act, by braiding with the other covariant primaries, as generators of the well known Uq(sl(2)) quantum group symmetry (for a single screening charge). Here, this structure is transformed to the Bloch wave/Coulomb gas operator basis, thereby establishing for the first time its quantum group symmetry properties. A Uq(sl(2)) otimes Uq(sl(2)) symmetry of a novel type emerges: The two Cartan-generator eigenvalues are specified by the choice of matrix element (Vermamodules); the two Casimir eigenvalues are equal and specified by the Virasoro weight of the vertex operator considered; the co-product is defined with a matching condition dictated by the Hilbert space structure of the operator product. This hidden symmetry possesses a novel Hopf-like structure compatible with these conditions. At roots of unity it gives the right truncation. Its (non-linear) connection with the Uq(sl(2)) previously discussed is disentangled.

  19. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    Science.gov (United States)

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  20. Symmetry Groups of the Austenite Lattice and Construction of Self-Accommodation Complexes of Martensite Crystals in Alloys with the Shape-Memory Effect

    Science.gov (United States)

    Khundjua, A. G.; Ptitsin, A. G.; Brovkina, E. A.

    2018-01-01

    The internal structure of experimentally observed self-accommodation complexes of martensite crystals, which is determined by the system of twinning planes, is studied in this work. The direct correlation of the construction type of the complexes with the subgroups of the austenite lattice symmetry group is shown.

  1. Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids

    International Nuclear Information System (INIS)

    Holm, D.D.

    1976-07-01

    The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented

  2. Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids

    Energy Technology Data Exchange (ETDEWEB)

    Holm, D.D.

    1976-07-01

    The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented.

  3. Generation of symmetry coordinates for crystals using multiplier representations of the space groups

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing

    1978-01-01

    Symmetry coordinates play an important role in the normal-mode calculations of crystals. It is therefore of great importance to have a general method, which may be applied for any crystal at any wave vector, to generate these. The multiplier representations of the space groups as given by Kovalev...... and the projection-operator technique provide a basis for such a method. The method is illustrated for the nonsymmorphic D36 space group, and the theoretical background for the representations of space groups in general is reviewed and illustrated on the example above. It is desirable to perform the projection...... of symmetry coordinates in such a way that they may be used for as many wave vectors as possible. We discuss how to achieve this goal. The detailed illustrations should make it simple to apply the theory in any other case....

  4. Symmetries, Information and Monster Groups before and after the Big Bang

    Directory of Open Access Journals (Sweden)

    Arturo Tozzi

    2016-12-01

    Full Text Available The Monster group, the biggest of the sporadic groups, is equipped with the highest known number of dimensions and symmetries. Taking into account variants of the Borsuk–Ulam theorem and a novel topological approach cast in a physical fashion that has the potential to be operationalized, the universe can be conceived as a lower-dimensional manifold encompassed in the Monster group. Our universe might arise from spontaneous dimension decrease and symmetry breaking that occur inside the very structure of the Monster Module. We elucidate how the energetic loss caused by projection from higher to lower dimensions and by the Monster group’s non-abelian features is correlated with the present-day asymmetry in the thermodynamic arrow. By linking the Monster Module to its theoretical physical counterparts, it is then possible to calculate its enthalpy and Lie group trajectories. Our approach also reveals how a symmetry break might lead to a universe based on multi-dimensional string theories and CFT/AdS (anti-de Sitter/conformal field theory correspondence.

  5. Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors

    Directory of Open Access Journals (Sweden)

    Andrei A. Malykh

    2013-11-01

    Full Text Available We demonstrate how a combination of our recently developed methods of partner symmetries, symmetry reduction in group parameters and a new version of the group foliation method can produce noninvariant solutions of complex Monge-Ampère equation (CMA and provide a lift from invariant solutions of CMA satisfying Boyer-Finley equation to non-invariant ones. Applying these methods, we obtain a new noninvariant solution of CMA and the corresponding Ricci-flat anti-self-dual Einstein-Kähler metric with Euclidean signature without Killing vectors, together with Riemannian curvature two-forms. There are no singularities of the metric and curvature in a bounded domain if we avoid very special choices of arbitrary functions of a single variable in our solution. This metric does not describe gravitational instantons because the curvature is not concentrated in a bounded domain.

  6. Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi [Kanazawa Univ., Inst. for Theoretical Physics, Kanazawa, Ishikawa (Japan)

    2000-04-01

    The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)

  7. Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi

    2000-01-01

    The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)

  8. Teaching Molecular Symmetry of Dihedral Point Groups by Drawing Useful 2D Projections

    Science.gov (United States)

    Chen, Lan; Sun, Hongwei; Lai, Chengming

    2015-01-01

    There are two main difficulties in studying molecular symmetry of dihedral point groups. One is locating the C[subscript 2] axes perpendicular to the C[subscript n] axis, while the other is finding the s[subscript]d planes which pass through the C[subscript n] axis and bisect the angles formed by adjacent C[subscript 2] axes. In this paper, a…

  9. Determination of Patterson group symmetry from sparse multi-crystal data sets in the presence of an indexing ambiguity.

    Science.gov (United States)

    Gildea, Richard J; Winter, Graeme

    2018-05-01

    Combining X-ray diffraction data from multiple samples requires determination of the symmetry and resolution of any indexing ambiguity. For the partial data sets typical of in situ room-temperature experiments, determination of the correct symmetry is often not straightforward. The potential for indexing ambiguity in polar space groups is also an issue, although methods to resolve this are available if the true symmetry is known. Here, a method is presented to simultaneously resolve the determination of the Patterson symmetry and the indexing ambiguity for partial data sets. open access.

  10. The representation theory of the symmetry group of lattice fermions as a basis for kinematics in lattice QCD

    International Nuclear Information System (INIS)

    Joos, H.; Schaefer, M.

    1987-01-01

    The symmetry group of staggered lattice fermions is discussed as a discrete subgroup of the symmetry group of the Dirac-Kaehler equation. For the representation theory of this group, G. Mackey's generalization of E.P. Wigner's procedure for the construction of unitary representations of groups with normal subgroups is used. A complete classification of these irreducible representations by ''momentum stars'', ''flavour orbits'' and ''reduced spins'' is given. (orig.)

  11. Truncation effects in the functional renormalization group study of spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Defenu, N.; Mati, P.; Márián, I.G.; Nándori, I.; Trombettoni, A.

    2015-01-01

    We study the occurrence of spontaneous symmetry breaking (SSB) for O(N) models using functional renormalization group techniques. We show that even the local potential approximation (LPA) when treated exactly is sufficient to give qualitatively correct results for systems with continuous symmetry, in agreement with the Mermin-Wagner theorem and its extension to systems with fractional dimensions. For general N (including the Ising model N=1) we study the solutions of the LPA equations for various truncations around the zero field using a finite number of terms (and different regulators), showing that SSB always occurs even where it should not. The SSB is signalled by Wilson-Fisher fixed points which for any truncation are shown to stay on the line defined by vanishing mass beta functions.

  12. Conformal internal symmetry of 2d σ-models coupled to gravity and a dilaton

    International Nuclear Information System (INIS)

    Julia, B.; Nicolai, H.

    1996-08-01

    General relativity reduced to two dimensions possesses a large group of symmetries that exchange classical solutions. The associated Lie algebra is known to contain the affine Kac-Moody algebra A 1 (1) and half of a real Witt algebra. In this paper we exhibit the full symmetry under the semi-direct product of Lie(A 1 (1) ) by the Witt algebra Lie(W). Furthermore we exhibit the corresponding hidden gauge symmetries. We show that the theory can be understood in terms of an infinite dimensional potential space involving all degrees of freedom: The dilaton as well as matter and gravitation. In the dilaton sector the linear system that extends the previously known Lax pair has the form of a twisted self-duality constraint that is the analog of the self-duality constraint arising in extended supergravities in higher spacetime dimensions. Our results furnish a group theoretical explanation for the simultaneous occurrence of two spectral parameters, a constant one (=y) and a variable one (=t). They hold for all 2d non-linear σ-models that are obtained by dimensional reduction of G/H models in three dimensions coupled to pure gravity. In that case the Lie algebra is Lie(W∝G (1) ); this symmetry acts on a set of off shell fields (in a fixed gauge) and preserves the equations of motion. (orig.)

  13. Molecular symmetry and group theory a programmed introduction to chemical applications

    CERN Document Server

    Vincent, Alan

    2013-01-01

    This substantially revised and expanded new edition of the bestselling textbook, addresses the difficulties that can arise with the mathematics that underpins the study of symmetry, and acknowledges that group theory can be a complex concept for students to grasp.Written in a clear, concise manner, the author introduces a series of programmes that help students learn at their own pace and enable to them understand the subject fully. Readers are taken through a series of carefully constructed exercises, designed to simplify the mathematics and give them a full understanding of how this

  14. A Phase Transformation with no Change in Space Group Symmetry: Octafluoronaphtalene

    DEFF Research Database (Denmark)

    Pawley, G. S.; Dietrich, O. W.

    1975-01-01

    A solid-state phase transformation in octafluoronaphthalene has been discovered at 266.5K on cooling, and at 15K higher on heating. The symmetry of both phases is found to be the same, namely monoclinic with space group P21/c. The unit cell parameters change by up to 10%, but the integrity...... of a single crystal, which shatters on cooling, is good enough for a single-crystal structure determination. This has been done in both phases to a sufficient accuracy that a mechanism for the transformation can be proposed. Molecules which lie parallel to one another shear to a new parallel position...

  15. Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry

    Directory of Open Access Journals (Sweden)

    Chikashi Arita

    2012-10-01

    Full Text Available We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy. This behavior is similar to that of the entanglement entropies.

  16. Dynamical symmetry breaking of the electroweak interactions and the renormalization group

    International Nuclear Information System (INIS)

    Hill, C.T.

    1990-08-01

    We discuss dynamical symmetry breaking with an emphasis on the renormalization group as the key tool to obtaining reliable predictions. In particular we discuss the mechanism for breaking the electroweak interactions which relies upon the formation of condensates involving the conventional quarks and leptons. Such a scheme indicates that the top quark is heavy, greater than or of order 200 GeV, and gives further predictions for the Higgs boson mass. We also briefly describe recent attempts to incorporate a 4th generation in a more natural scheme. 13 refs., 3 figs., 1 tab

  17. Symmetries and Laplacians introduction to harmonic analysis, group representations and applications

    CERN Document Server

    Gurarie, D

    1992-01-01

    Designed as an introduction to harmonic analysis and group representations,this book covers a wide range of topics rather than delving deeply into anyparticular one. In the words of H. Weyl ...it is primarily meant forthe humble, who want to learn as new the things set forth therein, rather thanfor the proud and learned who are already familiar with the subject and merelylook for quick and exact information.... The main objective is tointroduce the reader to concepts, ideas, results and techniques that evolvearound symmetry-groups, representations and Laplacians. Morespecifically, the main interest concerns geometrical objects and structures{X}, discrete or continuous, that possess sufficiently large symmetrygroup G, such as regular graphs (Platonic solids), lattices, andsymmetric Riemannian manifolds. All such objects have a natural Laplacian&Dgr;, a linear operator on functions over X, invariant underthe group action. There are many problems associated with Laplacians onX, such as continuous or discrete...

  18. Unbounded representations of symmetry groups in gauge quantum field theory. Pt. 1

    International Nuclear Information System (INIS)

    Voelkel, A.H.

    1983-01-01

    Symmetry groups and especially the covariance (substitution rules) of the basic fields in a gauge quantum field theory of the Wightman-Garding type are investigated. By means of the continuity properties hidden in the substitution rules it is shown that every unbounded form-isometric representation U of a Lie group has a form-skew-symmetric differential deltaU with dense domain in the unphysical Hilbert space. Necessary and sufficient conditions for the existence of the closures of U and deltaU as well as for the isometry of U are derived. It is proved that a class of representations of the transition group enforces a relativistic confinement mechanism, by which some or all basic fields are confined but certain mixed products of them are not. (orig.)

  19. Statistical symmetry restoration in fully developed turbulence: Renormalization group analysis of two models

    Science.gov (United States)

    Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Malyshev, A. V.

    2018-03-01

    In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated that regardless of the values of model parameters and initial data the inertial-range behavior of the model is described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the model violated by the "colored" random force is restored in the inertial range. This regime corresponds to the only nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation between the exponents in the energy spectrum E ∝k1 -y and the dispersion law ω ∝k2 -η . The second analyzed problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance with Kolmogorov's hypothesis of the local symmetry restoration the main contribution to the operator product expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.

  20. Critical Issues in International Group Counseling

    Science.gov (United States)

    Bemak, Fred; Chung, Rita Chi-Ying

    2015-01-01

    Three-quarters of the world come from collectivistic group-oriented cultures. As the world becomes more globalized it is inevitable that group counseling will be a major choice of healing and psychological intervention internationally. However, a review of scholarly articles from "The Journal for Specialists in Group Work" and…

  1. Conformal internal symmetry of 2d σ-models coupled to gravity and a dilaton

    International Nuclear Information System (INIS)

    Julia, B.

    1996-01-01

    General relativity reduced to two dimensions possesses a large group of symmetries that exchange classical solutions. The associated Lie algebra is known to contain the affine Kac-Moody algebra A 1 (1) and half of a real Witt algebra. In this paper we exhibit the full symmetry under the semi-direct product of Lie(A 1 (1) ) by the Witt algebra Lie(W). Furthermore we exhibit the corresponding hidden gauge symmetries. We show that the theory can be understood in terms of an infinite dimensional potential space involving all degrees of freedom: the dilaton as well as matter and gravitation. In the dilaton sector the linear system that extends the previously known Lax pair has the form of a twisted self-duality constraint that is the analog of the self-duality constraint arising in extended supergravities in higher space-time dimensions. Our results furnish a group theoretical explanation for the simultaneous occurrence of two spectral parameters, a constant one (=y) and a variable one (=t). They hold for all 2d non-linear σ-models that are obtained by dimensional reduction of G/H models in three dimensions coupled to pure gravity. (orig./WL) (orig.)

  2. Two dimentional lattice vibrations from direct product representations of symmetry groups

    Directory of Open Access Journals (Sweden)

    J. N. Boyd

    1983-01-01

    two dimensional crystals. First, the Born cyclic condition is applied to a double chain composed of coupled linear lattices to obtain a cylindrical arrangement. Then the quadratic Lagrangian function for the system is written in matrix notation. The Lagrangian is diagonalized to yield the natural frequencies of the system. The transformation to achieve the diagonalization was obtained from group theorectic considerations. Next, the techniques developed for the double chain are applied to a square lattice. The square lattice is transformed into the toroidal Ising model. The direct product nature of the symmetry group of the torus reveals the transformation to diagonalize the Lagrangian for the Ising model, and the natural frequencies for the principal directions in the model are obtained in closed form.

  3. Hypersurfaces in Pn with 1-parameter symmetry groups II

    DEFF Research Database (Denmark)

    Plessis, Andrew du; Wall, C.T.C.

    2010-01-01

    We assume V a hypersurface of degree d in with isolated singularities and not a cone, admitting a group G of linear symmetries. In earlier work we treated the case when G is semi-simple; here we analyse the unipotent case. Our first main result lists the possible groups G. In each case we discuss...... the geometry of the action, reduce V to a normal form, find the singular points, study their nature, and calculate the Milnor numbers. The Tjurina number τ(V) ≤ (d − 1) n–2(d 2 − 3d + 3): we call V oversymmetric if this value is attained. We calculate τ in many cases, and characterise the oversymmetric...

  4. Some studies in parastatistical theories and its applications in the internal symmetry of elementary particles

    International Nuclear Information System (INIS)

    Silva, H.V. da.

    1984-01-01

    The results of investigations in parastatistical theories and in their applications to the internal symmetries of elementary particles are present. The paraquantization and the 'generalized paraquantization' (of Levine and Tomozawa) of the relativistic Schroedinger wave equations for non-zero mass and arbitrary spin (s), involving locally covariant wave functions, Ψ o,s + Ψ s,o are executed, and the restrictions resulting from the criterion of microscopic causality and the manner of establishment of the connection between spin and statistics in these quantizations are explicitly demonstrated. (Author) [pt

  5. The International Dermatology Outcome Measures Group

    DEFF Research Database (Denmark)

    Gottlieb, Alice B; Levin, Adriane A; Armstrong, April W

    2015-01-01

    As quality standards are increasingly in demand throughout medicine, dermatology needs to establish outcome measures to quantify the effectiveness of treatments and providers. The International Dermatology Outcome Measures Group was established to address this need. Beginning with psoriasis...

  6. The renormalization group of relativistic quantum field theory as a set of generalized, spontaneously broken, symmetry transformations

    International Nuclear Information System (INIS)

    Maris, Th.A.J.

    1976-01-01

    The renormalization group theory has a natural place in a general framework of symmetries in quantum field theories. Seen in this way, a 'renormalization group' is a one-parametric subset of the direct product of dilatation and renormalization groups. This subset of spontaneously broken symmetry transformations connects the inequivalent solutions generated by a parameter-dependent regularization procedure, as occurs in renormalized perturbation theory. By considering the global, rather than the infinitesimal, transformations, an expression for general vertices is directly obtained, which is the formal solution of exact renormalization group equations [pt

  7. Hierarchy of kissing numbers for exceptional Lie symmetry groups in high energy physics

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    We are constructing a hierarchy of kissing numbers representing singular contact points of hyper-spheres in exceptional Lie symmetry groups lattice arrangement embedded in the 26 dimensional bosonic strings spacetime. That way we find a total number of points and dimensions equal to 548. This is 52 more than the order of E 8 E 8 of heterotic string theory and leads to the prediction of 69 elementary particles at an energy scale under 1 T. In other words, our mathematical model predicts nine more particles than what is currently experimentally known to exist in the standard model of high energy physics namely only 60. The result is thus in full agreement with all our previous theoretical findings

  8. Symmetry breaking in the opinion dynamics of a multi-group project organization

    International Nuclear Information System (INIS)

    Zhu Zhen-Tao; Zhou Jing; Chen Xing-Guang; Li Ping

    2012-01-01

    A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces: (i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture; and (ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness. Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes, i.e., a deadlock regime, a convergence regime, and a bifurcation regime in opinion dynamics. The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to. In the case of a three-group project with a symmetric social network, both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord, instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result (Physica A 378 (2007) p. 125 Fig. 5), project organization (PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations, which urges that apart from divergence in participants' interests, nonlinear interaction can also make conflict inevitable in the PO. The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO. It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO

  9. Symmetry breaking in the opinion dynamics of a multi-group project organization

    Science.gov (United States)

    Zhu, Zhen-Tao; Zhou, Jing; Li, Ping; Chen, Xing-Guang

    2012-10-01

    A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces: (i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture; and (ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness. Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes, i.e., a deadlock regime, a convergence regime, and a bifurcation regime in opinion dynamics. The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to. In the case of a three-group project with a symmetric social network, both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord, instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result (Physica A 378 (2007) p. 125 Fig. 5), project organization (PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations, which urges that apart from divergence in participants' interests, nonlinear interaction can also make conflict inevitable in the PO. The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO. It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.

  10. Business groups and internal capital markets

    NARCIS (Netherlands)

    Gonenc, Halit; Kan, Ozgur B.; Karadagli, Ece C.

    2007-01-01

    We compare the performance of firms affiliated with diversified business groups with the performance of unaffiliated firms in Turkey, all emerging market. We address the question of whether group-affiliated firms create internal capital markets or control large cash flows. Our findings indicate that

  11. Symmetry of quantum intramolecular dynamics

    International Nuclear Information System (INIS)

    Burenin, Alexander V

    2002-01-01

    The paper reviews the current progress in describing quantum intramolecular dynamics using merely symmetry principles as a basis. This closed qualitative approach is of particular interest because it is the only method currently available for a broad class of topical problems in the internal dynamics of molecules. Moreover, a molecule makes a physical system whose collective internal motions are geometrically structured, so that its description by perturbation methods requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed. In particular, the point group of a molecule is of this type. (methodological notes)

  12. Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7.

    Science.gov (United States)

    Guo, Fei; Liu, Zheng; Vago, Frank; Ren, Yue; Wu, Weimin; Wright, Elena T; Serwer, Philip; Jiang, Wen

    2013-04-23

    Motor-driven packaging of a dsDNA genome into a preformed protein capsid through a unique portal vertex is essential in the life cycle of a large number of dsDNA viruses. We have used single-particle electron cryomicroscopy to study the multilayer structure of the portal vertex of the bacteriophage T7 procapsid, the recipient of T7 DNA in packaging. A focused asymmetric reconstruction method was developed and applied to selectively resolve neighboring pairs of symmetry-mismatched layers of the portal vertex. However, structural features in all layers of the multilayer portal vertex could not be resolved simultaneously. Our results imply that layers with mismatched symmetries can join together in several different relative orientations, and that orientations at different interfaces assort independently to produce structural isomers, a process that we call combinatorial assembly isomerism. This isomerism explains rotational smearing in previously reported asymmetric reconstructions of the portal vertex of T7 and other bacteriophages. Combinatorial assembly isomerism may represent a new regime of structural biology in which globally varying structures assemble from a common set of components. Our reconstructions collectively validate previously proposed symmetries, compositions, and sequential order of T7 portal vertex layers, resolving in tandem the 5-fold gene product 10 (gp10) shell, 12-fold gp8 portal ring, and an internal core stack consisting of 12-fold gp14 adaptor ring, 8-fold bowl-shaped gp15, and 4-fold gp16 tip. We also found a small tilt of the core stack relative to the icosahedral fivefold axis and propose that this tilt assists DNA spooling without tangling during packaging.

  13. Functional renormalization group approach to electronic structure calculations for systems without translational symmetry

    Science.gov (United States)

    Seiler, Christian; Evers, Ferdinand

    2016-10-01

    A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.

  14. PREFACE: The 5th International Symposium in Quantum Theory and Symmetries (QTS5)

    Science.gov (United States)

    Arratia, O.; Calzada, J. A.; Gómez-Cubillo, F.; Negro, J.; del Olmo, M. A.

    2008-02-01

    This volume of Journal of Physics: Conference Series contains the Proceedings of the 5th International Symposium in Quantum Theory and Symmetries (QTS5), held in Valladolid, Spain, 22-28 July 2007. This is the fifth of a series of conferences previously held in Goslar (Germany) 1999, QTS1; Cracow (Poland) 2001, QTS2; Cincinnati (USA) 2003, QTS3, and Varna (Bulgaria) 2005, QTS4. The QTS5 symposium gathered 181 participants from 39 countries working in different fields on Theoretical Physics. The spirit of the QTS conference series is to join researchers in a wide variety of topics in Theoretical Physics, as a way to make accessible recent results and the new lines of different fields. The QTS5 conference offered the following list of topics: Symmetries in String Theory, Quantum Gravity and related Symmetries in Quantum Field Theories, Conformal and Related Field Theories, Lattice and Noncommutative Theories, Gauge Theories Quantum Computing, Information and Control Foundations of Quantum Theory Quantum Optics, Coherent States, Wigner Functions Dynamical and Integrable Systems Symmetries in Condensed Matter and Statistical Physics Symmetries in Particle Physics, Nuclear, Atomic and Molecular Nonlinear Quantum Mechanics Time Asymmetric Quantum Mechanics SUSY Quantum Mechanics, PT symmetries and pseudo-Hamiltonians Mathematical Methods for Symmetries and Quantum Theories Symmetries in Chemistry Biology and other Sciences Papers accepted for publication in the present issue are based on the contributions from the participants in the QTS5 conference after a peer review process. In addition, a special issue of Journal Physics A: Mathematical and Theoretical contains contributions from plenary speakers, some participants as well as contributions from other authors whose works fit into the topics of the conference. The organization of the conference had the following pattern. In the morning there were five plenary or general sessions for all the participants, which aimed to

  15. Silsesquioxane nanoparticles with reactive internal functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Brozek, Eric M . [University of Utah, Department of Chemistry (United States); Washton, Nancy M.; Mueller, Karl T. [Environmental Molecular Sciences Laboratory (United States); Zharov, Ilya, E-mail: i.zharov@utah.edu [University of Utah, Department of Chemistry (United States)

    2017-02-15

    A series of silsesquioxane nanoparticles containing reactive internal organic functionalities throughout the entire particle body have been synthesized using a surfactant-free method with organosilanes as the sole precursors and a base catalyst. The organic functional groups incorporated are vinyl, allyl, mercapto, cyanoethyl, and cyanopropyl groups. The sizes and morphologies of the particles were characterized using SEM and nitrogen adsorption, while the compositions were confirmed using TGA, FT-IR, solid state NMR, and elemental analysis. The accessibility and reactivity of the functional groups inside the particles were demonstrated by performing bromination and reduction reactions in the interior of the particles.

  16. On the Lie symmetry group for classical fields in noncommutative space

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo Martinho Lima Santiago [Universidade Federal da Bahia (UFBA), BA (Brazil); Instituto Federal da Bahia (IFBA), BA (Brazil); Ressureicao, Caio G. da [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica; Vianna, Jose David M. [Universidade Federal da Bahia (UFBA), BA (Brazil); Universidade de Brasilia (UnB), DF (Brazil)

    2011-07-01

    Full text: An alternative way to include effects of noncommutative geometries in field theory is based on the concept of noncommutativity among degrees of freedom of the studied system. In this context it is reasonable to consider that, in the multiparticle noncommutative quantum mechanics (NCQM), the noncommutativity among degrees of freedom to discrete system with N particles is also verified. Further, an analysis of the classical limit of the single particle NCQM leads to a deformed Newtonian mechanics where the Newton's second law is modified in order to include the noncommutative parameter {theta}{sub {iota}j} and, for a one-dimensional discrete system with N particles, the dynamical evolution of each particle is given by this modified Newton's second law. Hence, applying the continuous limit to this multiparticle classical system it is possible to obtain a noncommutative extension of two -dimensional field theory in a noncommutative space. In the present communication we consider a noncommutative extension of the scalar field obtained from this approach and we analyze the Lie symmetries in order to compare the Lie group of this field with the usual scalar field in the commutative space. (author)

  17. Symmetry of quantum molecular dynamics

    International Nuclear Information System (INIS)

    Burenin, A.V.

    2002-01-01

    The paper reviews the current state-of-art in describing quantum molecular dynamics based on symmetry principles alone. This qualitative approach is of particular interest as the only method currently available for a broad and topical class of problems in the internal dynamics of molecules. Besides, a molecule is a physical system whose collective internal motions are geometrically structured, and its perturbation theory description requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed [ru

  18. Validation of missed space-group symmetry in X-ray powder diffraction structures with dispersion-corrected density functional theory

    DEFF Research Database (Denmark)

    Hempler, Daniela; Schmidt, Martin U.; Van De Streek, Jacco

    2017-01-01

    More than 600 molecular crystal structures with correct, incorrect and uncertain space-group symmetry were energy-minimized with dispersion-corrected density functional theory (DFT-D, PBE-D3). For the purpose of determining the correct space-group symmetry the required tolerance on the atomic...... with missed symmetry were investigated by dispersion-corrected density functional theory. In 98.5% of the cases the correct space group is found....

  19. Quantum group symmetries and completeness for \\boldsymbol {A}_{\\boldsymbol {2n}}^{\\boldsymbol{(2)}} open spin chains

    Science.gov (United States)

    Ahmed, Ibrahim; Nepomechie, Rafael I.; Wang, Chunguang

    2017-07-01

    We argue that the Hamiltonians for A(2)2n open quantum spin chains corresponding to two choices of integrable boundary conditions have the symmetries Uq(Bn) and Uq(Cn) , respectively. We find a formula for the Dynkin labels of the Bethe states (which determine the degeneracies of the corresponding eigenvalues) in terms of the numbers of Bethe roots of each type. With the help of this formula, we verify numerically (for a generic value of the anisotropy parameter) that the degeneracies and multiplicities of the spectra implied by the quantum group symmetries are completely described by the Bethe ansatz.

  20. PREFACE: The 5th International Symposium on Quantum Theory and Symmetries (QTS5)

    Science.gov (United States)

    Gadella, M.; Izquierdo, J. M.; Kuru, S.; Negro, J.; del Olmo, M. A.

    2008-08-01

    This special issue of Journal of Physics A: Mathematical and Theoretical appears on the occasion of the 5th International Symposium on Quantum Theory and Symmetries (QTS5), held in Valladolid, Spain, from 22-28 July 2007. This is the fith in a series of conferences previously held in Goslar (Germany) 1999, QTS1; Cracow (Poland) 2001, QTS2; Cincinnati (USA) 2003, QTS3; and Varna (Bulgaria) 2005, QTS4. The QTS5 symposium gathered 181 participants from 39 countries working in different fields of theoretical physics. The spirit of the QTS conference series is to join researchers in a wide variety of topics in theoretical physics, as a way of making accessible recent results and the new lines of different fields. This is based on the feeling that it is good for a physicist to have a general overview as well as expertise in his/her own field. There are many other conferences devoted to specific topics, which are of interest to gain deeper insight in many technical aspects and that are quite suitable for discussions due to their small size. However, we believe that general conferences like this are interesting and worth keeping. We like the talks, in both plenary and parallel sessions, which are devoted to specific topics, to be prepared so as to be accessible to any researcher in any branch of theoretical physics. We think that this objective is compatible with rigour and high standards. As is well known, similar methods and techniques can be useful for many problems in different fields. We hope that this has been appreciated during the sessions of the QTS5 conference. The QTS5 conference offered the following list of topics: 1. Symmetries in string theory, quantum gravity and related topics 2. Symmetries in quantum field theories, conformal and related field theories, lattice and noncommutative theories, gauge theories 3.Quantum computing, information and control 4. Foundations of quantum theory 5. Quantum optics, coherent states, Wigner functions 6. Dynamical and

  1. International Space Station Earth Observations Working Group

    Science.gov (United States)

    Stefanov, William L.; Oikawa, Koki

    2015-01-01

    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  2. Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond.

    Science.gov (United States)

    Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang

    2015-01-23

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.

  3. Symmetries and nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs

  4. Clusters and Groups of Galaxies : International Meeting

    CERN Document Server

    Giuricin, G; Mezzetti, M

    1984-01-01

    The large-scale structure of the Universe and systems Clusters, and Groups of galaxies are topics like Superclusters, They fully justify the meeting on "Clusters of great interest. and Groups of Galaxies". The topics covered included the spatial distribution and the clustering of galaxies; the properties of Superclusters, Clusters and Groups of galaxies; radio and X-ray observations; the problem of unseen matter; theories concerning hierarchical clustering, pancakes, cluster and galaxy formation and evolution. The meeting was held at the International Center for Theoretical Physics in Trieste (Italy) from September 13 to September 16, 1983. It was attended by about 150 participants from 22 nations who presented 67 invited lectures (il) and contributed papers (cp), and 45 poster papers (pp). The Scientific Organizing Committee consisted of F. Bertola, P. Biermann, A. Cavaliere, N. Dallaporta, D. Gerba1, M. Hack, J . V . Peach, D. Sciama (Chairman), G. Setti, M. Tarenghi. We are particularly indebted to D. Scia...

  5. Learning Together Through International Collaborative Writing Groups

    Directory of Open Access Journals (Sweden)

    Mick Healey

    2017-03-01

    Full Text Available The International Collaborative Writing Groups (ICWG initiative creates a space for ongoing collaboration amongst scholars of teaching and learning who co-author a manuscript on a topic of shared interest. The second ICWG, linked to the 2015 International Society for the Scholarship of Teaching and Learning Conference in Melbourne, Australia, involved 59 scholars from 11 countries. In this piece, we describe the aims, process, and outcomes for the ICWG, comparing it with the first ICWG in 2012. While international collaboration around a topic of shared interest is generally viewed positively, the realities of collaborating online with limited face-to-face interactions to complete a manuscript can be challenging. We argue, despite such challenges, that ongoing collaboration amongst scholars is vital to the scholarship of teaching and learning (SoTL movement. Drawing on our experience of leading the overall ICWG initiative and our research into participants’ experiences, we suggest there are individual dispositions toward collaboration that enrich and enable successful participation in ICWG experiences. We end by highlighting the final products arising from almost two year of collaborative thinking and writing from six groups.

  6. Nineteenth International Microgravity Measurements Group Meeting

    Science.gov (United States)

    DeLombard, Richard (Compiler)

    2000-01-01

    The Microgravity Measurements Group meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The 19th MGMG meeting was held 11-13 July 2000 at the Sheraton Airport Hotel in Cleveland, Ohio. The 44 attendees represented NASA, other space agencies, universities, and commercial companies; 8 of the attendees were international representatives from Japan, Italy, Canada, Russia, and Germany. Twenty-seven presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, vehicle characterization, and microgravity outreach and education. The meeting participants also toured three microgravity-related facilities at the NASA Glenn Research Center. Contained within the minutes is the conference agenda, which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation, which indicate the authors' name(s) and affiliation. In some cases, a separate written report was submitted and has been Included here

  7. NASA's Internal Space Weather Working Group

    Science.gov (United States)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  8. Abecedarian School on Symmetries and Integrability of Difference Equations (ASIDE) & SIDE 12 International Conference Symmetries and Integrability of Difference Equations

    CERN Document Server

    Rebelo, Raphaël; Winternitz, Pavel

    2017-01-01

    This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers...

  9. Extreme covariant quantum observables in the case of an Abelian symmetry group and a transitive value space

    International Nuclear Information System (INIS)

    Haapasalo, Erkka Theodor; Pellonpaeae, Juha-Pekka

    2011-01-01

    We represent quantum observables as normalized positive operator valued measures and consider convex sets of observables which are covariant with respect to a unitary representation of a locally compact Abelian symmetry group G. The value space of such observables is a transitive G-space. We characterize the extreme points of covariant observables and also determine the covariant extreme points of the larger set of all quantum observables. The results are applied to position, position difference, and time observables.

  10. Non-linear entropy functionals and a characteristic invariant of symmetry group actions on infinite quantum systems

    International Nuclear Information System (INIS)

    Hudetz, T.

