WorldWideScience

Sample records for internal sn process

  1. Performance optimization of internal tin process multifilamentary Nb{sub 3}Sn strands

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ke, E-mail: zhangke@c-wst.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Western Superconducting Technologies Co. Ltd, Xi’an, Shaanxi 710018 (China); State Engineering Lab. of Superconducting Material Preparation, Xi’an, Shaanxi 710018 (China); Zhang, Pingxiang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Western Superconducting Technologies Co. Ltd, Xi’an, Shaanxi 710018 (China); State Engineering Lab. of Superconducting Material Preparation, Xi’an, Shaanxi 710018 (China); Northwest Institute for Non-ferrous Metal Research, Xi’an, Shaanxi 710016 (China); Shi, Yigong; Liu, Jianwei; Gao, Huixian; Li, Jianfeng; Liu, Xianghong; Feng, Yong [Western Superconducting Technologies Co. Ltd, Xi’an, Shaanxi 710018 (China); State Engineering Lab. of Superconducting Material Preparation, Xi’an, Shaanxi 710018 (China)

    2016-11-01

    Highlights: • J{sub c} increases by adding Sn cores in the interspaces, hysteresis loss increases at the same time. • Enlarger the number of filaments with the same Sn proportion will increase J{sub c} and hysteresis loss. • Cu split adopted in each sub-element leads to a low hysteresis loss. - Abstract: In this study, internal tin process Nb{sub 3}Sn strands for the International Thermo-nuclear Experimental Reactor are developed in Western Superconducting Technologies. Short cable-in-conduit conductors manufactured with these strands have been qualified. Mass production is accomplished, and all the performances of the strands meet the requirement of ITER project. Besides, more researches on the effect of strand design on critical current density and hysteresis loss for Nb{sub 3}Sn strands are carried out. It is found that critical current density can be enhanced by reducing filament diameter and increasing Sn content, and hysteresis loss of the strands can be significantly reduced through Cu split adopted in sub-element.

  2. $Nb_{3}Sn macrostructure, microstructure, and property comparisons for bronze and internal Sn process strands

    CERN Document Server

    Lee, P J; Larbalestier, D C

    2000-01-01

    The variation in irreversibility field, B*(T), with temperature has been measured for Nb/sub 3/Sn superconducting strands manufactured for ITER using vibrating sample and SQUID magnetometers. The high performance strands were developed for both high transport critical current density, J/sub c/, and low hysteresis loss. Despite a wide variety of designs and components, the strands could be split into two distinctive groups, based on the extrapolated irreversibility fields, which lie about 10% lower than the upper critical field. "Bronze-process" strands exhibited consistently higher B*(T) (28 T to 31 T) compared with "internal Sn" process (24 T to 26 T) conductors. The intrinsic critical current density of the superconductor, J/sub c (sc)/, and the specific pinning force of the grain boundaries, Q/sub gb/, were evaluated using the measured J/sub c/, and image analysis of the macro- and micro-structures. A bronze-processed Nb(-Ta)/sub 3 /Sn was found to have a higher J/sub c(sc)/ but lower Q/sub gb/ than Nb/sub...

  3. Internal friction behavior of liquid Bi-Sn alloys

    International Nuclear Information System (INIS)

    Wu Aiqing; Guo Lijun; Liu Changsong; Jia Erguang; Zhu Zhengang

    2005-01-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480 - bar Cand another at about 830 - bar C. Only a single internal-friction peak at about 830 - bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids

  4. Internal friction behavior of liquid Bi-Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu Aiqing [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Guo Lijun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liu Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Jia Erguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)]. E-mail: zgzhu@issp.ac.cn

    2005-12-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480{sup -}bar Cand another at about 830{sup -}bar C. Only a single internal-friction peak at about 830{sup -}bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids.

  5. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Zhang, Chaowu

    2007-07-01

    Superconductors Nb 3 Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb 3 Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  6. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaowu

    2007-07-15

    Superconductors Nb{sub 3}Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb{sub 3}Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  7. Wear Behavior and Microstructure of Mg-Sn Alloy Processed by Equal Channel Angular Extrusion.

    Science.gov (United States)

    Chen, Jung-Hsuan; Shen, Yen-Chen; Chao, Chuen-Guang; Liu, Tzeng-Feng

    2017-11-16

    Mg-5wt.% Sn alloy is often used in portable electronic devices and automobiles. In this study, mechanical properties of Mg-5wt.% Sn alloy processed by Equal Channel Angular Extrusion (ECAE) were characterized. More precisely, its hardness and wear behavior were measured using Vickers hardness test and a pin-on-disc wear test. The microstructures of ECAE-processed Mg-Sn alloys were investigated by scanning electron microscope and X-ray diffraction. ECAE process refined the grain sizes of the Mg-Sn alloy from 117.6 μm (as-cast) to 88.0 μm (one pass), 49.5 μm (two passes) and 24.4 μm (four passes), respectively. Meanwhile, the hardness of the alloy improved significantly. The maximum wear resistance achieved in the present work was around 73.77 m/mm³, which was obtained from the Mg-Sn alloy treated with a one-pass ECAE process with a grain size of 88.0 μm. The wear resistance improvement was caused by the grain size refinement and the precipitate of the second phase, Mg₂Sn against the oxidation of the processed alloy. The as-cast Mg-Sn alloy with the larger grain size, i.e., 117.6 μm, underwent wear mechanisms, mainly adhesive wear and abrasive wear. In ECAE-processed Mg-Sn alloy, high internal energy occurred due to the high dislocation density and the stress field produced by the plastic deformation, which led to an increased oxidation rate of the processed alloy during sliding. Therefore, the oxidative wear and a three-body abrasive wear in which the oxide debris acted as the three-body abrasive components became the dominant factors in the wear behavior, and as a result, reduced the wear resistance in the multi-pass ECAE-processed alloy.

  8. The recruitment of the U5 snRNP to nascent transcripts requires internal loop 1 of U5 snRNA.

    Science.gov (United States)

    Kim, Rebecca; Paschedag, Joshua; Novikova, Natalya; Bellini, Michel

    2012-12-01

    In this study, we take advantage of the high spatial resolution offered by the nucleus and lampbrush chromosomes of the amphibian oocyte to investigate the mechanisms that regulate the intranuclear trafficking of the U5 snRNP and its recruitment to nascent transcripts. We monitor the fate of newly assembled fluorescent U5 snRNP in Xenopus oocytes depleted of U4 and/or U6 snRNAs and demonstrate that the U4/U6.U5 tri-snRNP is not required for the association of U5 snRNP with Cajal bodies, splicing speckles, and nascent transcripts. In addition, using a mutational analysis, we show that a non-functional U5 snRNP can associate with nascent transcripts, and we further characterize internal loop structure 1 of U5 snRNA as a critical element for licensing U5 snRNP to target both nascent transcripts and splicing speckles. Collectively, our data support the model where the recruitment of snRNPs onto pre-mRNAs is independent of spliceosome assembly and suggest that U5 snRNP may promote the association of the U4/U6.U5 tri-snRNP with nascent transcripts.

  9. An intermetallic powder-in-tube approach to increased flux-pinning in Nb3Sn by internal oxidation of Zr

    Science.gov (United States)

    Motowidlo, L. R.; Lee, P. J.; Tarantini, C.; Balachandran, S.; Ghosh, A. K.; Larbalestier, D. C.

    2018-01-01

    We report on the development of multifilamentary Nb3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO2 powder is mixed with Cu5Sn4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filament tubes. Initial results show an average grain size of ˜38 nm in the A15 layer, compared to the 90-130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. There is a shift in the peak of the pinning force curve from H/H irr of ˜0.2 to ˜0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.

  10. Recent Progress in Application of Internal Oxidation Technique in Nb3Sn Strands

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen [Fermilab; Peng, Xuan [Hyper Tech Research Inc.; Sumption, Michael [Ohio State U.; Collings, E. W. [Ohio State U.

    2016-10-13

    The internal oxidation technique can generate ZrO2 nano particles in Nb3Sn strands, which markedly refine the Nb3Sn grain size and boost the high-field critical current density (Jc). This article summarizes recent efforts on implementing this technique in practical Nb3Sn wires and adding Ti as a dopant. It is demonstrated that this technique can be readily incorporated into the present Nb3Sn conductor manufacturing technology. Powder-in-tube (PIT) strands with fine subelements (~25 µm) based on this technique were successfully fabricated, and proper heat treatments for oxygen transfer were explored. Future work for producing strands ready for applications is proposed.

  11. Internal friction and elastic softening in polycrystalline Nb3Sn

    International Nuclear Information System (INIS)

    Bussiere, J.F.; Faucher, B.; Snead, C.L. Jr.; Welch, D.O.

    1981-01-01

    The vibrating-reed technique was used to measure internal friction and Young's modulus of polycrystalline Nb 3 Sn in the form of composite Nb/Nb 3 Sn tapes from 6 to 300 K. In tapes with only small residual strain in the A15 layers, a dramatic increase in internal friction with decreasing temperature is observed with an abrupt onset at approx.48 K. The internal friction Q -1 between 6 and 48 K is believed to be associated with stress-induced motion of martensitic-domain walls. In this temperature range, Q -1 is approximately proportional to the square of the tetragonal strain of the martensitic phase; Q -1 α (c/a-1) 2 . With residual compressive strains of approx.0.2%, the internal friction associated with domain-wall motion is considerably reduced. This is attributed to a biasing of domain-wall orientation with residual stress, which reduces wall motion induced by the (much smaller) applied stress. The transformation temperature, however, is unchanged (within +- 1 K) by residual strains of up to 0.2%. Young's modulus exhibits substantial softening on cooling from 300 to 6 K. This softening, is substantially reduced in the presence of small residual compressive strains, indicating a highly nonlinear stress-strain relationship as previously reported for V 3 Si

  12. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation

    International Nuclear Information System (INIS)

    Crisafulli, Rudy

    2013-01-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H 2 PtCl 6 .6H 2 O, SnCl 2 .2H 2 O and CuCl 2 .2H 2 O as metal sources, NaBH 4 and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of PtSnCu/C (50:40:10) AR/ED > PtSnCu/C (50:10:40) BR/CD. PtSn/C (50:50) BR/CD, PtSnCu/C (50:10:40) BR/CD, PtSnCu/C (50:40:10) AR/CD electrocatalysts and Pt/C BASF, PtSn/C (75:25) BASF commercial electrocatalysts were tested in single Direct Ethanol Fuel Cell. The results showed the following performance for ethanol electro-oxidation: PtSn/C (50:50) BR/CD > PtSnCu/C (50:40:10) AR/CD > PtSnCu/C > PtSn/C (75:25) BASF > PtSnCu/C (50:10:40) BR/CD > Pt/C BASF. (author)

  13. On the formation of voids in internal tin Nb$_{3}$Sn superconductors

    CERN Document Server

    Scheuerlein, C; Haibel, A

    2007-01-01

    In this article we describe three void growth mechanisms in Nb$_{3}$Sn strands of the internal tin design on the basis of combined synchrotron micro-tomography and x-ray diffraction measurements during in-situ heating cycles. Initially void growth is driven by a reduction of void surface area by void agglomeration. The main void volume increase is caused by density changes during the formation of Cu3Sn in the strand. Subsequent transformation of Cu-Sn intermetallics into the lower density a-bronze reduces the void volume again. Long lasting temperature ramps and isothermal holding steps can neither reduce the void volume nor improve the chemical strand homogeneity prior to the superconducting A15 phase nucleation and growth.

  14. Ti-24Nb-4Zr-8Sn Alloy Pedicle Screw Improves Internal Vertebral Fixation by Reducing Stress-Shielding Effects in a Porcine Model.

    Science.gov (United States)

    Qu, Yang; Zheng, Shuang; Dong, Rongpeng; Kang, Mingyang; Zhou, Haohan; Zhao, Dezhi; Zhao, Jianwu

    2018-01-01

    To ensure the biomechanical properties of Ti-24Nb-4Zr-8Sn, stress-shielding effects were compared between Ti-24Nb-4Zr-8Sn and Ti-6Al-4V fixation by using a porcine model. Twelve thoracolumbar spines (T12-L5) of 12-month-old male pigs were randomly divided into two groups: Ti-24Nb-4Zr-8Sn (EG, n = 6) and Ti-6Al-4V (RG, n = 6) fixation. Pedicle screw was fixed at the outer edge of L4-5 vertebral holes. Fourteen measuring points were selected on the front of transverse process and middle and posterior of L4-5 vertebra. Electronic universal testing machine was used to measure the strain resistance of measuring points after forward and backward flexion loading of 150 N. Meanwhile, stress resistance was compared between both groups. The strain and stress resistance of measurement points 1, 2, 5, 6, 9, and 10-14 in Ti-24Nb-4Zr-8Sn fixation was lower than that of Ti-6Al-4V fixation after forward and backward flexion loading ( P Ti-24Nb-4Zr-8Sn fixation than that of Ti-6Al-4V fixation ( P Ti-24Nb-4Zr-8Sn internal fixation were less than that of Ti-6Al-4V internal fixation. These results suggest that Ti-24Nb-4Zr-8Sn elastic fixation has more biomechanical goals than conventional Ti-6Al-4V internal fixation by reducing stress-shielding effects.

  15. Heat treatment effect on the strain dependence of the critical current for an internal-tin processed Nb3Sn strand

    International Nuclear Information System (INIS)

    Oh, Sangjun; Park, Soo-Hyeon; Lee, Chulhee; Choi, Heekyung; Kim, Keeman

    2010-01-01

    A comparative study on the effects of heat treatment, especially, the duration of the A15 reaction temperature plateau on the strain dependence of the critical current for an internal-tin processed Nb 3 Sn strand has been carried out. The strain dependence of the critical current is measured by a variable temperature Walter spiral probe that we have developed. It was shown that prolonged heat treatment can be a very effective way to improve the strain dependency. For a quantitative analysis, the measured data were analyzed with various proposed scaling laws: the scaling law based on strong-coupling theory, the modified deviatoric strain scaling law, and the interpolative scaling law. We found that there is a slight increase in the critical temperature and a substantial improvement in the maximum pinning force. The origin of improved strain dependency is further discussed.

  16. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Development and manufacturing of bronze-processed Ta-added Nb3Sn wires for the ITER

    International Nuclear Information System (INIS)

    Kikuchi, Kenichi; Seidou, Masahiro; Iwaki, Genzou; Sakai, Syuuji; Moriai, Hidezumi; Nishi, Masataka; Yoshida, Kiyoshi; Isono, Takaaki; Tsuji, Hiroshi.

    1997-01-01

    Development work to produce a high-performance Nb 3 Sn superconducting wire for the center solenoid coil of the ITER was carried out. The effects of concurrently adding Ti and Ta to bronze-processed Nb 3 Sn wires were examined. In addition, a high-Sn-concentration bronze matrix was applied. Then, the relation between hysteresis loss and filament diameter was examined. Moreover, the cause of wire breakage during processing was elucidated. As a result, a reliable manufacturing process for high-performance Nb 3 Sn superconducting wire was established. (author)

  18. Low-temperature processed SnO{sub 2} compact layer for efficient mesostructure perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jinxia; Xiong, Qiu; Feng, Bingjie; Xu, Yang; Zhang, Jun; Wang, Hao, E-mail: nanoguy@126.com

    2017-01-01

    Highlights: • Low-temperature processed 70 nm cl-SnO{sub 2} device exhibits maximum PCE. • Champion PSC after SnCl{sub 4} treatment acquires PCE of 15.07%. • Cl-SnO{sub 2} PSC via SnCl{sub 4} treatment exhibits superior stability to cl-TiO{sub 2} based PSC. - Abstract: SnO{sub 2} nanoparticle film has been synthesized via low- temperature (∼180 °C) solution-processing and proposed as compact layer in mesostructure perovskite-type solar cell (PSC). Low-temperature processed SnO{sub 2} compact layer (cl-SnO{sub 2}) brings perfect crystal-lattice and band-gap matching between electron selective layer and FTO substrate and close interface-contact between cl-SnO{sub 2} and mesoporous TiO{sub 2} layer (mp-TiO{sub 2}), which contributes to suppressing carrier recombination and optimizing device performance. In varied thickness cells, 70 nm cl-SnO{sub 2} device exhibits maximum power conversion efficiency (PCE). In order to further restrain photoelectron recombination and improve the photovoltaic performance, the surface modification of cl-SnO{sub 2} by SnCl{sub 4} aqueous solution has been carried out. The recombination behavior in the cell interior is greatly retarded via SnCl{sub 4} treatment and champion PSC after SnCl{sub 4} treatment has acquire PCE of 15.07%, which is higher than PCE of cl-TiO{sub 2} based PSC fabricated with same mp-TiO{sub 2} and perovskite procedures (13.3%). The stability of cl-SnO{sub 2} PSC via SnCl{sub 4} treatment has also been measured and its PCE reduces to 13.0% after 2 weeks in air.

  19. Comparisons of internal self-field magnetic flux densities between recent Nb{sub 3}Sn fusion magnet CICC cable designs

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. P. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    The Cable-In-Conduit-Conductor (CICC) for the ITER tokamak Central Solenoid (CS) has undergone design change since the first prototype conductor sample was tested in 2010. After tests showed that the performance of initial conductor samples degraded rapidly without stabilization, an alternate design with shorter sub-cable twist pitches was tested and discovered to satisfy performance requirements, namely that the minimum current sharing temperature (Tcs) remained above a given limit under DC bias. With consistent successful performance of ITER CS conductor CICC samples using the alternate design, an attempt is made here to revisit the internal electromagnetic properties of the CICC cable design to identify any correlation with conductor performance. Results of this study suggest that there may be a simple link between the Nb3Sn CICC internal self-field and its Tcs performance. The study also suggests that an optimization process should exist that can further improve the performance of Nb3Sn based CICC.

  20. Synthesis mechanism of heterovalent Sn2O3 nanosheets in oxidation annealing process

    International Nuclear Information System (INIS)

    Zhao Jun-Hua; Wu Guo-Qiang; Yang Xu-Feng; Tan Rui-Qin; Yang Ye; Xu Wei; Li Jia; Shen Wen-Feng; Song Wei-Jie

    2015-01-01

    Heterovalent Sn 2 O 3 nanosheets were fabricated via an oxidation annealing process and the formation mechanism was investigated. The temperature required to complete the phase transformation from Sn 3 O 4 to Sn 2 O 3 was considered. Two contrasting experiments showed that both oxygen and heating were not necessary conditions for the phase transition. Sn 2 O 3 was formed under an argon protective atmosphere by annealing and could also be obtained at room temperature by exposing Sn 3 O 4 in atmosphere or dispersing in ethanol. The synthesis mechanism was proposed and discussed. This fundamental research is important for the technological applications of intermediate tin oxide materials. (paper)

  1. Design and fabrication of Sn-Nb-Cu-Ta-C composites for multifilamentary superconducting Nb/sub 3/Sn wires by using the modified tube technique

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Kosek, Z M

    1987-10-01

    The factors determining the design and fabrication of Nb/sub 3/Sn multifilamentary wires by the tube technique are discussed. New improved methods of obtaining multifilamentary Nb/sub 3/Sn wires on the basis of both external diffusion and internal diffusion processes, by using the tube technique in a simpler and less expensive way, are presented.

  2. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation; Preparacao de eletrocatalisadores PtSnCu/C e PtSn/C e ativacao por processos de dealloying para aplicacao na oxidacao eletroquuimica do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Crisafulli, Rudy

    2013-06-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H{sub 2}PtCl{sub 6}.6H{sub 2}O, SnCl{sub 2}.2H{sub 2}O and CuCl{sub 2}.2H{sub 2}O as metal sources, NaBH{sub 4} and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of <=2 nm to 3 nm and after dealloying there were no significant variations in sizes. The energy dispersive Xray analysis of the as-synthesized electrocatalysts showed a Pt:Sn and Pt:Sn:Cu atomic ratios similar to the nominal values. After chemical and electrochemical dealloying of the electrocatalysts the ranged Pt:Sn and Pt:Sn:Cu atomic ratios showed that Cu and Sn atoms were removed. However, chemical dealloying process proved to be more efficient for removing Cu and electrochemical dealloying for removing Sn. The line scan energy dispersive X-ray analysis showed that acid and electrochemical treatments were efficient to dealloying Cu and/or Sn superficial atoms of

  3. Application of sol-gel process on the elaboration of SnO2 based ceramics

    International Nuclear Information System (INIS)

    Prescatan, R.T.; Silva, D.V. da; Hiratsuka, R.S.; Santilli, C.V.; Pulcinelli, S.H.

    1990-01-01

    The electrical, optical and chemical peculiar properties of SnO 2 confers it-self some potential application. The densification difficulty during sintering of SnO 2 compromises its elaboration by ceramic conventional process. In this work the preparation of SnO 2 ceramics by sol-gel process was investigated. Some parameters envolved on the colloidal stability, sol-gel transition and drying process were analysed. The obtained materials were characterized by rheological, X-ray diffraction, infra-red spectroscopy and pores size distribution measurements. The results show that a considerable densification during sintering at 400 and 600 0 C was obtained. (author) [pt

  4. Effects of coating process on the characteristics of Ag-SnO2 contact materials

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Zheng, J.; Li, S.L.

    2006-01-01

    Good wettability between the SnO 2 and silver matrix can improve the electrical contact performance of Ag-SnO 2 materials. In this work, Ag was deposited onto the surface of Ti-doped SnO 2 particles using chemical plating to enhance the wettability. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the Ag-coated SnO 2 particles. Scanning electron microscopy (SEM), conductivity tests, differential thermal analysis (DTA), and thermogravimetric analysis (TGA) were performed on the Ag-SnO 2 materials. Our results reveal that the chemical plating process can enhance the wettability between the Ti-doped SnO 2 particles and Ag matrix, and the Ag-coated SnO 2 particles are uniformly distributed in the Ag matrix. Both the thermal and electrical conductivity of the Ag-SnO 2 materials are significantly improved

  5. Flux pinning characteristics of Sn-doped YBCO film by the MOD process

    International Nuclear Information System (INIS)

    Choi, S.M.; Shin, G.M.; Yoo, S.I.

    2013-01-01

    Highlights: ► The pinning effects of undoped and Sn-doped YBCO films by MOD were characterized. ► Sn-containing nanoparticles were trapped in Sn-doped YBCO films by MOD. ► Sn-containing nanoparticles were identified as the YBa 2 SnO 5.5 (YBSO) phase by TEM. ► The YBSO nanoparticles are responsible for improved flux pinning effect. ► We report the orientation relationship between YBSO nanoparticles and YBCO matrix. -- Abstract: Compared with the undoped YBa 2 Cu 3 O 7−δ (YBCO) film, 10 mol% Sn-doped YBCO film exhibited significantly enhanced critical current densities (J c ) in magnetic fields up to 5 T at 65 and 77 K for H//c, indicating that the Sn-doped YBCO film possesses more effective flux pinning centers. Both samples were grown on the SrTiO 3 (STO) (1 0 0) single crystal substrates by the metal-organic deposition (MOD) process. Larger J c (77 K, 1 T) values of Sn-doped YBCO film are observed over a wide field-orientation angle (θ) except the field-orientations close to the ab-plane of YBCO (85° c values for 85° 2 SnO 5.5 (YBSO) phase by STEM (scanning transmission electron microscopy)-EDS (energy dispersive X-ray spectroscopy) analysis. Further analyses by HR-TEM (high resolution-transmission electron microscopy) revealed that YBSO nanoparticles completely surrounded by the YBCO matrix had random orientation with YBCO while those located at the interface of YBCO/STO substrate had epitaxial relationship with YBCO

  6. Metallic superconductors. 3. Na3Sn and V3Ga wires (Part one)

    International Nuclear Information System (INIS)

    Tachikawa, Kyoji

    2010-01-01

    Nowadays Nb 3 Sn wires are being widely used as one of the key materials in advanced science and technology, with various applications such as NMR, fusion and cryogen-free superconducting magnets. In this article, at first microstructures and fundamental aspects as well as the effect of additional elements in Nb 3 Sn are outlined. Intrinsic superconducting performances, e.g. T c and B c2 , are quite sensitive to the stoichiometry of the Sn concentration. A small amount of Ti and Ta doping is much effective for the increase of B c2 in Nb 3 Sn. The effect of Cu on the enhancement of Nb 3 Sn synthesis has yielded a significant breakthrough for the industrial production of the wires. At present the bronze process and internal Sn process are the twin major fabrication techniques of Nb 3 Sn wires. The recent status of both processes is reviewed in this article. Pronounced progress has been achieved in the performance of Nb 3 Sn wires fabricated through both techniques. Although just half a century has passed since the first fabrication of Nb 3 Sn wire, further progress in Nb 3 Sn technology may be expected like the proverb saying 'Fresh water still comes out from an old spring'. (author)

  7. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Science.gov (United States)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  8. Investigating the Formation Process of Sn-Based Lead-Free Nanoparticles with a Chemical Reduction Method

    International Nuclear Information System (INIS)

    Zhang, W.; Zhao, B.; Gao, Y.; Zhang, W.; Zhao, B.; Zou, Ch.; Zhai, Q.; Gao, Y.; Gao, Y.; Acquah, S.F.A.

    2013-01-01

    Nanoparticles of a promising lead-free solder alloy (Sn 3.5 Ag (wt.%, Sn Ag) and Sn 3.0 Ag 0.5 Cu (wt.%, SAC)) were synthesized through a chemical reduction method by using anhydrous ethanol and 1,10-phenanthroline as the solvent and surfactant, respectively. To illustrate the formation process of Sn-Ag alloy based nanoparticles during the reaction, X-ray diffraction (XRD) was used to investigate the phases of the samples in relation to the reaction time. Different nucleation and growth mechanisms were compared on the formation process of the synthesized nanoparticles. The XRD results revealed different reaction process compared with other researchers. There were many contributing factors to the difference in the examples found in the literature, with the main focus on the formation mechanism of crystal nuclei, the solubility and ionizability of metal salts in the solvent, the solid solubility of Cu in Ag nuclei, and the role of surfactant on the growth process. This study will help define the parameters necessary for the control of both the composition and size of the nanoparticles

  9. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-900 Sao Paulo, SP (Brazil)

    2007-03-30

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature. (author)

  10. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    Science.gov (United States)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  11. Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, D.M. dos; Hahn, F.; Leger, J.M.; Kokoh, K.B. [Universite de Poitiers, Poitiers Cedex (France). Centre National de la Recherche Scientifique (CNRS). Equipe Electrocatalyse; Tremiliosi-Filho, G. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2008-07-01

    Ethanol oxidation has been studied on Pt-Sn and Pt-Sn-W electrodes prepared in an arc-melting furnace. Different electrochemical techniques like cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activity of these materials. The electro-oxidation process was also investigated by in situ infrared reflectance spectroscopy in order to determine adsorbed intermediates and reaction products. Experimental results indicated that Pt-Sn and Pt-Sn-W alloys are able to oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also detected, demonstrating the viability of splitting the C-C bond in the ethanol molecule during the oxidation process. The adsorbed CO was further oxidized to CO{sub 2}.This reaction product was clearly detected by SNIFTIRS. Pt-Sn-W catalyst showed a better electrochemical performance than Pt-Sn that, in it turn, is better than Pt-alone. (author)

  12. Cu-Nb3Sn superconducting wires prepared by ''Copper Liquid Phase Sintering method'' using the Nb-H

    International Nuclear Information System (INIS)

    Resende, A.T. de.

    1985-01-01

    Cu-30% Nb in weighting were prepared by the method of Copper sintering liquid phase the method was improved by substitution of Nb power by Nb-H powder, obtaining a high density material with good mechanical properties, which was reduced to fine. Wire, Without heat treatment. The Cu-Nb 3 Sn wires were obtained by external diffusion process depositing tin in the Cu-30%Nb wires, and by internal diffusion process using the Sn-8.5% Cu in weighting, which was reduced to rods of 3.5 mm. These Cu-30%Nb rods were enclosed in copper tubes and deformed mechanically by rotary swaging and drawing. During the drawing step some wires were fractured, that were analysed and correlated with the microstructure of the Sn-8.5 Wt% Cu alloy. External and internal diffusion samples; after a fast thermal treatment for Sn diffusion, were submited to the temperature of 700 0 C to provide the reaction between Sn and Nb, leading to the Nb 3 Sn phase. Samples with several reaction times, and its influence on T c and J c critical parameters and normal resistivity were prepared and analysed. (author) [pt

  13. Development of heat resistant Pb-free joints by TLPS process of Ag and Sn-Bi-Ag alloy powders

    Directory of Open Access Journals (Sweden)

    Ohnuma I.

    2012-01-01

    Full Text Available TLPS (Transient Liquid Phase Sintering process is a candidate method of heat-resistant bonding, which makes use of the reaction between low-melting temperature powder of Sn-Bi base alloys and reactive powder of Ag. During heat treatment above the melting temperature of a Sn-Bi base alloy, the molten Sn-Bi reacts rapidly with solid Ag particles, which results in the formation of heat-resistant intermetallic compound (IMC. In this study, the TLPS properties between Sn-17Bi-1Ag (at.% powder with its liquidus temperature of 200°C and pure Ag powder were investigated. During differential scanning calorimetry (DSC measurement, an exothermic reaction and an endothermic reaction occurred, which correspond to the formation of the e-Ag3Sn IMC phase and the melting of the Sn-17Bi-1Ag alloy, respectively. After the overall measurement, the obtained reactant consists of the Ag3Sn-IMC and Bi-rich phases, both of which start melting above 250°C, with a small amount of the residual Sn-Bi eutectic phase. These results suggest that the TLPS process can be applied for Pb-free heatresistant bonding.

  14. Development of Nb3Sn strands for ITER in Japan

    International Nuclear Information System (INIS)

    Isono, T.; Nunoya, Y.; Matsui, K.; Nabara, Y.; Koizumi, N.; Takahashi, Y.; Okuno, K.

    2007-01-01

    Nb 3 Sn strands for ITER Toroidal Field (TF) coils and Central Solenoids (CS) are required to have both high current density (Jc) and low hysteresis loss. The required Jc at 12 T, 4.2 K and no external strain is lager than 700 A/mm 2 for bronze processed strand and lager than 800 A/mm 2 for internal tin processed one at 12 T, 4.2 K and no external strain. Upper limit of hysteresis loss is 1,000 mJ/cm 3 at 4.2 K and a cycle of ±3 T. Outer diameter is 0.82 mm and 0.83 mm for TF coils and CS, respectively. Area ratio of copper to non copper is one and outer surface is Cr plated. Japan will procure 25% of Nb 3 Sn for ITER TF coils and 100% for ITER CS. There are four Nb 3 Sn strand suppliers in Japan; three of them use bronze process and the other uses internal tin process. For bronze processed strand, increase Jc was achieved by using bronze with high tin content of 15 to 16%. To keep productivity while using the harder bronze with high tin content, Nb is used for barrier in place of Ta. The material is expected to have better adhesion to other materials such as bronze and copper. For internal tin process, size of modules, each of which has a tin rod and a lot of Nb filaments embedded in a copper cylinder, is reduced, while total amount of tin increase in order to satisfy both required high Jc and low hysteresis loss. Each supplier fabricated a strand of more than 0.1 ton for TF coils and succeeded to develop a strand satisfying the ITER requirements of Jc and hysteresis loss. (authors)

  15. FENIX experimental results of large-scale CICC made of bronze-processed Nb3Sn strands

    International Nuclear Information System (INIS)

    Shen, S.S.; Felker, B.; Moller, J.M.; Parker, J.M.; Isono, T.; Yasukawa, Y.; Hosono, F.; Nishi, M.

    1994-01-01

    The Fusion ENgineering International eXperiments (FENIX) Test Facility recently has successfully complete the testing of a pair of Nb 3 rSn cable-in-conduit conductors developed by the Japan Atomic Energy Research Institute. These conductors, made of bronze-processed strands, were designed to operate stably with 40-kA transport current at a magnetic field of 13 T. In addition to the measurements of major design parameters such as current-sharing temperature, FENIX provided several experiments specifically designed to provide results urgently needed by magnet designers. Performed experiments include measurements of ramp-rate limit, current-distribution, stability, and joint performance. This paper presents the design and results of these special experiments

  16. Incomplete deep inelastic processes in 100Mo + 100Mo and 120Sn + 120Sn at 18 and 24 MeV/u

    International Nuclear Information System (INIS)

    Petrovici, M.

    1989-12-01

    Experimental evidence on inclomplete deep inelastic process in 100 Mo + 100 Mo at 18.67 MeV/u, 23.75 MeV/u and in 120 Sn + 120 Sn at 18.34 MeV/u are presented. Such a mechanism is responsible for strong deviations observed at these incident energies in σ 2 Z -TKEL/l g (for two-body) and P 3 /(P 2 + P 3 )-TKEL (for three-body) systematics. Calculations which predict the number of preequilibrium emitted nucleons and the corresponding excitation energy per nucleon that remains in the dinuclear system could explain the observed discrepancies. (author)

  17. Studies on advanced superconductors for fusion device. Pt. 1. Present status of Nb3Sn conductors

    International Nuclear Information System (INIS)

    Tachikawa, Kyoji; Yamamoto, Junya

    1996-03-01

    Nb 3 Sn conductors have been developed with great expectation as an advanced high-field superconductor to be used in fusion devices of next generation. Furthermore, Nb 3 Sn conductors are being developed for NMR magnet and superconducting generator as well as for cryogen-free superconducting magnet. A variety of fabrication procedures, such as bronze process, internal tin process and Nb tube method, have been developed based on the diffusion reaction. Recently, Nb 3 Sn conductors with ultra-thin filaments have been fabricated for AC use. Both high-field and AC performances of Nb 3 Sn conductors have been significantly improved by alloying addition. The Ti-doped Nb 3 Sn conductor has generated 21.5T at 1.8K operation. This report summarizes manufacturing procedures, superconducting performances and applications of Nb 3 Sn conductors fabricated through different processes in different countries. More detailed subjects included in this report are high-field properties, AC properties, conductors for fusion with large current capacities, stress-strain effect and irradiation effect as well as standardization of critical current measurement method regarding to Nb 3 Sn conductors. Comprehensive grasp on the present status of Nb 3 Sn conductors provided by this report will act as a useful data base for the future planning of fusion devices. (author). 172 refs

  18. Behavior of Sn atoms in GeSn thin films during thermal annealing: Ex-situ and in-situ observations

    Science.gov (United States)

    Takase, Ryohei; Ishimaru, Manabu; Uchida, Noriyuki; Maeda, Tatsuro; Sato, Kazuhisa; Lieten, Ruben R.; Locquet, Jean-Pierre

    2016-12-01

    Thermally induced crystallization processes for amorphous GeSn thin films with Sn concentrations beyond the solubility limit of the bulk crystal Ge-Sn binary system have been examined by X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, and (scanning) transmission electron microscopy. We paid special attention to the behavior of Sn before and after recrystallization. In the as-deposited specimens, Sn atoms were homogeneously distributed in an amorphous matrix. Prior to crystallization, an amorphous-to-amorphous phase transformation associated with the rearrangement of Sn atoms was observed during heat treatment; this transformation is reversible with respect to temperature. Remarkable recrystallization occurred at temperatures above 400 °C, and Sn atoms were ejected from the crystallized GeSn matrix. The segregation of Sn became more pronounced with increasing annealing temperature, and the ejected Sn existed as a liquid phase. It was found that the molten Sn remains as a supercooled liquid below the eutectic temperature of the Ge-Sn binary system during the cooling process, and finally, β-Sn precipitates were formed at ambient temperature.

  19. Flux pinning in bronze-processed Nb3Sn wires

    International Nuclear Information System (INIS)

    Suenaga, M.; Welch, D.O.

    1980-01-01

    The scaling law derived by Kramer for magnetic flux pinning in high magnetic fields was examined for its applicability to the magnetic field dependence of critical-current densities in the bronze processed monofilamentary Nb 3 Sn wires. From this it was concluded that: (1) its prediction for the form of the dependence of critical current on magnetic field and grain size [/J vector /sub c/ x H vector/ approx. h/sup 1/2/(1-h) 2 (1-a 0 √rho) -2 ] was found to be very good in most cases including wires with very small Nb 3 Sn grains (approx. 400 A). It was found very useful in comparison of J/sub c/ for different wires and in extrapolating to obtain H/sub c2/ for these wires. (2) However, it could not account consistently for the anisotropy in critical current of a tape which was measured with H applied perpendicular and parallel to the tape face. (3) The values of kappa 1 which were determined with the scaling law were too small by a factor of 2 to 3, and the trend in the variation with heat-treating time was opposite to that which is reasonably to be expected. That the behavior of kappa 1 is thus seriously in contradiction with the expected behavior for Nb 3 Sn suggests basic faults in the derivation of the scaling equation for critical currents at high magnetic fields

  20. ac loss and dc critical current densities of Nb3Sn tapes by the solid state diffusion process

    International Nuclear Information System (INIS)

    Suenaga, M.; Klamut, C.; Bussiere, J.F.

    1976-01-01

    The effects of metallurgical processing on 60 Hz ac losses and dc critical currents in Nb 3 Sn tapes fabricated by the solid state diffusion technique were investigated. An addition of Al to the Cu--Sn alloy for the matrix resulted in large reduction in the ac losses of Nb 3 Sn tapes, but the highest linear critical current densities were observed in Nb 3 Sn tapes produced with a Nb-1 wt percent Zr core in a Cu-13 wt percent Sn matrix. Values of the losses and the critical currents in these tapes can meet the present requirements for the ac superconducting power cables

  1. Validation of the production process of core-equipment HYNIC-Bombesin-Sn

    International Nuclear Information System (INIS)

    Rubio C, N. I.

    2008-01-01

    The validation process is establishing documented evidence that provides a high degree of assurance that a specific process consistently will produce a product that will meet specifications and quality attributes preset and, therefore, ensures the efficiency and effectiveness of a product. The radiopharmaceutical 99m Tc-HYNlC-Bombesin is part of the gastrin-releasing peptide (GRP) analogues of bombesin that are radiolabelled with technetium 99 metastable for molecular images obtention. Is obtained from freeze-dry formulations kits (core- equipment)) and has reported a very high stability in human serum, specific binding to receptors and rapid internalization. Biodistribution data in mice showed rapid blood clearance with predominant renal excretion and specific binding to tissues with positive response to GRP receptors. According to biokinetics studies performed on patients with breast cancer, breast show a marked asymmetry with increased uptake in neoplastic breast in healthy women and the uptake of radiopharmaceuticals is symmetrical in both breasts. No reported adverse reactions. In this paper, the prospective validation core-equipment HYNlC-Bombesin-Sn, which was shown consistently that the product meets the specifications and quality, attributes to preset from the obtained from the diagnostic radiopharmaceutical third generation: 99m Tc-HYNlC-Bombesin. The process was successfully validated and thereby ensuring the efficiency and effectiveness of this agent as a preliminary diagnostic for approval to be marketed. (Author)

  2. Microstructural and mechanical characterization of melt spun process Sn-3.5Ag and Sn-3.5Ag-xCu lead-free solders for low cost electronic assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa Shalaby, Rizk; Kamal, Mustafa [Metal Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, P.O.Box: 35516, Mansoura (Egypt); Ali, Esmail A.M. [Basic Science Department, Faculty of Engineering, University of Science & Technology (Yemen); Gumaan, Mohammed S., E-mail: m.gumaan1@gmail.com [Metal Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, P.O.Box: 35516, Mansoura (Egypt); Basic Science Department, Faculty of Engineering, University of Science & Technology (Yemen)

    2017-04-06

    This paper aims to investigate the reliability of mechanical and creep behavior for the eutectic Sn-Ag and Sn-Ag-Cu Solder joints rapidly solidified after hot compressing (HC) in terms of structural changes and its relationship with thermal behavior, which has been discussed and compared with their properties before HC process by Mustafa et al. (2016) . These solder joints were prepared by melt-spinning technique and tested by HC at 30 MPa pressure and 150 °C for 90 min, their structural, mechanical and thermal properties after HC process have been investigated by X-ray diffraction (XRD), dynamic resonance techniques (DRT) and differential scanning calorimetry (DSC) techniques respectively and compared with these solders before HC. The results revealed that the pressure caused some fractures on the solders morphology surfaces. But some benefits for these solders have been occurred, like eliminating the internal stresses through recrystallization process whose evidence by the particle size increases after they HC, stabilized structure after HC was due to the metastable phases rearrangements, new intermetallic compounds (IMCs) formation, decreasing, melting temperature range (∆T), lattice strains (ƹ) and entropy change (S). These sequential benefits are considered to be the main reasons which lead to decreasing energy loss (Q{sup −1}), creep rate (É›) and thermal stability enhancement. Elastic modulus increment might be due to low elastic lattice distortions after HC, while the stress exponent (n) reduction refers to viscous glide mechanism of deformation after HC instead of climb deformation mechanism before HC.

  3. Ultraviolet emission from low resistance Cu2SnS3/SnO2 and CuInS2/Sn:In2O3 nanowires

    Directory of Open Access Journals (Sweden)

    E. Karageorgou

    2014-11-01

    Full Text Available SnO2 and Sn:In2O3 nanowires were grown on Si(001, and p-n junctions were fabricated in contact with p-type Cu2S which exhibited rectifying current–voltage characteristics. Core-shell Cu2SnS3/SnO2 and CuInS2/Sn:In2O3 nanowires were obtained by depositing copper and post-growth processing under H2S between 100 and 500 °C. These consist mainly of tetragonal rutile SnO2 and cubic bixbyite In2O3. We observe photoluminescence at 3.65 eV corresponding to band edge emission from SnO2 quantum dots in the Cu2SnS3/SnO2 nanowires due to electrostatic confinement. The Cu2SnS3/SnO2 nanowires assemblies had resistances of 100 Ω similar to CuInS2/In2O3 nanowires which exhibited photoluminescence at 3.0 eV.

  4. Synthesis, characterization and photocatalytic performance of SnS nanofibers and SnSe nanofibers derived from the electrospinning-made SnO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li; Li, Dan; Dong, Xiangting; Ma, Qianli; Yu, Wensheng; Wang, Xinlu; Yu, Hui; Wang, Jinxian; Liu, Guixia, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2017-11-15

    SnO{sub 2} nanofibers were fabricated by calcination of the electrospun PVP/SnCl{sub 4} composite nanofibers. For the first time, SnS nanofibers and SnSe nanofibers were successfully synthesized by double crucible sulfurization and selenidation methods via inheriting the morphology of SnO{sub 2} nanofibers used as precursors, respectively. X-ray diffraction (XRD) analysis shows SnS nanofibers and SnSe nanofibers are respectively pure orthorhombic phase with space group of Pbnm and Cmcm. Scanning electron microscope (SEM) observation indicates that the diameters of SnS nanofibers and SnSe nanofibers are respectively 140.54±12.80 nm and 96.52±14.17 nm under the 95 % confidence level. The photocatalytic activities of samples were studied by using rhodamine B (Rh B) as degradation agent. When SnS or SnSe nanofibers are employed as the photocatalysts, the respective degradation rates of Rh B solution under the ultraviolet light irradiation after 200 min irradiation are 92.55 % and 92.86 %. The photocatalytic mechanism and formation process of SnS and SnSe nanofibers are also provided. More importantly, this preparation technique is of universal significance to prepare other metal chalcogenides nanofibers. (author)

  5. A High Current Density Low Cost Niobium 3 Tin Titanium Doped Conductor Utilizing A Novel Internal Tin Process

    International Nuclear Information System (INIS)

    Bruce A Zeitlin

    2005-01-01

    An internal tin conductor has been developed using a Mono Element Internal Tin (MEIT) with an integral Nb barrier surrounding the Nb filaments. High current densities of 3000 A/mm2+ at 12 T and 1800 A/mm2 at 15 T have been achieved in conductors as small as 0.152 mm with the use of Nb7.5Ta filaments and Ti in the Sn core. In contrast, conductors with pure Nb and Ti in the Sn achieved 2700 A/mm2 at 12 T. Two internal fins, developed and patented on the project, were introduced into the filament array and reduced the effective filament diameter (Deff) by 38%. Additional fins will further reduce Deff The conductor was produced from 152.4 mm diameter billets to produce wire as small as 0.152 mm. The process promises be scaleable to 304 mm diameter billets yielding wire of 0.304 mm diameter. The MEIT process wire was easy to draw with relatively few breaks. The cost of this conductor in large production quantities based on the cost model presented could meet the 1.5 $/kilo amp meter(KAM) target of the HEP community

  6. In situ 119Sn Moessbauer spectroscopy used to study lithium insertion in c-Mg2Sn

    International Nuclear Information System (INIS)

    Aldon, L.; Ionica, C. M.; Lippens, P. E.; Larcher, D.; Tarascon, J.-M.; Olivier-Fourcade, J.; Jumas, J.-C.

    2006-01-01

    The electrochemical reactions of Li with c-Mg 2 Sn have been investigated by in situ Moessbauer spectroscopy of 119 Sn and X-ray diffraction. The lithiation transforms initially c-Mg 2 Sn part into Li x Mg 2 Sn alloy (x 2 MgSn ternary alloy. In situ Moessbauer spectroscopy provides valuable information on local environment of tin and swelling behavior and cracking of the particles during discharge and charge processes.

  7. Production of superconducting Nb3Sn wire using Nb or Nb(Ti) and Sn(Ga) solid solution powders

    International Nuclear Information System (INIS)

    Thieme, C.L.H.; Foner, S.

    1991-01-01

    This paper reports on superconducting Nb 3 Sn wire produced by the powder metallurgy method using Nb or Nb-2.9 at% Ti powder in combination with Sn-x at% Ga powders (x = 3, 4.2, 6.2 and 9.0). Ga additions to the Sn caused considerable solid solution hardening which improved its workability. It made the Nb-Sn(Ga) powder combinations convenient for swaging and extensive wire drawing. Anneals at 950 degrees C produced wires with an overall J c of 10 4 A/cm 2 at 21.9 T for wires with both Ti in the Nb and 6.2 at% Ga in the Sn. Comparison of this wire with the best Nb(Ti)-Cu-internal Sn(Ti) shows a higher J c per A15 areas, especially in fields of 22T and above

  8. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries

    Science.gov (United States)

    Wang, Huijun; Jiang, Xinya; Chai, Yaqin; Yang, Xia; Yuan, Ruo

    2018-03-01

    As lithium ion batteries (LIBs) anode, SnO2 suffers fast capacity fading due to its large volume expansion during discharge/charge process. To overcome the problem, sandwich-like C@SnO2/Sn/void@C hollow spheres (referred as C@SnO2/Sn/void@C HSs) are prepared by in-situ polymerization and carbonization, using hollow SnO2 as self-template and dopamine as carbon source. The C@SnO2/Sn/void@C HSs possesses the merits of hollow and core/void/shell structure, so that they can accommodate the volume change under discharge/charge process, shorten the transmission distance of Li ions, own more contact area for the electrolyte. Thanks to these advantages, C@SnO2/Sn/void@C HSs display excellent electrochemical performance as anode materials for LIBs, which deliver a high capacity of 786.7 mAh g-1 at the current density of 0.5 A g-1 after 60 cycles. The simple synthesis method for C@SnO2/Sn/void@C HSs with special structure will provide a promising method for preparing other anode materials for LIBs.

  9. Industrial powder metallurgy processing for production of high field Nb3Sn

    International Nuclear Information System (INIS)

    Hecker, A.; Gregory, E.; Wong, J.; Thieme, C.L.H.; Foner, S.

    1988-01-01

    Technology transfer is discussed for fabricating Nb 3 Sn(Ti) via powder metallurgy methods from laboratory scale production at MIT to industrial production at Supercon Inc. Industrial production techniques such as hydrostatic extrusion and drawing have produced superconducting wires with promising critical current densities in preliminary field measurements. Initial steps toward process modification and optimization to improve the commercial feasibility of the powder metallurgy process are evaluated. These modifications are aimed at reducing production time and increasing process flexibility

  10. Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing

    DEFF Research Database (Denmark)

    Lardelli, Rea M.; Schaffer, Ashleigh E.; Eggens, Veerle R C

    2017-01-01

    ) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration...... of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends....

  11. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    International Nuclear Information System (INIS)

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  12. In situ resistance measurements of bronze process Nb-Sn-Cu-Ta multifilamentary composite conductors during reactive diffusion

    International Nuclear Information System (INIS)

    Tan, K S; Hopkins, S C; Glowacki, B A; Majoros, M; Astill, D

    2004-01-01

    The conditions under which the Nb 3 Sn intermetallic layer is formed by solid-state reactive diffusion processes in bronze process multifilamentary conductors greatly influence the performance of the conductors. By convention, isothermal heat treatment is used and often causes non-uniformity of A15 layers formed across the wire. Therefore, characterization and optimization of the conductor during the reactive diffusion processes is crucial in order to improve the overall conductor's performance. In this paper, a different characterization approach and perhaps an optimization technique is presented, namely in situ resistance measurement by an alternating current (AC) method. By treating the components of such multifilamentary wires as a set of parallel resistors, the resistances of the components may be combined using the usual rules for resistors in parallel. The results show that the resistivity of the entire wire changes significantly during the reactive diffusion processes. The development of the Nb 3 Sn layer in bronze process Nb-Sn-Cu-Ta multifilamentary wires at different stages of the reactive diffusion processes has been monitored using measured resistivity changes, and correlated with results from DTA, ACS, SEM and EDS

  13. Ex situ n+ doping of GeSn alloys via non-equilibrium processing

    Science.gov (United States)

    Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I. A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; Helm, M.; Skorupa, W.; Zhou, S.

    2018-06-01

    Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p- and n-type doped regions for both planar and tri-dimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1 × 1019 cm‑3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3 × 1015 cm‑2 and electron concentration of about 4 × 1019 cm‑3. The optical and structural properties of ion-implanted GeSn layers are comparable with the in situ doped MBE grown layers.

  14. Gas sensing properties of zinc stannate (Zn{sub 2}SnO{sub 4}) nanowires prepared by carbon assisted thermal evaporation process

    Energy Technology Data Exchange (ETDEWEB)

    Tharsika, T., E-mail: tharsika@siswa.um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Akbar, S.A., E-mail: akbar.1@osu.edu [Center for Industrial Sensors and Measurements (CISM), Department of Materials Science and Engineering, Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Sabri, M.F.M., E-mail: faizul@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Wong, Y.H., E-mail: yhwong@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-01-05

    Highlights: • Zn{sub 2}SnO{sub 4} nanowires are grown on Au/alumina substrate by a carbon assisted thermal evaporation process. • Optimum growth conditions for Zn{sub 2}SnO{sub 4} nanowires are determined. • Ethanol gas is selectively sensed with high sensitivity. - Abstract: Zn{sub 2}SnO{sub 4} nanowires are successfully synthesized by a carbon assisted thermal evaporation process with the help of a gold catalyst under ambient pressure. The as-synthesized nanowires are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) equipped with an energy dispersive X-ray spectroscopy (EDS). The XRD patterns and elemental mapping via TEM–EDS clearly indicate that the nanowires are Zn{sub 2}SnO{sub 4} with face centered spinel structure. HRTEM image confirms that Zn{sub 2}SnO{sub 4} nanowires are single crystalline with an interplanar spacing of 0.26 nm, which is ascribed to the d-spacing of (3 1 1) planes of Zn{sub 2}SnO{sub 4}. The optimum processing condition and a possible formation mechanism of these Zn{sub 2}SnO{sub 4} nanowires are discussed. Additionally, sensor performance of Zn{sub 2}SnO{sub 4} nanowires based sensor is studied for various test gases such as ethanol, methane and hydrogen. The results reveal that Zn{sub 2}SnO{sub 4} nanowires exhibit excellent sensitivity and selectivity toward ethanol with quick response and recovery times. The response of the Zn{sub 2}SnO{sub 4} nanowires based sensors to 50 ppm ethanol at an optimum operating temperature of 500 °C is about 21.6 with response and recovery times of about 116 s and 182 s, respectively.

  15. Metal-Organic Frameworks Derived Okra-like SnO2 Encapsulated in Nitrogen-Doped Graphene for Lithium Ion Battery.

    Science.gov (United States)

    Zhou, Xiangyang; Chen, Sanmei; Yang, Juan; Bai, Tao; Ren, Yongpeng; Tian, Hangyu

    2017-04-26

    A facile process is developed to prepare SnO 2 -based composites through using metal-organic frameworks (MOFs) as precursors. The nitrogen-doped graphene wrapped okra-like SnO 2 composites (SnO 2 @N-RGO) are successfully synthesized for the first time by using Sn-based metal-organic frameworks (Sn-MOF) as precursors. When utilized as an anode material for lithium-ion batteries, the SnO 2 @N-RGO composites possess a remarkably superior reversible capacity of 1041 mA h g -1 at a constant current of 200 mA g -1 after 180 charge-discharge processes and excellent rate capability. The excellent performance can be primarily ascribed to the unique structure of 1D okra-like SnO 2 in SnO 2 @N-RGO which are actually composed of a great number of SnO 2 primary crystallites and numerous well-defined internal voids, can effectively alleviate the huge volume change of SnO 2 , and facilitate the transport and storage of lithium ions. Besides, the structural stability acquires further improvement when the okra-like SnO 2 are wrapped by N-doped graphene. Similarly, this synthetic strategy can be employed to synthesize other high-capacity metal-oxide-based composites starting from various metal-organic frameworks, exhibiting promising application in novel electrode material field of lithium-ion batteries.

  16. Validation of the production process of core-equipment HYNIC-Bombesin-Sn; Validacion del proceso de produccion del nucleo-equipo HYNIC-Bombesina-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rubio C, N I [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2008-07-01

    The validation process is establishing documented evidence that provides a high degree of assurance that a specific process consistently will produce a product that will meet specifications and quality attributes preset and, therefore, ensures the efficiency and effectiveness of a product. The radiopharmaceutical {sup 99m}Tc-HYNlC-Bombesin is part of the gastrin-releasing peptide (GRP) analogues of bombesin that are radiolabelled with technetium 99 metastable for molecular images obtention. Is obtained from freeze-dry formulations kits (core- equipment)) and has reported a very high stability in human serum, specific binding to receptors and rapid internalization. Biodistribution data in mice showed rapid blood clearance with predominant renal excretion and specific binding to tissues with positive response to GRP receptors. According to biokinetics studies performed on patients with breast cancer, breast show a marked asymmetry with increased uptake in neoplastic breast in healthy women and the uptake of radiopharmaceuticals is symmetrical in both breasts. No reported adverse reactions. In this paper, the prospective validation core-equipment HYNlC-Bombesin-Sn, which was shown consistently that the product meets the specifications and quality, attributes to preset from the obtained from the diagnostic radiopharmaceutical third generation: {sup 99m}Tc-HYNlC-Bombesin. The process was successfully validated and thereby ensuring the efficiency and effectiveness of this agent as a preliminary diagnostic for approval to be marketed. (Author)

  17. Production of Sn/SnO2/MWCNT composites by plasma oxidation after thermal evaporation from pure Sn targets onto buckypapers.

    Science.gov (United States)

    Alaf, M; Gultekin, D; Akbulut, H

    2012-12-01

    In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).