    1989-01-01

    We review the development of the non-Abelian generalization of the Kolmogorov-Sinai(KS) entropy invariant, as initated by Connes and Stormer and completed by Connes, Narnhofer and Thirring only recently. As an introduction and motivation, the classical KS theory is reformulated in terms of Abelian W * -algebras. Finally, we describe simple physical applications of the developed characteristic invariant to space-time symmetry group actions on infinite quantum systems. 42 refs. (Author)

  11. Hidden U$_{q}$(sl(2)) x U$_{q}$(sl(2)) quantum group symmetry in two dimensional gravity

    CERN Document Server

    Cremmer, E; Schnittger, J

    1997-01-01

    In a previous paper, we proposed a construction of U_q(sl(2)) quantum group symmetry generators for 2d gravity, where we took the chiral vertex operators of the theory to be the quantum group covariant ones established in earlier works. The basic idea was that the covariant fields in the spin 1/2 representation themselves can be viewed as generators, as they act, by braiding, on the other fields exactly in the required way. Here we transform this construction to the more conventional description of 2d gravity in terms of Bloch wave/Coulomb gas vertex operators, thereby establishing for the first time its quantum group symmetry properties. A U_q(sl(2))\\otimes U_q(sl(2)) symmetry of a novel type emerges: The two Cartan-generator eigenvalues are specified by the choice of matrix element (bra/ket Verma-modules); the two Casimir eigenvalues are equal and specified by the Virasoro weight of the vertex operator considered; the co-product is defined with a matching condition dictated by the Hilbert space structure of...

  12. Peripheral Contour Grouping and Saccade Targeting: The Role of Mirror Symmetry

    Directory of Open Access Journals (Sweden)

    Michaël Sassi

    2014-01-01

    Full Text Available Integrating shape contours in the visual periphery is vital to our ability to locate objects and thus make targeted saccadic eye movements to efficiently explore our surroundings. We tested whether global shape symmetry facilitates peripheral contour integration and saccade targeting in three experiments, in which observers responded to a successful peripheral contour detection by making a saccade towards the target shape. The target contours were horizontally (Experiment 1 or vertically (Experiments 2 and 3 mirror symmetric. Observers responded by making a horizontal (Experiments 1 and 2 or vertical (Experiment 3 eye movement. Based on an analysis of the saccadic latency and accuracy, we conclude that the figure-ground cue of global mirror symmetry in the periphery has little effect on contour integration or on the speed and precision with which saccades are targeted towards objects. The role of mirror symmetry may be more apparent under natural viewing conditions with multiple objects competing for attention, where symmetric regions in the visual field can pre-attentively signal the presence of objects, and thus attract eye movements.

  13. Mixed-symmetry fields in de Sitter space: a group theoretical glance

    Energy Technology Data Exchange (ETDEWEB)

    Basile, Thomas [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS,Fédération de Recherche 2964 Denis Poisson, Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Groupe de Mécanique et Gravitation, Service de Physique Théorique et Mathématique,Université de Mons - UMONS,20 Place du Parc, 7000 Mons, Belgique (Belgium); Bekaert, Xavier [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS,Fédération de Recherche 2964 Denis Poisson, Université François Rabelais,Parc de Grandmont, 37200 Tours (France); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science,Daejeon (Korea, Republic of); Boulanger, Nicolas [Groupe de Mécanique et Gravitation, Service de Physique Théorique et Mathématique,Université de Mons - UMONS,20 Place du Parc, 7000 Mons, Belgique (Belgium)

    2017-05-15

    We derive the characters of all unitary irreducible representations of the (d+1)-dimensional de Sitter spacetime isometry algebra so(1,d+1), and propose a dictionary between those representations and massive or (partially) massless fields on de Sitter spacetime. We propose a way of taking the flat limit of representations in (anti-) de Sitter spaces in terms of these characters, and conjecture the spectrum resulting from taking the flat limit of mixed-symmetry fields in de Sitter spacetime. We identify the equivalent of the scalar singleton for the de Sitter (dS) spacetime.

  14. Power of the Poincaré group: elucidating the hidden symmetries in focal conic domains.

    Science.gov (United States)

    Alexander, Gareth P; Chen, Bryan Gin-Ge; Matsumoto, Elisabetta A; Kamien, Randall D

    2010-06-25

    Focal conic domains are typically the "smoking gun" by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincaré symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.

  15. Power of the Poincare Group: Elucidating the Hidden Symmetries in Focal Conic Domains

    International Nuclear Information System (INIS)

    Alexander, Gareth P.; Chen, Bryan Gin-ge; Matsumoto, Elisabetta A.; Kamien, Randall D.

    2010-01-01

    Focal conic domains are typically the 'smoking gun' by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincare symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.

  16. PREFACE: XXXth International Colloquium on Group Theoretical Methods in Physics (ICGTMP) (Group30)

    Science.gov (United States)

    Brackx, Fred; De Schepper, Hennie; Van der Jeugt, Joris

    2015-04-01

    The XXXth International Colloquium on Group Theoretical Methods in Physics (ICGTMP), also known as the Group30 conference, took place in Ghent (Belgium) from Monday 14 to Friday 18 July 2014. The conference was organised by Ghent University (Department of Applied Mathematics, Computer Science and Statistics, and Department of Mathematical Analysis). The website http://www.group30.ugent.be is still available. The ICGTMP is one of the traditional conference series covering the most important topics of symmetry which are relevant to the interplay of present-day mathematics and physics. More than 40 years ago a group of enthusiasts, headed by H. Bacry of Marseille and A. Janner of Nijmegen, initiated a series of annual meetings with the aim to provide a common forum for scientists interested in group theoretical methods. At that time most of the participants belonged to two important communities: on the one hand solid state specialists, elementary particle theorists and phenomenologists, and on the other mathematicians eager to apply newly-discovered group and algebraic structures. The conference series has become a meeting point for scientists working at modelling physical phenomena through mathematical and numerical methods based on geometry and symmetry. It is considered as the oldest one among the conference series devoted to geometry and physics. It has been further broadened and diversified due to the successful applications of geometric and algebraic methods in life sciences and other areas. The first four meetings took place alternatively in Marseille and Nijmegen. Soon after, the conference acquired an international standing, especially following the 1975 colloquium in Nijmegen and the 1976 colloquium in Montreal. Since then it has been organized in many places around the world. It has become a bi-annual colloquium since 1990, the year it was organized in Moscow. This was the first time the colloquium took place in Belgium. There were 246 registered

  17. Gauge fields in nonlinear group realizations involving two-dimensional space-time symmetry

    International Nuclear Information System (INIS)

    Machacek, M.E.; McCliment, E.R.

    1975-01-01

    It is shown that gauge fields may be consistently introduced into a model Lagrangian previously considered by the authors. The model is suggested by the spontaneous breaking of a Lorentz-type group into a quasiphysical two-dimensional space-time and one internal degree of freedom, loosely associated with charge. The introduction of zero-mass gauge fields makes possible the absorption via the Higgs mechanism of the Goldstone fields that appear in the model despite the fact that the Goldstone fields do not transform as scalars. Specifically, gauge invariance of the Yang-Mills type requires the introduction of two sets of massless gauge fields. The transformation properties in two-dimensional space-time suggest that one set is analogous to a charge doublet that behaves like a second-rank tensor in real four-dimensional space time. The other set suggests a spin-one-like charge triplet. Via the Higgs mechanism, the first set absorbs the Goldstone fields and acquires mass. The second set remains massless. If massive gauge fields are introduced, the associated currents are not conserved and the Higgs mechanism is no longer fully operative. The Goldstone fields are not eliminated, but coupling between the Goldstone fields and the gauge fields does shift the mass of the antisymmetric second-rank-tensor gauge field components

  18. Response matrix method for neutron transport in reactor lattices using group symmetry properties

    International Nuclear Information System (INIS)

    Mund, E.H.

    1991-01-01

    This paper describes a response matrix method for the approximate solution of one-velocity, multi-dimensional transport problems in reactor lattices, with isotropic neutron scattering. The transport equation is solved on a homogeneous cell by using a Petrov-Galerkin technique based on a set of trial and test functions (including polynomials and exponential functions) closely related to transport problems in infinite media. The number of non-zero elements of the response matrices reduces to a minimum when the symmetry properties of the cell are included ab initio in the span of the basis functions. To include these properties, use is made of projection operations which are performed very efficiently on symbolic manipulation programs. Numerical results of model problems in square geometry show a good agreement with reference solutions

  19. Group theoretical classification of broken symmetry states of the two-fold degenerate Hubbard model on a triangular lattice

    International Nuclear Information System (INIS)

    Masago, Akira; Suzuki, Naoshi

    2001-01-01

    By a group theoretical procedure we derive the possible spontaneously broken-symmetry states for the two-fold degenerate Hubbard model on a two-dimensional triangular lattice. For ordering wave vectors corresponding to the points Γ and K in the first BZ we find 22 states which include 16 collinear and six non-collinear states. The collinear states include the usual SDW and CDW states which appear also in the single-band Hubbard model. The non-collinear states include exotic ordering states of orbitals and spins as well as the triangular arrangement of spins

  20. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  1. Weak C* Hopf Symmetry

    OpenAIRE

    Rehren, K. -H.

    1996-01-01

    Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.

  2. From spin groups and modular P{sub 1}CT symmetry to covariant representations and the spin-statistics theorem

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, R.

    2007-03-15

    Starting from the assumption of modular P{sub 1}CT symmetry in quantum field theory a representation of the universal covering of the Poincar'e group is constructed in terms of pairs of modular conjugations. The modular conjugations are associated with field algebras of unbounded operators localised in wedge regions. It turns out that an essential step consists in characterising the universal covering group of the Lorentz group by pairs of wedge regions, in conjunction with an analysis of its geometrical properties. In this thesis two approaches to this problem are developed in four spacetime dimensions. First a realisation of the universal covering as the quotient space over the set of pairs of wedge regions is presented. In spite of the intuitive definition, the necessary properties of a covering space are not straightforward to prove. But the geometrical properties are easy to handle. The second approach takes advantage of the well-known features of spin groups, given as subgroups of Clifford algebras. Characterising elements of spin groups by pairs of wedge regions is possible in an elegant manner. The geometrical analysis is performed by means of the results achieved in the first approach. These geometrical properties allow for constructing a representation of the universal cover of the Lorentz group in terms of pairs of modular conjugations. For this representation the derivation of the spin-statistics theorem is straightforward, and a PCT operator can be defined. Furthermore, it is possible to transfer the results to nets of field algebras in algebraic quantum field theory with ease. Many of the usual assumptions in quantum field theory like the spectrum condition or the existence of a covariant unitary representation, as well as the assumption on the quantum field to have only finitely many components, are not required. For the standard axioms, the crucial assumption of modular P{sub 1}CT symmetry constitutes no loss of generality because it is a

  3. From spin groups and modular P1CT symmetry to covariant representations and the spin-statistics theorem

    International Nuclear Information System (INIS)

    Lorenzen, R.

    2007-03-01

    Starting from the assumption of modular P 1 CT symmetry in quantum field theory a representation of the universal covering of the Poincar'e group is constructed in terms of pairs of modular conjugations. The modular conjugations are associated with field algebras of unbounded operators localised in wedge regions. It turns out that an essential step consists in characterising the universal covering group of the Lorentz group by pairs of wedge regions, in conjunction with an analysis of its geometrical properties. In this thesis two approaches to this problem are developed in four spacetime dimensions. First a realisation of the universal covering as the quotient space over the set of pairs of wedge regions is presented. In spite of the intuitive definition, the necessary properties of a covering space are not straightforward to prove. But the geometrical properties are easy to handle. The second approach takes advantage of the well-known features of spin groups, given as subgroups of Clifford algebras. Characterising elements of spin groups by pairs of wedge regions is possible in an elegant manner. The geometrical analysis is performed by means of the results achieved in the first approach. These geometrical properties allow for constructing a representation of the universal cover of the Lorentz group in terms of pairs of modular conjugations. For this representation the derivation of the spin-statistics theorem is straightforward, and a PCT operator can be defined. Furthermore, it is possible to transfer the results to nets of field algebras in algebraic quantum field theory with ease. Many of the usual assumptions in quantum field theory like the spectrum condition or the existence of a covariant unitary representation, as well as the assumption on the quantum field to have only finitely many components, are not required. For the standard axioms, the crucial assumption of modular P 1 CT symmetry constitutes no loss of generality because it is a consequence of

  4. An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein

    Science.gov (United States)

    Jaag, Hannah Miriam; Kawchuk, Lawrence; Rohde, Wolfgang; Fischer, Rainer; Emans, Neil; Prüfer, Dirk

    2003-01-01

    Potato leafroll polerovirus (PLRV) genomic RNA acts as a polycistronic mRNA for the production of proteins P0, P1, and P2 translated from the 5′-proximal half of the genome. Within the P1 coding region we identified a 5-kDa replication-associated protein 1 (Rap1) essential for viral multiplication. An internal ribosome entry site (IRES) with unusual structure and location was identified that regulates Rap1 translation. Core structural elements for internal ribosome entry include a conserved AUG codon and a downstream GGAGAGAGAGG motif with inverted symmetry. Reporter gene expression in potato protoplasts confirmed the internal ribosome entry function. Unlike known IRES motifs, the PLRV IRES is located completely within the coding region of Rap1 at the center of the PLRV genome. PMID:12835413

  5. Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups

    International Nuclear Information System (INIS)

    Podles, P.

    1995-01-01

    We prove that each action of a compact matrix quantum group on a compact quantum space can be decomposed into irreducible representations of the group. We give the formula for the corresponding multiplicities in the case of the quotient quantum spaces. We describe the subgroups and the quotient spaces of quantum SU(2) and SO(3) groups. (orig.)

  6. Modern International Research Groups: Networks and Infrastructure

    Science.gov (United States)

    Katehi, Linda

    2009-05-01

    In a globalized economy, education and research are becoming increasing international in content and context. Academic and research institutions worldwide try to internationalize their programs by setting formal or informal collaborations. An education that is enhanced by international experiences leads to mobility of the science and technology workforce. Existing academic cultures and research structures are at odds with efforts to internationalize education. For the past 20-30 years, the US has recognized the need to improve the abroad experience of our scientists and technologists: however progress has been slow. Despite a number of both federally and privately supported programs, efforts to scale up the numbers of participants have not been satisfactory. The exchange is imbalanced as more foreign scientists and researchers move to the US than the other way around. There are a number of issues that contribute to this imbalance but we could consider the US academic career system, as defined by its policies and practices, as a barrier to internationalizing the early career faculty experience. Strict curricula, pre-tenure policies and financial commitments discourage students, post doctoral fellows and pre-tenure faculty from taking international leaves to participate in research abroad experiences. Specifically, achieving an international experience requires funding that is not provided by the universities. Furthermore, intellectual property requirements and constraints in pre-tenure probationary periods may discourage students and faculty from collaborations with peers across the Atlantic or Pacific or across the American continent. Environments that support early career networking are not available. This presentation will discuss the increasing need for international collaborations and will explore the need for additional programs, more integration, better conditions and improved infrastructures that can encourage and support mobility of scientists. In addition

  7. Validation of missed space-group symmetry in X-ray powder diffraction structures with dispersion-corrected density functional theory.

    Science.gov (United States)

    Hempler, Daniela; Schmidt, Martin U; van de Streek, Jacco

    2017-08-01

    More than 600 molecular crystal structures with correct, incorrect and uncertain space-group symmetry were energy-minimized with dispersion-corrected density functional theory (DFT-D, PBE-D3). For the purpose of determining the correct space-group symmetry the required tolerance on the atomic coordinates of all non-H atoms is established to be 0.2 Å. For 98.5% of 200 molecular crystal structures published with missed symmetry, the correct space group is identified; there are no false positives. Very small, very symmetrical molecules can end up in artificially high space groups upon energy minimization, although this is easily detected through visual inspection. If the space group of a crystal structure determined from powder diffraction data is ambiguous, energy minimization with DFT-D provides a fast and reliable method to select the correct space group.

  8. Ashinaga Group Asia: International Student Programs

    OpenAIRE

    Teresa Eed

    2017-01-01

    Giving orphaned students abroad the chance to study in Japan While Ashinaga originally only supported Japanese students who had lost parents, as time passed it became increasingly clear that we had the experience and means to assist orphaned students outside Japan as well. This first took the shape of fundraising for international humanitarian crises, but eventually grew into various financial aid and scholarship opportunities to benefit orphaned students from around the world. Wh...

  9. Lie groups and differential equations: symmetries, conservation laws and exact solutions of mathematical models in physics

    International Nuclear Information System (INIS)

    Sheftel', M.B.

    1997-01-01

    The basics of modern group analysis of different equations are presented. The group analysis produces in a natural way the variables, which are most suitable for a problem of question, and also the associated differential-geometric structures, such as pseudo Riemann geometry, connections, Hamiltonian and Lagrangian formalism

  10. NEANSC Working Group on international evaluation cooperation

    International Nuclear Information System (INIS)

    Larson, D.C.; Nordborg, C.; Dunford, C.L.

    1992-01-01

    In the last three years, several newly evaluated nuclear data libraries have been released. Japan completed JENDL-3 in late 1989, JEF-2/EFF-2 was completed by Europe in 1991, and ENDF/B-VI was completed by the US in 1989. With the support of the NEACRP and the NEANDC, (recently combined into the NEA Nuclear Science Committee NEANSC), a Working Group was formed in 1989 to promote cooperative activities among the evaluation groups in OECD countries. Technical activities of the Working Group are carried out by subgroups formed to carry out specific investigations. Seven subgroups are currently active, with four more initiated by the Working Group at its meeting in May 1991. Brief descriptions of current subgroup activities are given

  11. Quintessence and inflation from the symmetry breaking transition of the internal manifold

    International Nuclear Information System (INIS)

    Biswas, Tirthabir; Jaikumar, Prashanth

    2004-01-01

    We show that even in the simple framework of pure Kaluza-Klein gravity the shape moduli can generate potentials supporting inflation and/or quintessence. Using the shape moduli as the inflaton or quintessence field has the additional benefit of being able to explain symmetry breaking in a natural geometric way. A numerical analysis suggests that in these models it may be possible to obtain sufficient e-foldings during inflation as well as a small cosmological constant at the current epoch (without fine-tuning), while preserving the constraint coming from the fine structure constant

  12. Unification of space-time and internal symmetries through superstrings, with elementary or composite quarks

    International Nuclear Information System (INIS)

    Huebsch, T.

    1987-01-01

    Symmetry properties of a given physical system constrain greatly the theoretical models built in the attempt to describe the system. In complement, the symmetry properties of a system typically undergo dramatic changes during its evolution in time, underpinning the concept of phase transitions. Employing these two ideas we analyze models of Particle Physics at increasingly higher levels of unification, attempting to cover the wide span from the domain of experimentally accessible energies to scales where all the known interactions (including gravity) may be described as low-energy effects of the tremendous and intricate structure of Superstring theories. In particular, we study the scenario of compactification of the Heterotic Superstring theory involving Calabi-Yau manifolds and derive the basic properties of the effective point-field theory action, give a huge class of constructions and devise some techniques for future analysis. Further we study the possibility that the phase-transition from Superstrings to observed particles involves an intermediary phase where the observed particles exhibit compositeness, together with some consequences on the low-energy phenomenology. Finally we include our attempt to modify the SU(5) model, as one of the simplest Grand-unified models, to provide a solution to its difficulties. As we now show, the problems we were trying to address are so generic that some of them remain (in a disguised form) even at the present understanding of the Superstring theories, the most ample constructs of fundamental Physics so far

  13. Crisis Group Fellowship Program | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The fellowship will not be of an academic nature, but rather a working one. Two fellows from MENA and one from West Africa will be hired to work for two years in the field with Crisis Group at the analyst level. Over the course of ... Faleh A. Jabar. It is with great sadness that we announce the sudden passing of Dr Faleh A.

  14. Description of symmetry of magnetic structures by representations of space groups. [Tables, projecton operator methods

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1974-10-15

    A description of magnetic structures based on the use of representations of space groups is given. Representations of the space groups were established for each compound on the basis of experimental data by the method of projection operators. The compounds contained in the list are collected according to crystal systems, alphabetically within each system. The description of each compound consists of the four parts. The first part contain the chemical symbol of the compound, the second its space group. The next part contains the chemical symbol of the magnetic atom and its positions in Wychoff notation with the number of equivalent positions in the crystal unit cell. The main description of a compound magnetic structure is given in the fourth part. It contains: K vector defined in the reciprocal space, the representation according to which a magnetic structure is transformed and the axial vector function S which describes the magnetic structure.

  15. Interim Report by Asia International Grid Connection Study Group

    Science.gov (United States)

    Omatsu, Ryo

    2018-01-01

    The Asia International Grid Connection Study Group Interim Report examines the feasibility of developing an international grid connection in Japan. The Group has investigated different cases of grid connections in Europe and conducted research on electricity markets in Northeast Asia, and identifies the barriers and challenges for developing an international grid network including Japan. This presentation introduces basic contents of the interim report by the Study Group.

  16. Universe symmetries

    International Nuclear Information System (INIS)

    Souriau, J.M.

    1984-01-01

    The sky uniformity can be noticed in studying the repartition of objects far enough. The sky isotropy description uses space rotations. The group theory elements will allow to give a meaning at the same time precise and general to the word a ''symmetry''. Universe models are reviewed, which must have both of the following qualities: - conformity with the physic known laws; - rigorous symmetry following one of the permitted groups. Each of the models foresees that universe evolution obeys an evolution equation. Expansion and big-bang theory are recalled. Is universe an open or closed space. Universe is also electrically neutral. That leads to a work hypothesis: the existing matter is not given data of universe but it appeared by evolution from nothing. Problem of matter and antimatter is then raised up together with its place in universe [fr

  17. Symmetry and symmetry breaking

    International Nuclear Information System (INIS)

    Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.

    1999-01-01

    The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)

  18. International Technical Working Group Round Robin Tests

    Energy Technology Data Exchange (ETDEWEB)

    Dudder, Gordon B.; Hanlen, Richard C.; Herbillion, Georges M.

    2003-02-01

    The goal of nuclear forensics is to develop a preferred approach to support illicit trafficking investigations. This approach must be widely understood and accepted as credible. The principal objectives of the Round Robin Tests are to prioritize forensic techniques and methods, evaluate attribution capabilities, and examine the utility of database. The HEU (Highly Enriched Uranium) Round Robin, and previous Plutonium Round Robin, have made tremendous contributions to fulfilling these goals through a collaborative learning experience that resulted from the outstanding efforts of the nine participating internal laboratories. A prioritized list of techniques and methods has been developed based on this exercise. Current work is focused on the extent to which the techniques and methods can be generalized. The HEU Round Robin demonstrated a rather high level of capability to determine the important characteristics of the materials and processes using analytical methods. When this capability is combined with the appropriate knowledge/database, it results in a significant capability to attribute the source of the materials to a specific process or facility. A number of shortfalls were also identified in the current capabilities including procedures for non-nuclear forensics and the lack of a comprehensive network of data/knowledge bases. The results of the Round Robin will be used to develop guidelines or a ''recommended protocol'' to be made available to the interested authorities and countries to use in real cases.

  19. International Technical Working Group Round Robin Tests

    International Nuclear Information System (INIS)

    Dudder, Gordon B.; Hanlen, Richard C.; Herbillion, Georges M.

    2003-01-01

    The goal of nuclear forensics is to develop a preferred approach to support illicit trafficking investigations. This approach must be widely understood and accepted as credible. The principal objectives of the Round Robin Tests are to prioritize forensic techniques and methods, evaluate attribution capabilities, and examine the utility of database. The HEU (Highly Enriched Uranium) Round Robin, and previous Plutonium Round Robin, have made tremendous contributions to fulfilling these goals through a collaborative learning experience that resulted from the outstanding efforts of the nine participating internal laboratories. A prioritized list of techniques and methods has been developed based on this exercise. Current work is focused on the extent to which the techniques and methods can be generalized. The HEU Round Robin demonstrated a rather high level of capability to determine the important characteristics of the materials and processes using analytical methods. When this capability is combined with the appropriate knowledge/database, it results in a significant capability to attribute the source of the materials to a specific process or facility. A number of shortfalls were also identified in the current capabilities including procedures for non-nuclear forensics and the lack of a comprehensive network of data/knowledge bases. The results of the Round Robin will be used to develop guidelines or a ''recommended protocol'' to be made available to the interested authorities and countries to use in real cases

  20. Unbounded representations of symmetry groups in gauge quantum field theory. II. Integration

    International Nuclear Information System (INIS)

    Voelkel, A.H.

    1986-01-01

    Within the gauge quantum field theory of the Wightman--Garding type, the integration of representations of Lie algebras is investigated. By means of the covariance condition (substitution rules) for the basic fields, it is shown that a form skew-symmetric representation of a Lie algebra can be integrated to a form isometric and in general unbounded representation of the universal covering group of a corresponding Lie group provided the conditions (Nelson, Sternheimer, etc.), which are well known for the case of Hilbert or Banach representations, hold. If a form isometric representation leaves the subspace from which the physical Hilbert space is obtained via factorization and completion invariant, then the same is proved to be true for its differential. Conversely, a necessary and sufficient condition is derived for the transmission of the invariance of this subspace under a form skew-symmetric representation of a Lie algebra to its integral

  1. The application of the extending symmetry group approach in optical soliton communication

    International Nuclear Information System (INIS)

    Ruan Hangyu; Li Huijun; Chen Yixin

    2005-01-01

    A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the nonlinear Schroedinger equation (NLS) with distributed dispersion, nonlinearity and gain or loss. We study the transformations between the standard NLS equation and the NLS equations with distributed dispersion, nonlinearity and gain or loss. Appropriate solitary wave solutions can be applied to discuss soliton propagation in optical fibres, and the amplification and compression of pulses in optical fibre amplifiers

  2. On the mixed symmetry irreducible representations of the Poincare group in the BRST approach

    International Nuclear Information System (INIS)

    Burdik, C.; Pashnev, A.; Tsulaya, M.

    2001-01-01

    The Lagrangian description of irreducible massless representations of the Poincare group with the corresponding Young tableaux having two rows along with some explicit examples including the notoph and Weyl tensor is given. For this purpose the method of the BRST constructions is used adopted to the systems of the second class constraints by the construction of auxiliary representations of the algebras of constraints in terms of Verma modules

  3. Symmetry of priapulids (Priapulida). 2. Symmetry of larvae.

    Science.gov (United States)

    Adrianov, A V; Malakhov, V V

    2001-02-01

    Larvae of priapulids are characterized by radial symmetry evident from both external and internal characters of the introvert and lorica. The bilaterality appears as a result of a combination of several radial symmetries: pentaradial symmetry of the teeth, octaradial symmetry of the primary scalids, 25-radial symmetry of scalids, biradial symmetry of the neck, and biradial and decaradial symmetry of the trunk. Internal radiality is exhibited by musculature and the circumpharyngeal nerve ring. Internal bilaterality is evident from the position of the ventral nerve cord and excretory elements. Externally, the bilaterality is determined by the position of the anal tubulus and two shortened midventral rows of scalids bordering the ventral nerve cord. The lorical elements define the biradial symmetry that is missing in adult priapulids. The radial symmetry of larvae is a secondary appearance considered an evolutionary adaptation to a lifestyle within the three-dimensional environment of the benthic sediment. Copyright 2001 Wiley-Liss, Inc.

  4. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  5. Approximate and renormgroup symmetries

    International Nuclear Information System (INIS)

    Ibragimov, Nail H.; Kovalev, Vladimir F.

    2009-01-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  6. International Group Heterogeneity and Students' Business Project Achievement

    Science.gov (United States)

    Ding, Ning; Bosker, Roel J.; Xu, Xiaoyan; Rugers, Lucie; van Heugten, Petra PAM

    2015-01-01

    In business higher education, group project work plays an essential role. The purpose of the present study is to explore the relationship between the group heterogeneity of students' business project groups and their academic achievements at both group and individual levels. The sample consists of 536 freshmen from an International Business School…

  7. Symmetry breaking patterns for inflation

    Science.gov (United States)

    Klein, Remko; Roest, Diederik; Stefanyszyn, David

    2018-06-01

    We study inflationary models where the kinetic sector of the theory has a non-linearly realised symmetry which is broken by the inflationary potential. We distinguish between kinetic symmetries which non-linearly realise an internal or space-time group, and which yield a flat or curved scalar manifold. This classification leads to well-known inflationary models such as monomial inflation and α-attractors, as well as a new model based on fixed couplings between a dilaton and many axions which non-linearly realises higher-dimensional conformal symmetries. In this model, inflation can be realised along the dilatonic direction, leading to a tensor-to-scalar ratio r ˜ 0 .01 and a spectral index n s ˜ 0 .975. We refer to the new model as ambient inflation since inflation proceeds along an isometry of an anti-de Sitter ambient space-time, which fully determines the kinetic sector.

  8. Summary: Symmetries and spin

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig

  9. On the Fibonacci origin of the internal symmetries of super strings and 5-Brane in 11 dimensions

    International Nuclear Information System (INIS)

    Elokaby, A.

    2009-01-01

    El Naschie recently showed that the exceptional Lie symmetry group E12 together with the compactified Klein modular curve SL(2,7) c gives |E12| + |SL(2,7) c | = 685 + 339 = 1024. (See CS and F (2008) doi: 10.1016/j.chaos.2008.08.005). The same result is found for Dim E8E8 = 496 when added to the number of states of the 5-Branes in 11-dimensions model, namely 528. The present work gives the Fibonacci explanation for all these remarkable results. We conclude that the Fibonacci growth law is not only fundamental in biology and econometrics but also in high energy physics as exemplified by El Naschie's fractal-Cantorian spacetime theory.

  10. The PCIJ and International Rights of Groups and Individuals

    NARCIS (Netherlands)

    Brölmann, C.; Tams, C.J.; Fitzmaurice, M.

    2013-01-01

    The Permanent Court of International Justice was established in a period in which the position of the State as the natural form of political organization had come under pressure, among others, in academic-legal circles. It was also the period in which international-legal concern for groups within

  11. Internal parity symmetry and degeneracy of Bethe Ansatz strings in the isotropic heptagonal magnetic ring

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J., E-mail: jsmilew@wp.pl [Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań (Poland); Lulek, B., E-mail: barlulek@amu.edu.pl [East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Lulek, T., E-mail: tadlulek@prz.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Łabuz, M., E-mail: labuz@univ.rzeszow.pl [University of Rzeszow, Institute of Physics, Rejtana 16a, 35-959 Rzeszów (Poland); Stagraczyński, R., E-mail: rstag@prz.edu.pl [Rzeszow University of Technology, The Faculty of Mathematics and Applied Physics, Powstańców Warszawy 6, 35-959 Rzeszów (Poland)

    2014-02-01

    The exact Bethe eigenfunctions for the heptagonal ring within the isotropic XXX model exhibit a doubly degenerated energy level in the three-deviation sector at the centre of the Brillouin zone. We demonstrate an explicit construction of these eigenfunctions by use of algebraic Bethe Ansatz, and point out a relation of degeneracy to parity conservation, applied to the configuration of strings for these eigenfunctions. Namely, the internal structure of the eigenfunctions (the 2-string and the 1-string, with opposite quasimomenta) admits generation of two mutually orthogonal eigenfunctions due to the fact that the strings which differ by their length are distinguishable objects.

  12. Symmetry, stability, and diffraction properties of icosahedral crystals

    International Nuclear Information System (INIS)

    Bak, P.

    1985-01-01

    In a remarkable experiment on an Mn-Al alloy, Shechtman et al. observed a diffraction spectrum with icosahedral symmetry. This is inconsistent with discrete translational invariance since the symmetry includes a five-fold axis. In this paper, it is shown that the crystallography and diffraction pattern can be described by a six-dimensional space group. The crystal structure in 3d is obtained as a cut along a 3d hyperplane in a regular 6d crystal. Displacements of the 6d crystal along 6 orthogonal directions define 6 continuous symmetries for the icosahedral crystal, three of which are phase symmetries describing internal rearrangements of the atoms

  13. Symmetries in nature

    International Nuclear Information System (INIS)

    Mainzer, K.

    1988-01-01

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs

  14. Symmetries in nature

    Energy Technology Data Exchange (ETDEWEB)

    Mainzer, K

    1988-05-01

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs.

  15. Car Motivations in the Young Target Group: An International Perspective

    Directory of Open Access Journals (Sweden)

    Michael Bahles

    2017-10-01

    Full Text Available Globally, there are many profound changes going on within the automotive sector. There are new technological developments like e-mobility and autonomous cars, as well as new business models such as car sharing that may make purchasing a car obsolete for the younger, international target group. The intention of this paper is to identify the role and importance of cars in the young target group internationally and to explore current motives for buying an automobile. To this end, the authors conducted a psychological research study on a diverse group of upper division undergraduate and master’s degree level students originating from more than twenty different nations. Research methods used include structured one-on-one interviews and in-depth focus groups. The study’s results are useful for international marketing practitioners as they contribute to understanding the relevance and importance of automobiles for the international youth target market as well as identification of motives regarding car purchase across various countries. The results have implications for international managers within the automotive industry for the development of new mobility concepts as well as for international marketing communications within the automotive sector.

  16. Polynomial deformations of oscillator algebras in quantum theories with internal symmetries

    International Nuclear Information System (INIS)

    Karassiov, V.P.

    1992-01-01

    This paper reports that for last years some new Lie-algebraic structures (quantum groups or algebras, W-algebras, Casimir algebras) have been introduced in different areas of modern physics. All these objects are non-linear generalizations (deformations) of usual (linear) Lie algebras which are generated by a set B = {T a } of their generators T a satisfying a commutation relations (CR) of the form [T a , T b ] = f ab ({T c }) where f ab (...) are some functions of the generators T c given by power series. From the mathematical viewpoint such objects called as nonlinear or deformed Lie algebras G d may be treated as universal algebras or algebraic systems G d = left-angle B; +, · , [,] right-angle generated by a basic set B and the usual operations of the addition (+) and the multiplication (·) together with the Lie product ([T a , T b ] = T a T b - T b T a )

  17. (Pseudo-Goldstone boson interaction in D=2+1 systems with a spontaneously broken internal rotation symmetry

    Directory of Open Access Journals (Sweden)

    Christoph P. Hofmann

    2016-03-01

    Full Text Available The low-temperature properties of systems characterized by a spontaneously broken internal rotation symmetry, O(N→O(N−1, are governed by Goldstone bosons and can be derived systematically within effective Lagrangian field theory. In the present study we consider systems living in two spatial dimensions, and evaluate their partition function at low temperatures and weak external fields up to three-loop order. Although our results are valid for any such system, here we use magnetic terminology, i.e., we refer to quantum spin systems. We discuss the sign of the (pseudo-Goldstone boson interaction in the pressure, staggered magnetization, and susceptibility as a function of an external staggered field for general N. As it turns out, the d=2+1 quantum XY model (N=2 and the d=2+1 Heisenberg antiferromagnet (N=3, are rather special, as they represent the only cases where the spin-wave interaction in the pressure is repulsive in the whole parameter regime where the effective expansion applies. Remarkably, the d=2+1 XY model is the only system where the interaction contribution in the staggered magnetization (susceptibility tends to positive (negative values at low temperatures and weak external field.

  18. Towards a Complete Classification of Symmetry-Protected Topological Phases for Interacting Fermions in Three Dimensions and a General Group Supercohomology Theory

    Science.gov (United States)

    Wang, Qing-Rui; Gu, Zheng-Cheng

    2018-01-01

    The classification and construction of symmetry-protected topological (SPT) phases in interacting boson and fermion systems have become a fascinating theoretical direction in recent years. It has been shown that (generalized) group cohomology theory or cobordism theory gives rise to a complete classification of SPT phases in interacting boson or spin systems. The construction and classification of SPT phases in interacting fermion systems are much more complicated, especially in three dimensions. In this work, we revisit this problem based on an equivalence class of fermionic symmetric local unitary transformations. We construct very general fixed-point SPT wave functions for interacting fermion systems. We naturally reproduce the partial classifications given by special group supercohomology theory, and we show that with an additional B ˜H2(Gb,Z2) structure [the so-called obstruction-free subgroup of H2(Gb,Z2) ], a complete classification of SPT phases for three-dimensional interacting fermion systems with a total symmetry group Gf=Gb×Z2f can be obtained for unitary symmetry group Gb. We also discuss the procedure for deriving a general group supercohomology theory in arbitrary dimensions.

  19. Quantum symmetry for pedestrians

    International Nuclear Information System (INIS)

    Mack, G.; Schomerus, V.

    1992-03-01

    Symmetries more general than groups are possible in quantum therory. Quantum symmetries in the narrow sense are compatible with braid statistics. They are theoretically consistent much as supersymmetry is, and they could lead to degenerate multiplets of excitations with fractional spin in thin films. (orig.)

  20. The International Space Life Sciences Strategic Planning Working Group

    Science.gov (United States)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  1. Introduction of the UNIX International Performance Management Work Group

    Science.gov (United States)

    Newman, Henry

    1993-01-01

    In this paper we presented the planned direction of the UNIX International Performance Management Work Group. This group consists of concerned system developers and users who have organized to synthesize recommendations for standard UNIX performance management subsystem interfaces and architectures. The purpose of these recommendations is to provide a core set of performance management functions and these functions can be used to build tools by hardware system developers, vertical application software developers, and performance application software developers.

  2. Symmetry of priapulids (Priapulida). 1. Symmetry of adults.

    Science.gov (United States)

    Adrianov, A V; Malakhov, V V

    2001-02-01

    Priapulids possess a radial symmetry that is remarkably reflected in both external morphology and internal anatomy. It results in the appearance of 25-radial (a number divisible by five) symmetry summarized as a combination of nonaradial, octaradial, and octaradial (9+8+8) symmetries of scalids. The radial symmetry is a secondary appearance considered as an evolutionary adaptation to a lifestyle within the three-dimensional environment of bottom sediment. The eight anteriormost, or primary, scalids retain their particular position because of their innervation directly from the circumpharyngeal brain. As a result of a combination of the octaradial symmetry of primary scalids, pentaradial symmetry of teeth, and the 25-radial symmetry of scalids, the initial bilateral symmetry remains characterized by the single sagittal plane. Copyright 2001 Wiley-Liss, Inc.

  3. Neurolymphomatosis: An International Primary CNS Lymphoma Collaborative Group report

    NARCIS (Netherlands)

    S. Grisariu (Sigal); B. Avni (Batia); T.T. Batchelor (Tracy); M.J. van den Bent (Martin); F. Bokstein (Felix); D. Schiff (David); O. Kuittinen (Outi); M.C. Chamberlain (Marc C.); P. Roth (Patrick); A. Nemets (Anatoly); E. Shalom (Edna); D. Ben-Yehuda (Dina); T. Siegal (Tali)

    2010-01-01

    textabstractNeurolymphomatosis (NL) is a rare clinical entity. The International Primary CNS Lymphoma Collaborative Group retrospectively analyzed 50 patients assembled from 12 centers in 5 countries over a 16-year period. NL was related to non-Hodgkin lymphoma in 90% and to acute leukemia in 10%.

  4. International Work Group Criteria for the Diagnosis of Alzheimer Disease

    NARCIS (Netherlands)

    Cummings, J.L.; Dubois, B; Molinuevo, J.L.; Scheltens, P.

    2013-01-01

    Alzheimer-type biomarker changes are identifiable in asymptomatic and mildly symptomatic predementia phases of Alzheimer disease (AD) and AD dementia. The International Work Group (IWG) guidelines for diagnosis identify a unified spectrum of 3 phases. The classic clinical feature that indicates AD

  5. 76 FR 54800 - International Business Machines (IBM), Software Group Business Unit, Quality Assurance Group, San...

    Science.gov (United States)

    2011-09-02

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,554] International Business Machines (IBM), Software Group Business Unit, Quality Assurance Group, San Jose, California; Notice of Negative Determination on Reconsideration On January 21, 2011, the Department of Labor (Department) issued an Affirmative Determination Regarding...

  6. Symmetry and symmetry breaking in quantum mechanics

    International Nuclear Information System (INIS)

    Chomaz, Philippe

    1998-01-01

    In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation

  7. The Permanent Court of International Justice and the International Rights of Groups and Individuals

    NARCIS (Netherlands)

    Brölmann, C.

    2012-01-01

    The Permanent Court of International Justice was established in a period in which the position of the State as the natural form of political organization had come under pressure, among others, in academic-legal circles. It was also the period in which international-legal concern for groups within

  8. Contact expert group for international radwaste projects. Fourth meeting

    International Nuclear Information System (INIS)

    1997-06-01

    The Contact Expert Group for International Radwaste Projects is the result of an IAEA seminar on ''International Co-operation on Nuclear Waste Management in the Russian Federation'', 15-17 May 1995, that was requested and sponsored by the Nordic countries. In two working groups at the Seminar, participants from the Russian Federation and 17 countries and international organizations co-operating with the Russian Federation in waste management projects recognized the need for setting up a contact group of experts to assist in co-ordinating their efforts. Such co-ordination would help avoid redundancy and duplication of effort, assure that priority needs were made known to the international community, and provide points of contact to facilitate co-operation. This report is a compilation of the 4. CEG meeting materials, both prepared by the CEG Secretariat and presented by meeting's participants. The materials discussed by the CEG and subsequently modified are presented in the finally approved version. As in the case of previous similar reports, the documentation presented was just compiled without any editing and thus should be considered only as ''working proceedings'' of the meeting

  9. 8x8 and 10x10 Hyperspace Representations of SU(3) and 10-fold Point-Symmetry Group of Quasicrystals

    Science.gov (United States)

    Animalu, Alexander

    2012-02-01

    In order to further elucidate the unexpected 10-fold point-symmetry group structure of quasi-crystals for which the 2011 Nobel Prize in chemistry was awarded to Daniel Shechtman, we explore a correspondence principle between the number of (projective) geometric elements (points[vertices] + lines[edges] + planes[faces]) of primitive cells of periodic or quasi-periodic arrangement of hard or deformable spheres in 3-dimensional space of crystallography and elements of quantum field theory of particle physics [points ( particles, lines ( particles, planes ( currents] and hence construct 8x8 =64 = 28+36 = 26 + 38, and 10x10 =100= 64 + 36 = 74 + 26 hyperspace representations of the SU(3) symmetry of elementary particle physics and quasicrystals of condensed matter (solid state) physics respectively, As a result, we predict the Cabibbo-like angles in leptonic decay of hadrons in elementary-particle physics and the observed 10-fold symmetric diffraction pattern of quasi-crystals.

  10. International Technical Working Group Cooperation to Counter Illicit Nuclear Trafficking

    International Nuclear Information System (INIS)

    Smith, D K; Niemeyer, S

    2004-01-01

    The Nuclear Smuggling International Technical Working Group (ITWG) is an international body of nuclear forensic experts that cooperate to deter the illicit trafficking of nuclear materials. The objective of the ITWG is to provide a common approach and effective technical solutions to governments who request assistance in nuclear forensics. The ITWG was chartered in 1996 and since that time more than 28 nations and organizations have participated in 9 international meetings and 2 analytical round-robin trials. Soon after its founding the ITWG adopted a general framework to guide nuclear forensics investigations that includes recommendations for nuclear crime scene security and analysis, the best application of radioanalytical methods, the conduct of traditional forensic analysis of contaminated materials, and effective data analysis to interpret the history of seized nuclear materials. This approach has been adopted by many nations as they respond to incidents of illicit nuclear trafficking

  11. International group calls for new nuclear 'bargain of confidence'

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A report published by the International Consultative Group on Nuclear Energy on 17 January 1980 concluded that the option of expanding nuclear power supply will not be available for the long term unless its development is carefully sustained during the intervening period. Quotations from the report are given on world energy supplies, establishing nuclear options, nuclear safety and the public interest, and nuclear trade and nuclear proliferation. (UK)

  12. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  13. Dihedral flavor symmetries

    International Nuclear Information System (INIS)

    Blum, Alexander Simon

    2009-01-01

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  14. Report of the International Consultative Group on Nuclear Energy

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The International Consultative Groups on Nuclear Energy adopted as its working premise the proposition that nuclear power will play a significant part in meeting future energy needs in an increasing number of countries. The Group's concern has been to examine the international political and economic conditions under which civil nuclear activities may be conducted safely, rationally, and in a manner generally acceptable to the world community. The views are presented in sections entitled: Energy and Nuclear Power; Establishing Nuclear Options; Nuclear Safety and the Public Interest; Nuclear Trade and Nuclear Proliferation; Conditions for the Future in which five conditions are summarized. The Group believes that if nuclear power is to be available to meet an increasing fraction of the world's future energy needs, nuclear power must, despite the difficulty of the sort-term climate, be systematically developed, without interruption or undue delay; earn and retain public acceptance; present technologies for using uranium more efficiently and be developed and tested as soon as possible, with both the coming decades and the 21st century in mind; be less feared; and convince countries depending on nuclear technology, services, or materials of continued international access to them under safeguards, on acceptable terms

  15. COSPAR/PRBEM international working group activities report

    Science.gov (United States)

    Bourdarie, S.; Blake, B.; Cao, J. B.; Friedel, R.; Miyoshi, Y.; Panasyuk, M.; Underwood, C.

    It is now clear to everybody that the current standard AE8 AP8 model for ionising particle specification in the radiation belts must be updated But such an objective is quite difficult to reach just as a reminder to develop AE8 AP8 model in the seventies was 10 persons full time for ten years It is clear that world-wide efforts must be combined because not any individual group has the human resource to perform these new models by themselves Under COSPAR umbrella an international group of expert well distributed around the world has been created to set up a common framework for everybody involved in this field Planned activities of the international group of experts are to - Define users needs - Provide guidelines for standard file format for ionising measurements - Set up guidelines to process in-situ data on a common basis - Decide in which form the new models will have to be - Centralise all progress done world-wide to advise the community - Try to organise world-wide activities as a project to ensure complementarities and more efficiencies between all efforts done Activities of this working group since its creation will be reported as well as future plans

  16. International technical working group cooperation to counter illicit nuclear trafficking

    International Nuclear Information System (INIS)

    Smith, D.K.; Niemeyer, S.

    2004-01-01

    The Nuclear Smuggling International Technical Working Group (ITWG) is an international group of nuclear forensic experts that cooperate to deter the illicit trafficking of nuclear materials. The objective of the ITWG is to provide a common approach and effective technical solutions to governments who request assistance in nuclear forensics. The ITWG was chartered in 1996 and since that time more than 28 nations and organizations have participated in 9 international meetings and 2 analytical round-robin trials. Soon after its founding the ITWG adopted a general framework to guide nuclear forensics investigations that includes recommendations for nuclear crime scene security and analysis, the best application of radioanalytical methods, the conduct of traditional forensic analysis of contaminated materials, and effective data analysis to interpret the history of seized nuclear materials. This approach has been adopted by many nations as they respond to incidents of illicit nuclear trafficking. ITWG members include policy and decision makers, law enforcement personnel, and scientists with expertise in, and responsibility for, nuclear forensics. (author)

  17. Proceedings of the Twentieth International Microgravity Measurements Group Meeting

    Science.gov (United States)

    DeLombard, Richard (Compiler)

    2001-01-01

    The International Microgravity Measurements Group annual meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The twentieth MGMG meeting was held 7-9 August 2001 at the Hilton Garden Inn Hotel in Cleveland, Ohio. The 35 attendees represented NASA, other space agencies, universities, and commercial companies; eight of the attendees were international representatives from Canada, Germany, Italy, Japan, and Russia. Seventeen presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, and microgravity outreach. Two working sessions were included in which a demonstration of ISS acceleration data processing and analyses were performed with audience participation. Contained within the minutes is the conference agenda which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation which indicate the author's name(s) and affiliation. In some cases, a separate written report was submitted and has been included here.

  18. Symmetry witnesses

    Science.gov (United States)

    Aniello, Paolo; Chruściński, Dariusz

    2017-07-01

    A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.

  19. Quasi Hopf quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Mack, G.; Schomerus, V.

    1991-05-01

    In quantum theory, internal symmetries more general than groups are possible. We show that quasitriangular quasi Hopf algebras G * as introduced by Drinfeld permit a consistent formulation of a transformation law of states in the physical Hilbert space H, of invariance of the ground state, and of a transformation law of field operators which is consistent with local braid relations of field operators as proposed by Froehlich. All this remains true when Drinfelds axioms are suitably weakened in order to build in truncated tensor products. Conversely, all the axioms of a weak quasitriangular quasi Hopf algebra are motivated from what physics demands of a symmetry. Unitarity requires in addition that G * admits a * -operation with certain properties. Invariance properties of Greens functions follow from invariance of the ground state and covariance of field operators as usual. Covariant adjoints and covariant products of field operators can be defined. The R-matrix elements in the local braid relations are in general operators in H. They are determined by the symmetry up to a phase factor. Quantum group algebras like U q (sl 2 ) with vertical strokeqvertical stroke=1 are examples of symmetries with special properties. We show that a weak quasitriangular quasi Hopf algebra G * is canonically associated with U q (sl 2 ) if q P =-1. We argue that these weak quasi Hopf algebras are the true symmetries of minimal conformal models. Their dual algebras G ('functions on the group') are neither commutative nor associative. (orig.)

  20. Flavour from accidental symmetries

    International Nuclear Information System (INIS)

    Ferretti, Luca; King, Stephen F.; Romanino, Andrea

    2006-01-01

    We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries

  1. International Workshop "Groups, Rings, Lie and Hopf Algebras"

    CERN Document Server

    2003-01-01

    The volume is almost entirely composed of the research and expository papers by the participants of the International Workshop "Groups, Rings, Lie and Hopf Algebras", which was held at the Memorial University of Newfoundland, St. John's, NF, Canada. All four areas from the title of the workshop are covered. In addition, some chapters touch upon the topics, which belong to two or more areas at the same time. Audience: The readership targeted includes researchers, graduate and senior undergraduate students in mathematics and its applications.

  2. Internal radioactive contamination in selected groups of CRNL employees

    International Nuclear Information System (INIS)

    Evans, D.W.S.

    1975-10-01

    This report details the development and execution of a 30 month program designed to characterize the magnitude and distribution of internal radioactive contaminaton amongst selected groups of employees at Chalk River Nuclear Laboratories, using a shadow shield whole-body counter. The results show that the levels of contamination in these employees are very low, and no contaminant was present in amounts exceeding 10% of the maximum permissible body burden, with the exception of a medically administered radionuclide (selenium-75). Details of the time course of some of the body burdens are also furnished. (author)

  3. Symmetry and symmetry breaking in modern physics

    International Nuclear Information System (INIS)

    Barone, M; Theophilou, A K

    2008-01-01

    In modern physics, the theory of symmetry, i.e. group theory, is a basic tool for understanding and formulating the fundamental principles of Physics, like Relativity, Quantum Mechanics and Particle Physics. In this work we focus on the relation between Mathematics, Physics and objective reality

  4. The international probabilistic system assessment group. Background and results 1990

    International Nuclear Information System (INIS)

    1991-01-01

    The OECD Nuclear Energy Agency (NEA) devotes considerable effort to the further development of methodologies to assess the performance of radioactive waste disposal systems, and to increase confidence in their application and results. The NEA provides an international forum for the exchange of information and experience among national experts of its twenty-three Member countries and conducts joint studies of issues important for safety assessment. In 1985, the NEA Radioactive Waste Management Committee set up the Probabilistic System Assessment Code User Group (PSAC), in order to help coordinate the development of probabilistic system assessment codes. The activities of the Group include exchange of information, code and experience, discussion of relevant technical issues, and the conduct of code comparison (PSACOIN) exercises designed to build confidence in the correct operation of these tools for safety assessment. The Group is now known simply as the Probabilistic System Assessment Group (PSAG). This report has been prepared to inform interested parties, beyond the group of specialists directly involved, about probabilistic system assessment techniques as used for performance assessment of waste disposal systems, and to give a summary of the objectives and achievements of PSAG. The report is published under the responsibility of the Secretary General of the OECD

  5. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  6. International technical working group cooperation to counter illicit nuclear trafficking

    International Nuclear Information System (INIS)

    Smith, D.K.

    2004-01-01

    Full text: The Nuclear Smuggling International Technical Working Group (ITWG) is an international group of nuclear forensic experts that cooperate to deter the illicit trafficking of nuclear materials. The objective of the ITWG is to provide a common approach and effective technical solutions to governments who request assistance in nuclear forensics. The ITWG was chartered in 1996 and since that time more than 28 nations and organizations have participated in 9 international meetings and 2 analytical round-robin trials. Soon after its founding the ITWG adopted a general framework to guide nuclear forensics investigations that includes recommendations for nuclear crime scene security and analysis, the best application of radioanalytical methods, the conduct of traditional forensic analysis of contaminated materials, and effective data analysis to interpret the history of seized nuclear materials. This approach has been adopted by many nations as they respond to incidents of illicit nuclear trafficking. ITWG members include policy and decision makers, law enforcement personnel, and scientists with expertise in, and responsibility for, nuclear forensics. It remains an association of active practitioners of nuclear forensics underwritten by funding from sponsoring countries and organizations. While the primary mission of the ITWG continues to be advancing the science and techniques of nuclear forensics and sharing technical and information resources to combat nuclear trafficking, recently the ITWG has focused on improvements to its organization and outreach. Central is the establishment of guidelines for best practices in nuclear forensics, conducting international exercises, promoting research and development, communicating with external organizations, providing a point-of-contact for nuclear forensics assistance, and providing mutual assistance in nuclear forensics investigations. By its very nature nuclear trafficking is a transboundary problem; nuclear materials

  7. International Piping Integrity Research Group (IPIRG) Program. Final report

    International Nuclear Information System (INIS)

    Wilkowski, G.; Schmidt, R.; Scott, P.

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program

  8. Phase 2 of the International Piping Integrity Research Group programme

    International Nuclear Information System (INIS)

    Darlaston, B.J.

    1994-01-01

    The results of phase 1 of the International Piping Integrity Research Group (IPIRG-1) programme have been widely reported. The significance of the results is reviewed briefly, in order to put the phase 2 programme into perspective. The success of phase 1 led the participants to consider further development and validation of pipe and pipe component fracture analysis technology as part of another international group programme (IPIRG-2). The benefits of combined funding and of the technical exchanges and interactions are considered to be of significant advantage and value. The phase 2 programme has been designed with the overall objective of developing and experimentally validating methods of predicting the fracture behaviour of nuclear reactor safety-related piping, to both normal operating and accident loads. The programme will add to the engineering estimation analysis methods that have been developed for straight pipes. The pipe system tests will expand the database to include seismic loadings and flaws in fittings, such as bends, elbows and tees, as well as ''short'' cracks. The results will be used to validate further the analytical methods, expand the capability to make fittings and extend the quasi-static results for the USNRC's new programme on short cracks in piping and piping welds. The IPIRG-2 programme is described to provide a clear understanding of the content, strategy, potential benefits and likely significance of the work. ((orig.))

  9. International piping integrity research group (IPIRG) program final report

    International Nuclear Information System (INIS)

    Schmidt, R.; Wilkowski, G.; Scott, P.; Olsen, R.; Marschall, C.; Vieth, P.; Paul, D.

    1992-04-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Programme. The IPIRG Programme was an international group programme managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United states. The objective of the programme was to develop data needed to verify engineering methods for assessing the integrity of nuclear power plant piping that contains circumferential defects. The primary focus was an experimental task that investigated the behaviour of circumferentially flawed piping and piping systems to high-rate loading typical of seismic events. To accomplish these objectives a unique pipe loop test facility was designed and constructed. The pipe system was an expansion loop with over 30 m of 406-mm diameter pipe and five long radius elbows. Five experiments on flawed piping were conducted to failure in this facility with dynamic excitation. The report: provides background information on leak-before-break and flaw evaluation procedures in piping; summarizes the technical results of the programme; gives a relatively detailed assessment of the results from the various pipe fracture experiments and complementary analyses; and, summarizes the advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG Program

  10. International Piping Integrity Research Group (IPIRG) Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Schmidt, R.; Scott, P. [and others

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

  11. Symmetry rules. How science and nature are founded on symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, J.

    2008-07-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences. (orig.)

  12. Symmetry rules How science and nature are founded on symmetry

    CERN Document Server

    Rosen, Joe

    2008-01-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.

  13. Statistical symmetries in physics

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1994-01-01

    Every law of physics is invariant under some group of transformations and is therefore the expression of some type of symmetry. Symmetries are classified as geometrical, dynamical or statistical. At the most fundamental level, statistical symmetries are expressed in the field theories of the elementary particles. This paper traces some of the developments from the discovery of Bose statistics, one of the two fundamental symmetries of physics. A series of generalizations of Bose statistics is described. A supersymmetric generalization accommodates fermions as well as bosons, and further generalizations, including parastatistics, modular statistics and graded statistics, accommodate particles with properties such as 'colour'. A factorization of elements of ggl(n b ,n f ) can be used to define truncated boson operators. A general construction is given for q-deformed boson operators, and explicit constructions of the same type are given for various 'deformed' algebras. A summary is given of some of the applications and potential applications. 39 refs., 2 figs

  14. Charge symmetry breaking via Δ I = 1 group theory or by the u-d quark mass difference and direct photon exchange

    International Nuclear Information System (INIS)

    Coon, S.A.; Scadron, M.D.

    2000-01-01

    Charge symmetry breaking (CSB) in the strong N N interaction is believed to have its origins at the quark level. However, the meson-exchange potentials which successfully describe the empirical CSB utilize instead values of the Δ I = 1 π η and ρ ω mixing obtained with the aid of group theory from a hadronic tadpole Hamiltonian introduced by Coleman and Glashow to describe electromagnetic mass splitting in hadronic isospin multiplets. We review i) the CSB N N potentials so constructed and their nuclear charge asymmetry effects, i i) the universal scale of the Coleman-Glashow tadpole, and i i i) the quark loop evaluation of both meson mass differences and meson mixing. The latter quark loop calculations, which use chiral symmetry to evaluate the integrals, demonstrate clearly that the u-d constituent quark mass difference, long suspected as the origin of CSB, does quantitatively yield the universal Coleman-Glashow tadpole scale which underlies the successful meson-exchange description of CSB in nuclear physics. (Author) 38 refs., 3 figs

  15. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee

    Science.gov (United States)

    Ambros, P F; Ambros, I M; Brodeur, G M; Haber, M; Khan, J; Nakagawara, A; Schleiermacher, G; Speleman, F; Spitz, R; London, W B; Cohn, S L; Pearson, A D J; Maris, J M

    2009-01-01

    Neuroblastoma serves as a paradigm for utilising tumour genomic data for determining patient prognosis and treatment allocation. However, before the establishment of the International Neuroblastoma Risk Group (INRG) Task Force in 2004, international consensus on markers, methodology, and data interpretation did not exist, compromising the reliability of decisive genetic markers and inhibiting translational research efforts. The objectives of the INRG Biology Committee were to identify highly prognostic genetic aberrations to be included in the new INRG risk classification schema and to develop precise definitions, decisive biomarkers, and technique standardisation. The review of the INRG database (n=8800 patients) by the INRG Task Force finally enabled the identification of the most significant neuroblastoma biomarkers. In addition, the Biology Committee compared the standard operating procedures of different cooperative groups to arrive at international consensus for methodology, nomenclature, and future directions. Consensus was reached to include MYCN status, 11q23 allelic status, and ploidy in the INRG classification system on the basis of an evidence-based review of the INRG database. Standardised operating procedures for analysing these genetic factors were adopted, and criteria for proper nomenclature were developed. Neuroblastoma treatment planning is highly dependant on tumour cell genomic features, and it is likely that a comprehensive panel of DNA-based biomarkers will be used in future risk assignment algorithms applying genome-wide techniques. Consensus on methodology and interpretation is essential for uniform INRG classification and will greatly facilitate international and cooperative clinical and translational research studies. PMID:19401703

  16. 31st International Colloquium in Group Theoretical Methods in Physics

    CERN Document Server

    Gazeau, Jean-Pierre; Faci, Sofiane; Micklitz, Tobias; Scherer, Ricardo; Toppan, Francesco

    2017-01-01

    This proceedings records the 31st International Colloquium on Group Theoretical Methods in Physics (“Group 31”). Plenary-invited articles propose new approaches to the moduli spaces in gauge theories (V. Pestun, 2016 Weyl Prize Awardee), the phenomenology of neutrinos in non-commutative space-time, the use of Hardy spaces in quantum physics, contradictions in the use of statistical methods on complex systems, and alternative models of supersymmetry. This volume’s survey articles broaden the colloquia’s scope out into Majorana neutrino behavior, the dynamics of radiating charges, statistical pattern recognition of amino acids, and a variety of applications of gauge theory, among others. This year’s proceedings further honors Bertram Kostant (2016 Wigner Medalist), as well as S.T. Ali and L. Boyle, for their life-long contributions to the math and physics communities. The aim of the ICGTMP is to provide a forum for physicists, mathematicians, and scientists of related disciplines who develop or apply ...

  17. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  18. Symmetry and inflation

    International Nuclear Information System (INIS)

    Chimento, Luis P.

    2002-01-01

    We find the group of symmetry transformations under which the Einstein equations for the spatially flat Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curvature perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I spacetime and the brane-world cosmology

  19. Quasi exceptional E12 Lie symmetry group with 685 dimensions, KAC-Moody algebra and E-infinity Cantorian spacetime

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    The short note gives a derivation for a new E12 exceptional Lie group corresponding to affine KAC-Moody algebra. We derive the dimension of the group by intersectionally embedding the intrinsic dimension of E8 namely D(E8) = 57 into the 12 spacetime dimensions of F theory and finding that Dim E12 = D(E8) (DF) + 1 = (57)(12) + 1 = 685

  20. Translational spacetime symmetries in gravitational theories

    International Nuclear Information System (INIS)

    Petti, R J

    2006-01-01

    How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry

  1. Translational spacetime symmetries in gravitational theories

    Energy Technology Data Exchange (ETDEWEB)

    Petti, R J [MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760 (United States)

    2006-02-07

    How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry.

  2. Multiple Criteria Group Decision-Making Considering Symmetry with Regards to the Positive and Negative Ideal Solutions via the Pythagorean Normal Cloud Model for Application to Economic Decisions

    Directory of Open Access Journals (Sweden)

    Jinming Zhou

    2018-05-01

    Full Text Available Pythagorean fuzzy sets are highly appealing in dealing with uncertainty as they allow for greater flexibility in regards to the membership and non-membership degrees by extending the set of possible values. In this paper, we propose a multi-criteria group decision-making approach based on the Pythagorean normal cloud. Some cloud aggregation operators are presented in this paper to facilitate the appraisal of the underlying utilities of the alternatives under consideration. The concept and properties of the Pythagorean normal cloud and its backward generation algorithm, aggregation operators and distance measurement are outlined. The proposed approach resembles the TOPSIS technique, which, indeed, considers the symmetry of the distances to the positive and negative ideal solutions. Furthermore, an example from e-commerce is presented to demonstrate and validate the proposed decision-making approach. Finally, the comparative analysis is implemented to check the robustness of the results when the aggregation rules are changed.

  3. Molecular symmetry and spectroscopy

    CERN Document Server

    Bunker, Philip; Jensen, Per

    2006-01-01

    The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning ...

  4. An introduction to Yangian symmetries

    International Nuclear Information System (INIS)

    Bernard, D.

    1992-01-01

    Some aspects of the quantum Yangians as symmetry algebras of two-dimensional quantum field theories are reviewed. They include two main issues: the first is the classical Heisenberg model, covering non-Abelian symmetries, generators of the symmetries and the semi-classical Yangians, an alternative presentation of the semi-classical Yangians, digression on Poisson-Lie groups. The second is the quantum Heisenberg chain, covering non-Abelian symmetries and the quantum Yangians, the transfer matrix and an alternative presentation of the Yangians, digression on the double Yangians. (K.A.) 15 refs

  5. Symmetry of crystals and molecules

    CERN Document Server

    Ladd, Mark

    2014-01-01

    This book successfully combines a thorough treatment of molecular and crystalline symmetry with a simple and informal writing style. By means of familiar examples the author helps to provide the reader with those conceptual tools necessary for the development of a clear understanding of what are often regarded as 'difficult' topics. Christopher Hammond, University of Leeds This book should tell you everything you need to know about crystal and molecular symmetry. Ladd adopts an integrated approach so that the relationships between crystal symmetry, molecular symmetry and features of chemical interest are maintained and reinforced. The theoretical aspects of bonding and symmetry are also well represented, as are symmetry-dependent physical properties and the applications of group theory. The comprehensive coverage will make this book a valuable resource for a broad range of readers.

  6. Framatome, from the nuclear engineering office to the international group

    International Nuclear Information System (INIS)

    Lorin, Philippe

    1995-01-01

    A simple office of studies by its inceptions, Framatome became during 30 years an international and diversified group, a world nuclear leader, as designer-manufacturer, fuel supplier and servicing provider. It asserts itself also as a foreground actor in the industrial equipment and connections. This book not only presents an exciting and capital episode of the history of nuclear energy in France but it demonstrate also how an company with a little bit of chance, a lot of endeavour, a plenty of talent and a huge firmness succeeded in becoming an incontestable reference authority in its sector. Staking on technological choices, although different from the creeds inspiring the French decision makers, Framatome has obtained its first orders ahead other French companies, much more powerful and prestigious at the time. The impressive Framatome evolution is presented along six chapters entitled as follows: 1. Beginning of nuclear power; 2. Technological challenge; 3. Industrial challenge; 4. Sectorial challenge; 5. Management challenge; 6. Future. The following four witness' papers are inserted with in the main text: 1. Beginning of Framatome (by P. Boulin); 2. The difficult choice for the PWR system (by M. Boiteux); 3. Impossibly is not French (by A. Giraud); 4. A fabulous common effort (by M. Hug). The book is addressed to the public at large but aims also at the Company's personnel, both the people witnessing the Company's beginning and the newcomers who should know the social body they have chosen to join and to the effort of which they have to contribute with their inventiveness and dynamism

  7. Gauge symmetries, topology, and quantisation

    International Nuclear Information System (INIS)

    Balachandran, A.P.

    1994-01-01

    The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem

  8. Rigidity and symmetry

    CERN Document Server

    Weiss, Asia; Whiteley, Walter

    2014-01-01

    This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme.  Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology.  The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...

  9. 76 FR 45878 - Alticor, Inc., Including Access Business Group International LLC and Amway Corporation, Buena...

    Science.gov (United States)

    2011-08-01

    ...,420B] Alticor, Inc., Including Access Business Group International LLC and Amway Corporation, Buena Park, CA; Alticor, Inc., Including Access Business Group International LLC and Amway Corporation...., Including Access Business Group International LLC and Amway Corporation, Including On-Site Leased Workers...

  10. 75 FR 32221 - Alticor, Inc., Including Access Business Group International, LLC, and Amway Corporation...

    Science.gov (United States)

    2010-06-07

    ... Access Business Group International, LLC, and Amway Corporation, Including On-Site Leased Workers from... Business Group International, LLC and Amway Corporation. The notice was published in the Federal Register... issued as follows: All workers of Alticor, Inc., including Access Business Group International, LLC and...

  11. 75 FR 26794 - Alticor, Inc., Including Access Business Group International LLC and Amway Corporation, Buena...

    Science.gov (United States)

    2010-05-12

    ..., Inc., Including Access Business Group International LLC and Amway Corporation, Buena Park, CA; Alticor, Inc., Including Access Business Group International LLC, and Amway Corporation, Ada, MI; Amended... of Alticor, Inc., including Access Business Group International LLC and Amway Corporation, Buena Park...