  18. Electrooxidations of ethanol, acetaldehyde and acetic acid using PtRuSn/C catalysts prepared by modified alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Swaidan, Raja [Department of Chemical Engineering, Cooper Union, New York, NY 10003 (United States); Cui, Guofeng [School of Chemistry and Chemical Engineering, Sun-Yat Sen University, Guangzhou 510275 (China)

    2007-10-11

    Well-dispersed ternary PtRuSn catalysts of various atomic ratios (60:30:10, 60:20:20 and 60:10:30) were deposited onto carbon using modified alcohol-reduction process for electrochemical oxidation of ethanol. The alloy phase structure and surface morphology for each variation of the PtRuSn/C catalysts were determined by XRD and HRTEM. In order to evaluate the contributions of Ru and Sn in the different stages of ethanol oxidation, electrochemical oxidations of adsorbed CO, ethanol, acetaldehyde and acetic acid were performed on each PtRuSn/C catalyst. The results indicated that the Ru-rich PtRuSn/C catalyst (60:30:10) exhibited the lowest onset potential for the electrooxidations of adsorbed CO, ethanol and acetaldehyde, revealing that the removal through oxidation of the intermediate C{sub 1} and C{sub 2} species from Pt sites is primarily attributed to the Ru and Pt{sub 3}Sn alloy structures. However, for the overall oxidation of ethanol, the Sn-rich PtRuSn/C catalyst (60:10:30) containing PtSn phase and SnO{sub 2} structure is favorable for the activation of C-C bond breaking, thereby generating higher current density (mass activity) at higher potentials. Moreover, in the electrooxidation of acetic acid, a remarkable improvement for oxidizing acetic acid to C{sub 1} species was observed in the Sn-rich PtRuSn/C catalyst (60:10:30), while the Ru-rich PtRuSn/C catalyst (60:30:10) was almost incapable of breaking the C-C bond to further oxidize acetic acid. The possible reasons for the different reactivities on the studied PtRuSn/C catalysts were discussed based on the removal of intermediates and activation of the C-C bonds on the different surfaces. (author)

  19. Stress-strain effects in alumina-Cu reinforced Nb3Sn wires fabricated by the tube process

    International Nuclear Information System (INIS)

    Murase, Satoru; Nakayama, Shigeo; Masegi, Tamaki; Koyanagi, Kei; Nomura, Shunji; Shiga, Noriyuki; Kobayashi, Norio; Watanabe, Kazuo.

    1997-01-01

    In order to fabricate a large-bore, high-field magnet which achieves a low coil weight and volume, a high strength compound superconducting wire is required. For those demands we have developed the reinforced Nb 3 Sn wire using alumina dispersion strengthened copper (alumina-Cu) as a reinforcement material and the tube process of the Nb 3 Sn wire fabrication. The ductility study of the composites which consisted of the reinforcement, Nb tube, Cu, and Cu clad Sn brought a 1 km long alumina-Cu reinforced Nb 3 Sn wire successfully. Using fabricated wires measurements and evaluations of critical current density as parameters of magnetic field, tensile stress, tensile strain, and transverse compressive stress, and those of stress-strain curves at 4.2 K were performed. They showed superior performance such as high 0.3% proof stress (240 MPa at 0.3% strain) and high maximum tolerance stress (320 MPa) which were two times as large as those of conventional Cu matrix Nb 3 Sn wire. The strain sensitivity parameters were obtained for the reinforced Nb 3 Sn wire and the Cu matrix one using the scaling law. Residual stress of the component materials caused by cooling down to 4.2 K from heat-treatment temperature was calculated using equivalent Young's modulus, equivalent yield strength, thermal expansion coefficient and other mechanical parameters. Calculated stress-strain curves at 4.2 K for the reinforced Nb 3 Sn wire and the Cu matrix one based on calculation of residual stress, had good agreement with the experimental values. (author)

  20. PROTEUS-SN User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Changho [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    PROTEUS-SN is a three-dimensional, highly scalable, high-fidelity neutron transport code developed at Argonne National Laboratory. The code is applicable to all spectrum reactor transport calculations, particularly those in which a high degree of fidelity is needed either to represent spatial detail or to resolve solution gradients. PROTEUS-SN solves the second order formulation of the transport equation using the continuous Galerkin finite element method in space, the discrete ordinates approximation in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology permits the efficient decomposition of the problem by both space and angle, permitting large problems to run efficiently on hundreds of thousands of cores. PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller homogenized problems, although it is generally more computationally expensive than traditional homogenized methodology codes. PROTEUS-SN has been used to model partially homogenized systems, where regions of interest are represented explicitly and other regions are homogenized to reduce the problem size and required computational resources. PROTEUS-SN solves forward and adjoint eigenvalue problems and permits both neutron upscattering and downscattering. An adiabatic kinetics option has recently been included for performing simple time-dependent calculations in addition to standard steady state calculations. PROTEUS-SN handles void and reflective boundary conditions. Multigroup cross sections can be generated externally using the MC2-3 fast reactor multigroup cross section generation code or internally using the cross section application programming interface (API) which can treat the subgroup or resonance table libraries. PROTEUS-SN is written in Fortran 90 and also includes C preprocessor definitions. The code links against the PETSc, METIS, HDF5, and MPICH libraries. It optionally links against the MOAB library and

  1. P-type Cu2O/SnO bilayer thin film transistors processed at low temperatures

    KAUST Repository

    Al-Jawhari, Hala A.

    2013-10-09

    P-type Cu2O/SnO bilayer thin film transistors (TFTs) with tunable performance were fabricated using room temperature sputtered copper and tin oxides. Using Cu2O film as capping layer on top of a SnO film to control its stoichiometry, we have optimized the performance of the resulting bilayer transistor. A transistor with 10 nm/15 nm Cu2O to SnO thickness ratio (25 nm total thickness) showed the best performance using a maximum process temperature of 170 C. The bilayer transistor exhibited p-type behavior with field-effect mobility, on-to-off current ratio, and threshold voltage of 0.66 cm2 V-1 s-1, 1.5×10 2, and -5.2 V, respectively. The advantages of the bilayer structure relative to single layer transistor are discussed. © 2013 American Chemical Society.

  2. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  3. Development and evaluation of the LiSN & learn auditory training software for deficit-specific remediation of binaural processing deficits in children: preliminary findings.

    Science.gov (United States)

    Cameron, Sharon; Dillon, Harvey

    2011-01-01

    The LiSN & Learn auditory training software was developed specifically to improve binaural processing skills in children with suspected central auditory processing disorder who were diagnosed as having a spatial processing disorder (SPD). SPD is defined here as a condition whereby individuals are deficient in their ability to use binaural cues to selectively attend to sounds arriving from one direction while simultaneously suppressing sounds arriving from another. As a result, children with SPD have difficulty understanding speech in noisy environments, such as in the classroom. To develop and evaluate the LiSN & Learn auditory training software for children diagnosed with the Listening in Spatialized Noise-Sentences Test (LiSN-S) as having an SPD. The LiSN-S is an adaptive speech-in-noise test designed to differentially diagnose spatial and pitch-processing deficits in children with suspected central auditory processing disorder. Participants were nine children (aged between 6 yr, 9 mo, and 11 yr, 4 mo) who performed outside normal limits on the LiSN-S. In a pre-post study of treatment outcomes, participants trained on the LiSN & Learn for 15 min per day for 12 weeks. Participants acted as their own control. Participants were assessed on the LiSN-S, as well as tests of attention and memory and a self-report questionnaire of listening ability. Performance on all tasks was reassessed after 3 mo where no further training occurred. The LiSN & Learn produces a three-dimensional auditory environment under headphones on the user's home computer. The child's task was to identify a word from a target sentence presented in background noise. A weighted up-down adaptive procedure was used to adjust the signal level of the target based on the participant's response. On average, speech reception thresholds on the LiSN & Learn improved by 10 dB over the course of training. As hypothesized, there were significant improvements in posttraining performance on the LiSN-S conditions

  4. 99mTc bone scanning agents preparation and chemical analysis of Tc(Sn)pyrophosphate, Tc(Sn)MDP and Tc(Sn)HMDP

    International Nuclear Information System (INIS)

    Kroesbergen, J.

    1986-01-01

    This thesis describes a comparison of the preparation, composition and properties of three bone scanning agents: 99m Tc(Sn)pyrophosphate, 99m Tc(Sn)MDP and 99m Tc(Sn)HMDP. This study has been performed for two reasons: First to investigate the preparation and composition of the radiopharmaceuticals as a function of experimental conditions. Together with previously reported results for 99m Tc(Sn)EHDP, obtained in a similar way, this enables to use well-defined preparations of the bone scanning agents. Secondly to gain an insight in the mechanism in which the agents behave 'in vivo'. Because the 'in vivo' process is too complicated to study directly, it seemed more appropriate to perform 'in vitro' investigations as simplifications of the 'in vivo' situation. 304 refs.; 26 figs.; 31 tabs

  5. Improved Fin Designs to Reduce D Effective ln Internal-Tin Nb3Sn

    International Nuclear Information System (INIS)

    Gregory, Eric

    2010-01-01

    As interest has moved to higher field properties, we are now aiming to make 2000 A/mm2 at 15 T. With a view to approaching this we inserted Ti into the Sn core in the EG 36 sub-element. The data after testing is shown in Figs 39-42. The 12 T values are lower than when no Ti is present but the 15 T data is higher giving 1800 A/mm2. In summary, while we failed to show that the split sub-element method could yield sufficiently high properties to compete with the other approaches, we did achieve properties at least as high as those obtained by Oxford using the standard internal tin approach.

  6. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders

    International Nuclear Information System (INIS)

    Zhang Ge; Huang Kelong; Liu Suqin; Zhang Wei; Gong Benli

    2006-01-01

    Cu 2 Sb, SnSb and Sn/SnSb mesoscopic alloy powders were prepared by chemical reduction, respectively. The crystal structures and particle morphology of Cu 2 Sb, SnSb and Sn/SnSb were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrochemical performances of the Cu 2 Sb, SnSb and Sn/SnSb electrodes were investigated by galvanostatic charge and discharge cycling and electrochemical impedance spectroscopy (EIS). The results showed the first charge and discharge capacities of SnSb and Sn/SnSb were higher than Cu 2 Sb, but after 15 cycles, the charge capacity fading rates of Cu 2 Sb, Sn/SnSb and Sn/SnSb were 26.16%, 55.33% and 47.39%, respectively. Cu 2 Sb had a better cycle performance, and Sn/SnSb multiphase alloy was prior to pure SnSb due to the existence of excessive Sn in Sn/SnSb system

  7. Using Ag/Ag2O/SnO2 Nanocomposites to Remove Malachite Green by a Photocatalytic Process

    Science.gov (United States)

    Taufik, A.; Paramarta, V.; Prakoso, S. P.; Saleh, R.

    2017-03-01

    Silver/silver oxide/tin oxide nanocomposites of various weight ratios were synthesized using a microwave-assisted method. The Ag/Ag2O:SnO2 nanoparticle weight ratios used were 25:75, 50:50, and 75:25. All samples were characterized using X-ray diffraction, UV-Vis spectroscopy, Differential Scanning Calorimetry and Thermogravimetric Analysis (TGA). The Ag/Ag2O/SnO2 nanocomposites contained cubic structures provided by the Ag and Ag2O and tetragonal structures provided by the SnO2. The silver resulted in surface plasmon resonance (SPR) at a wavelength of about 435 nm. The silver oxide material was transformed into pure Ag at a temperature of about 370 °C The photocatalytic activity was tested on the degradation of malachite green (MG) from an aqueous solution. The results showed that Ag/Ag2O/SnO2 at a ratio of 50:50 exhibited the best photocatalytic performance for degrading MG under visible-light irradiation. The degradation of MG using Ag/Ag2O/SnO2 nanocomposites followed pseudo first-order kinetic reactions, and electron holes were found to be the main species acting on the degradation process.

  8. Effect of Sn doping on structural, mechanical, optical and electrical properties of ZnO nanoarrays prepared by sol-gel and hydrothermal process

    Science.gov (United States)

    Agarwal, Manish Baboo; Sharma, Akash; Malaidurai, M.; Thangavel, R.

    2018-05-01

    Undoped and Sn doped Zinc oxide nanorods were prepared by two step process: initially growth of seed layers by sol-gel spin coating technique and then zinc oxide nanorods by hydrothermal process using the precursors zinc nitrate hexahydrate, hexamine and tin chloride. The effects on the electrical, optical, mechanical and structural properties for various Sn concentrations were studied. The crystalline phase determination from X-ray diffraction (XRD) confirms that Sn doped ZnO nanorods have hexagonal wurtzite structure. The variations of stress and strain with different doping concentration of Sn in ZnO nanorods were studied. The doping effect on electrical properties and optical bandgap is estimated by current voltage characteristics and absorbance spectra respectively. The surface morphology was studied with field emission scanning electron microscope (FESEM), which shows that the formation of hexagonal nanorods arrays with increasing Sn concentration. The calculated value of Young's modulus of elasticity (Y) for all the samples remains same. These results can be used in optoelectronic devices.

  9. Local atomic structure inheritance in Ag50Sn50 melt

    International Nuclear Information System (INIS)

    Bai, Yanwen; Bian, Xiufang; Qin, Jingyu; Hu, Lina; Yang, Jianfei; Zhang, Kai; Zhao, Xiaolin; Yang, Chuncheng; Zhang, Shuo; Huang, Yuying

    2014-01-01

    Local structure inheritance signatures were observed during the alloying process of the Ag 50 Sn 50 melt, using high-temperature X-ray diffraction and ab initio molecular dynamics simulations. The coordination number N m around Ag atom is similar in the alloy and in pure Ag melts (N m  ∼ 10), while, during the alloying process, the local structure around Sn atoms rearranges. Sn-Sn covalent bonds were substituted by Ag-Sn chemical bonds, and the total coordination number around Sn increases by about 70% as compared with those in the pure Sn melt. Changes in the electronic structure of the alloy have been studied by Ag and Sn K-edge X-ray absorption spectroscopy, as well as by calculations of the partial density of states. We propose that a leading mechanism for local structure inheritance in Ag 50 Sn 50 is due to s-p dehybridization of Sn and to the interplay between Sn-s and Ag-d electrons

  10. Development of Nb3Sn based multi-filamentary superconductor wires for fusion reactor magnets

    International Nuclear Information System (INIS)

    Kundu, Sayandeep; Singh, A.K.; Hussain, M.M.

    2016-01-01

    Nb 3 Sn is a proposed type II superconductor material to be used as superconducting magnet in fusion reactor for its superior superconducting properties. Fabrication of long single length wire containing Nb 3 Sn filaments is a challenge. The usual manufacturing philosophy involves deforming an assembly of tin and niobium in copper matrix to the final size, followed by the heat treatment to produce superconducting phase at Nb-Cu interface. Multi-filamentary wires were fabricated by hot extrusion of superconductor billet followed by several stages of cold drawing. Heat treatments at various temperature and time were carried out on as formed wire containing multiple filaments in order to see the growth of superconducting intermetallic phase during subsequent characterization. Post heat treatment characterization through SEM, EBSD and EDS revealed the presence of intermetallic phase of Nb and Sn, hypo stoichiometric in Sn, at the Cu-Nb interface growing towards the center of Nb filament. The manufacturing process till the desired final size of the wire happened to be a challenge, mainly because it required extraordinary co-deformability between various materials in such an assembly. Post-trial failure analysis through destructive testing using optical and scanning electron micrographs revealed the propensity of internal radial cracks at Cu-Sn interfaces, while the Nb-Cu interfaces were found to be relatively unaffected. This paper will discuss the details of the fabrication process. (author)

  11. Considerable Enhancement of Field Emission of SnO2Nanowires by Post-Annealing Process in Oxygen at High Temperature

    Directory of Open Access Journals (Sweden)

    Fang XS

    2009-01-01

    Full Text Available Abstract The field emission properties of SnO2nanowires fabricated by chemical vapor deposition with metallic catalyst-assistance were investigated. For the as-fabricated SnO2nanowires, the turn-on and threshold field were 4.03 and 5.4 V/μm, respectively. Considerable enhancement of field emission of SnO2nanowires was obtained by a post-annealing process in oxygen at high temperature. When the SnO2nanowires were post-annealed at 1,000 °C in oxygen, the turn-on and threshold field were decreased to 3.77 and 4.4 V/μm, respectively, and the current density was increased to 6.58 from 0.3 mA/cm2at the same applied electric field of 5.0 V/μm.

  12. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation

    International Nuclear Information System (INIS)

    Dias, Ricardo Rodrigues

    2009-01-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H 2 PtCl 6 .6H 2 O (Aldrich), SnCl 2 .2H 2 O (Aldrich),and RhCl 2 .XH 2 O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40 0 , 47 0 , 67 0 and 82 0 , which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34 0 and 52 0 that were identified as a SnO 2 phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  13. Voids, nanochannels and formation of nanotubes with mobile Sn fillings in Sn doped ZnO nanorods

    International Nuclear Information System (INIS)

    Ortega, Y; Dieker, Ch; Jaeger, W; Piqueras, J; Fernandez, P

    2010-01-01

    ZnO nanorods containing different hollow structures have been grown by a thermal evaporation-deposition method with a mixture of ZnS and SnO 2 powders as precursor. Transmission electron microscopy shows rods with rows of voids as well as rods with empty channels along the growth axis. The presence of Sn nanoprecipitates associated with the empty regions indicates, in addition, that these are generated by diffusion processes during growth, probably due to an inhomogeneous distribution of Sn. The mechanism of forming voids and precipitates appears to be based on diffusion processes similar to the Kirkendall effect, which can lead to void formation at interfaces of bulk materials or in core-shell nanostructures. In some cases the nanorods are ZnO tubes partially filled with Sn that has been found to melt and expand by heating the nanotubes under the microscope electron beam. Such metal-semiconductor nanostructures have potential applications as thermal nanosensors or as electrical nanocomponents.

  14. Li2SnO3 derived secondary Li-Sn alloy electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, D.W.; Zhang, S.Q.; Jin, Y.; Yi, T.H.; Xie, S.; Chen, C.H.

    2006-01-01

    As a possible high-capacity Li-ion battery anode material, Li 2 SnO 3 was prepared via a solid-state reaction route and a sol-gel route, separately. Its electrochemical performance was tested in coin-type cells with metallic Li as the counter electrode. The results show that the sol-gel derived Li 2 SnO 3 has uniform nano-sized particles (200-300 nm) and can deliver a better reversible capacity (380 mAh/g after 50 cycles in the voltage window of 0-1 V) than that from the solid-state reaction route. The characterizations by means of galvanostatic cycling, cyclic voltammetry and ex situ X-ray diffraction indicate that the electrochemical process of the Li 2 SnO 3 lithiation proceeds with an initial structural reduction of the composite oxide into Sn-metal and Li 2 O followed by a reversible Li-Sn alloy formation in the Li 2 O matrix. Due to the buffer role of the Li 2 O matrix, the reversibility of the secondary Li-Sn alloy electrode is largely secured

  15. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration

    Science.gov (United States)

    Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan

    2018-02-01

    Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.

  16. Ordering of Nb3Sn layer formed in the bronze process

    International Nuclear Information System (INIS)

    Agarwal, S.K.; Nagpal, K.C.; Narlikar, A.G.

    1986-01-01

    The work reported here suggests that the ordering of superconducting Nb 3 Sn compound layers formed in the bronze process is much more intriguing than previously assumed. Various possible mechanisms of ordering of the layers have been examined in conjunction with the observed data on short duration annealed samples. The analysis suggests the ordering to be governed by a sequential operation of both Ist and IInd order kinetics, and seems to fall in line with the studies on disordered bulk samples annealed for long durations. (author)

  17. International round robin test for mechanical properties of Nb3Sn superconductive wires at room temperature

    International Nuclear Information System (INIS)

    Osamura, K; Nyilas, A; Thoener, M; Seeber, B; Fluekiger, R; Ilyin, Y; Njihuis, A; Ekin, J; Clickner, C; Walsh, R P; Toplosky, V; Shin, H; Katagiri, K; Ochiai, S; Hojo, M; Kubo, Y; Miyashita, K

    2008-01-01

    An international RRT has been carried out in order to establish the test method for mechanical properties of commercial Nb 3 Sn superconductive wires under the cooperation of eleven worldwide research groups. From the stress-strain curve, the following quantities were evaluated; modulus of elasticity, transition of elastic to plastic deformation, proof strength, tensile strength and elongation to fracture. The scatter of measured values was analyzed to evaluate the COV, which is the standard deviation divided by the average. The results made clear how the experimental conditions influence the determination of physical quantities. The most important point is that large COVs for modulus of elasticity and proof strength from the initial slope are caused by the narrow elastic limit. Methods have been discussed to improve the statistics of experimental results obtained from the international RRT

  18. Properties of second phase (BaSnO3, Sn) added-YBCO thick films

    International Nuclear Information System (INIS)

    Ban, E.; Matsuoka, Y.

    1997-01-01

    The improvement of the critical current density J c of YBCO thick films has been attempted by adding BaSnO 3 powder and ultrafine Sn particles, whose diameter is about 2 μm and 7 x 10 -2 μm, respectively. It was found that the addition of a small amount of these particles was effective for the enhancement of J c of thick films prepared by a liquid-phase processing method. The 1 wt.% BaSnO 3 films fired at T s =1040-1060 C and the 3 wt.% Sn films (T s =1030-1060 C) showed J c values (77 K, 0 T) of about 2.1-2.4 x 10 3 Acm -2 and 3.1-3.5 x 10 3 Acm -2 , respectively, as compared to 2.0 x 10 3 Acm -2 for the undoped films. (orig.)

  19. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.

    Science.gov (United States)

    Xu, Wangwang; Xie, Zhiqiang; Cui, Xiaodan; Zhao, Kangning; Zhang, Lei; Dietrich, Grant; Dooley, Kerry M; Wang, Ying

    2015-10-14

    Complex hierarchical structures have received tremendous attention due to their superior properties over their constitute components. In this study, hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures are successfully prepared by in situ sulfuration on the backbones of hollow SnO2 spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-prepared hierarchical SnO2@SnS2@rGO nanocomposite can be used as anode material in lithium ion batteries, exhibiting excellent cyclability with a capacity of 583 mAh/g after 100 electrochemical cycles at a specific current of 200 mA/g. This material shows a very low capacity fading of only 0.273% per cycle from the second to the 100th cycle, lower than the capacity degradation of bare SnO2 hollow spheres (0.830%) and single SnS2 nanosheets (0.393%). Even after being cycled at a range of specific currents varied from 100 mA/g to 2000 mA/g, hierarchical SnO2@SnS2@rGO nanocomposites maintain a reversible capacity of 664 mAh/g, which is much higher than single SnS2 nanosheets (374 mAh/g) and bare SnO2 hollow spheres (177 mAh/g). Such significantly improved electrochemical performance can be attributed to the unique hierarchical hollow structure, which not only effectively alleviates the stress resulting from the lithiation/delithiation process and maintaining structural stability during cycling but also reduces aggregation and facilitates ion transport. This work thus demonstrates the great potential of hierarchical SnO2@SnS2@rGO nanocomposites for applications as a high-performance anode material in next-generation lithium ion battery technology.

  20. Advances in Nb/sub 3/Sn strand for fusion and particle accelerator applications

    CERN Document Server

    Parrell, J A; Seung, Hong; Youzhu, Zhang; 10.1109/TASC.2005.849531

    2005-01-01

    Nb/sub 3/Sn conductor made by the internal tin route is the material of choice for the highest field superconducting magnets. These include systems ranging from solenoids used in 900MHz NMR and 20 T laboratory magnets, to large-scale applications such as ITER and possible LHC upgrades. We present our latest results on internal tin strands having critical current density (J/sub c/) values of 3000 A /mm/sup 2/ (4.2 K, 12 T), as it relates to such magnet systems. One obstacle to wider use of internal tin strand is the relatively small billet size, typically limited to 50 kg or less. As part of the R&D for the U.S. High Energy Physics National Conductor Program, we have developed a method of scaling up the distributed barrier internal tin process to billet sizes several times larger. In the past year we have successfully produced a high J/sub c/ distributed barrier strand made entirely by hot extrusion. Results are also presented on a new method of supplying Ti dopant for the Nb/sub 3/Sn that does not rely on...

  1. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2017-09-01

    Full Text Available To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  2. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale.

    Science.gov (United States)

    Wang, Jianmei; Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-09-25

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  3. SN Refsdal

    DEFF Research Database (Denmark)

    Kelly, P. L.; Brammer, G.; Selsing, J.

    2016-01-01

    (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show...... in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN...

  4. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    Science.gov (United States)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  5. Effect of Sn additive on the structure and crystallization kinetics in Ge–Se alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrahman, M.I., E-mail: mostafaia11@yahoo.com; Hafiz, M.M.; Abdelraheem, A.M.; Abu-Sehly, A.A.

    2016-08-05

    The structure of Ge{sub 20}Se{sub 80−x}Snx glassy alloys and crystallization phases are identified using the X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). The glass transition kinetics and the crystallization mechanism of the system are studied using Differential Scanning Calorimeter (DSC) under non-isothermal condition. The results reveal that glass transition temperature (Tg) increases with increasing Sn content which is attributed to the increase in the coordination number. The increase of the glass transition activation energy (Eg) with increasing Sn content is attributed to the decrease in the internal energy of the system as Sn increases. The compositional dependence of both glass forming ability and thermal stability are studied. From the experimental data, the thermal stability parameter (S) is found to be maximum for Ge{sub 20}Se{sub 78}Sn{sub 2} alloy, which indicates that this alloy is thermally more stable in the composition range under investigation. The effect of composition on the crystallization mechanism is discussed using different kinetic models. The crystallization activation energy (Ec) decreases with increasing Sn. This is attributed to the addition of Sn increases the tendency of crystallization. The calculated values of Avrami exponent (n) indicates the crystallization process occurs in one-and two dimensions for Sn is less than or equals 12 at%, respectively. - Highlights: • Glass and crystallization transitions in Ge{sub 20}Se{sub 80−x}Sn{sub x} candidate for devices. • The addition of Sn increases the tendency of Ge-Se alloy to crystallization. • The glass forming ability and thermal stability increase as Sn decreases. • The dimension of the crystals growth is one or two depending on the Sn content.

  6. Improved multifilamentary Nb3Sn conductors produced by the titanium-bronze process

    International Nuclear Information System (INIS)

    Tachikawa, K.; Itoh, K.; Kamata, K.; Moriai, H.; Tada, N.

    1985-01-01

    The effects of a titanium addition to the bronze matrix of superconducting Nb 3 Sn wires have been investigated. The titanium addition to the matrix remarkably increases the Nb 3 Sn growth rate and the high-field, critical current density of the wire. An overall critical-current density of 3.8 . 10 4 A/cm 2 at 15 T has been obtained for the multifilamentary Nb/Cu-7.5 at.% Sn-0.4 at.% Ti wire with 4.7 μm-diameter 31 x 331 cores. The anisotropy in the critical current with respect to the field direction becomes larger with increasing aspect ratio of the rectangular-shaped multifilamentary wires. A 9.5 mm wide and 1.8mm thick Nb/Cu-7.5Sn-0.4Ti conductor with 5 μm-diameter 349 x 361=125 989 cores has been successfully fabricated on an industrial scale. This conductor carries a superconducting current of over 1300 A at 16.5 T. The newly developed Ti-bronze Nb 3 Sn conductor makes it feasible to generate a field of proportional 15 T in a large diameter bore. (orig.)

  7. The influence of precursor Cu content and two-stage processing conditions on the microstructure of Cu{sub 2}ZnSnSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Márquez-Prieto, J., E-mail: jose.prieto@northumbria.ac.uk [Northumbria Photovoltaic Application Centre, Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Ren, Y. [Ångström Solar Center, Solid State Electronics, Uppsala University, Uppsala 751 21 (Sweden); Miles, R.W.; Pearsall, N.; Forbes, I. [Northumbria Photovoltaic Application Centre, Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom)

    2015-05-01

    This paper reports the influence of processing temperature on the microstructure of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) absorber layers for temperatures between 380 and 550 °C produced using a 2-stage process. X-ray diffraction analysis showed the formation of Cu{sub 2}ZnSnSe{sub 4} over this temperatures range. The Williamson-Hall method was used for microstructural analysis of the CZTSe absorbers, and this showed a progressive decrease of the micro-strain of the CZTSe with increasing selenisation temperature. The influence of precursor Cu content on the microstructure of the CZTSe was also studied. An increase of Cu content in the precursor is correlated to an increase in grain size and a decrease in micro-strain. Raman measurements show an asymmetrical broadening towards lower energies of the main 197 cm{sup −1} mode for Cu-poor compositions. This study provides an insight into the dependency of the crystallinity of CZTSe on composition and synthesis temperature. - Highlights: • We fabricate Cu{sub 2}ZnSnSe{sub 4} thin films by sputtering and post-reactive annealing. • The micro-strain of Cu{sub 2}ZnSnSe{sub 4} increases when Cu content decreases. • The micro-strain of Cu{sub 2}ZnSnSe{sub 4} decreases with increasing processing temperature. • The defect concentration of Cu{sub 2}ZnSnSe{sub 4} increases when Cu content decreases.

  8. Investigation on the enhancement of the critical current densities in bronze-process Nb3Sn

    International Nuclear Information System (INIS)

    Hong, M.; Wu, I.W.; Morris, J.W. Jr.; Gilbert, W.; Hassenzahl, W.V.; Taylor, C.

    1981-10-01

    The work reported here addressed the problem of improving the critical current characteristic of a comercial multifilamentary Nb 3 Sn strand by varying its heat treatment. The work was done from the perspective that the critical current characteristic is controlled by the metallurgical state of the reacted layer, which is, in turn, fixed by the processing the wire has undergone. The research was carried out in parallel with metallographic studies which analyzed the microstructure and composition profile within the reacted Nb 3 Sn layer as a function of heat treatment. The combined results of metallographic and processing research suggest that it is possible to engineer the microstructure of the reacted layer to improve J/sub c/(H). The specific product of the work is a tailored double-aging treatment which introduces a favorable combination of microstructure and composition in the reacted layer and causes a substantial improvement in the critical current characteristic of the strand

  9. Quality control of the 113Sn-113mIn generator

    International Nuclear Information System (INIS)

    Morin Zorilla, J.; Olive, E.; Isaac, M.; Cruz, J.

    1989-01-01

    Methods for quality control of 113 Sn- 113m In generators are compared and recommended the most convenient to applicate in hospitals and in more specialized quality control laboratories. The quality of 113 Sn- 113m In generator produced by POLATOM (Poland) is also evaluated. The product met the requirements of the International Pharmacopeia

  10. Final Report SBIR Phase I, Improvement of Properties of Tubular Internal-Tin Nb3Sn

    International Nuclear Information System (INIS)

    Gregory, Eric

    2009-01-01

    Final report of SBIR to develop an economical process that can produce the best material for high field magnets to be used in the next generation of accelerators. The overall problem is to develop an economical process that can produce material with good properties for high field magnets to be used in the future for High Energy Physics (HEP) applications. The Internal-tin (IT) process, called by some the Restacked Rod process (RRP), for making Nb 3 Sn has been very successful in achieving high J c properties in the high field region. As a result it has been used effectively in several high field magnets. Originally, when this material was processed to give the highest J c it behaved unstably in the low field region and consequently did not perform as well in magnets designed for intermediate field applications. In this field range, the Powder-in-Tube (PIT) material, that has a lower d eff and a high RRR, behaved more reliably. The IT material has been improved to give better stability in the low field range and consequently the process offers a considerable challenge to the PIT process for application in both types of magnets. The PIT material has two principal drawbacks - lower J c and high cost. Work has been carried out to address these two problems and Supergenics I LLC has reported, on a low cost tubular process that is under development. It has fewer problems than the (IT) process in making low d eff materials and is of lower cost than both the IT and PIT processes. At the present stage, the J c 's that have been achieved are similar to those of the PIT material but are below those of the IT material. The purpose of the work proposed here is to improve the properties of the material made by this tubular process that has been described previously.

  11. A new dental powder from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons

    International Nuclear Information System (INIS)

    Do-Minh, N.; Le-Thi, C.; Nguyen-Anh, S.

    2003-01-01

    A new non-gamma-two dental powder has been developed from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons. The amalgam made from this powder exhibits excellent properties for dental filling. The nanocrystalline microstructure was found for the first time in as-spun and heat treated Ag(27-28)Sn(9-32) Cu alloy ribbons, using X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. As-spun ribbons exhibited a multi-phase microstructure with preferred existence of β (Ag 4 Sn) phase formed during rapid solidification (RS) due to supersaturating of copper (Cu) atoms and homogenous nanostructure with subgrain size of about (40-50) nm, which seems to be developed during RS process and can be caused by eutectic reaction of the Ag 3 Sn/Ag 4 Sn-Cu 3 Sn system. In heat treated ribbons the clustering of Cu atoms was always favored and stable in an ageing temperature and time interval determined by Cu content. The heat treatment led to essential changes of subgrain morphology, resulted in the appearance of large-angle boundaries with fine Cu 3 Sn precipitates and forming typical recrystallization twins. Such a microstructure variation in melt-spun ribbons could eventually yield enhanced technological, clinical and physical properties of the dental products, controlled by the ADA Specification N deg 1 and reported before. Thus, using the rapid solidification technique a new non-gamma-two dental material of high quality, nanocrystalline ribbon powder, can be produced. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  12. The high-temperature modification of LuAgSn and high-pressure high-temperature experiments on DyAgSn, HoAgSn, and YbAgSn

    Energy Technology Data Exchange (ETDEWEB)

    Heying, B.; Rodewald, U.C.; Hermes, W.; Schappacher, F.M.; Riecken, J.F.; Poettgen, R. [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Heymann, G.; Huppertz, H. [Muenchen Univ. (Germany). Dept. fuer Chemie und Biochemie; Sebastian, C.P. [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2008-02-15

    The high-temperature modification of LuAgSn was obtained by arc-melting an equiatomic mixture of the elements followed by quenching the melt on a water-cooled copper crucible. HT-LuAgSn crystallizes with the NdPtSb-type structure, space group P6{sub 3}mc: a = 463.5(1), c = 723.2(1) pm, wR2 = 0.0270, 151 F{sup 2}, and 11 variables. The silver and tin atoms build up two-dimensional, puckered [Ag{sub 3}Sn{sub 3}] networks (276 pm Ag-Sn) that are charge-balanced and separated by the lutetium atoms. The Ag-Sn distances between the [Ag{sub 3}Sn{sub 3}] layers of 294 pm are much longer. Single crystals of isotypic DyAgSn (a = 468.3(1), c = 734.4(1) pm, wR2 = 0.0343, 411 F{sup 2}, and 11 variables) and HoAgSn (a = 467.2(1), c = 731.7(2) pm, wR2 = 0.0318, 330 F{sup 2}, and 11 variables) were obtained from arc-melted samples. Under high-pressure (up to 12.2 GPa) and high-temperature (up to 1470 K) conditions, no transitions to a ZrNiAl-related phase have been observed for DyAgSn, HoAgSn, and YbAgSn. HT-TmAgSn shows Curie-Weiss paramagnetism with {mu}{sub eff} = 7.53(1) {mu}{sub B}/Tm atom and {theta}P = -15.0(5) K. No magnetic ordering was evident down to 3 K. HT-LuAgSn is a Pauli paramagnet. Room-temperature {sup 119}Sn Moessbauer spectra of HT-TmAgSn and HT-LuAgSn show singlet resonances with isomer shifts of 1.78(1) and 1.72(1) mm/s, respectively. (orig.)

  13. Improvements in the critical current densities of Nb3Sn by solid solution additions of Sn in Nb

    International Nuclear Information System (INIS)

    Luhman, T.; Suenaga, M.

    1975-01-01

    The effectiveness of solid solution additions of Sn to Nb in improving the superconducting properties of diffusion processed Nb 3 Sn conductors was examined. It was found that an increase in the superconducting critical current density, Jc, as function of layer thickness (d) may be obtained for thick Nb 3 Sn layers by solid solution additions of Sn in Nb. A large increase in J/sub c/ (d) is also achieved by increasing the Sn content in the bronze matrix material. In addition to uses of this material in magnet fabrications a potential application of these improved J/sub c/(d) values may lie in the use of Nb 3 Sn in power transmission lines. Here, a high superconducting critical current density is necessary throughout the material to carry the increased current during fault conditions. The magnetic field dependence of J/sub c/ is a function of alloy content but the alloying changes studied here do not increase the high field critical current capability of Nb 3 Sn. (auth)

  14. Enhanced electro-oxidation of ethanol using PtSn/CeO{sub 2}-C electrocatalyst prepared by an alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Almir Oliveira; Farias, Luciana A.; Dias, Ricardo R.; Brandalise, Michelle; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 - Cidade Universitaria, CEP 05508-900 Sao Paulo-SP (Brazil)

    2008-09-15

    PtSn/CeO{sub 2}-C electrocatalysts were prepared by an alcohol-reduction process using ethylene glycol as solvent and reduction agent and CeO{sub 2} and Vulcan Carbon XC72 as supports. The electrocatalysts were characterized by EDX and XRD. The electro-oxidation of ethanol was studied at room temperature by chronoamperometry. PtSn/CeO{sub 2}-C electrocatalyst with 15 wt% of CeO{sub 2} showed a significant increase of performance for ethanol oxidation compared to PtSn/C catalyst. Preliminary tests at 100C on a single cell of a direct ethanol fuel cell (DEFC) also confirm the results obtained by chronoamperometry. (author)

  15. Preparation of PtSnSb/C electrocatalizers for the electro-oxidation of the ethanol; Preparacao de eletrocatalizadores PtSnSb/C para a eletrooxidacao do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Tusi, M.M.; Ayoub, J.M.S.; Costa, T.C.; Spinace, E.V.; Neto, A.O., E-mail: aolivei@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    PtSn/C (Pt:Sn atomic ratio of 50:50) and PtSnSb/C (Pt:Sn:Sb atomic ratio of 50:45:05, 50:40:10 and 50:10:40) electrocatalysts were prepared (20 wt% metal loading) by an alcohol-reduction process using ethylene glycol as reducing agent, H{sub 2}PtCl{sub 6}.6H{sub 2}O, SnCl{sub 2}.H{sub 2}O and Sb(OOCCH{sub 3}){sub 3} and carbon Vulcan XC72 as support. The obtained materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and chronoamperometry. The PtSnSb/C (50:45:05) prepared by an alcohol-reduction process showed the best performance for ethanol electro-oxidation compared to the others catalysts. (author)

  16. Electrodeposition of nanostructured Sn-Zn coatings

    Science.gov (United States)

    Salhi, Y.; Cherrouf, S.; Cherkaoui, M.; Abdelouahdi, K.

    2016-03-01

    The electrodeposition of Sn-Zn coating at ambient temperature was investigated. The bath consists of metal salts SnCl2·2H2O and ZnSO4·7H2O and sodium citrate (NaC6H5Na3O7·2H2O) as complexing agent. To prevent precipitation, the pH is fixed at 5. Reducing tin and zinc through Sncit2- and ZnHcit- complex respectively is confirmed by the presence of two cathodic peaks on the voltammogram. The kinetic of tin (II) reduction process is limited by the SnCit2- dissociation. The SEM and TEM observations have showed that the coating consists of a uniform Sn-Zn layer composed of fine grains on which tin aggregates grow up. XRD revealed peaks corresponding to the hexagonal Zn phase and the tetragonal β-Sn phase.

  17. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures

    Science.gov (United States)

    Timofeev, V. A.; Nikiforov, A. I.; Tuktamyshev, A. R.; Mashanov, V. I.; Loshkarev, I. D.; Bloshkin, A. A.; Gutakovskii, A. K.

    2018-04-01

    The GeSiSn, SiSn layer growth mechanisms on Si(100) were investigated and the kinetic diagrams of the morphological GeSiSn, SiSn film states in the temperature range of 150 °C-450 °C at the tin content from 0% to 35% were built. The phase diagram of the superstructural change on the surface of Sn grown on Si(100) in the annealing temperature range of 0 °C-850 °C was established. The specular beam oscillations were first obtained during the SiSn film growth from 150 °C to 300 °C at the Sn content up to 35%. The transmission electron microscopy and x-ray diffractometry data confirm the crystal perfection and the pseudomorphic GeSiSn, SiSn film state, and also the presence of smooth heterointerfaces between GeSiSn or SiSn and Si. The photoluminescence for the multilayer periodic GeSiSn/Si structures in the range of 0.6-0.8 eV was detected. The blue shift with the excitation power increase is observed suggesting the presence of a type II heterostructure. The creation of tensile strained Ge films, which are pseudomorphic to the underlying GeSn layer, is confirmed by the results of the formation and analysis of the reciprocal space map in the x-ray diffractometry. The tensile strain in the Ge films reached the value in the range of 0.86%-1.5%. The GeSn buffer layer growth in the Sn content range from 8% to 12% was studied. The band structure of heterosystems based on pseudomorphic GeSiSn, SiSn and Ge layers was calculated and the valence and conduction band subband position dependences on the Sn content were built. Based on the calculation, the Sn content range in the GeSiSn, SiSn, and GeSn layers, which corresponds to the direct bandgap GeSiSn, SiSn, and Ge material, was obtained.

  18. Welding qualification procedure for fuel rods tubes of Zr-Sn alloys by the TIG automatic process

    International Nuclear Information System (INIS)

    1984-11-01

    It is presented the requirements to be used in the Welding qualification procedure for tubes of Zr-Sn alloys, specified in the ASTM B353 regulatory guide, used in the fabrication of fuel rods PWR reactors by the automatic TIG process. (E.G.) [pt

  19. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    Science.gov (United States)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  20. Kinetics of plasma oxidation of germanium-tin (GeSn)

    Science.gov (United States)

    Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia

    2017-12-01

    The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.

  1. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    Science.gov (United States)

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  2. Multifilamentary Cu-Nb3Sn superconductor wires

    International Nuclear Information System (INIS)

    Rodrigues, D.; Pinatti, D.G.

    1990-01-01

    This paper reports on one of the main technological problems concerning Nb 3 Sn superconducting wires production which is the optimization of heat treatments for the formation of the A-15 intermetallic compound. At the present work, Nb 3 Sn superconducting wire is produced by solid-liquid diffusion method which increases considerably the critical current values of the superconductor. Through this method, niobium, copper and Sn 7% wt Cu alloy are kept in the pure state. Thus, the method dispenses intermediate heat treatments of recrystallization during the manufacturing process of the wire. After the wire was ready, optimization work of heat treatments was accomplished aiming to obtain its best superconducting characteristics, Measurement of critical temperature, critical current versus magnetic field, normal and at room temperature resistivity were performed, as well as scanning electron microscopy for determination of Nb 3 Sn layers and transmission electron microscopy measurements of redetermining the grain sizes in Nb 3 Sn formed in each treatment. It was obtained critical current densities of 1.8 x 10 6 A/cm 2 in the Nb 3 Sn layer, at 10 Teslas and 4.2 K. The samples were analyzed by employing the superconducting collective flux pinning theories and a satisfactory agreement between the experimental and theoretical data was attained. The production process and the small size of the filaments used made a successful optimization of the wire possible

  3. Tree-like SnO2 nanowires and optical properties

    International Nuclear Information System (INIS)

    Tao Tao; Chen Qiyuan; Hu Huiping; Chen Ying

    2011-01-01

    Research highlights: → Tree-like SnO 2 nanowires can be grown as low as 1100 deg. C by a vapour-solid process using a milled SnO 2 powder as the evaporation source. → FT-IR and PL measurements have shown that the tree-like nanostructures lead to superb physical properties. → The PL spectrum of such tree-like nanowires exhibits a strong PL peak at 548 nm. - Abstract: Tree-like SnO 2 nanowires have been grown by a vapor-solid process using a milled SnO 2 powder as the evaporation source. Phase, structural evolution and chemical composition were investigated using X-ray diffraction (XRD), X-ray spectrometry (EDS), and scanning electron microscopy (SEM). The process yields a large proportion of ultra-long rutile nanowires of 50-150 nm diameter and lengths up to several tens of micrometers. High-resolution transmission electron microscopy (HRTEM) shows that the SnO 2 nanowires are single crystals in the (1 0 1) growth direction with scattered smaller crystals or nanowires as the tree branches. The SnO 2 nanostructures were also examined using Fourier transform infra-red (FT-IR) and photoluminescence (PL) spectroscopy. A strong emission band centered at 548 nm dominated the PL spectrum of the tree-like nanowires.

  4. Fluxless Sn-Ag bonding in vacuum using electroplated layers

    International Nuclear Information System (INIS)

    Kim, Jongsung; Lee, Chin C.

    2007-01-01

    A fluxless bonding process in vacuum environment using newly developed electroplated Sn-Ag multilayer structure at eutectic composition is presented. The new bonding process is entirely fluxless, or flux-free. It is performed in vacuum (100 mTorr), in which the oxygen content is reduced by a factor of 7600 comparing to air, to inhibit solder oxidation. In the design, Cr/Au dual layer is employed as the UBM as well as the plating seed layer. This UBM design, seldom used in the electronic industry, is explained in some details. To realize the fluxless possibility, a proper layer design of the solder structure is needed. In this connection, we wish to point out that it is hard to achieve fluxless bonding using Sn-rich alloys because these alloys have numerous Sn atoms on the surface that are easily oxidized. To prevent Sn oxidation, a thin Ag layer is plated immediately over Sn layer. XRD results confirm that this thin Ag layer does act as a barrier to prevent oxidation of the inner Sn layer. The resulting solder joints are void free as examined by a scanning acoustic microscope (SAM). SEM and EDX studies on the cross section of the joint indicate a homogeneous Sn-rich phase. The melting temperature is measured to be between 219 and 226 deg. C. This new fluxless bonding process is valuable in many applications where the use of flux is prohibited

  5. Preparation of Cu2Sn3S7 Thin-Film Using a Three-Step Bake-Sulfurization-Sintering Process and Film Characterization

    Directory of Open Access Journals (Sweden)

    Tai-Hsiang Lui

    2015-01-01

    Full Text Available Cu2Sn3S7 (CTS can be used as the light absorbing layer for thin-film solar cells due to its good optical properties. In this research, the powder, baking, sulfur, and sintering (PBSS process was used instead of vacuum sputtering or electrochemical preparation to form CTS. During sintering, Cu and Sn powders mixed in stoichiometric ratio were coated to form the thin-film precursor. It was sulfurized in a sulfur atmosphere to form CTS. The CTS film metallurgy mechanism was investigated. After sintering at 500°C, the thin film formed the Cu2Sn3S7 phase and no impurity phase, improving its energy band gap. The interface of CTS film is continuous and the formation of intermetallic compound layer can increase the carrier concentration and mobility. Therefore, PBSS process prepared CTS can potentially be used as a solar cell absorption layer.

  6. The crystal structure of (Nb$_{0.75}$Cu$_{0.25}$)Sn$_{2}$ in the Cu-Nb-Sn system

    CERN Document Server

    Martin, Stefan; Nolze, Gert; Leineweber, Andreas; Leaux, Floriane; Scheuerlein, Christian

    2017-01-01

    During the processing of superconducting Nb$_{3}$Sn wire, several intermediate intermetallic phases including a previously encountered Cu-Nb-Sn phase show up. The yet unknown crystal structure of this phase is now identified by a combination of different experimental techniques and database search to be of the hexagonal NiMg2 type with a proposed composition of about (Nb0.75Cu0.25)Sn2. The structure determination started from an evaluation of the lattice parameters from EBSD Kikuchi patterns from quenched material suggesting hexagonal or orthorhombic symmetry. A database search then led to the hexagonal NiMg2 type structure, the presence of which was confirmed by a Rietveld analysis on the basis of high energy synchrotron X-ray powder diffraction data. Assuming a partial substitution of Nb in orthorhombic NbSn2 by Cu, the change of the valence electron concentration provokes a structural transformation from the CuMg2 type for NbSn2 to the NiMg2 type for (Nb0.75Cu0.25)Sn2. In the previous literature the (Nb0.7...

  7. Enhanced B doping in CVD-grown GeSn:B using B δ-doping layers

    Science.gov (United States)

    Kohen, David; Vohra, Anurag; Loo, Roger; Vandervorst, Wilfried; Bhargava, Nupur; Margetis, Joe; Tolle, John

    2018-02-01

    Highly doped GeSn material is interesting for both electronic and optical applications. GeSn:B is a candidate for source-drain material in future Ge pMOS device because Sn adds compressive strain with respect to pure Ge, and therefore can boost the Ge channel performances. A high B concentration is required to obtain low contact resistivity between the source-drain material and the metal contact. To achieve high performance, it is therefore highly desirable to maximize both the Sn content and the B concentration. However, it has been shown than CVD-grown GeSn:B shows a trade-off between the Sn incorporation and the B concentration (increasing B doping reduces Sn incorporation). Furthermore, the highest B concentration of CVD-grown GeSn:B process reported in the literature has been limited to below 1 × 1020 cm-3. Here, we demonstrate a CVD process where B δ-doping layers are inserted in the GeSn layer. We studied the influence of the thickness between each δ-doping layers and the δ-doping layers process conditions on the crystalline quality and the doping density of the GeSn:B layers. For the same Sn content, the δ-doping process results in a 4-times higher B doping than the co-flow process. In addition, a B doping concentration of 2 × 1021 cm-3 with an active concentration of 5 × 1020 cm-3 is achieved.

  8. Supergravity separation of Pb and Sn from waste printed circuit boards at different temperatures

    Science.gov (United States)

    Meng, Long; Wang, Zhe; Zhong, Yi-wei; Chen, Kui-yuan; Guo, Zhan-cheng

    2018-02-01

    Printed circuit boards (PCBs) contain many toxic substances as well as valuable metals, e.g., lead (Pb) and tin (Sn). In this study, a novel technology, named supergravity, was used to separate different mass ratios of Pb and Sn from Pb-Sn alloys in PCBs. In a supergravity field, the liquid metal phase can permeate from solid particles. Hence, temperatures of 200, 280, and 400°C were chosen to separate Pb and Sn from PCBs. The results depicted that gravity coefficient only affected the recovery rates of Pb and Sn, whereas it had little effect on the mass ratios of Pb and Sn in the obtained alloys. With an increase in gravity coefficient, the recovery values of Pb and Sn in each step of the separation process increased. In the single-step separation process, the mass ratios of Pb and Sn in Pb-Sn alloys were 0.55, 0.40, and 0.64 at 200, 280, and 400°C, respectively. In the two-step separation process, the mass ratios were 0.12 and 0.55 at 280 and 400°C, respectively. Further, the mass ratio was observed to be 0.76 at 400°C in the three-step separation process. This process provides an innovative approach to the recycling mechanism of Pb and Sn from PCBs.

  9. α-Eleostearic acid-containing triglycerides for a continuous assay to determine lipase sn-1 and sn-3 regio-preference.

    Science.gov (United States)

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Queneau, Yves; Abousalham, Abdelkarim

    2017-08-01

    Lipases are essentially described as sn-1 and sn-3 regio-selective. Actually few methods are available to measure this lipase regio-selectivity, moreover they require chiral chromatography analysis or specific derivations which are discontinuous and time consuming. In this study we describe a new, convenient, sensitive and continuous spectrophotometric method to screen lipases regio-selectivity using synthetic triglycerides (TG) containing α-eleostearic acid (9Z, 11E, 13E-octadecatrienoic acid) either at the sn-1 position [1-α-eleostearoyl-2,3-octadecyl-sn-glycerol (sn-EOO)] or at the sn-3 position [1,2-octadecyl-3-α-eleostearoyl-sn-glycerol (sn-OOE)] and coated onto the wells of microtiter plates. A non-hydrolysable ether bond, with a non UV-absorbing alkyl chain, was introduced at the other sn positions to prevent acyl chain migration during TG synthesis or lipolysis. The synthesis of TG containing α-eleostearic acid was performed from S-glycidol in six steps to obtain sn-EOO and in five steps to sn-OOE. The α-eleostearic acid conjugated triene constitutes an intrinsic chromophore and, consequently, confers the strong UV absorption properties of this free fatty acid as well as of the TG harboring it. The lipase activity on coated sn-EOO or sn-OOE was measured by the increase in the absorbance at 272nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. Human and porcine pancreatic lipases, guinea pig pancreatic lipase related protein 2, Thermomyces lanuginosus lipase, Candida antarctica lipase A and Candida antarctica lipase B were all used to validate the assay. This continuous high-throughput screening method could determine directly without any processes after lipolysis the regio-selectivity of various lipases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process

    Science.gov (United States)

    Xue, Xinzhong; Ge, Junjie; Tian, Tian; Liu, Changpeng; Xing, Wei; Lu, Tianhong

    In this paper, five Pt 3Sn 1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt 3Sn 1P 2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt 3Sn 1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm -2 that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.

  11. Isomer shifts and chemical bonding in crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    First-principles self-consistent Local Density calculations of the electronic structure of clusters representing Sn(II) (SnO, SnF 2 , SnS, SnSe) and Sn(IV) (SnO 2 , SnF 4 ) crystalline compounds were performed. Values of the electron density at the Sn nucleus were obtained and related to measured values of the Moessbauer Isomer Shifts reported in the literature. The nuclear parameter of 119 Sn derived was ΔR/R=(1.58±0.14)x10 -4 . The chemical bonding in the solids was analysed and related to the electron densities obtained. (author)

  12. A review and prospects for Nb3Sn superconductor development

    Science.gov (United States)

    Xu, Xingchen

    2017-09-01

    Nb3Sn superconductors have significant applications in constructing high-field (>10 T) magnets. This article briefly reviews development of Nb3Sn superconductor and proposes prospects for further improvement. It is shown that significant improvement of critical current density (J c) is needed for future accelerator magnets. After a brief review of the development of Nb3Sn superconductors, the factors controlling J c are summarized and correlated with their microstructure and chemistry. The non-matrix J c of Nb3Sn conductors is mainly determined by three factors: the fraction of current-carrying Nb3Sn phase in the non-matrix area, the upper critical field B c2, and the flux line pinning capacity. Then prospects to improve the three factors are discussed respectively. An analytic model was developed to show how the ratios of precursors determine the phase fractions after heat treatment, based on which it is predicted that the limit of current-carrying Nb3Sn fraction in subelements is ∼65%. Then, since B c2 is largely determined by the Nb3Sn stoichiometry, a thermodynamic/kinetic theory is presented to show what essentially determines the Sn content of Nb3Sn conductors. This theory explains the influences of Sn sources and Ti addition on stoichiometry and growth rate of Nb3Sn layers. Next, to improve flux pinning, previous efforts in this community to introduce additional pinning centers to Nb3Sn wires are reviewed, and an internal oxidation technique is described. Finally, prospects for further improvement of non-matrix J c of Nb3Sn conductors are discussed, and it is seen that the only opportunity for further significantly improving J c lies in improving flux pinning.