  12. International Group Heterogeneity and Students’ Business Project Achievement.

    NARCIS (Netherlands)

    Dr. Ning Ding; Drs. Petra van Heugten; Drs. Lucie Rugers; Dr. Roel Bosker; Dr. Xiaoyan Xu

    2015-01-01

    In business higher education, group project work plays an essential role. The purpose of the present study is to explore the relationship between the group heterogeneity of students’ business project groups and their academic achievements at both group and individual levels. The sample consists of

  13. International group heterogeneity and students’ business project achievement

    NARCIS (Netherlands)

    Ding, Ning; Bosker, Roel J.; Xu, Xiaoyan; Rugers, Lucie; van Heugten, Petra

    2015-01-01

    In business higher education, group project work plays an essential role. The purpose of the present study is to explore the relationship between the group heterogeneity of students’ business project groups and their academic achievements at both group and individual levels. The sample consists of

  14. Support to the Consultative Group on International Agricultural ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le CRDI lance un nouveau projet dans la région de l'ANASE. L'honorable Chrystia Freeland, ministre du Commerce international, a annoncé le lancement d'un nouveau projet financé par le Centre de recherches pour le développement international (CRDI). Voir davantageLe CRDI lance un nouveau projet dans la région ...

  15. Framatome, from the nuclear engineering office to the international group; Framatome, du bureau d'ingenierie nucleaire au groupe international

    Energy Technology Data Exchange (ETDEWEB)

    Lorin, Philippe [Direction de la Communication, FRAMATOME, Tour Framatome, 92084 Paris La Defense Cedex (France)

    1995-07-01

    A simple office of studies by its inceptions, Framatome became during 30 years an international and diversified group, a world nuclear leader, as designer-manufacturer, fuel supplier and servicing provider. It asserts itself also as a foreground actor in the industrial equipment and connections. This book not only presents an exciting and capital episode of the history of nuclear energy in France but it demonstrate also how an company with a little bit of chance, a lot of endeavour, a plenty of talent and a huge firmness succeeded in becoming an incontestable reference authority in its sector. Staking on technological choices, although different from the creeds inspiring the French decision makers, Framatome has obtained its first orders ahead other French companies, much more powerful and prestigious at the time. The impressive Framatome evolution is presented along six chapters entitled as follows: 1. Beginning of nuclear power; 2. Technological challenge; 3. Industrial challenge; 4. Sectorial challenge; 5. Management challenge; 6. Future. The following four witness' papers are inserted with in the main text: 1. Beginning of Framatome (by P. Boulin); 2. The difficult choice for the PWR system (by M. Boiteux); 3. Impossibly is not French (by A. Giraud); 4. A fabulous common effort (by M. Hug). The book is addressed to the public at large but aims also at the Company's personnel, both the people witnessing the Company's beginning and the newcomers who should know the social body they have chosen to join and to the effort of which they have to contribute with their inventiveness and dynamism.

  16. Discrete symmetries in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  17. Discrete symmetries in the MSSM

    International Nuclear Information System (INIS)

    Schieren, Roland

    2010-01-01

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)

  18. Symmetry and quantum mechanics

    CERN Document Server

    Corry, Scott

    2016-01-01

    This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.

  19. Gravitation, Symmetry and Undergraduates

    Science.gov (United States)

    Jorgensen, Jamie

    2001-04-01

    This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.

  20. Preferences for symmetry in human faces in two cultures: data from the UK and the Hadza, an isolated group of hunter-gatherers.

    Science.gov (United States)

    Little, Anthony C; Apicella, Coren L; Marlowe, Frank W

    2007-12-22

    Many studies show agreement within and between cultures for general judgements of facial attractiveness. Few studies, however, have examined the attractiveness of specific traits and few have examined preferences in hunter-gatherers. The current study examined preferences for symmetry in both the UK and the Hadza, a hunter-gatherer society of Tanzania. We found that symmetry was more attractive than asymmetry across both the cultures and was more strongly preferred by the Hadza than in the UK. The different ecological conditions may play a role in generating this difference. Such variation in preference may be adaptive if it reflects adaptation to local conditions. Symmetry is thought to indicate genetic quality, which may be more important among the Hadza with much higher mortality rates from birth onwards. Hadza men who were more often named as good hunters placed a greater value on symmetry in female faces. These results suggest that high quality Hadza men are more discriminating in their choice of faces. Hadza women had increased preferences for symmetry in men's faces when they were pregnant or nursing, perhaps due to their increased discrimination and sensitivity to foods and disease harmful to a foetus or nursing infant. These results imply that symmetry is an evolutionarily relevant trait and that variation in symmetry preference appears strategic both between cultures and within individuals of a single culture.

  1. Group Counseling with International Students: Practical, Ethical, and Cultural Considerations

    Science.gov (United States)

    Yakunina, Elena S.; Weigold, Ingrid K.; McCarthy, Alannah S.

    2011-01-01

    International students in higher education represent a diverse population with unique mental health needs. Foreign students commonly experience a host of adjustment issues, including acculturative stress, language difficulties, cultural misunderstandings, racial discrimination, and loss of social support. Despite their challenges, few…

  2. Constraining the physical state by symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Fatibene, L., E-mail: lorenzo.fatibene@unito.it [Department of Mathematics, University of Torino (Italy); INFN - Sezione Torino - IS QGSKY (Italy); Ferraris, M.; Magnano, G. [Department of Mathematics, University of Torino (Italy)

    2017-03-15

    After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or by an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. - Highlights: • Investigate the relation between the hole argument, covariance, determinism and physical state. • Show that if space is compact then any diffeomorphism is a gauge symmetry. • Show that if space is not compact then there may be more freedom in choosing gauge group.

  3. Gauge origin of discrete flavor symmetries in heterotic orbifolds

    Directory of Open Access Journals (Sweden)

    Florian Beye

    2014-09-01

    Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.

  4. International Symposium on Tick-Borne Arboviruses (Excluding Group B)

    Science.gov (United States)

    1963-01-01

    observed relationships on which these groups, are based vary in degree. In the Ganjam , Kaisodi and Uukuniemi groups, for example, the members are distantly...estimated diameters as follows: Chen- uda and Kemerovo, about 60 to 80 mp; Bhanja, CTF, Ganjam , Hughes, Kaisodi, Mutucare, Quaranfil, Silverwater...Cal Ar 883 Ganjam IG 619 Qalyub Eg Ar 370 Grand Arbaud Argas 27 Quaranfil Eg Ar 1095 Hazara JC 280 Sawgrass TA 14-64A-1247 Hughes Dry Tortugas Seletar

  5. Approximate symmetries of Hamiltonians

    Science.gov (United States)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  6. Pomeranchuk conjecture and symmetry schemes

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A.; Morales, A.; Ruegg, H. [Junta de Energia Nuclear, Madrid (Spain); European Organization for Nuclear Research, Geneva (Switzerland); University of Geneva, Geneva (Switzerland)

    1963-01-15

    Pomeranchuk has conjectured that the cross-sections for charge-exchange processes vanish asymptotically as the energy tends to infinity. (By ''charge'' it is meant any internal quantum number, like electric charge, hypercharge, .. . ). It has been stated by several people that this conjecture implies equalities among the total cross-sections whenever any symmetry scheme is invoked for the strong interactions. But to our knowledge no explicit general proof of this statement has been given so far. We want to give this proof for any compact Lie group. We also prove, under certain assumptions, that the equality of the total cross-sections implies that s{sup -l} times the charge-exchange forward scattering absorptive amplitudes tend to zero as s -> ∞.

  7. Symmetry chains and adaptation coefficients

    International Nuclear Information System (INIS)

    Fritzer, H.P.; Gruber, B.

    1985-01-01

    Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains

  8. Report of the Second International Workshop on molecular blood group genotyping

    NARCIS (Netherlands)

    Daniels, G.; van der Schoot, C. E.; Olsson, M. L.

    2007-01-01

    The second International Society of Blood Transfusion and International Council for Standardization in Haematology workshop on molecular blood group genotyping was held in 2006. Forty-one laboratories participated. Six samples were distributed: two representing DNA from transfusion-dependent

  9. BOOK REVIEW: Symmetry Breaking

    Science.gov (United States)

    Ryder, L. H.

    2005-11-01

    One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would

  10. 75 FR 66796 - Pricewaterhousecoopers LLP (“PwC”), Internal Firm Services Client Account Administrators Group...

    Science.gov (United States)

    2010-10-29

    ... LLP (``PwC''), Internal Firm Services Client Account Administrators Group Atlanta, GA; Amended...''), Internal Firm Services Client Account Administrators Group. Accordingly, the Department is amending this... Firm Services Client Account Administrators Group. The amended notice applicable to TA-W-73,630 is...

  11. Symmetries and microscopic physics

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1997-01-01

    This book is based on a course of lectures devoted to the applications of group theory to quantum physics. The purpose is to give students a precise idea of general principles involving the concept of symmetry and to present practical methods used to calculate physical properties derived from symmetries. The first chapter is an introduction to the main results of group theory, 2 chapters highlight principles and methods concerning geometrical transformations in the space of states, state degeneracy and perturbation theory. The last 4 chapters investigate the applications of these methods to atom physics, nuclear structure and elementary particles. A chapter is devoted to the atom of hydrogen and another to the isospin. Numerous exercises and problems, some with their corrections, are proposed. (A.C.)

  12. International Consultation and Training on Group Work in South Asia

    Science.gov (United States)

    Ibrahim, Farah A.

    2015-01-01

    This article presents a consultation and training for faculty and graduate students in South Asia under the auspices of the United Nations' Transfer of Knowledge Through Expatriate Nationals (TOKTEN) Program. It describes the development of a consultation relationship and training on group work. Needs assessments focusing on both cultural…

  13. Report from International Lunar Exploration Working Group (ILEWG) to COSPAR

    Science.gov (United States)

    Foing, Bernard H.

    We refer to COSPAR and ILEWG ICEUM and lunar conferences and declarations [1-18]. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap. We present the GLUC/ICEUM11 declaration and give a report on ongoing relevant ILEWG community activities, with focus on: “1. Science and exploration - World-wide access to raw and derived (geophysical units) data products using consistent formats and coordinate systems will maximize return on investment. We call to develop and implement plans for generation, validation, and release of these data products. Data should be made available for scientific analysis and supporting the development and planning of future missions - There are still Outstanding Questions: Structure and composition of crust, mantle, and core and implications for the origin and evolution of the Earth-Moon system; Timing, origin, and consequences of late heavy bombardment; Impact processes and regolith evolution; Nature and origin of volatile emplacement; Implications for resource utilization. These questions require international cooperation and sharing of results in order to be answered in a cost-effective manner - Ground truth information on the lunar far side is missing and needed to address many important scientific questions, e.g. with a sample return from South Pole-Aitken Basin - Knowledge of the interior is poor relative to the surface, and is needed to address a number of key questions, e.g. with International Lunar Network for seismometry and other geophysical measurements - Lunar missions will be driven by exploration, resource utilization, and science; we should consider minimum science payload for every mission, e.g., landers and rovers should carry instruments to determine surface composition and mineralogy - It is felt important to have a shared database about previous missions available for free, so as to provide

  14. Scale symmetry and virial theorem

    International Nuclear Information System (INIS)

    Westenholz, C. von

    1978-01-01

    Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework

  15. Inverse semigroups the theory of partial symmetries

    CERN Document Server

    Lawson, Mark V

    1998-01-01

    Symmetry is one of the most important organising principles in the natural sciences. The mathematical theory of symmetry has long been associated with group theory, but it is a basic premise of this book that there are aspects of symmetry which are more faithfully represented by a generalization of groups called inverse semigroups. The theory of inverse semigroups is described from its origins in the foundations of differential geometry through to its most recent applications in combinatorial group theory, and the theory tilings.

  16. Report of the First International Workshop on molecular blood group genotyping

    NARCIS (Netherlands)

    Daniels, G.; van der Schoot, C. E.; Olsson, M. L.

    2005-01-01

    The use of molecular genetic technology for blood group typing is becoming routine procedure in many reference laboratories worldwide. A First International Workshop was organized on behalf of the International Society of Blood Transfusion (ISBT) and the International Council for Standardization in

  17. Bio-Optical sensors on Argo Floats. Reports of the international ocean-colour coordinating group

    CSIR Research Space (South Africa)

    Bernard, S

    2011-01-01

    Full Text Available The International Ocean-Colour Coordinating Group (IOCCG) is an international group of experts in the field of satellite ocean colour, acting as a liaison and communication channel between users, managers and agencies in the ocean-colour arena...

  18. At the origins of mass: elementary particles and fundamental symmetries

    International Nuclear Information System (INIS)

    Iliopoulos, Jean; Englert, Francois

    2015-01-01

    After a brief recall of the history of cosmology, the author proposes an overview of the different symmetries (symmetries in space and in time, internal symmetries, local or gauge symmetries), describes the mass issue (gauge interactions, quarks and leptons as matter mass constituents, chirality), addresses the spontaneous symmetry breaking (the Curie theorem, spontaneous symmetry breaking in classical physics and in quantum physics, the Goldstone theorem, spontaneous symmetry breaking in presence of gauge interactions), presents the standard theory (electromagnetic and weak interactions, strong interactions, relationship with experiment). An appendix presents elementary particles, and notably reports the story of the neutrino

  19. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  20. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  1. Symmetry analysis in parametrisation of complex systems

    International Nuclear Information System (INIS)

    Sikora, W; Malinowski, J

    2010-01-01

    The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).

  2. Symmetry analysis in parametrisation of complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Malinowski, J, E-mail: sikora@novell.ftj.agh.edu.p [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland)

    2010-03-01

    The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).

  3. An electron diffraction and bond valence sum study of the space group symmetries and structures of the photocatalytic 1:1 ordered A2InNbO6 double perovskites (A=Ca2+, Sr2+, Ba2+)

    International Nuclear Information System (INIS)

    Ting, V.; Liu, Y.; Withers, R.L.; Krausz, E.

    2004-01-01

    A careful investigation has been carried out into the space group symmetries, structures and crystal chemistries of the 1:1 B-site ordered double perovskites A 2 InNbO 6 (A=Ca 2+ , Sr 2+ , Ba 2+ ) using a combination of bond valence sum calculations, powder XRD and electron diffraction. A recent investigation of these compounds by Yin et al. reported a random distribution of In 3+ and Nb 5+ ions onto the perovskite B-site positions of these compounds and hence Pm3-barm (a=a p , subscript p for parent perovskite sub-structure) space group symmetry for the A=Ba and Sr compounds and Pnma (a=a p +b p , b=-a p +b p , c=2c p ) space group symmetry for the A=Ca compound. A careful electron diffraction study, however, shows that both the A=Ca and Sr compounds occur at room temperature in P12 1 /n1 (a=a p +b p , b=-a p +b p , c=2c p ) perovskite-related superstructure phases while the A=Ba compound occurs in the Fm3-barm, a=2a p , elpasolite structure type. Bond valence sum calculations are used to explain why this should be so as well as to provide a useful first-order approximation to the structures of each of the compounds

  4. Cohomology for Lagrangian systems and Noetherian symmetries

    International Nuclear Information System (INIS)

    Popp, O.T.

    1989-06-01

    Using the theory of sheaves we find some exact sequences describing the locally Lagrangian systems. Using cohomology theory of groups with coefficients in sheaves we obtain some exact sequences describing the Noetherian symmetries. It is shown how the results can be used to find all locally Lagrangian dynamics Noetherian invariant with respect to a given group of kinematical symmetries.(author)

  5. Discrete Symmetries Analysis and Exact Solutions of the Inviscid Burgers Equation

    Directory of Open Access Journals (Sweden)

    Hongwei Yang

    2012-01-01

    Full Text Available We discuss the Lie point symmetries and discrete symmetries of the inviscid Burgers equation. By employing the Lie group method of infinitesimal transformations, symmetry reductions and similarity solutions of the governing equation are given. Based on discrete symmetries analysis, two groups of discrete symmetries are obtained, which lead to new exact solutions of the inviscid Burgers equation.

  6. The symmetry of man.

    Science.gov (United States)

    Ermolenko, Alexander E; Perepada, Elena A

    2007-01-01

    The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.

  7. Symmetry of intramolecular quantum dynamics

    CERN Document Server

    Burenin, Alexander V

    2012-01-01

    The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.

  8. Exploiting Symmetry on Parallel Architectures.

    Science.gov (United States)

    Stiller, Lewis Benjamin

    1995-01-01

    This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.

  9. Report of the third international workshop on molecular blood group genotyping

    NARCIS (Netherlands)

    Daniels, G.; van der Schoot, C. E.; Gassner, C.; Olsson, M. L.

    2009-01-01

    The Third International Society of Blood Transfusion Workshop on Molecular Blood Group Genotyping was held in 2008, with a feedback meeting at the International Society of Blood Transfusion Congress in Macao SAR, China. Thirty-three laboratories participated, eight less than in 2006. Six samples

  10. Australian and International Student Success Rates in Group of Eight Universities. Go8 Backgrounder 5

    Science.gov (United States)

    Group of Eight (NJ1), 2008

    2008-01-01

    This Go8 Backgrounder compares the academic performance of three cohorts of students in Group of Eight (Go8) universities: Australian students, international students on campus in Australia (onshore) and international students overseas (offshore). Analysis of data supplied by Go8 universities shows that in 2007 students passed 91.8% of the courses…

  11. Symposium Symmetries in Science XIII

    CERN Document Server

    Gruber, Bruno J; Yoshinaga, Naotaka; Symmetries in Science XI

    2005-01-01

    This book is a collection of reviews and essays about the recent developments in the area of Symmetries and applications of Group Theory. Contributions have been written mostly at the graduate level but some are accessible to advanced undergraduates. The book is of interest to a wide audience and covers a broad range of topics with a strong degree of thematical unity. The book is part of a Series of books on Symmetries in Science and may be compared to the published Proceedings of the Colloquia on Group Theoretical Methods in Physics. Here, however, prevails a distinguished character for presenting extended reviews on present applications to Science, not restricted to Theoretical Physics.

  12. Update on International Cooperative Groups Studies in Thoracic Malignancies: The Emergence of Immunotherapy.

    Science.gov (United States)

    Shukla, Navika D; Salahudeen, Ameen A; Taylor, Gregory A; Ramalingam, Suresh S; Vokes, Everett E; Goss, Glenwood D; Decker, Roy H; Kelly, Karen; Scagliotti, Giorgio V; Mok, Tony S; Wakelee, Heather A

    2018-03-17

    Cancer cooperative groups have historically played a critical role in the advancement of non-small-cell lung cancer therapy. Representatives from cooperative groups worldwide convene at the International Lung Cancer Congress annually. The International Lung Cancer Congress had its 17th anniversary in the summer of 2016. The present review highlights the thoracic malignancy studies discussed by presenters. The included studies are merely a sample of the trials of thoracic malignancies ongoing globally. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. The Making of discussion groups in a combined process of internal evaluation of safety culture

    International Nuclear Information System (INIS)

    German, S.; Buedo, J. L.; La Salabarnada, E.; Navajas, J.; Silla, I.

    2012-01-01

    The purpose of this paper is to show the design and evaluation of safety culture conducted in the Cofrentes nuclear plant. The process has combined the use of different methodologies and techniques and has allowed the participation of different internal and external stake holders. For internal assessment discussion groups were conducted. These groups, which were designed and analyzed by the CIEMAT, were led by employees from different levels of Cofrentes.

  14. Cross-border Intra-group Hybrid Finance and International Taxation

    OpenAIRE

    Eberhartinger, Eva; Pummerer, Erich; Göritzer, Andreas

    2010-01-01

    In intra-group finance hybrid instruments allow for tailor-made form of finance. Hence hybrid finance is often used for international tax planning in multinational groups. Due to a lack of international tax harmonization or tax coordination qualification conflict can arise. A specific hybrid instrument is classified as debt in one country, and as equity in the other country. This may lead to double taxation. In the reverse case, double non-taxation can arise. Against this legal background one...

  15. Symmetry gauge theory for paraparticles

    International Nuclear Information System (INIS)

    Kursawe, U.

    1986-01-01

    In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de

  16. Fluid relabelling symmetries, Lie point symmetries and the Lagrangian map in magnetohydrodynamics and gas dynamics

    International Nuclear Information System (INIS)

    Webb, G M; Zank, G P

    2007-01-01

    We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated

  17. Origin of family symmetries

    International Nuclear Information System (INIS)

    Nilles, Hans Peter

    2012-04-01

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  18. Origin of family symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-04-15

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  19. Leaping into the Unknown: Experience of Counseling Students Participating in Group Work with International Students

    Science.gov (United States)

    Choi, Kyoung Mi; Protivnak, Jake J.

    2016-01-01

    This research study used qualitative phenomenological methodology to explore counseling graduate students' experiences leading support groups for international students. Participants included 6 master's-level counseling students. The following 4 themes emerged to describe the counseling students' experience as group leaders: (a) individualistic…

  20. Symmetry, asymmetry and dissymmetry

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zollner, G.

    1987-01-01

    The authors discuss the concept of symmetry and defect of symmetry in radiological imaging and recall the definition of asymmetry (congenital or constitutional) and dissymmetry (acquired). They then describe a rule designed for the cognitive method of automatic evaluation of shape recognition data and propose the use of reversal symmetry [fr

  1. Symmetry and electromagnetism

    International Nuclear Information System (INIS)

    Fuentes Cobas, L.E.; Font Hernandez, R.

    1993-01-01

    An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs

  2. Gauge symmetry breaking

    International Nuclear Information System (INIS)

    Weinberg, S.

    1976-01-01

    The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy

  3. On the origin of neutrino flavour symmetry

    International Nuclear Information System (INIS)

    King, Stephen F.; Luhn, Christoph

    2009-01-01

    We study classes of models which are based on some discrete family symmetry which is completely broken such that the observed neutrino flavour symmetry emerges indirectly as an accidental symmetry. For such 'indirect' models we discuss the D-term flavon vacuum alignments which are required for such an accidental flavour symmetry consistent with tri-bimaximal lepton mixing to emerge. We identify large classes of suitable discrete family symmetries, namely the Δ(3n 2 ) and Δ(6n 2 ) groups, together with other examples such as Z 7 x Z 3 . In such indirect models the implementation of the type I see-saw mechanism is straightforward using constrained sequential dominance. However the accidental neutrino flavour symmetry may be easily violated, for example leading to a large reactor angle, while maintaining accurately the tri-bimaximal solar and atmospheric predictions.

  4. Discrete symmetries in periodic-orbit theory

    International Nuclear Information System (INIS)

    Robbins, J.M.

    1989-01-01

    The application of periodic-orbit theory to systems which possess a discrete symmetry is considered. A semiclassical expression for the symmetry-projected Green's function is obtained; it involves a sum over classical periodic orbits on a symmetry-reduced phase space, weighted by characters of the symmetry group. These periodic orbits correspond to trajectories on the full phase space which are not necessarily periodic, but whose end points are related by symmetry. If the symmetry-projected Green's functions are summed, the contributions of the unperiodic orbits cancel, and one recovers the usual periodic-orbit sum for the full Green's function. Several examples are considered, including the stadium billiard, a particle in a periodic potential, the Sinai billiard, the quartic oscillator, and the rotational spectrum of SF 6

  5. Structural symmetry and protein function.

    Science.gov (United States)

    Goodsell, D S; Olson, A J

    2000-01-01

    The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of

  6. Internal market – situation and forecasting for Croatian groups of companies

    Directory of Open Access Journals (Sweden)

    Zoran Krupka

    2006-12-01

    Full Text Available Purpose: The purpose of this paper is to analyze and compare the attitude of managers to the market position of independent companies in comparison to the companies that are members of groups of companies in Croatia. In addition, research included an analysis of their attitudes toward current and future internal market trends with respect to the number and the value of transactions conducted within Croatian groups of companies. Methodology: Relevant secondary and primary dana was used in the research. In secondary research, relevant scientific and professional literature was analyzed. Primary research was done by using a questionnaire on an intentional sample of experts, including 127 managers working for groups of companies in Croatia. Findings: Two main hypotheses were tested: H1 – The internal market of Croatian groups of companies, measured by the number of transactions, will grow in the future; H2 – The internal market of Croatian groups of companies, measured by transaction value, will grow in the future. Both hypotheses were accepted. Implications: Research results imply a further strengthening of the financial and economic importance of groups of companies in Croatia, and a weakening of the companies that are not members of such groups. This implies a tendency toward certain monopoly development in some economic sectors. The development and continuous growth of the internal market compels countries to implement control and regulatory practices with regard to the use of transfer pricing, a path Croatia will have to follow.

  7. Quantum Group U_q(sl(2 Symmetry and Explicit Evaluation of the One-Point Functions of the Integrable Spin-1 XXZ Chain

    Directory of Open Access Journals (Sweden)

    Tetsuo Deguchi

    2011-06-01

    Full Text Available We show some symmetry relations among the correlation functions of the integrable higher-spin XXX and XXZ spin chains, where we explicitly evaluate the multiple integrals representing the one-point functions in the spin-1 case. We review the multiple-integral representations of correlation functions for the integrable higher-spin XXZ chains derived in a region of the massless regime including the anti-ferromagnetic point. Here we make use of the gauge transformations between the symmetric and asymmetric R-matrices, which correspond to the principal and homogeneous gradings, respectively, and we send the inhomogeneous parameters to the set of complete 2s-strings. We also give a numerical support for the analytical expression of the one-point functions in the spin-1 case.

  8. Lie symmetries in differential equations

    International Nuclear Information System (INIS)

    Pleitez, V.

    1979-01-01

    A study of ordinary and Partial Differential equations using the symmetries of Lie groups is made. Following such a study, an application to the Helmholtz, Line-Gordon, Korleweg-de Vries, Burguer, Benjamin-Bona-Mahony and wave equations is carried out [pt

  9. Symmetry in running.

    Science.gov (United States)

    Raibert, M H

    1986-03-14

    Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.

  10. Symmetries of Chimera States

    Science.gov (United States)

    Kemeth, Felix P.; Haugland, Sindre W.; Krischer, Katharina

    2018-05-01

    Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being synchronized. We report that these states with partially broken symmetry, so-called chimera states, have different setwise symmetries in the incoherent oscillators, and in particular, some are and some are not invariant under a permutation symmetry on average. This allows for a classification of different chimera states in small networks. We conclude our report with a discussion of related states in spatially extended systems, which seem to inherit the symmetry properties of their counterparts in small networks.

  11. Parastatistics and gauge symmetries

    International Nuclear Information System (INIS)

    Govorkov, A.B.

    1982-01-01

    A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed

  12. Internal Medicine Point-of-Care Ultrasound Curriculum: Consensus Recommendations from the Canadian Internal Medicine Ultrasound (CIMUS) Group.

    Science.gov (United States)

    Ma, Irene W Y; Arishenkoff, Shane; Wiseman, Jeffrey; Desy, Janeve; Ailon, Jonathan; Martin, Leslie; Otremba, Mirek; Halman, Samantha; Willemot, Patrick; Blouw, Marcus

    2017-09-01

    Bedside point-of-care ultrasound (POCUS) is increasingly used to assess medical patients. At present, no consensus exists for what POCUS curriculum is appropriate for internal medicine residency training programs. This document details the consensus-based recommendations by the Canadian Internal Medicine Ultrasound (CIMUS) group, comprising 39 members, representing 14 institutions across Canada. Guiding principles for selecting curricular content were determined a priori. Consensus was defined as agreement by at least 80% of the members on POCUS applications deemed appropriate for teaching and assessment of trainees in the core (internal medicine postgraduate years [PGY] 1-3) and expanded (general internal medicine PGY 4-5) training programs. We recommend four POCUS applications for the core PGY 1-3 curriculum (inferior vena cava, lung B lines, pleural effusion, and abdominal free fluid) and three ultrasound-guided procedures (central venous catheterization, thoracentesis, and paracentesis). For the expanded PGY 4-5 curriculum, we recommend an additional seven applications (internal jugular vein, lung consolidation, pneumothorax, knee effusion, gross left ventricular systolic function, pericardial effusion, and right ventricular strain) and four ultrasound-guided procedures (knee arthrocentesis, arterial line insertion, arterial blood gas sampling, and peripheral venous catheterization). These recommendations will provide a framework for training programs at a national level.

  13. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  14. Noncompact symmetries in string theory

    International Nuclear Information System (INIS)

    Maharana, J.; Schwarz, J.H.

    1993-01-01

    Noncompact groups, similar to those that appeared in various supergravity theories in the 1970's have been turning up in recent studies of string theory. First it was discovered that moduli spaces of toroidal compactification are given by noncompact groups modded out by their maximal compact subgroups and discrete duality groups. Then it was found that many other moduli spaces have analogous descriptions. More recently, noncompact group symmetries have turned up in effective actions used to study string cosmology and other classical configurations. This paper explores these noncompact groups in the case of toroidal compactification both from the viewpoint of low-energy effective field theory, using the method of dimensional reduction, and from the viewpoint of the string theory world-sheet. The conclusion is that all these symmetries are intimately related. In particular, we find that Chern-Simons terms in the three-form field strength H μνρ play a crucial role. (orig.)

  15. Hidden Symmetries of Stochastic Models

    Directory of Open Access Journals (Sweden)

    Boyka Aneva

    2007-05-01

    Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.

  16. Generalized global symmetries

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian

    2015-01-01

    A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.

  17. Absence of synergy for monosynaptic Group I inputs between abdominal and internal intercostal motoneurons

    DEFF Research Database (Denmark)

    Ford, T W; Meehan, Claire Francesca; Kirkwood, P A

    2014-01-01

    Internal intercostal and abdominal motoneurons are strongly coactivated during expiration. We investigated whether that synergy was paralleled by synergistic Group I reflex excitation. Intracellular recordings were made from motoneurons of the internal intercostal nerve of T8 in anesthetized cats...... that are synergistically activated in expiration leads us to conclude that such connections from muscle spindle afferents of the thoracic nerves have little role in controlling expiratory movements but, where present, support other motor acts....

  18. Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface

    Directory of Open Access Journals (Sweden)

    Meng Cheng

    2016-12-01

    Full Text Available The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.

  19. Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity

    Science.gov (United States)

    Zhao, Zhongxiang

    2017-12-01

    The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal tides exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal tides. The spring-neap cycle and energy of the semidiurnal internal tide propagate at the group velocity. Long-range propagation of M2 and S2 internal tides in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal tide fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.

  20. Symmetries of Ginsparg-Wilson chiral fermions

    International Nuclear Information System (INIS)

    Mandula, Jeffrey E.

    2009-01-01

    The group structure of the variant chiral symmetry discovered by Luescher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter invariant subgroup, and the factor group, whose elements are its cosets, is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, noncommuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example, free overlap fermions, these noncanonical elements of lattice chiral symmetry are related to complex energy singularities that violate reflection positivity and impede continuation to Minkowski space.

  1. Symmetries of collective models in intrinsic frame

    International Nuclear Information System (INIS)

    Gozdz, A.; Pedrak, A.; Szulerecka, A.; Dobrowolski, A.; Dudek, J.

    2013-01-01

    In the paper a very general definition of intrinsic frame, by means of group theoretical methods, is introduced. It allows to analyze nuclear properties which are invariant in respect to the group which defines the intrinsic frame. For example, nuclear shape is a well determined feature in the intrinsic frame defined by the Euclidean group. It is shown that using of intrinsic frame gives an opportunity to consider intrinsic nuclear symmetries which are independent of symmetries observed in the laboratory frame. An importance of the notion of partial symmetries is emphasized. (author)

  2. Thymic Carcinoma Management Patterns among International Thymic Malignancy Interest Group (ITMIG) Physicians with Consensus from the Thymic Carcinoma Working Group.

    Science.gov (United States)

    Shepherd, Annemarie; Riely, Gregory; Detterbeck, Frank; Simone, Charles B; Ahmad, Usman; Huang, James; Korst, Robert; Rajan, Arun; Rimner, Andreas

    2017-04-01

    Thymic carcinomas are rare epithelial malignancies with limited data to guide management. To identify areas of agreement and variability in current clinical practice, a 16-question electronic survey was given to members of the International Thymic Malignancy Interest Group (ITMIG). Areas of controversy were discussed with the Thymic Carcinoma Working Group and consensus was achieved, as described. A total of 100 ITMIG members responded. There was general agreement regarding the role for multimodality therapy with definitive surgical resection in physically fit patients with advanced but resectable disease. Areas of controversy included the need for histologic confirmation before surgery, the role of adjuvant therapy, the optimal first-line chemotherapy regimen, and the recommended treatment course for marginally resectable disease with invasion into the great vessels, pericardium, and lungs. The results of the questionnaire provide a description of the management of thymic carcinoma by 100 ITMIG members with a specific interest or expertise in thymic malignancies. Although there was agreement in some areas, clinical practice appears to vary significantly. There is a great need for collaborative research to identify optimal evaluation and treatment strategies. Given the need for multimodality therapy in many cases, a multidisciplinary discussion of the management of patients with thymic carcinoma is critical. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  3. Some general constraints on identical band symmetries

    International Nuclear Information System (INIS)

    Guidry, M.W.; Strayer, M.R.; Wu, C.; Feng, D.H.

    1993-01-01

    We argue on general grounds that nearly identical bands observed for superdeformation and less frequently for normal deformation must be explicable in terms of a symmetry having a microscopic basis. We assume that the unknown symmetry is associated with a Lie algebra generated by terms bilinear in fermion creation and annihilation operators. Observed features of these bands and the general properties of Lie groups are then used to place constraints on acceptable algebras. Additional constraints are placed by assuming that the collective spectrum is associated with a dynamical symmetry, and examining the subgroup structure required by phenomenology. We observe that requisite symmetry cannot be unitary, and that the simplest known group structures consistent with these minimal criteria are associated with the Ginocchio algebras employed in the fermion dynamical symmetry model. However, our arguments are general in nature, and we propose that they imply model-independent constraints on any candidate explanation for identical bands

  4. Mirror symmetry and loop operators

    Energy Technology Data Exchange (ETDEWEB)

    Assel, Benjamin [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada)

    2015-11-09

    Wilson loops in gauge theories pose a fundamental challenge for dualities. Wilson loops are labeled by a representation of the gauge group and should map under duality to loop operators labeled by the same data, yet generically, dual theories have completely different gauge groups. In this paper we resolve this conundrum for three dimensional mirror symmetry. We show that Wilson loops are exchanged under mirror symmetry with Vortex loop operators, whose microscopic definition in terms of a supersymmetric quantum mechanics coupled to the theory encode in a non-trivial way a representation of the original gauge group, despite that the gauge groups of mirror theories can be radically different. Our predictions for the mirror map, which we derive guided by branes in string theory, are confirmed by the computation of the exact expectation value of Wilson and Vortex loop operators on the three-sphere.

  5. Symmetries in nuclei

    International Nuclear Information System (INIS)

    Arima, A.

    2003-01-01

    (1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)

  6. Symmetries of cluster configurations

    International Nuclear Information System (INIS)

    Kramer, P.

    1975-01-01

    A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed

  7. Stringy origin of non-Abelian discrete flavor symmetries

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuo; Nilles, Hans Peter; Ploeger, Felix; Raby, Stuart; Ratz, Michael

    2007-01-01

    We study the origin of non-Abelian discrete flavor symmetries in superstring theory. We classify all possible non-Abelian discrete flavor symmetries which can appear in heterotic orbifold models. These symmetries include D 4 and Δ(54). We find that the symmetries of the couplings are always larger than the symmetries of the compact space. This is because they are a consequence of the geometry of the orbifold combined with the space group selection rules of the string. We also study possible breaking patterns. Our analysis yields a simple geometric understanding of the realization of non-Abelian flavor symmetries

  8. Dynamics symmetries of Hamiltonian system on time scales

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  9. Discrete symmetries and their stringy origin

    International Nuclear Information System (INIS)

    Mayorga Pena, Damian Kaloni

    2014-05-01

    Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.

  10. DDR and the Internal Organization of Non-State Armed Groups

    Directory of Open Access Journals (Sweden)

    Brian McQuinn

    2016-03-01

    Full Text Available This paper argues that demobilization, disarmament and reintegration (DDR trajectories of non-state armed groups are shaped by a group’s internal organization. Extensive research by political scientists has demonstrated a correlation between internal features of armed groups and their behaviour (e.g. extent of violence used against local communities. I extend this analysis to DDR outcomes by illustrating how two features of an armed group’s internal organization – command profile and financing architecture – influence post-conflict DDR trajectories. To substantiate the theory, four case studies from Colombia, Nepal and Libya are reviewed. The article concludes with the limitations and opportunities of this approach, including the potential of predicting DDR challenges.

  11. Report of the fourth International Workshop on molecular blood group genotyping

    NARCIS (Netherlands)

    Daniels, G.; van der Schoot, C. E.; Olsson, M. L.

    2011-01-01

    The fourth International Society of Blood Transfusion (ISBT) workshop on molecular blood group genotyping was held in 2010, with a feedback meeting at the ISBT Congress in Berlin, Germany. Fifty laboratories participated, 17 more than in 2008. Six samples were distributed. Samples 1-3 were DNA

  12. 75 FR 26945 - International Education Programs Service-Fulbright-Hays Group Projects Abroad Program

    Science.gov (United States)

    2010-05-13

    .... Schools and/or departments of education have a role to play in creating greater exposure since they are... DEPARTMENT OF EDUCATION International Education Programs Service--Fulbright-Hays Group Projects... Postsecondary Education, Department of Education. ACTION: Notice of proposed priorities. SUMMARY: The Assistant...

  13. 75 FR 66795 - International Paper, Pineville Mill, Industrial Packaging Group, Pineville, LA; Notice of...

    Science.gov (United States)

    2010-10-29

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,729] International Paper, Pineville Mill, Industrial Packaging Group, Pineville, LA; Notice of Affirmative Determination Regarding Application for Reconsideration By application dated November 2, 2009, the company official from the subject...

  14. 76 FR 5832 - International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA...

    Science.gov (United States)

    2011-02-02

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,554] International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA, San Jose, CA; Notice of Affirmative Determination Regarding Application for Reconsideration By application dated November 29, 2010, a worker and a state workforce official...

  15. Experiences of a support group for interns in the setting of war and political turmoil.

    Science.gov (United States)

    El Jamil, Fatima; Hamadeh, Ghassan N; Osman, Hibah

    2007-10-01

    Intern support groups have been instituted in many residency programs to improve resident well-being. In this article, we discuss the themes that emerged in intern support group meetings in a family medicine program operating in a setting of war and political instability. We held support groups, led by a family physician and a psychologist, that met monthly. Participants were residents in the family medicine program at the American University of Beirut. These residents began their training days after the commencement of the 34-day war between Israel and Hizbollah in 2006. Themes and issues discussed by the residents were noted and are reported in this article. We found that despite the stressors of the political situation, our interns focused on the usual stress of internship, such as the difficulties of functioning as interns in other departments and dealing with the time demands of internship as their main sources of stress at the beginning of internship. The stresses associated with the war did not emerge in the group until later in the year. These included tension with patients and political confrontations with staff, as well as personal struggles with the lack of political stability and depressed mood. This paper serves to share our experience and highlight some areas of concern that residents experience when training in a country or region that is at war.

  16. Consensus statement on panic disorder from the International Consensus Group on Depression and Anxiety

    NARCIS (Netherlands)

    Ballenger, JC; Lecrubier, Y; Nutt, DJ; Baldwin, DS; den Boer, JA; Kasper, S; Shear, MK

    1998-01-01

    Objective: To provide primary care clinicians with a better understanding of management issues in panic disorder and guide clinical practice with recommendations for appropriate pharmacotherapy. Participants: The 4 members of the International Consensus Group on Depression and Anxiety were James C.

  17. Supporting the Thesis Writing Process of International Research Students through an Ongoing Writing Group

    Science.gov (United States)

    Li, Linda Y.; Vandermensbrugghe, Joelle

    2011-01-01

    Evidence from research suggests writing support is particularly needed for international research students who have to tackle the challenges of thesis writing in English as their second language in Western academic settings. This article reports the development of an ongoing writing group to support the thesis writing process of international…

  18. From physical symmetries to emergent gauge symmetries

    International Nuclear Information System (INIS)

    Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.

    2016-01-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  19. The Symmetry of Multiferroics

    OpenAIRE

    Harris, A. Brooks

    2006-01-01

    This paper represents a detailed instruction manual for constructing the Landau expansion for magnetoelectric coupling in incommensurate ferroelectric magnets. The first step is to describe the magnetic ordering in terms of symmetry adapted coordinates which serve as complex valued magnetic order parameters whose transformation properties are displayed. In so doing we use the previously proposed technique to exploit inversion symmetry, since this symmetry had been universally overlooked. Havi...

  20. Cross-year peer tutoring on internal medicine wards: results of a qualitative focus group analysis.

    Science.gov (United States)

    Krautter, Markus; Andreesen, Sven; Köhl-Hackert, Nadja; Hoffmann, Katja; Herzog, Wolfgang; Nikendei, Christoph

    2014-01-01

    Peer-assisted learning (PAL) has become a well-accepted teaching method within medical education. However, descriptions of on-ward PAL programs are rare. A focus group analysis of a newly established PAL program on an internal medicine ward was conducted to provide insights into PAL teaching from a student perspective. To provide insights into students' experiences regarding their on-ward training with and without accompanying PAL tutors. A total of N=168 medical students in their sixth semester participated in the investigation (intervention group: N=88; control group: N=80). The intervention group took part in the PAL program, while the control group received standard on-ward training. There were seven focus groups with N=43 participants (intervention group: four focus groups, N=28 participants; control group: three focus groups, N=15 participants). The discussions were analyzed using content analysis. The intervention group emphasized the role of the tutors as competent and well-trained teachers, most beneficial in supervising clinical skills. Tutors motivate students, help them to integrate into the ward team, and provide a non-fear-based working relationship whereby students' anxiety regarding working on ward decreases. The control group had to rely on autodidactic learning strategies when neither supervising physicians nor final-year students were available. On-ward PAL programs represent a particularly valuable tool for students' support in training clinical competencies on ward. The tutor-student working alliance acts through its flat hierarchy. Nevertheless, tutors cannot represent an adequate substitute for experienced physicians.

  1. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  2. Quantized Response and Topological Magnetic Insulators with Inversion Symmetry

    NARCIS (Netherlands)

    Turner, A.M.; Zhang, Y.; Mong, R.S.K.; Vishwanath, A.

    2012-01-01

    We study three-dimensional insulators with inversion symmetry in which other point group symmetries, such as time reversal, are generically absent. We find that certain information about such materials’ behavior is determined by just the eigenvalues under inversion symmetry of occupied states at

  3. Fourth Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Reilly, D.; Marsden, O.

    2018-01-01

    The Nuclear Forensics International Technical Working Group is a community of nuclear forensic practitioners who respond to incidents involving nuclear and other radioactive material out of regulatory control. The Group is dedicated to advancing nuclear forensic science in part through periodic participation in materials exercises. The Group completed its fourth Collaborative Materials Exercise in 2015 in which laboratories from 15 countries and one multinational organization analyzed three samples of special nuclear material in support of a mock nuclear forensic investigation. This special section of the Journal for Radioanalytical and Nuclear Chemistry is devoted to summarizing highlights from this exercise. (author)

  4. The zonal satellite problem. III Symmetries

    Directory of Open Access Journals (Sweden)

    Mioc V.

    2002-01-01

    Full Text Available The two-body problem associated with a force field described by a potential of the form U =Sum(k=1,n ak/rk (r = distance between particles, ak = real parameters is resumed from the only standpoint of symmetries. Such symmetries, expressed in Hamiltonian coordinates, or in standard polar coordinates, are recovered for McGehee-type coordinates of both collision-blow-up and infinity-blow-up kind. They form diffeomorphic commutative groups endowed with a Boolean structure. Expressed in Levi-Civita’s coordinates, the problem exhibits a larger group of symmetries, also commutative and presenting a Boolean structure.

  5. Crystal Symmetry Algorithms in a High-Throughput Framework for Materials

    Science.gov (United States)

    Taylor, Richard

    The high-throughput framework AFLOW that has been developed and used successfully over the last decade is improved to include fully-integrated software for crystallographic symmetry characterization. The standards used in the symmetry algorithms conform with the conventions and prescriptions given in the International Tables of Crystallography (ITC). A standard cell choice with standard origin is selected, and the space group, point group, Bravais lattice, crystal system, lattice system, and representative symmetry operations are determined. Following the conventions of the ITC, the Wyckoff sites are also determined and their labels and site symmetry are provided. The symmetry code makes no assumptions on the input cell orientation, origin, or reduction and has been integrated in the AFLOW high-throughput framework for materials discovery by adding to the existing code base and making use of existing classes and functions. The software is written in object-oriented C++ for flexibility and reuse. A performance analysis and examination of the algorithms scaling with cell size and symmetry is also reported.

  6. Spectroscopic investigation of the vibrational quasi-continuum arising from internal rotation of a methyl group

    Energy Technology Data Exchange (ETDEWEB)

    Hougen, J.T. [NIST, Gaithersburg, MD (United States)

    1993-12-01

    The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.

  7. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    Science.gov (United States)

    Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.

    2005-11-01

    We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  8. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    Directory of Open Access Journals (Sweden)

    P.G.L. Leach

    2005-11-01

    Full Text Available We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R. The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  9. Atomic Nuclei with Tetrahedral and Octahedral Symmetries

    International Nuclear Information System (INIS)

    Dudek, J.; Gozdz, A.; Schunck, N.

    2003-01-01

    We present possible manifestations of octahedral and tetrahedral symmetries in nuclei. These symmetries are associated with the O D h and T D d double point groups. Both of them have very characteristic finger-prints in terms of the nucleonic level properties - unique in the Fermionic universe. The tetrahedral symmetry leads to the four-fold degeneracies in the nucleonic spectra; it does not preserve the parity. The octahedral symmetry leads to the four-fold degeneracies in the nucleonic spectra as well but it does preserve the parity. Microscopic predictions have been obtained using mean-field theory based on the relativistic equations and confirmed by using ''traditional'' Schrodinger equation formalism. Calculations are performed in multidimensional deformation spaces using newly designed algorithms. We discuss some experimental fingerprints of the hypothetical new symmetries and possibilities of their verification through experiments. (author)

  10. Accidental internal exposure of all groups of Chernobyl nuclear power plant employees

    International Nuclear Information System (INIS)

    Goussev, I.A.; Moissev, A.A.; Evtichiev, V.I.

    1996-01-01

    Accidental internal exposure of Chernobyl NPP employees has started from April, 1986 and it was found to be decreased to pre-accident level at the end of 1987. Significant number of people from all groups of staff and temporary employees were measured using whole body counters situated in Clinical Department of the Institute of Biophysics, which has represented the main body for medical assistance and expertise in these people including those, who suffered from acute radiation syndrome as well as the people engaged in all kinds of works at Chernobyl NPP site. Technical characteristics of the equipment and techniques used to assess the internal exposure are given. (author)

  11. Is CP a gauge symmetry?

    International Nuclear Information System (INIS)

    Choi, K.; Kaplan, D.B.; Nelson, A.E.

    1993-01-01

    Conventional solutions to the strong CP problem all require the existence of global symmetries. However, quantum gravity may destroy global symmetries, making it hard to understand why the electric dipole moment of the neutron (EDMN) is so small. We suggest here that CP is actually a discrete gauge symmetry, and is therefore not violated by quantum gravity. We show that four-dimensional CP can arise as a discrete gauge symmetry in theories with dimensional compactification, if the original number of Minkowski dimensions equals 8k+1, 8k+2 or 8k+3, and if there are certain restrictions on the gauge group; these conditions are met by superstrings. CP may then be broken spontaneously below 10 9 GeV, explaining the observed CP violation in the kaon system without inducing a large EDMN. We discuss the phenomenology of such models, as well as the peculiar properties of cosmic 'SP strings' which could be produced at the compactification scale. Such strings have the curious property that a particle carried around the string is turned into its CP conjugate. A single CP string renders four-dimensional space-time nonorientable. (orig.)

  12. Lie-algebra approach to symmetry breaking

    International Nuclear Information System (INIS)

    Anderson, J.T.

    1981-01-01

    A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian

  13. Fifteenth annual meeting of the International Working Group on Fast Reactors. Summary report

    International Nuclear Information System (INIS)

    1982-09-01

    The Fifteenth Annual Meeting of the IWGFR was held in accordance with the recommendation of the previous Annual Group Meeting, in Obninsk, USSR, Vienna from 30 March to 2 April 1982. The meeting was attended by the Member States of the group: France, the Federal Republic of Germany, Italy, Japan, the United Kingdom, and the USA, as well as by representatives from CEC, IAEA and OECD and observer from the USSR. This document includes: review of the IWGFR Activities for the period since the Eleventh Annual Meeting of the Group; preliminary programme of international conference on breeder reactors as a world energy resource and the breeder fuel cycle; list of meetings on atomic energy which may be of interest to the IWGFR Members; IWGFR criteria for supporting some of the international conferences; list of proposed topics for the IWGFR Specialists' Meetings; list of topics for review articles on LMFBR recommended for publication by the IAEA; list of meetings sponsored by the IWGFR; a list of members of the International Working Group on Fast Reactors

  14. Sixteenth annual meeting of the International Working Group on Fast Reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-10-01

    The Sixteenth Annual Meeting of the IWGFR was held in accordance with the recommendation of the previous Annual Meeting Group, in Vienna from 12-15 April 1983. The meeting was attended by the Member States of the group: France, the Federal Republic of Germany, Italy, Japan, the United Kingdom, and the USA, as well as by representatives from CEC, IAEA and OECD and observer from the USSR. This document includes: review of the IWGFR Activities for the period since the Eleventh Annual Meeting of the Group; preliminary programme of international conference on breeder reactors as a world energy resource and the breeder fuel cycle; list of meetings on atomic energy which may be of interest to the IWGFR Members; IWGFR criteria for supporting some of the international conferences; list of proposed topics for the IWGFR Specialists' Meetings; list of topics for review articles on LMFBR recommended for publication by the IAEA; list of meetings sponsored by the IWGFR; a list of members of the International Working Group on Fast Reactors.

  15. Fifteenth annual meeting of the International Working Group on Fast Reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-09-01

    The Fifteenth Annual Meeting of the IWGFR was held in accordance with the recommendation of the previous Annual Group Meeting, in Obninsk, USSR, Vienna from 30 March to 2 April 1982. The meeting was attended by the Member States of the group: France, the Federal Republic of Germany, Italy, Japan, the United Kingdom, and the USA, as well as by representatives from CEC, IAEA and OECD and observer from the USSR. This document includes: review of the IWGFR Activities for the period since the Eleventh Annual Meeting of the Group; preliminary programme of international conference on breeder reactors as a world energy resource and the breeder fuel cycle; list of meetings on atomic energy which may be of interest to the IWGFR Members; IWGFR criteria for supporting some of the international conferences; list of proposed topics for the IWGFR Specialists' Meetings; list of topics for review articles on LMFBR recommended for publication by the IAEA; list of meetings sponsored by the IWGFR; a list of members of the International Working Group on Fast Reactors.

  16. Sixteenth annual meeting of the International Working Group on Fast Reactors. Summary report

    International Nuclear Information System (INIS)

    1983-10-01

    The Sixteenth Annual Meeting of the IWGFR was held in accordance with the recommendation of the previous Annual Meeting Group, in Vienna from 12-15 April 1983. The meeting was attended by the Member States of the group: France, the Federal Republic of Germany, Italy, Japan, the United Kingdom, and the USA, as well as by representatives from CEC, IAEA and OECD and observer from the USSR. This document includes: review of the IWGFR Activities for the period since the Eleventh Annual Meeting of the Group; preliminary programme of international conference on breeder reactors as a world energy resource and the breeder fuel cycle; list of meetings on atomic energy which may be of interest to the IWGFR Members; IWGFR criteria for supporting some of the international conferences; list of proposed topics for the IWGFR Specialists' Meetings; list of topics for review articles on LMFBR recommended for publication by the IAEA; list of meetings sponsored by the IWGFR; a list of members of the International Working Group on Fast Reactors

  17. Arithmetic crystal classes of magnetic symmetries

    International Nuclear Information System (INIS)

    Angelova, M.N.; Boyle, L.L.

    1993-01-01

    The symmetries and properties of a broad class of magnetic crystals are described by magnetic space groups which contain both (unitary) spatial symmetry operations and their combinations with the (anti-unitary operation of) time inversion, 0. The spatial symmetry operations form a halving, non-magnetic, space group H of the magnetic group M such that M=H+aH. As an abstract group the magnetic group M is isomorphic to a non-magnetic group G. The anti-unitary operator a is simply the time inversion 0 when M is a grey group but a product of time inversion with some spatial operation belonging to the coset G-H when M is a black-and-white group. (Author)

  18. Automorphic Lie algebras with dihedral symmetry

    International Nuclear Information System (INIS)

    Knibbeler, V; Lombardo, S; A Sanders, J

    2014-01-01

    The concept of automorphic Lie algebras arises in the context of reduction groups introduced in the early 1980s in the field of integrable systems. automorphic Lie algebras are obtained by imposing a discrete group symmetry on a current algebra of Krichever–Novikov type. Past work shows remarkable uniformity between algebras associated to different reduction groups. For example, if the base Lie algebra is sl 2 (C) and the poles of the automorphic Lie algebra are restricted to an exceptional orbit of the symmetry group, changing the reduction group does not affect the Lie algebra structure. In this research we fix the reduction group to be the dihedral group and vary the orbit of poles as well as the group action on the base Lie algebra. We find a uniform description of automorphic Lie algebras with dihedral symmetry, valid for poles at exceptional and generic orbits. (paper)

  19. Consensus statement update on posttraumatic stress disorder from the international consensus group on depression and anxiety.

    Science.gov (United States)

    Ballenger, James C; Davidson, Jonathan R T; Lecrubier, Yves; Nutt, David J; Marshall, Randall D; Nemeroff, Charles B; Shalev, Arieh Y; Yehuda, Rachel

    2004-01-01

    To provide an update to the "Consensus Statement on Posttraumatic Stress Disorder From the International Consensus Group on Depression and Anxiety" that was published in a supplement to The Journal of Clinical Psychiatry (2000) by presenting important developments in the field, the latest recommendations for patient care, and suggestions for future research. The 4 members of the International Consensus Group on Depression and Anxiety were James C. Ballenger (chair), Jonathan R. T. Davidson, Yves Lecrubier, and David J. Nutt. Other faculty who were invited by the chair were Randall D. Marshall, Charles B. Nemeroff, Arieh Y. Shalev, and Rachel Yehuda. The consensus statement is based on the 7 review articles in this supplement and the related scientific literature. Group meetings were held over a 2-day period. On day 1, the group discussed topics to be represented by the 7 review articles in this supplement, and the chair identified key issues for further debate. On day 2, the group discussed these issues to arrive at a consensus view. After the group meetings, the consensus statement was drafted by the chair and approved by all faculty. There have been advancements in the science and treatment of posttraumatic stress disorder. Attention to this disorder has increased with recent world events; however, continued efforts are needed to improve diagnosis, treatment, and prevention of posttraumatic stress disorder.

  20. Symmetry Festival 2016

    CERN Document Server

    2016-01-01

    The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.

  1. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    IAS Admin

    At the Heart of Quantum Field Theory! Aritra Kr. ... principle of symmetry was not held as something very fundamental ... principle of local symmetry: the laws of physics are invariant un- .... Next, we would show that different coefficients of a state ...

  2. Charged fluids with symmetries

    Indian Academy of Sciences (India)

    It is possible to introduce many types of symmetries on the manifold which restrict the ... metric tensor field and generate constants of the motion along null geodesics .... In this analysis we have studied the role of symmetries for charged perfect ...

  3. Symmetry and Interculturality

    Science.gov (United States)

    Marchis, Iuliana

    2009-01-01

    Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.

  4. A search for symmetries in the genetic code

    International Nuclear Information System (INIS)

    Hornos, J.E.M.; Hornos, Y.M.M.

    1991-01-01

    A search for symmetries based on the classification theorem of Cartan for the compact simple Lie algebras is performed to verify to what extent the genetic code is a manifestation of some underlying symmetry. An exact continuous symmetry group cannot be found to reproduce the present, universal code. However a unique approximate symmetry group is compatible with codon assignment for the fundamental amino acids and the termination codon. In order to obtain the actual genetic code, the symmetry must be slightly broken. (author). 27 refs, 3 figs, 6 tabs

  5. Cross-year peer tutoring on internal medicine wards: results of a qualitative focus group analysis

    Directory of Open Access Journals (Sweden)

    Krautter M

    2014-09-01

    Full Text Available Markus Krautter,1 Sven Andreesen,2 Nadja Köhl-Hackert,2 Katja Hoffmann,3 Wolfgang Herzog,2 Christoph Nikendei2 1Department of Nephrology, University of Heidelberg, 2Department of General Internal Medicine and Psychosomatics, University of Heidelberg Medical Hospital, 3Department of General Practice and Health Services Research, University Hospital Heidelberg, Heidelberg, Germany Background: Peer-assisted learning (PAL has become a well-accepted teaching method within medical education. However, descriptions of on-ward PAL programs are rare. A focus group analysis of a newly established PAL program on an internal medicine ward was conducted to provide insights into PAL teaching from a student perspective.Purpose: To provide insights into students' experiences regarding their on-ward training with and without accompanying PAL tutors.Methods: A total of N=168 medical students in their sixth semester participated in the investigation (intervention group: N=88; control group: N=80. The intervention group took part in the PAL program, while the control group received standard on-ward training. There were seven focus groups with N=43 participants (intervention group: four focus groups, N=28 participants; control group: three focus groups, N=15 participants. The discussions were analyzed using content analysis.Results: The intervention group emphasized the role of the tutors as competent and well-trained teachers, most beneficial in supervising clinical skills. Tutors motivate students, help them to integrate into the ward team, and provide a non-fear-based working relationship whereby students' anxiety regarding working on ward decreases. The control group had to rely on autodidactic learning strategies when neither supervising physicians nor final-year students were available.Conclusion: On-ward PAL programs represent a particularly valuable tool for students' support in training clinical competencies on ward. The tutor–student working alliance

  6. Symmetry and fermion degeneracy on a lattice

    International Nuclear Information System (INIS)

    Raszillier, H.

    1982-03-01

    In this paper we consider the general form of finite difference approximation to the Dirac (Weyl) Hamiltonian on a lattice and investigate systematically the dependence on symmetry of the number of particles described by it. Our result is, that to a symmetry - expressed by a crystallographic space group - there corresponds a minimal number of particles, which are associated to prescribed points of momentum space (the unit cell of the reciprocal lattice). For convenience of the reader we show, using the existing detailed descriptions of space groups, how these results look for all the relevant (symmorphic) symmetry groups. Only for lattice Hamiltonians with a momentum dependent mass term can this degeneracy be reduced and even eliminated without reducing the symmetry. (orig./HSI)

  7. Symbolic Detection of Permutation and Parity Symmetries of Evolution Equations

    KAUST Repository

    Alghamdi, Moataz

    2017-06-18

    We introduce a symbolic computational approach to detecting all permutation and parity symmetries in any general evolution equation, and to generating associated invariant polynomials, from given monomials, under the action of these symmetries. Traditionally, discrete point symmetries of differential equations are systemically found by solving complicated nonlinear systems of partial differential equations; in the presence of Lie symmetries, the process can be simplified further. Here, we show how to find parity- and permutation-type discrete symmetries purely based on algebraic calculations. Furthermore, we show that such symmetries always form groups, thereby allowing for the generation of new group-invariant conserved quantities from known conserved quantities. This work also contains an implementation of the said results in Mathematica. In addition, it includes, as a motivation for this work, an investigation of the connection between variational symmetries, described by local Lie groups, and conserved quantities in Hamiltonian systems.

  8. Discrete symmetries in the heterotic-string landscape

    International Nuclear Information System (INIS)

    Athanasopoulos, P

    2015-01-01

    We describe a new type of discrete symmetry that relates heterotic-string models. It is based on the spectral flow operator which normally acts within a general N = (2, 2) model and we use this operator to construct a map between N = (2, 0) models. The landscape of N = (2, 0) models is of particular interest among all heterotic-string models for two important reasons: Firstly, N =1 spacetime SUSY requires (2, 0) superconformal invariance and secondly, models with the well motivated by the Standard Model SO(10) unification structure are of this type. This idea was inspired by a new discrete symmetry in the space of fermionic ℤ 2 × ℤ 2 heterotic-string models that exchanges the spinors and vectors of the SO(10) GUT group, dubbed spinor-vector duality. We will describe how to generalize this to arbitrary internal rational Conformal Field Theories. (paper)

  9. Discrete symmetries in the heterotic-string landscape

    Science.gov (United States)

    Athanasopoulos, P.

    2015-07-01

    We describe a new type of discrete symmetry that relates heterotic-string models. It is based on the spectral flow operator which normally acts within a general N = (2, 2) model and we use this operator to construct a map between N = (2, 0) models. The landscape of N = (2, 0) models is of particular interest among all heterotic-string models for two important reasons: Firstly, N =1 spacetime SUSY requires (2, 0) superconformal invariance and secondly, models with the well motivated by the Standard Model SO(10) unification structure are of this type. This idea was inspired by a new discrete symmetry in the space of fermionic ℤ2 × ℤ2 heterotic-string models that exchanges the spinors and vectors of the SO(10) GUT group, dubbed spinor-vector duality. We will describe how to generalize this to arbitrary internal rational Conformal Field Theories.

  10. 76 FR 44491 - Group Health Plans and Health Insurance Issuers: Rules Relating to Internal Claims and Appeals...

    Science.gov (United States)

    2011-07-26

    ... 37208) entitled, ``Group Health Plans and Health Insurance Issuers: Rules Relating to Internal Claims..., ``Group Health Plans and Health Insurance Issuers: Rules Relating to Internal Claims and Appeals and... external review processes for group health plans and health insurance issuers offering coverage in the...

  11. Symmetry breaking by bifundamentals

    Science.gov (United States)

    Schellekens, A. N.

    2018-03-01

    We derive all possible symmetry breaking patterns for all possible Higgs fields that can occur in intersecting brane models: bifundamentals and rank-2 tensors. This is a field-theoretic problem that was already partially solved in 1973 by Ling-Fong Li [1]. In that paper the solution was given for rank-2 tensors of orthogonal and unitary group, and U (N )×U (M ) and O (N )×O (M ) bifundamentals. We extend this first of all to symplectic groups. When formulated correctly, this turns out to be straightforward generalization of the previous results from real and complex numbers to quaternions. The extension to mixed bifundamentals is more challenging and interesting. The scalar potential has up to six real parameters. Its minima or saddle points are described by block-diagonal matrices built out of K blocks of size p ×q . Here p =q =1 for the solutions of Ling-Fong Li, and the number of possibilities for p ×q is equal to the number of real parameters in the potential, minus 1. The maximum block size is p ×q =2 ×4 . Different blocks cannot be combined, and the true minimum occurs for one choice of basic block, and for either K =1 or K maximal, depending on the parameter values.

  12. International Working Group on Fast Reactors Thirteenth Annual Meeting. Summary Report. Part II

    International Nuclear Information System (INIS)

    1980-10-01

    The Thirteenth Annual Meeting of the IAEA International Working Group on Fast Reactors was held at the IAEA Headquarters, Vienna, Austria from 9 to 11 April 1980. The Summary Report (Part I) contains the Minutes of the Meeting. The Summary Report (Part II) contains the papers which review the national programme in the field of LMFBRs and other presentations at the Meeting. The Summary Report (Part III) contains the discussions on the review of the national programmes

  13. International Working Group on Fast Reactors Thirteenth Annual Meeting. Summary Report. Part I

    International Nuclear Information System (INIS)

    1980-09-01

    The Thirteenth Annual Meeting of the IAEA International Working Group on Fast Reactors was held at the IAEA Headquarters, Vienna, Austria from 9 to 11 April 1980. The Summary Report (Part I) contains the Minutes of the Meeting. The Summary Report (Part II) contains the papers which review the national programme in the field of LMFBRs and other presentations at the Meeting. The Summary Report (Part III) contains the discussions on the review of the national programmes

  14. International Working Group on Past Reactors Thirteenth Annual Meeting. Summary Report. Part III

    International Nuclear Information System (INIS)

    1981-04-01

    The Thirteenth Annual Meeting of the IAEA International Working Group on Fast Reactors was held at the IAEA Headquarters, Vienna, Austria from 9 to 11 April 1980. The Summary Report (Part I) contains the Minutes of the Meeting. The Summary Report (Part II) contains the papers which review the national programme in the field of LMFBRs and other presentations at the Meeting. The Summary Report (Part III) contains the discussions on the review of the national programmes

  15. PICNIC - FANS, ULTRAS AND HOOLIGANS - INTERNAL DIFFERENTIATE OF SUBCULTURE GROUP FOOTBALL FANS IN POLAND

    Directory of Open Access Journals (Sweden)

    Maciej Solinski

    2006-01-01

    Full Text Available This article is a main part of "Internal differentiate of subculture group of football fans in Poland" project. Author has tried to show how the subculture of football fans can be differentiate. Author ha presented three different subgroups of Polish fans. It is very important to divide this subculture, because each subgroup has different mentality and style. That is why I have paid the most attention on this element.

  16. The International Dermatology Outcome Measures Group: formation of patient-centered outcome measures in dermatology.

    Science.gov (United States)

    Gottlieb, Alice B; Levin, Adriane A; Armstrong, April W; Abernethy, April; Duffin, Kristina Callis; Bhushan, Reva; Garg, Amit; Merola, Joseph F; Maccarone, Mara; Christensen, Robin

    2015-02-01

    As quality standards are increasingly in demand throughout medicine, dermatology needs to establish outcome measures to quantify the effectiveness of treatments and providers. The International Dermatology Outcome Measures Group was established to address this need. Beginning with psoriasis, the group aims to create a tool considerate of patients and providers using the input of all relevant stakeholders in assessment of disease severity and response to treatment. Herein, we delineate the procedures through which consensus is being reached and the future directions of the project. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  17. The cross-cultural transition experience: Phenomenological analysis on a group of international students

    Directory of Open Access Journals (Sweden)

    Maria Grazia Novara

    2014-09-01

    Full Text Available This study is focused on exploration of experience of cultural transition that has lived a group of international students (European and not European host at an Italian University during particular experiential segment marking the transition from their culture of belonging to the new social and cultural context. From an epistemological point of view that aligns with the phenomenological tradition with individual and group interviews, it was monitored with a longitudinal methodology as the representation of the transit cross-cultural adaptation to the context it emerged from the interviews are associated through the dominant narrative themes. The results show how in the early stage of contact with the new culture, the group of students, both European and not, have felt a sense of disorientation associated with the loss of its cultural matrix. Over the next step of analysis is rather more clearly the difference between the group of European students, whose performances evoke an adjustment process easier and less based on feelings of ambivalence and close relationships that characterize the group of non-European students.Keywords: Cross-cultural transition; International students: Phenomenology  

  18. Twelfth annual meeting of the International Working Group on Fast Reactors. Summary report. Part I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-05-01

    The Twelfth Annual Meeting of the IWGFR was held in accordance with the recommendation of the previous AGM,in Vienna from 27 to 30 March 1979. The meeting was attended by the Member States of the group: France, the Federal Republic of Germany, Italy, Japan, the United Kingdom, and the USA, as well as by representatives from CEC, IAEA and OECD and observer from the USSR. This document includes: review of the IWGFR Activities for the period since the Eleventh Annual Meeting of the Group; preliminary programme of international conference on breeder reactors as a world energy resource and the breeder fuel cycle; list of meetings on atomic energy which may be of interest to the IWGFR Members; IWGFR criteria for supporting some of the international conferences; list of proposed topics for the IWGFR Specialists' Meetings; list of topics for review articles on LMFBR recommended for publication by the IAEA; list of meetings sponsored by the IWGFR; a list of members of the International Working Group on Fast Reactors.