  13. Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries

    Science.gov (United States)

    Alaf, Mirac; Akbulut, Hatem

    2014-02-01

    Recent development of electrode materials for Li-ion batteries is driven mainly by hybrid nanocomposite structures consisting of Li storage compounds and CNTs. In this study, tin/tinoxide (Sn/SnO2) films and tin/tinoxide/multi walled carbon nanotube (Sn/SnO2/MWCNT) nanocomposites are produced by a two steps process; thermal evaporation and subsequent plasma oxidation as anode materials for Li-ion batteries. The physical, structural, and electrochemical behaviors of the nanocomposite electrodes containing MWCNTs are discussed. The ratio between metallic tin (Sn) and tinoxide (SnO2) is controlled with plasma oxidation time and effects of the ratio are investigated on the structural and electrochemical properties. The greatly enhanced electrochemical performance is mainly due to the morphological stability and reduced diffusion resistance, which are induced by MWCNT core and deposited Sn/SnO2 double phase shell. The outstanding long-term cycling stability is a result of the two layers Sn and SnO2 phases on MWCNTs. The nanoscale Sn/SnO2/MWCNT network provides good electrical conductivity, and the creation of open spaces that buffer a large volume change during the Li-alloying/de-alloying reaction.

  14. Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xinzhong; Ge, Junjie; Tian, Tian [Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Liu, Changpeng; Xing, Wei; Lu, Tianhong [Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China)

    2007-10-25

    In this paper, five Pt{sub 3}Sn{sub 1}/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt{sub 3}Sn{sub 1}P{sub 2}/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt{sub 3}Sn{sub 1}/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm{sup -2} that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst. (author)

  15. States in 118Sn from 117Sn(d,p) 118Sn at 12 MeV

    International Nuclear Information System (INIS)

    Frota-Pessoa, E.

    1983-01-01

    118 Sn energy levels up to = 5.2 MeV excitation energy are studied in the reaction 117 Sn (d,p) 118 Sn. Deuterons had a bombarding energy of 12 MeV. The protons were analized by a magnetic spectrograph. The detector was nuclear emulsion and the resolution in energy about 10 KeV. The distorted-wave analysis was used to determine l values and spectroscopic strengths. Centers of gravity and the sums of reduced spectroscopic factors are presented for the levels when it was possible to determine the S' value. 66 levels of excitation energy were found which did not appear in previous 117 Sn (d,p) reactions. 40 levels were not found previously in any reaction giving 118 Sn. The results are compared with the known ones. (Author) [pt

  16. The investigation of the effect of niobium artificial doping with titanium on Nb3Sn superconductors properties

    International Nuclear Information System (INIS)

    Nikulin, A.; Shikov, A.; Beliakov, N.; Semin, M.

    1997-01-01

    The effect on titanium doping of Nb filaments, and thus on the properties of bronze processed multifilamentary Nb 3 Sn wires and wires with internal tin sources with copper volume fraction up to 65 %, has been analysed. Either titanium rods or rods of the Nb-50Ti alloy, inserted in the axial area of each filament, were used as a source of titanium. The influence of doping on the quantity, composition, structure and superconducting properties of intermetallic compound Nb 3 Sn after heat treatments at 570-750 degrees C with duration up to 350 h was investigated by means of electrical measurements, optical metallography and methods of microanalysis and X-ray analysis. It was shown that the non-copper critical current density of the doped wires attained 600 and 270 A/mm 2 in 12.5 and 16 T respectively for bronze processed wires and 800 and 300 A/mm 2 for wires with internal tin source. Upper critical field calculated in accordance with Kramer's extrapolation was equal to 29-32 T

  17. Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2016-06-01

    Full Text Available In the present study, SnSb, SnSb/Fe, SnSb/Co, and SnSb/Ni alloy powders processed by co-precipitation were subjected to spark plasma-sintering (SPS) at 400 °C for 5 min. The compacts were structurally and morphologically characterized by X...

  18. Effects of interlayer Sn-Sn lone pair interaction on the band gap of bulk and nanosheet SnO

    Science.gov (United States)

    Umezawa, Naoto; Zhou, Wei

    2015-03-01

    Effects of interlayer lone-pair interactions on the electronic structure of SnO are firstly explored by the density-functional theory. Our comprehensive study reveals that the band gap of SnO opens as increase in the interlayer Sn-Sn distance. The effect is rationalized by the character of band edges which consists of bonding and anti-bonding states from interlayer lone pair interactions. The band edges for several nanosheets and strained double-layer SnO are estimated. We conclude that the double-layer SnO is a promising material for visible-light driven photocatalyst for hydrogen evolution. This work is supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) program.

  19. Superconducting Nb{sub 3}Sn intermetallics made by electrochemical reduction of Nb{sub 2}O{sub 5}-SnO{sub 2} oxides

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Fray, D J; Yan, X-Y; Chen, G

    2003-05-01

    The article is focused on low temperature superconducting Nb{sub 3}Sn material manufactured by novel electrodeoxidizing method developed in Cambridge whereby the range of alloys and intermetallics are produced cheaply making potential superconducting wires more cost effective. The process of direct electrochemical reduction of Nb{sub 2}O{sub 5}-SnO{sub 2} mixtures and in situ formation of the Nb{sub 3}Sn is discussed in details.

  20. Synchrotron radiation techniques for the characterization of Nb$_{3}$Sn superconductors

    CERN Document Server

    Scheuerlein, C; Buta, F

    2009-01-01

    The high flux of high energy x-rays that can be provided through state-of-the-art high energy synchrotron beam lines has enabled a variety of new experiments with the highly absorbing Nb$_{3}$Sn superconductors. We report different experiments with Nb$_{3}$Sn strands that have been conducted at the ID15 High Energy Scattering beam line of the European Synchrotron Radiation Facility (ESRF). Synchrotron x-ray diffraction has been used in order to monitor phase transformations during in-situ reaction heat treatments prior to Nb$_{3}$Sn formation, and to monitor Nb$_{3}$Sn growth. Fast synchrotron micro-tomography was applied to study void growth during the reaction heat treatment of Internal Tin strands. The elastic strain in the different phases of fully reacted Nb$_{3}$Sn composite conductors can be measured by high resolution x-ray diffraction during in-situ tensile tests.

  1. Oxidation of Pb-Sn and Pb-Sn-In alloys

    International Nuclear Information System (INIS)

    Sluzewski, D.A.; Chang, Y.A.; Marcotte, V.C.

    1990-01-01

    Air oxidized Pb-Sn and Pb-Sn-In single phase alloys have been studied with scanning Auger microscopy. Line scans across grain boundaries combined with argon ion sputter etching revealed grain boundary oxidation. In the Pb-Sn samples, tin is preferentially oxidized with the grain boundary regions having a much higher percentage of tin oxide than the bulk surface oxide. In the Pb-Sn-In alloys, both tin and indium are preferentially oxidized with the grain boundary regions being enriched with tin and indium oxides

  2. Fabrication of Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} solar cells by ethanol-ammonium solution process

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Cong; Li, Jianmin; Wang, Yaguang; Jiang, Guoshun; Weifeng, Liu, E-mail: liuwf@ustc.edu.cn; Zhu, Changfei, E-mail: cfzhu@ustc.edu.cn

    2016-10-15

    Highlights: • The CBD precipitates were utilized to fabricate the CZTS/CZTSSe solar cells. • A solvent mixture of ethanol and ammonium hydroxide was used to form SnS-Cu2O-ZnS slurry. • Formation of CZTS/CZTSSe with good crystalline quality confirmed by XRD and Raman spectra. • CZTS and CZTSSe thin film solar cells obtained the best PCE of 1.99% and 2.95%, respectively. - Abstract: In this paper, Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} precursor films were produced by doctor blade process from SnS-Cu{sub 2}O-ZnS slurry. To prepare the slurry, SnS, ZnS and Cu{sub 2}O precipitates, which are outgrowths of stacked layer ZnS/Cu/SnS by CBD (chemical bath deposition)-annealing route, were dissolved in the mixture solvent of ethanol and NH{sub 3}·H{sub 2}O. Synthesized precursor films were then annealed at different conditions. The post-annealed films were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman measurements and UV–vis–NIR spectroscopy. SEM studies reveal that the rough and relatively compact absorber thin films are obtained via the sulfidation and sulfidation-selenization processes. X-ray diffraction and Raman spectrum results verify that the obtained films are composed of Cu{sub 2}ZnSnS{sub 4} and Cu{sub 2}ZnSnSe{sub 4} phases, which have high absorbance in visible range and direct band gap energy of 1.01–1.47 eV. The best devices yield total area power conversion efficiency of 1.99% and 2.95% corresponding to Cu{sub 2}ZnSnS{sub 4} and Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} thin film solar cells under AM1.5 illumination without any anti-reflection layer.

  3. Powder metallurgical processing of functionally graded p-Pb1-x Sn x Te materials for thermoelectric applications

    International Nuclear Information System (INIS)

    Gelbstein, Y.; Dashevsky, Z.; Dariel, M.P.

    2007-01-01

    Lead tin telluride-based compounds are p-type materials for thermoelectric applications, in the 50-600 deg. C temperature range. The electronic transport properties of PbTe and Pb 1- x Sn x Te materials are strongly dependent on the processing approach. Powder metallurgy is a suitable approach for the preparation of Functionally graded materials (FGMs) but its effects on the electronic properties have to be carefully checked. Powder metallurgical processing may introduce atomic defects and local strains into the material and, thereby, alter the carrier concentration. Such material may be in non-equilibrium conditions at the operating temperature with unstable thermoelectric properties. This effect can be reduced and eliminated by appropriate annealing procedures. In FGMs, annealing up to the stabilization of the thermoelectric properties is mandatory for achieving the desired carrier concentration profile along the sample. The design procedures of the FGMs, as well as the annealing effects on cold compacted and sintered Pb 1- x Sn x Te samples are described in details

  4. Analyses of the Sn IX-Sn XII spectra in the EUV region

    International Nuclear Information System (INIS)

    Churilov, S S; Ryabtsev, A N

    2006-01-01

    The Sn IX-Sn XII spectra excited in a vacuum spark have been analysed in the 130-160 A wavelength region. The analysis was based on the energy parameter extrapolation in the isonuclear Sn VI-VIII and Sn XIII-XIV sequence. 266 spectral lines belonging to the 4d m -(4d m-1 4f+4p 5 4d m+1 ) (m=6-3) transition arrays were classified in the Sn IX-Sn XII spectra for the first time. All 18 level energies of the 4d 3 configuration and 39 level energies of the strongly interacting 4d 2 4f and 4p 5 4d 4 configurations were established in the Sn XII spectrum. The energy differences between the majority of the 4d m levels and about 40 levels of the 4d m-1 4f+4p 5 4d m+1 configurations were determined in each of the Sn IX, Sn X and Sn XI spectra (m=6-4). As a result, all intense lines were classified in the 130-140 A region relevant to the extreme ultraviolet (EUV) lithography. It was shown that the most of the intense lines in the 2% bandwidth at 135 A belong to the transitions in the Sn XI-Sn XIII spectra

  5. Rod-like hierarchical Sn/SnOx@C nanostructures with enhanced lithium storage properties

    Science.gov (United States)

    Yang, Juan; Chen, Sanmei; Tang, Jingjing; Tian, Hangyu; Bai, Tao; Zhou, Xiangyang

    2018-03-01

    Rod-like hierarchical Sn/SnOx@C nanostructures have been designed and synthesized via calcining resorcinol-formaldehyde (RF) resin coated Sn-based metal-organic frameworks. The rod-like hierarchical Sn/SnOx@C nanostructures are made of a great number of carbon-wrapped primary Sn/SnOx nanospheres of 100-200 nm in diameter. The as-prepared hierarchical Sn/SnOx@C nanocomposite manifests a high initial reversible capacity of 1177 mAh g-1 and remains 1001 mAh g-1 after 240 cycles at a current density of 200 mA g-1. It delivers outstanding high-rate performance with a reversible capacity of 823 mAh g-1 even at a high current density of 1000 mA g-1. The enhanced electrochemical performances of the Sn/SnOx@C electrode are mainly attributed to the synergistic effect of the unique hierarchical micro/nanostructures and the protective carbon layer.

  6. Nano-composite powders Ag-SnO2 prepared by reactive milling sintering and microstructural evolution

    International Nuclear Information System (INIS)

    Lorrain, Nathalie

    2000-01-01

    This work aims at controlling the synthesis and the sintering of nano-composite powders Ag-SnO 2 in order to obtain a dense and nano-structured material for electrical contact as a substitute of the toxic compound Ag - CdO. The powder is prepared by reactive milling from silver oxide (Ag 2 O) and silver bronze (Ag 3 Sn) powders. This process leads to a fine dispersion of silver and tin oxide nanometer sized particles. We first studied the mechanisms of reaction promoted by milling in vacuum and in air. A two-stage oxidation of tin in Ag 3 Sn occurs: during forced contact with Ag 2 O, tin oxidises in SnO, then in SnO 2 . In air, gaseous oxygen also participates to the oxidation of tin in SnO 2 but the reaction is slower because of the formation of silver carbonates from a reaction of Ag 2 O with CO 2 .Then the sintering behaviour of the nano-composite powder as a function of the compacting pressure and of the heating rate has been studied. We show: (i) a diffusion of pure silver towards porosity and free surfaces (exo-diffusion) which destroys the nano-structure and (ii) a severe de-densification. We show that the origin of these phenomena is due to carbonates on to the Ag 2 O starting powder, which are incorporated, in the milled Ag-SnO 2 powder in course of milling; during sintering, decomposition gases generate internal stresses. Low stresses lead to a diffusional creep with exo-diffusion whereas high stresses induce an intensive de-densification by local plastic deformation but no exo-diffusion. A modelling shows that exo-diffusion is limited by heating very quickly a strongly compacted powder that contains a high quantity of carbonates. The experimental results confirm the predictions of the model. Finally, we propose solutions allowing a full densification and a process for decreasing the tin oxide concentration. (author) [fr

  7. Search of the chemical change of the sup(119m)Sn (Tsub(1/2) = 293 days) radioactive decay rate

    International Nuclear Information System (INIS)

    Makariunas, K.; Makariuniene, E.; Dragunas, A.

    1983-01-01

    The differences in decay rates of the nuclear isomer sup(119m)Sn (Tsub(1/2) = 293 days; the strongly converted M4 transition) have been measured for different chemical compounds. The experimental results show that the sup(119m)Sn nuclei in the telluride SnTe decay faster than in the metal β-Sn and in the dioxide SnO 2 [the relative change Δlambda/lambda the decay probability lambda is +(3.6+-1.4)x10 -4 ]. No measurable difference between the decay rates of sup(119m)Sn in β-Sn and SnO 2 has been observed [Δlambda/lambda = -(0.1+-1.2)x10 -4 ], irrespective of the great difference in electronic structure of the tin atoms. The results cannot be explained by considering the internal conversion of the valence electrons only. It is necessary to assume that the chemical changes of the decay rate are strongly influenced by the chemical changes of the probabilities of the internal conversion of electrons of the inner shells of the atom. This conclusion is confirmed by theoretical calculations. (Auth.)

  8. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    Science.gov (United States)

    Jerkstrand, A.; Ergon, M.; Smartt, S. J.; Fransson, C.; Sollerman, J.; Taubenberger, S.; Bersten, M.; Spyromilio, J.

    2015-01-01

    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] λλ6300, 6364 lines constrains the progenitors of these three SNe to the MZAMS = 12-16 M⊙ range (ejected oxygen masses 0.3-0.9 M⊙), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from MZAMS ≳ 17 M⊙ progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M⊙ is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] λλ6548, 6583 emission lines that dominate over Hα emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable Hα emission or absorption after ~150 days, and nebular phase emission seen around 6550 Å is in many cases likely caused by [N II] λλ6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually

  9. Enhanced hydrogen storage capacity of Ni/Sn-coated MWCNT nanocomposites

    Science.gov (United States)

    Varshoy, Shokufeh; Khoshnevisan, Bahram; Behpour, Mohsen

    2018-02-01

    The hydrogen storage capacity of Ni-Sn, Ni-Sn/multi-walled carbon nanotube (MWCNT) and Ni/Sn-coated MWCNT electrodes was investigated by using a chronopotentiometry method. The Sn layer was electrochemically deposited inside pores of nanoscale Ni foam. The MWCNTs were put on the Ni-Sn foam with nanoscale porosities using an electrophoretic deposition method and coated with Sn nanoparticles by an electroplating process. X-ray diffraction and energy dispersive spectroscopy results indicated that the Sn layer and MWCNTs are successfully deposited on the surface of Ni substrate. On the other hand, a field-emission scanning electron microscopy technique revealed the morphology of resulting Ni foam, Ni-Sn and Ni-Sn/MWCNT electrodes. In order to measure the hydrogen adsorption performed in a three electrode cell, the Ni-Sn, Ni-Sn/MWCNT and Ni/Sn-coated MWCNT electrodes were used as working electrodes whereas Pt and Ag/AgCl electrodes were employed as counter and reference electrodes, respectively. Our results on the discharge capacity in different electrodes represent that the Ni/Sn-coated MWCNT has a maximum discharge capacity of ˜30 000 mAh g-1 for 20 cycles compared to that of Ni-Sn/MWCNT electrodes for 15 cycles (˜9500 mAh g-1). By increasing the number of cycles in a constant current, the corresponding capacity increases, thereby reaching a constant amount for 20 cycles.

  10. Cross-cultural adaptation and validation of the Sinus and Nasal Quality of Life Survey (SN-5 into Brazilian Portuguese

    Directory of Open Access Journals (Sweden)

    Priscila Regina Candido Espinola Uchoa

    Full Text Available Abstract Introduction: The concept of quality of life is subjective and variable definition, which depends on the individual's perception of their state of health. Quality of life questionnaires are instruments designed to measure quality of life, but most are developed in a language other than Portuguese. Questionnaires can identify the most important symptoms, focus on consultation, and assist in defining the goals of treatment. Some of these have been validated for the Portuguese language, but none in children. Objective: To validate the translation with cross-cultural adaptation and validation of the Sinus and Nasal Quality of Life Survey (SN-5 into Portuguese. Methods: Prospective study of children aged 2-12 years with sinonasal symptoms of over 30 days. The study comprised two stages: (I translation and cross-cultural adaptation of the SN-5 into Portuguese (SN-5p; and (II validation of the SN5-p. Statistical analysis was performed to assess internal consistency, test-retest reliability, and sensitivity, as well as construct and discriminant validity and standardization. Results: The SN-5 was translated and adapted into Portuguese (SN-5p and the author of the original version approved the process. Validation was carried out by administration of the SN-5p to 51 pediatric patients with sinonasal complaints (mean age, 5.8 ± 2.5 years; range, 2-12 years. The questionnaire exhibited adequate construct validity (0.62, p < 0.01, internal consistency (Cronbach's alpha = 0.73, and discriminant validity (p < 0.01, as well as good test-retest reproducibility (Goodman-Kruskal gamma = 0.957, p < 0.001, good correlation with a visual analog scale (r = 0.62, p < 0.01, and sensitivity to change. Conclusion: This study reports the successful translation and cross-cultural adaptation of the SN-5 instrument into Brazilian Portuguese. The translated version exhibited adequate psychometric properties for assessment of disease-specific quality of life in

  11. Internal Grains Within KFC Graphites: Implications for Their Stellar Source

    Science.gov (United States)

    Croat, T. K.; Stadermann, F. J.; Bernatowicz, T. J.

    2005-03-01

    TEM and NanoSIMS investigations find high s-process element enrichments in internal carbides, suggesting an AGB origin for most Murchison KFC presolar graphites. Other rare phases (iron phases and metallic osmium) are consistent with a SN origin.

  12. Comparative analysis of physico-chemical and gas sensing characteristics of two different forms of SnO_2 films

    International Nuclear Information System (INIS)

    Kwoka, M.; Ottaviano, L.; Szuber, J.

    2017-01-01

    Highlights: • Two different forms of SnO_2 deposited on Si substrate. • Crystallinity and surface/subsurface morphology controlled by XRD, SEM and AFM. • Surface/subsurface chemistry including stoichiometry and contaminations derived from XPS. • Comparative analysis of gas sensor characteristics of SnO_2 in NO_2 atmosphere. • Correlations between physico-chemical properties and gas sensor characteristics. - Abstract: In this paper the results of studies of comparative studies on the crystallinity, morphology and chemistry combined with the gas sensor response of two different forms of tin dioxide (SnO_2) films prepared by the Rheotaxial Growth and Thermal Oxidation (RGTO) and by the Laser-enhanced Chemical Vapour Deposition (L-CVD) methods, respectively, are presented. For this purpose the X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Photoelectron spectroscopy (XPS) have been used. XRD studies for both samples show the contribution from the crystalline SnO_2 in the cassiterite rutile phase without any evident contribution from the tin oxide (SnO) phase. SEM and AFM studies show that the surface morphology of RGTO and L-CVD SnO_2 samples are characterized by grains/nanograins of different size and surface roughness. In turn XPS studies confirm that for both SnO_2 samples a slight nonstoichiometry with a relative [O]/[Sn] concentration of 1.8, and slightly different amount of C contamination at the surface of internal grains with relative [C]/[Sn] concentration of 3.5 and 3.2, respectively. This undesired C contamination cannot be ignored because it creates an uncontrolled barrier for the potential gas adsorption at the internal surface of sensor material. This is confirmed by the gas sensor response in NO_2 atmosphere of both SnO_2 samples because the sensitivity is evidently smaller for RGTO SnO_2 with respect to the L-CVD SnO_2 samples, whereas the response time showed a completely opposite tendency

  13. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2{theta} =40 deg, 47 deg, 67 deg and 82 deg, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2-3 nm. For Pt Sn/C and PtSnRh/C two additional peaks were observed at 2 = 34 deg and 52 deg that were identified as a SnO{sub 2} phase. Pt Sn/C (50:50) and PtSnRh/C (50:40:10) electro catalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature Pt Ru/C, Pt Sn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  14. Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions

    International Nuclear Information System (INIS)

    Chen Sinnwen; Lee Wanyu; Hsu Chiaming; Yang Chingfeng; Hsu Hsinyun; Wu Hsinjay

    2011-01-01

    Research highlights: → Thermodynamic models of Sn-In and Sn-In-Ag are developed using the CALPHAD approach. → Reaction layer in the Sn-In-(Ag)/Ag couples at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. → Reactions in the Sn-20 wt%In-2.8 wt%Ag/Ag couples are faster than those in the Sn-20 wt%In/Ag couples. - Abstract: Experimental verifications of the Sn-In and Sn-In-Ag phase equilibria have been conducted. The experimental measurements of phase equilibria and thermodynamic properties are used for thermodynamic modeling by the CALPHAD approach. The calculated results are in good agreement with experimental results. Interfacial reactions in the Sn-In-(Ag)/Ag couples have been examined. Both Ag 2 In and AgIn 2 phases are formed in the Sn-51.0 wt%In/Ag couples reacted at 100 and 150 deg. C, and only the Ag 2 In phase is formed when reacted at 25, 50 and 75 deg. C. Due to the different growth rates of different reaction phases, the reaction layer at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. In the Sn-20.0 wt%In/Ag couples, the ζ phase is formed at 250 deg. C and ζ/AgIn 2 phases are formed at 125 deg. C. Compared with the Sn-20 wt%In/Ag couples, faster interfacial reactions are observed in the Sn-20.0 wt%In-2.8 wt%Ag/Ag couples, and minor Ag addition to Sn-20 wt%In solder increases the growth rates of the reaction phases.

  15. Magnetic behaviour of cerium in Ce2 Sn5 and Ce3 Sn7, surstructures of Ce Sn3

    International Nuclear Information System (INIS)

    Stunault, A.

    1988-07-01

    The compound studied, Ce 2 Sn 5 and Ce 3 Sn 7 are both orthorhombic, surstructure of cubic Ce Sn 3 . Magnetic susceptibility measurements show in both compounds an antiferromagnetic order at low temperature and magnetization shows a high anisotropy. Magnetization densities are determined by polarized neutron diffraction. The cerium site which has two Ce atoms as nearest neighbourgs carries all the magnetism in both structures. For Ce 2 Sn 5 moments are directed as the high magnetization axis and structure is modulated. Ce 3 Sn 7 presents a simple antiferromagnetic order but moment are directed as low magnetization axis. Various transitions towards a ferromagnetic order are presented. Results are interpreted by measuring the difference between energy levels of crystalline field. A model of crystalline field and isotrope exchange agrees well with Ce 3 Sn 7 , but for Ce 2 Sn 7 it is necessary to reduce the magnetic moment which is typical of the Kondo effect [fr

  16. GeSn-on-insulator substrate formed by direct wafer bonding

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Lee, Kwang Hong; Wang, Bing [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); Bao, Shuyu [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Chuan Seng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2016-07-11

    GeSn-on-insulator (GeSnOI) on Silicon (Si) substrate was realized using direct wafer bonding technique. This process involves the growth of Ge{sub 1-x}Sn{sub x} layer on a first Si (001) substrate (donor wafer) followed by the deposition of SiO{sub 2} on Ge{sub 1-x}Sn{sub x}, the bonding of the donor wafer to a second Si (001) substrate (handle wafer), and removal of the Si donor wafer. The GeSnOI material quality is investigated using high-resolution transmission electron microscopy, high-resolution X-ray diffraction (HRXRD), atomic-force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. The Ge{sub 1-x}Sn{sub x} layer on GeSnOI substrate has a surface roughness of 1.90 nm, which is higher than that of the original Ge{sub 1-x}Sn{sub x} epilayer before transfer (surface roughness is 0.528 nm). The compressive strain of the Ge{sub 1-x}Sn{sub x} film in the GeSnOI is as low as 0.10% as confirmed using HRXRD and Raman spectroscopy.

  17. Low-Temperature Deposition of Layered SnSe2 for Heterojunction Diodes

    KAUST Repository

    Serna, Martha I.

    2018-04-27

    Tin diselenide (SnSe) has been recently investigated as an alternative layered metal dichalcogenide due to its unique electrical and optoelectronics properties. Although there are several reports on the deposition of layered crystalline SnSe films by chemical and physical methods, synthesis methods like pulsed laser deposition (PLD) are not reported. An attractive feature of PLD is that it can be used to grow 2D films over large areas. In this report, a deposition process to grow stoichiometric SnSe on different substrates such as single crystals (Sapphire) and amorphous oxides (SiO and HfO) is reported. A detailed process flow for the growth of 2D SnSe at temperatures of 300 °C is presented, which is substantially lower than temperatures used in chemical vapor deposition and molecular beam epitaxy. The 2D SnSe films exhibit a mobility of ≈4.0 cm V s, and are successfully used to demonstrate SnSe/p-Si heterojunction diodes. The diodes show I /I ratios of 10-10 with a turn on voltage of <0.5 V, and ideality factors of 1.2-1.4, depending on the SnSe film growth conditions.

  18. SiSn diodes: Theoretical analysis and experimental verification

    KAUST Repository

    Hussain, Aftab M.

    2015-08-24

    We report a theoretical analysis and experimental verification of change in band gap of silicon lattice due to the incorporation of tin (Sn). We formed SiSn ultra-thin film on the top surface of a 4 in. silicon wafer using thermal diffusion of Sn. We report a reduction of 0.1 V in the average built-in potential, and a reduction of 0.2 V in the average reverse bias breakdown voltage, as measured across the substrate. These reductions indicate that the band gap of the silicon lattice has been reduced due to the incorporation of Sn, as expected from the theoretical analysis. We report the experimentally calculated band gap of SiSn to be 1.11 ± 0.09 eV. This low-cost, CMOS compatible, and scalable process offers a unique opportunity to tune the band gap of silicon for specific applications.

  19. Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride

    Science.gov (United States)

    Senna, Mamoru; Turianicová, Erika; Šepelák, Vladimír; Bruns, Michael; Scholz, Gudrun; Lebedkin, Sergei; Kübel, Christian; Wang, Di; Kaňuchová, Mária; Kaus, Maximilian; Hahn, Horst

    2014-04-01

    Fluorine was incorporated into SnO2 nanoparticles from polyvinylidene fluoride (PVdF) by co-milling. The incorporation process was triggered by an oxidative partial decomposition of PVdF due to the abstraction of oxygen atoms, and began soon after milling with a simultaneous decrease in the crystallite size of SnO2 from 56 nm to 19 nm, and increase in the lattice strain by a factor 7. Appearance of D and G Raman peaks indicated that the decomposition of PVdF was accompanied by the formation of nanometric carbon species. Decomposing processes of PVdF were accompanied by the continuous change in the states of F, with a decrease of C-F in PVdF and increase in Sn-F. This indicates the gradual incorporation of F into SnO2, by replacing a part of oxygen in the oxide with fluorine. These serial mechanochemical reaction processes were discussed on the basis of X-ray diffractometry, FT-IR, Raman and UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, F1s, Sn3d and C1s X-ray photoelectron spectroscopy and Auger electron spectra, as well as magic angle spinning NMR spectroscopy of 19F and 119Sn. The present findings serve as an initial stage of incorporating fluorine into SnO2 via a solvent-free solid-state process, toward the rational fabrication of fluorine doped SnO2 powders.

  20. Magnetic anisotropy in Pb_{1-x-y}Sn_{y}Mn_{x}Te studied by ferromagnetic resonance

    NARCIS (Netherlands)

    Eggenkamp, P.J.T.; Story, T.; Swüste, C.H.W.; Swagten, H.J.M.; Jonge, de W.J.M.

    1993-01-01

    Proceedings of the XXII International School of Semiconducting Compounds, Jaszowiec 1993 We will report on the anisotropy in (Pb)SnMnTe, studied by ferromagnetic resonance. We have found a cubic anisotropy with a = 73 × 10-4 cm-1 for Sn1-xMnxTe and a = 200 × 10-4 cm-1 for Pb0.28-xSn0.72MnxTe. We

  1. Nanocrystalline SnO2 thin films: Structural, morphological, electrical transport and optical studies

    International Nuclear Information System (INIS)

    Sakhare, R.D.; Khuspe, G.D.; Navale, S.T.; Mulik, R.N.; Chougule, M.A.; Pawar, R.C.; Lee, C.S.; Sen, Shashwati; Patil, V.B.

    2013-01-01

    Highlights: ► Novel chemical route of synthesis of SnO 2 films. ► Physical properties SnO 2 are influenced by process temperature. ► The room temperature electrical conductivity of SnO 2 is of 10 −7 –10 −5 (Ω cm) −1 . ► SnO 2 exhibit high absorption coefficient (10 4 cm −1 ). -- Abstract: Sol–gel spin coating method has been successfully employed for preparation of nanocrystalline tin oxide (SnO 2 ) thin films. The effect of processing temperature on the structure, morphology, electrical conductivity, thermoelectric power and band gap was studied using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction pattern, atomic force microscopy, two probe technique and UV–visible spectroscopy. X-ray diffraction (XRD) analysis showed that SnO 2 films are crystallized in the tetragonal phase and present a random orientation. Field emission scanning electron microscopy (FESEM) analysis revealed that surface morphology of the tin oxide film consists nanocrystalline grains with uniform coverage of the substrate surface. Transmission electron microscopy (TEM) of SnO 2 film showed nanocrystals having diameter ranging from 5 to 10 nm. Selected area electron diffraction (SAED) pattern confirms tetragonal phase evolution of SnO 2 . Atomic force microscopy (AFM) analysis showed surface morphology of SnO 2 film is smooth. The dc electrical conductivity showed the semiconducting nature with room temperature electrical conductivity increased from 10 −7 to 10 −5 (Ω cm) −1 as processing temperature increased from 400 to 700 °C. Thermo power measurement confirms n-type conduction. The band gap energy of SnO 2 film decreased from 3.88 to 3.60 eV as processing temperature increased from 400 to 700 °C

  2. The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System

    Science.gov (United States)

    Kil, Yeon-Ho; Yuk, Sim-Hoon; Jang, Han-Soo; Lee, Sang-Geul; Choi, Chel-Jong; Shim, Kyu-Hwan

    2018-03-01

    We have investigated the low temperature (LT) growth of GeSn-Ge-Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240-360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.

  3. Controlled growth and thermal decomposition of well-dispersed and uniform ZnSn(OH)6 submicrocubes

    International Nuclear Information System (INIS)

    He, Qin; Zi, Junfeng; Huang, Baojun; Yan, Lingyu; Fa, Wenjun; Li, Dapeng; Zhang, Yange; Gao, Yuanhao; Zheng, Zhi

    2014-01-01

    Graphical abstract: Schematic illustration of the growth of the ZnSn(OH) 6 submicrocubes. - Highlights: • ZnSn(OH) 6 with perfect cubic shapes was formed through the chemical conversion. • We could control the morphologies of ZnSn(OH) 6 by changing reaction conditions. • Calcination of ZnSn(OH) 6 could produce different products. - Abstract: Well-dispersed and uniform ZnSn(OH) 6 submicrocubes with the average size of about 400 nm were successfully synthesized through the chemical conversion of different precipitates assisted by ultrasonic treatment and the subsequent aging process in an economical aqueous solution. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TG) and Differential scanning calorimetry (DSC). The growth mechanism has been proposed and the reaction conditions were carefully investigated. It was found experimentally that ultrasound irradiation, aging process and the presence of Na 2 CO 3 in the synthetic process had an impact on the formation of the ZnSn(OH) 6 submicrocubes. Additionally, the obtained ZnSn(OH) 6 submicrocubes can be applied for the preparation of the Zn 2 SnO 4 /SnO 2 mixtures by simple calcination

  4. Stabilization of a Nb3Sn persistent current switch

    International Nuclear Information System (INIS)

    Urata, M.; Maeda, H.; Nakayama, S.; Yoneda, E.; Oda, Y.; Kumano, T.; Aoki, N.; Tomisaki, T.; Kabashima, S.

    1993-01-01

    A 2000 A class Nb 3 Sn persistent current switch has been successfully fabricated in the Toshiba R and D Center. The Nb tube processed conductor with Cu-10 wt.% Ni matrix has been developed for the switch in the Showa Electric Wire and Cable Co. Ltd. The magnetic instability which was observed in the previous 35 Ω Nb 3 Sn persistent current switch was improved in the present switch. The problem of quench current degradation and flux jump on magnetization, emerged in the previous switch, were confirmed to be solved. In the fast ramp, however, the switch degrades from the calculated results assuming the self field ac loss. In the Nb 3 Sn reaction process, Sn in the bronze diffuses into the Nb tube, which decreases the switch resistance. It was observed by a computer aided micro analysis (CMA) that Ni in the CuNi matrix precipitated on the Nb tube, which slightly reduced the switch resistance. (orig.)

  5. Characterization and process development for the selective removal of Sn, Sb, and As from anode slime obtained from electrolytic copper refining

    Directory of Open Access Journals (Sweden)

    Steinlechner S.

    2018-01-01

    Full Text Available The aim of this work was to develop a process for the removal of Sn, Sb and As from anode slime out of copper refinery to disburden a subsequent pyrometallurgical processing for precious metals refinement. For this reason, a detailed literature survey was conducted, followed by a characterization to find the present compounds/alloys and their morphology. A newly developed process concept for the separate extraction of the afore mentioned three target metals was developed and verified by leaching experiments, combined with thermodynamic calculations on their behavior under varying conditions. In this context, the influence of leaching temperature, alkalinity of leaching solution, and solid-liquid ration were evaluated on the extraction yields of Sn, As, and Sb, as well as how to exploit these findings to obtain separate streams enriched in the respective metals.

  6. Phase diagram of SnTe-CdSe cross-section of SnTe+CdSe reversible SnSe+CdTe ternary reciprocal system

    International Nuclear Information System (INIS)

    Dubrovin, I.V.; Budennaya, L.D.; Mizetskaya, I.B.; Sharkina, Eh.V.

    1986-01-01

    Phase equilibrium diagram of SnTe-CdSe cross-section of Sn, Cd long Te, Se ternary reciprocal system is investigated using the methods of differential thermal, X-ray phase, and microstructural analyses. Maximum length of solid solutions on the base of SnTe corresponds to approximately 14 mol.% at 1050 K and approximately 3 mol.% of CdSe at 670 K. Region of solid solutions on the base of CdSe corresponds to less than 1 mol.% of SnTe at room temperature. SnTe-CdSe cross-section is not a quasibinar one. Equilibrium is shifted to the left in the SnTe+CdSe reversible SnSe+CdTe reciprocal system

  7. Development of Nb3Sn AC superconducting wire. Pt. 2

    International Nuclear Information System (INIS)

    Kasahara, Hobun; Torii, Shinji; Akita, Shirabe; Ueda, Kiyotaka; Kubota, Yoji; Yasohama, Kazuhiko; Kobayashi, Hisayasu; Ogasawara, Takeshi.

    1993-01-01

    For the realization of superconducting power apparatus, it is important that the development of highly stable superconducting cables. Nb 3 Sn wire has higher critical temperature than NbTi wire. Therefore, it is possible to make highly stable superconducting wires. In this report, we examine a manufacturing process of Ac Nb 3 Sn wire. This manufacturing process has four times higher critical current density than conventional processes. We have made a 400 kVA class AC coil with React and Wind method. The loss density of this coil was 20MW/m 3 at just before the quench. In this case, the temperature of cable increased about 3.8 K. This means that the Nb 3 Sn coil has a very high stability. (author)

  8. Influence of Sn content on microstructural and mechanical properties of centrifugal cast Ti-Nb-Sn biomedical alloys; Efeitos da adicao de Sn na evolucao microestrutural e em propriedades mecanicas de ligas Ti-Nb-Sn biomedicas fundidas por centrifugacao

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, E.S.N.; Contieri, R.J.; Caram, R., E-mail: ederlopes@fem.unicamp.b [Universidade Estadual de Campinas (DEMA/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Materiais; Moraes, P.E.L. [FATEC Artur Azevedo, Mogi Mirim, SP (Brazil); Costa, A.M.S. [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materiais

    2010-07-01

    The arc voltaic centrifugal casting is an interesting alternative in terms of economic and technological development in the production of components based on materials with high reactivity and high melting point, such as titanium alloys. In this work, Ti-30Nb (wt. %) with additions of Sn (2, 4, 6, 8 and 10 wt. %) were formed by casting process. Characterization of the samples included optical microscopy, scanning electron microscopy, X-ray diffraction, Vickers hardness and elastic modulus measures by acoustic techniques. It was observed that the microstructure of the samples investigated is composed by dendritic structures, with clear segregation of alloying elements. The Vickers hardness and the elastic modulus decreased with the addition of Sn. The results show that the mechanical behavior of Ti-Nb alloys can be controlled within certain limits, by adding Sn. (author)

  9. Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance

    Science.gov (United States)

    Wang, Peng; Hu, Junhua; Cao, Guoqin; Zhang, Shilin; Zhang, Peng; Liang, Changhao; Wang, Zhuo; Shao, Guosheng

    2018-03-01

    Different configurations of Sn and C films were deposited and used as a planar anode for Li ion battery. The interplay of carbon layer with Sn as supporting and buffering, respectively, was revealed. The suppression on the allotropic transformation to α phase by a carbon layer results in a significantly improved capacity retention rate, which also avoids the crack of Sn film. As expected, a conductive carbon layer improves rating performance. However, a supporting carbon layer (SC) just contributes to the charge transfer process. A DFT approach was used to assess the allotropic transformation process. An additional barrier (∼0.86 eV) exits on the α-β diagram, which is responsible for the irreversibility of α phase back to β phase. An enhanced persistence of β phase in Sn/C anode contributes to cycling performance. A Li rich condition contributes to the stabilization of β-Sn, which is thermodynamically favored. A nano buffering carbon (BC) layer can evidently alleviate the side reaction on Sn surface, which in turn promotes the diffusion of Li ions in electrode and generates a Li rich condition. The direct contact of Sn with electrolyte leads to serious accumulation of α-Sn during cycling and results in a poor cycling performance. By the synergistic effect of BC and SC, a sandwich C/Sn/C structure demonstrates an enchantment in electrochemical behavior.

  10. Mg{sub 2}Sn heterostructures on Si(111) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Dózsa, L., E-mail: dozsa@mfa.kfki.hu [Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, 1525 Budapest Pf, 49 (Hungary); Galkin, N.G. [Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041 (Russian Federation); Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690950 (Russian Federation); Pécz, B.; Osváth, Z.; Zolnai, Zs. [Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, 1525 Budapest Pf, 49 (Hungary); Németh, A. [Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, 1525 Budapest, P.O.B. 49 (Hungary); Galkin, K.N.; Chernev, I.M. [Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041 (Russian Federation); Dotsenko, S.A. [Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041 (Russian Federation); Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690950 (Russian Federation)

    2017-05-31

    Highlights: • Investigations show that the nanostructures have significant changes during the applied regular experimental investigations. • It is especially true for transmittance electron microscopy, where the investigated layers have to be thinned near to the nanostructure size. • The time order of the applied experimental investigation has a dominant effect on the experimetal results. - Abstract: Thin un-doped and Al doped polycrystalline Mg-stannide films consisting mainly of Mg{sub 2}Sn semiconductor phase have been grown by deposition of Sn-Mg multilayers on Si(111) p-type wafers at room temperature and annealing at 150 °C. Rutherford backscattering measurement spectroscopy (RBS) were used to determine the amount of Mg and Sn in the structures. Raman spectroscopy has shown the layers contain Mg{sub 2}Sn phase. Cross sectional transmission electron microscopy (XTEM) measurements have identified Mg{sub 2}Sn nanocrystallites in hexagonal and cubic phases without epitaxial orientation with respect to the Si(111) substrate. Significant oxygen concentration was found in the layer both by RBS and TEM. The electrical measurements have shown laterally homogeneous conductivity in the grown layer. The undoped Mg{sub 2}Sn layers show increasing resistivity with increasing temperature indicating the scattering process dominates the resistance of the layers, i.e. large concentration of point defects was generated in the layer during the growth process. The Al doped layer shows increase of the resistance at low temperature caused by freeze out of free carriers in the Al doped Mg{sub 2}Sn layer. The measurements indicate the necessity of protective layer grown over the Mg{sub 2}Sn layers, and a short time delay between sample preparation and cross sectionalTEM analysis, since the unprotected layer is degraded by the interaction with the ambient.

  11. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40{sup 0}, 47{sup 0}, 67{sup 0} and 82{sup 0}, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34{sup 0} and 52{sup 0} that were identified as a SnO{sub 2} phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  12. 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Oya, N.; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-02-23

    Polycrystalline GeSn thin films are fabricated on insulating substrates at low temperatures by using Sn-induced crystallization of amorphous Ge (a-Ge). The Sn layer stacked on the a-Ge layer (100-nm thickness each) had two roles: lowering the crystallization temperature of a-Ge and composing GeSn. Slow annealing at an extremely low temperature of 70 °C allowed for a large-grained (350 nm) GeSn layer with a lattice constant of 0.590 nm, corresponding to a Sn composition exceeding 25%. The present investigation paves the way for advanced electronic optical devices integrated on a flexible plastic substrate as well as on a Si platform.

  13. Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yujin; Park, Juyun; Kim, Dong-Woo; Kim, Hakjun; Kang, Yong-Cheol, E-mail: yckang@pknu.ac.kr

    2016-12-15

    Highlights: • We deposit CuSn thin films on a Si substrate with various Cu/Sn ratio. • Antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time increased. • XPS was utilized to assign the chemical environment of CuSn thin films before and after antibacterial test. - Abstract: We investigated antibacterial activity of CuSn thin films against Gram positive Staphylococcus aureus (S. aureus). CuSn thin films with different Cu to Sn ratios were deposited on Si(100) by radio frequency (RF) magnetron sputtering method using Cu and Sn metal anodes. The film thickness was fixed at 200 nm by varying the sputtering time and RF power on the metal targets. The antibacterial test was conducted in various conditions such as different contact times and Cu to Sn ratios in the CuSn films. The antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time between the film and bacteria suspension increased execpt in the case of CuSn-83. The oxidation states of Cu and Sn and the chemical composition of CuSn thin films before and after the antibacterial test were investigated by X-ray photoelectron spectroscopy (XPS). When the contact time was fixed, the Cu species was further oxidized as the RF power on Cu target increased. The intensity of Sn 3d decreased with increasing Cu ratio. When the sample was fixed, the peak intensity of Sn 3d decreased as the contact time increased due to the permeation of Sn into the cell.

  14. Licensing Process for International Projects

    International Nuclear Information System (INIS)

    Raetzke, Christan

    2014-01-01

    Christan Raetzke, lawyer, then outlined why nuclear constructions were always international projects and in which cases it would make sense to also make the licensing process be international. His law consulting firm CONLAR focuses specifically on design review so he could adequately present why an international process would make a lot of sense without being a loss of sovereignty

  15. Influence of Sn content on microstructural and mechanical properties of centrifugal cast Ti-Nb-Sn biomedical alloys

    International Nuclear Information System (INIS)

    Lopes, E.S.N.; Contieri, R.J.; Caram, R.; Costa, A.M.S.

    2010-01-01

    The arc voltaic centrifugal casting is an interesting alternative in terms of economic and technological development in the production of components based on materials with high reactivity and high melting point, such as titanium alloys. In this work, Ti-30Nb (wt. %) with additions of Sn (2, 4, 6, 8 and 10 wt. %) were formed by casting process. Characterization of the samples included optical microscopy, scanning electron microscopy, X-ray diffraction, Vickers hardness and elastic modulus measures by acoustic techniques. It was observed that the microstructure of the samples investigated is composed by dendritic structures, with clear segregation of alloying elements. The Vickers hardness and the elastic modulus decreased with the addition of Sn. The results show that the mechanical behavior of Ti-Nb alloys can be controlled within certain limits, by adding Sn. (author)

  16. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    Science.gov (United States)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  17. A Method to Increase Current Density in a Mono Element Internal Tin Processed Superconductor Utilizing Zr Oxide to Refine Grain Size; Final Report Phase 2

    International Nuclear Information System (INIS)

    Zeitlin, Bruce A.; Gregory, Eric

    2008-01-01

    The effect of Oxygen on (Nb1Zr)3Sn multifilament conductors manufactured by the Mono Element Internal Tin (MEIT) process was explored to improve the current density by refining the grain size. This followed work first done by General Electric on the Nb3Sn tape process. Techniques to fabricate the more difficult Nb1Zr composites are described and allowed fabrication of long lengths of .254 mm diameter wire from an 88.9 mm diameter billet. Oxygen was incorporated through the use of SnO2 mixed with tin powder and incorporated into the core. These were compared to samples with Ti+Sn and Cu+Sn cores. Heat treatments covered the range of 700 C to 1000 C. Current density vs. H, grain size, and reaction percentages are provided for the materials tested. The Oxygen gave superior results in the temperature range of 815-1000 C. It also stabilized the filament geometry of the array in comparison to the other additions at the higher temperatures. At 815 C a peak in layer Jc yielded values of 2537 A/mm2 at 12 T and 1353 A/mm2 at 15T, 8-22% and 30-73% greater respectively than 700 C values. Results with Oxygen at high temperature show the possibility of high speed continuous reaction of the composite versus the current batch or react in place methods. In general the Ti additions gave superior results at the lower reaction temperature. Future work is suggested to determine if the 815 C reaction temperature can lead to higher current density in high tin (Nb1Zr+Ox)3Sn conductors. A second technique incorporated oxygen directly into the Nb1Zr rods through heat treatment with Nb2O5 at 1100 C for 100 hours in vacuum prior to extrusion. The majority of the filaments reduced properly in the composite but some local variations in hardness led to breakage at smaller diameters.

  18. Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas-Solid Reaction Film Fabrication Process.

    Science.gov (United States)

    Yokoyama, Takamichi; Cao, Duyen H; Stoumpos, Constantinos C; Song, Tze-Bin; Sato, Yoshiharu; Aramaki, Shinji; Kanatzidis, Mercouri G

    2016-03-03

    The development of Sn-based perovskite solar cells has been challenging because devices often show short-circuit behavior due to poor morphologies and undesired electrical properties of the thin films. A low-temperature vapor-assisted solution process (LT-VASP) has been employed as a novel kinetically controlled gas-solid reaction film fabrication method to prepare lead-free CH3NH3SnI3 thin films. We show that the solid SnI2 substrate temperature is the key parameter in achieving perovskite films with high surface coverage and excellent uniformity. The resulting high-quality CH3NH3SnI3 films allow the successful fabrication of solar cells with drastically improved reproducibility, reaching an efficiency of 1.86%. Furthermore, our Kelvin probe studies show the VASP films have a doping level lower than that of films prepared from the conventional one-step method, effectively lowering the film conductivity. Above all, with (LT)-VASP, the short-circuit behavior often obtained from the conventional one-step-fabricated Sn-based perovskite devices has been overcome. This study facilitates the path to more successful Sn-perovskite photovoltaic research.

  19. Ordered CoSn-type ternary phases in Co3Sn3-xGex

    DEFF Research Database (Denmark)

    Allred, Jared M.; Jia, Shuang; Bremholm, Martin

    2012-01-01

    . By taking advantage of the chemical differences between the two crystallographically inequivalent Sn sites in the structure, we observe ordered ternary phases, nominally Co3SnGe2 and Co3Sn2Ge. The electron count and unit cell configuration remain unchanged from CoSn; these observations thus help to clarify...

  20. Internal process: what is abstraction and distortion process?

    Science.gov (United States)

    Fiantika, F. R.; Budayasa, I. K.; Lukito, A.

    2018-03-01

    Geometry is one of the branch of mathematics that plays a major role in the development of science and technology. Thus, knowing the geometry concept is needed for students from their early basic level of thinking. A preliminary study showed that the elementary students have difficulty in perceiving parallelogram shape in a 2-dimention of a cube drawing as a square shape. This difficulty makes the students can not solve geometrical problems correctly. This problem is related to the internal thinking process in geometry. We conducted the exploration of students’ internal thinking processes in geometry particularly in distinguishing the square and parallelogram shape. How the students process their internal thinking through distortion and abstraction is the main aim of this study. Analysis of the geometrical test and deep interview are used in this study to obtain the data. The result of this study is there are two types of distortion and abstraction respectively in which the student used in their internal thinking processes.

  1. Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys

    International Nuclear Information System (INIS)

    Shalaby, Rizk Mostafa

    2013-01-01

    Mechanical properties and indentation creep of the melt-spun process Bi–42 wt%Sn, Bi–40 wt%Sn–2 wt%In, Bi–40 wt%Sn–2 wt%Ag and Bi–38 wt%Sn–2 wt%In–2 wt%Ag were studied by dynamic resonance technique and Vickers indentation testing at room temperature and compared to that of the traditional Sn–37 wt%Pb eutectic alloy. The results show that the structure of Bi–42 wt%Sn alloy is characterized by the presence of rhombohedral Bi and body centered tetragonal β-Sn. The two ternary alloys exhibit additional constituent phases of intermetallic compounds SnIn 19 for Bi–40 wt%Sn–2 wt%In and ε-Ag 3 Sn for Bi–40 wt%Sn–2 wt%Ag alloys. Attention has been paid to the role of intermetallic compounds on mechanical and creep behavior. The In and Ag containing solder alloy exhibited a good combination of higher creep resistance, good mechanical properties and lower melting temperature as compared with Pb–Sn eutectic solder alloy. This was attributed to the strengthening effect of Bi as a strong solid solution element in the Sn matrix and formation of intermetallic compounds β-SnBi, ε-Ag 3 Sn and InSn 19 which act as both strengthening agent and grain refiner in the matrix of the material. Addition of In and Ag decreased the melting temperature of Bi–Sn lead-free solder from 143 °C to 133 °C which was possible mainly due to the existence of InSn 19 and Ag 3 Sn intermetallic compounds. Elastic constants, internal friction and thermal properties of Bi–Sn based alloys have been studied and analyzed.

  2. Efficacy of the LiSN & Learn auditory training software: randomized blinded controlled study

    Directory of Open Access Journals (Sweden)

    Sharon Cameron

    2012-09-01

    Full Text Available Children with a spatial processing disorder (SPD require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Participants were ten children (aged between 6;0 [years;months] and 9;9 with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise - Sentences test (LiSN-S. In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program - Earobics - for approximately 15 min per day for twelve weeks. There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (P=0.03 to 0.0008, η 2=0.75 to 0.95, n=5, but not for the Earobics group (P=0.5 to 0.7, η 2=0.1 to 0.04, n=5. Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation.

  3. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.; Kokoh, K.B.; Coutanceau, C.; Leger, J.-M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Dos Anjos, D.M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil); Olivi, P.; De Andrade, A.R. [Departamento de Quimica da Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP (Brazil); Tremiliosi-Filho, G. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil)

    2007-08-01

    Binary PtIr, PtSn and ternary PtSnIr electrocatalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and these materials were characterized by TEM and XRD. The XRD results showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of solid solutions between the metals Pt/Ir and Pt/Sn. However, the increase in Sn loading promoted phase separation, with the formation of peaks typical of cubic Pt{sub 3}Sn. The electrochemical investigation of these different electrode materials was carried out as a function of the electrocatalyst composition, in a 0.5 mol dm{sup -3} H{sub 2}SO{sub 4} solution, with either the presence or the absence of ethanol. Cyclic voltammetric measurements and chronoamperometric results obtained at room temperature showed that PtSn/C and PtSnIr/C displayed better electrocatalytic activity for ethanol electrooxidation compared to PtIr/C and Pt/C, mainly at low potentials. The oxidation process was also investigated by in situ infrared reflectance spectroscopy, to identify the adsorbed species. Linearly adsorbed CO and CO{sub 2} were found, indicating that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 C, the Pt{sub 89}Sn{sub 11}/C and Pt{sub 68}Sn{sub 9}Ir{sub 23}/C electrocatalysts displayed higher current and power performances as anode materials in a direct ethanol fuel cell (DEFC). (author)

  4. Growth of highly textured SnS on mica using an SnSe buffer layer

    International Nuclear Information System (INIS)

    Wang, S.F.; Fong, W.K.; Wang, W.; Surya, C.

    2014-01-01

    We report the growth of SnS thin films on mica substrates by molecular beam epitaxy. Excellent 2D layered structure and strong (001) texture were observed with a record low rocking curve full width at half maximum of ∼ 0.101° for the SnS(004) diffraction. An interface model is used to investigate the nucleation of SnS on mica which indicates the co-existence of six pairs of lateral growth orientations and is in excellent agreement with the experimental Φ-scan measurements indicating 12 peaks separated by 30° from each other. To control the lateral growth of the SnS epilayers we investigate the utilization of a thin SnSe buffer layer deposited on the mica substrate prior to the growth of the SnS thin film. The excellent lattice match between SnSe and mica enhances the alignment of the nucleation of SnS and suppresses the minor lateral orientations along the mica[110] direction and its orthogonal axis. Detailed low-frequency noise measurement was performed to characterize the trap density in the films and our results clearly demonstrate substantial reduction in the density of the localized states in the SnS epilayer with the use of an SnSe buffer layer. - Highlights: • A record low rocking curve FWHM for deposited SnS on mica • Investigation of the nucleation of SnS on mica using the interface model • Investigation of nucleation mechanism by phi-scan measurement • Grain boundary formation from crystallites of various nucleation orientations • Suppression of nucleation orientations using an SnSe buffer layer

  5. Au–Sn bonding material for the assembly of power integrated circuit module

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.X.; Li, C.C. [Department of Materials Science & Engineering, National Taiwan University, Taipei, Taiwan (China); Liao, L.L.; Liu, C.K. [Electronic and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Kao, C.R., E-mail: crkao@ntu.edu.tw [Department of Materials Science & Engineering, National Taiwan University, Taipei, Taiwan (China)

    2016-06-25

    Insulated gate bipolar transistor (IGBT) chips are the key components in high-temperature power electronic modules, which have to efficiently convert electricity between direct and alternating current. In this study, the eutectic Au–Sn (20 wt.% Sn) is successfully used to assemble IGBT chips and direct-bond-copper substrates by using solid liquid interdiffusion (SLID) bonding. During subsequent isothermal aging at 150, 200, and 240 °C, the microstructure evolution and growth kinetics of intermetallic compounds are investigated. Excellent thermal stability and mechanical strength are observed. It is concluded that the eutectic Au–Sn solder is ideal to assemble high-temperature IGBT by using the SLID process. - Highlights: • Au–20Sn serves as a promising bonding material for IGBT operating at T < 519 °C. • The Au–20Sn reacted with Ni to form (Ni,Au){sub 3}Sn{sub 2}/(Au{sub 5}Sn + AuSn)/(Ni,Au){sub 3}Sn{sub 2}. • Once the AuSn was nearly exhausted, the whole joint could withstand higher temperatures. • A cost-effective way for long-term operations at high temperature.

  6. Comparative analysis of physico-chemical and gas sensing characteristics of two different forms of SnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Kwoka, M., E-mail: Monika.Kwoka@polsl.pl [Institute of Electronics, Silesian University of Technology, 44-100 Gliwice (Poland); Ottaviano, L. [CNR- SPIN & Department of Physics and Chemical Sciences, University of L’Aquila, 67100 (Italy); Szuber, J. [Institute of Electronics, Silesian University of Technology, 44-100 Gliwice (Poland)

    2017-04-15

    Highlights: • Two different forms of SnO{sub 2} deposited on Si substrate. • Crystallinity and surface/subsurface morphology controlled by XRD, SEM and AFM. • Surface/subsurface chemistry including stoichiometry and contaminations derived from XPS. • Comparative analysis of gas sensor characteristics of SnO{sub 2} in NO{sub 2} atmosphere. • Correlations between physico-chemical properties and gas sensor characteristics. - Abstract: In this paper the results of studies of comparative studies on the crystallinity, morphology and chemistry combined with the gas sensor response of two different forms of tin dioxide (SnO{sub 2}) films prepared by the Rheotaxial Growth and Thermal Oxidation (RGTO) and by the Laser-enhanced Chemical Vapour Deposition (L-CVD) methods, respectively, are presented. For this purpose the X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Photoelectron spectroscopy (XPS) have been used. XRD studies for both samples show the contribution from the crystalline SnO{sub 2} in the cassiterite rutile phase without any evident contribution from the tin oxide (SnO) phase. SEM and AFM studies show that the surface morphology of RGTO and L-CVD SnO{sub 2} samples are characterized by grains/nanograins of different size and surface roughness. In turn XPS studies confirm that for both SnO{sub 2} samples a slight nonstoichiometry with a relative [O]/[Sn] concentration of 1.8, and slightly different amount of C contamination at the surface of internal grains with relative [C]/[Sn] concentration of 3.5 and 3.2, respectively. This undesired C contamination cannot be ignored because it creates an uncontrolled barrier for the potential gas adsorption at the internal surface of sensor material. This is confirmed by the gas sensor response in NO{sub 2} atmosphere of both SnO{sub 2} samples because the sensitivity is evidently smaller for RGTO SnO{sub 2} with respect to the L-CVD SnO{sub 2} samples, whereas

  7. Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films

    International Nuclear Information System (INIS)

    Chiang, Ming-Hung; Fu, Yaw-Shyan; Shih, Cheng-Hung; Kuo, Chun-Cheng; Guo, Tzung-Fang; Lin, Wen-Tai

    2013-01-01

    The effects of hydrazine on the synthesis of Cu 2 ZnSnSe 4 (CZTSe) and Cu 2 CdSnSe 4 (CCTSe) nanocrystals in an autoclave as a function of temperature and time were explored. On heating at 190 °C for 24-72 h, pure CZTSe and CCTSe nanocrystals could readily grow in the hydrazine-added solution, while in the hydrazine-free solution the intermediate phases such as ZnSe, Cu 2 Se, and Cu 2 SnSe 3 , and Cu 2 SnSe 3 and CdSe associated with the CZTSe and CCTSe nanocrystals grew, respectively. This result reveals that hydrazine can speed up the synthesis of pure CZTSe and CCTSe nanocrystals via a solvothermal process. The mechanisms for the hydrazine-enhanced growth of CZTSe and CCTSe nanocrystals were discussed. The pure CZTSe and CCTSe nanocrystals were subsequently fabricated to the smooth films by spin coating without further annealing in selenium atmosphere. This processing may be beneficial to the fabrication of the absorber layer for solar cells and thermoelectric devices. - Highlights: • Hydrazine enhances the growth of pure Cu 2 ZnSnSe 4 and Cu 2 CdSnSe 4 nanocrystals. • The nanocrystals can be fabricated to films by spin coating without annealing. • This solvothermal processing is promising for the fabrication of thin film devices

  8. Characteristics and heat treatment of cold-sprayed Al-Sn binary alloy coatings

    International Nuclear Information System (INIS)

    Ning, Xian-Jin; Kim, Jin-Hong; Kim, Hyung-Jun; Lee, Changhee

    2009-01-01

    In this study, Al-Sn binary alloy coatings were prepared with Al-5 wt.% Sn (Al-5Sn) and Al-10 wt.% Sn (Al-10Sn) gas atomized powders by low pressure and high pressure cold spray process. The microstructure and microhardness of the coatings were characterized. To understand the coarsening of tin in the coating, the as-sprayed coatings were annealed at 150, 200, 250 and 300 o C for 1 h, respectively. The effect of annealing on microstructure and the bond strength of the coatings were investigated. The results show that Al-5Sn coating can be deposited by high pressure cold spray with nitrogen while Al-10Sn can only be deposited by low pressure cold spray with helium gas. Both Al-5Sn and Al-10Sn coatings present dense structures. The fraction of Sn in as-sprayed coatings is consistent with that in feed stock powders. The coarsening and/or migration of Sn phase in the coatings were observed when the annealing temperature exceeds 200 deg. C. Furthermore, the microhardness of the coatings decreased significantly at the annealing temperature of 250 deg. C. EDXA analysis shows that the heat treatment has no significant effect on fraction of Sn phase in Al-5Sn coatings. Bonding strength of as-sprayed Al-10Sn coating is slightly higher than that of Al-5Sn coating. Annealing at 200 o C can increase the bonding strength of Al-5Sn coatings.

  9. Electrical and optical properties of SnEuTe and SnSrTe films

    Science.gov (United States)

    Ishida, Akihiro; Tsuchiya, Takuro; Yamada, Tomohiro; Cao, Daoshe; Takaoka, Sadao; Rahim, Mohamed; Felder, Ferdinand; Zogg, Hans

    2010-06-01

    The SnTe, Sn1-xEuxTe and Sn1-xSrxTe (x<0.06) films were prepared by hot wall epitaxy. The ternary alloy films prepared in cation rich condition had hole concentration around 1×1019 cm-3 with high mobility exceeding 2000 cm2/V s at room temperature. Optical transmission spectra were also measured in the temperature range from 100 to 400 K and compared with theoretical calculations. Optical transmission spectra of the SnTe were simulated successfully assuming bumped band edge structures. A band inversion model was proposed for the Sn1-xEuxTe and Sn1-xSrxTe systems, and the optical transmission spectra were also simulated successfully assuming the band inversion model.

  10. Tunneling spectroscopy on superconducting Nb3Sn with artioficial barriers

    International Nuclear Information System (INIS)

    Schneider, U.

    1984-03-01

    Tunneling diodes on Nb 3 Sn were prepared by magnetron sputtering. The superconducting transition temperatures of the Nb 3 Sn films were in the range of 5 to 18 K. An energetically low-lying structure in the tunneling density of states has been localized by detailed studies of the second derivative of the current-voltage characteristics of the diodes. This structure was found near 5.5 meV for stoichiometric Nb 3 Sn (Tsub(c) approx.= 18 K) and at 6.7 meV for understoichiometric Nb 3 Sn (Tsub(c) approx.= 5 K). The minimum in the conductance at zero energy found in the normal state could be identified to be mainly due to inelastic phonon processes of barrier phonons and Nb 3 Sn phonons. Deformations were found in the tunneling density of states of stoichiometric Nb 3 Sn diodes which lead to contradiction when explained by proximity effects. (orig./GSCH)

  11. Synthesis And Electrochemical Characteristics Of Mechanically Alloyed Anode Materials SnS2 For Li/SnS2 Cells

    Directory of Open Access Journals (Sweden)

    Hong J.H.

    2015-06-01

    Full Text Available With the increasing demand for efficient and economic energy storage, tin disulfide (SnS2, as one of the most attractive anode candidates for the next generation high-energy rechargeable Li-ion battery, have been paid more and more attention because of its high theoretical energy density and cost effectiveness. In this study, a new, simple and effective process, mechanical alloying (MA, has been developed for preparing fine anode material tin disulfides, in which ammonium chloride (AC, referred to as process control agents (PCAs, were used to prevent excessive cold-welding and accelerate the synthesis rates to some extent. Meanwhile, in order to decrease the mean size of SnS2 powder particles and improve the contact areas between the active materials, wet milling process was also conducted with normal hexane (NH as a solvent PCA. The prepared powders were both characterized by X-ray diffraction, Field emission-scanning electron microscopeand particle size analyzer. Finally, electrochemical measurements for Li/SnS2 cells were takenat room temperature, using a two-electrode cell assembled in an argon-filled glove box and the electrolyte of 1M LiPF6 in a mixture of ethylene carbonate(EC/dimethylcarbonate (DMC/ethylene methyl carbonate (EMC (volume ratio of 1:1:1.

  12. Mesoscale elucidation of laser-assisted chemical deposition of Sn nanostructured electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhixiao; Mukherjee, Partha P., E-mail: pmukherjee@tamu.edu [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843 (United States); Deng, Biwei; Cheng, Gary J. [School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Deng, Huiqiu [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China)

    2015-06-07

    Nanostructured tin (Sn) is a promising high-capacity electrode for improved performance in lithium-ion batteries for electric vehicles. In this work, Sn nanoisland growth for nanostructured electrodes assisted by the pulse laser irradiation has been investigated based on a mesoscale modeling formalism. The influence of pertinent processing conditions, such as pulse duration, heating/cooling rates, and atom flux, on the Sn nanostructure formation is specifically considered. The interaction between the adsorbed atom and the substrate, represented by the adatom diffusion barrier, is carefully studied. It is found that the diffusion barrier predominantly affects the distribution of Sn atoms. For both α-Sn and β-Sn, the averaged coordination number is larger than 3 when the diffusion barrier equals to 0.15 eV. The averaged coordination number decreases as the diffusion barrier increases. The substrate temperature, which is determined by heating/cooling rates and pulse duration, can also affect the formation of Sn nanoislands. For α-Sn, when applied low heating/cooling rates, nanoislands cannot form if the diffusion barrier is larger than 0.35 eV.

  13. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    Science.gov (United States)

    2016-05-16

    AFRL-AFOSR-JP-TR-2016-0054 Silicon based mid infrared SiGeSn heterostrcture emitters and detectors Greg Sun UNIVERSITY OF MASSACHUSETTS Final Report... Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors ” February 10, 2016 Principal Investigator: Greg Sun Engineering...diodes are incompatible with the CMOS process and therefore cannot be easily integrated with Si electronics . The GeSn mid IR detectors developed in

  14. Controlling Cu–Sn mixing so as to enable higher critical current densities in RRP® Nb3Sn wires

    Science.gov (United States)

    Sanabria, Charlie; Field, Michael; Lee, Peter J.; Miao, Hanping; Parrell, Jeff; Larbalestier, David C.

    2018-06-01

    Dipole magnets for the proposed Future Circular Collider (FCC) demand specifications significantly beyond the limits of all existing Nb3Sn wires, in particular a critical current density (J c) of more than 1500 A mm‑2 at 16 T and 4.2 K with an effective filament diameter (D eff) of less than 20 μm. The restacked-rod-process (RRP®) is the technology closest to meeting these demands, with a J c (16 T) of up to 1400 A mm‑2, residual resistivity ratio > 100, for a sub-element size D s of 58 μm (which in RRP® wires is essentially the same as D eff). An important present limitation of RRP® is that reducing the sub-element size degrades J c to as low as 900 A mm‑2 at 16 T for D s = 35 μm. To gain an understanding of the sources of this J c degradation, we have made a detailed study of the phase evolution during the Cu–Sn ‘mixing’ stages of the wire heat treatment that occur prior to Nb3Sn formation. Using extensive microstructural quantification, we have identified the critical role that the Sn–Nb–Cu ternary phase (Nausite) can play. The Nausite forms as a well-defined ring between the Sn source and the Cu/Nb filament pack, and acts as an osmotic membrane in the 300 °C–400 °C range—greatly inhibiting Sn diffusion into the Cu/Nb filament pack while supporting a strong Cu counter-diffusion from the filament pack into the Sn core. This converts the Sn core into a mixture of the low melting point (408 °C) η phase (Cu6Sn5) and the more desirable ε phase (Cu3Sn), which decomposes at 676 °C. After the mixing stages, when heated above 408 °C towards the Nb3Sn reaction, any residual η liquefies to form additional irregular Nausite on the inside of the membrane. All Nausite decomposes into NbSn2 on further heating, and ultimately transforms into coarse-grain (and often disconnected) Nb3Sn which has little contribution to current transport. Understanding this critical Nausite reaction pathway has allowed us to simplify the mixing heat treatment to

  15. Research and development efforts relative to superconducting materials. Final report. [Nb/sub 3/Sn tapes

    Energy Technology Data Exchange (ETDEWEB)

    Adam, E; Beishcher, P; Marancik, W; Lucariello, R; Young, M

    1976-04-01

    Three processes for the production of low-loss superconducting tapes of Nb/sub 3/Sn were investigated. They are the rolled-bronze process, the electron beam (EB) bronze deposition process, and the high-rate sputtering process. Shortly after the start of the investigation, effort on the last two processes was suspended because the process-development time that would be needed to arrive at a suitable transmission-line tape appeared most likely to be the shortest with the rolled-bronze process. Long lengths of Nb/sub 3/Sn tapes were prepared by the rolled-bronze process from extruded and rolled bronze-clad niobium billets. Tapes were stabilized by removing the bronze layer after reaction and then coating the exposed Nb/sub 3/Sn with high-purity copper by EB evaporation. Several meters of high quality Nb/sub 3/Sn tapes were produced by the rolled-bronze process. Even when the tapes were stabilized with copper, the losses were as low as 1.8 ..mu..W/cm/sup 2/ at 4.2 K and a surface current density of 500 rms A/cm. Despite early curtailment of the effort on the EB bronze-deposition process, short samples of Nb/sub 3/Sn tapes were produced.

  16. Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities.

    Science.gov (United States)

    Didychuk, Allison L; Montemayor, Eric J; Carrocci, Tucker J; DeLaitsch, Andrew T; Lucarelli, Stefani E; Westler, William M; Brow, David A; Hoskins, Aaron A; Butcher, Samuel E

    2017-09-08

    U6 small nuclear ribonucleoprotein (snRNP) biogenesis is essential for spliceosome assembly, but not well understood. Here, we report structures of the U6 RNA processing enzyme Usb1 from yeast and a substrate analog bound complex from humans. Unlike the human ortholog, we show that yeast Usb1 has cyclic phosphodiesterase activity that leaves a terminal 3' phosphate which prevents overprocessing. Usb1 processing of U6 RNA dramatically alters its affinity for cognate RNA-binding proteins. We reconstitute the post-transcriptional assembly of yeast U6 snRNP in vitro, which occurs through a complex series of handoffs involving 10 proteins (Lhp1, Prp24, Usb1 and Lsm2-8) and anti-cooperative interactions between Prp24 and Lhp1. We propose a model for U6 snRNP assembly that explains how evolutionarily divergent and seemingly antagonistic proteins cooperate to protect and chaperone the nascent snRNA during its journey to the spliceosome.The mechanism of U6 small nuclear ribonucleoprotein (snRNP) biogenesis is not well understood. Here the authors characterize the enzymatic activities and structures of yeast and human U6 RNA processing enzyme Usb1, reconstitute post-transcriptional assembly of yeast U6 snRNP in vitro, and propose a model for U6 snRNP assembly.

  17. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  18. SN 2009E

    DEFF Research Database (Denmark)

    Pastorello...[], A.; Pumo, M.L.; Navasardyan, H.

    2012-01-01

    . In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present...... observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates...... 2009E ejected about 0.04 M⊙ of 56Ni, which is the smallest 56Ni mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of ~7 × 1012 cm and an ejected mass of ~19 M...

  19. SnO{sub 2} foam grain-shaped nanoparticles: Synthesis, characterization and UVA light induced photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader, Elaziouti, E-mail: elaziouti_a@yahoo.com [Laboratory of Electronic Microscope and Materials Science, University of Science and Technology of Oran (USTO M. B), BP 1505 El M' naouar, 31000 Oran (Algeria); Nadjia, Laouedj, E-mail: nlaouedj@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, University of Science and Technology of Oran (USTO M. B), BP 1505 El M' naouar, 31000 Oran (Algeria); Naceur, Benhadria, E-mail: nacer1974@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, University of Science and Technology of Oran (USTO M. B), BP 1505 El M' naouar, 31000 Oran (Algeria); Noureddine, Bettahar, E-mail: nbettahar2001@yahoo.fr [Laboratory of Inorganic Materials Chemistry and Application, University of Science and Technology of Oran (USTO M. B), BP 1505 El M' naouar, 31000 Oran (Algeria)

    2016-09-15

    Cassiterite (tin oxide; SnO{sub 2}) nanoparticles (NPs), has been successfully synthesized via a sol-gel method. The obtained compounds are subsequently calcined at 80, 450 and 650 °C for 4 h and are assigned as SnO{sub 2}-80, SnO{sub 2}-450 NPs and SnO{sub 2}-650 NPs, respectively. All prepared samples were characterized using thermogravimetric analysis coupled with mass spectroscopy (TG-SM), X-ray diffraction (XRD), scanning electron microscope (SEM) and UV–vis diffuse reflectance spectroscopy (UV–vis DRS). The XRD results confirmed the aggregated cassiterite SnO{sub 2} nanoparticles (NPs) with a size ranging from 13 to 23 nm. The absorption edge of the SnO{sub 2} NPs samples calcined at higher temperatures showed 25 nm (SnO{sub 2}-450 NPs) and 10 nm (SnO{sub 2}-650 NPs) red shifted compared with that of commercial SnO{sub 2}-com NPs sample. The photodegradation efficiency of SnO{sub 2} NPs was investigated using Congo red (CR) dye, as model organic pollutant. The effect of environmental factors (e.g., reaction time and calcination temperature) on the photocatalysis process of CR on SnO{sub 2} NPs was investigated in photocatalysis process under UVA light irradiation. We found that the SnO{sub 2}-650 NPs with 23 nm particle size and about 3.49 eV band gap was higher than that of the SnO{sub 2}-450 as well as the commercial SnO{sub 2}-com NPs. Pseudo-first-order kinetic model gave the best fit, with highest correlation coefficients (R{sup 2} ≥ 0.95). On the basis of the energy band diagram positions, the enhanced photodegradation efficiency SnO{sub 2} NPs catalyst could be proceeded via direct reactions with (O{sub 2}·{sup -} and ·OH), as active oxidative species involved in the photocatalysis process of CR dye under UVA-light irradiation. - Highlights: • SnO{sub 2} NPs photocatalysts were synthesized using a facile sol–gel route. • As-prepared SnO{sub 2} NPs were characterized by XRD, SEM and UV–vis-DRS techniques. • Noticeably UVA

  20. Decolorization of Methylene Blue by Ag/SrSnO3 Composites under Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    Patcharanan Junploy

    2014-01-01

    Full Text Available SrSn(OH6 precursors synthesized by a cyclic microwave radiation (CMR process were calcined at 900°C for 3 h to form rod-like SrSnO3. Further, the rod-like SrSnO3 and AgNO3 in ethylene glycol (EG were ultrasonically vibrated to form rod-like Ag/SrSnO3 composites, characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, electron microscopy (EM, Fourier transform infrared (FTIR spectroscopy, and UV-visible analysis. The photocatalyses of rod-like SrSnO3, 1 wt%, 5 wt%, and 10 wt% Ag/SrSnO3 composites were studied for degradation of methylene blue (MB, C16H18N3SCl dye under ultraviolet (UV radiation. In this research, the 5 wt% Ag/SrSnO3 composites showed the highest activity, enhanced by the electron-hole separation process. The photoactivity became lower by the excessive Ag nanoparticles due to the negative effect caused by reduction in the absorption of UV radiation.

  1. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys

    Science.gov (United States)

    Noskova, N. I.; Vil'Danova, N. F.; Filippov, Yu. I.; Churbaev, R. V.; Pereturina, I. A.; Korshunov, L. G.; Korznikov, A. V.

    2006-12-01

    Changes in the structure, hardness, mechanical properties, and friction coefficient of Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb (wt %) alloys subjected to severe plastic deformation by equal-channel angular pressing (with a force of 40 tonne) and by shear at a pressure of 5 GPa have been studied. The transition into the nanocrystalline state was shown to occur at different degrees of plastic deformation. The hardness exhibits nonmonotonic variations, namely, first it increases and subsequently decreases. The friction coefficient of the Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys quenched from the melt was found to be 0.33; the friction coefficients of these alloys in the submicrocrystalline state (after equal-channel angular pressing) equal 0.24, 0.32, and 0.35, respectively. The effect of disintegration into nano-sized powders was found to occur in the Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys after severe plastic deformation to ɛ = 6.4 and subsequent short-time holding.

  2. Study of neutron-deficient Sn isotopes

    International Nuclear Information System (INIS)

    Auger, G.

    1982-05-01

    The formation of neutron deficient nuclei by heavy ion reactions is investigated. The experimental technique is presented, and the results obtained concerning Sn et In isotopes reported: first excited states of 106 Sn, high spin states in 107 Sn and 107 In; Yrast levels of 106 Sn, 107 Sn, 108 Sn; study of neutron deficient Sn and In isotopes formed by the desintegration of the compound nucleus 112 Xe. All these results are discussed [fr

  3. Solution processible Cu{sub 2}SnS{sub 3} thin films for cost effective photovoltaics: Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Sandra, E-mail: dias.sandra123@gmail.com; Murali, Banavoth; Krupanidhi, S.B.

    2015-11-01

    Thin films of Cu{sub 2}SnS{sub 3} (CTS) were deposited by the facile solution processed sol–gel route followed by a low-temperature annealing. The Cu–Sn-thiourea complex formation was analysed using Fourier Transform Infrared spectrophotometer (FTIR). The various phase transformations and the deposition temperature range for the initial precursor solution was determined using Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). X-Ray Diffraction (XRD) studies revealed the tetragonal phase formation of the CTS annealed films. Raman spectroscopy studies further confirmed the tetragonal phase formation and the absence of any deterioratory secondary phases. The morphological investigations and compositional analysis of the films were determined using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) respectively. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 1.3 nm. The absorption coefficient was found to be 10{sup 4} cm{sup −1} and bandgap 1.3 eV which qualifies CTS to be a potential candidate for photovoltaic applications. The refractive index, extinction coefficient and relative permittivity of the film were measured by Spectroscopic ellipsometry. Hall effect measurements, indicated the p type nature of the films with a hole concentration of 2 × 10{sup 18} cm{sup −3}, electrical conductivity of 9 S/cm and a hole mobility of 29 cm{sup 2}/V. The properties of CTS as deduced from the current study, present CTS as a potential absorber layer material for thin film solar cells. - Highlights: • Cu{sub 2}SnS{sub 3} thin films have been synthesized by spin coating of a precursor solution. • The Cu–Sn-thiourea complex precursor was analysed. • The structural, optical and electrical properties of the thin films were studied. • Totally 24 infra-red, 30 optical, 29 Raman and 30 hyper Raman modes are active. • Refractive index, extinction coefficient and relative

  4. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Yunyong; Zhang, Haiyan; Chen, Yiming; Shi, Zhicong; Cao, Xiaoguo; Guo, Zaiping; Shen, Pei Kang

    2016-01-13

    A peculiar nanostructure consisting of nitrogen-doped, carbon-encapsulated (N-C) SnO2@Sn nanoparticles grafted on three-dimensional (3D) graphene-like networks (designated as N-C@SnO2@Sn/3D-GNs) has been fabricated via a low-cost and scalable method, namely an in situ hydrolysis of Sn salts and immobilization of SnO2 nanoparticles on the surface of 3D-GNs, followed by an in situ polymerization of dopamine on the surface of the SnO2/3D-GNs, and finally a carbonization. In the composites, three-layer core-shell N-C@SnO2@Sn nanoparticles were uniformly grafted onto the surfaces of 3D-GNs, which promotes highly efficient insertion/extraction of Li(+). In addition, the outermost N-C layer with graphene-like structure of the N-C@SnO2@Sn nanoparticles can effectively buffer the large volume changes, enhance electronic conductivity, and prevent SnO2/Sn aggregation and pulverization during discharge/charge. The middle SnO2 layer can be changed into active Sn and nano-Li2O during discharge, as described by SnO2 + Li(+) → Sn + Li2O, whereas the thus-formed nano-Li2O can provide a facile environment for the alloying process and facilitate good cycling behavior, so as to further improve the cycling performance of the composite. The inner Sn layer with large theoretical capacity can guarantee high lithium storage in the composite. The 3D-GNs, with high electrical conductivity (1.50 × 10(3) S m(-1)), large surface area (1143 m(2) g(-1)), and high mechanical flexibility, tightly pin the core-shell structure of the N-C@SnO2@Sn nanoparticles and thus lead to remarkably enhanced electrical conductivity and structural integrity of the overall electrode. Consequently, this novel hybrid anode exhibits highly stable capacity of up to 901 mAh g(-1), with ∼89.3% capacity retention after 200 cycles at 0.1 A g(-1) and superior high rate performance, as well as a long lifetime of 500 cycles with 84.0% retention at 1.0 A g(-1). Importantly, this unique hybrid design is expected to be

  5. Electrochemical properties of Ti-Ni-Sn materials predicted by {sup 119}Sn Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ladam, A., E-mail: alix.ladam@univ-montp2.fr; Aldon, L.; Lippens, P.-E.; Olivier-Fourcade, J.; Jumas, J.-C. [Université de Montpellier, Institut Charles Gerhardt, UMR 5253 CNRS (France); Cenac-Morthe, C. [CNES, Service DCT/TV/El (France)

    2016-12-15

    The electrochemical activity of TiNiSn, TiNi {sub 2}Sn and Ti {sub 6}Sn {sub 5} compounds considered as negative electrode materials for Li-ion batteries has been predicted from the isomer shift- Hume-Rothery electronic density correlation diagram. The ternary compounds were obtained from solid-state reactions and Ti {sub 6}Sn {sub 5} by ball milling. The {sup 119}Sn Mössbauer parameters were experimentally determined and used to evaluate the Hume-Rothery electronic density [e {sub av}]. The values of [e {sub av}] are in the region of Li-rich Li-Sn alloys for Ti {sub 6}Sn {sub 5} and outside this region for the ternary compounds, suggesting that the former compound is electrochemically active but not the two latter ones. Electrochemical tests were performed for these different materials confirming this prediction. The close values of [e {sub av}] for Ti {sub 6}Sn {sub 5} and Li-rich Li-Sn alloys indicate that the observed good capacity retention could be related to small changes in the global structures during cycling.

  6. Theoretical study of electronic structures and spectroscopic properties of Ga 3Sn, GaSn 3, and their ions

    Science.gov (United States)

    Zhu, Xiaolei

    2007-01-01

    Ground and excited states of mixed gallium stannide tetramers (Ga 3Sn, Ga 3Sn +, Ga 3Sn -, GaSn 3, GaSn 3+, and GaSn 3-) are investigated employing the complete active space self-consistent-field (CASSCF), density function theory (DFT), and the coupled-cluster single and double substitution (including triple excitations) (CCSD(T)) methods. The ground states of Ga 3Sn, Ga 3Sn +, and Ga 3Sn - are found to be the 2A 1, 3B 1, and 1A 1 states in C2v symmetry with a planar quadrilateral geometry, respectively. The ground states of GaSn 3 and GaSn 3- is predicted to be the 2A 1 and 1A 1 states in C2v point group with a planar quadrilateral structure, respectively, while the ground state of GaSn 3+ is the 1A 1 state with ideal triangular pyramid C3v geometry. Equilibrium geometries, vibrational frequencies, binding energies, electron affinities, ionization energies, and other properties of Ga 3Sn and GaSn 3 are computed and discussed. The anion photoelectron spectra of Ga 3Sn - and GaSn 3- are also predicted. It is interesting to find that the amount of charge transfer between Ga and Sn 2 atoms in the 1A 1 state of GaSn 3+ greatly increases upon electron ionization from the 2A 1 state of GaSn 3, which may be caused by large geometry change. On the other hand, the results of the low-lying states of Ga 3Sn and GaSn 3 are compared with those of Ga 3Si and GaSi 3.

  7. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts

    Directory of Open Access Journals (Sweden)

    Nur Hidayati

    2016-03-01

    Full Text Available Even though platinum is known as an active electro-catalyst for ethanol oxidation at low temperatures (< 100 oC, choosing the electrode material for ethanol electro-oxidation is a crucial issue. It is due to its property which easily poisoned by a strong adsorbed species such as CO. PtSn-based electro-catalysts have been identified as better catalysts for ethanol electro-oxidation. The third material is supposed to improved binary catalysts performance. This work presents a study of the ethanol electro-oxidation on carbon supported Pt-Sn and Pt-Sn-Ni catalysts. These catalysts were prepared by alcohol reduction. Nano-particles with diameters between 2.5-5.0 nm were obtained. The peak of (220 crystalline face centred cubic (fcc Pt phase for PtSn and PtSnNi alloys was repositioned due to the presence of Sn and/or Ni in the alloy. Furthermore, the modification of Pt with Sn and SnNi improved ethanol and CO electro-oxidation. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 1st February 2016; Accepted: 1st February 2016 How to Cite: Hidayati, N., Scott, K. (2016. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 10-20. (doi:10.9767/bcrec.11.1.394.10-20 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.394.10-20

  8. Transverse Load Optimisation in Nb3Sn CICC Design; Influence of Cabling, Void Fraction and Strand Stiffness

    NARCIS (Netherlands)

    Nijhuis, Arend; Ilyin, Y.

    2006-01-01

    We have developed a model that describes the transverse load degradation in Nb3Sn CICCs, based on strand and cable properties, and that is capable of predicting how such degradation can be prevented. The Nb3Sn cable in conduit conductors (CICCs) for the International Thermonuclear Experimental

  9. Ceramic insulation for superconducting Nb{sub 3}Sn cables; Isolation ceramique pour cables supraconducteurs en Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Puigsegur, A

    2005-01-15

    Nb{sub 3}Sn is the best superconductor candidate for the realization of high field magnets (>11 Tesla), its implementation remains delicate because of the great brittleness of material after the heat treatment necessary to the formation of Nb{sub 3}Sn compounds. The conventional insulation for Nb{sub 3}Sn requires to perform, after the heat treatment, a vacuum resin impregnation, which adds to the cost and raises failure risk. We have proposed an innovating ceramic insulation deposited directly on the unreacted conducting cable. After the heat treatment of the niobium tin, we obtain a coil having a mechanical cohesion, while maintaining a proper conductor positioning and a suitable electric insulation. After a rheological study, to characterize the impregnated suspension, we have shown that using this insulation in a coil manufacture process does not affect the electrical properties of the Nb{sub 3}Sn wires. A solenoid of small dimensions was tested with success in high external magnetic fields and has produced a magnetic field of 3.8 T under 740 A. (author)

  10. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials

    KAUST Repository

    Nie, Anmin

    2013-07-23

    In the present work, taking advantage of aberration-corrected scanning transmission electron microscopy, we show that the dynamic lithiation process of anode materials can be revealed in an unprecedented resolution. Atomically resolved imaging of the lithiation process in SnO2 nanowires illustrated that the movement, reaction, and generation of b = [1Ì...1Ì...1] mixed dislocations leading the lithiated stripes effectively facilitated lithium-ion insertion into the crystalline interior. The geometric phase analysis and density functional theory simulations indicated that lithium ions initial preference to diffuse along the [001] direction in the {200} planes of SnO2 nanowires introduced the lattice expansion and such dislocation behaviors. At the later stages of lithiation, the Li-induced amorphization of rutile SnO2 and the formation of crystalline Sn and LixSn particles in the Li2O matrix were observed. © 2013 American Chemical Society.

  11. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials

    KAUST Repository

    Nie, Anmin; Gan, Liyong; Cheng, Yingchun; Asayesh-Ardakani, Hasti; Li, Qianqian; Dong, Cezhou; Tao, Runzhe; Mashayek, Farzad; Wang, Hongtao; Schwingenschlö gl, Udo; Klie, Robert F.; Yassar, Reza Shahbazian

    2013-01-01

    In the present work, taking advantage of aberration-corrected scanning transmission electron microscopy, we show that the dynamic lithiation process of anode materials can be revealed in an unprecedented resolution. Atomically resolved imaging of the lithiation process in SnO2 nanowires illustrated that the movement, reaction, and generation of b = [1Ì...1Ì...1] mixed dislocations leading the lithiated stripes effectively facilitated lithium-ion insertion into the crystalline interior. The geometric phase analysis and density functional theory simulations indicated that lithium ions initial preference to diffuse along the [001] direction in the {200} planes of SnO2 nanowires introduced the lattice expansion and such dislocation behaviors. At the later stages of lithiation, the Li-induced amorphization of rutile SnO2 and the formation of crystalline Sn and LixSn particles in the Li2O matrix were observed. © 2013 American Chemical Society.

  12. CONSTRUÇÕES BINOMINAIS DO TIPO SN1 DE SN2

    Directory of Open Access Journals (Sweden)

    Karen Sampaio Braga Alonso

    2017-04-01

    Full Text Available Este artigo tem por objetivo investigar a flutuação de sentido quantidade-qualidade licenciada pelo uso de construtos binominais do tipo SN1 de SN2, como xícara de chá, no Português do Brasil.A pesquisa é baseada na perspectiva teórica da Linguística Funcional Centrada no Uso (BYBEE, 2010; BARLOW E KEMMER, 2000; TOMASELLO, 2003, TRAUGOTT, 2008 e busca descrever as propriedades morfossintáticas, semântico-pragmáticas e cognitivas dos usos das construções que favorecem uma leitura ora qualitativa ora quantitativa, no que se refere à relação entre SN1 e SN2.

  13. Co-depositing Sn controls the growth of Al films as surfactant

    International Nuclear Information System (INIS)

    Barna, P. B.; Kovacs, A.; Misjak, F.; Eisenmenger-Sittner, C.; Bangert, H.; Tomastik, C.

    2002-01-01

    The present study investigates the influence of co-deposited Sn on the atomic processes involved in the structure evolution of vapour-deposited Al films. The films were prepared in HV by thermal evaporation from W sources at 1600 C substrate temperature either on Si wafers covered by a thermally grown oxide or on air cleaved mica. By applying the half-shadow technique, pure and Sn-doped Al films could be deposited simultaneously. The samples were investigated by AFM, scanning AES, X-TEM as well as by X-ray diffraction methods. The grain growth of Al is promoted by Sn in all stages of the film formation. Scanning AES measurements prove the existence of a wetting Sn layer both on the surface of Al islands and on the surface of the continuos Al layer. Excess Sn forms islands on the growth surface. The surface of pure Al layers exhibits grain boundary grooves and bunches of growth steps around terraces, while that of the Sn doped layers is more rounded. The substrate-film interface was covered by a thin Sn layer. AES measurements also prove the presence of Sn on the growth surface of Al films even after termination of Sn addition. Results of these experiments indicate that during co-deposition of Al and Sn the impinging Al atoms penetrate the wetting layer and are incorporated into the already existing Al crystals. A model has been developed for describing the growth of Al crystals in the presence Sn. (Authors)

  14. Field emission from patterned SnO2 nanostructures

    International Nuclear Information System (INIS)

    Zhang Yongsheng; Yu Ke; Li Guodong; Peng Deyan; Zhang Qiuxiang; Hu Hongmei; Xu Feng; Bai Wei; Ouyang Shixi; Zhu Ziqiang

    2006-01-01

    A simple and reliable method has been developed for synthesizing finely patterned tin dioxide (SnO 2 ) nanostructure arrays on silicon substrates. A patterned Au catalyst film was prepared on the silicon wafer by radio frequency (RF) magnetron sputtering and photolithographic patterning processes. The patterned SnO 2 nanostructures arrays, a unit area is of ∼500 μm x 200 μm, were synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized SnO 2 nanostructures were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanism of formation of SnO 2 nanostructures was also discussed. The measurement of field emission (FE) revealed that the as-synthesized SnO 2 nanorods, nanowires and nanoparticles arrays have a lower turn-on field of 2.6, 3.2 and 3.9 V/μm, respectively, at the current density of 0.1 μA/cm 2 . This approach must have a wide variety of applications such as fabrications of micro-optical components and micropatterned oxide thin films used in FE-based flat panel displays, sensor arrays and so on

  15. In situ investigation of SnAgCu solder alloy microstructure

    International Nuclear Information System (INIS)

    Pietrikova, Alena; Bednarcik, Jozef; Durisin, Juraj

    2011-01-01

    Research highlights: → In situ X-ray diffraction investigation enabled detailed analysis of the melting and solidification process of the SAC305 alloy. → It was found that the SAC305 solder melts at 230 deg. C. When cooling from 240 deg. C the SAC305 alloy solidifies at the temperature of 214 deg. C. During solidification β-Sn and Cu 6 Sn 5 is also formed. Formation of Ag 3 Sn occurs at 206 deg. C and the remaining amount of alloy crystallizes approximately at 160 deg. C. → Furthermore, observation of the thermal expansion behaviour of the β-Sn tetragonal unit cell revealed linear dependence of the unit cell volume on temperature. The unit cell parameters a and c also increase linearly with the temperature. Despite the fact that the c parameter is substantially smaller than parameter a, it exhibits a significantly higher linear thermal expansion coefficient. Comparison between data obtained during heating and cooling indicates that the thermal expansion coefficient is slightly greater in the case of cooling. - Abstract: In situ X-ray diffraction experiments, using synchrotron radiation, were employed to analyze microstructure evolution of the 96.5Sn3Ag0.5Cu (wt.%)-SAC305 lead-free solder alloy during heating (30-240 deg. C), isothermal dwell (240 deg. C) and cooling (240-30 deg. C). The special emphasis was placed on the study of the melting and solidification processes, explaining formation, distribution and the order of crystallization of the crystal phases (β-Sn, intermetallic compounds) in the solder alloy. Furthermore, thermal expansion behaviour of the main constituent phase β-Sn was analyzed prior to melting and after the consequent solidification.

  16. Efficacy of the LiSN & Learn Auditory Training Software: randomized blinded controlled study

    Directory of Open Access Journals (Sweden)

    Sharon Cameron

    2012-01-01

    Full Text Available Background: Children with a spatial processing disorder (SPD require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Materials and methods: Participants were ten children (aged between 6;0 [years;months] and 9;9 with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise – Sentences Test (LISN-S. In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program – Earobics - for approximately 15 minutes per day for twelve weeks. Results: There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (p=0.03 to 0.0008, η2=0.75 to 0.95, n=5, but not for the Earobics group (p=0.5 to 0.7, η2=0.1 to 0.04, n=5. Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. Conclusions: LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation.

  17. The function of Sn(II)-apatite as a Tc immobilizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Asmussen, R. Matthew, E-mail: matthew.asmussen@pnnl.gov [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States); Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States); Lukens, Wayne W. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 (United States); Qafoku, Nikolla P. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States)

    2016-11-15

    At the U.S. Department of Energy Hanford Site, Tc-99 is a component of low-activity waste (LAW) fractions of the nuclear tank waste and removal of Tc from LAW streams would greatly benefit the site remediation process. In this study, we investigated the removal of Tc(VII), as pertechnetate, from deionized water (DIW) and a LAW simulant through batch sorption testing and solid phase characterization using tin (II) apatite (Sn-A) and SnCl{sub 2}. Sn-A showed higher levels of Tc removal from both DIW and LAW simulant. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/XEDS) and X-ray absorption spectroscopy (XAS) of reacted Sn-A in DIW showed that TcO4- is reduced to Tc(IV) on the Sn-A surface. The performance of Sn-A in the LAW simulant was lowered due to a combined effect of the high alkalinity, which lead to an increased dissolution of Sn from the Sn-A, and a preference for the reduction of Cr(VI). - Highlights: • Sn(II)-Apatite shows high proficiency in removing Tc(VII) from neutral solutions. • The removal of the Tc(VII) by Sn(II)-apatite is done via reduction to Tc(IV)O{sub 2} × H{sub 2}O. • In LAW Sn(II)-apatite is less efficient in removing Tc(VII). • Interference in LAW due to a preference for the reduction of Cr(VI) and the high pH. • Sn(II)-apatite can remove Tc(VII) from LAW effectively through increasing material added.

  18. Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines.

    Science.gov (United States)

    De Schryver, Marjorie; Leemans, Annelies; Pintelon, Isabel; Cappoen, Davie; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2017-06-01

    Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab') 2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can

  19. SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae

    Science.gov (United States)

    Bullivant, Christopher; Smith, Nathan; Williams, G. Grant; Mauerhan, Jon C.; Andrews, Jennifer E.; Fong, Wen-Fai; Bilinski, Christopher; Kilpatrick, Charles D.; Milne, Peter A.; Fox, Ori D.; Cenko, S. Bradley; Filippenko, Alexei V.; Zheng, WeiKang; Kelly, Patrick L.; Clubb, Kelsey I.

    2018-05-01

    We present photometry and spectroscopy of SN 2013fs and SN 2013fr in the first ˜100 d post-explosion. Both objects showed transient, relatively narrow H α emission lines characteristic of SNe IIn, but later resembled normal SNe II-P or SNe II-L, indicative of fleeting interaction with circumstellar material (CSM). SN 2013fs was discovered within 8 h of explosion; one of the earliest SNe discovered thus far. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SN IIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNe II-P and SNe IIn. It requires dense CSM within 6.5 × 1014 cm of the progenitor, from a phase of advanced pre-SN mass loss beginning shortly before explosion. Spectropolarimetry of SN 2013fs shows little continuum polarization (˜0.5 per cent, consistent with zero), but noticeable line polarization during the plateau phase. SN 2013fr morphed from an SN IIn at early times to an SN II-L. After the first epoch, its narrow lines probably arose from host-galaxy emission, but the bright, narrow H α emission at early times may be intrinsic to the SN. As for SN 2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNe IIn and SNe II-L. It is a low-velocity SN II-L like SN 2009kr, but more luminous. SN 2013fr also developed an infrared excess at later times, due to warm CSM dust that requires a more sustained phase of strong pre-SN mass loss.

  20. Determination of Sn in 99mTc Radiopharmaceutical Kits by Polarographic Methods

    International Nuclear Information System (INIS)

    Castro, M.; Cruz, J.; Sanchez, M.

    2009-01-01

    Kits of 99 m Tc radiopharmaceuticals are used in nuclear medicine for diagnosis of different diseases. Sn (II) is one of the essential components in their formulations, which is used for reduction 99 m Tc-pertechnetate in cold kits for on-site preparation 99 m Tc-pertechnetate radiopharmaceuticals. Usually, these cold kits contain different additives (complexing agents, antioxidants, buffers, etc.) and the amount of Sn (II) varies from kit to kit. The determination of Sn in these products is essential in assessing their quality. We report here the development of a new polarographic method for the determination of Sn (II) and total Sn in representative radiopharmaceuticals kits (for the content of Sn and chemical composition) produced at the Center of Isotopes of Cuba (CENTIS). These methods were validated by analysis of variance and recovery techniques. From the results of the validation, the characteristic functions of uncertainties and fits are considered for the established methods, which give the necessary evidences to demonstrate the usefulness of these methods according to the current trends in Analytical Chemistry. This work provides practical results of great importance for CENTIS. After the speciation of Sn in the MAG3 radiopharmaceuticals kit is inferred that the production process is affected by uncontrolled factors that influence in the product stability, which demonstrates the necessity for analytical tools for the characterization of products and processes. (Author) 57 refs.

  1. The Research of Micro-structure and Gas Sensitivity of SnO2

    Directory of Open Access Journals (Sweden)

    Mingxin Song

    2014-07-01

    Full Text Available This paper adopts Sol-gel method and solid state reaction to make SnO2 matrix material and Sb2O3 is used as zuji to make SnO2 gas sensor under different sintering temperature. XRD analysis, SEM analysis and response time restoration test of working voltage sensitivity are choose to research SnO2 gas sensor constituents and influence factor on sensing properties by processing. Experiment results show that when the SnO2 make by sol-get method and Sb2O3 take up 2 %, Polyvinyl alcohol as an organic binder, platinum as catalyst, SnO2 gas sensor can get optimal integral sensing properties.

  2. SnO and SnO·CoO nanocomposite as high capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Das, B., E-mail: bijoy822000@gmail.com; Reddy, M.V.; Chowdari, B.V.R, E-mail: phychowd@nus.edu.sg

    2016-02-15

    Highlights: • The preparation methods are simple, low cost and can be scaled up for large production. • SnO is cheap, non-toxic and eco-friendly. • SnO shows high reversible capacity (Theoretical reversible capacity: 875 mA h g{sup −1}). • We showed high reversible capacity and columbic efficiency for SnO and SnO based composites. • We addressed the capacity degradation by introducing secondary phase (CoO and CNT etc.) - Abstract: We prepared SnO nanoparticles (SnO–S) and SnO·CoO nanocomposites (SnO·CoO–B) as anodes for lithium ion batteries (LIBs) by chemical and ball-milling approaches, respectively. They are characterized by X-ray diffraction and TEM techniques. The Li- storage performance are evaluated by galvanostatic cycling and cyclic voltammetry. The SnO–S and SnO·CoO–B showed improved cycling performance due to their finite particle size (i.e. nano-size) and presence of secondary phase (CoO). Better cycling stability is noticed for SnO·CoO–B with the expense of their reversible capacity. Also, addition of carbon nanotubes (CNT) to SnO–S further improved the cycling performance of SnO–S. When cycled at 60 mA g{sup −1}, the first-cycle reversible capacities of 635, 590 and 460 (±10) mA h g{sup −1} are noticed for SnO–S, SnO@CNT and SnO·CoO–B, respectively. The capacity fading observed are 3.7 and 1.8 mA h g{sup −1} per cycle for SnO–S and SnO@CNT, respectively; whereas 1–1.2 mA h g{sup −1} per cycle for SnO·CoO–B. All the samples show high coulombic efficiency, 96–98% in the range of 5–50 cycles.

  3. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.

    2013-11-25

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p-type oxide semiconductor processed at similar temperature. Compared to thin film transistors, the SnO nanowire transistors exhibit five times higher mobility and one order of magnitude lower subthreshold swing. The SnO nanowire transistors show three times lower threshold voltages (−1 V) than the best reported SnO thin film transistors and fifteen times smaller than p-type Cu 2O nanowire transistors. Gate dielectric and process temperature are critical to achieving such performance.

  4. Void formation and its impact on Cu−Sn intermetallic compound formation

    International Nuclear Information System (INIS)

    Ross, Glenn; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-01-01

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu_3Sn and Cu_6Sn_5 intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu_3Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu_3Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu_3Sn thickness and an accelerated growth rate of Cu_6Sn_5. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu_3Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu_3Sn to be consumed by Cu_6Sn_5.

  5. Grain size dependent electrical studies on nanocrystalline SnO2

    International Nuclear Information System (INIS)

    Bose, A. Chandra; Thangadurai, P.; Ramasamy, S.

    2006-01-01

    Nanocrystalline tin oxide (n-SnO 2 ) with different grain sizes were synthesized by chemical precipitation method. Size variation was achieved by changing the hydrolysis processing time. Structural phases of the nanocrystalline SnO 2 were identified by X-ray diffraction (XRD). The grain sizes of the prepared n-SnO 2 were found to be in the range 5-20 nm which were estimated using the Scherrer formula and they were confirmed by transmission electron microscopy (TEM) measurements. The electrical properties of nanocrystalline SnO 2 were studied using impedance spectroscopy. The impedance spectroscopy results showed that, in the temperature range between 25 and 650 deg. C, the conductivity has contributions from two different mechanisms, which are attributed to different conduction mechanisms in the grain and the grain boundary regions. This is because of the different relaxation times available for the conduction species in those regions. However, for the temperatures above 300 deg. C, there is no much difference between these two different relaxation times. The Arrhenius plots gave the activation energies for the conduction process in all the samples

  6. Nuclear-spectroscopic studies in the {sup 132}Sn region; Kernspektroskopische Untersuchungen in der {sup 132}Sn-Region

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, Oliver

    2007-10-15

    In this work investigations on r-process nuclides around the N = 82 shell closure are done. The so far unknown half-lives and P{sub n}-values of {sup 137-139}Sb and {sup 139}Te and their impact to r-process theory are given. Further the results of Shergur et. al. of neutron rich tin ({sup 137,138}Sn) are verified and in some points improved. New data on {gamma}-decay spectroscopy for {sup 136}Sn from single spectra is published. To improve beam quality and solve long known problems on ISOL-facilities with isobaric contamination, new techniques are discussed. A special focus is on molecular sidebands, which is first time adapted to a target/ion source unit in a mass separation facility. It was possible to create a strong SnS{sup +} sideband and in this way to reduce isobaric background with good beam intensities. On the other hand, a target with temperature controlled transfer line was build and its characteristics are discussed. To improve selectivity of a given experiment on neutron rich nuclei a new detector system for n{gamma}-coincidences was developed. Due to a special electronically setup of the new system it was possible to downsize the coincidence window compared to earlier attempts. (orig.)

  7. Synthesis and superconductivity of In-doped SnTe nanostructures

    Directory of Open Access Journals (Sweden)

    Piranavan Kumaravadivel

    2017-07-01

    Full Text Available InxSn1−xTe is a time-reversal invariant candidate 3D topological superconductor derived from doping the topological crystalline insulator SnTe with indium. The ability to synthesize low-dimensional nanostructures of indium-doped SnTe is key for realizing the promise they hold in future spintronic and quantum information processing applications. But hitherto only bulk synthesized crystals and nanoplates have been used to study the superconducting properties. Here for the first time we synthesize InxSn1−xTe nanostructures including nanowires and nanoribbons, which show superconducting transitions. In some of the lower dimensional morphologies, we observe signs of more than one superconducting transition and the absence of complete superconductivity. We propose that material inhomogeneity, such as indium inhomogeneity and possible impurities from the metal catalyst, is amplified in the transport characteristics of the smaller nanostructures and is responsible for this mixed behavior. Our work represents the first demonstration of InxSn1−xTe nanowires with the onset of superconductivity, and points to the need for improving the material quality for future applications.

  8. Cross-cultural adaptation and validation of the Sinus and Nasal Quality of Life Survey (SN-5) into Brazilian Portuguese.

    Science.gov (United States)

    Uchoa, Priscila Regina Candido Espinola; Bezerra, Thiago Freire Pinto; Lima, Élcio Duarte; Fornazieri, Marco Aurélio; Pinna, Fabio de Rezende; Sperandio, Fabiana de Araújo; Voegels, Richard Louis

    The concept of quality of life is subjective and variable definition, which depends on the individual's perception of their state of health. Quality of life questionnaires are instruments designed to measure quality of life, but most are developed in a language other than Portuguese. Questionnaires can identify the most important symptoms, focus on consultation, and assist in defining the goals of treatment. Some of these have been validated for the Portuguese language, but none in children. To validate the translation with cross-cultural adaptation and validation of the Sinus and Nasal Quality of Life Survey (SN-5) into Portuguese. Prospective study of children aged 2-12 years with sinonasal symptoms of over 30 days. The study comprised two stages: (I) translation and cross-cultural adaptation of the SN-5 into Portuguese (SN-5p); and (II) validation of the SN5-p. Statistical analysis was performed to assess internal consistency, test-retest reliability, and sensitivity, as well as construct and discriminant validity and standardization. The SN-5 was translated and adapted into Portuguese (SN-5p) and the author of the original version approved the process. Validation was carried out by administration of the SN-5p to 51 pediatric patients with sinonasal complaints (mean age, 5.8±2.5 years; range, 2-12 years). The questionnaire exhibited adequate construct validity (0.62, pPortuguese. The translated version exhibited adequate psychometric properties for assessment of disease-specific quality of life in pediatric patients with sinonasal complaints. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  9. Sn powder as reducing agents and SnO2 precursors for the synthesis of SnO2-reduced graphene oxide hybrid nanoparticles.

    Science.gov (United States)

    Chen, Mingxi; Zhang, Congcong; Li, Lingzhi; Liu, Yu; Li, Xichuan; Xu, Xiaoyang; Xia, Fengling; Wang, Wei; Gao, Jianping

    2013-12-26

    A facile approach to prepare SnO2/rGO (reduced graphene oxide) hybrid nanoparticles by a direct redox reaction between graphene oxide (GO) and tin powder was developed. Since no acid was used, it is an environmentally friendly green method. The SnO2/rGO hybrid nanoparticles were characterized by ultraviolet-visible spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The microstructure of the SnO2/rGO was observed with scanning electron microscopy and transmission electron microscopy. The tin powder efficiently reduced GO to rGO, and the Sn was transformed to SnO2 nanoparticles (∼45 nm) that were evenly distributed on the rGO sheets. The SnO2/rGO hybrid nanoparticles were then coated on an interdigital electrode to fabricate a humidity sensor, which have an especially good linear impedance response from 11% to 85% relative humidity.

  10. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Ah-Ram; Park, Cheol-Min

    2017-06-27

    A cubic crystal-structured Sn-based compound, SnTe, was easily synthesized using a solid-state synthetic process to produce a better rechargeable battery, and its possible application as a Sn-based high-capacity anode material for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was investigated. The electrochemically driven phase change mechanisms of the SnTe electrodes during Li and Na insertion/extraction were thoroughly examined utilizing various ex situ analytical techniques. During Li insertion, SnTe was converted to Li 4.25 Sn and Li 2 Te; meanwhile, during Na insertion, SnTe experienced a sequential topotactic transition to Na x SnTe (x ≤ 1.5) and conversion to Na 3.75 Sn and Na 2 Te, which recombined into the original SnTe phase after full Li and Na extraction. The distinctive phase change mechanisms provided remarkable electrochemical Li- and Na-ion storage performances, such as large reversible capacities with high Coulombic efficiencies and stable cyclabilities with fast C-rate characteristics, by preparing amorphous-C-decorated nanostructured SnTe-based composites. Therefore, SnTe, with its interesting phase change mechanisms, will be a promising alternative for the oncoming generation of anode materials for LIBs and NIBs.