  19. Twelfth annual meeting of the International Working Group on Fast Reactors. Summary report. Part I

    International Nuclear Information System (INIS)

    1979-05-01

    The Twelfth Annual Meeting of the IWGFR was held in accordance with the recommendation of the previous AGM,in Vienna from 27 to 30 March 1979. The meeting was attended by the Member States of the group: France, the Federal Republic of Germany, Italy, Japan, the United Kingdom, and the USA, as well as by representatives from CEC, IAEA and OECD and observer from the USSR. This document includes: review of the IWGFR Activities for the period since the Eleventh Annual Meeting of the Group; preliminary programme of international conference on breeder reactors as a world energy resource and the breeder fuel cycle; list of meetings on atomic energy which may be of interest to the IWGFR Members; IWGFR criteria for supporting some of the international conferences; list of proposed topics for the IWGFR Specialists' Meetings; list of topics for review articles on LMFBR recommended for publication by the IAEA; list of meetings sponsored by the IWGFR; a list of members of the International Working Group on Fast Reactors

  20. Recommendations for reporting economic evaluations of haemophilia prophylaxis: a nominal groups consensus statement on behalf of the Economics Expert Working Group of The International Prophylaxis Study Group.

    Science.gov (United States)

    Nicholson, A; Berger, K; Bohn, R; Carcao, M; Fischer, K; Gringeri, A; Hoots, K; Mantovani, L; Schramm, W; van Hout, B A; Willan, A R; Feldman, B M

    2008-01-01

    The need for clearly reported studies evaluating the cost of prophylaxis and its overall outcomes has been recommended from previous literature. To establish minimal ''core standards'' that can be followed when conducting and reporting economic evaluations of hemophilia prophylaxis. Ten members of the IPSG Economic Analysis Working Group participated in a consensus process using the Nominal Groups Technique (NGT). The following topics relating to the economic analysis of prophylaxis studies were addressed; Whose perspective should be taken? Which is the best methodological approach? Is micro- or macro-costing the best costing strategy? What information must be presented about costs and outcomes in order to facilitate local and international interpretation? The group suggests studies on the economic impact of prophylaxis should be viewed from a societal perspective and be reported using a Cost Utility Analysis (CUA) (with consideration of also reporting Cost Benefit Analysis [CBA]). All costs that exceed $500 should be used to measure the costs of prophylaxis (macro strategy) including items such as clotting factor costs, hospitalizations, surgical procedures, productivity loss and number of days lost from school or work. Generic and disease specific quality of lífe and utility measures should be used to report the outcomes of the study. The IPSG has suggested minimal core standards to be applied to the reporting of economic evaluations of hemophilia prophylaxis. Standardized reporting will facilitate the comparison of studies and will allow for more rational policy decisions and treatment choices.

  1. Symmetry Analysis of Gauge-Invariant Field Equations via a Generalized Harrison-Estabrook Formalism.

    Science.gov (United States)

    Papachristou, Costas J.

    The Harrison-Estabrook formalism for the study of invariance groups of partial differential equations is generalized and extended to equations that define, through their solutions, sections on vector bundles of various kinds. Applications include the Dirac, Yang-Mills, and self-dual Yang-Mills (SDYM) equations. The latter case exhibits interesting connections between the internal symmetries of SDYM and the existence of integrability characteristics such as a linear ("inverse scattering") system and Backlund transformations (BT's). By "verticalizing" the generators of coordinate point transformations of SDYM, nine nonlocal, generalized (as opposed to local, point) symmetries are constructed. The observation is made that the prolongations of these symmetries are parametric BT's for SDYM. It is thus concluded that the entire point group of SDYM contributes, upon verticalization, BT's to the system.

  2. Spontaneous symmetry breaking in local gauge quantum field theory; the Higgs mechanism

    International Nuclear Information System (INIS)

    Strocchi, F.

    1977-01-01

    Spontaneous symmetry breakings in indefinite metric quantum field theories are analyzed and a generalization of the Goldstone theorem is proved. The case of local gauge quantum field theories is discussed in detail and a characterization is given of the occurrence of the Higgs mechanism versus the Goldstone mechanism. The Higgs phenomenon is explained on general grounds without the introduction of the so-called Higgs fields. The basic property is the relation between the local internal symmetry group and the local group of gauge transformations of the second kind. Spontaneous symmetry breaking of c-number gauge transformations of the second kind is shown to always occur if there are charged local fields. The implications about the absence of mass gap in the Wightman functions and the occurrence of massless particles associated with the unbroken generators in the Higgs phenomenon are discussed. (orig.) [de

  3. Dual Symmetry in Bent-Core Liquid Crystals and Unconventional Superconductors

    Directory of Open Access Journals (Sweden)

    Vladimir Lorman

    2010-01-01

    Full Text Available We extend the Landau theory of bent-core mesophases and d-wave high-Tc superconductors by considering additional secondary pseudo-proper order parameters. These systems exhibit a remarkable analogy relating their symmetry groups, lists of phases, and an infinite set of physical tensors. This analogy lies upon an internal dual structure shared by the two theories. We study the dual operator transforming rotations into translations in liquid crystals, and gauge symmetries into rotations in superconductors. It is used to classify the bent-core line defects, and to analyze the electronic gap structure of lamellar d-wave superfluids.

  4. Symmetry-adapted HAM/3 method and its application to some symmetric molecules

    Directory of Open Access Journals (Sweden)

    Narita Susumu

    2004-01-01

    Full Text Available The semiempirical HAM/3 method developed by Lindholm and coworkers about two decades ago has been known to have a deficiency that splits energies for the degenerate energy states. We have recently proposed a group-theoretical approach to remedy the internally broken symmetry of the HAM/3 Hamiltonians. In this paper, we present some results of its application to various small molecules with symmetry Td, C3v, and D3h. The proposed scheme gives correct degeneracy for these molecules.

  5. Symmetry-adapted HAM/3 method and its application to some symmetric molecules

    OpenAIRE

    Narita, Susumu; Shibuya, Tai-ichi; Fujiwara, Fred Y.; Takahata, Yuji

    2004-01-01

    The semiempirical HAM/3 method developed by Lindholm and coworkers about two decades ago has been known to have a deficiency that splits energies for the degenerate energy states. We have recently proposed a group-theoretical approach to remedy the internally broken symmetry of the HAM/3 Hamiltonians. In this paper, we present some results of its application to various small molecules with symmetry Td, C3v, and D3h. The proposed scheme gives correct degeneracy for these molecules. O método...

  6. Hidden gauge symmetry

    International Nuclear Information System (INIS)

    O'Raifeartaigh, L.

    1979-01-01

    This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)

  7. Sequential flavor symmetry breaking

    International Nuclear Information System (INIS)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-01-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  8. Sequential flavor symmetry breaking

    Science.gov (United States)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-08-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  9. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2015-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry.   It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

  10. Correlative Studies in Clinical Trials: A Position Statement From the International Thyroid Oncology Group.

    Science.gov (United States)

    Bible, Keith C; Cote, Gilbert J; Demeure, Michael J; Elisei, Rossella; Jhiang, Sissy; Ringel, Matthew D

    2015-12-01

    Patients with progressive thyroid cancer in distant metastatic sites represent a population with a need for new therapeutic options. Aspiring to improve the treatment of such patients, the objective of this position statement from the International Thyroid Oncology Group (ITOG) is to clarify the importance of incorporating high-quality correlative studies into clinical trials. ITOG was formed to develop and support high-quality multicenter and multidisciplinary clinical trials for patients with aggressive forms of thyroid cancer. The Correlative Sciences Committee of the ITOG focuses on the quality and types of correlative studies included in ITOG-associated clinical trials. This document represents expert consensus from ITOG regarding this issue based on extensive collective experience in clinical and translational trials informed by basic science. The Correlative Studies Committee identified an international writing group representative of diverse specialties, including basic sciences. Drafts were reviewed by all members of the writing group, the larger committee, and the ITOG board. After consideration of all comments by the writing group and modification of the document, the final document was then approved by the authors and the ITOG board. High-quality correlative studies, which include variety in the types of correlates, should be intrinsic to the design of thyroid cancer clinical trials to offer the best opportunity for each study to advance treatment for patients with advanced and progressive thyroid cancer.

  11. PREFACE: Symmetries in Science XVI

    Science.gov (United States)

    2014-10-01

    -session, topics ranging from theoretical chemistry and molecular physics via fundamental problems in quantum theory to thermodynamics, nonlinear dynamics, soliton theory and finally cosmology, were examined and lively discussed. Nearly all the talks can also be viewed on the conference website. The majority of participants contributed to these Proceedings but some were unable to do so as their results were either previously submitted or published elsewhere. We refer to: · Quesne C 2013, J. Math. Phys. 54, 102102. · Spera M 2013, (Nankai Series in Pure, Applied Mathematics and Theoretical Physics): 11 Symmetries and Groups in Contemporary Physics: pp. 593-598 Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics Tianjin, China, 20 - 26 August 2012 (World Scientific, Singapore) · Snobl L and Winternitz P 2014, Classification and Identification of Lie Algebras, CRM Monograph Series 33 (Montreal) ISBN-10: 0-8218-4355-9, ISBN-13: 978-0-8218-4355-0 (http://www.ams.org/bookstore?fn=20&arg1=crmmseries&ikey=CRMM-33). Our personal thanks to Daniel and family! Endless support from the Schenk Family who, among other things, sponsored (yet again) the entire conference dinner (including wines and banquet hall) meant that some costs could be alleviated. We could therefore assist various colleagues from economically-weak countries, despite the lack of external funding. A financial deficit meant we would have had to forego the Conference Proceedings, published in previous years by IOP. After long deliberations, and with donations from Gerhard Berssenbrügge, Dr. Dr. Stephan Hauk and Dr. Volker Weisswange, this could be facilitated. We are very grateful to these private donors for their generous and wholehearted support. The staff of Collegium Mehrerau is also to be thanked for their hospitality. Finally, our sincere thanks to Yvette not only for her preparatory work and support during the conference, but also for her persistent interest and help in producing

  12. Reports and recommendations from COSPAR Planetary Exploration Committee (PEX) & International Lunar Exploration Working Group (ILEWG)

    Science.gov (United States)

    Ehrenfreund, Pascale; Foing, Bernard

    2014-05-01

    In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and

  13. Group theoretical methods in physics. [Tuebingen, July 18-22, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, P; Rieckers, A

    1978-01-01

    This volume comprises the proceedings of the 6th International Colloquium on Group Theoretical Methods in Physics, held at Tuebingen in July 1977. Invited papers were presented on the following topics: supersymmetry and graded Lie algebras; concepts of order and disorder arising from molecular physics; symplectic structures and many-body physics; symmetry breaking in statistical mechanics and field theory; automata and systems as examples of applied (semi-) group theory; renormalization group; and gauge theories. Summaries are given of the contributed papers, which can be grouped as follows: supersymmetry, symmetry in particles and relativistic physics; symmetry in molecular and solid state physics; broken symmetry and phase transitions; structure of groups and dynamical systems; representations of groups and Lie algebras; and general symmetries, quantization. Those individual papers in scope for the TIC data base are being entered from ATOMINDEX tapes. (RWR)

  14. International Working Group on Fast Reactors Sixth Annual Meeting. Summary Report

    International Nuclear Information System (INIS)

    1973-01-01

    The Agenda of the Meeting was as follows: 1. Review of IWGFR Activities - 1a. Approval of the minutes of the Fifth IWGFR Meeting. 1b. Report by Scientific Secretary regarding the activities of the Group. 2. Comments on National Programmes on Fast Breeder Reactors. 3. International Coordination of the Schedule for Major Fast Reactor Meetings and other major international meetings having a predominant fast reactor interest. 4. Consideration of Conferences on Fast Reactors. 4a. IAEA Symposium on Fuel and Fuel Elements for Fast Reactors, Brussels, Belgium 2-6 July 1973. 4b. International Symposium on Physics of Fast Reactors, Tokyo, Japan, 16 to 23 October 1973. 4c. International Conference on Fast Reactor Power Stations, London, UK, 11 to 14 March 1974 . 4d. Suggestions of the IWGFR members on other conferences. 5. Consideration of a Schedule for Specialists' Meetings in 1973-74. 6. Other Business - 6a. First-aid in Sodium Burns. 6b. Principles of Good Practice for Safe Operation of Sodium Circuits. 6c. Bibliography on Fast Reactors. 7. The Date and Place of the Seventh Annual Meeting of the IWGFR

  15. Nanostructure symmetry: Relevance for physics and computing

    International Nuclear Information System (INIS)

    Dupertuis, Marc-André; Oberli, D. Y.; Karlsson, K. F.; Dalessi, S.; Gallinet, B.; Svendsen, G.

    2014-01-01

    We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented

  16. Nanostructure symmetry: Relevance for physics and computing

    Energy Technology Data Exchange (ETDEWEB)

    Dupertuis, Marc-André; Oberli, D. Y. [Laboratory for Physics of Nanostructure, EPF Lausanne (Switzerland); Karlsson, K. F. [Department of Physics, Chemistry, and Biology (IFM), Linköping University (Sweden); Dalessi, S. [Computational Biology Group, Department of Medical Genetics, University of Lausanne (Switzerland); Gallinet, B. [Nanophotonics and Metrology Laboratory, EPF Lausanne (Switzerland); Svendsen, G. [Dept. of Electronics and Telecom., Norwegian University of Science and Technology, Trondheim (Norway)

    2014-03-31

    We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented.

  17. Imaging in pleural mesothelioma: a review of the 11th International Conference of the International Mesothelioma Interest Group.

    Science.gov (United States)

    Armato, Samuel G; Labby, Zacariah E; Coolen, Johan; Klabatsa, Astero; Feigen, Malcolm; Persigehl, Thorsten; Gill, Ritu R

    2013-11-01

    Imaging of malignant pleural mesothelioma (MPM) is essential to the diagnosis, assessment, and monitoring of this disease. The complex morphology and growth pattern of MPM, however, create unique challenges for image acquisition and interpretation. These challenges have captured the attention of investigators around the world, some of whom presented their work at the 2012 International Conference of the International Mesothelioma Interest Group (iMig 2012) in Boston, Massachusetts, USA, September 2012. The measurement of tumor thickness on computed tomography (CT) scans is the current standard of care in the assessment of MPM tumor response to therapy; in this context, variability among observers in the measurement task and in the tumor response classification categories derived from such measurements was reported. Alternate CT-based tumor response criteria, specifically direct measurement of tumor volume change and change in lung volume as a surrogate for tumor response, were presented. Dynamic contrast-enhanced CT has a role in other settings, but investigation into its potential use for imaging mesothelioma tumor perfusion only recently has been initiated. Magnetic resonance imaging (MRI) and positron-emission tomography (PET) are important imaging modalities in MPM and complement the information provided by CT. The pointillism sign in diffusion-weighted MRI was reported as a potential parameter for the classification of pleural lesions as benign or malignant, and PET parameters that measure tumor activity and functional tumor volume were presented as indicators of patient prognosis. Also reported was the use of PET/CT in the management of patients who undergo high-dose radiation therapy. Imaging for MPM impacts everything from initial patient diagnosis to the outcomes of clinical trials; iMig 2012 captured this broad range of imaging applications as investigators exploit technology and implement multidisciplinary approaches toward the benefit of MPM patients

  18. Generalized symmetry algebras

    International Nuclear Information System (INIS)

    Dragon, N.

    1979-01-01

    The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)

  19. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  20. Segmentation Using Symmetry Deviation

    DEFF Research Database (Denmark)

    Hollensen, Christian; Højgaard, L.; Specht, L.

    2011-01-01

    of the CT-scans into a single atlas. Afterwards the standard deviation of anatomical symmetry for the 20 normal patients was evaluated using non-rigid registration and registered onto the atlas to create an atlas for normal anatomical symmetry deviation. The same non-rigid registration was used on the 10...... hypopharyngeal cancer patients to find anatomical symmetry and evaluate it against the standard deviation of the normal patients to locate pathologic volumes. Combining the information with an absolute PET threshold of 3 Standard uptake value (SUV) a volume was automatically delineated. The overlap of automated....... The standard deviation of the anatomical symmetry, seen in figure for one patient along CT and PET, was extracted for normal patients and compared with the deviation from cancer patients giving a new way of determining cancer pathology location. Using the novel method an overlap concordance index...

  1. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  2. Dynamical symmetries for fermions

    International Nuclear Information System (INIS)

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs

  3. Applications of Symmetry Methods to the Theory of Plasma Physics

    Directory of Open Access Journals (Sweden)

    Giampaolo Cicogna

    2006-02-01

    Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.

  4. International Working Group on Fast Reactors Second Annual Meeting. Summary Report

    International Nuclear Information System (INIS)

    1969-01-01

    The Agenda of the Meeting was as follows: Opening of the meeting. 2. Appraisal of the IWGFB's activity for the period from the first annual meeting of the Group. 3. Comments on national programmes on fast breeder reactors. 4. Presentation of general findings and conclusions of national and regional meetings on fast reactor problems held in represented countries and international organisations last year. 5. Comments on the programmes of international meetings on fast reactors to be held in 1969. 6. Consideration of a schedule for meetings on fast reactors in 1970. 7. Suggestions for the topics and location of specialists' meetings in 1969-1970. 8. Suggestions for reviews and studies in the field of fast reactors. 9. The time and place of the third annual meeting of the IWGFR. 10. Closing of the meeting

  5. Rapid monitoring of large groups of internally contaminated people following a radiation accident

    International Nuclear Information System (INIS)

    1994-05-01

    In the management of an emergency, it is necessary to assess the radiation exposures of people in the affected areas. An essential component in the programme is the monitoring of internal contamination. Existing fixed installations for the assessment of incorporated radionuclides may be of limited value in these circumstances because they may be inconveniently sited, oversensitive for the purpose, or inadequately equipped and staffed to cope with the large numbers referred to them. The IAEA considered it important to produce guidance on rapid monitoring of large groups of internally contaminated people. The purpose of this document is to provide Member States with an overview on techniques that can be applied during abnormal or accidental situations. Refs and figs

  6. 78 FR 53194 - Advisory Group to the Internal Revenue Service Tax Exempt and Government Entities Division (TE/GE...

    Science.gov (United States)

    2013-08-28

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service Advisory Group to the Internal Revenue Service Tax Exempt and Government Entities Division (TE/GE); Meeting AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice. SUMMARY: The Advisory Committee on Tax Exempt and Government Entities (ACT) will...

  7. Internal space decimation for lattice gauge theories

    International Nuclear Information System (INIS)

    Flyvbjerg, H.

    1984-01-01

    By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)

  8. IGORR-IV - Proceedings of the fourth meeting of the International Group on Research Reactors

    International Nuclear Information System (INIS)

    Rosenbalm, K.F.

    1995-01-01

    The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results

  9. IGORR-IV: Proceedings of the fourth meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    Rosenbalm, K.F.

    1995-01-01

    The fourth meeting of the International Group on Research Reactors (IGORR-IV) was attended by was good 55 registered participants from 28 organizations in 13 countries, which compares well with the previous meetings. Twenty-nine papers were presented in five sessions over the two-day meeting. Session subjects were: Operating Research Reactors and Facility Upgrades; Research Reactors in Desin and Construction; Research, Development, and Analysis Results of Thermal Hydraulic Calculations, U 3 Si 2 Fuel Performance and Faibrication; Structural Materials Performance; Neutronics; Severe Accident analysis. Written versions of the papers or hard copies of the viewgraphs used are published in these Proceedings

  10. IGORR-IV -- Proceedings of the fourth meeting of the International Group on Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbalm, K.F. [comp.

    1995-12-31

    The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results.

  11. IGORR 2: Proceedings of the 2. meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    The International group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Sessions during this second meeting were devoted to research reactor reports (GRENOBLE reactor, FRM-II, HIFAR, PIK, reactors at JAERI, MAPLE, ANS, NIST, MURR, TRIGA, BR-2, SIRIUS 2); other neutron sources; and two workshops were dealing with research and development results and needs and reports on progress in needed of R and D areas identified at IGORR 1.

  12. IGORR-IV: Proceedings of the fourth meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbalm, K F [comp.

    1995-07-01

    The fourth meeting of the International Group on Research Reactors (IGORR-IV) was attended by was good 55 registered participants from 28 organizations in 13 countries, which compares well with the previous meetings. Twenty-nine papers were presented in five sessions over the two-day meeting. Session subjects were: Operating Research Reactors and Facility Upgrades; Research Reactors in Desin and Construction; Research, Development, and Analysis Results of Thermal Hydraulic Calculations, U{sub 3}Si{sub 2} Fuel Performance and Faibrication; Structural Materials Performance; Neutronics; Severe Accident analysis. Written versions of the papers or hard copies of the viewgraphs used are published in these Proceedings.

  13. IGORR 2: Proceedings of the 2. meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    1992-01-01

    The International group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Sessions during this second meeting were devoted to research reactor reports (GRENOBLE reactor, FRM-II, HIFAR, PIK, reactors at JAERI, MAPLE, ANS, NIST, MURR, TRIGA, BR-2, SIRIUS 2); other neutron sources; and two workshops were dealing with research and development results and needs and reports on progress in needed of R and D areas identified at IGORR 1

  14. International studies on burnup credit criticality safety by an OECD/NEA working group

    International Nuclear Information System (INIS)

    Brady, M.C.; Okuno, H.; DeHart, M.D.; Nouri, A.; Sartori, E.

    1998-01-01

    The results and conclusions from a six-year study by an international benchmarking group in the comparison of computational methods for evaluating burnup credit in criticality safety analyses is presented. Approximately 20 participants from 12 countries have provided results for most problems. Four detailed benchmark problems for pressurized-water-reactor fuel have been completed. Results from work being finalized, addressing burnup credit for boiling-water-reactor fuel, are discussed, as well as planned activities for additional benchmarks, including mixed-oxide fuels, and other activities

  15. 15 years of existence of the International Consultative Group on Food Irradiation (ICGFI)

    International Nuclear Information System (INIS)

    Ehlermann, D.A.E.

    1999-01-01

    The ICGFI essentially contributed to international dissemination of unbiased information about the advantages and risks of food irradiation. The body has issued ICGFI publications containing codes of good practice for a variety of purposes, as eg. for operation of irradiation facilities for the treatment of food (GIP), or guidelines for due handling of irradiated food (GMP). Training courses have been offered to scientists, especially from developing countries, as well as for inspectors of national supervisory authorities. The activities of the advisory group as well as the conditions governing future activities are discussed. (orig./CB) [de

  16. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: towards category theory-like systematization of molecular/genetic biology.

    Science.gov (United States)

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2014-05-07

    methodology, there is fertile ground to consider a symmetry model for genetic coding based on our specific wallpaper group. A more integrated formulation containing "central dogma" for future molecular/genetic biology remains to be explored.

  17. Consensus statement on panic disorder from the International Consensus Group on Depression and Anxiety.

    Science.gov (United States)

    Ballenger, J C; Davidson, J R; Lecrubier, Y; Nutt, D J; Baldwin, D S; den Boer, J A; Kasper, S; Shear, M K

    1998-01-01

    To provide primary care clinicians with a better understanding of management issues in panic disorder and guide clinical practice with recommendations for appropriate pharmacotherapy. The 4 members of the International Consensus Group on Depression and Anxiety were James C. Ballenger (chair), Jonathan R. T. Davidson, Yves Lecrubier, and David J. Nutt. Four faculty invited by the chairman also participated: David S. Baldwin, Johan A. den Boer, Siegfried Kasper, and M. Katherine Shear. The consensus statement is based on the 6 review papers that are published in this supplement and on the scientific literature relevant to these issues. There were group meetings held during a 2-day period. On day 1, the group discussed each review paper and the chairman and discussant (Dr. Kasper) identified key issues for further debate. On day 2, the group discussed these key issues to arrive at a consensus view. After the group meetings, the consensus statement was drafted by the chairman and approved by all attendees. The consensus statement provides standard definitions for response and remission and identifies appropriate strategy for the management of panic disorder in a primary care setting. Serotonin selective reuptake inhibitors are recommended as drugs of first choice with a treatment period of 12 to 24 months. Pharmacotherapy should be discontinued slowly over a period of 4 to 6 months.

  18. Consensus statement on social anxiety disorder from the International Consensus Group on Depression and Anxiety.

    Science.gov (United States)

    Ballenger, J C; Davidson, J R; Lecrubier, Y; Nutt, D J; Bobes, J; Beidel, D C; Ono, Y; Westenberg, H G

    1998-01-01

    The goal of this consensus statement is to provide primary care clinicians with a better understanding of management issues in social anxiety disorder (social phobia) and guide clinical practice with recommendations for appropriate pharmacotherapy. The 4 members of the International Consensus Group on Depression and Anxiety were James C. Ballenger (chair), Jonathan R. T. Davidson, Yves Lecrubier, and David J. Nutt. Other faculty invited by the chair were Julio Bobes, Deborah C. Beidel, Yukata Ono, and Herman G. M. Westenberg. The consensus statement is based on the 7 review papers published in this supplement and on the scientific literature relevant to the issues reviewed in these papers. The group met over a 2-day period. On day 1, the group discussed each review paper, and the chair identified key issues for further debate. On day 2, the group discussed these issues to arrive at a consensus view. After the group meetings, the consensus statement was drafted by the chair and approved by all attendees. The consensus statement underlines the importance of recognizing social anxiety disorder and provides recommendations on how it may be distinguished from other anxiety disorders. It proposes definitions for response and remission and considers appropriate management strategies. Selective serotonin reuptake inhibitors are recommended as first-line therapy, and effective treatment should be continued for at least 12 months. Long-term treatment is indicated if symptoms are unresolved, the patient has a comorbid condition or a history of relapse, or there was an early onset of the disorder.

  19. Consensus statement on posttraumatic stress disorder from the International Consensus Group on Depression and Anxiety.

    Science.gov (United States)

    Ballenger, J C; Davidson, J R; Lecrubier, Y; Nutt, D J; Foa, E B; Kessler, R C; McFarlane, A C; Shalev, A Y

    2000-01-01

    To provide primary care clinicians with a better understanding of management issues in posttraumatic stress disorder (PTSD) and guide clinical practice with recommendations on the appropriate management strategy. The 4 members of the International Consensus Group on Depression and Anxiety were James C. Ballenger (chair), Jonathan R. T. Davidson, Yves Lecrubier, and David J. Nutt. Other faculty invited by the chair were Edna B. Foa, Ronald C. Kessler, Alexander C. McFarlane, and Arieh Y. Shalev. The consensus statement is based on the 6 review articles that are published in this supplement and the scientific literature relevant to the issues reviewed in these articles. Group meetings were held over a 2-day period. On day 1, the group discussed the review articles and the chair identified key issues for further debate. On day 2, the group discussed these issues to arrive at a consensus view. After the group meetings, the consensus statement was drafted by the chair and approved by all attendees. PTSD is often a chronic and recurring condition associated with an increased risk of developing secondary comorbid disorders, such as depression. Selective serotonin reuptake inhibitors are generally the most appropriate choice of first-line medication for PTSD, and effective therapy should be continued for 12 months or longer. The most appropriate psychotherapy is exposure therapy, and it should be continued for 6 months, with follow-up therapy as needed.

  20. International legal problem in combating 'Islamic State' terrorist group in Syria

    Directory of Open Access Journals (Sweden)

    Stevanović Miroslav

    2015-01-01

    Full Text Available 'Islamic State of Iraq and Syria' (ISIS has occupied parts of internationally recognized states and exerts further territorial pretensions. ISIS, also, implements a repressive rule, through violations of human rights and humanitarian law, which may constitute international crimes. In facing the threat od ISIS, the perception of international terrorism is important since this group has the features of a territorial entity. So far, facing with the threat of ISIS has been reduced to a model that is adopted by the UN Security Council against the terrorist network Al-Qaida. An international coalition of states, led by the United States, has undertaken air strikes on positions ISIS, on several grounds: the responsibility to protect, the protection of national security, and at the request of Iraq. At the same time, the strikes are applied in Syria, which can not be accountable for the actions of ISIS and has not requested international assistance. International law does not allow actions which would aim to destroy or jeopardize the territorial integrity or political independence of any sovereign and independent state, which is acting in accordance with the principle of equal rights and self-determination of peoples, and is hence governed by a representative government. The UNSC resolution 2249 remains short of recommending international armed action under the aegis of UNSC, but represents a step forward in recognizing the responsibility of this body in facing ISIS, at least as far as the 'destruction of refuge' is concerned. The use of force in the territory of Syria, without the express authorization of the UNSC is illegal, because terrorism does not constitute grounds for the use of force against countries. But, it opens broader issues of responsibility for the development of ISIS and the humanitarian crisis in the Middle East, as well as the functioning of the system of collective security. Overcoming the current crisis UNSC implies not just a

  1. 76 FR 37037 - Requirements for Group Health Plans and Health Insurance Issuers Relating to Internal Claims and...

    Science.gov (United States)

    2011-06-24

    ... Requirements for Group Health Plans and Health Insurance Issuers Relating to Internal Claims and Appeals and... interim final regulations published July 23, 2010 with respect to group health plans and health insurance..., group health plans, and health insurance issuers providing group health insurance coverage. The text of...

  2. Dynamical symmetry breakdown in SU(5) and SO(10)

    International Nuclear Information System (INIS)

    Shellard, R.C.

    1983-09-01

    Some restrictions imposed upon Grand Unified Theories by dynamical symmetry breakdown are examined. It is observed in particular, that theories with SU(5) as symmetry group, with 3 or more fermion families undergo dynamical symmetry breakdown, and some of the fermions will acquire mass at the Grand Unified scale. On the other hand, the SO(10) group, with 3 families is free from this problem. (Author) [pt

  3. Tracking gauge symmetry factorizability on intervals

    International Nuclear Information System (INIS)

    Ngoc-Khanh Tran

    2006-01-01

    We track the gauge symmetry breaking pattern by boundary conditions on fifth and higher-dimensional intervals. It is found that, with Dirichlet-Neumann boundary conditions, the Kaluza-Klein decomposition in five-dimension for arbitrary gauge group can always be factorized into that for separate subsets of at most two gauge symmetries, and so is completely solvable. Accordingly, we present a simple and systematic geometric method to unambiguously identify the gauge breaking/mixing content by general set of Dirichlet-Neumann boundary conditions. We then formulate a limit theorem on gauge symmetry factorizability to recapitulate this interesting feature. Albeit the breaking/mixing, a particularly simple check of orthogonality and normalization of fields' modes in effective 4-dim picture is explicitly obtained. An interesting chained-mixing of gauge symmetries in higher dimensions by Dirichlet-Neumann boundary conditions is also explicitly constructed. This study has direct applications to higgsless/GUT model building

  4. IGORR-1: Proceedings of the first meeting of the international group on research reactors

    International Nuclear Information System (INIS)

    West, C.D.

    1990-05-01

    Many organizations, in several countries, are planning or implementing new or upgraded research reactor projects, but there has been no organized forum devoted entirely to discussion and exchange of information in this field. Over the past year or so, informal discussions resulted in widespread agreement that such a forum would serve a useful purpose. Accordingly, a proposal to form a group was submitted to the leading organizations known to be involved in projects to build or upgrade reactor facilities. Essentially all agreed to join in the formation of the International Group on Research Reactors (IGORR) and nominated a senior staff member to serve on its international organizing committee. The first IGORR meeting took place on February 28--March 2, 1990. It was very successful and well attended; some 52 scientists and engineers from 25 organizations in 10 countries participated in 2-1/2 days of open and informative presentations and discussions. Two workshop sessions offered opportunities for more detailed interaction among participants and resulted in identification of common R ampersand D needs, sources of data, and planned new facilities. Individual papers have been cataloged separately

  5. International and National Expert Group Evaluations: Biological/Health Effects of Radiofrequency Fields

    Directory of Open Access Journals (Sweden)

    Vijayalaxmi

    2014-09-01

    Full Text Available The escalated use of various wireless communication devices, which emit non-ionizing radiofrequency (RF fields, have raised concerns among the general public regarding the potential adverse effects on human health. During the last six decades, researchers have used different parameters to investigate the effects of in vitro and in vivo exposures of animals and humans or their cells to RF fields. Data reported in peer-reviewed scientific publications were contradictory: some indicated effects while others did not. International organizations have considered all of these data as well as the observations reported in human epidemiological investigations to set-up the guidelines or standards (based on the quality of published studies and the “weight of scientific evidence” approach for RF exposures in occupationally exposed individuals and the general public. Scientists with relevant expertise in various countries have also considered the published data to provide the required scientific information for policy-makers to develop and disseminate authoritative health information to the general public regarding RF exposures. This paper is a compilation of the conclusions, on the biological effects of RF exposures, from various national and international expert groups, based on their analyses. In general, the expert groups suggested a reduction in exposure levels, precautionary approach, and further research.

  6. Fourteenth Annual Meeting of the International Working Group on Past Reactors. Summary Report. Part I

    International Nuclear Information System (INIS)

    1981-11-01

    The Fourteenth Annual Meeting of the IAEA-IWGFR was held in accordance with the recommendations of the previous Annual Group Meeting, at the Vienna International Centre, Vienna from 31 March to 3 April 1981. All Member States of the group were represented at the meeting: France, the Federal Republic of Germany, India, Italy, Japan, the Union of Soviet Socialist Republics, the United Kingdom and the United States of America. The meeting was also attended by representatives from the Commission of European Communities, the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development, the International Atomic Energy Agency and observers from Switzerland. The Agenda of the Meeting was as follows: 1. Review of IWGFR activities; 2. Consideration of future method of operation of the IWGFR; 3. Consideration of Conferences on Fast Reactors; 4. Consideration of the major recommendations of some of the IWGFR specialists' meetings for which the support of the IWGFR is requested; 5. Consideration of a schedule for specialists' meetings in 1981-1982; 6. Presentations and discussions on national programmes on fast breeder reactors.; 7. Recommendation of the IWGFR regarding a request of Switzerland concerning participation in the IWGFR; 8. The date and place of the Fifteenth Annual Meeting of the IWGFR

  7. Evaluation of single-nucleotide polymorphisms as internal controls in prenatal diagnosis of fetal blood groups.

    Science.gov (United States)

    Doescher, Andrea; Petershofen, Eduard K; Wagner, Franz F; Schunter, Markus; Müller, Thomas H

    2013-02-01

    Determination of fetal blood groups in maternal plasma samples critically depends on adequate amplification of fetal DNA. We evaluated the routine inclusion of 52 single-nucleotide polymorphisms (SNPs) as internal reference in our polymerase chain reaction (PCR) settings to obtain a positive internal control for fetal DNA. DNA from 223 plasma samples of pregnant women was screened for RHD Exons 3, 4, 5, and 7 in a multiplex PCR including 52 SNPs divided into four primer pools. Amplicons were analyzed by single-base extension and the GeneScan method in a genetic analyzer. Results of D screening were compared to standard RHD genotyping of amniotic fluid or real-time PCR of fetal DNA from maternal plasma. The vast majority of all samples (97.8%) demonstrated differences in maternal and fetal SNP patterns when tested with four primer pools. These differences were not observed in less than 2.2% of the samples most probably due to an extraction failure for adequate amounts of fetal DNA. Comparison of the fetal genotypes with independent results did not reveal a single false-negative case among samples (n = 42) with positive internal control and negative fetal RHD typing. Coamplification of 52 SNPs with RHD-specific sequences for fetal blood group determination introduces a valid positive control for the amplification of fetal DNA to avoid false-negative results. This new approach does not require a paternal blood sample. It may also be applicable to other assays for fetal genotyping in maternal blood samples. © 2012 American Association of Blood Banks.

  8. Symmetry breaking in gauge glasses

    International Nuclear Information System (INIS)

    Hansen, K.

    1988-09-01

    In order to explain why nature selects the gauge groups of the Standard Model, Brene and Nielsen have proposed a way to break gauge symmetry which does not rely on the existence of a Higgs field. The observed gauge groups will in this scheme appear as the only surviving ones when this mechanism is applied to a random selection of gauge groups. The essential assumption is a discrete space-time with random couplings. Some working assumptions were made for computational reasons of which the most important is that quantum fluctuations were neclected. This work presents an example which under the same conditions show that a much wider class of groups than predicted by Brene and Nielsen will be broken. In particular no possible Standard Model Group survives unbroken. Numerical calculations support the analytical result. (orig.)

  9. An International Standard for specifying the minimum potency of anti-D blood-grouping reagents: evaluation of a candidate preparation in an international collaborative study

    NARCIS (Netherlands)

    Thorpe, S. J.; Fox, B.; Heath, A. B.; Scott, M.; de Haas, M.; Kochman, S.; Padilla, A.

    2006-01-01

    The aim of this study was to evaluate a lyophilized monoclonal immunoglobulin M (IgM) anti-D preparation for use as an International Standard to specify a recommended minimum acceptable potency of anti-D blood-grouping reagents. The candidate International Standard (99/836) for specifying the

  10. Antiunitary symmetry operators in quantum mechanics

    International Nuclear Information System (INIS)

    Carinena, J.F.; Santander, M.

    1981-01-01

    A criterion to decide that some symmetries of a quantum system must be realized as antiunitary operators is given. It is based on some mathematical theorems about the second cohomology group of the symmetry group when expressed in terms of those of a normal subgroup and the corresponding factor group. It is also shown that this criterion implies that the only possibility for the unitary subgroup in the Galilean case is that generated by the space reflection and the connected component containing the identity; otherwise only massless systems would arise. (author)

  11. International anthropometric study of facial morphology in various ethnic groups/races.

    Science.gov (United States)

    Farkas, Leslie G; Katic, Marko J; Forrest, Christopher R; Alt, Kurt W; Bagic, Ivana; Baltadjiev, Georgi; Cunha, Eugenia; Cvicelová, Marta; Davies, Scott; Erasmus, Ilse; Gillett-Netting, Rhonda; Hajnis, Karel; Kemkes-Grottenthaler, Arianne; Khomyakova, Irena; Kumi, Ashizava; Kgamphe, J Stranger; Kayo-daigo, Nakamura; Le, Thuy; Malinowski, Andrzej; Negasheva, Marina; Manolis, Sotiris; Ogetürk, Murat; Parvizrad, Ramin; Rösing, Friedrich; Sahu, Paresh; Sforza, Chiarella; Sivkov, Stefan; Sultanova, Nigar; Tomazo-Ravnik, Tatjana; Tóth, Gábor; Uzun, Ahmet; Yahia, Eman

    2005-07-01

    When anthropometric methods were introduced into clinical practice to quantify changes in the craniofacial framework, features distinguishing various races/ethnic groups were discovered. To treat congenital or post-traumatic facial disfigurements in members of these groups successfully, surgeons require access to craniofacial databases based on accurate anthropometric measurements. Normative data of facial measurements are indispensable to precise determination of the degree of deviations from the normal. The set of anthropometric measurements of the face in the population studied was gathered by an international team of scientists. Investigators in the country of the given ethnic group, experienced and/or specially trained in anthropometric methods, carried out the measurements. The normal range in each resultant database was then established, providing valuable information about major facial characteristics. Comparison of the ethnic groups' databases with the established norms of the North America whites (NAW) offered the most suitable way to select a method for successful treatment. The study group consisted of 1470 healthy subjects (18 to 30 years), 750 males and 720 females. The largest group (780 subjects, 53.1%) came from Europe, all of them Caucasians. Three were drawn from the Middle-East (180 subjects, 12.2%), five from Asia (300 subjects, 20.4%) and four from peoples of African origin (210 subjects, 14.3%). Their morphological characteristics were determined by 14 anthropometric measurements, 10 of them used already by classic facial artists, Leonardo da Vinci and Albrecht Dürer, complemented by four measurements from the nasal, labio-oral and ear regions. In the regions with single measurements, identical values to NAW in forehead height, mouth width, and ear height were found in 99.7% in both sexes, while in those with multiple measurements, vertical measurements revealed a higher frequency of identical values than horizontal ones. The orbital regions

  12. Quantum Space-Time Deformed Symmetries Versus Broken Symmetries

    CERN Document Server

    Amelino-Camelia, G

    2002-01-01

    Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...

  13. Threshold corrections and gauge symmetry in twisted superstring models

    International Nuclear Information System (INIS)

    Pierce, D.M.

    1994-01-01

    Threshold corrections to the running of gauge couplings are calculated for superstring models with free complex world sheet fermions. For two N=1 SU(2)xU(1) 5 models, the threshold corrections lead to a small increase in the unification scale. Examples are given to illustrate how a given particle spectrum can be described by models with different boundary conditions on the internal fermions. We also discuss how complex twisted fermions can enhance the symmetry group of an N=4, SU(3)xU(1)xU(1) model to the gauge group SU(3)xSU(2)xU(1). It is then shown how a mixing angle analogous to the Weinberg angle depends on the boundary conditions of the internal fermions

  14. Nuclear fuel cycle. Which way forward for multilateral approaches? An international expert group examines options

    International Nuclear Information System (INIS)

    Pellaud, Bruno

    2005-01-01

    For several years now, the debate on the proliferation of nuclear weapons has been dominated by individuals and countries that violate rules of good behaviour - as sellers or acquirers of clandestine nuclear technology. As a result, the 1968 Treaty on the Non-Proliferation of Nuclear Weapons (NPT) has been declared to be 'inadequate' by some, 'full of loopholes' by others. Two basic approaches have been put forward to tighten up the NPT; both seek to ensure that the nuclear non-proliferation regime maintains its authority and credibility in the face of these very real challenges. One calls for non-nuclear weapon States to accept a partial denial of technology through a reinterpretation of the NPT's provisions governing the rights of access to nuclear technologies. The unwillingness of most non-nuclear-weapon States to accept additional restrictions under the NPT makes this approach difficult. The other approach would apply multinational alternatives to the national operation of uranium-enrichment and plutonium-separation technologies, and to the disposal of spent nuclear fuel. In this perspective, IAEA Director General Mohamed ElBaradei proposed in 2003 to revisit the concept of multilateral nuclear approaches (MNA) that was intensively discussed several decades ago. Several such approaches were adopted at that time in Europe, which became the true homeland of MNAs. Nonetheless, MNAs have failed so far to materialise outside Europe due to different political and economic perceptions. In June 2004, the Director General appointed an international group of experts to consider possible multilateral approaches to the nuclear fuel cycle. The overall purpose was to assess MNAs in the framework of a double objective: strengthening the international nuclear non-proliferation regime and making the peaceful uses of nuclear energy more economical and attractive. In the report submitted to the Director General in February 2005, the Group identified a number of options - options

  15. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2018-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations. .

  16. An international investigation into O red blood cell unit administration in hospitals: the GRoup O Utilization Patterns (GROUP) study.

    Science.gov (United States)

    Zeller, Michelle P; Barty, Rebecca; Aandahl, Astrid; Apelseth, Torunn O; Callum, Jeannie; Dunbar, Nancy M; Elahie, Allahna; Garritsen, Henk; Hancock, Helen; Kutner, José Mauro; Manukian, Belinda; Mizuta, Shuichi; Okuda, Makoto; Pagano, Monica B; Pogłód, Ryszard; Rushford, Kylie; Selleng, Kathleen; Sørensen, Claess Henning; Sprogøe, Ulrik; Staves, Julie; Weiland, Thorsten; Wendel, Silvano; Wood, Erica M; van de Watering, Leo; van Wordragen-Vlaswinkel, Maria; Ziman, Alyssa; Jan Zwaginga, Jaap; Murphy, Michael F; Heddle, Nancy M; Yazer, Mark H

    2017-10-01

    Transfusion of group O blood to non-O recipients, or transfusion of D- blood to D+ recipients, can result in shortages of group O or D- blood, respectively. This study investigated RBC utilization patterns at hospitals around the world and explored the context and policies that guide ABO blood group and D type selection practices. This was a retrospective study on transfusion data from the 2013 calendar year. This study included a survey component that asked about hospital RBC selection and transfusion practices and a data collection component where participants submitted information on RBC unit disposition including blood group and D type of unit and recipient. Units administered to recipients of unknown ABO or D group were excluded. Thirty-eight hospitals in 11 countries responded to the survey, 30 of which provided specific RBC unit disposition data. Overall, 11.1% (21,235/191,397) of group O units were transfused to non-O recipients; 22.6% (8777/38,911) of group O D- RBC units were transfused to O D+ recipients, and 43.2% (16,800/38,911) of group O D- RBC units were transfused to recipients that were not group O D-. Disposition of units and hospital transfusion policy varied within and across hospitals of different sizes, with transfusion of group O D- units to non-group O D- patients ranging from 0% to 33%. A significant proportion of group O and D- RBC units were transfused to compatible, nonidentical recipients, although the frequency of this practice varied across sites. © 2017 AABB.

  17. Symmetry Analysis and Exact Solutions of (2+1)-Dimensional Sawada-Kotera Equation

    International Nuclear Information System (INIS)

    Zhi Hongyan; Zhang Hongqing

    2008-01-01

    Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)-dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko-Dubrovsky equations, respectively.

  18. Consensus statement on generalized anxiety disorder from the International Consensus Group on Depression and Anxiety.

    Science.gov (United States)

    Ballenger, J C; Davidson, J R; Lecrubier, Y; Nutt, D J; Borkovec, T D; Rickels, K; Stein, D J; Wittchen, H U

    2001-01-01

    To provide primary care clinicians with a better understanding of management issues in generalized anxiety disorder (GAD) and guide clinical practice with recommendations on the appropriate treatment strategy. The 4 members of the International Consensus Group on Depression and Anxiety were James C. Ballenger (chair), Jonathan R.T. Davidson, Yves Lecrubier, and David J. Nutt. Four additional faculty members invited by the chair were Karl Rickels, Hans-Ulrich Wittchen, Dan J. Stein, and Thomas D. Borkovec. The consensus statement is based on the 6 review articles that are published in this supplement and the scientific literature relevant to the issues reviewed in these articles. Group meetings were held over a 2-day period. On day 1, the group discussed the review articles and the chair identified key issues for further debate. On day 2, the group discussed these issues to arrive at a consensus view. After the group meetings, the consensus statement was drafted by the chair and approved by all attendees. GAD is the most common anxiety disorder in primary care and is highly debilitating. Furthermore, it is frequently comorbid with depression and other anxiety disorders, which exacerbates functional impairment. Antidepressants (serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and nonsedating tricyclic antidepressants) are generally the most appropriate first-line pharmacotherapy for GAD, since they are also effective against comorbid psychiatric disorders and are suitable for long-term use. Cognitive-behavioral therapy is the preferred form of psychotherapy for GAD, although when GAD is comorbid with depression, pharmacotherapy is increasingly indicated.

  19. Association of American Geographers, Remote Sensing Specialty Group Special Issue of Geocarto International

    Science.gov (United States)

    Allen, Thomas R. (Editor); Emerson, Charles W. (Editor); Quattrochi, Dale A. (Editor); Arnold, James E. (Technical Monitor)

    2001-01-01

    This special issue continues the precedence of the Association of American Geographers (AAG), Remote Sensing Specialty Group (RSSG) for publishing selected articles in Geocarto International as a by-product from the AAG annual meeting. As editors, we issued earlier this year, a solicitation for papers to be published in a special issue of Geocarto International that were presented in RSSG-sponsored sessions at the 2001 AAG annual meeting held in New York City on February 27-March 3. Although not an absolute requisite for publication, the vast majority of the papers in this special issue were presented at this year's AAG meeting in New York. Other articles in this issue that were not part of a paper or poster session at the 2001 AAG meeting are authored by RSSG members. Under the auspices of the RSSG, this special Geocarto International issue provides even more compelling evidence of the inextricable linkage between remote sensing and geography. The papers in this special issue fall into four general themes: 1) Urban Analysis and Techniques for Urban Analysis; 2) Land Use/Land Cover Analysis; 3) Fire Modeling Assessment; and 4) Techniques. The first four papers herein are concerned with the use of remote sensing for analysis of urban areas, and with use or development of techniques to better characterize urban areas using remote sensing data. As the lead paper in this grouping, Rashed et al., examine the usage of spectral mixture analysis (SMA) for analyzing satellite imagery of urban areas as opposed to more 'standard' methods of classification. Here SMA has been applied to IRS-1C satellite multispectral imagery to extract measures that better describe the 'anatomy' of the greater Cairo, Egypt region. Following this paper, Weng and Lo describe how Landsat TM data have been used to monitor land cover types and to estimate biomass parameters within an urban environment. The research reported in this paper applies an integrated GIS (Geographic Information System

  20. Symmetries and retracts of quantum logics

    International Nuclear Information System (INIS)

    Kallus, M.; Trnkova, V.

    1987-01-01

    The authors prove that there are arbitrarily many quantum logics, none of which is similar to a part of another and each of which has the group of all symmetries isomorphic to a given abstract group. Moreover, each of them contains a given logic with atomic blocks as its sublogic

  1. Symmetries of string, M- and F-theories

    NARCIS (Netherlands)

    Bergshoeff, Eric; Proeyen, Antoine Van

    2001-01-01

    The d = 10 type II string theories, d = 11 M-theory and d = 12 F-theory have the same symmetry group. It can be viewed either as a subgroup of a conformal group OSp(1|64) or as a contraction of OSp(1|32). The theories are related by different identifications of their symmetry operators as generators

  2. CONSEQUENCES OF SYMMETRY GROUPS FOR ELECTROMAGNETIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, A. J.; Sudarshan, E. C.G.

    1963-06-15

    The electromagnetic properties of SU/sub 3/ supermultiplets are obtained formally by a unitary transformation of a theory whose SU/sub 3/ invariant strong interactions are perturbed by merely charge-independent interactions. Several new results are presented, but the emphasis is on the simplicity and power of the method. Electromagnetic properties of the first and second kinds are distinguished, the former being independent of the precise manner in which the particular electromagnetic property depends on the electric charge current density. It is shown that all except two relations between the magnetic moments of the baryon octet hold equally well for other electromagnetic properties like self energies and Compton scattering amplitudes. (auth)

  3. Operational symmetries basic operations in physics

    CERN Document Server

    Saller, Heinrich

    2017-01-01

    This book describes the endeavour to relate the particle spectrum with representations of operational electroweak spacetime, in analogy to the atomic spectrum as characterizing representations of hyperbolic space. The spectrum of hyperbolic position space explains the properties of the nonrelativistic atoms; the spectrum of electroweak spacetime is hoped to explain those of the basic interactions and elementary particles. In this book, the theory of operational symmetries is developed from the numbers, from Plato’s and Kepler’s symmetries over the simple Lie groups to their applications in nonrelativistic, special relativistic and general relativistic quantum theories with the atomic spectrum for hyperbolic position and, in first attempts, the particle spectrum for electroweak spacetime. The standard model of elementary particles and interactions is characterized by a symmetry group. In general, as initiated by Weyl and stressed by Heisenberg, quantum theory can be built as a theory of operation groups an...

  4. Symmetry, structure, and spacetime

    CERN Document Server

    Rickles, Dean

    2007-01-01

    In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational

  5. Symmetries and Dirac equation solutions

    International Nuclear Information System (INIS)

    Souza, Marcio Lima de.

    1991-06-01

    The purpose of this thesis is the extension to be relativistic case of a method that has proved useful for the solution of various potential problems in non relativistic situation. This method, the method of dynamical symmetries, is based on the Baker-Campbell-Hausdorf formulae and developed first for the particular example of the relativistic Coulomb problem. Here we generalize the method for a Hamiltonian that can be written as a linear combination of generators of the SO(2,1) group. As illustrative examples, we solve the problem of a charged particle in a constant magnetic field and the exponential magnetic field. (author). 21 refs

  6. History of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Kibble, T W B

    2015-01-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012. (paper)

  7. The weak-scale hierarchy and discrete symmetries

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Matsuoka, Takeo; Hattori, Chuichiro; Matsuda, Masahisa; Mochinaga, Daizo.

    1996-01-01

    In the underlying Planck scale theory, we introduce a certain type of discrete symmetry, which potentially brings the stability of the weak-scale hierarchy under control. Under the discrete symmetry the μ-problem and the tadpole problem can be solved simultaneously without relying on some fine-tuning of parameters. Instead, it is required that doublet Higgs and color-triplet Higgs fields reside in different irreducible representations of the gauge symmetry group at the Planck scale and that they have distinct charges of the discrete symmetry group. (author)

  8. 75 FR 66797 - PricewaterhouseCoopers LLP (“PwC”) Internal Firm Services Client Account Administrators Group...

    Science.gov (United States)

    2010-10-29

    ... LLP (``PwC'') Internal Firm Services Client Account Administrators Group, Charlotte, NC; Amended... Firm Services Client Account Administrators Group. Accordingly, the Department is amending this... Firm Services Client Account Administrators Group. The amended notice applicable to TA-W-73,608 is...

  9. The European Energy Regulators Group and the realization of the internal energy market

    International Nuclear Information System (INIS)

    Lavrijssen, S.A.C.M.

    2006-01-01

    The role of the European Energy Regulators Group (ERGEG) in the realization of the internal energy market is discussed. It is concluded that the ERGEG has already achieved significant results in dealing with several complex technical and legal problems that hamper market integration in the energy sector. However, it is a fundamental problem that the ERGEG is neither an EU institution nor a national institution, resulting in a lack of its democratic accountability and in the legal protection against the actions taken by the ERGEG. Therefore, the future success of the ERGEG will depend on the ability of the European legislator to find answers to the question how to ensure that the ERGEG fulfils its tasks in a legitimate way [nl

  10. Item wording and internal consistency of a measure of cohesion: the group environment questionnaire.

    Science.gov (United States)

    Eys, Mark A; Carron, Albert V; Bray, Steven R; Brawley, Lawrence R

    2007-06-01

    A common practice for counteracting response acquiescence in psychological measures has been to employ both negatively and positively worded items. However, previous research has highlighted that the reliability of measures can be affected by this practice (Spector, 1992). The purpose of the present study was to examine the effect that the presence of negatively worded items has on the internal reliability of the Group Environment Questionnaire (GEQ). Two samples (N = 276) were utilized, and participants were asked to complete the GEQ (original and revised) on separate occasions. Results demonstrated that the revised questionnaire (containing all positively worded items) had significantly higher Cronbach alpha values for three of the four dimensions of the GEQ. Implications, alternatives, and future directions are discussed.

  11. Evolution of chemical specifications following the working group of international inter-comparison

    International Nuclear Information System (INIS)

    Leduc-Brunet, Murielle; Gressier, F.; Mole, D.; Massias, O.; Marescot, O.; Bretelle, Jean Luc

    2012-09-01

    As part of a continuous improvement process and the inclusion of Experience Feedback, EDF has launched a working group to analyse its reference of Chemical Specifications with regard to the guidelines of EPRI and VGB.. As a result of the analysis of over 1000 lines of specifications, a large number of recommendations were issued, referring either to control of new chemical parameters or to an enhancement of measurement frequencies. These recommendations are to be developed by preliminary studies which will provide supporting evidence for future decisions. To implement these recommendations, EDF launched a dedicated project in 2011, whose main objectives were to: - raise the requirements of chemical specifications in line with international standards and compare the technical basis of the different international standards, - strengthen monitoring and anticipation of corrective actions in the field of plant chemistry with a view to extending nuclear plant lifetime to 60 years. This project, scheduled for 2011 to 2016, covers the following activities: - studies on the technical background of the specifications (2011-14), - study of the possibility of adopting an 'Actions Levels' approach in EDF's own specifications (2012-14), - new propositions evolution of the specifications (2015-16). (authors)

  12. Big break for charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A. [Department of Physics, University of Washington, Seattle (United States); Kolck, U. van [Department of Physics, University of Arizona, Tucson (United States)

    2003-06-01

    production of neutral pi-mesons (pions) when a neutron is captured by a proton in a hydrogen target to form a deuteron. The probability, or cross-section, for this n + p {yields} d + {pi}{sup 0} reaction to occur depends on the angle between the momentum of the outgoing pion and that of the incident neutron beam. Another experimental team, led by Andy Bacher and Ed Stephenson at Indiana University in the US. Since the 1950s experimentalists have been trying to detect the formation of a neutral pion and an alpha particle in the fusion of two deuterons, d + d {yields} {alpha} +{pi}{sup 0}. The experiment was approved and everything was set and ready, except for the fact that the IUCF was already scheduled to be transformed into a materials and medical research facility. Bacher and Stephenson's team worked frantically for two months and finally produced two separate observations of a beautiful peak at exactly the right pion energy. Their experimental cross-section is almost the same as our estimate, and this measurement of such a small charge-symmetry-breaking probability is an immense technical achievement. Now the ball is back in the theorists' court. A large group, including Antonio Fonseca at the University of Lisbon in Portugal, Anders Gardestig and Chuck Horowitz at Indiana University, Andreas Nogga at the University of Arizona, and the present authors, is carrying out the task of turning the initial estimate of the cross-section of the d + d {yields} {alpha} +{pi}{sup 0} reaction into a reliable calculation. The same charge-symmetry-breaking mechanisms contribute to both the TRIUMF and IUCF experiments, which means that together they can provide important information on the mass difference between up and down quarks. The origin of the quark masses is not fully understood. In the Standard Model of particle physics, the Higgs mechanism allows the generation of such masses but it cannot predict the actual mass values. This is like having a recipe to make cookies

  13. The Role of Internal Audit in Optimization of Corporate Governance at the Groups of Companies

    Directory of Open Access Journals (Sweden)

    Ionel BOSTAN

    2010-02-01

    Full Text Available Recent financial scandals have demonstrated that the risk of accounting fraud may be vague in any type of economic system. In this context, transparency of information, indispensable element for competitiveness in the market is an efficient operation of systems of corporate governance and especially of control systems. All these must be appropriate in the legislation in terms of external information. The issue of governance will thus be seen as a fundamental pillar against pressures which induce at the fraud as a result of lack of transparency of information flows. In all models of corporate governance, external regulations cover a primary role in ensuring the effectiveness of controls, but remain central the responsibility of entities to adopt a virtuous mechanism as an internal control profile. An example in this sense of "best practice" may be represented by the multinational companies that have known to harmonize the national rules with the typical instruments of other models of governance. The authors have established that the main objective in this work is the evaluation model of governance already existing in a group of companies in accordance with the principles of corporate governance. In the first part of the work it was made a comparitive analysis between the models of corporate governance, focusing on the role of transparency of communication, the primary tool in prevention of frauds, the link between information and prevention of frauds being independent of the model of corporate governance adopted, by the structure of organization and the control mechanisms. The work continued throughout the first part, with the role of internal audit in preventing the accounting fraud, given that any type of government, regardless of how it is configured and the reference market in which we find, to be considered efficiently must provide an appropriate control mechanisms, able to intervene in critical situations and to protect the interests of all

  14. Symmetry-adapted Liouville space. Pt. 7

    International Nuclear Information System (INIS)

    Temme, F.P.

    1990-01-01

    In examining nuclear spin dynamics of NMR spin clusters in density operator/generalized torque formalisms over vertical strokekqv>> operator bases of Liouville space, it is necessary to consider the symmetry mappings and carrier spaces under a specialized group for such (k i = 1) nuclear spin clusters. The SU2 X S n group provides the essential mappings and the form of H carrier space, which allows one to: (a) draw comparisons with Hilbert space duality, and (b) outline the form of the Coleman-Kotani genealogical hierarchy under induced S n -symmetry. (orig.)

  15. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  16. Classical mirror symmetry

    CERN Document Server

    Jinzenji, Masao

    2018-01-01

    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  17. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    Koch, V.

    1996-01-01

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  18. The politics of symmetry

    NARCIS (Netherlands)

    Pels, D.L.

    While symmetry and impartiality have become ruling principles in S&TS, defining its core ideal of a 'value-free relativism', their philosophical anchorage has attracted much less discussion than the issue or:how far their jurisdiction can be extended or generalized. This paper seeks to argue that

  19. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...

  20. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...

  1. Aspects of W∞ symmetry

    International Nuclear Information System (INIS)

    Sezgin, E.

    1991-08-01

    We review the structure of W ∞ algebras, their super and topological extensions, and their contractions down to (super) w ∞ . Emphasis is put on the field theoretic realizations of these algebras. We also review the structure of w ∞ and W ∞ gravities and comment on various applications of W ∞ symmetry. (author). 42 refs

  2. Non-Noetherian symmetries

    International Nuclear Information System (INIS)

    Hojman, Sergio A.

    1996-01-01

    The purpose of these lectures is to present some of the ways in which non-Noetherian symmetries are used in contemporary mathematical physics. These include, among others, obtaining conservation laws for dynamical systems, solving non-linear problems, getting alternative Lagrangians for systems of differential equations and constructing symplectic structures and Hamiltonians for dynamical systems starting from scratch

  3. Detection symmetry and asymmetry

    NARCIS (Netherlands)

    du Buf, J.M.H.

    1991-01-01

    Experiments were performed on the detection symmetry and asymmetry of incremental and decremental disks, as a function of both disk diameter and duration. It was found that, for a background luminance of 300cd.m-2, thresholds of dynamic (briefly presented) foveal disks are symmetrical for all

  4. From symmetries to dynamics

    International Nuclear Information System (INIS)

    Stern, J.

    2000-01-01

    The problem of a uniform description of symmetries, their dynamic disturbing and the structure of the vacuum is discussed. The role which problems of this kind played in searching for and understanding the Standard Model of elementary particles from the 1960s till now is also highlighted. (Z.J.)

  5. Fields, symmetries, and quarks

    International Nuclear Information System (INIS)

    Mosel, U.

    1989-01-01

    'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)

  6. Classical and Quantum Systems Foundations and Symmetries, Proceedings of the International Wigner Symposium Held in Goslar, Germany on July 16-20, 1991

    Science.gov (United States)

    1991-07-20

    published. 261 TOPOLOGICAL ARROW OF TIME AND QUANTUM-MECHANICAL EVOLUTION Pedro F. Gonzilez-Dfaz. Consejo Superior de Investigaciones Cientfficas Serrano 121...LOCAL AND IRREDUCIBLE REALIZATIONS OF LIE GROUPS .JA%’’LER NEGRO AND MAIIIANo A. DEL. OLMlO Departaieitto dit Fisica Te6rica, Univ~ersidad de Valladolid...describes one N-valued degree of freedom. Otherwise N is a product of prime numbers and § On sabatical leave from Institulo de Fisica Teorica, State

  7. Decoupling Subtraction Conserving Full Gauge Symmetries : Particles and Fields

    OpenAIRE

    Noriyasu, OHTSUBO; Hideo, MIYATA; Department of Phycics, Kanazawa Technical College; Department of Information Science, Kanazawa Institute of Technolgy

    1984-01-01

    A new subtraction scheme (^^^) which realizes the decoupling and conserves the symmetries of full gauge group simultaneously, is proposed. One particle irreducible Green's functions subtracted by ^^^ reveal the effective low energy symmetries at -p^2≪M^2 and the full symmetries at -p^2≫M^2, where M denotes a heavy mass. Also discussed are conditions in order to carry out ^^^ under two-loop approximation.

  8. Activities of the IAEA International Working Group on Life Management of Nuclear Power Plants (IWG-LMNPP)

    International Nuclear Information System (INIS)

    Ianko, L.

    1994-01-01

    Activities of the IAEA international working group on life management of nuclear power plants are outlined with emphasis on objectives, scope of activities, methods of work, organizational matters, financing

  9. 75 FR 32834 - U.S. Department of State Advisory Committee on Private International Law Study Group Notice of...

    Science.gov (United States)

    2010-06-09

    ... DEPARTMENT OF STATE [Public Notice 7041] U.S. Department of State Advisory Committee on Private International Law Study Group Notice of Meeting on the United Nations Commission on International Trade Law (UNCITRAL) Draft Legislative Guide on Secured Transactions and Its Treatment of Security Rights in...

  10. The EULAR Scleroderma Trials and Research Group (EUSTAR): an international framework for accelerating scleroderma research.

    Science.gov (United States)

    Tyndall, Alan; Ladner, Ulf M; Matucci-Cerinic, Marco

    2008-11-01

    Systemic sclerosis has a complex pathogenesis and a multifaceted clinical spectrum without a specific treatment. Under the auspices of the European League Against Rheumatism, the European League Against Rheumatism Scleroderma Trials And Research group (EUSTAR) has been founded in Europe to foster the study of systemic sclerosis with the aim of achieving equality of assessment and care of systemic sclerosis patients throughout the world according to evidence-based principles. EUSTAR created the minimal essential data set, a simple two-page form with basic demographics and mostly yes/no answers to clinical and laboratory parameters, to track patients throughout Europe. Currently, over 7000 patients are registered from 150 centres in four continents, and several articles have been published with the data generated by the minimal essential data set. A commitment of EUSTAR is also to teaching and educating, and for this reason there are two teaching courses and a third is planned for early in 2009. These courses have built international networks among young investigators improving the quality of multicentre clinical trials. EUSTAR has organized several rounds of 'teach the teachers' to further standardize the skin scoring. EUSTAR activities have extended beyond European borders, and EUSTAR now includes experts from several nations. The growth of data and biomaterial might ensure many further fruitful multicentre studies, but the financial sustainability of EUSTAR remains an issue that may jeopardize the existence of this group as well as that of other organizations in the world.

  11. Task group of international union of radioecology 'ecosystem approach to environment protection'

    International Nuclear Information System (INIS)

    Fuma, Shoichi

    2011-01-01

    An ecosystem approach is a holistic (i.e., top-down) strategy for protection of ecosystem structures and functions from perturbations. A task group of International Union of Radioecology 'Ecosystem Approach to Environment Protection' was launched in April, 2010. This task group is preparing a report on the following topics: (1) goals of environmental protection; (2) legislation about environmental protection; (3) assessment of the Reference Animals and Plants (RAP) concept in the general context of environmental protection; (4) limitations and uncertainties of the RAPs concept; (5) justification and merits of the ecosystem approach; (6) assessing the feasibility of the ecosystem approach; (7) research and development required for the ecosystem approach; and (8) recommendations with respect to radiation protection. The topics 1, 3, 4 and 5 have been almost completely prepared, and demonstrate that the ecosystem approach is required for radiation protection of the environment. On the other hand, methods of the ecosystem approach which should be adopted for radiation protection of the environment are not clear in the current draft report. They should be specified by reviewing the Convention on Biological Diversity, fish stock management and other activities where the ecosystem approach is already adopted. (author)

  12. The Second International Piping Integrity Research Group (IPIRG-2) program. Final report, October 1991--April 1996

    International Nuclear Information System (INIS)

    Hopper, A.; Wilowski, G.; Scott, P.; Olson, R.