  11. A facile inexpensive route for SnS thin film solar cells with SnS{sub 2} buffer

    Energy Technology Data Exchange (ETDEWEB)

    Gedi, Sreedevi [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Minna Reddy, Vasudeva Reddy, E-mail: drmvasudr9@gmail.com [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Pejjai, Babu [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Jeon, Chan-Wook [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Park, Chinho, E-mail: chpark@ynu.ac.kr [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Ramakrishna Reddy, K.T., E-mail: ktrkreddy@gmail.com [Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India)

    2016-05-30

    Graphical abstract: PYS spectra of SnS/SnS{sub 2} interface and the related band diagram. - Highlights: • A low cost SnS solar cell is developed using chemical bath deposition. • We found E{sub I} & χ of SnS (5.3 eV & 4.0 eV) and SnS{sub 2} (6.9 eV & 4.1 eV) films from PYS. • Band offsets of 0.1 eV (E{sub c}) and 1.6 eV (E{sub v}) are estimated for SnS/SnS{sub 2} junction. • SnS based solar cell showed a conversion efficiency of 0.51%. - Abstract: Environment-friendly SnS based thin film solar cells with SnS{sub 2} as buffer layer were successfully fabricated from a facile inexpensive route, chemical bath deposition (CBD). Layer studies revealed that as-grown SnS and SnS{sub 2} films were polycrystalline; (1 1 1)/(0 0 1) peaks as the preferred orientation; 1.3 eV/2.8 eV as optical band gaps; and showed homogeneous microstructure with densely packed grains respectively. Ionization energy and electron affinity values were found by applying photoemission yield spectroscopy (PYS) to the CBD deposited SnS and SnS{sub 2} films for the first time. These values obtained as 5.3 eV and 4.0 eV for SnS films; 6.9 eV and 4.1 eV for SnS{sub 2} films. The band alignment of SnS/SnS{sub 2} junction showed TYPE-II heterostructure. The estimated conduction and valance band offsets were 0.1 eV and 1.6 eV respectively. The current density–voltage (J–V) measurements of the cell showed open circuit voltage (V{sub oc}) of 0.12 V, short circuit current density (J{sub sc}) of 10.87 mA cm{sup −2}, fill factor (FF) of 39% and conversion efficiency of 0.51%.

  12. Lattice parameter values and phase transitions for the Cu2Cd1-zMnzSnSe4 and Cu2Cd1-zFezSnSe4 alloys

    International Nuclear Information System (INIS)

    Moreno, E.; Quintero, M.; Morocoima, M.; Quintero, E.; Grima, P.; Tovar, R.; Bocaranda, P.; Delgado, G.E.; Contreras, J.E.; Mora, A.E.; Briceno, J.M.; Avila Godoy, R.; Fernandez, J.L.; Henao, J.A.; Macias, M.A.

    2009-01-01

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu 2 Cd 1-z Mn z SnSe 4 and Cu 2 Cd 1-z Fe z SnSe 4 alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. For Cu 2 Cd 0.8 Fe 0.2 SnSe 4 as well as for Cu 2 Cd 0.2 Fe 0.8 SnSe 4 the crystal structures were refined using the Rietveld method. It was found that the internal distortion parameter σ decreases as Cd is replaced by either Mn and/or Fe. For the Cu 2 Cd 1-z Mn z SnSe 4 and Cu 2 Cd 1-z Fe z SnSe 4 alloy systems, only two single solid phase fields, the tetragonal stannite α(I4-bar2m) and the wurtz-stannite δ (Pmn2 1 ) structures were found to occur in the diagram. In addition to the tetragonal stannite α phase extra X-ray diffraction lines due to MnSe and/or FeSe 2 were observed for as grown samples in the range 0.7 < z < 1.0. However, it was found that the amount of the extra phase decreased for the compressed samples.

  13. The 7SK snRNP associates with the little elongation complex to promote snRNA gene expression.

    Science.gov (United States)

    Egloff, Sylvain; Vitali, Patrice; Tellier, Michael; Raffel, Raoul; Murphy, Shona; Kiss, Tamás

    2017-04-03

    The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII. © 2017 The Authors.

  14. Evidence for highly localized damage in internal tin and powder-in-tube Nb{sub 3}Sn strands rolled before reaction obtained from coupled magneto-optical imaging and confocal laser scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Polyanskii, A A; Lee, P J; Jewell, M C; Larbalestier, D C [Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Barzi, E; Turrioni, D; Zlobin, A V [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2009-09-15

    Nb{sub 3}Sn strands for high-current, high-field magnets must be cabled before reaction while the conductor is still composed of ductile components. Even though still in the ductile, deformable state, significant damage can occur in this step, which expresses itself by inhomogeneous A15 formation, Sn leakage or even worse effects during later reaction. In this study, we simulate cabling damage by rolling recent high performance powder-in-tube (PIT) and internal tin (IT) strands in controlled increments, applying standard Nb{sub 3}Sn reaction heat treatments, and then examining the local changes using magneto-optical imaging (MOI), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). These combined characterizations allow any local damage to the filament architecture to be made clear. MOI directly reveals the local variation of superconductivity while CLSM is extremely sensitive in revealing Sn leakage beyond the diffusion barrier into the stabilizing Cu. These techniques reveal a markedly different response to deformation by the PIT and IT strands. The study demonstrates that these tools can provide a local, thorough, and detailed view of how strands degrade and thus complement more complex extracted strand studies.

  15. Neutron rich nuclei around 132Sn

    International Nuclear Information System (INIS)

    Bhattacharya, Sarmishtha

    2016-01-01

    The neutron rich nuclei with few particles or holes in 132 Sn have various experimental and theoretical interest to understand the evolution of nuclear structure around the doubly magic shell closure Z=50 and N=82. Some of the exotic neutron rich nuclei in this mass region are situated near waiting points in the r-process path and are of special astrophysical interest. Neutron rich nuclei near 132 Sn have been studied using fission fragment spectroscopy. The lifetime of low lying isomeric states have been precisely measured and the beta decay from the ground and isomeric states have been characterized using gamma-ray spectroscopy

  16. Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells

    Science.gov (United States)

    Gunawan, Oki; Todorov, Teodor K.; Mitzi, David B.

    2010-12-01

    We present a device characterization study for hydrazine-processed kesterite Cu2ZnSn(Se,S)4 (CZTSSe) solar cells with a focus on pinpointing the main loss mechanisms limiting device efficiency. Temperature-dependent study and time-resolved photoluminescence spectroscopy on these cells, in comparison to analogous studies on a reference Cu(In,Ga)(Se,S)2 (CIGS) cell, reveal strong recombination loss at the CZTSSe/CdS interface, very low minority-carrier lifetimes, and high series resistance that diverges at low temperature. These findings help identify the key areas for improvement of these CZTSSe cells in the quest for a high-performance indium- and tellurium-free solar cell.

  17. Radiation Limits for Nb3Sn Superconductors for ITER Magnets: A literature review

    International Nuclear Information System (INIS)

    Simon, N.J.

    1995-01-01

    The data base on radiation damage to Nb 3 Sn superconductors is compiled from the literature and assessed in this report. Nb 3 Sn superconductors are currently under procurement for use in ITER magnet prototypes. In contrast to the data base on insulation materials proposed for use in ITER magnets, the data base on the radiation damage of Nb 3 Sn is much more complete. Key results have often been confirmed by several groups at different institutions. The investigation of variables that influence radiation damage has also been much more complete for Nb 3 Sn than for insulators. Furthermore, in situ testing of superconducting parameters is much easier than in situ mechanical testing of insulators, and in situ testing has invariably been performed after cryogenic irradiation of Nb 3 Sn. However, in recent years, Nb 3 Sn testing has also suffered from the lack of 4-K irradiation facilities. Just as new processing methods to obtain more economical Nb 3 Sn conductor products in large quantity were being developed, cryogenic irradiation sources were being phased out. Therefore, this brief introductory section presents some basic information on the properties and structure of Nb 3 Sn superconducting composites and the distinctions between different fabrication processes. This provides a background to assess the adequacy of the current cryogenic data base on radiation damage, Also, since synergistic effects of strain and irradiation have recently been investigated, a brief discussion of the effects of strain on Nb 3 Sn properties is included in this introduction

  18. Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets

    International Nuclear Information System (INIS)

    Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra

    2007-01-01

    Nanorods and nanosheets of tin sulfide (SnS) were synthesized by a novel thioglycolic acid (TGA) assisted hydrothermal process. The as prepared nanostructures were characterized by X-ray diffraction (XRD) study, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD study reveals the formation of well-crystallized orthorhombic structure of SnS. Diameter of the SnS nanorods varied within 30-100 nm. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) patterns identify the single crystalline nature for the SnS nanocrystals. The mechanism for the TGA assisted growth for the nanosheets and nanorods have been discussed

  19. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics

    Science.gov (United States)

    Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag

    2018-05-01

    Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.

  1. Strand critical current degradation in $Nb_{3}$ Sn Rutherford cables

    CERN Document Server

    Barzi, E; Higley, H C; Scanlan, R M; Yamada, R; Zlobin, A V

    2001-01-01

    Fermilab is developing 11 Tesla superconducting accelerator magnets based on Nb/sub 3/Sn superconductor. Multifilamentary Nb/sub 3/Sn strands produced using the modified jelly roll, internal tin, and powder-in-tube technologies were used for the development and test of the prototype cable. To optimize the cable geometry with respect to the critical current, short samples of Rutherford cable with packing factors in the 85 to 95% range were fabricated and studied. In this paper, the results of measurements of critical current, n-value and RRR made on the round virgin strands and on the strands extracted from the cable samples are presented. (5 refs).

  2. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds

    International Nuclear Information System (INIS)

    Zou Minmin; Li Jingfeng; Du Bing; Liu Dawei; Kita, Takuji

    2009-01-01

    Nearly single-phased TiNiSn half-Heusler compound thermoelectric materials were synthesized by combining mechanical alloying (MA) and spark plasma sintering (SPS) in order to reduce its thermal conductivity by refining the grain sizes. Although TiNiSn compound powders were not synthesized directly via MA, dense bulk samples of TiNiSn compound were obtained by the subsequent SPS treatment. It was found that an excessive Ti addition relative to the TiNiSn stoichiometry is effective in increasing the phase purity of TiNiSn half-Heusler phase in the bulk samples, by compensating for the Ti loss caused by the oxidation of Ti powders and MA processing. The maximum power factor value obtained in the Ti-compensated sample is 1720 μW m -1 K -2 at 685 K. A relatively high ZT value of 0.32 is achieved at 785 K for the present undoped TiNiSn compound polycrystals. - Graphical abstract: Nearly single-phased TiNiSn-based half-Heusler compound polycrystalline materials with fine grains were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS). A high ZT value for undoped TiNiSn was obtained because of the reduced thermal conductivity.

  3. Rational design of Sn/SnO{sub 2}/porous carbon nanocomposites as anode materials for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaojia [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Center for Advanced Energy Materials and Devices, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071 (China); Fan, Linlin; Yu, Zhuxin; Yan, Bo; Xiong, Dongbin; Song, Xiaosheng; Li, Shiyu [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Adair, Keegan R. [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Sun, Xueliang, E-mail: xsun9@uwo.ca [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2017-08-01

    Highlights: • Sn/SnO{sub 2}/porous carbon nanocomposites are rationally designed via a facile strategy. • The porous carbon mitigates the volume change and poor conductivity of Sn/SnO{sub 2}. • The nanocomposites exhibit the enhanced sodium storage performance. - Abstract: Sodium-ion batteries (SIBs) have successfully attracted considerable attention for application in energy storage, and have been proposed as an alternative to lithium ion batteries (LIBs) due to the abundance of sodium resources and low price. Sn has been deemed as a promising anode material in SIBs which holds high theoretical specific capacity of 845 mAh g{sup −1}. In this work we design nanocomposite materials consisting of porous carbon (PC) with SnO{sub 2} and Sn (Sn/SnO{sub 2}/PC) via a facile reflux method. Served as an anode material for SIBs, the Sn/SnO{sub 2}/PC nanocomposite delivers the primary discharge and charge capacities of 1148.1 and 303.0 mAh g{sup −1}, respectively. Meanwhile, it can preserve the discharge capacity approximately of 265.4 mAh g{sup −1} after 50 cycles, which is much higher than those of SnO{sub 2}/PC (138.5 mAh g{sup −1}) and PC (92.2 mAh g{sup −1}). Furthermore, the Sn/SnO{sub 2}/PC nanocomposite possesses better cycling stability with 77.8% capacity retention compared to that of SnO{sub 2}/PC (61.88%) over 50 cycles. Obviously, the Sn/SnO{sub 2}/PC composite with excellent electrochemical performance shows the great possibility of application in SIBs.

  4. Precision casting of Ti-15V-3Cr-3Al-3Sn alloy setting

    OpenAIRE

    Nan Hai; Liu Changkui; Huang Dong

    2008-01-01

    In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.

  5. Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases

    Science.gov (United States)

    Christopoulos, S.-R. G.; Filippatos, P. P.; Hadi, M. A.; Kelaidis, N.; Fitzpatrick, M. E.; Chroneos, A.

    2018-01-01

    Mn+1AXn phases (M = early transition metal; A = group 13-16 element and X = C or N) have a combination of advantageous metallic and ceramic properties, and are being considered for structural applications particularly where high thermal conductivity and operating temperature are the primary drivers: for example in nuclear fuel cladding. Here, we employ density functional theory calculations to investigate the intrinsic defect processes and mechanical behaviour of a range of Ti3AC2 phases (A = Al, Si, Ga, Ge, In, Sn). Based on the intrinsic defect reaction, it is calculated that Ti3SnC2 is the more radiation-tolerant 312 MAX phase considered herein. In this material, the C Frenkel reaction is the lowest energy intrinsic defect mechanism with 5.50 eV. When considering the elastic properties of the aforementioned MAX phases, Ti3SiC2 is the hardest and Ti3SnC2 is the softest. All the MAX phases considered here are non-central force solids and brittle in nature. Ti3SiC2 is elastically more anisotropic and Ti3AlC2 is nearly isotropic.

  6. Performance PtSnRh electrocatalysts supported on carbon-Sb{sub 2}O{sub 5}.SbO{sub 2} for the electro-oxidation of ethanol, prepared by an alcohol-reduction process; Desempenho de eletrocatalisadores PtSnRh suportados em carbono-Sb{sub 2}O{sub 5}.SnO{sub 2} para a oxidacao eletroquimica do etanol, preparados pelo metodo de reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Jose Carlos

    2013-07-01

    PtSnRh electrocatalysts supported on carbon-Sb{sub 2}O{sub 5}.SnO{sub 2}, with metal loading of 20 wt%, were prepared by an alcohol-reduction process, using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), RhCl{sub 3}.xH{sub 2}O (Aldrich) and SnCl{sub 2}.2H{sub 2}O (Aldrich), as source of metals; Sb{sub 2}O{sub 5}.SnO{sub 2} (ATO) and carbon Vulcan XC72, as support; and ethylene glycol as reducing agent. The electrocatalysts obtained were characterized physically by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The diffractograms showed which PtSnRh/C-ATO electrocatalysts had FCC structure of Pt and Pt alloys, besides several peaks associated with SnO{sub 2} and ATO. The average sizes of crystallites were between 2 and 4 nm. TEM micrographs showed a good distribution of the nanoparticles on the support. The average sizes of particles were between 2 and 3 nm, with good agreement for the average size of the crystallites. The performances of the electrocatalysts were analyzed by electrochemical techniques and in real conditions of operation using single direct ethanol fuel cell. In the chronoamperometry at 50 deg C, the electrocatalysts with carbon (85 wt%) and ATO (15 wt%) support, showed the best activity, and the atomic proportions which achieved the best results were PtSnRh(70:25:05) e (90:05:05). PtSnRh(70:25:05)/85C+15ATO electrocatalysts showed the best performance in a direct ethanol fuel cell. (author)

  7. Preparation of the Wire of ZChSnSb11-6 Used for Remanufacturing Thermal Spraying

    Science.gov (United States)

    Zhang, B.; Yang, Z. Y.; Fu, D. X.; Li, X. F.; Chen, W.

    Tin base Babbitt alloy widely used in bearing bush production and repair, the performance of ZChSnSb11-6 is better than ZChSnSb8-4.But as a result of as-cast structure of ZChSnSb11-6 is rich in big hard phase, its processing performance is bad, in this paper, through the optimization of smelting, casting, extrusion, drawing and other processes we have been successfully prepared ZChSnSb11-6 wire suitable for thermal spraying. Through metallographic examination, micro hardness, bond strength and porosity testing, it was proved that the wire meet the requirements of bearing manufacturing thermal spraying.

  8. Enthalpy of mixing of liquid Co–Sn alloys

    International Nuclear Information System (INIS)

    Yakymovych, A.; Fürtauer, S.; Elmahfoudi, A.; Ipser, H.; Flandorfer, H.

    2014-01-01

    Highlights: • The enthalpies of mixing of liquid Co–Sn alloys between T = (673 and 1773) K. • The temperature dependence of the enthalpies of mixing was described. • Full report of measured values including polynomial coefficients. - Abstract: A literature overview of enthalpy of mixing data for liquid Co–Sn alloys shows large scattering but no clear temperature dependence. Therefore drop calorimetry was performed in the Co–Sn system at twelve different temperatures in 100 K steps in the temperature range (673 to 1773) K. The integral enthalpy of mixing was determined starting from 1173 K and fitted to a standard Redlich–Kister polynomial. In addition, the limiting partial molar enthalpy of Co in Sn was investigated by small additions of Co to liquid Sn at temperatures (673 to 1773) K. The integral and partial molar enthalpies of the Co–Sn system generally show an exothermic mixing behavior. Significant temperature dependence was detected for the enthalpies of mixing. The minimum integral enthalpy values vary with rising temperature from approx. −7820 J/mol at T = 1173 K to −1350 J/mol at T = 1773 K; the position of the minimum is between (59 and 61) at.% Co. The results are discussed and compared with literature data available for this system. X-ray studies and scanning electron microscopy of selected alloys obtained from the calorimetric measurements were carried out in order to check the completeness of the solution process

  9. Processing and properties of silver-metal oxide electrical contact materials

    Directory of Open Access Journals (Sweden)

    Nadežda M. Talijan

    2012-12-01

    Full Text Available The presented study gives a brief overview of the experimental results of investigations of different production technologies of silver-metal oxide electrical contact materials in relation: processing method - properties. The two most common routes of production, i.e. internal oxidation/ingot metallurgy and powder metallurgy are demonstrated on the example of Ag-CdO and Ag-ZnO materials. For illustration of alternative processing routes that provide higher dispersion of metal-oxide particles in silver matrix more environmentally friendly Ag-SnO2 contact materials are used. Processing of electrical contact materials by mechanical mixing of starting powders in high energy ball mill is presented. The obtained experimental results of application of different methods of introduction of SnO2 nanoparticles in the silver matrix such as conventional powder metallurgy mixing and template method are given and discussed in terms of their influence on microstructure and physical properties (density, hardness and electrical conductivity of the prepared Ag-SnO2 electrical contact materials.

  10. Performance PtSnRh electrocatalysts supported on carbon-Sb2O5.SbO2 for the electro-oxidation of ethanol, prepared by an alcohol-reduction process

    International Nuclear Information System (INIS)

    Castro, Jose Carlos

    2013-01-01

    PtSnRh electrocatalysts supported on carbon-Sb 2 O 5 .SnO 2 , with metal loading of 20 wt%, were prepared by an alcohol-reduction process, using H 2 PtCl 6 .6H 2 O (Aldrich), RhCl 3 .xH 2 O (Aldrich) and SnCl 2 .2H 2 O (Aldrich), as source of metals; Sb 2 O 5 .SnO 2 (ATO) and carbon Vulcan XC72, as support; and ethylene glycol as reducing agent. The electrocatalysts obtained were characterized physically by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The diffractograms showed which PtSnRh/C-ATO electrocatalysts had FCC structure of Pt and Pt alloys, besides several peaks associated with SnO 2 and ATO. The average sizes of crystallites were between 2 and 4 nm. TEM micrographs showed a good distribution of the nanoparticles on the support. The average sizes of particles were between 2 and 3 nm, with good agreement for the average size of the crystallites. The performances of the electrocatalysts were analyzed by electrochemical techniques and in real conditions of operation using single direct ethanol fuel cell. In the chronoamperometry at 50 deg C, the electrocatalysts with carbon (85 wt%) and ATO (15 wt%) support, showed the best activity, and the atomic proportions which achieved the best results were PtSnRh(70:25:05) e (90:05:05). PtSnRh(70:25:05)/85C+15ATO electrocatalysts showed the best performance in a direct ethanol fuel cell. (author)

  11. Excimer laser processing of inkjet-printed and sputter-deposited transparent conducting SnO2:Sb for flexible electronics

    International Nuclear Information System (INIS)

    Cranton, Wayne M.; Wilson, Sharron L.; Ranson, Robert; Koutsogeorgis, Demosthenes C.; Chi Kuangnan; Hedgley, Richard; Scott, John; Lipiec, Stephen; Spiller, Andrew; Speakman, Stuart

    2007-01-01

    The feasibility of low-temperature fabrication of transparent electrode elements from thin films of antimony-doped tin oxide (SnO 2 :Sb, ATO) has been investigated via inkjet printing, rf magnetron sputtering and post-deposition excimer laser processing. Laser processing of thin films on both glass and plastic substrates was performed using a Lambda Physik 305i excimer laser, with fluences in the range 20-100 mJ cm -2 reducing sheet resistance from as-deposited values by up to 3 orders of magnitude. This is consistent with TEM analysis of the films that shows a densification of the upper 200 nm of laser-processed regions

  12. Ultraviolet photodetectors made from SnO2 nanowires

    International Nuclear Information System (INIS)

    Wu, Jyh-Ming; Kuo, Cheng-Hsiang

    2009-01-01

    SnO 2 nanowires can be synthesized on alumina substrates and formed into an ultraviolet (UV) photodetector. The photoelectric current of the SnO 2 nanowires exhibited a rapid photo-response as a UV lamp was switched on and off. The ratio of UV-exposed current to dark current has been investigated. The SnO 2 nanowires were synthesized by a vapor-liquid-solid process at a temperature of 900 o C. It was found that the nanowires were around 70-100 nm in diameter and several hundred microns in length. High-resolution transmission electron microscopy (HRTEM) image indicated that the nanowires grew along the [200] axis as a single crystallinity. Cathodoluminescence (CL), thin-film X-ray diffractometry, and X-ray photoelectron spectroscopy (XPS) were used to characterize the as-synthesized nanowires.

  13. Void formation and its impact on Cu−Sn intermetallic compound formation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Glenn, E-mail: Glenn.Ross@aalto.fi; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-08-25

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu{sub 3}Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu{sub 3}Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu{sub 3}Sn thickness and an accelerated growth rate of Cu{sub 6}Sn{sub 5}. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu{sub 3}Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu{sub 3}Sn to be consumed by Cu{sub 6}Sn{sub 5}.

  14. Stable and metastable equilibria in PbSe + SnI2=SnSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Demidova, E.D.

    2003-01-01

    T-x-y phase diagrams of the PbSe + SnI 2 =SnSe + PbI 2 mutual system (stable states) are plotted for the first time. It is shown that melt, solid solutions on the base of components of the mutual system and phase on the base of Sn 2 SeI 4 take part in phase equilibria. Transformations in the PbSe + SnI 2 =SnSe + PbI 2 mutual system leading to crystallization of metastable polytype modifications of lead iodides and metastable ternary compound forming in PbSe-PbI 2 system are investigated for the first time [ru

  15. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  16. Kinetics of Isothermal Reactive Diffusion Between Solid Cu and Liquid Sn

    Science.gov (United States)

    O, M.; Suzuki, T.; Kajihara, M.

    2018-01-01

    The Cu/Sn system is one of the most fundamental and important metallic systems for solder joints in electric devices. To realize reliable solder joints, information on reactive diffusion at the solder joint is very important. In the present study, we experimentally investigated the kinetics of the reactive diffusion between solid Cu and liquid Sn using semi-infinite Cu/Sn diffusion couples prepared by an isothermal bonding technique. Isothermal annealing of the diffusion couple was conducted in the temperature range of 533-603 K for various times up to 172.8 ks (48 h). Using annealing, an intermetallic layer composed of Cu6Sn5 with scallop morphology and Cu3Sn with rather uniform thickness is formed at the original Cu/Sn interface in the diffusion couple. The growth of the Cu6Sn5 scallop occurs much more quickly than that of the Cu3Sn layer and thus predominates in the overall growth of the intermetallic layer. This tendency becomes more remarkable at lower annealing temperatures. The total thickness of the intermetallic layer is proportional to a power function of the annealing time, and the exponent of the power function is close to unity at all the annealing temperatures. This means that volume diffusion controls the intermetallic growth and the morphology of the Cu6Sn5/Sn interface influences the rate-controlling process. Adopting a mean value of 0.99 for the exponent, we obtain a value of 26 kJ/mol for the activation enthalpy of the intermetallic growth.

  17. Analysis of Nb$_{3}$Sn Rutherford cable production and strand deformations

    CERN Document Server

    Peggiani, Sonia; Beghi, Marco

    The development of cutting-edge 11-12 T superconducting magnets made from Nb$_{3}$Sn technology is one of the major milestones for the upgrade of the Large Hadron Collider at CERN. The upgrade, called High Luminosity LHC Project, was planned in order to reach higher luminosity and discover new particles. Replacing the NbTi superconductor with the Nb$_{3}$Sn makes it possible to reach a practical operating magnetic field limit of up to 16 T. The superconducting coils are formed by Nb$_{3}$Sn Rutherford cables with a trapezoidal cross section and composed of 40 strands. Since the superconducting phase of Nb$_{3}$Sn is very brittle and it is reached after a thermal cycle, the Nb$_{3}$Sn Rutherford cable needs to be wound in a coil before the thermal treatment. The cabling process is a delicate step in the production of high performing cables that need different systems to control their quality. This work aims to provide practical tools to analyze the Nb$_{3}$Sn Rutherford cable production and the strands defo...

  18. GaSb grown from Sn solvent at low temperatures by LPE

    Energy Technology Data Exchange (ETDEWEB)

    Compean, V H; Anda, F de; Mishurnyi, V A; Gorbatchev, A Yu, E-mail: fdeanda@cactus.iico.uaslp.m [Universidad Autonoma de San Luis Potosi, Instituto de Investigacion en Comunicacion Optica, Av. Karakorum 1470, Col. Lomas 4a Sec., San Luis Potosi, SLP, CP 78210 (Mexico)

    2009-05-01

    The LPE growth of GaSb using Sn as a solvent has been studied in the temperature range 250-370 C and using liquid solutions covering a wide range of compositions. In order to find the growth conditions the phase diagram has been determined experimentally around the same temperature region. It is shown the Sn incorporates into the grown layers and that it behaves as an acceptor. The photoluminescence spectra of the grown layers with different Sn contents show characteristic peaks that can be attributed to different recombination processes.

  19. Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS2, and Sn2S3: Experiment and Theory

    OpenAIRE

    Whittles, TJ; Burton, LA; Skelton, JM; Walsh, A; Veal, TD; Dhanak, VR

    2016-01-01

    Tin sulfide solar cells show relatively poor efficiencies despite attractive photovoltaic properties, and there is difficulty in identifying separate phases, which are also known to form during Cu2ZnSnS4 depositions. We present X-ray photoemission spectroscopy (XPS) and inverse photoemission spectroscopy measurements of single crystal SnS, SnS2, and Sn2S3, with electronic-structure calculations from density functional theory (DFT). Differences in the XPS spectra of the three phases, including...

  20. Comparative study of SnS recrystallization in molten CdI{sub 2}, SnCl{sub 2}and KI

    Energy Technology Data Exchange (ETDEWEB)

    Timmo, Kristi; Kauk-Kuusik, Marit; Pilvet, Maris; Mikli, Valdek; Kaerber, Erki; Raadik, Taavi; Leinemann, Inga; Altosaar, Mare; Raudoja, Jaan [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia)

    2016-01-15

    In the present study, the recrystallization of polycrystalline SnS in different molten salts CdI{sub 2}, SnCl{sub 2} and KI as flux materials are presented. The recrystallization and growth of polycrystalline material in molten salts produces unique SnS monograin powders usable in monograin layer solar cells. XRD and Raman analysis revealed that single phase SnS powder can be obtained in KI at 740 C and in SnCl{sub 2} at 500 C. Long time heating of SnS in molten CdI{sub 2} was accompanied by chemical interaction between SnS and CdI{sub 2} that resulted in a mixture of CdS and Sn{sub 2}S{sub 3} crystals. SEM images showed that morphology of crystals can be controlled by the nature of the flux materials: needle-like Sn{sub 2}S{sub 3} together with round edged crystals of CdS in CdI{sub 2}, flat crystals of SnS with smooth surfaces in SnCl{sub 2} and well-formed SnS crystals with rounded edges in KI had been formed. The temperatures of phase transitions and/or the interactions of SnS and flux materials were determined by differential thermal analysis. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Development of Nb3Sn cabled conductor by external diffusion process and the effect of strain on the critical current

    International Nuclear Information System (INIS)

    Pasztor, G.; Ekin, J.W.

    1984-01-01

    The planned extension of the High Field Test Facility SULTAN at SIN to provide 12 T operation in a 60 cm bore has led to an increased involvements on the part of SIN in the development of reliable A15 multifilamentary conductors. It is the purpose of this paper to describe the development of stranded Nb 3 Sn conductors using the external diffusion technique. Although not fully optimized, the primary cables have high overall critical current densities. Problems associated with the diffusion of the tin into the copper matrix, such as tin coalescence and development of Kirkendall porosity were successfully solved using small diameter wires and by appropriate diffusion and reaction heat treatment conditions. The elastic strain sensitivity of the critical current of a previously developed cable was comparable to that of bronze processed monolithic Nb 3 Sn, while the irreversible strain limit of 1.2% was significantly higher, On the other hand a longer current transfer length (about 4 times that of bronze processed monolithic conductors) was found

  2. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries

    OpenAIRE

    Wang, Ye; Huang, Zhi Xiang; Shi, Yumeng; Wong, Jen It; Ding, Meng; Yang, Hui Ying

    2015-01-01

    Transition metal cobalt (Co) nanoparticle was designed as catalyst to promote the conversion reaction of Sn to SnO2 during the delithiation process which is deemed as an irreversible reaction. The designed nanocomposite, named as SnO2/Co3O4/reduced-graphene-oxide (rGO), was synthesized by a simple two-step method composed of hydrothermal (1st step) and solvothermal (2nd step) synthesis processes. Compared to the pristine SnO2/rGO and SnO2/Co3O4 electrodes, SnO2/Co3O4/rGO nanocomposites exhibi...

  3. Nanocrystalline SnO2 by liquid pyrolysis

    Directory of Open Access Journals (Sweden)

    Morante, J. R.

    2000-08-01

    Full Text Available Liquid pyrolysis is presented as a new production method of SnO2 nanocrystalline powders suitable for gas sensor devices. The method is based on a pyrolytic reaction of high tensioned stressed drops of an organic solution of SnCl4•5(H2O. The main advantages of the method are its capability to produce SnO2 nanopowders with high stability, its accurate control over the grain size and other structural characteristics, its high level of repeatability and its low industrialization implementation cost. The characterization of samples of SnO2 nanoparticles obtained by liquid pyrolysis in the range between 200ºC and 900ºC processing temperature is carried out by X-ray diffraction, transmission electron microscopy, Raman and X-ray photoelectron spectroscopy. Results are analyzed and discussed so as to validate the advantages of the liquid pyrolysis method.La pirólisis líquida se presenta como un nuevo método para producir SnO2 nanocristalino en polvo ideal para sensores de gas. El método se basa en una reacción pirolítica de gotas altamente tensionadas procedentes de una solución orgánica de SnCl4•5(H2O. Las principales ventajas del método son la capacidad para producir nanopartículas de SnO2 con una gran estabilidad, el preciso control sobre el tamaño de grano y sobre otras características estructurales, el alto nivel de repetibilidad y el bajo coste en su implementación industrial.La caracterización de las muestras de las nanopartículas de SnO2 obtenidas por pirólisis líquida en un rango de temperatura de procesado que va de 200ºC a 900ºC se ha realizado mediante difracción de rayos X, microscopía electrónica de transmisión, espectroscopía Raman y espectroscopía fotoelectrónica de rayos X. Los resultados se han analizado y discutido. Éstos validan las ventajas del método de la pirólisis líquida.

  4. Magnetic disaccommodation in Sn substituted magnetite

    International Nuclear Information System (INIS)

    Hernandez-Gomez, P.; Bendimya, K.; Francisco, C. de; Munoz, J.M.; Alejos, O.; Torres, C.

    2001-01-01

    The relaxation of the initial magnetic permeability has been measured in polycrystalline Sn-doped magnetite with nominal composition Sn x Fe 3-x O 4 with x ranging from x=0 to 0.6. In the temperature range between 80 and 500 K, the time decay of the initial permeability after sample demagnetization has been represented by means of isochronal disaccommodation curves, which show the presence of different relaxation processes at 250 K (IV' peak), 275 K (IV), 300 K (III), 400 K (II) and 440 K (I). This behavior is explained on the basis of the disaccommodation of vacancy-doped magnetite and another similar tetravalent substitution, as the previously analyzed Ti-doped magnetite

  5. Annealing of SnO2 thin films by ultra-short laser pulses

    NARCIS (Netherlands)

    Scorticati, D.; Illiberi, A.; Bor, T.; Eijt, S.W.H.; Schut, H.; Römer, G.R.B.E.; Lange, D.F. de; Huis In't Veld, A.J.

    2014-01-01

    Post-deposition annealing by ultra-short laser pulses can modify the optical properties of SnO2 thin films by means of thermal processing. Industrial grade SnO2 films exhibited improved optical properties after picosecond laser irradiation, at the expense of a slightly increased sheet resistance

  6. The European Nb3Sn advanced strand development programme

    International Nuclear Information System (INIS)

    Vostner, A.; Salpietro, E.

    2005-01-01

    Strands relevant for fusion with high critical current densities and moderate hysteresis losses were developed and already produced on industrial scale. Based on these achievements EFDA-CSU Garching has launched a Nb 3 Sn strand development and procurement action inside Europe in order to assess the current status of the Nb 3 Sn strand production capability. All six addressed companies have replied positively to the strand R and D programme which includes the three major Nb 3 Sn production techniques namely the bronze, internal-tin and powder-in-tube (PIT) route. According to the strand requirements for the ITER TF conductor a critical current density of 800 A/mm 2 (at 12 T, 4.2 K and 10 μV/m) and overall strand hysteresis losses below 500 kJ/m 3 have been specified as the minimum guaranteed strand performance. The second major objective of this programme is to motivate the strand manufacturers to develop and design high performance Nb 3 Sn strands optimised for the ITER conductor. For this purpose, a target critical current density of 1100 A/mm 2 has been added to the specification. This paper describes the strategy behind the strand development programme, the actual status of the strand production as well as first preliminary results obtained from the strand suppliers

  7. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  8. HPLC method for determination of SN-38 content and SN-38 entrapment efficiency in a novel liposome-based formulation, LE-SN38.

    Science.gov (United States)

    Xuan, Tong; Zhang, J Allen; Ahmad, Imran

    2006-05-03

    A simple HPLC method was developed for quantification of SN-38, 7-ethyl-10-hydroxycamptothecin, in a novel liposome-based formulation (LE-SN38). The chromatographic separation was achieved on an Agilent Zorbax SB-C18 (4.6 mmx250 mm, 5 microm) analytical column using a mobile phase consisting of a mixture of NaH2PO4 (pH 3.1, 25 mM) and acetonitrile (50:50, v/v). SN-38 was detected at UV wavelength of 265 nm and quantitatively determined using an external calibration method. The limit of detection (LOD) and limit of quantitation (LOQ) were found to be 0.05 and 0.25 microg/mL, respectively. The individual spike recovery of SN-38 ranged from 100 to 101%. The percent of relative standard deviation (%R.S.D.) of intra-day and inter-day analyses were less than 1.6%. The method validation results confirmed that the method is specific, linear, accurate, precise, robust and sensitive for its intended use. The current method was successfully applied to the determination of SN-38 content and drug entrapment efficiency in liposome-based formulation, LE-SN38 during early stage formulation development.

  9. Moessbauer study of supertransferred hyperfine field of /sup 119/Sn (Sn/sup 4 +/) in Casub(1-x)Srsub(x)MnO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Takano, M [Konan Univ., Kobe (Japan). Faculty of Science; Takeda, Y; Shimada, M; Matsuzawa, T; Shinjo, T

    1975-09-01

    Casub(1-x)Srsub(x)Mnsub(0.99)Snsub(0.01)O/sub 3/(0<=x<=1) with (nearly) cubic perovskite structures were prepared and the magnetic hyperfine fields of /sup 119/Sn (Sn/sup 4 +/) were measured by the Moessbauer effect. The hyperfine fields arise from unpaired s electron spin densities transferred from Mn/sup 4 +/ ions (supertransferred hyperfine interaction). The hyperfine field for a tin ion was found to depend linearly upon the numbers of Ca/sup 2 +/ and Sr/sup 2 +/ ions in the neighboring divalent cation sites, with proportional coefficients having opposite signs. To explain experimental results two kinds of spin transfer processes contributing to the hyperfine field oppositely to each other have been considered, and spin transfer via a divalent cation is emphasized particularly. The hyperfine field at 0 K for Sn/sup 4 +/ in CaMnO/sub 3/ is -75 kOe, while +20 kOe for Sn/sup 4 +/ in SrMnO/sub 3/.

  10. Decay Study for the very Neutron-Rich Sn Nuclides, $^{135-140}$Sn Separated by Selective Laser Ionization

    CERN Multimedia

    2002-01-01

    %IS378 %title\\\\ \\\\ In this investigation, we wish to take advantage of chemically selective laser ionization to separate the very-neutron-rich Sn nuclides and determine their half-lives and delayed-neutron branches (P$_{n}$) using the Mainz $^{3}$He-delayed neutron spectrometer and close-geometry $\\gamma$-ray spectroscopy system. The $\\beta$-decay rates are dependent on a number of nuclear structure factors that may not be well described by models of nuclear structure developed for nuclides near stability. Determination of these decay properties will provide direct experimental data for r-process calculations and test the large number of models of nuclear structure for very-neutron rich Sn nuclides now in print.

  11. Studies on Nb3Sn field coils for superconducting machine

    International Nuclear Information System (INIS)

    Fujino, H.; Nose, S.

    1981-01-01

    This paper describes experimental studies on several coils wound with multifilamentary (MF) Nb 3 Sn cables with reinforcing strip for superconducting rotating machine application. To use a Nb 3 Sn superconductor to field winding of a rotating machine, several coil performances of pre-reacted, bronze processed and stranded MF Nb 3 Sn cables were investigated, mainly in relation to stress effect. Bending strain up to 0.64% in strand and winding stress of 5 kg/mm 2 have resulted in nondegradation in coil performance. A pair of impregnated race-track coils designed for a 30 MVA synchronous condenser was energized successfully up to 80% of critical current without quench. 8 refs

  12. In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation.

    Science.gov (United States)

    Cheong, Jun Young; Chang, Joon Ha; Kim, Sung Joo; Kim, Chanhoon; Seo, Hyeon Kook; Shin, Jae Won; Yuk, Jong Min; Lee, Jeong Yong; Kim, Il-Doo

    2017-12-01

    We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.

  13. Porous carbon-free SnSb anodes for high-performance Na-ion batteries

    Science.gov (United States)

    Choi, Jeong-Hee; Ha, Choong-Wan; Choi, Hae-Young; Seong, Jae-Wook; Park, Cheol-Min; Lee, Sang-Min

    2018-05-01

    A simple melt-spinning/chemical-etching process is developed to create porous carbon-free SnSb anodes. Sodium ion batteries (SIBs) incorporating these anodes exhibit excellent electrochemical performances by accomodating large volume changes during repeated cycling. The porous carbon-free SnSb anode produced by the melt-spinning/chemical-etching process shows a high reversible capacity of 481 mAh g-1, high ICE of 80%, stable cyclability with a high capacity retention of 99% after 100 cycles, and a fast rate capability of 327 mAh g-1 at 4C-rate. Ex-situ X-ray diffraction and high resolution-transmission electron microscopy analyses demonstrate that the synthesized porous carbon-free SnSb anodes involve the highly reversible reaction with sodium through the conversion and recombination reactions during sodiation/desodiation process. The novel and simple melt-spinning/chemical-etching synthetic process represents a technological breakthrough in the commercialization of Na alloy-able anodes for SIBs.

  14. Electrochemical and optical properties of CeO2-SnO2 and CeO2-SnO2:X (X = Li, C, Si films

    Directory of Open Access Journals (Sweden)

    Berton Marcos A.C.

    2001-01-01

    Full Text Available Thin solid films of CeO2-SnO2 (17 mol% Sn and CeO2-SnO2:X (X = Li, C and Si were prepared by the sol-gel route, using an aqueous-based process. The addition of Li, C and Si to the precursor solution leads to films with different electrochemical performances. The films were deposited by the dip-coating technique on ITO coated glass (Donnelly Glass at a speed of 10 cm/min and submitted to a final thermal treatment at 450 °C during 10 min in air. The electrochemical and optical properties of the films were determined from the cyclic voltammetry and chronoamperometry measurements using 0.1 M LiOH as supporting electrolyte. The ion storage capacity of the films was investigated using in situ spectroelectrochemical method and during the insertion/extraction process the films remained transparent. The powders were characterized by thermal analysis (DSC/TGA and X-ray diffraction.

  15. Lithium insertion mechanism in SnS2

    International Nuclear Information System (INIS)

    Lefebvre-Devos, I.; Olivier-Fourcade, J.; Jumas, J.C.; Lavela, P.

    2000-01-01

    We study lithium insertion in SnS 2 by means of 119 Sn Moessbauer spectroscopy, x-ray absorption spectroscopy at Sn L I,III , and S K edges, and theoretical electronic structures (calculated in the density-functional theory framework). An insertion mechanism is derived according to the Li amount. It shows the influence of the SnS 2 -layered structure on the Sn reduction, particularly the possibility of an intermediate oxidation state between Sn IV and Sn II , which is not observed during Li insertion in three-dimensional sulfides

  16. Effects of hydrazine on the solvothermal synthesis of Cu{sub 2}ZnSnSe{sub 4} and Cu{sub 2}CdSnSe{sub 4} nanocrystals for particle-based deposition of films

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ming-Hung [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Fu, Yaw-Shyan, E-mail: ysfu@mail.nutn.edu.tw [Department of Greenergy, National University of Tainan, Tainan, Taiwan 700 (China); Shih, Cheng-Hung; Kuo, Chun-Cheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Guo, Tzung-Fang [Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan 701 (China); Lin, Wen-Tai, E-mail: wtlin@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China)

    2013-10-01

    The effects of hydrazine on the synthesis of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) and Cu{sub 2}CdSnSe{sub 4} (CCTSe) nanocrystals in an autoclave as a function of temperature and time were explored. On heating at 190 °C for 24-72 h, pure CZTSe and CCTSe nanocrystals could readily grow in the hydrazine-added solution, while in the hydrazine-free solution the intermediate phases such as ZnSe, Cu{sub 2}Se, and Cu{sub 2}SnSe{sub 3}, and Cu{sub 2}SnSe{sub 3} and CdSe associated with the CZTSe and CCTSe nanocrystals grew, respectively. This result reveals that hydrazine can speed up the synthesis of pure CZTSe and CCTSe nanocrystals via a solvothermal process. The mechanisms for the hydrazine-enhanced growth of CZTSe and CCTSe nanocrystals were discussed. The pure CZTSe and CCTSe nanocrystals were subsequently fabricated to the smooth films by spin coating without further annealing in selenium atmosphere. This processing may be beneficial to the fabrication of the absorber layer for solar cells and thermoelectric devices. - Highlights: • Hydrazine enhances the growth of pure Cu{sub 2}ZnSnSe{sub 4} and Cu{sub 2}CdSnSe{sub 4} nanocrystals. • The nanocrystals can be fabricated to films by spin coating without annealing. • This solvothermal processing is promising for the fabrication of thin film devices.

  17. A Nb3Sn high field dipole

    International Nuclear Information System (INIS)

    McClusky, R.; Robins, K.E.; Sampson, W.B.

    1990-01-01

    A dipole magnet approximately 1 meter long with an 8 cm bore has been fabricated from cable made from Nb 3 Sn multifilamentary strands. The coil consists of four layers of conductor wound in pairs to eliminate internal joints. Each set of layers is separately constrained with Kevlar-epoxy bands and the complete assembly clamped in a split laminated iron yoke. The inner coil pairs were wound before heat treating while the outer coils were formed from pre-reacted cable using conventional insulation. A NbTi version of the magnet was fabricated using SSC version of the magnet was fabricated using SSC conductor to test the construction techniques. This magnet reached a maximum central field of 7.6 Tesla, at 4.4K which is very close to the limit estimated from conductor measurements. The Nb 3 Sn magnet, however, only reached a maximum field at 8.1T considerably short of the field expected from measurements on the inner cable. 7 refs., 5 figs

  18. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  19. Facile synthesis and optical property of SnO2 flower-like architectures

    International Nuclear Information System (INIS)

    Zhao Qingrui; Li Zhengquan; Wu Changzheng; Bai Xue; Xie Yi

    2006-01-01

    Two-dimensional (2D) hierarchical tin dioxide (SnO 2 ) flower-like architectures consisting of sheet-like nanoparticles have been successfully prepared by a simply mild hydrothermal method based on the reaction between tin foil, NaOH and KBrO 3 . The photoluminescence (PL) spectrum exhibit that the flower-like architectures of SnO 2 have strong PL emission, which suggest its possible applications in nanoscaled optoelectronic devices. The formation process of SnO 2 architectures is investigated and the corresponding mechanism is also proposed

  20. Microstructural investigation and SnO nanodefects in spray-pyrolyzed SnO2 thin films

    DEFF Research Database (Denmark)

    Thanachayanont, Chanchana; Yordsri, Visittapong; Boothroyd, Chris

    2011-01-01

    Spray pyrolysis is one of the most cost-effective methods to prepare SnO2 films due to its ability to deposit large uniform area, low fabrication cost, simplicity and low deposition temperature. Conventionally, scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) are routinely used...... diffraction (CBED). It was found that large grain-size vertically-aligned columnar SnO2 grains were formed after a few layers of small grain-size randomly oriented SnO2 grains. Moreover, CBED showed the presence of SnO nanodefects that had not been reported before and could not be detected by SEM or XRD....

  1. Electrochemical fabrication of Sn nanowires on titania nanotube guide layers

    International Nuclear Information System (INIS)

    Djenizian, Thierry; Hanzu, Ilie; Premchand, Yesudas D; Vacandio, Florence; Knauth, Philippe

    2008-01-01

    We describe a novel approach for the fabrication of tailored nanowires using a two-step electrochemical process. It is demonstrated that self-organized TiO 2 nanotubes can be used to activate and guide the electrochemical growth of Sn crystallites, leading to the formation of vertical features with a high aspect ratio. We show that the dimensions and the density of Sn crystallites depend on the electrodeposition parameters

  2. Fluid sensitive nanoscale switching with quantum levitation controlled by $\\alpha$-Sn/$\\beta$-Sn phase transition

    OpenAIRE

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-01-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α−Sn to metallic β−Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α−Sn and β−Sn, giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening l...

  3. Probing long-range structural order in SnPc/Ag(111) by umklapp process assisted low-energy angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Jauernik, Stephan; Hein, Petra; Gurgel, Max; Falke, Julian; Bauer, Michael

    2018-03-01

    Laser-based angle-resolved photoelectron spectroscopy is performed on tin-phthalocyanine (SnPc) adsorbed on silver Ag(111). Upon adsorption of SnPc, strongly dispersing bands are observed which are identified as secondary Mahan cones formed by surface umklapp processes acting on photoelectrons from the silver substrate as they transit through the ordered adsorbate layer. We show that the photoemission data carry quantitative structural information on the adsorbate layer similar to what can be obtained from a conventional low-energy electron diffraction (LEED) study. More specifically, we compare photoemission data and LEED data probing an incommensurate-to-commensurate structural phase transition of the adsorbate layer. Based on our results we propose that Mahan-cone spectroscopy operated in a pump-probe configuration can be used in the future to probe structural dynamics at surfaces with a temporal resolution in the sub-100-fs regime.

  4. Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Hu Renzong; Zhu Min; Wang Hui; Liu Jiangwen; Liuzhang Ouyang; Zou Jin

    2012-01-01

    By applying the shape memory effect of the NiTi alloys to buffer the Sn anodes, we demonstrate a simple approach to overcome a long-standing challenge of Sn anode in the applications of Li-ion batteries – the capacity decay. By supporting the Sn anodes with NiTi shape memory alloys, the large volume change of Sn anodes due to lithiation and delithiation can be effectively accommodated, based on the stress-induced martensitic transformation and superelastic recovery of the NiTi matrix respectively, which leads to a decrease in the internal stress and closing of cracks in Sn anodes. Accordingly, stable cycleability (630 mA h g −1 after 100 cycles at 0.7C) and excellent high-rate capabilities (478 mA h g −1 at 6.7C) were attained with the NiTi/Sn/NiTi film electrode. These shape memory alloys can also combine with other high-capacity metallic anodes, such as Si, Sb, Al, and improve their cycle performance.

  5. Efficient photocatalytic degradation of phenol in aqueous solution by SnO2:Sb nanoparticles

    International Nuclear Information System (INIS)

    Al-Hamdi, Abdullah M.; Sillanpää, Mika; Bora, Tanujjal; Dutta, Joydeep

    2016-01-01

    Highlights: • Sb doped SnO 2 nanoparticles were synthesized using sol–gel process. • Photocatalytic degradation of phenol were studies using SnO 2 :Sb nanoparticles. • Under solar light phenol was degraded within 2 h. • Phenol mineralization and intermediates were investigated by using HPLC. - Abstract: Photodegradation of phenol in the presence of tin dioxide (SnO 2 ) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO 2 . In this study antimony (Sb) doped tin dioxide (SnO 2 ) nanoparticles were prepared at a low temperature (80 °C) by a sol–gel method and studied for its photocatalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO 2 :Sb was found to be a maximum for 0.6 wt.% Sb doped SnO 2 nanoparticles with 10 mg L −1 phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  6. Spectrophotometric determination of Sn+2 in lyophilized kit for labeling with 99mTc

    International Nuclear Information System (INIS)

    Araujo, Elaine Bortoleti; Sampel, Carolina Judith; Melo, Ivani Bortoleti; Okamoto, Miriam R.Y; Silva, Constancia P.G

    2004-01-01

    The preparation of 99 mTc labeled radiopharmaceuticals depends on the reduction of the technetium pertechnetate, commonly by stannous chloride (SnCl 2 ). The determination of the Sn +2 contents in the lyophilized preparations represents an important quality control procedure that may be applied to the process and to the final product. The objective os this work is the optimization of an spectrophotometric assay to the determination os Sn +2 contents in a citrate-stannous lyophilized kit for 99 mTc labeling. The spectrophotometric methodology employed is based in the colour development when Sn +2 reacts with sodium molybdate in the presence of potasium thiocyanate in chloridric medium. The colourfull reaction studied showed high stability after 60 minutes of the mixtures preparation. The sequence of reagents introduction in the reaction mixture was determinant to the assay. The molibdenium-stannous-tiocianate sequence produces calibration curves with good correlations (R2 ≥ 0.99). The concentrations of the molibdenium solution was also studied, in order to determine a ideal concentration for the Sn +2 range. The spectrophotometric method studied was usefull to the determination of Sn +2 content in different batches of citrate-stannous preparations. The method was fast and easy and can be applied to different stages of the production process, in order to guarantee the content of Sn +2 in the preparations (Au)

  7. Structure and characterization of Sn, Al co-doped zinc oxide thin films prepared by sol–gel dip-coating process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-I [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Legrand, David [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Lerondel, Gilles [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS - UMR STMR 6279, Université de Technologie de Troyes (France); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Taiwan (China)

    2014-11-03

    Transparent conductive zinc oxide co-doped with tin and aluminum (TAZO) thin films were prepared via sol–gel dip-coating process. Non-toxic ethanol was used in this study instead of 2-methoxyethanol used in conventional work. Dip-coating was repeated several times to obtain relatively thick films consisting of six layers. The films were then annealed at 500 °C for 1 h in air or in vacuum and not subsequently as employed in other studies. The X-ray diffraction patterns indicated that all the samples revealed a single phase of hexagonal ZnO polycrystalline structure with a main peak of (002). The optical band gap and resistivity of the TAZO films were in the ranges of 3.28 to 3.32 eV and 0.52 to 575.25 Ω cm, respectively. The 1.0 at.% Sn, 1.0 at.% Al co-doped ZnO thin film annealed in vacuum was found to have a better photoelectrochemical performance with photocurrent density of about 0.28 mA/cm{sup 2} at a bias of 0.5 V vs. SCE under a 300 W Xe lamp illumination with the intensity of 100 mW/cm{sup 2}. Compared to the same dopant concentration but annealed in air (∼ 0.05 mA/cm{sup 2} bias 0.5 V vs. SCE), the photocurrent density of the film annealed in vacuum was 5 times higher than the film annealed in air. Through electrochemical measurements, we found that the dopant concentration of Sn plays an important role in TAZO that affected photocurrent density, stability of water splitting and anti-corrosion. - Highlights: • Al, Sn co-doped ZnO (TAZO) films was synthesized by sol–gel process. • The parameters of TAZO films were dopant concentration and annealed ambient. • The photoelectrochemical characteristics of TAZO films were investigated.

  8. Inkjet?Printed Cu2ZnSn(S, Se)4 Solar Cells

    OpenAIRE

    Lin, Xianzhong; Kavalakkatt, Jaison; Lux?Steiner, Martha Ch.; Ennaoui, Ahmed

    2015-01-01

    Cu2ZnSn(S, Se)4?based solar cells with total area (0.5 cm2) power conversion efficiency of 6.4% are demonstrated from thin film absorbers processed by inkjet printing technology of Cu?Zn?Sn?S precursor ink followed by selenization. The device performance is limited by the low fill factor, which is due to the high series resistance.

  9. Inkjet-Printed Cu2ZnSn(S, Se)4 Solar Cells.

    Science.gov (United States)

    Lin, Xianzhong; Kavalakkatt, Jaison; Lux-Steiner, Martha Ch; Ennaoui, Ahmed

    2015-06-01

    Cu 2 ZnSn(S, Se) 4 -based solar cells with total area (0.5 cm 2 ) power conversion efficiency of 6.4% are demonstrated from thin film absorbers processed by inkjet printing technology of Cu-Zn-Sn-S precursor ink followed by selenization. The device performance is limited by the low fill factor, which is due to the high series resistance.

  10. Technology development of fabrication NbTi and Nb3 Sn superconducting wires

    International Nuclear Information System (INIS)

    Rodrigues Junior, D.; Bormio, C.; Baldan, C.A.; Ramos, M.J.; Pinatti, D.G.