    1997-03-01

    The IPIRG-2 program was an international group program managed by the US NRC and funded by organizations from 15 nations. The emphasis of the IPIRG-2 program was the development of data to verify fracture analyses for cracked pipes and fittings subjected to dynamic/cyclic load histories typical of seismic events. The scope included: (1) the study of more complex dynamic/cyclic load histories, i.e., multi-frequency, variable amplitude, simulated seismic excitations, than those considered in the IPIRG-1 program, (2) crack sizes more typical of those considered in Leak-Before-Break (LBB) and in-service flaw evaluations, (3) through-wall-cracked pipe experiments which can be used to validate LBB-type fracture analyses, (4) cracks in and around pipe fittings, such as elbows, and (5) laboratory specimen and separate effect pipe experiments to provide better insight into the effects of dynamic and cyclic load histories. Also undertaken were an uncertainty analysis to identify the issues most important for LBB or in-service flaw evaluations, updating computer codes and databases, the development and conduct of a series of round-robin analyses, and analyst's group meetings to provide a forum for nuclear piping experts from around the world to exchange information on the subject of pipe fracture technology. 17 refs., 104 figs., 41 tabs

  13. Space of symmetry matrices with elements 0, ±1 and complete geometric description; its properties and application.

    Science.gov (United States)

    Stróż, Kazimierz

    2011-09-01

    A fixed set, that is the set of all lattice metrics corresponding to the arithmetic holohedry of a primitive lattice, is a natural tool for keeping track of the symmetry changes that may occur in a deformable lattice [Ericksen (1979). Arch. Rat. Mech. Anal. 72, 1-13; Michel (1995). Symmetry and Structural Properties of Condensed Matter, edited by T. Lulek, W. Florek & S. Walcerz. Singapore: Academic Press; Pitteri & Zanzotto (1996). Acta Cryst. A52, 830-838; and references quoted therein]. For practical applications it is desirable to limit the infinite number of arithmetic holohedries, and simplify their classification and construction of the fixed sets. A space of 480 matrices with cyclic consecutive powers, determinant 1, elements from {0, ±1} and geometric description were analyzed and offered as the framework for dealing with the symmetry of reduced lattices. This matrix space covers all arithmetic holohedries of primitive lattice descriptions related to the three shortest lattice translations in direct or reciprocal spaces, and corresponds to the unique list of 39 fixed points with integer coordinates in six-dimensional space of lattice metrics. Matrices are presented by the introduced dual symbol, which sheds some light on the lattice and its symmetry-related properties, without further digging into matrices. By the orthogonal lattice distortion the lattice group-subgroup relations are easily predicted. It was proven and exemplified that new symbols enable classification of lattice groups on an absolute basis, without metric considerations. In contrast to long established but sophisticated methods for assessing the metric symmetry of a lattice, simple filtering of the symmetry operations from the predefined set is proposed. It is concluded that the space of symmetry matrices with elements from {0, ±1} is the natural environment of lattice symmetries related to the reduced cells and that complete geometric characterization of matrices in the arithmetic

  14. A cyclic symmetry principle in physics

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1994-01-01

    Many areas of modern physics are illuminated by the application of a symmetry principle, requiring the invariance of the relevant laws of physics under a group of transformations. This paper examines the implications and some of the applications of the principle of cyclic symmetry, especially in the areas of statistical mechanics and quantum mechanics, including quantized field theory. This principle requires invariance under the transformations of a finite group, which may be a Sylow π-group, a group of Lie type, or a symmetric group. The utility of the principle of cyclic invariance is demonstrated in finding solutions of the Yang-Baxter equation that include and generalize known solutions. It is shown that the Sylow π-groups have other uses, in providing a basis for a type of generalized quantum statistics, and in parametrising a new generalization of Lie groups, with associated algebras that include quantized algebras. 31 refs

  15. Design of an international multicentre RCT on group schema therapy for borderline personality disorder.

    Science.gov (United States)

    Wetzelaer, Pim; Farrell, Joan; Evers, Silvia M A A; Jacob, Gitta A; Lee, Christopher W; Brand, Odette; van Breukelen, Gerard; Fassbinder, Eva; Fretwell, Heather; Harper, R Patrick; Lavender, Anna; Lockwood, George; Malogiannis, Ioannis A; Schweiger, Ulrich; Startup, Helen; Stevenson, Teresa; Zarbock, Gerhard; Arntz, Arnoud

    2014-11-18

    Borderline personality disorder (BPD) is a severe and highly prevalent mental disorder. Schema therapy (ST) has been found effective in the treatment of BPD and is commonly delivered through an individual format. A group format (group schema therapy, GST) has also been developed. GST has been found to speed up and amplify the treatment effects found for individual ST. Delivery in a group format may lead to improved cost-effectiveness. An important question is how GST compares to treatment as usual (TAU) and what format for delivery of schema therapy (format A; intensive group therapy only, or format B; a combination of group and individual therapy) produces the best outcomes. An international, multicentre randomized controlled trial (RCT) will be conducted with a minimum of fourteen participating centres. Each centre will recruit multiple cohorts of at least sixteen patients. GST formats as well as the orders in which they are delivered to successive cohorts will be balanced. Within countries that contribute an uneven number of sites, the orders of GST formats will be balanced within a difference of one. The RCT is designed to include a minimum of 448 patients with BPD. The primary clinical outcome measure will be BPD severity. Secondary clinical outcome measures will include measures of BPD and general psychiatric symptoms, schemas and schema modes, social functioning and quality of life. Furthermore, an economic evaluation that consists of cost-effectiveness and cost-utility analyses will be performed using a societal perspective. Lastly, additional investigations will be carried out that include an assessment of the integrity of GST, a qualitative study on patients' and therapists' experiences with GST, and studies on variables that might influence the effectiveness of GST. This trial will compare GST to TAU for patients with BPD as well as two different formats for the delivery of GST. By combining an evaluation of clinical effectiveness, an economic evaluation

  16. Is space-time symmetry a suitable generalization of parity-time symmetry?

    International Nuclear Information System (INIS)

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier

    2014-01-01

    We discuss space-time symmetric Hamiltonian operators of the form H=H 0 +igH ′ , where H 0 is Hermitian and g real. H 0 is invariant under the unitary operations of a point group G while H ′ is invariant under transformation by elements of a subgroup G ′ of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 0group symmetry and perturbation theory enable one to predict whether H may exhibit real or complex eigenvalues for g>0. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries. - Highlights: • Space-time symmetry is a generalization of PT symmetry. • The eigenvalues of a space-time Hamiltonian are either real or appear as pairs of complex conjugate numbers. • In some cases all the eigenvalues are real for some values of a potential-strength parameter g. • At some value of g space-time symmetry is broken and complex eigenvalues appear. • Some multidimensional oscillators exhibit broken space-time symmetry for all values of g

  17. Community Report and Recommendations from International Lunar Exploration Working Group (ILEWG)

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    The International Lunar Exploration Working Group (ILEWG) was established in April 1995 at a meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon. It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We refer to COSPAR and ILEWG ICEUM and lunar conferences and declarations [1-18], present the GLUC/ICEUM11 declaration and give a report on ongoing relevant ILEWG community activities. ILEWG supported community forums, ILEWG EuroMoonMars field campaigns and technology validation activities, as well as Young Lunar Explorers events, and activities with broad stakeholders. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap towards the Moon Village. GLUC/ICEUM11 declaration: "467 International Lunar Explorers, registered delegates from 26 countries, assembled at GLUC Global Lunar Conference including the 11th ILEWG Conference on Exploration and Utilisation of the Moon (ICEUM11) in Beijing. The conference engaged scientists, engineers, enthusiast explorers, agencies and organisations in the discussion of recent results and activities and the review of plans for exploration. Space agencies representatives gave the latest reports on their current lunar activities and programmes. GLUC-ICEUM11 was a truly historical meeting that demonstrated the world-wide interest in lunar exploration, discovery, and science. More than 400 abstracts were accepted for oral and poster presentations in the technical sessions, organised in 32 sessions within 4 symposia: Science and Exploration; Technology

  18. Family symmetries in F-theory GUTs

    CERN Document Server

    King, S F; Ross, G G

    2010-01-01

    We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppression of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)\\times U(1)_\\chi \\times SU(4)_{\\perp} in which U(1)_{\\chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{\\perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)\\times SU(5)_{\\perp} with a U(1)_{\\perp}^3 family symmetry after imposing a Z_2 monodromy.

  19. Patterns of symmetry breaking in chiral QCD

    Science.gov (United States)

    Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail

    2018-05-01

    We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.

  20. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report.

    Science.gov (United States)

    Monclair, Tom; Brodeur, Garrett M; Ambros, Peter F; Brisse, Hervé J; Cecchetto, Giovanni; Holmes, Keith; Kaneko, Michio; London, Wendy B; Matthay, Katherine K; Nuchtern, Jed G; von Schweinitz, Dietrich; Simon, Thorsten; Cohn, Susan L; Pearson, Andrew D J

    2009-01-10

    The International Neuroblastoma Risk Group (INRG) classification system was developed to establish a consensus approach for pretreatment risk stratification. Because the International Neuroblastoma Staging System (INSS) is a postsurgical staging system, a new clinical staging system was required for the INRG pretreatment risk classification system. To stage patients before any treatment, the INRG Task Force, consisting of neuroblastoma experts from Australia/New Zealand, China, Europe, Japan, and North America, developed a new INRG staging system (INRGSS) based on clinical criteria and image-defined risk factors (IDRFs). To investigate the impact of IDRFs on outcome, survival analyses were performed on 661 European patients with INSS stages 1, 2, or 3 disease for whom IDRFs were known. In the INGRSS, locoregional tumors are staged L1 or L2 based on the absence or presence of one or more of 20 IDRFs, respectively. Metastatic tumors are defined as stage M, except for stage MS, in which metastases are confined to the skin, liver, and/or bone marrow in children younger than 18 months of age. Within the 661-patient cohort, IDRFs were present (ie, stage L2) in 21% of patients with stage 1, 45% of patients with stage 2, and 94% of patients with stage 3 disease. Patients with INRGSS stage L2 disease had significantly lower 5-year event-free survival than those with INRGSS stage L1 disease (78% +/- 4% v 90% +/- 3%; P = .0010). Use of the new staging (INRGSS) and risk classification (INRG) of neuroblastoma will greatly facilitate the comparison of risk-based clinical trials conducted in different regions of the world.

  1. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    Science.gov (United States)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  2. Symmetries in physics and harmonics

    International Nuclear Information System (INIS)

    Kolk, D.

    2006-01-01

    In this book the symmetries of elementary particles are described in relation to the rules of harmonics in music. The selection rules are described in connections with harmonic intervals. Also symmetry breaking is considered in this framework. (HSI)

  3. Optimal fold symmetry of LH2 rings on a photosynthetic membrane.

    Science.gov (United States)

    Cleary, Liam; Chen, Hang; Chuang, Chern; Silbey, Robert J; Cao, Jianshu

    2013-05-21

    An intriguing observation of photosynthetic light-harvesting systems is the N-fold symmetry of light-harvesting complex 2 (LH2) of purple bacteria. We calculate the optimal rotational configuration of N-fold rings on a hexagonal lattice and establish two related mechanisms for the promotion of maximum excitation energy transfer (EET). (i) For certain fold numbers, there exist optimal basis cells with rotational symmetry, extendable to the entire lattice for the global optimization of the EET network. (ii) The type of basis cell can reduce or remove the frustration of EET rates across the photosynthetic network. We find that the existence of a basis cell and its type are directly related to the number of matching points S between the fold symmetry and the hexagonal lattice. The two complementary mechanisms provide selection criteria for the fold number and identify groups of consecutive numbers. Remarkably, one such group consists of the naturally occurring 8-, 9-, and 10-fold rings. By considering the inter-ring distance and EET rate, we demonstrate that this group can achieve minimal rotational sensitivity in addition to an optimal packing density, achieving robust and efficient EET. This corroborates our findings i and ii and, through their direct relation to S, suggests the design principle of matching the internal symmetry with the lattice order.

  4. Symmetry chains for the atomic shell model. I. Classification of symmetry chains for atomic configurations

    International Nuclear Information System (INIS)

    Gruber, B.; Thomas, M.S.

    1980-01-01

    In this article the symmetry chains for the atomic shell model are classified in such a way that they lead from the group SU(4l+2) to its subgroup SOsub(J)(3). The atomic configurations (nl)sup(N) transform like irreducible representations of the group SU(4l+2), while SOsub(J)(3) corresponds to total angular momentum in SU(4l+2). The defining matrices for the various embeddings are given for each symmetry chain that is obtained. These matrices also define the projection onto the weight subspaces for the corresponding subsymmetries and thus relate the various quantum numbers and determine the branching of representations. It is shown in this article that three (interrelated) symmetry chains are obtained which correspond to L-S coupling, j-j coupling, and a seniority dependent coupling. Moreover, for l<=6 these chains are complete, i.e., there are no other chains but these. In articles to follow, the symmetry chains that lead from the group SO(8l+5) to SOsub(J)(3) will be discussed, with the entire atomic shell transforming like an irreducible representation of SO(8l+5). The transformation properties of the states of the atomic shell will be determined according to the various symmetry chains obtained. The symmetry lattice discussed in this article forms a sublattice of the larger symmetry lattice with SO(8l+5) as supergroup. Thus the transformation properties of the states of the atomic configurations, according to the various symmetry chains discussed in this article, will be obtained too. (author)

  5. Unified Symmetry of Hamilton Systems

    International Nuclear Information System (INIS)

    Xu Xuejun; Qin Maochang; Mei Fengxiang

    2005-01-01

    The definition and the criterion of a unified symmetry for a Hamilton system are presented. The sufficient condition under which the Noether symmetry is a unified symmetry for the system is given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. An example is finally given to illustrate the application of the results.

  6. Quantum symmetries in particle interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1983-01-01

    The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields

  7. Symmetry and topology in evolution

    International Nuclear Information System (INIS)

    Lukacs, B.; Berczi, S.; Molnar, I.; Paal, G.

    1991-10-01

    This volume contains papers of an interdisciplinary symposium on evolution. The aim of this symposium, held in Budapest, Hungary, 28-29 May 1991, was to clear the role of symmetry and topology at different levels of the evolutionary processes. 21 papers were presented, their topics included evolution of the Universe, symmetry of elementary particles, asymmetry of the Earth, symmetry and asymmetry of biomolecules, symmetry and topology of lining objects, human asymmetry etc. (R.P.)

  8. IAEA'S International Working Group on Integrated Transport and Storage Safety case for Dual Purpose Casks

    International Nuclear Information System (INIS)

    Kumano, Yumiko; Varley, Kasturi; ); Droste, Bernhard; Wolff, Dietmar; Hirose, Makoto; Harvey, John; Reiche, Ingo; McConnell, Paul

    2014-01-01

    Spent nuclear fuel is generated from the operation of nuclear reactors and it is imperative that it is safely managed following its removal from reactor cores. Reactor pools are usually designed based on the assumption that the fuel will be removed after a short period of time either for reprocessing, disposal, or further storage. As a result of storing higher burn-up fuel, significantly increased time-frame till disposal solutions are prepared, and delays in decisions on strategies for spent fuel management, the volume of spent fuel discharged from reactors which needs to be managed and stored is on the increase. Consequently, additional storage capacity is needed following the initial storage in reactor pools. Options for additional storage include wet storage or dry storage in a dedicated facility or in storage casks. One of these options is the use of a Dual Purpose Cask (DPC), which is a specially designed cask for both storage and transport. The management of spent fuel using a DPC generally involves on-site and off-site transportation before and after storage. Most countries require package design approval for the DPC to be transported. In addition, it is required in many countries to have a licence for storage of the spent fuel in the DPC or a licence for a storage facility that contains DPCs. Therefore, demonstration of compliance of the DPC with national and international transport regulations as well as with the storage requirements is necessary. In order to address this increasing need among Member States, the IAEA established an international working group in 2010 to develop a guidance for integrating safety cases for both storage and transport in a holistic manner. The working group consists of experts from regulatory bodies, Technical Support Organizations, operators for both transportation and storage, and research institutes. This activity is planned to be completed by 2013. Currently, a technical report has been drafted and is expected to be

  9. Ultrafast internal rotational dynamics of the azido group in (4S)-azidoproline: Chemical exchange 2DIR spectroscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung-Koo; Park, Kwang-Hee; Joo, Cheonik; Kwon, Hyeok-Jun; Han, Hogyu [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Ha, Jeong-Hyon [Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Park, Sungnam, E-mail: spark8@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of); Research Institute for Natural Sciences, Korea University, Seoul 136-713 (Korea, Republic of)

    2012-03-02

    Graphical abstract: Internal rotational dynamics of the azido group in SA (Ac-(4S)-Azp-NHMe) was studied in real time by using ultrafast 2DIR spectroscopic method. The time constant of the internal rotation around the C{sup {gamma}}-N{sup {delta}} bond in SA was determined to be {tau}{sub ir} = 5.1 ps, which is found to be much faster than that around the C-C bond in ethane. Highlights: Black-Right-Pointing-Pointer Femtosecond two-dimensional IR spectroscopy of internal rotational dynamics. Black-Right-Pointing-Pointer Stereo-electronic effects of azido group in azido-derivatized proline peptide. Black-Right-Pointing-Pointer The timescale of the azido group internal rotation is about 5.1 ps. - Abstract: The azido group in 4-azidoproline (Azp) derivative, SA (Ac-(4S)-Azp-NHMe), can form an intramolecular electrostatic interaction with the backbone peptide in the s-trans and C{sup {gamma}}-endo conformations of SA. As a result, the azido group exists as two forms, bound and free, which are defined by the presence and absence of such interaction, respectively. The bound and free azido forms are spectrally resolved in the azido IR spectrum of SA in CHCl{sub 3}. Using the two-dimensional infrared (2DIR) and polarization-controlled IR pump-probe methods, we investigated the internal rotational and orientational relaxation dynamics of the azido group and determined the internal rotational time constant of the azido group to be 5.1 ps. The internal rotational motion is found to be responsible for the early part of the orientational relaxation of the azido group in SA. Thus, the femtosecond 2DIR spectroscopy is shown to be an ideal tool for studying ultrafast conformational dynamics of SA.

  10. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  11. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  12. Symmetry energy in nuclear surface

    International Nuclear Information System (INIS)

    Danielewicz, P.; Lee, Jenny

    2009-01-01

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)

  13. Emergence of Symmetries from Entanglement

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  14. Kac-Moody-Virasoro Symmetries and Related Conservation Laws

    International Nuclear Information System (INIS)

    Lou, S. Y.; Jia, M.; Tang, X. Y.

    2010-01-01

    In this report, some important facts on the symmetries and conservation laws of high dimensional integrable systems are discussed. It is summarized that almost all the known (2+1)-dimensional integrable models possess the Kac-Moody-Virasoro (KMV) symmetry algebras. One knows that infinitely many partial differential equations may possess a same KMV symmetry algebra. It is found that the KMV symmetry groups can be explicitly obtained by using some direct methods. For some quite general variable coefficient nonlinear systems, their sufficient and necessary condition for the existence of the KMV symmetry algebra is they can be changed to the related known constant coefficient models. Finally, it is found that every one symmetry may be related to infinitely many conservation laws and then infinitely many models may possess a same set of infinitely many conservation laws.

  15. R-symmetries from the orbifolded heterotic string

    International Nuclear Information System (INIS)

    Schmitz, Matthias

    2014-08-01

    We examine the geometric origin of discrete R-symmetries in heterotic orbifold compactifications. By analysing the symmetries of the worldsheet instanton solutions and the underlying geometry, we obtain a scheme that allows us to systematically explore the R-symmetries arising in these compactifications. Applying this scheme to a classification of orbifold geometries, we are able to find all R-symmetries of heterotic orbifolds with Abelian point groups. We show that in the vast majority of cases, the R-symmetries found satisfy anomaly universality constraints, as required in heterotic orbifolds. Then we examine the implications of the presence of these R-symmetries on a class of phenomenologically attractive orbifold compactifications known as the heterotic mini-landscape. We use the technique of Hilbert bases in order to analyse the properties of a vacuum configuration. We find that phenomenologically viable models remain and the main attractive features of the mini-landscape are unaltered.

  16. Transformation of Air Quality Monitor Data from the International Space Station into Toxicological Effect Groups

    Science.gov (United States)

    James, John T.; Zalesak, Selina M.

    2011-01-01

    The primary reason for monitoring air quality aboard the International Space Station (ISS) is to determine whether air pollutants have collectively reached a concentration where the crew could experience adverse health effects. These effects could be near-real-time (e.g. headache, respiratory irritation) or occur late in the mission or even years later (e.g. cancer, liver toxicity). Secondary purposes for monitoring include discovery that a potentially harmful compound has leaked into the atmosphere or that air revitalization system performance has diminished. Typical ISS atmospheric trace pollutants consist of alcohols, aldehydes, aromatic compounds, halo-carbons, siloxanes, and silanols. Rarely, sulfur-containing compounds and alkanes are found at trace levels. Spacecraft Maximum Allowable Concentrations (SMACs) have been set in cooperation with a subcommittee of the National Research Council Committee on Toxicology. For each compound and time of exposure, the limiting adverse effect(s) has been identified. By factoring the analytical data from the Air Quality Monitor (AQM), which is in use as a prototype instrument aboard the ISS, through the array of compounds and SMACs, the risk of 16 specific adverse effects can be estimated. Within each adverse-effect group, we have used an additive model proportioned to each applicable 180-day SMAC to estimate risk. In the recent past this conversion has been performed using archival data, which can be delayed for months after an air sample is taken because it must be returned to earth for analysis. But with the AQM gathering in situ data each week, NASA is in a position to follow toxic-effect groups and correlate these with any reported crew symptoms. The AQM data are supplemented with data from real-time CO2 instruments aboard the ISS and from archival measurements of formaldehyde, which the AQM cannot detect.

  17. Dual-cell reduction and group effect in an internal microelectrolysis reactor

    International Nuclear Information System (INIS)

    Ying, Diwen; Peng, Juan; Li, Kan; Wang, Yalin; Pan, Siwen; Jia, JinPing

    2013-01-01

    Highlights: ► 2,4-DCP was removed simultaneously in cathode and anode cells in IME reactor. ► Mechanism of dual-cell reduction gave an insight of cathode and anode cells. ► Significant V oc increase with one/two electrodes couples being installed in series. ► Group effect reveals possible high redox potential in IME reactor. -- Abstract: To address some of the fundamental questions regarding the functions of cathodes and anodes (e.g., iron and granular active carbon) and what happens when numerous particles (microscopic galvanic cells) are combined in the widely used and efficient wastewater treatment of an internal microelectrolysis (IME) reactor, we employed a specifically designed dual-cell IME reactor with single-couple electrodes and a narrow cell IME reactor with multi-couple electrodes. The simultaneous removal of 6.36 mg L −1 and 2.93 mg L −1 of 2,4-dichlorophenol within 30 min from the graphite cathode and the iron anode cells, respectively, was observed in the dual-cell reactor. The innovative concept behind this phenomenon is that the anode, which is generally believed to be oxidative, could probably be reductive in an IME reactor. Thus, it is important to understand the unique performance of IME reactors. The group effect, which provides a 45% increase of open-circuit potential with just two additional electrode couples in aqueous solution, was tested and verified in a multi-couple electrode reactor. It suggests a complex potential distribution in the IME reactor and that compounds even with high redox potential could possibly be reduced, which was generally believed to be difficult to accomplish

  18. Symmetry and symmetry breaking in quantum mechanics; Symetrie et brisure de symetrie en mechanique quantique

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Philippe [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1998-12-31

    In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation 17 refs., 16 figs.

  19. Constraining the physical state by symmetries

    Science.gov (United States)

    Fatibene, L.; Ferraris, M.; Magnano, G.

    2017-03-01

    After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or by an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. For this scenario to be effective, the group G of formal transformations needs to be a subgroup of dynamical symmetries (otherwise field equations, which are written in terms of configurations would not induce equations for the physical state classes) and it must contain the group D generated by Cauchy transformations (otherwise the equations induced on physical state classes would not be well posed, either). We argue that it is exactly because of this double inclusion that the hole argument in its initial problem formulation is more powerful than in its boundary formulation. In the boundary formulation of the hole argument one still has that the group G of formal transformations is a subgroup of dynamical symmetries, but there is no evidence for it to contain a particular non-trivial subgroup.In this paper we shall show that this scenario is exactly implemented in generally covariant theories. In the last section we shall show it to be implemented in gauge theories as well.Norton also argued (see [1]) that the definition of physical state is something to be discussed in physics and it is not

  20. International workshop of the Confinement Database and Modelling Expert Group in collaboration with the Edge and Pedestal Physics Expert Group

    International Nuclear Information System (INIS)

    Cordey, J.; Kardaun, O.

    2001-01-01

    A Workshop of the Confinement Database and Modelling Expert Group (EG) was held on 2-6 April at the Plasma Physics Research Center of Lausanne (CRPP), Switzerland. Presentations were held on the present status of the plasma pedestal (temperature and energy) scalings from an empirical and theoretical perspective. An integrated approach to modelling tokamaks incorporating core transport, edge pedestal and SOL, together with a model for ELMs was presented by JCT. New experimental data on on global H-mode confinement were discussed and presentations on L-H threshold power were made

  1. Dark discrete gauge symmetries

    International Nuclear Information System (INIS)

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  2. Asymmetry, Symmetry and Beauty

    Directory of Open Access Journals (Sweden)

    Abbe R. Kopra

    2010-07-01

    Full Text Available Asymmetry and symmetry coexist in natural and human processes.  The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.

  3. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  4. A broken symmetry ontology: Quantum mechanics as a broken symmetry

    International Nuclear Information System (INIS)

    Buschmann, J.E.

    1988-01-01

    The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance

  5. 75 FR 36455 - SSE Telecom, Inc., Strategic Alliance Group, Inc., (n/k/a CruiseCam International, Inc...

    Science.gov (United States)

    2010-06-25

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] SSE Telecom, Inc., Strategic Alliance Group, Inc., (n/k/a CruiseCam International, Inc.), Stratasec, Inc., Superfly Advertising, Inc. (f/k/a Morlex... a lack of current and accurate information concerning the securities of Strategic Alliance Group...

  6. 75 FR 43329 - Interim Final Rules for Group Health Plans and Health Insurance Issuers Relating to Internal...

    Science.gov (United States)

    2010-07-23

    ... 45 CFR Part 147 Interim Final Rules for Group Health Plans and Health Insurance Issuers Relating to... Interim Final Rules for Group Health Plans and Health Insurance Issuers Relating to Internal Claims and... of Labor; Office of Consumer Information and Insurance Oversight, Department of Health and Human...

  7. 75 FR 43109 - Requirements for Group Health Plans and Health Insurance Issuers Relating to Internal Claims and...

    Science.gov (United States)

    2010-07-23

    ... Requirements for Group Health Plans and Health Insurance Issuers Relating to Internal Claims and Appeals and... the Office of Consumer Information and Insurance Oversight of the U.S. Department of Health and Human... health insurance coverage offered in connection with a group health plan under the Employee Retirement...

  8. Definition of a COPD self-management intervention: International Expert Group consensus.

    Science.gov (United States)

    Effing, Tanja W; Vercoulen, Jan H; Bourbeau, Jean; Trappenburg, Jaap; Lenferink, Anke; Cafarella, Paul; Coultas, David; Meek, Paula; van der Valk, Paul; Bischoff, Erik W M A; Bucknall, Christine; Dewan, Naresh A; Early, Frances; Fan, Vincent; Frith, Peter; Janssen, Daisy J A; Mitchell, Katy; Morgan, Mike; Nici, Linda; Patel, Irem; Walters, Haydn; Rice, Kathryn L; Singh, Sally; Zuwallack, Richard; Benzo, Roberto; Goldstein, Roger; Partridge, Martyn R; van der Palen, Job

    2016-07-01

    There is an urgent need for consensus on what defines a chronic obstructive pulmonary disease (COPD) self-management intervention. We aimed to obtain consensus regarding the conceptual definition of a COPD self-management intervention by engaging an international panel of COPD self-management experts using Delphi technique features and an additional group meeting.In each consensus round the experts were asked to provide feedback on the proposed definition and to score their level of agreement (1=totally disagree; 5=totally agree). The information provided was used to modify the definition for the next consensus round. Thematic analysis was used for free text responses and descriptive statistics were used for agreement scores.In total, 28 experts participated. The consensus round response rate varied randomly over the five rounds (ranging from 48% (n=13) to 85% (n=23)), and mean definition agreement scores increased from 3.8 (round 1) to 4.8 (round 5) with an increasing percentage of experts allocating the highest score of 5 (round 1: 14% (n=3); round 5: 83% (n=19)).In this study we reached consensus regarding a conceptual definition of what should be a COPD self-management intervention, clarifying the requisites for such an intervention. Operationalisation of this conceptual definition in the near future will be an essential next step. The content of this work is not subject to copyright. Design and branding are copyright ©ERS 2016.

  9. Core competencies for shared decision making training programs: insights from an international, interdisciplinary working group.

    Science.gov (United States)

    Légaré, France; Moumjid-Ferdjaoui, Nora; Drolet, Renée; Stacey, Dawn; Härter, Martin; Bastian, Hilda; Beaulieu, Marie-Dominique; Borduas, Francine; Charles, Cathy; Coulter, Angela; Desroches, Sophie; Friedrich, Gwendolyn; Gafni, Amiram; Graham, Ian D; Labrecque, Michel; LeBlanc, Annie; Légaré, Jean; Politi, Mary; Sargeant, Joan; Thomson, Richard

    2013-01-01

    Shared decision making is now making inroads in health care professionals' continuing education curriculum, but there is no consensus on what core competencies are required by clinicians for effectively involving patients in health-related decisions. Ready-made programs for training clinicians in shared decision making are in high demand, but existing programs vary widely in their theoretical foundations, length, and content. An international, interdisciplinary group of 25 individuals met in 2012 to discuss theoretical approaches to making health-related decisions, compare notes on existing programs, take stock of stakeholders concerns, and deliberate on core competencies. This article summarizes the results of those discussions. Some participants believed that existing models already provide a sufficient conceptual basis for developing and implementing shared decision making competency-based training programs on a wide scale. Others argued that this would be premature as there is still no consensus on the definition of shared decision making or sufficient evidence to recommend specific competencies for implementing shared decision making. However, all participants agreed that there were 2 broad types of competencies that clinicians need for implementing shared decision making: relational competencies and risk communication competencies. Further multidisciplinary research could broaden and deepen our understanding of core competencies for shared decision making training. Copyright © 2013 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on CME, Association for Hospital Medical Education.

  10. Management of relapsed multiple myeloma: recommendations of the International Myeloma Working Group.

    Science.gov (United States)

    Laubach, J; Garderet, L; Mahindra, A; Gahrton, G; Caers, J; Sezer, O; Voorhees, P; Leleu, X; Johnsen, H E; Streetly, M; Jurczyszyn, A; Ludwig, H; Mellqvist, U-H; Chng, W-J; Pilarski, L; Einsele, H; Hou, J; Turesson, I; Zamagni, E; Chim, C S; Mazumder, A; Westin, J; Lu, J; Reiman, T; Kristinsson, S; Joshua, D; Roussel, M; O'Gorman, P; Terpos, E; McCarthy, P; Dimopoulos, M; Moreau, P; Orlowski, R Z; Miguel, J S; Anderson, K C; Palumbo, A; Kumar, S; Rajkumar, V; Durie, B; Richardson, P G

    2016-05-01

    The prognosis for patients multiple myeloma (MM) has improved substantially over the past decade with the development of new, more effective chemotherapeutic agents and regimens that possess a high level of anti-tumor activity. In spite of this important progress, however, nearly all MM patients ultimately relapse, even those who experience a complete response to initial therapy. Management of relapsed MM thus represents a vital aspect of the overall care for patients with MM and a critical area of ongoing scientific and clinical research. This comprehensive manuscript from the International Myeloma Working Group provides detailed recommendations on management of relapsed disease, with sections dedicated to diagnostic evaluation, determinants of therapy, and general approach to patients with specific disease characteristics. In addition, the manuscript provides a summary of evidence from clinical trials that have significantly impacted the field, including those evaluating conventional dose therapies, as well as both autologous and allogeneic stem cell transplantation. Specific recommendations are offered for management of first and second relapse, relapsed and refractory disease, and both autologous and allogeneic transplant. Finally, perspective is provided regarding new agents and promising directions in management of relapsed MM.

  11. Symmetry breaking and chaos

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Ivanov, I.B.

    1999-01-01

    Connections between the symmetries of Hamiltonian systems in classical and quantum mechanics, on one hand, and their regularity or chaoticity, on the other hand, are considered. The quantum-chaoticity criterion that was proposed previously and which was borrowed from the theory of compound-nucleus resonances is used to analyze the quantum diamagnetic Kepler problem - that is, the motion of a spinless charged particle in a Coulomb and a uniform magnetic field

  12. Symmetry and statistics

    International Nuclear Information System (INIS)

    French, J.B.

    1974-01-01

    The concepts of statistical behavior and symmetry are presented from the point of view of many body spectroscopy. Remarks are made on methods for the evaluation of moments, particularly widths, for the purpose of giving a feeling for the types of mathematical structures encountered. Applications involving ground state energies, spectra, and level densities are discussed. The extent to which Hamiltonian eigenstates belong to irreducible representations is mentioned. (4 figures, 1 table) (U.S.)

  13. Symmetry in music

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)

    2010-06-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  14. Lie symmetries and superintegrability

    International Nuclear Information System (INIS)

    Nucci, M C; Post, S

    2012-01-01

    We show that a known superintegrable system in two-dimensional real Euclidean space (Post and Winternitz 2011 J. Phys. A: Math. Theor. 44 162001) can be transformed into a linear third-order equation: consequently we construct many autonomous integrals—polynomials up to order 18—for the same system. The reduction method and the connection between Lie symmetries and Jacobi last multiplier are used.

  15. Symmetry in music

    International Nuclear Information System (INIS)

    Herrero, O F

    2010-01-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  16. Symmetries of noncommutative scalar field theory

    International Nuclear Information System (INIS)

    De Goursac, Axel; Wallet, Jean-Christophe

    2011-01-01

    We investigate symmetries of the scalar field theory with a harmonic term on the Moyal space with the Euclidean scalar product and general symplectic form. The classical action is invariant under the orthogonal group if this group acts also on the symplectic structure. We find that the invariance under the orthogonal group can also be restored at the quantum level by restricting the symplectic structures to a particular orbit.

  17. Analysis of Adult Female Mouse (Mus musculus) Group Behavior on the International Space Station (ISS)

    Science.gov (United States)

    Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Globus, R. K.; Ronca, A. E.

    2016-01-01

    As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group

  18. Quotients of irreducible N=2 superconformal coset theories by discrete symmetries

    International Nuclear Information System (INIS)

    Bailin, D.; Love, A.

    1990-01-01

    The spectrum of massless states is studied for the irreducible N=2 superconformal coset theories when these theories are quotiented by discrete symmetries, including the effect of embedding the discrete symmetries in the gauge group. (orig.)

  19. The quantum symmetry of rational field theories

    International Nuclear Information System (INIS)

    Fuchs, J.

    1993-12-01

    The quantum symmetry of a rational quantum field theory is a finite-dimensional multi-matrix algebra. Its representation category, which determines the fusion rules and braid group representations of superselection sectors, is a braided monoidal C*-category. Various properties of such algebraic structures are described, and some ideas concerning the classification programme are outlined. (orig.)

  20. Holography with broken Poincaré symmetry

    NARCIS (Netherlands)

    Korovins, J.

    2014-01-01

    This thesis deals with the extensions of the holographic dualities to the situations where part of the Poincaré group has been broken. Such theories are particularly relevant for applications of gauge/gravity dualities to condensed matter systems, which usually exhibit non-relativistic symmetry.