    1988-01-01

    The technology development of NbTi and Nb 3 Sn superconducting wires are studied, mentioning the use of fluxes capture theory in the sizing of wires fabrication. The fabrication process, the thermal treatment and the experimental datas of critical temperature and current of Nb 3 Sn wires are described. (C.G.C.) [pt

  11. SnSAG5 is an alternative surface antigen of Sarcocystis neurona strains that is mutually exclusive to SnSAG1.

    Science.gov (United States)

    Crowdus, Carolyn A; Marsh, Antoinette E; Saville, Willliam J; Lindsay, David S; Dubey, J P; Granstrom, David E; Howe, Daniel K

    2008-11-25

    Sarcocystis neurona is an obligate intracellular parasite that causes equine protozoal myeloencephalitis (EPM). Previous work has identified a gene family of paralogous surface antigens in S. neurona called SnSAGs. These surface proteins are immunogenic in their host animals, and are therefore candidate molecules for development of diagnostics and vaccines. However, SnSAG diversity exists in strains of S. neurona, including the absence of the major surface antigen gene SnSAG1. Instead, sequence for an alternative SnSAG has been revealed in two of the SnSAG1-deficient strains. Herein, we present data characterizing this new surface protein, which we have designated SnSAG5. The results indicated that the protein encoded by the SnSAG5 sequence is indeed a surface-associated molecule that has characteristics consistent with the other SAGs identified in S. neurona and related parasites. Importantly, Western blot analyses of a collection of S. neurona strains demonstrated that 6 of 13 parasite isolates express SnSAG5 as a dominant surface protein instead of SnSAG1. Conversely, SnSAG5 was not detected in SnSAG1-positive strains. One strain, which was isolated from the brain of a sea otter, did not express either SnSAG1 or SnSAG5. Genetic analysis with SnSAG5-specific primers confirmed the presence of the SnSAG5 gene in Western blot-positive strains, while also suggesting the presence of a novel SnSAG sequence in the SnSAG1-deficient, SnSAG5-deficient otter isolate. The findings provide further indication of S. neurona strain diversity, which has implications for diagnostic testing and development of vaccines against EPM as well as the population biology of Sarcocystis cycling in the opossum definitive host.

  12. SnO{sub 2}/reduced graphene oxide composite films for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Mazanik, A.V., E-mail: mazanikalexander@gmail.com [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Korolik, O.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus)

    2015-12-15

    Highlights: • SnO{sub 2}/GO composites with mass fraction of carbon phase 0.01% ≤ w{sub C} ≤ 80% have been formed. • 400 °C annealing was applied for GO reduction in the composites. • SnO{sub 2}/rGO composites demonstrate a high electrocatalytic activity in anodic processes. • Exchange current density grows linearly with carbon phase concentration at w{sub C} ≤ 10%. - Abstract: SnO{sub 2}/GO (GO is graphene oxide) composite films with GO mass fraction w{sub C} ranging from 0.01 to 80% have been prepared using colloidal solutions. Heat treatment of SnO{sub 2}/GO films in Ar atmosphere at 400 °C leads to GO reduction accompanied by partial exfoliation and decreasing of the particle thickness. SnO{sub 2}/rGO (rGO is reduced GO) film electrodes demonstrate a high electrocatalytic activity in the anodic oxidation of inorganic (iodide-, chloride-, sulfite-anions) and organic (ascorbic acid) substances. The increase of the anodic current in these reactions is characterized by overpotential inherent to the individual rGO films and exchange current density grows linearly with rGO concentration at w{sub C} ≤ 10% indicating that the rGO particles in composites act as sites of electrochemical process. The SnO{sub 2}/rGO composite films, in which the chemically stable oxide matrix encapsulates the rGO inclusions, can be considered as a promising material for applied electrochemistry.

  13. Electronic and magnetic properties of rare earth-Sn3 compounds for 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, J.P.; Friedt, J.M.; Shenoy, G.K.; Percheron, A.; Achard, J.C.

    1975-01-01

    The electronic and magnetic properties of RESn 3 compounds (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Yb) have been investigated using the 23.8keV Moessbauer resonance of 119 Sn. The isomer shifts and quadrupole interactions are nearly the same in all compounds. The transferred magnetic fields and their orientation with respect to the principal electric field gradient axis at various Sn sites in the magnetically ordered state of RESn 3 (RE=Pr, Nd, Sm, Eu, Gd) have been utilized to get information about the magnetic structure. An evaluation of the transferred fields in PrSn 3 and NdSn 3 shows that the spin density at the Sn nucleus is nearly the same in both compounds [fr

  14. The tin-rich copper lithium stannides: Li3Cu6Sn4 and Li2CuSn2

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Flandorfer, Hans; Effenberger, Herta S.

    2015-01-01

    The Sn rich ternary intermetallic compounds Li 3 Cu 6 Sn 4 (CSD-427097) and Li 2 CuSn 2 (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li 3 Cu 6 Sn 4 crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe 6 Ge 6 (a = 5.095(2) Aa, c = 9.524(3) Aa; wR 2 = 0.059; 239 unique F 2 -values, 17 free variables). Li 3 Cu 6 Sn 4 is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li 2 CuSn 2 (space group I4 1 /amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR 2 = 0.033; 213 unique F 2 -values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  15. SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P. L.; Filippenko, A. V.; Graham, M. L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Brammer, G.; Strolger, L.-G.; Riess, A. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Selsing, J.; Hjorth, J.; Christensen, L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Foley, R. J. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801 (United States); Rodney, S. A. [Department of Physics and Astronomy, University of South Carolina, 712 Main St., Columbia, SC 29208 (United States); Treu, T. [University of California, Los Angeles, CA 90095 (United States); Steidel, C. C.; Strom, A.; Zitrin, A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Schmidt, K. B.; McCully, C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Bradač, M. [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Jha, S. W. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Graur, O., E-mail: pkelly@astro.berkeley.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); and others

    2016-11-10

    We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad H α P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift ( z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong H α and Na I D absorption. From the grism spectrum, we measure an H α expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H α emission of the WFC3 and X-shooter spectra, separated by ∼2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

  16. Polarographic determination of Sn (II) and total Sn in PYRO and MDP radiopharmaceutical kits

    International Nuclear Information System (INIS)

    Sebastian, Maria V.A.; Lugon, Marcelo Di M.V.; Silva, Jose L. da; Fukumori, Neuza T.O.; Pereira, Nilda P.S. de; Silva, Constancia P.G. da; Matsuda, Margareth M.N.

    2007-01-01

    A sensitive, alternative method to atom absorption spectrometry, fluorimetry or potentiometry for the evaluation of tin(II) ions (0.1- 10 mg) and total tin in radiopharmaceutical kits was investigated. Differential pulse polarography was chosen. The supporting electrolyte was H 2 SO 4 3 mol L -1 and HCl 3 mol L -1 solution. The potential was swept from -250 to -800 mV vs Ag/AgCl/saturated KCl, using a dropping mercury electrode with 1 s drop time, 50 mV s -1 scan rate, -50 mV pulse amplitude, 40 ms pulse time and 10 mV step amplitude. Pure nitrogen was used to deaerate the polarographic cell solution for 5 min, before and after each sample introduction. Oxidation of Sn(II) was made in the same sample vial by adding H 2 O 2 (hydrogen peroxide) 10 mol L -1 , at 37 deg C, in order to quantify the total Sn. The calibration curve for Sn(II) and Sn(IV) was obtained in the concentration range of 0-10 ppm from a 1000 ppm standard solution. The detection limit of Sn(II) is 0.5 ppm and for Sn(IV) is 0.6 ppm. Differential pulse polarography was performed in the pyrophosphate (PYRO) and methylenediphosphonic acid (MDP) radiopharmaceutical kits, containing 2 mg and 1 mg of SnCl 2 .2H 2 O per vial, respectively. The described method for determination of stannous ion (Sn(II)), is selective, reproducible and adequate to be used in the quality control of lyophilized reagents and it shall be performed for other cold kits produced at IPEN. (author)

  17. VAMAS Nb3Sn test conductor

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A bronze-process Nb 3 Sn conductor was measured as part of the second VAMAS (Versailles Project on Advanced Materials and Standards) international critical-current round robin. The conductor specifications are given in Table 15. The critical current was measured as a function of magnetic field and axial tensile strain. The measured data are presented in Table 16 and in Figs. 23 and 24. The I c and J c values are based on an electric field criterion (E c ) of 1 μV/cm. In the first VAMAS round robin tests, differences in the test specimens' axial strain, caused by variations in the thermal contraction of different test fixtures, was a major source of interlaboratory variation in the critical-current data. Consequently, electromechanical characterization of the test specimen is important for data interpretation and error analysis. In the second round robin, the test apparatus and procedure were more rigidly specified. This increased experimental control reduced the critical-current variation by a factor of 3.5. The results of our measurements will be published in the final VAMAS report

  18. Surface tension and wetting behaviour of Bi-In-Sn alloys

    International Nuclear Information System (INIS)

    Ervina Efzan Mohd Noor; Ahmad Badri Ismail; Soong, T.K.; Chin, Y.T.; Luay Bakir Hussain

    2007-01-01

    Concerns about possible landfill contamination, influent discharge from production process are one of the reasons convert from lead-containing electronics to lead-free containing. The surface and interfacial properties of Bi-In-Sn lead-free solder system as a basic system of multicomponent alloys proposed as lead-free solder materials have been studied. The surface tension of Bi-In-Sn lead-free solder system of melting temperature 60 degree Celsius has been measured the temperature range 80 degree Celsius and 140 degree Celsius. The study of the wetting behaviour of Bi-In-Sn lead-free solder system on a Cu substrate has been performed by measuring contact angle on various metal substrates by Optical Microscopy with software. (author)

  19. Tin (Sn) - An Unlikely Ally to Extend Moore's Law for Silicon CMOS?

    KAUST Repository

    Hussain, Aftab M.

    2012-12-01

    There has been an exponential increase in the performance of silicon based semiconductor devices in the past few decades. This improvement has mainly been due to dimensional scaling of the MOSFET. However, physical constraints limit the continued growth in device performance. To overcome this problem, novel channel materials are being developed to enhance carrier mobility and hence increase device performance. This work explores a novel semiconducting alloy - Silicon-tin (SiSn) as a channel material for CMOS applications. For the first time ever, MOS devices using SiSn as channel material have been demonstrated. A low cost, scalable and manufacturable process for obtaining SiSn by diffusion of Sn into silicon has also been explored. The channel material thus obtained is electrically characterized by fabricating MOSCAPs and Mesa-shaped MOSFETs. The SiSn devices have been compared to similar devices fabricated using silicon as channel material.

  20. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Directory of Open Access Journals (Sweden)

    Liu Mei Lee

    2013-01-01

    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  1. TiO2 coated SnO2 nanosheet films for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Cai Fengshi; Yuan Zhihao; Duan Yueqing; Bie Lijian

    2011-01-01

    TiO 2 -coated SnO 2 nanosheet (TiO 2 -SnO 2 NS) films about 300 nm in thickness were fabricated on fluorine-doped tin oxide glass by a two-step process with facile solution-grown approach and subsequent hydrolysis of TiCl 4 aqueous solution. The as-prepared TiO 2 -SnO 2 NSs were characterized by scanning electron microscopy and X-ray diffraction. The performances of the dye-sensitized solar cells (DSCs) with TiO 2 -SnO 2 NSs were analyzed by current-voltage measurements and electrochemical impedance spectroscopy. Experimental results show that the introduction of TiO 2 -SnO 2 NSs can provide an efficient electron transition channel along the SnO 2 nanosheets, increase the short current density, and finally improve the conversion efficiency for the DSCs from 4.52 to 5.71%.

  2. Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti–24Nb–4Zr–7.9Sn alloy for biomedical applications

    International Nuclear Information System (INIS)

    Guo, Shibo; Chu, Aimin; Wu, Haijiang; Cai, Chunbo; Qu, Xuanhui

    2014-01-01

    Highlights: • Ti–24Nb–4Zr–7.9Sn alloy is prepared by powder metallurgy method. • The alloy prepared at 1250 °C for 2 h has more β-matrix and tiny α-precipitation. • The alloy prepared at 1250 °C for 2 h possesses good mechanical properties. • The alloy prepared at 1250 °C for 2 h exhibits better corrosion resistance. - Abstract: Ti–24Nb–4Zr–7.9Sn alloy was prepared by Powder Metallurgy (PM) method using titanium hydride powder, niobium powder, zirconium powder, and tin powder as raw materials. The effect of sintering processing on microstructure, mechanical properties, and corrosion resistance was investigated in details. The alloy possessed dominant β-matrix and a little α-precipitation. The mechanical properties of the alloy sintered at 1250 °C for 2 h were better than those of the alloys with other sintering processing, which would avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, the electrochemical behaviors in a simulated body fluid (Hank’s solution and simulated saliva solution) were also evaluated. Potentiodynamic polarization curves exhibited that the sample sintered at 1250 °C for 2 h had better corrosion properties than those of other sintering processing. The good corrosion resistance combined with better mechanical biocompatibility made the Ti–24Nb–4Zr–7.9Sn alloy suitable for use as orthopedic implants

  3. Phase Equilibria of the Ternary Sn-Pb-Co System at 250°C and Interfacial Reactions of Co with Sn-Pb Alloys

    Science.gov (United States)

    Wang, Chao-hong; Kuo, Chun-yi; Yang, Nian-cih

    2015-11-01

    The isothermal section of the ternary Sn-Pb-Co system at 250°C was experimentally determined through a series of the equilibrated Sn-Pb-Co alloys of various compositions. The equilibrium phases were identified on the basis of compositional analysis. For the Sn-Co intermetallic compounds (IMCs), CoSn3, CoSn2, CoSn and Co3Sn2, the Pb solubility was very limited. There exist five tie-triangle regions. The Co-Pb system involves one monotectic reaction, so the phase separation of liquid alloys near the Co-Pb side occurred prior to solidification. The immiscibility field was also determined. Additionally, interfacial reactions between Co and Sn-Pb alloys were conducted. The reaction phase for the Sn-48 at.%Pb and Sn-58 at.%Pb at 250°C was CoSn3 and CoSn2, respectively. Both of them were simultaneously formed in the Sn-53 at.%Pb/Co. The formed IMCs were closely associated to the phase equilibria relationship of the liquid-CoSn3-CoSn2 tie-triangle. Furthermore, with increasing temperatures, the phase formed in equilibrium with Sn-37 wt.%Pb was found to transit from CoSn3 to CoSn2 at 275°C. We propose a simple method of examining the phase transition temperature in the interfacial reactions to determine the boundaries of the liquid-CoSn3-CoSn2 tie-triangles at different temperatures.

  4. Fabrication and sulfurization of Cu{sub 2}SnS{sub 3} thin films with tuning the concentration of Cu-Sn-S precursor ink

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jie [Institute of Microelectronics & Department of Electrical Engineering, National Cheng Kung University, Taiwan (China); Shei, Shih-Chang, E-mail: scshei@mail.nutn.edu.tw [Department of Electrical Engineering, Nation University of Tainan, Taiwan (China); Chang, Shih-Chang [Department of Electrical Engineering, Nation University of Tainan, Taiwan (China); Chang, Shoou-Jinn [Institute of Microelectronics & Department of Electrical Engineering, National Cheng Kung University, Taiwan (China)

    2016-12-01

    Highlights: • Tuning the relative reaction rate of component phases proved to be beneficial in controlling the reaction process. • Low-concentration samples display closely packed Cu{sub 2}SnS{sub 3} grains with a flat morphology. • Optical band-gap energy measured at 1.346 eV suitable for thin-film solar cell applications. - Abstract: In this study, Cu-Sn-S nanoinks were synthesized by combining chelating polyetheramine to Cu, Sn, S powders of various concentrations. X-ray diffraction patterns indicate that nanoinks synthesized at low concentrations are composed almost entirely of binary phases SnS and Cu{sub 2}S. Synthesizing nanoinks at higher concentrations decreased the quantity of binary phase and led to the appearance of ternary phase Cu{sub 4}SnS{sub 4}. Following sulfurization, single phase Cu{sub 2}SnS{sub 3} (CTS) thin film was obtained from nanoinks of low concentration; however, impurities, such as Cu{sub 2}S were detected in the thin film obtained from nanoinks of high concentration. This can be attributed to the fact that lower concentrations reduce the reactivity of all the elements. As a result, the SnS phase reacted more readily and more rapidly, resulting in the early formation of a stoichiometric CTS thin film during sulfurization. Under these reaction conditions, Cu{sub 2}S and SnS transform into CTS and thereby prevent the formation of unwanted phases of Cu{sub 2}S and Cu{sub 4}SnS{sub 4}. Raman spectra revealed that second phase Cu{sub 2}S phase remained in the high-concentration samples, due to an increase in reactivity due to the participation of a greater proportion of the copper in the reaction. The surface microstructure of low-concentration samples display closely packed Cu{sub 2}SnS{sub 3} grains with a flat morphology and an atomic composition ratio of Cu:Sn:S = 34.69:15.90:49.41, which is close to stoichiometric. Hall measurement revealed that low-concentration sample has superior electrical properties; i.e., a hole

  5. Properties of idealized designs of NB3SN composites

    International Nuclear Information System (INIS)

    Smathers, D.B.; Larbalestier, D.C.; Lee, P.J.; Marken, K.R.; McDonald, W.K.; O'Larey, P.M.

    1985-01-01

    A series of seven idealized bronze-Nb 3 Sn composites were manufactured by the MJR process with varying matrix to filament ratios and pure Nb and Nb 0.8 wt.% Ti cores. The central core of each composite was sealed by a diffusion barrier which results in each filament having an identical source of tin. Initial evaluations of the composites from critical current and transmission electron microscopy measurements are presented and their properties compared to standard MJR composites. The Nb 3 Sn current density does not appear to be a strong function of bronze to Nb ratio over the range 2.4 to 3.2:1. The standard MJR composites have higher critical current densities than the idealized composites. It is proposed that the major reason for the increased current density of the normal MJR conductors is the intrinsically higher quality of the filaments close to the central tin core. It is postulated that the high Sn content of the bronze surrounding these filaments leads to an intrinsically higher Nb 3 Sn filament current density

  6. STRESS a SN survey at ESO

    Science.gov (United States)

    Botticella, M. T.

    We performed the Southern inTermediate Redshift ESO Supernova Search (STRESS), a survey specifically designed to measure the rate of both SNe Ia and CC SNe, in order to obtain a direct comparison of the high redshift and local rates and to investigate the dependence of the rates on specific galaxy properties, most notably their colour. We found that the type Ia SN rate, at mean redshift z = 0.3, is 0.22+0.10+0.16-0.08-0.14 h270 SNu, while the CC SN rate, at z = 0.21, is 0.82+0.31+0.300.24-0.26 h270 SNu. The quoted errors are the statistical and systematic uncertainties. With respect to the local value, the CC SN rate at z = 0.2 is higher by a factor of ˜ 2, whereas the type Ia SN rate remains almost constant. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. Finally we exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations.

  7. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-07-01

    A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e

  8. Microwave heated polyol synthesis of carbon supported PtAuSn/C nanoparticles for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Han, Kefei [School of Science, State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Yingli; Chang, Zhaorong [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan (China); Shen, Liangbo [Beijing No.4 High School, Beijing (China); Wei, Yongsheng; Guo, Zhijun (School of Science Beijing Jiaotong University Beijing P. R. China); Wang, Haijiang [Institute for Fuel Cell Innovation, National Research Council of (Canada)

    2010-04-15

    Carbon-supported PtAuSn/C nanoparticle catalyst was synthesized by a microwave-assisted polyol process. The process is a quick process that only requires a few minutes to complete. The catalyst thus obtained was characterized by transmission electron microscopy and X-ray diffraction analysis. The electrochemical performance of the catalyst, for the ethanol oxidation reaction, was also investigated. The results indicated that the PtAuSn/C catalyst was uniformly dispersed on carbon and was in the nano-size range. The electrochemical measurements indicated that PtAuSn/C nanoparticle catalyst synthesized by the microwave-assisted polyol method demonstrated a significantly higher electrochemically active area and higher catalytic activity than Pt/C for the ethanol oxidation reaction. (author)

  9. Ultrathin SnO2 nanosheets: Oriented attachment mechanism, nonstoichiometric defects and enhanced Lithium-ion battery performances

    DEFF Research Database (Denmark)

    Wang, Cen; Du, Gaohui; Ståhl, Kenny

    2012-01-01

    investigations of tin oxides as well as their intertransition processes. Finally, we investigated the lithium-ion storage of the SnO2 NSs as compared to SnO2 hollow spheres and NPs. The results showed superior performance of SnO2 NSs sample over its two counterparts. This greatly enhanced Li-ion storage...

  10. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes.

    Science.gov (United States)

    Zaborowska, Justyna; Taylor, Alice; Roeder, Robert G; Murphy, Shona

    2012-01-01

    Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.

  11. Magnetoresistance of UPdSn and pressure effect

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Alsmadi, A.; Nakotte, H.; Kamarád, Jiří; Sechovský, V.; Lacerda, A. H.; Mihálik, M.

    2003-01-01

    Roč. 34, č. 2 (2003), s. 1197-1200 ISSN 0587-4254. [International Conference on Strongly Correlated Electron Systems (SCES 02). Cracow, 10.07.2002-13.07.2002] R&D Projects: GA ČR GP202/01/D045; GA ČR GA106/02/0943 Grant - others:NSF(US) DMR-0094241; NSF(US) INT-9722777 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * UPdSn * pressure effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.752, year: 2003

  12. Sn whiskers removed by energy photo flashing

    International Nuclear Information System (INIS)

    Jiang, N.; Yang, M.; Novak, J.; Igor, P.; Osterman, M.

    2012-01-01

    Highlights: ► Sn whiskers were sintered by intense light flashing (Photosintering). ► Photosintering can effectively eliminate Sn whiskers. ► Photosintering would not damage electronic devices. ► Photosintering is a very promising approach to improve Sn-based electronic surface termination. - Abstract: Sn whiskers have been known to be the major issue resulting in electronic circuit shorts. In this study, we present a novel energy photo flashing approach (photosintering) to shorten and eliminate Sn whiskers. It has been found that photosintering is very effective to modify and remove Sn whiskers; only a sub-millisecond duration photosintering can amazingly get rid of over 90 vol.% of Sn whiskers. Moreover, this photosintering approach has also been proved to cause no damages to electronic devices, suggesting it is a potentially promising way to improve Sn-based electronic surface termination.

  13. SnSe2 2D Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2016-08-22

    A simple synthesis method to prepare pure SnSe2 nanosheet anodes for Na ion batteries is reported. The SnSe2 2D sheets achieve a stable and reversible specific capacity of 515 mA h g-1 after 100 cycles, with excellent rate performance. The sodiation and desodiation process in this anode material is shown to occur via a combination of conversion and alloying reactions.

  14. Electronic structure and isomer shifts of Sn halides

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1988-01-01

    The all-electron first-principles Discrete Variational method was employed to study the electronic structure of SnF 4 , SnCl 4 , SnBr 4 and SnI 4 . Values of the electronic density at the Sn nucleus were derived and related to 119 Sn Isomer Shifts to obtain the nuclear constant Δ 2 >. Differences in values of ρ(o) area discussed in terms of the chemical bonding between Sn and halogen atoms. (author) [pt

  15. 195Pt and 119Sn Knight shifts of U3Pt3Sn4

    International Nuclear Information System (INIS)

    Kojima, K.; Takabatake, T.; Harada, A.; Hihara, T.

    1995-01-01

    The 195 Pt and 119 Sn Knight shifts in U 3 Pt 3 Sn 4 have been measured in the temperature range 4.2-298K. They exhibit Curie-Weiss like behaviors above about 50K and remain constant below about 10K. This suggests that the deviation of χ(T) from the modified Curie-Weiss law is an intrinsic property of U 3 Pt 3 Sn 4 . ((orig.))

  16. Studies on the condition of obtaining a single phase superconducting Nb/sub 3/Sn layer by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B [Politechnika Wroclawska (Poland); Chojcan, J [Wroclaw Univ. (Poland)

    1983-11-16

    The /sup 119/Sn Moessbauer spectroscopy was used to examine the influence of temperature (1153 to 1253 K) and heating time (11 and 22 min) on the formation of the ..beta..-Nb/sub 3/Sn phase in simultaneous processes: peritectic reaction of NbSn/sub 2/ phase decomposition and reactive diffusion of Sn atoms into the Nb1.5%Zr base.

  17. Formation of anomalous eutectic in Ni-Sn alloy by laser cladding

    Science.gov (United States)

    Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong

    2018-02-01

    Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.

  18. Fluid-sensitive nanoscale switching with quantum levitation controlled by α -Sn/β -Sn phase transition

    Science.gov (United States)

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-03-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α -Sn to metallic β -Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α -Sn and β -Sn , giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening liquid mixture. In this way, one may be able to produce phase-transition-controlled quantum levitation in a liquid medium.

  19. Comparison of recent SnIa datasets

    International Nuclear Information System (INIS)

    Sanchez, J.C. Bueno; Perivolaropoulos, L.; Nesseris, S.

    2009-01-01

    We rank the six latest Type Ia supernova (SnIa) datasets (Constitution (C), Union (U), ESSENCE (Davis) (E), Gold06 (G), SNLS 1yr (S) and SDSS-II (D)) in the context of the Chevalier-Polarski-Linder (CPL) parametrization w(a) = w 0 +w 1 (1−a), according to their Figure of Merit (FoM), their consistency with the cosmological constant (ΛCDM), their consistency with standard rulers (Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO)) and their mutual consistency. We find a significant improvement of the FoM (defined as the inverse area of the 95.4% parameter contour) with the number of SnIa of these datasets ((C) highest FoM, (U), (G), (D), (E), (S) lowest FoM). Standard rulers (CMB+BAO) have a better FoM by about a factor of 3, compared to the highest FoM SnIa dataset (C). We also find that the ranking sequence based on consistency with ΛCDM is identical with the corresponding ranking based on consistency with standard rulers ((S) most consistent, (D), (C), (E), (U), (G) least consistent). The ranking sequence of the datasets however changes when we consider the consistency with an expansion history corresponding to evolving dark energy (w 0 ,w 1 ) = (−1.4,2) crossing the phantom divide line w = −1 (it is practically reversed to (G), (U), (E), (S), (D), (C)). The SALT2 and MLCS2k2 fitters are also compared and some peculiar features of the SDSS-II dataset when standardized with the MLCS2k2 fitter are pointed out. Finally, we construct a statistic to estimate the internal consistency of a collection of SnIa datasets. We find that even though there is good consistency among most samples taken from the above datasets, this consistency decreases significantly when the Gold06 (G) dataset is included in the sample

  20. α-Sn and β-Sn precipitates in annealed epitaxial Si0.95Sn0.05

    DEFF Research Database (Denmark)

    Fyhn, M.F.; Chevallier, J.; Larsen, A.N.

    1999-01-01

    -Sn and beta-Sn crystallites. The presence of alpha-Sn at temperatures far above the bulk alpha beta transition temperature is explained by interface and pressure effects; the latter is likely to be due to the difference in thermal expansion of the precipitates and the matrix.......-temperature molecular-beam epitaxy on Si (001) and relaxed Si1-xGex substrates. Two different phases of solid Sn were identified in the annealed layers: the semiconductor phase, alpha-Sn, and the metallic phase beta-Sn The precipitates were found to consist of either only beta-Sn or to contain crystallites of both...... solid Sn phases. The orientations, the sizes and the relative number densities of the alpha-Sn and beta-Sn crystallites were investigated. in situ heating and cooling experiments were performed in the transmission electron microscope to study the melting and solidification characteristics of the alpha...

  1. Interfacial microstructures and solder joint strengths of the Sn-8Zn-3Bi and Sn-9Zn-lAl Pb-free solder pastes on OSP finished printed circuit boards

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.-T. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miaoli 36003, Taiwan (China); Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195 Section 4, Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan (China); Hsi, C.-S. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miaoli 36003, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw; Chang, T.-C.; Liang, M.-K. [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195 Section 4, Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan (China)

    2008-07-14

    Two kinds of lead-free solders, Sn-8Zn-3Bi and Sn-9Zn-lAl, were used to mount passive components onto printed circuit boards via a re-flow soldering process. The samples were stored at 150 deg. C for 200, 400, 600, 800, and 1100 h. The microstructures of the samples after aged at 150 deg. C for various times were characterized using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and the analyzed of solder joint shear strengths. The joint strength between Sn-8Zn-3Bi and Cu pad was about 4.0 {+-} 0.3 kg, while the strength between Sn-9Zn-lAl and Cu pad had values of 2.6 {+-} 0.1 kg. Both kinds of solder joints exhibited reduced strengths with increasing aging times. After aging at 150 deg. C for 1100 h, the joints strengths of Sn-8Zn-3Bi and Sn-9Zn-lAl were 1.8 {+-} 0.3 and 1.7 {+-} 0.3 kg, respectively. Both the Sn-8Zn-3Bi and Sn-9Zn-lAl joints showed brittle fracture behaviors. A flat layer of Cu{sub 5}Zn{sub 8} intermetallic compound (IMC) was formed between Sn-8Zn-3Bi solder and Cu pad after reflow. When the aging time was increased to 400 h, Zn-depletion and formation of Cu{sub 6}Sn{sub 5} IMC were observed in the solders due to the interaction between the tin and zinc compounds. The interaction between Sn-9Zn-lAl solder and Cu pad had similar behavior, however, Cu{sub 6}Sn{sub 5} IMC formed in Sn-9Zn-lAl solder when after aging at 150 deg. C for 600 h. As the aging time increased, both types of solders generated clear IMC spalling layers with large and continuous voids. Those voids substantially decreased the joint strength.

  2. Anomalous temperature behavior of Sn impurities

    International Nuclear Information System (INIS)

    Haskel, D.; Shechter, H.; Stern, E.A.; Newville, M.; Yacoby, Y.

    1993-01-01

    Sn impurities in Pb and Ag hosts have been investigated by Moessbauer effect and in Pb by x-ray-absorption fine-structure (XAFS) studies. The Sn atoms are dissolved up to at least 2 at. % in Pb and up to at least 8 at. % in Ag for the temperature ranges investigated. The concentration limit for Sn-Sn interactions is 1 at. % for Pb and 2 at. % for Ag as determined experimentally by lowering the Sn concentration until no appreciable change occurs in the Moessbauer effect. XAFS measurements verify that the Sn impurities in Pb are dissolved and predominantly at substitutional sites. For both hosts the temperature dependence of the spectral intensities of isolated Sn impurities below a temperature T 0 is as expected for vibrating about a lattice site. Above T 0 the Moessbauer spectral intensity exhibits a greatly increased rate of drop-off with temperature without appreciable broadening. This drop-off is too steep to be explained by ordinary anharmonic effects and can be explained by a liquidlike rapid hopping of the Sn, localized about a lattice site. Higher-entropy-density regions of radii somewhat more than an atomic spacing surround such impurities, and can act as nucleation sites for three-dimensional melting

  3. Self-annealing in a two-phase Pb-Sn alloy after processing by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Nian Xian [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Chinh, Nguyen Q. [Department of Materials Physics, Eötvös Loránd University, 1117 Budapest, Pázmány Péter s. 1/A. (Hungary); Kawasaki, Megumi [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Huang, Yi, E-mail: Y.Huang@soton.ac.uk [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Langdon, Terence G. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2016-06-01

    A Pb-62% Sn two-phase eutectic alloy was processed by high-pressure torsion (HPT) and stored at room temperature (RT) to investigate the occurrence of self-annealing. The microstructural characteristics and mechanical properties were recorded during self-annealing using scanning electron microscopy, tensile testing and nanoindentation. Processing by HPT produces a weakening effect but storage at RT leads to a gradual increase in the hardness together with significant grain growth. Nanoindentation tests were performed by applying both the indentation depth-time (h-t) relationship at the holding stage and the hardness, H, at various loading rates in order to explore the evolution of the strain rate sensitivity (SRS), m. The results obtained by tensile testing and nanoindentation are consistent despite the large difference in the volumes of the examined regions, thereby confirming the validity of using nanoindentation to measure the strain rate sensitivity.

  4. Electrochemical Behavior of Sn-9Zn- xTi Lead-Free Solders in Neutral 0.5M NaCl Solution

    Science.gov (United States)

    Wang, Zhenghong; Chen, Chuantong; Jiu, Jinting; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Zhang, Hao; Zhang, Gong; Suganuma, Katsuaki

    2018-05-01

    Electrochemical techniques were employed to study the electrochemical corrosion behavior of Sn-9Zn- xTi ( x = 0, 0.05, 0.1, 0.2 wt.%) lead-free solders in neutral 0.5M NaCl solution, aiming to figure out the effect of Ti content on the corrosion properties of Sn-9Zn, providing information for the composition design of Sn-Zn-based lead-free solders from the perspective of corrosion. EIS results reveal that Ti addition was involved in the corrosion product layer and changed electrochemical interface behavior from charge transfer control process to diffusion control process. The trace amount of Ti addition (0.05 wt.%) can refine the microstructure and improve the corrosion resistance of Sn-9Zn solder, evidenced by much lower corrosion current density ( i corr) and much higher total resistance ( R t). Excess Ti addition (over 0.1 wt.%) led to the formation of Ti-containing IMCs, which were confirmed as Sn3Ti2 and Sn5Ti6, deteriorating the corrosion resistance of Sn-9Zn- xTi solders. The main corrosion products were confirmed as Sn3O(OH)2Cl2 mixed with small amount of chlorine/oxide Sn compounds.

  5. Effect of Sn Composition in Ge1- x Sn x Layers Grown by Using Rapid Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kil, Yeon-Ho; Kang, Sukill; Jeong, Tae Soo; Shim, Kyu-Hwan; Kim, Dae-Jung; Choi, Yong-Dae; Kim, Mi Joung; Kim, Taek Sung

    2018-05-01

    The Ge1- x Sn x layers were grown by using rapid thermal chemical-vapor deposition (RTCVD) on boron-doped p-type Si (100) substrates with Sn compositions up to x = 0.83%. In order to obtain effect of the Sn composition on the structural and the optical characteristics, we utilized highresolution X-ray diffraction (HR-XRD), etch pit density (EPD), atomic force microscopy (AFM), Raman spectroscopy, and photocurrent (PC) spectra. The Sn compositions in the Ge1- x Sn x layers were found to be of x = 0.00%, 0.51%, 0.65%, and 0.83%. The root-mean-square (RMS) of the surface roughness of the Ge1- x Sn x layer increased from 2.02 nm to 3.40 nm as the Sn composition was increased from 0.51% to 0.83%, and EPD was on the order of 108 cm-2. The Raman spectra consist of only one strong peak near 300 cm-1, which is assigned to the Ge-Ge LO peaks and the Raman peaks shift to the wave number with increasing Sn composition. Photocurrent spectra show near energy band gap peaks and their peak energies decrease with increasing Sn composition due to band-gap bowing in the Ge1- x Sn x layer. An increase in the band gap bowing parameter was observed with increasing Sn composition.

  6. Electrochemical properties of SnO2/carbon composite materials as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Jie; Zhao Hailei; Liu Xiaotong; Wang Jing; Wang Chunmei

    2011-01-01

    Highlights: → SnO 2 /carbon powders with a cauliflower-like particle structure were synthesized. → Post-annealing can improve the electrochemical properties of SnO 2 /C composite. → The 500 deg. C-annealed SnO 2 /C shows the best electrochemical performance. → The lithium ion diffusion coefficients of the SnO 2 /C electrodes were calculated. - Abstract: SnO 2 /carbon composite anode materials were synthesized from SnCl 4 .5H 2 O and sucrose via a hydrothermal route and a post heat-treatment. The synthesized spherical SnO 2 /carbon powders show a cauliflower-like micro-sized structure. High annealing temperature results in partial reduction of SnO 2 . Metallic Sn starts to emerge at 500 deg. C. High Sn content in SnO 2 /carbon composite is favorable for the increase of initial coulombic efficiency but not for the cycling stability. The SnO 2 /carbon annealed at 500 deg. C exhibits high specific capacity (∼400 mAh g -1 ), stable cycling performance and good rate capability. The generation of Li 2 O in the first lithiation process can prevent the aggregation of active Sn, while the carbon component can buffer the big volume change caused by lithiation/delithiation of active Sn. Both of them make contribution to the better cycle stability.

  7. THE LONG-LIVED UV ''PLATEAU'' OF SN 2012aw

    Energy Technology Data Exchange (ETDEWEB)

    Bayless, Amanda J.; Roming, Peter W. A. [Southwest Research Institute, Department of Space Science, 6220 Culebra Road, San Antonio, TX 78238 (United States); Pritchard, Tyler A. [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802 (United States); Kuin, Paul [Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Brown, Peter J. [Texas A and M University, Department of Physics and Astronomy, College Station, TX 77843-4242 (United States); Botticella, Maria Teresa; Dall' Ora, Massimo [INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, I-80131 Napoli (Italy); Frey, Lucille H.; Even, Wesley; Fryer, Chris L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maund, Justyn R.; Fraser, Morgan [Astrophysics Research Center, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom)

    2013-02-10

    Observations with the Swift UV Optical Telescope have unambiguously uncovered for the first time a long-lived, UV ''plateau'' in a Type II-P supernova (SN). Although this flattening in slope is hinted at in a few other SNe, due to its proximity and minimal line-of-sight extinction, SN 2012aw has afforded the first opportunity to clearly observe this UV plateau. The observations of SN 2012aw revealed all Swift UV and u-band light curves initially declined rapidly, but 27 days after the explosion the light curves flattened. Some possible sources of the UV plateau are the same thermal process that causes the optical plateau, heating from radioactive decay, or a combination of both processes.

  8. Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2/Zn2SnO4 Coupled Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tiekun Jia

    2014-01-01

    Full Text Available Zn-doped SnO2/Zn2SnO4 nanocomposites were prepared via a two-step hydrothermal synthesis method. The as-prepared samples were characterized by X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, UV-vis diffuse reflection spectroscopy, and adsorption-desorption isotherms. The results of FESEM and TEM showed that the as-prepared Zn-doped SnO2/Zn2SnO4 nanocomposites are composed of numerous nanoparticles with the size ranging from 20 nm to 50 nm. The specific surface area of the as-prepared Zn-doped SnO2/Zn2SnO4 nanocomposites is estimated to be 71.53 m2/g by the Brunauer-Emmett-Teller (BET method. The photocatalytic activity was evaluated by the degradation of methylene blue (MB, and the resulting showed that Zn-doped SnO2/Zn2SnO4 nanocomposites exhibited excellent photocatalytic activity due to their higher specific surface area and surface charge carrier transfer.

  9. Layered SnS sodium ion battery anodes synthesized near room temperature

    KAUST Repository

    Xia, Chuan

    2017-08-10

    In this report, we demonstrate a simple chemical bath deposition approach for the synthesis of layered SnS nanosheets (typically 6 nm or ~10 layers thick) at very low temperature (40 °C). We successfully synthesized SnS/C hybrid electrodes using a solution-based carbon precursor coating with subsequent carbonization strategy. Our data showed that the ultrathin carbon shell was critical to the cycling stability of the SnS electrodes. As a result, the as-prepared binder-free SnS/C electrodes showed excellent performance as sodium ion battery anodes. Specifically, the SnS/C anodes delivered a reversible capacity as high as 792 mAh·g−1 after 100 cycles at a current density of 100 mA·g−1. They also had superior rate capability (431 mAh·g−1 at 3,000 mA·g−1) and stable long-term cycling performance under a high current density (345 mAh·g−1 after 500 cycles at 3 A·g−1). Our approach opens up a new route to synthesize SnS-based hybrid materials at low temperatures for energy storage and other applications. Our process will be particularly useful for chalcogenide matrix materials that are sensitive to high temperatures during solution synthesis.

  10. Nb3Sn conductor development for the ITER magnets

    International Nuclear Information System (INIS)

    Mitchell, N.

    1997-01-01

    The ITER magnet system consists of Toroidal Field (TF) coils, Poloidal Field (PF) coils, the Central Solenoid (CS) and error field correction coils (CC). The conductors for the coils are Nb 3 Sn or NbTi cable in conduit type, forced flow cooled with supercritical helium having a maximum operating current in the range 40-60 kA. To qualify the Nb 3 Sn conductor, two large model coils (energy up to 640 MJ) are being wound by the Home Teams of the Parties to the ITER EDA Agreement. A total of 24 t of strand has been completed for the CS model coil and 4 t for the TF model coil, and fabricated into 7 km of conductor in unit lengths up to 210 m, by an international collaboration involving 12 companies in Europe, Japan, Russia and the USA

  11. Nuclear-spectroscopic studies in the 132Sn region

    International Nuclear Information System (INIS)

    Arndt, Oliver

    2007-10-01

    In this work investigations on r-process nuclides around the N = 82 shell closure are done. The so far unknown half-lives and P n -values of 137-139 Sb and 139 Te and their impact to r-process theory are given. Further the results of Shergur et. al. of neutron rich tin ( 137,138 Sn) are verified and in some points improved. New data on γ-decay spectroscopy for 136 Sn from single spectra is published. To improve beam quality and solve long known problems on ISOL-facilities with isobaric contamination, new techniques are discussed. A special focus is on molecular sidebands, which is first time adapted to a target/ion source unit in a mass separation facility. It was possible to create a strong SnS + sideband and in this way to reduce isobaric background with good beam intensities. On the other hand, a target with temperature controlled transfer line was build and its characteristics are discussed. To improve selectivity of a given experiment on neutron rich nuclei a new detector system for nγ-coincidences was developed. Due to a special electronically setup of the new system it was possible to downsize the coincidence window compared to earlier attempts. (orig.)

  12. Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Preuss, A.; Adolphi, B.

    1998-01-01

    : (1) SnPb; (2) InSn; (3) AuSn. The studies of the oxidation kinetics show that the growth of the native oxide, which covers the solder surfaces from the start of all soldering operations is self-limiting. The rate of oxidation on the molten, metallic solder surfaces is significantly reduced...... and reduction kinetics, are applied to flip-chip (FC) bonding experiments in vacuum with and without the injection of H2. Wetting in vacuum is excellent but the self-alignment during flip-chip soldering is restricted. The desired, perfectly self-aligned FC-bonds have been only achieved, using evaporated...

  13. Zn{sub 2}SnO{sub 4}-SnO{sub 2} heterojunction nanocomposites for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Bihui; Luo Lijuan; Xiao Ting; Hu Xiaoyan [Institute of Nano-science and Technology, Central China Normal University, Wuhan, 430079 (China); Lu Lu; Wang, Jianbo [Department of Physics, Wuhan University, Wuhan 430072 (China); Tang Yiwen, E-mail: ywtang@phy.ccnu.edu.cn [Institute of Nano-science and Technology, Central China Normal University, Wuhan, 430079 (China)

    2011-02-03

    Graphical abstract: Display Omitted Research highlights: > The ZTO-SnO{sub 2} based DSSC shows superior photovoltaic performance than single phase ZTO or Pm-ZTO-SnO{sub 2} (physical mixture of ZTO and SnO{sub 2} nanoparticles having the same ZTO/SnO{sub 2} composition) based DSSC. > The obvious improvement in the photovoltaic performance is mainly ascribed to the efficient injected electrons transfer between the two materials via heterojunctions and consequent suppress the recombination. - Abstract: Zn{sub 2}SnO{sub 4}-SnO{sub 2} heterojunction nanocomposites (ZTO-SnO{sub 2}) with high mass amount of ZTO were synthesized by a two-step technique. The route involves firstly the synthesis of monodispersed ZnSn(OH){sub 6} nanocubes with a 50-60 nm edge length as precursors by simple coprecipitation of Na{sub 2}SnO{sub 3}.3H{sub 2}O and ZnCl{sub 2} aqueous solution, assisted by ultrasonic treatment and then followed by calcination of the precursors at 800 deg. C under N{sub 2} atmosphere. The as-synthesized nanoparticles were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Heterojunction between ZTO and SnO{sub 2} nanoparticle was confirmed by the electron energy loss spectroscopy (EELS) elemental mapping and high-resolution TEM (HRTEM). The photovoltaic performance of the ZTO-SnO{sub 2} based DSSC was examined by measuring the J-V curves both in dark and under illumination. The results show that the ZTO-SnO{sub 2} based DSSC exhibits superior photovoltaic performance as compared to the single phase ZTO based DSSCs. Under illumination of AM 1.5 simulated sunlight (100 mW/cm{sup 2}), the open circuit voltage of the cell based on ZTO-SnO{sub 2} is 706 mV, the short-current density is 2.85 mA/cm{sup 2}, and the efficiency is 1.29% which is increased by 43% from 0.90% to 1.29% compared with pure ZTO. The formation of the heterojunctions between ZTO and SnO{sub 2} nanoparticles is believed to reduce

  14. Effect of phosphorus element on the comprehensive properties of Sn-Cu lead-free solder

    International Nuclear Information System (INIS)

    Li Guangdong; Shi Yaowu; Hao Hu; Xia Zhidong; Lei Yongping; Guo Fu

    2010-01-01

    In the present work, the effect of phosphorus on the creep fatigue properties of Sn-Cu eutectic lead-free solder was carried out. The experimental results show that the melting temperature was almost not changed with adding small amount of P element. However, the addition of trace P element led to the decrease in the property of creep fatigue. The fractography analysis by a scanning electron microscopy (SEM) shows that ductile fracture was the dominant failure behavior in the process of creep fatigue test of Sn0.7Cu and Sn0.7Cu0.005P specimens. It should be pointed out that there is significant difference in the fractographs between the joints of Sn0.7Cu solder and Sn0.7Cu0.005P solder. In the fractograph of Sn0.7Cu solder joint, the microstructure is prolonged along testing direction, and the dimples were more than the fractograph of Sn0.7Cu0.005P solder joint. In addition, the voids could be found on the Sn0.7Cu0.005P solder joint, and trace P addition may increase the rate of forming void of Sn0.7Cu solder joint. The voids can potentially lead to crack initiation or propagation sites in the solder joint. As a result, the creep fatigue of solder joint containing P such as Sn0.7Cu0.005P offers worse property compared to Sn0.7Cu solder joint.

  15. Effect of phosphorus element on the comprehensive properties of Sn-Cu lead-free solder

    Energy Technology Data Exchange (ETDEWEB)

    Li Guangdong, E-mail: liguangdong@emails.bjut.edu.c [College of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China); Shi Yaowu; Hao Hu; Xia Zhidong; Lei Yongping; Guo Fu [College of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China)

    2010-02-18

    In the present work, the effect of phosphorus on the creep fatigue properties of Sn-Cu eutectic lead-free solder was carried out. The experimental results show that the melting temperature was almost not changed with adding small amount of P element. However, the addition of trace P element led to the decrease in the property of creep fatigue. The fractography analysis by a scanning electron microscopy (SEM) shows that ductile fracture was the dominant failure behavior in the process of creep fatigue test of Sn0.7Cu and Sn0.7Cu0.005P specimens. It should be pointed out that there is significant difference in the fractographs between the joints of Sn0.7Cu solder and Sn0.7Cu0.005P solder. In the fractograph of Sn0.7Cu solder joint, the microstructure is prolonged along testing direction, and the dimples were more than the fractograph of Sn0.7Cu0.005P solder joint. In addition, the voids could be found on the Sn0.7Cu0.005P solder joint, and trace P addition may increase the rate of forming void of Sn0.7Cu solder joint. The voids can potentially lead to crack initiation or propagation sites in the solder joint. As a result, the creep fatigue of solder joint containing P such as Sn0.7Cu0.005P offers worse property compared to Sn0.7Cu solder joint.

  16. Physical properties of some Sn-based melts

    Directory of Open Access Journals (Sweden)

    Ilinykh N.

    2011-05-01

    Full Text Available The physical properties (viscosity, density, electroresistivity and magnetic susceptibility of pure tin, copper, silver, some binary (Sn - Ag, Sn - Cu, Sn - Bi, Sn - Zn and ternary (Sn-Ag-Cu, Sn-BiAg, Sn-Bi-Zn alloys with near eutectic compositions are investigated in wide temperature ranges. The irreversible decrease of viscosity in pure tin melt is discovered at 820 °С during heating. The similar anomaly with the following hysteresis of dynamic viscosity was fixed for binary and ternary alloys but at higher temperatures – 900 °С and 950 °С respectively. For all the systems it was shown that the alloys with eutectic compositions differ significantly in their electric and magnetic properties from hypo- and hypereutectic ones. Qualitative and quantitative metallographic analysis for Sn-3.8wt.%Ag-0.7wt.%Cu samples, heated low and above characteristic temperatures, showed the influence of melt overheating on crystallization kinetics.

  17. Spliceosomal small nuclear RNAs of Tetrahymena thermophila and some possible snRNA-snRNA base-pairing interactions

    DEFF Research Database (Denmark)

    Orum, H; Nielsen, Henrik; Engberg, J

    1991-01-01

    We have identified and characterized the full set of spliceosomal small nuclear RNAs (snRNAs; U1, U2, U4, U5 and U6) from the ciliated protozoan Tetrahymena thermophila. With the exception of U4 snRNA, the sizes of the T. thermophila snRNAs are closely similar to their metazoan homologues. The T....... thermophila snRNAs all have unique 5' ends, which start with an adenine residue. In contrast, with the exception of U6, their 3' ends show some size heterogeneity. The primary sequences of the T. thermophila snRNAs contain the sequence motifs shown, or proposed, to be of functional importance in other...

  18. The interfacial free energy of solid Sn on the boundary interface with liquid Cd-Sn eutectic solution

    International Nuclear Information System (INIS)

    Saatci, B; Cimen, S; Pamuk, H; Guenduez, M

    2007-01-01

    Equilibrated grain boundary groove shapes for solid Sn in equilibrium with Cd-Sn liquid were directly observed after annealing a sample at the eutectic temperature for about 8 days. The thermal conductivities of the solid phase, K S , and the liquid phase, K L , for the groove shapes were measured. From the observed groove shapes, the Gibbs-Thomson coefficients were obtained with a numerical method, using the measured G, K S and K L values. The solid-liquid interfacial energy of solid Sn in equilibrium with Cd-Sn liquid was determined from the Gibbs-Thomson equation. The grain boundary energy for solid Sn was also calculated from the observed groove shapes

  19. Microstructural evolution and tensile properties of Sn-Ag-Cu mixed with Sn-Pb solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengjiang [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States); O' Keefe, Matthew [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)], E-mail: mjokeefe@mst.edu; Brinkmeyer, Brandon [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)

    2009-05-27

    The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC) Pb-free solder on the microstructure and tensile properties of the mixed alloys was investigated. Alloys containing 100, 75, 50, 25, 20, 15, 10, 5 and 0 wt% SAC, with the balance being Sn-37Pb eutectic solder alloy, were prepared and characterized. Optical and scanning electron microscopy were used to analyze the microstructures while 'mini-tensile' test specimens were fabricated and tested to determine mechanical properties at the mm length scale, more closely matching that of the solder joints. Microstructural analysis indicated that a Pb-rich phase formed and was uniformly distributed at the boundary between the Sn-rich grains or between the Sn-rich and the intermetallic compounds in the solder. Tensile results showed that mixing of the alloys resulted in an increase in both the yield and the ultimate tensile strength compared to the original solders, with the 50% SAC-50% Sn-Pb mixture having the highest measured strength. Initial investigations indicate the formation and distribution of a Pb-rich phase in the mixed solder alloys as the source of the strengthening mechanism.

  20. A dynamic balanced scorecard for identification internal process factor

    Directory of Open Access Journals (Sweden)

    Javad sofiyabadi

    2012-08-01

    Full Text Available We present a dynamic balanced score card (BSC to investigate the strategic internal process management factors. The proposed dynamic BSC emphasizes on internal processes aspect, and using VIKOR and Shannon Entropy, determinants the internal processes, process management and improvement and all important factors are ranked. The current study first introduces dynamic BSC and examines effective factors on the process. The proposed model focuses on internal processes perspective of BSC and determines importance degree of each factor is used using VIKOR decision-making techniques.

  1. Resistive switching characteristics of solution-processed Al-Zn-Sn-O films annealed by microwave irradiation

    Science.gov (United States)

    Kim, Tae-Wan; Baek, Il-Jin; Cho, Won-Ju

    2018-02-01

    In this study, we employed microwave irradiation (MWI) at low temperature in the fabrication of solution-processed AlZnSnO (AZTO) resistive random access memory (ReRAM) devices with a structure of Ti/AZTO/Pt and compared the memory characteristics with the conventional thermal annealing (CTA) process. Typical bipolar resistance switching (BRS) behavior was observed in AZTO ReRAM devices treated with as-deposited (as-dep), CTA and MWI. In the low resistance state, the Ohmic conduction mechanism describes the dominant conduction of these devices. On the other hand, the trap-controlled space charge limited conduction (SCLC) mechanism predominates in the high resistance state. The AZTO ReRAM devices processed with MWI showed larger memory windows, uniform distribution of resistance state and operating voltage, stable DC durability (>103 cycles) and stable retention characteristics (>104 s). In addition, the AZTO ReRAM devices treated with MWI exhibited multistage storage characteristics by modulating the amplitude of the reset bias, and eight distinct resistance levels were obtained with stable retention capability.

  2. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V., E-mail: dfsilva@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO{sub 2} phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  3. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    International Nuclear Information System (INIS)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V.

    2009-01-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO 2 phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  4. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo; Anjum, Dalaver H.; Wang, Qingxiao; Abou-Hamad, Edy; Emsley, Lyndon; Dong, Hailin; Laveille, Paco; Li, Lidong; Samal, Akshaya Kumar; Basset, Jean-Marie

    2014-01-01

    Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as

  5. Thermo-magnetic instabilities in Nb3Sn Superconducting Accelerator Magnets

    International Nuclear Information System (INIS)

    Bordini, Bernardo; Pisa U.

    2006-01-01

    The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb 3 Sn. Several laboratories in the US and Europe are currently working on developing Nb 3 Sn accelerator magnets, and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb 3 Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb 3 Sn; a description of the manufacturing process of Nb 3 Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb 3 Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis

  6. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    Science.gov (United States)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  7. Electronic structure and electric fields gradients of crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    The electronic structures of clusters representing crystalline compounds of Sn(II) and Sn(IV) were investigated, employing the first-principles Discrete Variational method and Local Density theory. Densities of states and related parameters were obtained and compared with experimental measurements and with results from band structure calculations. Effects of cluster size and of cluster truncated bonds are discussed. Electric field gradients at the Sn nucleus were calculated; results are analysed in terms of charge distribution and chemical bonding in the crystals. (author)

  8. In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation

    Science.gov (United States)

    Gonzalez, Joseph F.; Antartis, Dimitrios A.; Chasiotis, Ioannis; Dillon, Shen J.; Lambros, John

    2018-03-01

    Sn has been proposed for use as a high capacity anode material. Because of its ductile metallic nature, Sn may exhibit unique stress evolution during lithiation. Here, 2D radiography and 3D tomography are employed to visualize the evolution of geometry, internal structure, alloying, and damage during lithiation, delithiation, and rest of Sn wires with micron scale diameters. Lithiation proceeds isotropically, resulting in geometric and dimensional changes after 25% of total lithiation when the tensile stresses are sufficiently high to exceed the flow stress of the unlithiated Sn core and cause elongation and diameter increase. Damage occurs at later stages in the form of cracks terminating at the wire surface and voids forming in the unlithiated core. Notably, significant fragmentation occurs during delithiation which, due to void formation that accommodates the resulting stresses, does not measurably alter the wire cross-section and length. The distinguishing feature of the chemo-mechanics of Sn compared to Si or Ge is the pronounced creep rate at applied strain rates as high as 10-6 s-1, which promotes large strains in the core, eventually leading to void nucleation in the unlithiated core during lithiation, and more importantly, continues driving the deformation of the anode while at rest.

  9. Evaluating print performance of Sn-Ag-Cu lead-free solder pastes used in electronics assembly process

    Science.gov (United States)

    Mallik, S.; Bauer, R.; Hübner, F.; Ekere, N. N.

    2011-01-01

    Solder paste is the most widely used interconnection material in the electronic assembly process for attaching electronic components/devices directly onto the surface of printed circuit boards, using stencil printing process. This paper evaluates the performance of three different commercially available Sn-Ag-Cu solder pastes formulated with different particle size distributions (PSD), metal content and alloy composition. A series of stencil printing tests were carried out using a specially designed stencil of 75 μm thickness and apertures of 300×300 μm2 dimension and 500 μm pitch sizes. Solder paste printing behaviors were found related to attributes such as slumping and surface tension and printing performance was correlated with metal content and PSD. The results of the study should benefit paste manufacturers and SMT assemblers to improve their products and practices.

  10. Synthesis of Pt{sub 75}Sn{sub 25}/SnO{sub 2}/CNT nanoscaled electrode: Low onset potential of ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Tabet-Aoul, Amel [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada); Mohamedi, Mohamed, E-mail: mohamedi@emt.inrs.ca [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada)

    2013-03-15

    Highlights: ► A pulsed laser synthesis is used for the deposition of Pt, SnO{sub 2} and PtSn alloy thin films onto carbon nanotubes. ► These nanoscaled materials were characterized by FESEM, TEM, XRD and XPS. ► Enhanced electrocatalytic properties toward ethanol oxidation. -- Abstract: With the objective of lowering the potential oxidation of ethanol at PtSn nanocatalyst, we present the synthesis of free-standing catalyst layer comprising a current collector/carbon nanotubes (catalyst support)/SnO{sub 2}/Pt{sub 75}Sn{sub 25} (catalyst) nanostructured layers, each layer constructed upon the one below it. The CNTs are grown by chemical vapor deposition (CVD), whereas SnO{sub 2} and Pt{sub 75}Sn{sub 25} are synthesized by pulsed laser deposition and cross-beam laser deposition, respectively. FESEM revealed that Pt{sub 75}Sn{sub 25} nanoparticles assemble into cauliflower-like arrangement. TEM and HR-TEM showed that the Pt{sub 75}Sn{sub 25} layer thickness is of ca. 25 nm with a particle mean diameter of 4.3 nm. It was found that addition of SnO{sub 2} to Pt{sub 75}Sn{sub 25} promotes significantly the oxidation of ethanol at Pt{sub 75}Sn{sub 25} nanoparticles relative to a carbon nanotubes support. Indeed, the electrooxidation of ethanol at CNTs/SnO{sub 2}/Pt{sub 75}Sn{sub 25} electrode starts at about 100 mV negative with respect to that at CNT/Pt{sub 75}Sn{sub 25}. This decreased overpotential required to oxidize ethanol is very significant and has profound implications to developing high performing anodes for direct ethanol fuel cells technology.

  11. A facile one-pot method to Au–SnO2-graphene ternary hybrid

    International Nuclear Information System (INIS)

    Xu, Diou; Li, Xiaotian; Zhang, Dawei

    2014-01-01

    In this article, we propose a facile one-pot route for synthesizing Au–SnO 2 -graphene ternary hybrid. In the system, SnCl 2 not only as the precursor of SnO 2 , but also is employed as reducing agent for the effective reduction of both GO and HAuCl 4 to graphene and Au nanoparticles, respectively. The obtained Au–SnO 2 -graphene hybrid materials are characterized by atomic force microscopy, transmission electron microscopy, X-ray diffraction, Raman spectrum, X-ray photo-electron spectroscopy, and thermal gravimetric analysis. It is found that the content of Au nanoparticles decorated on the surface of graphene can be simply adjusted by changing the amount of HAuCl 4 used in the synthesis process

  12. Electrical characteristics for Sn-Ag-Cu solder bump with Ti/Ni/Cu under-bump metallization after temperature cycling tests

    Science.gov (United States)

    Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom

    2006-10-01

    Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.

  13. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    Science.gov (United States)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  14. Facile surfactant- and template-free synthesis and electrochemical properties of SnO{sub 2}/graphene composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing, E-mail: xy13787103391@126.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zhang, Xia, E-mail: zyx02090229@163.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Guo, Jianqiang; Peng, Rufang [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Xie, Ruishi [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); Huang, Yeju; Qi, Yongcheng [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2016-07-25

    In this work, we demonstrate a facile and green hydrothermal process without using any surfactant or template to synthesize SnO{sub 2} nanoflowers (NFs)/graphene nanosheets (GNSs) composites as a high-performance electrode material for electric double layer capacitors (EDLCs). The crystal structure and morphology of the products were characterized by X-ray diffraction, scanning electron microscopy, and transition electron microscopy. The electrochemical properties were investigated by galvanostatic charge/discharge cycling and cycling voltammetry in a voltage range of −0.2–0.8 V. The results exhibit that the addition of GNSs did not change the tetragonal crystal structure of SnO{sub 2}, and the GNSs were successfully coated on the flower-like surface of SnO{sub 2}. The grain morphology of SnO{sub 2}@GNSs composites has a flower-like appearance suggesting excellent electrochemical properties which were confirmed by electrochemical techniques. Compared with the GNSs, the SnO{sub 2}@GNSs composites exhibit a high specific discharge capacitance of 126 F g{sup −1} at 0.2 A g{sup −1} and remains 98.2% after 2000 charge–discharge cycles. The combination of GNSs and SnO{sub 2} could significantly improve the electrical conductivity, enhance the interactions between GNSs and SnO{sub 2} NFs and provide more reaction sites, thereby resulting in improved electrochemical properties for the SnO{sub 2}@GNSs composites in contrast with the pristine GNSs sample. The high specific capacity and long stability make the SnO{sub 2}@GNSs nanocomposite as a electrode material for high-performance supercapacitors. - Highlights: • SnO{sub 2} nanoflowers (NFs)/Graphene nanosheets(GNSs) composites were prepared by a simple and rapid hydrothermal process. • The results show that the GNSs were homogeneously and tightly attached on the surface of SnO{sub 2} NFs. • The SnO{sub 2} NFs/GNSs composites electrode exhibited the enhanced capacitive performances than those of pure GNSs.

  15. Hydrothermal synthesis and electrochemical properties of nano-sized Co-Sn alloy anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    He Jianchao; Zhao Hailei; Wang Jing; Wang Jie; Chen Jingbo

    2010-01-01

    Research highlights: → Nano-sized Co-Sn alloys were synthesized by hydrothermal route. → Li 2 O and CoSn can buffer the large volume change associated with lithiation of Sn. → A two-step reaction mechanism of CoSn 2 alloy during cycling was confirmed. - Abstract: Nano-sized Co-Sn alloys with a certain amount of Sn oxides used as potential anode materials for lithium ion batteries were synthesized by hydrothermal route. The effects of hydrothermal conditions and post annealing on the phase compositions and the electrochemical properties of synthesized powders were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) with energy dispersive spectra (EDS) analysis and galvanostatic cycling tests. Prolonging the dwelling time at the same hydrothermal temperature can increase the content of Sn oxides, which will lead to a high initial irreversible capacity loss but a better cycling stability owing to the buffer effect of irreversible product Li 2 O. Heat-treatment can increase the crystallinity and cause the presence of a certain amount of inert CoSn component, which both have positive impact on the cycling stability of Co-Sn electrode. By comparison with the lithiation/delithiation processes of metal Sn, a two-step mechanism of CoSn 2 alloy during cycling was confirmed.

  16. Texture-Etched SnO2 Glasses Applied to Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Bing-Rui Wu

    2014-01-01

    Full Text Available Transparent electrodes of tin dioxide (SnO2 on glasses were further wet-etched in the diluted HCl:Cr solution to obtain larger surface roughness and better light-scattering characteristic for thin-film solar cell applications. The process parameters in terms of HCl/Cr mixture ratio, etching temperature, and etching time have been investigated. After etching process, the surface roughness, transmission haze, and sheet resistance of SnO2 glasses were measured. It was found that the etching rate was increased with the additions in etchant concentration of Cr and etching temperature. The optimum texture-etching parameters were 0.15 wt.% Cr in 49% HCl, temperature of 90°C, and time of 30 sec. Moreover, silicon thin-film solar cells with the p-i-n structure were fabricated on the textured SnO2 glasses using hot-wire chemical vapor deposition. By optimizing the texture-etching process, the cell efficiency was increased from 4.04% to 4.39%, resulting from the increment of short-circuit current density from 14.14 to 15.58 mA/cm2. This improvement in cell performances can be ascribed to the light-scattering effect induced by surface texturization of SnO2.

  17. Cytoplasmic assembly of snRNP particles from stored proteins and newly transcribed snRNA's in L929 mouse fibroblasts

    International Nuclear Information System (INIS)

    Sauterer, R.A.; Feeney, R.J.; Zieve, G.W.

    1988-01-01

    Newly synthesized snRNAs appear transiently in the cytoplasm where they assemble into ribonucleoprotein particles, the snRNP particles, before returning permanently to the interphase nucleus. In this report, bona fide cytoplasmic fractions, prepared by cell enucleation, are used for a quantitative analysis of snRNP assembly in growing mouse fibroblasts. The half-lives and abundances of the snRNP precursors in the cytoplasm and the rates of snRNP assembly are calculated in L929 cells. With the exception of U6, the major snRNAs are stable RNA species; U1 is almost totally stable while U2 has a half-life of about two cell cycles. In contrast, the majority of newly synthesized U6 decays with a half-life of about 15 h. The relative abundances of the newly synthesized snRNA species U1, U2, U3, U4 and U6 in the cytoplasm are determined by Northern hybridization using cloned probes and are approximately 2% of their nuclear abundance. The half-lives of the two major snRNA precursors in the cytoplasm (U1 and U2) are approximately 20 min as determined by labeling to steady state. The relative abundance of the snRNP B protein in the cytoplasm is determined by Western blotting with the Sm class of autoantibodies and is approximately 25% of the nuclear abundance. Kinetic studies, using the Sm antiserum to immunoprecipitate the methionine-labeled snRNP proteins, suggest that the B protein has a half-life of 90 to 120 min in the cytoplasm. These data are discussed and suggest that there is a large pool of more stable snRNP proteins in the cytoplasm available for assembly with the less abundant but more rapidly turning-over snRNAs

  18. SnO2 Nanoparticle-Based Passive Capacitive Sensor for Ethylene Detection

    Directory of Open Access Journals (Sweden)

    Mangilal Agarwal

    2012-01-01

    Full Text Available A passive capacitor-based ethylene sensor using SnO2 nanoparticles is presented for the detection of ethylene gas. The nanoscale particle size (10 nm to 15 nm and film thickness (1300 nm of the sensing dielectric layer in the capacitor model aid in sensing ethylene at room temperature and eliminate the need for microhotplates used in existing bulk SnO2-resistive sensors. The SnO2-sensing layer is deposited using room temperature dip coating process on flexible polyimide substrates with copper as the top and bottom plates of the capacitor. The capacitive sensor fabricated with SnO2 nanoparticles as the dielectric showed a total decrease in capacitance of 5 pF when ethylene gas concentration was increased from 0 to 100 ppm. A 7 pF decrease in capacitance was achieved by introducing a 10 nm layer of platinum (Pt and palladium (Pd alloy deposited on the SnO2 layer. This also improved the response time by 40%, recovery time by 28%, and selectivity of the sensor to ethylene mixed in a CO2 gas environment by 66%.

  19. Efficient photocatalytic degradation of phenol in aqueous solution by SnO{sub 2}:Sb nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdi, Abdullah M., E-mail: Abdullah.Al.Hamdi@lut.fi [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Chemistry Department, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Bora, Tanujjal [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Dutta, Joydeep [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh (Oman); Functional Materials Division, ICT, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40 KistaStockholm (Sweden)

    2016-05-01

    Highlights: • Sb doped SnO{sub 2} nanoparticles were synthesized using sol–gel process. • Photocatalytic degradation of phenol were studies using SnO{sub 2}:Sb nanoparticles. • Under solar light phenol was degraded within 2 h. • Phenol mineralization and intermediates were investigated by using HPLC. - Abstract: Photodegradation of phenol in the presence of tin dioxide (SnO{sub 2}) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO{sub 2}. In this study antimony (Sb) doped tin dioxide (SnO{sub 2}) nanoparticles were prepared at a low temperature (80 °C) by a sol–gel method and studied for its photocatalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO{sub 2}:Sb was found to be a maximum for 0.6 wt.% Sb doped SnO{sub 2} nanoparticles with 10 mg L{sup −1} phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  20. Sintering of undoped SnO2 Sinterização de SnO2 não dopado

    Directory of Open Access Journals (Sweden)

    E. R. Leite

    2003-04-01

    Full Text Available Pure SnO2 sintering was studied by constant heating rate and isothermal sintering. The constant heating rate study showed no macroscopic shrinkage during the sintering process up to 1500 ºC. Pore size distribution measurements, using gas desorption, and grain size and crystallite size measurements of isothermally sintered samples showed no formation of non-densifying microstructures during the sintering process. These results are a strong indication that densification was prevented by thermodynamic factors, mainly the high ratio of gammaGB/gSV. An explanation, based on the nature of covalent bonding and the balance between attractive and repulsive forces, was proposed to explain the high gammaGB/gammaSV ratio in SnO2.A sinterização de SnO2 puro foi estudado por taxa constante de aquecimento e por sinterização isotérmica. O estudo de taxa constante de aquecimento mostrou que não ocorre retração macroscópica durante o processo de sinterização até temperaturas de 1500 ºC. Medidas de distribuição de tamanho de poros, usando adsorção de gás, tamanho de grão e tamanho de cristalito para amostras sinterizadas isotermicamente mostrou a não formação de uma microestrutura não-densificante durante o processo de sinterização. Estes resultados são um forte indicativo que a densificação foi inibida por fatores termodinâmicos, principalmente o alto valor da razão de gamaGB/gSV. Uma explicação, baseada na natureza covalente da ligação química e no balanço entre forças atrativas e repulsivas, é apresentada para explicar o alto valor da razão gamaGB/gamaSV no SnO2.

  1. Electrochemical properties of SnO{sub 2}/carbon composite materials as anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jie [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao Hailei, E-mail: hlzhao@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Lab of New Energy Materials and Technologies, Beijing 100083 (China); Liu Xiaotong; Wang Jing; Wang Chunmei [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-07-15

    Highlights: > SnO{sub 2}/carbon powders with a cauliflower-like particle structure were synthesized. > Post-annealing can improve the electrochemical properties of SnO{sub 2}/C composite. > The 500 deg. C-annealed SnO{sub 2}/C shows the best electrochemical performance. > The lithium ion diffusion coefficients of the SnO{sub 2}/C electrodes were calculated. - Abstract: SnO{sub 2}/carbon composite anode materials were synthesized from SnCl{sub 4}.5H{sub 2}O and sucrose via a hydrothermal route and a post heat-treatment. The synthesized spherical SnO{sub 2}/carbon powders show a cauliflower-like micro-sized structure. High annealing temperature results in partial reduction of SnO{sub 2}. Metallic Sn starts to emerge at 500 deg. C. High Sn content in SnO{sub 2}/carbon composite is favorable for the increase of initial coulombic efficiency but not for the cycling stability. The SnO{sub 2}/carbon annealed at 500 deg. C exhibits high specific capacity ({approx}400 mAh g{sup -1}), stable cycling performance and good rate capability. The generation of Li{sub 2}O in the first lithiation process can prevent the aggregation of active Sn, while the carbon component can buffer the big volume change caused by lithiation/delithiation of active Sn. Both of them make contribution to the better cycle stability.

  2. Polymer-SnO2 composite membranes

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Skou, Eivind Morten

    . This work utilizes the latter approach and makes use of particles of tin dioxide (SnO2). Polymer-SnO2 composite membranes were successfully prepared using an ion-exchange method. SnO2 was incorporated into membranes by ion-exchange in solutions of SnCl2 ∙ 2 H2O in methanol, followed by oxidation to SnO2...... in air. The content of SnO2 proved controllable by adjusting the concentration of the ion-exchange solution. The prepared nanocomposite membranes were characterized by powder XRD, 119Sn MAS NMR, electrochemical impedance spectroscopy, water uptake and tensile stress-strain measurements. For Nafion 117...

  3. Subgrain Rotation Behavior in Sn3.0Ag0.5Cu-Sn37Pb Solder Joints During Thermal Shock

    Science.gov (United States)

    Han, Jing; Tan, Shihai; Guo, Fu

    2018-01-01

    Ball grid array (BGA) samples were soldered on a printed circuit board with Sn37Pb solder paste to investigate the recrystallization induced by subgrain rotation during thermal shock. The composition of the solder balls was Sn3.0Ag0.5Cu-Sn37Pb, which comprised mixed solder joints. The BGA component was cross-sectioned before thermal shock. The microstructure and grain orientations were obtained by a scanning electron microscope equipped with an electron back-scattered diffraction system. Two mixed solder joints at corners of the BGA component were selected as the subjects. The results showed that recrystallization occurred at the corner of the solder joints after 200 thermal shock cycles. The recrystallized subgrains had various new grain orientations. The newly generated grain orientations were closely related to the initial grain orientations, which indicated that different subgrain rotation behaviors could occur in one mixed solder joint with the same initial grain orientation. When the misorientation angles were very small, the rotation axes were about Sn [100], [010] and [001], as shown by analyzing the misorientation angles and subgrain rotation axes, while the subgrain rotation behavior with large misorientation angles in the solder joints was much more complicated. As Pb was contained in the solder joints and the stress was concentrated on the corner of the mixed solder joints, concaves and cracks were formed. When the adjacent recrystallized subgrains were separated, and the process of the continuous recrystallization was limited.

  4. An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance

    International Nuclear Information System (INIS)

    Chen Yuejiao; Yu Ling; Li Qing; Wu Yan; Li Qiuhong; Wang Taihong

    2012-01-01

    We have successfully observed the development of three-dimensional (3D) face-centered-cubic ZnSnO 3 into two-dimensional (2D) orthorhombic ZnSnO 3 nanosheets, which is the first observation of 2D ZnSnO 3 nanostructures to date. The synthesis from 3D to 2D nanostructures is realized by the dual-hydrolysis-assisted liquid precipitation reaction and subsequent hydrothermal treatment. The time-dependent morphology indicates the transformation via a ‘dissolution–recrystallization’ mechanism, accompanied by a ‘further growth’ process. Furthermore, the 2D ZnSnO 3 nanosheets consist of smaller sized nanoflakes. This further increases the special specific surface area and facilitates their application in gas sensing. The 2D ZnSnO 3 nanosheets exhibit excellent gas sensing properties, especially through their ultra-fast response and recovery. When exposed to ethanol and acetone, the response rate is as fast as 0.26 s and 0.18 s, respectively, and the concentration limit can reach as low as 50 ppb of ethanol. All these results are much better than those reported so far. Our experimental results indicate an efficient approach to realize high-performance gas sensors. (paper)

  5. Sn-doped β-Ga2O3 nanowires deposited by radio frequency powder sputtering

    Science.gov (United States)

    Lee, Su Yong; Kang, Hyon Chol

    2018-01-01

    We report the synthesis and characterization of Sn-doped β-Ga2O3 nanowires (NWs) deposited using radio frequency powder sputtering. The growth sequence of Sn-doped β-Ga2O3 NWs is similar to that of the undoped β-Ga2O3 NWs. Self-assembled Ga clusters act as seeds for initiating the growth of Sn-doped β-Ga2O3 NWs through a vapor-liquid-solid process, while Sn atoms are incorporated into the trunk of NWs uniformly. Different from the straight shape of undoped NWs, the conical shape of NWs is observed, which is attributed to the change in supersaturation conditions and the diffusion of the catalyst tip and reaction species.

  6. One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties

    KAUST Repository

    Chen, Jun Song

    2009-01-01

    In this work, uniform SnO2 hollow nanospheres with large void space have been synthesized by a modified facile method. The void space can be easily controlled by varying the reaction time. The formation of interior void space is based on an inside-out Ostwald ripening mechanism. More importantly, this facile one-pot process can be extended to fabricate rattle-type hollow structures using α-Fe2O3@SnO2 as an example. Furthermore, the electrochemical lithium storage properties have been investigated. It is found that α-Fe2O3@SnO 2 nanorattles manifest a much lower initial irreversible loss and higher reversible capacity compared to SnO2 hollow spheres. This interesting finding supports a general hypothesis that a synergistic effect between functional core and shell materials can lead to improved lithium storage capabilities. © The Royal Society of Chemistry 2009.

  7. Controllable two-step growth and photoluminescence of waterweed-like SnO{sub 2} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Li-Wei, E-mail: liwei0509@gmail.com [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Huang, Meng-Wen [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Li, Chung-Tien [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Shih, Han C., E-mail: hcshih@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Department of Chemical and Materials Engineering, Chinese Culture University, Taipei 111, Taiwan (China)

    2013-08-15

    Waterweed-like SnO{sub 2} nanowires (NWs) were synthesized via a two-step thermal chemical vapor deposition (TVCD) process. Nanowhiskers with enlarged surface-to-volume ratio can be grown on NWs accurately, because of the product synthesized via the two-step process. These NWs and nanowhiskers with unusual [1 0 1] and [121{sup ¯}] growth directions have very straight and uniform diameters and lengths. Photoluminescence shows that waterweed-like SnO{sub 2} NWs have three prominent emission bands at 540, 612, and 668 nm. The waterweed-like SnO{sub 2} can be applied in optoelectronic devices and potential applications to lithium-ion batteries, because of its high surface-to-volume ratio and high electric capacity properties.

  8. Synthesis and melting behaviour of Bi, Sn and Sn–Bi nanostructured alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frongia, F.; Pilloni, M.; Scano, A.; Ardu, A.; Cannas, C.; Musinu, A. [Università di Cagliari, Dipartimento di Scienze Chimiche e Geologiche and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA (Italy); Borzone, G.; Delsante, S. [Department of Chemistry and Industrial Chemistry, Genoa University and Genoa Research Unit of the National Consortium of Materials Science and Technology (INSTM), Via Dodecaneso 31, I-16146 Genoa (Italy); Novakovic, R. [National Research Council (CNR), Institute for Energetics and Interphases (IENI), Via De Marini 6, 16149 Genoa (Italy); Ennas, G., E-mail: ennas@unica.it [Università di Cagliari, Dipartimento di Scienze Chimiche e Geologiche and Cagliari Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato, 09042 Monserrato, CA (Italy)

    2015-02-25

    Highlights: • Aqueous solution route is used to produce Bi, Sn and Bi–Sn nanoparticles. • HRTEM revealed core–shell and Janus type structures of Bi–Sn nanoparticles. • Melting temperature depression of Bi and Bi–Sn nanoparticles were measured by DSC. • DSC data on Bi melting temperature depression agrees with theoretical values. - Abstract: Lead-free solders based on Bi–Sn bimetallic nanoclusters with eutectic composition (Bi{sub 43}Sn{sub 57}) were synthesized at low temperature by simultaneous reduction reaction from aqueous solution containing bismuth and tin chlorides, using potassium borohydride as a reducing agent. By the same processing route, pure bismuth and tin nanoparticles have also been prepared. Microstructure, morphology and composition of the samples were characterized by X-ray powder diffraction (XRD), transmission (TEM) and scanning electron microscopy (SEM). TEM images of Bi–Sn nanoparticles show average size ranging from 30 to 100 nm. Thermal behaviour of Bi–Sn nanopowders was studied by DSC (differential scanning calorimetry) and a melting temperature (135 °C) lower than that of the corresponding microcrystalline sample (139 °C) was observed. SEM micrographs of the thermally treated sample up to 400 °C show fine spherical grains in the micrometer range with finer powder particles on the surface. XRD powder diffraction analysis indicates the formation of bismuth and tin nanophases with an average particle size of 85 and 126 nm, respectively. The oxidation behaviour of the samples was also investigated. The results obtained have been analyzed in view of theoretical models describing the melting temperature depression of nanoparticles.

  9. Photocatalytic activity of galvanically synthesized nanostructure SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sumanta, E-mail: sumantajana85@gmail.com [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Mitra, Bibhas Chandra [Department of Physics, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Bera, Pulakesh [Department of Chemistry, Panskura Banamali College, Purba Medinipur, Panskura 721152, WB (India); Sikdar, Moushumi [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Mondal, Anup, E-mail: anupmondal2000@yahoo.co.in [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India)

    2014-07-25

    Graphical abstract: Nanostructured porous tin dioxide (SnO{sub 2}) thin films have been synthesized by simple and cost effective galvanic technique. The synthesized porous SnO{sub 2} thin films show excellent photocatalytic activity for degrading methyl orange (MO) dye under light irradiation. The porous morphological grain growth due to annealing is likely to play an active role for this degradation. - Highlights: • SnO{sub 2} thin films have been successfully synthesized by galvanic technique. • A drastic morphological change occurs after annealing as deposited SnO{sub 2} thin films. • Morphological advantage results enhanced photodegradation of dye. - Abstract: The study demonstrates an approach to synthesize nanostructure SnO{sub 2} thin films on TCO (transparent conducting oxide) coated glass substrates by galvanic technique. Aqueous solution of hydrated stannic chloride (SnCl{sub 4}⋅5H{sub 2}O) in potassium nitrate (KNO{sub 3}) solution was used as the working solution. The process involves no sophisticated reactor or toxic chemicals, and proceeds continuously under ambient condition; it provides an economic way of synthesizing nanostructure SnO{sub 2} semiconductor thin films. The influence of sintering temperature on crystalline structure, morphology, electrical and dielectric properties has been studied. A detail analysis of I−V, C−V and dielectrics for annealed SnO{sub 2} thin films have been carried out. The morphological advantage i.e. nanoporous flake like structure allows more efficient transport of reactant molecules to the active interfaces and results a strong photocatalytic activity for degrading methyl orange (MO) dye.

  10. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  11. Anisotropy of critical current density in the superconducting Nb/sub 3/Sn tape wires

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [Technical Univ., Wroclaw (Poland). Inst. of Fundamental Electrotechnics and Electrotechnology

    1985-04-01

    In this letter the results are presented of an investigation of Isub(c parallel) and Isub(c perpendicular) in Nb/sub 3/Sn layers obtained in the process diffusion of tin atoms from liquid bronze solution Cu-80% Sn to the Nb-1.5% Zr substrate. Measurements of critical current density in Nb/sub 3/Sn layers were carried out in a perpendicular magnetic field of the induction value 4.25 T for different sample surface orientations in relation to the magnetic field strength vector defined by the value of angle. The critical current density was measured at a temperature of 4.2 K. Phase identification and investigation of the microstructure of superconducting Nb-Sn layers were performed on the Moessbauer spectrometer and scanning electron microscope, respectively. Classification measurements of grains in Nb-Sn layers were carried out with TV automatic image analyser. The texture and lattice parameter in Nb/sub 3/Sn layers were investigated by means of an X-ray diffractometer. The surface zone of Nb/sub 3/Sn layer was removed with the use of an argon ion gun. Results are presented and discussed.

  12. VERY LATE PHOTOMETRY OF SN 2011fe

    International Nuclear Information System (INIS)

    Kerzendorf, W. E.; Taubenberger, S.; Seitenzahl, I. R.; Ruiter, A. J.

    2014-01-01

    The Type Ia supernova SN 2011fe is one of the closest supernovae of the past decades. Due to its proximity and low dust extinction, this object provides a very rare opportunity to study the extremely late time evolution (>900 days) of thermonuclear supernovae. In this Letter, we present our photometric data of SN 2011fe taken at an unprecedented late epoch of ≈930 days with GMOS-N mounted on the Gemini North telescope (g = 23.43 ± 0.28, r = 24.14 ± 0.14, i = 23.91 ± 0.18, and z = 23.90 ± 0.17) to study the energy production and retention in the ejecta of SN 2011fe. Together with previous measurements by other groups, our result suggests that the optical supernova light curve can still be explained by the full thermalization of the decay positrons of 56 Co. This is in spite of theoretical predicted effects (e.g., infrared catastrophe, positron escape, and dust) that advocate a substantial energy redistribution and/or loss via various processes that result in a more rapid dimming at these very late epochs

  13. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  14. Liquidus Projection and Isothermal Section of the Sb-Se-Sn System

    Science.gov (United States)

    Chang, Jui-shen; Chen, Sinn-wen

    2017-12-01

    Sb-Se-Sn ternary alloys are promising chalcogenide materials. The liquidus projection and 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system are determined. Numerous Sb-Se-Sn alloys are prepared, and their primary solidification phases are examined. In addition to the three terminal phases, (Sb), (Se) and (Sn), there are Sb2Sn3, SbSn, SnSe, SnSe2, Sb2Se3, Sn2Sb9Se9, and SnSb2Se4 phases. In addition, there are two miscibility gaps along the Sb-Se and Se-Sn and sides. There are ten invariant reactions in the Sb-Se-Sn ternary system, and seven of them are experimentally determined in this study. The lowest reaction temperature of determined invariant reaction is L + SbSn = (Sn) + SnSe at 515.4 K ± 5 K (242.2 °C ± 5 °C). There are nine tie-triangles, which are Liquid + SbSn + SnSe, SbSn + SnSe + (Sb), SnSe + (Sb) + Sn2Sb9Se9, (Sb) + Sb2Se3 + Sn2Sb9Se9, SnSe + Sn2Sb9Se9 + SnSb2Se4, Sb2Se3 + Sn2Sb9Se9 + SnSb2Se4, SnSe + SnSe2 + SnSb2Se4, SnSe2 + SnSb2Se4 + Sb2Se3, and SnSe2 + Sb2Se3 + Liquid in the 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system.

  15. Dually fixed SnO2 nanoparticles on graphene nanosheets by polyaniline coating for superior lithium storage.

    Science.gov (United States)

    Dong, Yanfeng; Zhao, Zongbin; Wang, Zhiyu; Liu, Yang; Wang, Xuzhen; Qiu, Jieshan

    2015-02-04

    Dually fixed SnO2 nanoparticles (DF-SnO2 NPs) on graphene nanosheets by a polyaniline (Pani) coating was successfully fabricated via two facile wet chemistry processes, including anchoring SnO2 NPs onto graphene nanosheets via reducing graphene oxide by Sn(2+) ion, followed by in situ surface sealing with the Pani coating. Such a configuration is very appealing anode materials in LIBs due to several structural merits: (1) it prevents the aggregation of SnO2 NPs, (2) accommodates the structural expanding of SnO2 NPs during lithiation, (3) ensures the stable as-formed solid electrolyte interface films, and (4) effectively enhances the electronic conductivity of the overall electrode. Therefore, the final DF-SnO2 anode exhibits stable cycle performance, such as a high capacity retention of over 90% for 400 cycles at a current density of 200 mA g(-1) and a long cycle life up to 700 times at a higher current density of 1000 mA g(-1).

  16. Enhancing performances of a resistivity-type hydrogen sensor based on Pd/SnO2/RGO nanocomposites.

    Science.gov (United States)

    Peng, Yitian; Zheng, Lulu; Zou, Kun; Li, Cong

    2017-05-26

    Palladium/tin oxide/reduced graphene oxide (Pd/SnO 2 /RGO) nanocomposites with Pd and SnO 2 crystalline nanoparticles of high density and uniformity coated on RGO have been synthesized by a two-step reduction process. A novel hydrogen (H 2 ) sensor based on Pd/SnO 2 /RGO nanocomposites was fabricated by placing Pd/SnO 2 /RGO nanocomposites onto a pair of gold electrodes. The Pd/SnO 2 /RGO nanocomposite-based sensor exhibited higher responses than Pd/RGO to H 2 because the introduction of SnO 2 nanoparticles enhances H 2 adsorption and forms a P-N junction with RGO. The sensor shows a high response of 55% to 10 000 ppm H 2 , and a low detection limit, fast response, good selectivity and repeatability due to a combination effect of the Pd and SnO 2 nanoparticles. The studies provide a novel strategy for great potential applications of graphene-based gas sensors.

  17. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light.

    Science.gov (United States)

    Shown, Indrajit; Samireddi, Satyanarayana; Chang, Yu-Chung; Putikam, Raghunath; Chang, Po-Han; Sabbah, Amr; Fu, Fang-Yu; Chen, Wei-Fu; Wu, Chih-I; Yu, Tsyr-Yan; Chung, Po-Wen; Lin, M C; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-12

    Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS 2 (SnS 2 -C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO 2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS 2 lattice, resulting in different photophysical properties as compared with undoped SnS 2 . This SnS 2 -C photocatalyst significantly enhances the CO 2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS 2 -C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO 2 reduction under visible light, where the in situ carbon-doped SnS 2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.

  18. Investigation of microstructural evolution and electrical properties for Ni-Sn transient liquid-phase sintering bonding

    Science.gov (United States)

    Feng, Hong-Liang; Huang, Ji-Hua; Yang, Jian; Zhou, Shao-Kun; Zhang, Rong; Wang, Yue; Chen, Shu-Hai

    2017-11-01

    Ni/Ni-Sn/Ni sandwiched simulated package structures were successfully bonded under low temperature and low pressure by Ni-Sn transient liquid-phase sintering bonding. The results show that, after isothermally holding for 240 min at 300 °C and 180 min at 340 °C, Sn was completely transformed into Ni3Sn4 intermetallic compounds. When the Ni3Sn4 phases around Ni particles were pressed together, the porosity of the bonding layer increased, which obviously differed from the normal sintering densification process. With further analysis of this phenomenon, it was found that large volume shrinkage (14.94% at 340 °C) occurred when Ni reacted with Sn to form Ni3Sn4, which caused void formation. A mechanistic model of the microstructural evolution in the bonding layer was proposed. Meanwhile, the resistivity of the bonding layer was measured and analyzed by using the four-probe method; the microstructural evolution was well reflected by the resistivity of the bonding layer. The relationship between the resistivity and microstructure was also discussed in detail.[Figure not available: see fulltext.

  19. Electrochemical properties of Sn/C nanoparticles fabricated by redox treatment and pulsed wire evaporation method

    Science.gov (United States)

    Song, Ju-Seok; Cho, Gyu-Bong; Ahn, Jou-Hyeon; Cho, Kwon-Koo

    2017-09-01

    Tin (Sn) based anode materials are the most promising anode materials for lithium-ion batteries due to their high theoretical capacity corresponding to the formation of Li4.4Sn composition (Li4.4Sn, 994 mAh/g). However, the applications of tin based anodes to lithium-ion battery system are generally limited by a large volume change (>260%) during lithiation and delithiation cycle, which causes pulverize and poor cycling stability. In order to overcome this shortcoming, we fabricate a Sn/C nanoparticle with a yolk-shell structure (Sn/void/C) by using pulsed wire evaporation process and oxidation/reduction heat treatment. Sn nanoparticles are encapsulated by a conductive carbon layer with structural buffer that leaves enough room for expansion and contraction during lithium insertion/desertion. We expect that the yolk-shell structure has the ability to accommodate the volume changes of tin and leading to an improved cycle performance. The Sn/Void/C anode with yolk-shell structure shows a high specific capacity of 760 mAh/g after 50 cycles.

  20. Electrophoretic Deposition of SnO2 Nanoparticles and Its LPG Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Göktuğ Günkaya

    2015-01-01

    Full Text Available Homogenized SnO2 nanoparticles (60 nm in acetylacetone mediums, both with and without iodine, were deposited onto platinum coated alumina substrate and interdigital electrodes using the electrophoretic deposition (EPD method for gas sensor applications. Homogeneous and porous film layers were processed and analyzed at various coating times and voltages. The structure of the deposited films was characterized by a scanning electron microscopy (SEM. The gas sensing properties of the SnO2 films were investigated using liquid petroleum gas (LPG for various lower explosive limits (LEL. The results showed that porous, crack-free, and homogeneous SnO2 films were achieved for 5 and 15 sec at 100 and 150 V EPD parameters using an iodine-free acetylacetone based SnO2 suspension. The optimum sintering for the deposited SnO2 nanoparticles was observed at 500°C for 5 min. The results showed that the sensitivity of the films was increased with the operating temperature. The coated films with EPD demonstrated a better sensitivity for the 20 LEL LPG concentrations at a 450°C operating temperature. The maximum sensitivity of the SnO2 sensors at 450°C to 20 LEL LPG was 30.

  1. 0(gs)+ -->2(1)+ transition strengths in 106Sn and 108Sn.

    Science.gov (United States)

    Ekström, A; Cederkäll, J; Fahlander, C; Hjorth-Jensen, M; Ames, F; Butler, P A; Davinson, T; Eberth, J; Fincke, F; Görgen, A; Górska, M; Habs, D; Hurst, A M; Huyse, M; Ivanov, O; Iwanicki, J; Kester, O; Köster, U; Marsh, B A; Mierzejewski, J; Reiter, P; Scheit, H; Schwalm, D; Siem, S; Sletten, G; Stefanescu, I; Tveten, G M; Van de Walle, J; Van Duppen, P; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Zielińska, M

    2008-07-04

    The reduced transition probabilities, B(E2; 0(gs)+ -->2(1)+), have been measured in the radioactive isotopes (108,106)Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation gamma rays were detected by the highly segmented MINIBALL Ge-detector array. The results, B(E2;0(gs)+ -->2(1)+)=0.222(19)e2b2 for 108Sn and B(E2; 0(gs)+-->2(1)+)=0.195(39)e2b2 for 106Sn were determined relative to a stable 58Ni target. The resulting B(E2) values are approximately 30% larger than shell-model predictions and deviate from the generalized seniority model. This experimental result may point towards a weakening of the N=Z=50 shell closure.

  2. Radiochemical synthesis of a carbon-supported Pt–SnO2 bicomponent nanostructure exhibiting enhanced catalysis of ethanol oxidation

    International Nuclear Information System (INIS)

    Okazaki, Tomohisa; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro; Ohkubo, Yuji; Akita, Tomoki; Nitani, Hiroaki; Yamamoto, Takao A.

    2015-01-01

    Carbon-supported Pt–SnO 2 electrocatalysts with various Sn/Pt molar ratios were prepared by an electron beam irradiation method. These catalysts were composed of metallic Pt particles approximately 5 nm in diameter together with low crystalline SnO 2 . The contact between the Pt and SnO 2 in these materials varied with the amount of dissolved oxygen in the precursor solutions and it was determined that intimate contact between the Pt and SnO 2 significantly enhanced the catalytic activity of these materials during the ethanol oxidation reaction. The mechanism by which the contact varies is discussed based on the radiochemical reduction process. - Highlights: • Ethanol oxidation catalysis was enhanced by Sn-addition, far less than ever reported. • Pt–SnO 2 contact is crucial to the catalysis enhancement, alloying of Sn is not necessary. • Nano-scaled intimate contact between Pt and SnO 2 was directly observed

  3. SnSe2 Two Dimensional Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2017-05-30

    Sodium-ion batteries (SIBs) are considered as a promising alternative to lithium-ion batteries (LIBs) for large-scale renewable energy storage units due to the abundance of sodium resource and its low cost. However, the development of anode materials for SIBs to date has been mainly limited to some traditional anodes for LIBs, such as carbonaceous materials. SnSe2 is a member of two dimensional layered transition metal dichalcogenide (TMD) family, which has been predicted to have high theoretical capacity as anode material for sodium ion batteries (756 mAh g-1), thanks to its layered crystal structure. Yet, there have been no studies on using SnSe2 as Na ion battery anode. In this thesis, we developed a simple synthesis method to prepare pure SnSe2 nanosheets, employing N2 saturated NaHSe solution as a new selenium source. The SnSe2 2D sheets achieve theoretical capacity during the first cycle, and a stable and reversible specific capacity of 515 mAh g-1 at 0.1 A g-1 after 100 cycles, with excellent rate performance. Among all of the reported transition metal selenides, our SnSe2 sample has the highest reversible capacity and the best rate performances. A combination of ex-situ high resolution transmission electron microscopy (HRTEM) and X-ray diffraction was used to study the mechanism of sodiation and desodiation process in this SnSe2, and to understand the reason for the excellent results that we have obtained. The analysis indicate that a combination of conversion and alloying reactions take place with SnSe2 anodes during battery operation, which helps to explain the high capacity of SnSe2 anodes for SIBs compared to other binary selenides. Density functional theory was used to elucidate the volume changes taking place in this important 2D material.

  4. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    International Nuclear Information System (INIS)

    Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.; Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Koetschau, I.; Schock, H.-W.

    2009-01-01

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu 2 ZnSnS 4 based thin film solar cells. A kesterite based solar cell (size 0.5 cm 2 ) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu 2 SnS 3 and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu 3 Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu 6 Sn 5 and Sn phases were detected. The formation mechanism of Cu 2 SnS 3 involves the binary sulphides Cu 2-x S and SnS 2 in the absence of the binary precursor phase Cu 6 Sn 5 . The presence of Cu 6 Sn 5 leads to a preferred formation of Cu 2 SnS 3 via the reaction educts Cu 2-x S and SnS 2 in the presence of a SnS 2 (Cu 4 SnS 6 ) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase

  5. In vitro and in vivo evaluation of SN-38 nanocrystals with different particle sizes

    Directory of Open Access Journals (Sweden)

    Chen M

    2017-08-01

    Full Text Available Min Chen,1,2 Wanqing Li,3 Xun Zhang,1 Ye Dong,1 Yabing Hua,1 Hui Zhang,1 Jing Gao,1 Liang Zhao,2 Ying Li,1 Aiping Zheng1 1State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 2School of Pharmacy, Jinzhou Medical University, Jinzhou, 3School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China Abstract: 7-Ethyl-10-hydroxycamptothecin (SN-38 is a potent broad-spectrum antitumor drug derived from irinotecan hydrochloride (CPT-11. Due to its poor solubility and instability of the active lactone ring, its clinical use is significantly limited. As one of the most promising formulations for poorly water-soluble drugs, nanocrystals have attracted increasing attention. In order to solve these problems and evaluate the antitumor effect of SN-38 in vitro and in vivo, two nanocrystals with markedly different particle sizes were prepared. Dynamic light scattering and transmission electron microscopy were used to investigate the two nanocrystals. The particle sizes of SN-38 nanocrystals A (SN-38/NCs-A and SN-38 nanocrystals B (SN-38/NCs-B were 229.5±1.99 and 799.2±14.44 nm, respectively. X-ray powder diffraction analysis showed that the crystalline state of SN-38 did not change in the size reduction process. An accelerated dissolution velocity of SN-38 was achieved by nanocrystals, and release rate of SN-38/NCs-A was significantly faster than that of SN-38/NCs-B. Cellular uptake, cellular cytotoxicity, pharmacokinetics, animal antitumor efficacy, and tissue distribution were subsequently examined. As a result, enhanced intracellular accumulation in HT1080 cells and cytotoxicity on different tumor cells were observed for SN-38/NCs-A compared to that for SN-38/NCs-B and solution. Besides, compared to the SN-38 solution, SN-38/NCs-A had a higher bioavailability after intravenous injection; while the bioavailability of SN-38/NCs-B was even lower than

  6. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries.

    Science.gov (United States)

    Wang, Ye; Huang, Zhi Xiang; Shi, Yumeng; Wong, Jen It; Ding, Meng; Yang, Hui Ying

    2015-03-17

    Transition metal cobalt (Co) nanoparticle was designed as catalyst to promote the conversion reaction of Sn to SnO2 during the delithiation process which is deemed as an irreversible reaction. The designed nanocomposite, named as SnO2/Co3O4/reduced-graphene-oxide (rGO), was synthesized by a simple two-step method composed of hydrothermal (1(st) step) and solvothermal (2(nd) step) synthesis processes. Compared to the pristine SnO2/rGO and SnO2/Co3O4 electrodes, SnO2/Co3O4/rGO nanocomposites exhibit significantly enhanced electrochemical performance as the anode material of lithium-ion batteries (LIBs). The SnO2/Co3O4/rGO nanocomposites can deliver high specific capacities of 1038 and 712 mAh g(-1) at the current densities of 100 and 1000 mA g(-1), respectively. In addition, the SnO2/Co3O4/rGO nanocomposites also exhibit 641 mAh g(-1) at a high current density of 1000 mA g(-1) after 900 cycles, indicating an ultra-long cycling stability under high current density. Through ex-situ TEM analysis, the excellent electrochemical performance was attributed to the catalytic effect of Co nanoparticles to promote the conversion of Sn to SnO2 and the decomposition of Li2O during the delithiation process. Based on the results, herein we propose a new method in employing the catalyst to increase the capacity of alloying-dealloying type anode material to beyond its theoretical value and enhance the electrochemical performance.

  7. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries

    Science.gov (United States)

    Wang, Ye; Huang, Zhi Xiang; Shi, Yumeng; Wong, Jen It; Ding, Meng; Yang, Hui Ying

    2015-01-01

    Transition metal cobalt (Co) nanoparticle was designed as catalyst to promote the conversion reaction of Sn to SnO2 during the delithiation process which is deemed as an irreversible reaction. The designed nanocomposite, named as SnO2/Co3O4/reduced-graphene-oxide (rGO), was synthesized by a simple two-step method composed of hydrothermal (1st step) and solvothermal (2nd step) synthesis processes. Compared to the pristine SnO2/rGO and SnO2/Co3O4 electrodes, SnO2/Co3O4/rGO nanocomposites exhibit significantly enhanced electrochemical performance as the anode material of lithium-ion batteries (LIBs). The SnO2/Co3O4/rGO nanocomposites can deliver high specific capacities of 1038 and 712 mAh g−1 at the current densities of 100 and 1000 mA g−1, respectively. In addition, the SnO2/Co3O4/rGO nanocomposites also exhibit 641 mAh g−1 at a high current density of 1000 mA g−1 after 900 cycles, indicating an ultra-long cycling stability under high current density. Through ex-situ TEM analysis, the excellent electrochemical performance was attributed to the catalytic effect of Co nanoparticles to promote the conversion of Sn to SnO2 and the decomposition of Li2O during the delithiation process. Based on the results, herein we propose a new method in employing the catalyst to increase the capacity of alloying-dealloying type anode material to beyond its theoretical value and enhance the electrochemical performance. PMID:25776280

  8. Influence of two-stage annealing treatment on critical current of bronze-processed multifilamentary Nb/sub 3/Sn superconducting materials

    International Nuclear Information System (INIS)

    Ochiai, S.; Osamura, K.; Ryoji, M.

    1987-01-01

    The influence of changes of volume fraction of Nb/sub 3/Sn, grain size and upper critical magnetic field due to two-stage annealing treatment (low temperature annealing to form fine grains + high temperature annealing to raise upper critical magnetic field) on overall critical current and critical current density were studied at magnetic field of 3-15 T. When annealing temperature was low (773-923 K) and the volume fraction of Nb/sub 3/Sn was low in first stage annealing, second stage annealing could raise the overall critical current over the range of the applied magnetic field due to increase in upper critical magnetic field H/sub c2/ and volume fraction of Nb/sub 3/Sn accompanying with reduction in Sn concentration in the bronze matrix, which played a role to reduce residual strain in Nb/sub 3/Sn, leading to high H/sub c2/ although the loss in pinning force arose from the coarsening of the grains. When the annealing temperature was high (973 K) and the Nb/sub 3/Sn was formed until the Sn was consumed in the first stage, second stage annealing could not raise the critical current due to increase in grain size and no effective increase in H/sub c2/. The critical current density at low magnetic fields below several Teslas was reduced by the second stage annealing due to increase in grain size but that at high fields was raised due to increase in high H/sub c2/. The reverse two-stage annealing treatment (high temperature annealing in the first stage+low temperature annealing in the second stage) reduced the H/sub c2/ slightly with increasing second stage annealing temperature and time. The critical current density at low magnetic fields was determined mainly by the grain size and that at high fields was determined by the combination of the upper critical field and grain size

  9. Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

    Science.gov (United States)

    Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri

    2018-03-01

    We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.

  10. Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

    Science.gov (United States)

    Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri

    2018-05-01

    We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.

  11. All Small Nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP Localize to Nucleoli; Identification of the Nucleolar Localization Element of U6 snRNA

    Science.gov (United States)

    Gerbi, Susan A.; Lange, Thilo Sascha

    2002-01-01

    Previously, we showed that spliceosomal U6 small nuclear RNA (snRNA) transiently passes through the nucleolus. Herein, we report that all individual snRNAs of the [U4/U6.U5] tri-snRNP localize to nucleoli, demonstrated by fluorescence microscopy of nucleolar preparations after injection of fluorescein-labeled snRNA into Xenopus oocyte nuclei. Nucleolar localization of U6 is independent from [U4/U6] snRNP formation since sites of direct interaction of U6 snRNA with U4 snRNA are not nucleolar localization elements. Among all regions in U6, the only one required for nucleolar localization is its 3′ end, which associates with the La protein and subsequently during maturation of U6 is bound by Lsm proteins. This 3′-nucleolar localization element of U6 is both essential and sufficient for nucleolar localization and also required for localization to Cajal bodies. Conversion of the 3′ hydroxyl of U6 snRNA to a 3′ phosphate prevents association with the La protein but does not affect U6 localization to nucleoli or Cajal bodies. PMID:12221120

  12. P-type SnO thin films and SnO/ZnO heterostructures for all-oxide electronic and optoelectronic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Kachirayil J. [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Physics, Govt. Victoria College, University of Calicut, Palakkad 678 001 (India); Venkata Subbaiah, Y.P. [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Physics, Yogi Vemana University, Kadapa, Andhra Pradesh 516003 (India); Tian, Kun [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2016-04-30

    Tin monoxide (SnO) is considered as one of the most important p-type oxides available to date. Thin films of SnO have been reported to possess both an indirect bandgap (~ 0.7 eV) and a direct bandgap (~ 2.8 eV) with quite high hole mobility (~ 7 cm{sup 2}/Vs) values. Moreover, the hole density in these films can be tuned from 10{sup 15}–10{sup 19} cm{sup −3} just by controlling the thin film deposition parameters. Because of the above attributes, SnO thin films offer great potential for fabricating modern electronic and optoelectronic devices. In this article, we are reviewing the most recent developments in this field and also presenting some of our own results on SnO thin films grown by pulsed laser deposition technique. We have also proposed a p–n heterostructure comprising of p-type SnO and n-type ZnO which can pave way for realizing next-generation, all-oxide transparent electronic devices. - Highlights: • We reviewed recent developments on p-type SnO thin film research. • Discussed the optical and electrical properties of SnO thin films • Bipolar conduction in SnO is discussed. • Optoelectronic properties of SnO–ZnO composite system are discussed. • Proposed SnO–ZnO heterojunction band structure.

  13. Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering

    Science.gov (United States)

    Janicek, Petr; Niang, Kham M.; Mistrik, Jan; Palka, Karel; Flewitt, Andrew J.

    2017-11-01

    ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05-6 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott-Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.

  14. Crystal structure of R.E. NiSn and R.E. PdSn equiatomic compounds

    International Nuclear Information System (INIS)

    Dwight, A.E.

    1983-03-01

    Call constants and volume per formula weight are tabulated for RE NiSn (RE = La to Lu, Y) and RE PdSn (RE = Nd to Ho). The unit cell constants are also plotted versus ionic radius of the RE; trends are noted

  15. Field emission characteristics of SnO2/CNT composite prepared by microwave assisted wet impregnation

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-01-01

    Full Text Available SnO2/CNT composites were prepared by microwave assisted wet impregnation at 60 °C. The process was optimized by varying the microwave power and reaction time. Raman analysis showed the typical features of the rutile phase of as-synthesized SnO2...

  16. Carbon and graphene double protection strategy to improve the SnOx electrode performance anodes for lithium-ion batteries

    Science.gov (United States)

    Zhu, Jian; Lei, Danni; Zhang, Guanhua; Li, Qiuhong; Lu, Bingan; Wang, Taihong

    2013-05-01

    SnOx is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. In this paper, SnOx carbon nanofibers (SnOx@CNFs) are firstly obtained in the form of a nonwoven mat by electrospinning followed by calcination in a 0.02 Mpa environment at 500 °C. Then we use a simple mixing method for the synthesis of SnOx@CNF@graphene (SnOx@C@G) nanocomposite. By this technique, the SnOx@CNFs can be homogeneously deposited in graphene nanosheets (GNSs). The highly scattered SnOx@C@G composite exhibits enhanced electrochemical performance as anode material for LIBs. The double protection strategy to improve the electrode performance through producing SnOx@C@G composites is versatile. In addition, the double protection strategy can be extended to the fabrication of various types of composites between metal oxides and graphene nanomaterials, possessing promising applications in catalysis, sensing, supercapacitors and fuel cells.SnOx is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. In this paper, SnOx carbon nanofibers (SnOx@CNFs) are firstly obtained in the form of a nonwoven mat by electrospinning followed by calcination in a 0.02 Mpa environment at 500 °C. Then we use a simple mixing method for the synthesis of SnOx@CNF@graphene (SnOx@C@G) nanocomposite. By this technique, the SnOx@CNFs can be homogeneously deposited in graphene nanosheets (GNSs). The highly scattered SnOx@C@G composite exhibits enhanced electrochemical performance as anode material for LIBs. The double protection strategy to improve the electrode performance through producing SnOx@C@G composites is versatile. In addition, the double protection strategy can be extended to the fabrication of various types of

  17. RESEARCH ON THE INTERNATIONAL ACCOUNTING HARMONIZATION PROCESS

    Directory of Open Access Journals (Sweden)

    Tatiana Danescu

    2016-12-01

    Full Text Available During the last decades, the need of harmonization of the financial reporting frameworks has become more acute, mostly because the capital markets are not restricted anymore by country borders and capital movement has outlined the phenomenon of globalization and internationalism. A significant step in harmonizing the financial reporting was done in the process of normalization through different sets of rules and principles, recognized and applied in many states are the International Financial Reporting Standards (IFRS. The process of international recognition of these standards continues along with conceptual development which is based on epistemological research on specific markets, industries, economies open to international capital flows. In this context it becomes of interest to identify and understand generally accepted and applied accounting elements which carry forward the accounting harmonization process along with factors and circumstances that create diversity in nationally applied financial reporting frameworks.

  18. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  19. Characteristics of nano Ti-doped SnO2 powders prepared by sol-gel method

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Zheng, J.; Li, S.L.

    2006-01-01

    Ti 4+ -doped SnO 2 nano-powders were prepared by the sol-gel process using tin tetrachloride and titanium tetrachloride as the starting materials. The crystallinity and purity of the powders were analyzed by X-ray diffraction (XRD) and the size and distribution of Ti 4+ -doped SnO 2 grains were studied using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that Ti 4+ has been successfully incorporated into the SnO 2 crystal lattice and the electrical conductivity of the doped materials improves significantly

  20. Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-08-21

    A SnO2/graphene nanocomposite was prepared via a facile solvothermal process using stannous octoate as a Sn source. The as-prepared SnO2/graphene nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, a long cycle life and a good rate capability when used as an anode material for lithium-ion batteries.

  1. Phase diagrams of novel Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2}–Tl{sub 2}SnSe{sub 3} quasi-ternary system following DTA and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barchiy, I.E.; Tatzkar, A.R. [Department of Chemistry, Uzhgorod National University, Pidgirna St., 46, Uzhgorod 88000 (Ukraine); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska St., 50, Lviv 79010 (Ukraine); Plucinski, K., E-mail: kpluc2006@wp.pl [Electronics Department, Military University Technology, Warsaw, Kaliskiego 2, Warsaw 00-908 (Poland)

    2016-06-25

    Phase relation in the Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2}–Tl{sub 2}SnSe{sub 3} quasiternary system were studied by the DTA and X-ray diffraction in combination with mathematical modeling. The phase diagrams of the Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2} and Tl{sub 2}SnSe{sub 3}–TlSbSe{sub 2} systems, the perspective views of the phase interaction in the ternary system, the liquidus surface projection, the isothermal section at 423 K were built for the first time. The Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2}–Tl{sub 2}SnSe{sub 3} system is of the invariant eutectic type and is characterized by the formation of limited solid solutions following initial ternary compounds. New complex compounds are not formed. - Highlights: • Two Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2},Tl{sub 2}SnSe{sub 3}–TlSbSe{sub 2} systems were explored. • Invariant processes in the ternary system were determined. • New complex compounds were not observed in ternary system.

  2. A facile hydrothermal strategy for synthesis of SnO2 nanorods-graphene nanocomposites for high performance photocatalysis.

    Science.gov (United States)

    Chen, Lu-Ya; Zhang, Wei-De; Xu, Bin; Yu, Yu-Xiang

    2012-09-01

    In this study, we report a facilely hydrothermal process for synthesizing SnO2 nanorods-graphene (SnO2 nanorods-GR) composite using graphite oxide and SnCl4 as raw materials. The SnO2 nanorods-GR composite was characterized by X-ray diffraction, electron microscopy, Xray photoelectron spectroscopy, and thermogravimetric analysis. Compared to commercial TiO2 nanoparticles P25 and neat SnO2 nanorods, the SnO2 nanorods-GR composite exhibits higher photocatalytic activity under UV light irradiation. The mechanism of its high photocatalytic activity is mainly ascribed to the synergy effect between SnO2 and graphene, in which graphene acts as an adsorbent and electron acceptor due to its large structure of pi-pi conjugation from sp2 hybrid carbon atoms. The results demonstrated in this study provide a promising way to enhance the photocatalytic activity by compounding semiconductive nanocrystals with graphene.

  3. Degradation mechanism of Nb3Sn composite wires under tensile strain at 4.2 K

    International Nuclear Information System (INIS)

    Luhman, T.; Suenaga, M.; Welch, D.O.; Kaiho, K.

    1978-01-01

    Bronze-processed Nb 3 Sn composite wire conductors exhibit changes in their superconducting parameters when strained in tension. This paper describes a detailed study of the effect of strain on critical current and an analysis by optical and SEM techniques of crack formation in the Nb 3 Sn layer under strain. The effect of strain history on both reversible and irreversible changes in critical current and the roles of differential thermal contraction induced residual strains and of Nb 3 Sn cracking are discussed

  4. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Hideaki; Kubo, Yuki; Jimbo, Kazuo; Maw, Win Shwe; Katagiri, Hironori; Yamazaki, Makoto; Oishi, Koichiro; Takeuchi, Akiko [Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2009-05-15

    Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were prepared by sulfurization of electrodeposited Cu-Zn-Sn precursors. The Cu-Zn-Sn precursors were deposited on Mo-coated glass substrates in a one-step process from an electrolyte containing copper (II) sulfate pentahydrate, zinc sulfate heptahydrate, tin (II) chloride dehydrate and tri-sodium citrate dehydrate. The precursors were sulfurized by annealing with sulfur at temperatures of 580 C and 600 C in an N{sub 2} atmosphere. X-ray diffraction peaks attributable to CZTS were detected in the sulfurized films. Photovoltaic cells with the structure glass/Mo/CZTS/ CdS/ZnO:Al/Al were fabricated using the CZTS films by sulfurizing the electrodeposited precursors. The best photovoltaic cell performance was obtained with Zn-rich samples. An open-circuit voltage of 540 mV, a short-circuit current of 12.6 mA/cm{sup 2} and an efficiency of 3.16% were achieved. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Identify and Quantify the Mechanistic Sources of Sensor Performance Variation Between Individual Sensors SN1 and SN2

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baldwin, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathews, Royce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullen, Crystal A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Posakony, Gerald J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hartman, Trenton S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-06

    This Technical Letter Report satisfies the M3AR-14PN2301022 milestone, and is focused on identifying and quantifying the mechanistic sources of sensor performance variation between individual 22-element, linear phased-array sensor prototypes, SN1 and SN2. This effort constitutes an iterative evolution that supports the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor inspection system. The scope of the work for this portion of the PNNL effort conducted in FY14 includes performing a comparative evaluation and assessment of the performance characteristics of the SN1 and SN2 22 element PA-UT probes manufactured at PNNL. Key transducer performance parameters, such as sound field dimensions, resolution capabilities, frequency response, and bandwidth are used as a metric for the comparative evaluation and assessment of the SN1 and SN2 engineering test units.

  6. Nano-grain SnO{sub 2} electrodes for high conversion efficiency SnO{sub 2}-DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Hoon; Shin, Yu-Ju [Department of Chemistry, the Catholic University of Korea, Bucheon, Gyeonggi-do 422-743 (Korea, Republic of); Park, Nam-Gyu [School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2011-01-15

    The nano-grain ZnO/SnO{sub 2} composite electrode was prepared by adding 5 w% of the 200-250 nm ZnO particles to the 5 nm SnO{sub 2} colloid in the presence of hydroxypropylcellulose (M.W.=80,000). The nano-grain SnO{sub 2} electrode was obtained by removing the ZnO particles from the composite electrode using acetic acid. The FE-SEM micrographs revealed that both electrodes consisted of interconnected nano-grains that were ca. 800 nm in size, and the large pores between the grains furnished the wide electrolyte diffusion channels within the electrodes. The photovoltaic properties of the nano-grain electrodes were investigated by measuring the I-V behaviors, the IPCE spectra and the ac-impedance spectra. The nano-grain electrodes exhibited remarkably improved conversion efficiencies of 3.96% for the composite and 2.98% for the SnO{sub 2} electrode compared to the value of 1.66% for the usual nano-particle SnO{sub 2} electrode. The improvement conversion efficiencies were mainly attributed to the formation of nano-grains, which facilitated the electron diffusion within the grains. The improved electrolyte diffusion as well as the light-scattering effects enhanced the photovoltaic performance of the SnO{sub 2} electrode. (author)

  7. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Peichao, E-mail: lianpeichao@126.com [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jingyi [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Cai, Dandan; Liu, Guoxue [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yingying [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Haihui, E-mail: hhwang@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-08-01

    Highlights: • Porous nano-sized Sn@C/graphene electrode material was designed and prepared. • The preparation method presented here can avoid the agglomeration of nanoparticles. • The prepared Sn@C/graphene electrode material exhibits outstanding cyclability. - Abstract: Tin is a promising high-capacity anode material for lithium-ion batteries, but it usually suffers from the problem of poor cycling stability due to the large volume change during the charge–discharge process. In this article, porous nano-sized Sn@C/graphene electrode material with three-dimensional carbon network was designed and prepared. Reducing the size of the Sn particles to nanoscale can mitigate the absolute strain induced by the large volume change during lithiation–delithiation process, and retard particle pulverization. The porous structure can provide a void space, which helps to accommodate the volume changes of the Sn nanoparticles during the lithium uptake-release process. The carbon shell can avoid the aggregation of the Sn nanoparticles on the same piece of graphene and detachment of the pulverized Sn particles during the charge–discharge process. The 3D carbon network consisted of graphene sheets and carbon shells can not only play a structural buffering role in minimizing the mechanical stress caused by the volume change of Sn, but also keep the overall electrode highly conductive during the lithium uptake-release process. As a result, the as-prepared Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries exhibited outstanding cyclability. The reversible specific capacity is almost constant from the tenth cycle to the fiftieth cycle, which is about 600 mA h g{sup −1}. The strategy presented in this work may be extended to improve the cycle performances of other high-capacity electrode materials with large volume variations during charge–discharge processes.

  8. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Energy Technology Data Exchange (ETDEWEB)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, Delaware 19716 (United States); Adam, Thomas [College of Nanoscale Science and Engineering, SUNY, Albany, New York 12203 (United States); Kim, Yihwan; Huang, Yi-Chiau [Applied Materials, Sunnyvale, California 94085 (United States); Reznicek, Alexander [IBM Research at Albany Nanotech, Albany, New York 12203 (United States)

    2016-03-07

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl{sub 4} precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  9. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    International Nuclear Information System (INIS)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander

    2016-01-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl 4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  10. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Science.gov (United States)

    Hart, John; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James

    2016-03-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  11. SN 2006oz

    DEFF Research Database (Denmark)

    Leloudas, Georgios; Chatzopoulos, E.; Dilday, B.

    2012-01-01

    to contribute to a better understanding of these objects by studying SN 2006oz, a newly-recognized member of this class. Methods. We present multi-color light curves of SN 2006oz from the SDSS-II SN Survey that cover its rise time, as well as an optical spectrum that shows that the explosion occurred at z ~ 0.......376. We fitted black-body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. In addition, we conducted a deep search for the host galaxy...... to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post...

  12. Phase Equilibria of Sn-Co-Cu Ternary System

    Science.gov (United States)

    Chen, Yu-Kai; Hsu, Chia-Ming; Chen, Sinn-Wen; Chen, Chih-Ming; Huang, Yu-Chih

    2012-10-01

    Sn-Co-Cu ternary alloys are promising lead-free solders, and isothermal sections of Sn-Co-Cu phase equilibria are fundamentally important for the alloys' development and applications. Sn-Co-Cu ternary alloys were prepared and equilibrated at 523 K, 1073 K, and 1273 K (250 °C, 800 °C, and 1000 °C), and the equilibrium phases were experimentally determined. In addition to the terminal solid solutions and binary intermetallic compounds, a new ternary compound, Sn3Co2Cu8, was found. The solubilities of Cu in the α-CoSn3 and CoSn2 phases at 523 K (250 °C) are 4.2 and 1.6 at. pct, respectively, while the Cu solubility in the α-Co3Sn2 phase is as high as 20.0 at. pct. The Cu solubility increases with temperature and is around 30.0 at. pct in the β-Co3Sn2 at 1073 K (800 °C). The Co solubility in the η-Cu6Sn5 phase is also significant and is 15.5 at. pct at 523 K (250 °C).

  13. Peculiarities of component interaction in {Gd, Er}-V-Sn Ternary systems at 870 K and crystal structure of RV6Sn6 stannides

    International Nuclear Information System (INIS)

    Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Demchenko, P.; Stadnyshyn, M.; Konyk, M.

    2011-01-01

    Highlights: → {Gd, Er}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV 6 Sn 6 . → Isostructural RV 6 Sn 6 compounds were also found with Y, Dy, Ho, Tm, and Lu. → The crystal structure of RV 6 Sn 6 compounds was determined by powder diffraction method. → Structural analysis showed that RV 6 Sn 6 compounds (R = Gd, Dy-Tm, Lu) are disordered; YV 6 Sn 6 is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV 6 Sn 6 (SmMn 6 Sn 6 -type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn 6 Sn 6 -type were also found with Dy, Ho, Tm, and Lu, while YV 6 Sn 6 compound crystallizes in HfFe 6 Ge 6 structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  14. Dominant effect of high anisotropy in β-Sn grain on electromigration-induced failure mechanism in Sn-3.0Ag-0.5Cu interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.L., E-mail: huang@dlut.edu.cn; Zhao, J.F.; Zhang, Z.J.; Zhao, N.

    2016-09-05

    The effect of high diffusivity anisotropy in β-Sn grain on electromigration behavior of micro-bumps was clearly demonstrated using Sn-3.0Ag-0.5Cu solder interconnects with only two β-Sn grains. The orientation of β-Sn grain (θ is defined as the angle between the c-axis of β-Sn grain and the electron flow direction) is becoming the most crucial factor to dominate the different electromigration-induced failure modes: 1) the excessive dissolution of the cathode Cu, blocking at the grain boundary and massive precipitation of columnar Cu{sub 6}Sn{sub 5} intermetallic compounds (IMCs) in the small angle θ β-Sn grain occur when electrons flow from a small angle θ β-Sn grain to a large one; 2) void formation and propagation occur at the cathode IMC/solder interface and no Cu{sub 6}Sn{sub 5} IMCs precipitate within the large angle θ β-Sn grain when electrons flow in the opposite direction. The EM-induced failure mechanism of the two β-Sn grain solder interconnects is well explained in viewpoint of atomic diffusion flux in β-Sn. - Highlights: • High anisotropy in β-Sn dominates different electromigration-induced failure mode. • Excessive dissolution of cathode Cu occurs if electrons flow in forward direction. • Voids initiate and propagate at cathode if electrons flow in reverse direction. • Failure modes are well explained in viewpoint of atomic diffusion flux in β-Sn.

  15. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio

    International Nuclear Information System (INIS)

    Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G.Q.; Behm, R.J.

    2007-01-01

    Novel carbon supported Pt/SnO x /C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO ad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO x /C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO x /C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO x /C catalysts, acetic acid and acetaldehyde represent dominant products, CO 2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol -1 ), but are lower than on Pt/C (32 kJ mol -1 ). The somewhat better performance of the Pt/SnO x /C catalysts compared to alloyed PtSn x /C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies

  16. Syntheses, structural variants and characterization of AInM′S4 (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds

    International Nuclear Information System (INIS)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru

    2016-01-01

    Ten AInM′S 4 (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS 4 (1-β), RbInGeS 4 (2), CsInGeS 4 (3-β), TlInGeS 4 (4-β), RbInSnS 4 (8-β) and CsInSnS 4 (9) compounds with three-dimensional BaGa 2 S 4 structure and CsInGeS 4 (3-α) and TlInGeS 4 (4-α) compounds with a layered TlInSiS 4 structure have tetrahedral [InM′S 4 ] − frameworks. On the other hand, LiInSnS 4 (5) with spinel structure and NaInSnS 4 (6), KInSnS 4 (7), RbInSnS 4 (8-α) and TlInSnS 4 (10) compounds with layered structure have octahedral [InM′S 4 ] − frameworks. NaInSnS 4 (6) and KInSnS 4 (7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS 4 and KInSnS 4 compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S 4 compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS 4 and KInSnS 4 compounds undergo facile topotactic ion-exchange at room temperature.

  17. Quench performance of Nb3Sn cos-theta coils made of 108/127 RRP strands

    International Nuclear Information System (INIS)

    Zlobin, A.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.

    2007-01-01

    A series of 1-m long Nb 3 Sn dipole models has been built at Fermilab in an attempt to refine the wind-and-react technology for Nb3Sn accelerator magnets. Three models made with Powder-in-Tube Nb 3 Sn strand reached their design field of 10 T demonstrating a good reproducibility of magnet quench performance and field quality. Recently a new dipole 'mirror' model based on Nb 3 Sn coil made of improved Restack Rod Process strand was constructed and tested reaching the maximum field above 11 T. This paper describes the parameters of the RRP strand and cable used as well as the design, fabrication and test results of this magnet

  18. Phase separation and antisite defects in the thermoelectric TiNiSn half-Heusler alloys

    International Nuclear Information System (INIS)

    Kirievsky, K.; Gelbstein, Y.; Fuks, D.

    2013-01-01

    The half-Heusler TiNiSn alloys have recently gained an attention as promising candidates for thermoelectric applications. Improvement of these alloys for such applications can be obtained by both electronic and compositional optimizations. The latter can result in a miscibility gap, allowing a phase separation in the nano-scale and consequently a thermal conductivity reduction. Combination of ab initio calculations and statistical thermodynamics was applied for studying the relative stability of a number of superstructures in TiNiSn based alloys. The quasi-binary phase diagram beyond T=0 K for TiNiSn–TiNi 2 Sn solid solutions was calculated using energy parameters extracted from the total energy calculations for ordered structures in the Ni sublattice. We demonstrated that a decomposition of the off-stoichiometric Ni-rich half-Heusler alloy into the stoichiometric TiNiSn phase and into Ni deficient Heusler TiNi 2 Sn phase occurs at elevated temperatures—an effect which recently had been observed experimentally. Furthermore, favorable energetic conditions for antisite defects formation were deduced, based on calculations of the energy of formation, an effect which was explained as a cooperative process of partial disordering on the Ni sublattice. The influence of these two effects on improvement of the thermoelectric performance of TiNiSn based half Heusler compounds is discussed. - Graphical abstract: Phase separation and antisite defects in the thermoelectric TiNiSn alloy, are covered as methods for nanostructuring and thereby enhancement of the thermoelectric potential. - Highlights: • Ab initio calculations/statistical thermodynamics was applied for studying the TiNiSn system. • The phase diagram for TiNiSn–TiNi 2 Sn solid solutions was calculated. • Decomposition of the Ni-rich HH into TiNiSn and Ni deficient TiNi 2 Sn phases was observed. • Favorable energetic conditions for antisite defects formation were deduced

  19. Investigation of the (p,p'), (p,d) and (p,t) reactions on some light Sn isotopes

    International Nuclear Information System (INIS)

    Blankert, P.J.

    1979-01-01

    The results are presented of the 112 Sn(p,p') 112 Sn reaction. Apart from the usual distorted-wave analysis the excitation of some states is described in the coupled-channels formalism. The results of the 112 Sn(p,d) 111 Sn and the 112 Sn(p,t) 110 Sn reactions are also reported. From the (p,d) reaction quasi-particle energies and occupation numbers are determined. Two-step DWBA calculations are performed for some states that are assumed to result from the coupling of a quasiparticle to the 2 + 1 or 3 - 1 state of the even core. In the gross structure above 3 MeV of excitation, pickup strength from deeply-bound hole states is observed. The (p,t) reaction provided spin and parity of a number of levels in 110 Sn. A two-step DWBA analysis of the excitation of the ground state and first excited 2 + state shows the importance of second-order processes. The combined results of the (p,t) reactions on 112 Sn, 114 Sn and 116 Sn are given with some emphasis on the systematic features. The derivation is given of some expressions for spectroscopic amplitudes necessary in the two-step DWBA calculations for the (p,t) reactions. For all reactions a comparison is made with other existing data and with the results of model calculations. (Auth.)

  20. Effect of Nb on the Growth Behavior of Co3Sn2 Phase in Undercooled Co-Sn Melts

    Science.gov (United States)

    Kang, Jilong; Xu, Wanqiang; Wei, Xiuxun; Ferry, Michael; Li, Jinfu

    2016-12-01

    The growth behavior of the primary β-Co3Sn2 phase in (Co67Sn33)100- x Nb x ( x = 0, 0.5, 0.8, 1.0) hypereutectic alloys at different melt undercoolings was investigated systematically. The growth pattern of the β-Co3Sn2 phase at low undercooling changes with the Nb content from fractal seaweed ( x = 0, 0.5) into dendrite ( x = 0.8) and then returns to fractal seaweed ( x = 1.0) as a response to the changes in interface energy anisotropy and interface kinetic anisotropy. As undercooling increases, the dendritic growth of the β-Co3Sn2 phase in (Co67Sn33)99.2Nb0.8 alloy gives way to fractal seaweed growth at an undercooling of 32 K (-241 °C). At larger undercooling, the fractal seaweed growth is further replaced by compact seaweed growth, which occurred in the other three alloys investigated. The growth velocity of the β-Co3Sn2 phase slightly increases at low and intermediate undercooling but clearly decreases at larger undercooling due to the Nb addition. The growth velocity sharply increases as the growth pattern of the Co3Sn2 phase transits from fractal seaweed into compact seaweed.

  1. Reactivity and stability of thallium oxide for fabricating TlSnZnO toward thin-film transistors with high mobility

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Katsushi [Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, 630-0192 (Japan); Nose, Yoshitaro [Department of Materials Science and Engineering, Kyoto University, Kyoto, 606-8501 (Japan); Ishikawa, Yasuaki, E-mail: yishikawa@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, 630-0192 (Japan); Fujii, Mami N.; Uraoka, Yukiharu [Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, 630-0192 (Japan)

    2016-07-05

    Thermal reaction between thallium oxide (Tl{sub 2}O{sub 3}) and zinc oxide (ZnO), tin oxide (SnO{sub 2}) or indium oxide (In{sub 2}O{sub 3}) annealed at 600 °C for 18 h in the air atmosphere was investigated. From XRD results of 600 °C annealed samples, Tl{sub 2}O{sub 3} had the biggest reactivity compared with ZnO. The EDX results suggest the mechanism in which the thallium atoms scattered and attached uniformly only on ZnO particles. We also analyzed XPS data to compare O 1s bond and Tl 4f bond of as-mixed samples with that of annealed samples, and found that Zn and Sn can contribute in improving Tl and O bonding stability. However, the affinity of In for Tl is weaker than that of Zn or Sn. Finally, we prepared the samples mixed with ZnO, SnO{sub 2}, and Tl{sub 2}O{sub 3} powder and the samples mixed with Zn{sub 2}SnO{sub 4} and Tl{sub 2}O{sub 3} powder annealed at 600 °C for 18 h. Results show that Zn{sub 2}SnO{sub 4} has the same or more reactivity than SnO{sub 2} and ZnO mixed particle despite of the more stable and sufficient dispersion of Zn and Sn atoms. More stable TlSnZnO can be fabricated from Zn{sub 2}SnO{sub 4} + Tl{sub 2}O{sub 3} powder by suitable thermal processes. It is expected that TlSnZnO sputtering target can be fabricated by suitable calcination. - Highlights: • Thermal reaction of Tl{sub 2}O{sub 3} and ZnO, SnO or In{sub 2}O{sub 3} were investigate. • It is found that Tl{sub 2}O{sub 3} is reactive with ZnO rather than SnO or In{sub 2}O{sub 3}. • Two-step annealing process is promising route for forming TlSnZnO tablet.

  2. Development of a Cu-Sn based brazing system with a low brazing and a high remelting temperature

    Science.gov (United States)

    Schmieding, M.; Holländer, U.; Möhwald, K.

    2017-03-01

    Objective of the project presented is the development of a joining process for hot working steel components at low brazing temperatures leading to a bond with a much higher remelting temperature. This basically is achieved by the use of a Cu-Sn melt spinning foil combined with a pure Cu foil. During brazing, the Sn content of the foil is decreased by diffusion of Sn into the additional Cu resulting in a homogenious joint with a increased remelting temperature of the filler metal. Within this project specimens were brazed and diffusion annealed in a vacuum furnace at 850 °C varying the processing times (0 - 10 h). The samples prepared were studied metallographically and diffusion profiles of Sn were recorded using EDX line scans. The results are discussed in view of further investigations and envisaged applications.

  3. High field-effect mobility at the (Sr,Ba)SnO{sub 3}/BaSnO{sub 3} interface

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kohei, E-mail: kfujiwara@imr.tohoku.ac.jp; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-08-15

    A perovskite oxide, BaSnO{sub 3}, has been classified as one of transparent conducting materials with high electron mobility, and its application for field-effect transistors has been the focus of recent research. Here we report transistor operation in BaSnO{sub 3}-based heterostructures with atomically smooth surfaces, fabricated on SrTiO{sub 3} substrates by the (Sr,Ba)SnO{sub 3} buffer technique. Indeed, modulation of band profiles at the channel interfaces with the insertion of wide bandgap (Sr,Ba)SnO{sub 3} as a barrier layer results in a significant improvement of field-effect mobility, implying effective carrier doping at the regulated heterointerface. These results provide an important step towards realization of high-performance BaSnO{sub 3}-based field-effect transistors.

  4. Zr-Sn-Nb alloys. Preliminary studies

    International Nuclear Information System (INIS)

    Danon, C.A.; Arias, D.E.

    1993-01-01

    Studies of the Zr-Sn-Nb diagram have been started, focussing on the Zr-rich corner, near the composition of Zirlo commercial alloy, Zr-1Sn-1Nb, and with Fe and O contents usual in nuclear grade materials. Three alloys were melted, namely Zr-4Sn-2.4Nb (A), Zr-1Sn-3Nb (B) and Zr-2.1Sn-1Nb (C). α/β transformation temperatures were measured through the variation of electrical resistivity(p) vs temperature (T). Values of 560 deg C, 670 deg C and 750 deg C were measured for the α→α+β reaction and 980 deg C, 910 deg C and 1000 deg C for the α+β→β reaction, for the A, B and C alloys, respectively in that order. Some samples were submitted to heat treatments (62 and 216 hours at 825 deg C, 120 hours at 875 deg C). Optical and scanning electronic microscopy of those samples confirmed our resistivity results. (Author)

  5. Changes of electronic structure of SnTe due to high concentration of Sn vacancies

    International Nuclear Information System (INIS)

    Masek, J.; Nuzhnyj, D.N.

    1997-01-01

    Non-stoichiometric Sn 1-y Te is a strongly degenerated n-type semiconductor. This is important for understanding unusual features of magnetic behaviour of Sn 1-x Gd x Te where the relative positions of the Fermi energy and the atomic d-level of Gd govern the exchange coupling.The influence of the Sn vacancies on the band structure cannot be neglect if their concentration reaches a few atomic percent. We address this problem by using a tight-binding coherent potential approach and show that although the character of the bands remains unchanged, they are modified so that ε d can come out above the heavy-hole band. (author)

  6. Effect of Magnesium Content and Processing Conditions on Phase Formation and Stability in Mg2+ δ Si0.3Sn0.7

    Science.gov (United States)

    Goyal, Gagan K.; Dasgupta, T.

    2018-03-01

    Mg2+ δ Si0.3Sn0.7 compositions with nominal Mg content of δ = 0, 0.2 are synthesized using a single-step quartz tube reaction method with different heating rates and holding times. The resulting powders are sintered using a uniaxial induction hot press under similar conditions to produce near-dense compacts. The effect of Mg content and processing conditions on the phase formation and its stability are studied using x-ray diffraction measurements, scanning electron microscopy (SEM) with elemental mapping and compositional analysis using energy dispersive spectroscopy (EDS). Results indicate that with sufficient Mg content and shorter synthesis time, the powder remains single phasic; however, prolonged heat treatment during synthesis results in Mg loss and causes the system to become biphasic. Compaction results in single-phase formation in all the specimens. This is attributed to the removal of the low-melting secondary Sn-rich phases present in the system. The decomposition of the specimens depends on the Mg content after the compaction step with a δ around - 0.15 necessary to preserve the single phase. The decomposition also results in Mg enrichment of the matrix (due to formation of elemental Sn), thereby acting as a self-healing mechanism. Annealing the dense products at 773 K for 24 h in static vacuum is carried out. Progressive Mg loss is observed resulting in degradation of the specimen.

  7. Interfacial reaction of Ni{sub 3}Sn{sub 4} intermetallic compound in Ni/SnAg solder/Ni system under thermomigration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi-Shan; Yang, Chia-Jung; Ouyang, Fan-Yi, E-mail: fyouyang@ess.nthu.edu.tw

    2016-07-25

    The growth of Ni{sub 3}Sn{sub 4} intermetallic compound (IMC) between liquid–solid interface in micro-scale Ni/SnAg/Ni system was investigated under a temperature gradient of 160 °C/cm at 260 °C on a hot plate. In contrast to a symmetrical growth of Ni{sub 3}Sn{sub 4} on both interfaces under isothermally annealed at 260 °C, the interfacial Ni{sub 3}Sn{sub 4} IMC exhibited asymmetric growth under a temperature gradient; the growth of Ni{sub 3}Sn{sub 4} at cold interface was faster than that at hot side because of temperature gradient induced mass migration of Ni atoms from the hot end toward the cold end. It was found that two-stage growth behavior of Ni{sub 3}Sn{sub 4} IMC under a temperature gradient. A growth model was established and growth kinetic analysis suggested that the chemical potential gradient controlled the growth of Ni{sub 3}Sn{sub 4} at stage I (0–120 min) whereas the dynamic equilibrium between chemical potential gradient and temperature gradient forces was attained at the hot end at stage II (120–210 min). When dynamic equilibrium was achieved at 260 °C, the critical length-temperature gradient product at the hot end was experimentally estimated to be 489.18 μm × °C/cm and the moving velocity of Ni{sub 3}Sn{sub 4} interface due to Ni consumption was calculated to be 0.134 μm/h. The molar heat of transport (Q*) of Ni atoms in molten SnAg solder was calculated to be +0.76 kJ/mol. - Highlights: • Interfacial reaction in Ni/SnAg solder/Ni system under thermal gradient. • Growth rate of Ni{sub 3}Sn{sub 4} at cold end is faster than that at hot end. • Critical length-temperature gradient product at hot end is 489.2 μm°C/cm at 260 °C. • Velocity of Ni{sub 3}Sn{sub 4} moving interface is 0.134 μm/h during dynamic equilibrium. • Molar heat of transport (Q*) of Ni in molten SnAg was +0.76 kJ/mol.

  8. Sensors of the gas CO in thin film of SnO{sub 2}:Cu; Sensores del gas CO en pelicula delgada de SnO{sub 2}:Cu

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S.; Sanchez Z, F. E., E-mail: tirado@esfm.ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, Unidad Profesional Adolfo Lopez Mateos, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2011-10-15

    Thin films of SnO{sub 2}:Cu with different thickness, were deposited on soda-lime glass substrates and prepared by the Sol-gel process and repeated immersion. The sensor properties of these films to the gas CO for the range of 0-200 ppm in the gas concentration and operating to temperatures of 23, 100, 200, and 300 C were studied. Prepared films of pure SnO{sub 2} were modified superficially with 1, 3, 5 and 10 layers of the catalyst Cu (SnO{sub 2}:Cu) with the purpose of studying the effect on the sensor capacity of the gas CO by part of the films SnO{sub 2}:Cu. Using the changes in the electric properties of the films with the incorporation of the different copper layers and experimental conditions, the sensor modifications of the gas CO were evaluated. To complete this study, was realized a characterization of the superficial morphology of the films by scanning electron microscopy and atomic force microscopy, equally was studied their structure and their electric and optical properties. (Author)

  9. Projection of the Liquidus Surface of the Co - Sn - Bi System

    Science.gov (United States)

    Abilov, Ch. I.; Allazov, M. R.; Sadygova, S. G.

    2016-11-01

    The crystallization behavior of phases in alloys of the Co - Sn - Bi system is studied by the methods of differential thermal (DTA), x-ray phase (XRP) and x-ray diffraction (XRD) analyses and hardness measurement. The projection of the liquidus surface is plotted. The boundaries of layering, the development of the monovariant processes, and the coordinates of the nonvariant equilibrium compositions are determined. Compositions of (Co3Sn2)1 - x Bi x solid solutions suitable for the production of antifriction materials are suggested.

  10. Coulomb excitation of {sup 107}Sn

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)

    2012-07-15

    The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)

  11. Quench performance of a 4-m long Nb3Sn shell-type dipole coil

    International Nuclear Information System (INIS)

    Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.

    2008-01-01

    Fermilab has finished the first phase of Nb 3 Sn technology scale up by testing 2-m and 4-m long shell-type dipole coils in a 'magnetic mirror' configuration. The 2-m long coil, made of Powder-in-Tube (PIT) Nb 3 Sn strand, reached its short sample limit at a field level of 10 T. The 4-m long coil, made of advanced Nb 3 Sn strand based on the Restack Rod Process (RRP) of 108/127 design, has been recently fabricated and tested. Coil test results at 4.5 K and 2.2 K are reported and discussed

  12. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    Science.gov (United States)

    Becker, Chaoyue; Posen, Sam; Groll, Nickolas; Cook, Russell; Schlepütz, Christian M.; Hall, Daniel Leslie; Liepe, Matthias; Pellin, Michael; Zasadzinski, John; Proslier, Thomas

    2015-02-01

    We present an analysis of Nb3Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (Tc) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ˜2 μm thick Nb3Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb3Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.

  13. Analysis of Nb3Sn surface layers for superconducting radio frequency cavity applications

    International Nuclear Information System (INIS)

    Becker, Chaoyue; Posen, Sam; Hall, Daniel Leslie; Groll, Nickolas; Proslier, Thomas; Cook, Russell; Schlepütz, Christian M.; Liepe, Matthias; Pellin, Michael; Zasadzinski, John

    2015-01-01

    We present an analysis of Nb 3 Sn surface layers grown on a bulk Niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb 3 Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperatures (T c ) up to 16.3 K. Scanning transmission electron microscopy performed on cross sections of the sample's surface region shows an ∼2 μm thick Nb 3 Sn surface layer. The elemental composition map exhibits a Nb:Sn ratio of 3:1 and reveals the presence of buried sub-stoichiometric regions that have a ratio of 5:1. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb 3 Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low T c regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb 3 Sn-coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators

  14. Influence of citric acid on SnO2 nanoparticles synthesized by wet chemical processes

    CSIR Research Space (South Africa)

    Sikhwivhilu, LM

    2010-10-01

    Full Text Available influences the particle size and the BET specific surface area. The XRD analysis revealed that nanoparticles were phase pure and that all materials exhibited a tetragonal rutile structure of SnO2. Characterisation of the materials was carried out using...

  15. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  16. Lead-free soldering: Investigation of the Cu-Sn-Sb system along the Sn:Sb = 1:1 isopleth

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y. [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy); Borzone, G., E-mail: borzone@chimica.unige.it [Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy); Zanicchi, G.; Delsante, S. [Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy)

    2011-02-03

    Research highlights: > In the electronics industry, the solder alloys commonly used for assembly belong to the Sn-Pb system. Fulfilment of the EU RoHS (reduction of hazardous substances) requires the development of new lead-free alloys for applications in electronics, with the same or possibly better characteristics than the traditional Sn-Pb alloys. > This research concerns the investigation of the constitutional properties of the Cu-Sn-Sb system which is considered as lead-free replacement for high-temperature applications. - Abstract: The Cu-Sn-Sb system has been experimentally investigated by a combination of optical microscopy, differential scanning calorimetry (DSC) and electron probe microanalysis (EPMA). DSC was used to identify a total number of five invariant ternary reactions and the Sn:Sb = 1:1 isopleth section up to 65 at.% Cu was constructed by combining the DSC data with the EPMA analyses of annealed alloys and literature information. The composition limits of the binary phases were detected.

  17. Laser spectroscopy of neutron deficient Sn isotopes

    CERN Multimedia

    We propose to study the ground state properties of neutron-deficient Sn isotopes towards the doubly-magic nucleus $^{100}$Sn. Nuclear spins, changes in the rms charge radii and electromagnetic moments of $^{101-121}$Sn will be measured by laser spectroscopy using the CRIS experimental beam line. These ground-state properties will help to clarify the evolution of nuclear structure properties approaching the $\\textit{N = Z =}$ 50 shell closures. The Sn isotopic chain is currently the frontier for the application of state-of-the-art ab-initio calculations. Our knowledge of the nuclear structure of the Sn isotopes will set a benchmark for the advances of many-body methods, and will provide an important test for modern descriptions of the nuclear force.

  18. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.

    2014-04-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.

  19. Agency Agreements Process Champion Support Intern

    Science.gov (United States)

    Miksa, Ember

    2018-01-01

    This document will provide information on the 2018 Spring semester NIFS Intern who represented the Office of Chief Financial Officer (OCFO) as a Reimbursable Accountant at Kennedy Space Center (KSC). This intern supported the Agency Agreements Process Champions and Team Lead, Susan Kroskey, Sandy Massey and Mecca Murphy, with major initiatives to advance the KSC OCFO's vision of creating and innovating healthy financial management practices that maximize the value of resources entrusted to NASA. These initiatives include, but are not limited to: updating the Agency Guidance and NASA Procedural Guidance 9090.1 Agreements, implementing a new budget structure to be utilized across all centers, submitting a Call Request (CRQ) to enhance non-federal customer reporting, initiating a discussion to incorporate a 3-year funding program for NASA agreements, and undertaking the Office of Inspector General (OIG) Audit. In support of these initiatives, this intern identified technical methods to enhance and reduce the workload of financial processes for reimbursable and non-reimbursable agreements, prepared reports in support of accounting functions, and performed administrative work and miscellaneous technical tasks in support of the OCFO as requested. In conclusion of the internship, the intern will become knowledgeable on reimbursable accounting, reimbursable policy, types of reimbursable agreements, the agreements process, estimated pricing reports, and the roles and responsibilities of the Financial Accounting and Financial Services offices.

  20. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    Science.gov (United States)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  1. Development of a 117mSn preparation method

    International Nuclear Information System (INIS)

    Moraes, Vanessa; Osso Junior, Joao Alberto

    2000-01-01

    117m Sn is a radioisotope with suitable characteristics to be used in nuclear medicine as radiotherapy, when labeled with DTPA. The aim of this work is the preparation of 117m Sn from irradiation of the natural tin with proton beam at the cyclotron CV-28 of IPEN-CNEN/SP via the nuclear reaction nat Sn (p, xn) 117 Sb to 117m Sn. Due to the formation of the Sb precursor it is necessary to perform a chemical separation for Sb-Sn. The separation method used was the ion exchange, due to its utilization facilities for radioactive material. Chemical, radiochemical and radionuclidic methods were also developed for the quality control of the final product, the 117m Sn. (author)

  2. Exploration work function and optical properties of monolayer SnSe allotropes

    Science.gov (United States)

    Cui, Zhen; Wang, Xia; Ding, Yingchun; Li, Meiqin

    2018-02-01

    The work function and optical properties are investigated with density functional theory for three monolayer SnSe allotropes. The calculated results indicate that the α-SnSe, δ-SnSe, ε-SnSe are semiconductor with the band gaps of 0.90, 1.25, and 1.50 eV, respectively. Meanwhile, the work function of δ-SnSe is lower than α-SnSe and ε-SnSe, which indicates that the δ-SnSe can be prepared of photoemission and field emission nanodevices. More importantly, the α-SnSe, δ-SnSe, ε-SnSe with the large static dielectric constants are 4.22, 5.48, and 3.61, which demonstrate that the three monolayer SnSe allotropes can be fabricated the capacitor. In addition, the static refractive index of δ-SnSe is larger than α-SnSe and ε-SnSe. The different optical properties with three monolayer SnSe allotropes reveal that the allotropes can regulate the properties of the materials. Moreover, our researched results show that the three monolayer SnSe allotropes are sufficient for fabrication of optoelectronic nanodevices.

  3. Equilibrium vapor-liquid-crystal in Sn-In-P system

    International Nuclear Information System (INIS)

    Ermilin, V.N.; Selin, A.A.; Khukhryanskij, Yu.P.

    1991-01-01

    Using flow method the dependence of phosphorus vapor pressure was investigated on the composition of equilibrium with indium phosphide crystal of Sn-In-P system melt (x P l ≤x In l ) and temperature (in the range 918 to 978 K). Its multiplicative character conditioned by change in phosphorus solubility in liquid phase and reconstruction of internal structure of the melt was established. It is revealed that in the considered melts phosphorus is in atomic form (possible as In n P complexes)

  4. New tests on the 40 kA Nb3Sn CEA conductor for ITER applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Bessette, D.; Katheder, H.

    1994-01-01

    New tests have been performed on the 40 kA CEA Nb 3 Sn conductor in the Sultan III facility. The aim of these tests is to obtain key experimental data on the behaviour of Nb 3 Sn conductors for fusion applications under high field and large transport current. The 40 kA Nb 3 Sn CEA conductor has a shape and an internal arrangement of the superconducting wires which is very similar to the ITER conductors. The level of the ac losses experienced by these conductors under varying fields influences deeply their design. The basic experiment consists of producing field pulses on the conductor by means of a coil installed in the bore of the Sultan magnet and recording the integrated voltage obtained on pick-up coils placed on the conductor as a function of time. (author) 4 refs.; 5 figs.; 2 tabs

  5. 8 CFR 287.10 - Expedited internal review process.

    Science.gov (United States)

    2010-01-01

    ... jurisdiction regarding criminal violations of law. [68 FR 35281, June 13, 2003] ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Expedited internal review process. 287.10... OFFICERS; POWERS AND DUTIES § 287.10 Expedited internal review process. (a) Violations of standards for...

  6. SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets

    Science.gov (United States)

    Xu, Chang-Han; Chiu, Yi-Fan; Yeh, Po-Wei; Chen, Jian-Zhang

    2016-08-01

    SnO2/CNT electrodes for supercapacitors are fabricated by first screen-printing pastes containing SnO2 nanoparticles and CNTs on carbon cloth, following which nitrogen atmospheric pressure plasma jet (APPJ) sintering is performed at various APPJ scan rates. The APPJ scan rates change the time intervals for which the reactive plasma species and the heat of the nitrogen APPJs influence the designated sintering spot on the carbon cloth, resulting in APPJ-sintered SnO2/CNT nanocomposites with different properties. The water contact angle decreases with the APPJ scan rate. The improved wettability can facilitate the penetration of the electrolyte into the nanopores of the SnO2/CNT nanocomposites, thereby improving the charge storage and specific capacitance of the supercapacitors. Among the three tested APPJ scan rates, 1.5, 3, and 6 mm s-1, the SnO2/CNT supercapacitor sintered by APPJ under the lowest APPJ scan rate of 1.5 mm s-1 shows the best specific capacitance of ˜90 F g-1 as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s-1. A high APPJ scan rate may result in low degree of materials activation and sintering, leading to poorer performance of SnO2/CNT supercapacitors. The results suggest the feasibility of an APPJ roll-to-roll process for the fabrication of SnO2/CNT nanocomposite supercapacitors.

  7. Annealing of RF-magnetron sputtered SnS{sub 2} precursors as a new route for single phase SnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, M.G., E-mail: martasousa@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Cunha, A.F. da, E-mail: antonio.cunha@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Fernandes, P.A., E-mail: pafernandes@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Física, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto (Portugal)

    2014-04-01

    Tin sulphide thin films have been grown on soda-lime glass substrates through the annealing of RF-magnetron sputtered SnS{sub 2} precursors. Three different approaches to the annealing were compared and the resulting films thoroughly studied. One series of precursors was annealed in a tubular furnace directly exposed to a flux of sulphur vapour plus forming gas, N{sub 2} + 5%H{sub 2}, and at a constant pressure of 500 mbar. The other two series of identical precursors were annealed in the same furnace but inside a graphite box with and without elemental sulphur evaporation again in the presence of N{sub 2} + 5%H{sub 2} and at the same pressure as for the sulphur flux experiments. Different maximum annealing temperatures for each set of samples, in the range of 300–570 °C, were tested to study their effects on the properties of the final films. The resulting phases were structurally investigated by X-Ray Diffraction (XRD) and Raman spectroscopy. Annealing of SnS{sub 2} precursors in sulphur flux produced films where SnS{sub 2} was dominant for temperatures up to 480 °C. Increasing the temperature to 530 °C and 570 °C led to films where the dominant phase became Sn{sub 2}S{sub 3}. Annealing of SnS{sub 2} precursors in a graphite box with sulphur vapour at temperatures in the range between 300 °C and 480 °C the films are multi-phase, containing Sn{sub 2}S{sub 3}, SnS{sub 2} and SnS. For high annealing temperatures of 530 °C and 570 °C the films have SnS as the dominant phase. Annealing of SnS{sub 2} precursors in a graphite box without sulphur vapour at 300 °C and 360 °C the films are essentially amorphous, at 420 °C SnS{sub 2} is the dominant phase. For temperatures of 480 °C and 530 °C SnS is the dominant phase but also same residual SnS{sub 2} and Sn{sub 2}S{sub 3} phases are observed. For annealing at 570 °C, according to the XRD results the films appear to be single phase SnS. The composition was studied using energy dispersive spectroscopy being

  8. Quench performance of Nb3Sn cos-theta coils made of 108/127 RRP strands

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab

    2007-07-01

    A series of 1-m long Nb{sub 3}Sn dipole models has been built at Fermilab in an attempt to refine the wind-and-react technology for Nb3Sn accelerator magnets. Three models made with Powder-in-Tube Nb{sub 3}Sn strand reached their design field of 10 T demonstrating a good reproducibility of magnet quench performance and field quality. Recently a new dipole 'mirror' model based on Nb{sub 3}Sn coil made of improved Restack Rod Process strand was constructed and tested reaching the maximum field above 11 T. This paper describes the parameters of the RRP strand and cable used as well as the design, fabrication and test results of this magnet.

  9. Ultrasmall SnO₂ nanocrystals: hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage.

    Science.gov (United States)

    Ding, Liping; He, Shulian; Miao, Shiding; Jorgensen, Matthew R; Leubner, Susanne; Yan, Chenglin; Hickey, Stephen G; Eychmüller, Alexander; Xu, Jinzhang; Schmidt, Oliver G

    2014-04-15

    Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g(-1) at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs.

  10. Synthesis of bulk nanocrystalline Pb-Sn-Te alloy under high pressure

    International Nuclear Information System (INIS)

    Zhu, P W; Chen, L X; Jia, X; Ma, H A; Ren, G Z; Guo, W L; Liu, H J; Zou, G T

    2002-01-01

    Pb-Sn-Te bulk nanocrystalline (NC) materials are prepared successfully by quenching melts under high pressure. The mean particle size is about 100 nm and the crystal structure is NaCl type. The mechanism of formation of the bulk NC alloy is explained: there is an increasing of the nucleation rate and a decrease in the growth rate of nuclei with increase of pressure during the solidification processes. The thermoelectric properties of Pb-Sn-Te bulk NC alloy are enhanced. This method is promising for producing thermoelectric materials with improved high-energy conversion efficiency

  11. The crystallisation of Cu{sub 2}ZnSnS{sub 4} thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schurr, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany)], E-mail: schurr@krist.uni-erlangen.de; Hoelzing, A.; Jost, S.; Hock, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany); Voss, T.; Schulze, J.; Kirbs, A. [Atotech Deutschland GmbH, Erasmusstrasse 20, D-10553 Berlin (Germany); Ennaoui, A.; Lux-Steiner, M. [Heterogeneous Material Systems SE II, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany); Weber, A.; Koetschau, I.; Schock, H.-W. [Technology SE III, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany)

    2009-02-02

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu{sub 2}ZnSnS{sub 4} based thin film solar cells. A kesterite based solar cell (size 0.5 cm{sup 2}) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu{sub 2}SnS{sub 3} and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu{sub 3}Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu{sub 6}Sn{sub 5} and Sn phases were detected. The formation mechanism of Cu{sub 2}SnS{sub 3} involves the binary sulphides Cu{sub 2-x}S and SnS{sub 2} in the absence of the binary precursor phase Cu{sub 6}Sn{sub 5}. The presence of Cu{sub 6}Sn{sub 5} leads to a preferred formation of Cu{sub 2}SnS{sub 3} via the reaction educts Cu{sub 2-x}S and SnS{sub 2} in the presence of a SnS{sub 2}(Cu{sub 4}SnS{sub 6}) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase.

  12. Investigation of the reversible sodiation of Sn foil by ex-situ X-ray diffractometry and Mössbauer effect spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Zhijia [Department of Physics and Atmospheric Science, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); Dunlap, R.A. [Department of Physics and Atmospheric Science, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); Institute for Research in Materials, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); College of Sustainability, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); Obrovac, M.N., E-mail: mobrovac@dal.ca [Department of Physics and Atmospheric Science, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); Institute for Research in Materials, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada); Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada)

    2014-12-25

    Highlights: • Mössbauer spectra of all phases formed during sodiation measured for the first time. • Center shifts correlated with metallurgically prepared samples. • Center shift correlated with Na content in Na–Sn. - Abstract: The reversible sodiation of Sn foil was investigated using ex-situ X-ray diffractometry (XRD) and Mössbauer effect spectroscopy. The measured voltage profile indicated that the sodiation process of Sn foil proceeded in three stages. Ex-situ XRD patterns demonstrated that Na{sub 4}Sn{sub 4}, Na{sub 5}Sn{sub 2} and Na{sub 15}Sn{sub 4} phases were formed at the end of each discharge plateau. Na{sub 5}Sn{sub 2}, Na{sub 4}Sn{sub 4} and β-Sn were formed at the end of each charge plateau. Three single-phase alloys, Na{sub 4}Sn{sub 4}, Na{sub 9}Sn{sub 4} and Na{sub 15}Sn{sub 4}, were prepared by annealing stoichiometric ratios of Na and Sn. The Mössbauer spectra of ex-situ samples at the end of each discharge plateau were collected and compared with the Mössbauer spectra of the three single phase alloys. The measured parameters for the Mössbauer effect spectra were consistent with an analysis of the crystal structures. The center shift became less positive with an increase of the sodium content in Na–Sn phases and this was shown to be a useful indicator of the degree of sodiation of Sn electrodes.

  13. Diffusion couple studies of the Ni-Bi-Sn system

    Directory of Open Access Journals (Sweden)

    Vassilev G.

    2012-01-01

    Full Text Available Investigations of Ni-Bi-Sn system were performed in order to inquire the phase diagram and to assess some diffusion kinetic parameters. For this purpose diffusion couples consisting of solid nickel (preliminary electroplated with tin and liquid Bi-Sn phase were annealed at 370 °C. Three compositions (0.8, 0.6 and 0.4 mole fractions Sn of the Bi-Sn melts were chosen. Annealing times from 24 to 216 h were applied. The phase and chemical compositions of the contact zone were determined by means of electron scanning microscope. It was confirmed that the diffusion layers consist mainly of Ni3Sn4 but other intermetallic phases grow as well. For the first time metastable Ni-Sn phases as NiSn and NiSn8 (NiSn9 were observed in metallurgical alloys (i.e. not in electroplated samples. The existence of a ternary compound previously reported in the literature was confirmed. More than one ternary Ni-Bi-Sn compounds might possibly be admitted. A growth coefficient of (2.29 ± 0.02 x 10-15 m2 s-1 was obtained. It was found that the apparent activation energy for diffusion layers growth (18 ± 8 kJ mol-1 is inferior to that one assessed at growth from solid state Bi-Sn mixtures (88 ± 12 kJ mol-1.

  14. Theoretical calculation of performance enhancement in lattice-matched SiGeSn/GeSn p-channel tunneling field-effect transistor with type-II staggered tunneling junction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue

    2016-04-01

    In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.

  15. Exploring As-Cast PbCaSn-Mg Anodes for Improved Performance in Copper Electrowinning

    Science.gov (United States)

    Yuwono, Jodie A.; Clancy, Marie; Chen, Xiaobo; Birbilis, Nick

    2018-06-01

    Lead calcium tin (PbCaSn) alloys are the common anodes used in copper electrowinning (Cu EW). Given a large amount of energy consumed in Cu EW process, anodes with controlled oxygen evolution reaction (OER) kinetics and a lower OER overpotential are advantageous for reducing the energy consumption. To date, magnesium (Mg) has never been studied as an alloying element for EW anodes. As-cast PbCaSn anodes with the addition of Mg were examined herein, revealing an improved performance compared to that of the industrial standard PbCaSn anode. The alloy performances in the early stages of anode life and passivation were established from electrochemical studies which were designed to simulate industrial Cu EW process. The 24-hour polarization testing revealed that the Mg alloying depolarizes the anode potential up to 80 mV; thus, resulting in a higher Cu EW efficiency. In addition, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the alteration of the alloy microstructure and the corresponding interfacial reactions contribute to the changes of the anode electrochemical performances. The present study reveals for the first time the potency of Mg alloying in reducing the overpotential of PbCaSn anode.

  16. 119Sn Moessbauer spectroscopy in the magnetically diluted Heusler-type systems

    International Nuclear Information System (INIS)

    Ruebenbauer, K.

    1981-01-01

    119 Sn Moessbauer investigations of the ferromagnetically diluted Nisub(2)Mnsub(x)Bsub(1-x)Sn(B=Ti, V) and Pdsub(2)Mnsub(x)Vsub(1-x)Sn Heusler-type systems have been performed and the results are reviewed and discussed. It has been found that distributions of the transferred hyperfine magnetic field as seen by a tin nucleus are very sensitive for a type of the local magnetic interaction in these simple ferromagnets, especially when studied versus the sample temperature. This sensitivity allows to reach some conclusions about the coupling mechanism between localised manganese magnetic moments. Namely, it is concluded that the interaction beyond the second neighbour shell is practically irrelevant for the magnetic ordering process. This very fact means that the free electron approach to the calculation of exchange integrals can not be applied for these particular systems. (Author)

  17. Thermoelectric Properties in the TiO2/SnO2 System

    Science.gov (United States)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  18. Electrochemical lithiation/delithiation of SnP₂O₇ observed by in situ XRD and ex situ⁷Li/³¹P NMR, and ¹¹⁹Sn Mössbauer spectroscopy.

    Science.gov (United States)

    Bezza, Ilham; Kaus, Maximilian; Riekehr, Lars; Pfaffmann, Lukas; Doyle, Stephen; Indris, Sylvio; Ehrenberg, Helmut; Solhy, Abderrahim; Saadoune, Ismael

    2016-04-21

    SnP2O7 was prepared by a sol-gel route. The structural changes of tin pyrophosphate during the electrochemical lithiation were followed by using in situ XRD measurements that reveal the existence of a crystalline phase at the beginning of the discharge process. Nevertheless, it becomes amorphous after the full discharge as a result of a conversion reaction leading to the formation of LixSny alloys. The electrochemical tests show a high capacity with high retention upon cycling. To better understand the reaction mechanism of SnP2O7 with Li, several techniques were applied, such as ex situ(119)Sn Mössbauer and ex situ(7)Li and (31)P NMR spectroscopies with which we can follow the changes in the local environment of each element during cycling.

  19. Numerical analysis of In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS heterojunction solar cells

    International Nuclear Information System (INIS)

    Lin, Shuo; Li, Xirong; Pan, Huaqing; Chen, Huanting; Li, Xiuyan; Li, Yan; Zhou, Jinrong

    2016-01-01

    Highlights: • In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS solar cells are studied by numerical analysis. • Performances of In_xGa_1_−_xN/SnS solar cells enhanced with decreasing In content. • The electron barrier leads to the degraded efficiency of Al_xGa_1_−_xN/SnS solar cells. • GaN/SnS solar cell exhibits the highest efficiency 26.34%. - Abstract: In this work the photovoltaic properties of In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS heterojunction solar cells are studied by numerical analysis. The photovoltaic performances of In_xGa_1_−_xN/SnS solar cells are enhanced with the decreasing In content and the GaN/SnS solar cell exhibits the highest efficiency. The efficiencies of GaN/SnS solar cell improve with the increased SnS thickness and the reduced GaN thickness. For the Al_xGa_1_−_xN/SnS solar cells, there is electron barrier in the Al_xGa_1_−_xN/SnS interface. The electron barrier becomes larger with increasing Al content and lead to the degraded efficiency of Al_xGa_1_−_xN/SnS solar cells. The simulation contributes to designing and fabricating SnS solar cells.

  20. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  1. 51Cr diffusion in Zr-Sn alloys

    International Nuclear Information System (INIS)

    Nicolai, L.I.; Migoni, R.L.; Hojvat de Tendler, Ruth

    1982-01-01

    The 51 Cr volume diffusion in Zr-Sn alloys is measured in polycrystals with big grains by the thin-film method. The Sn content in the alloys ranges from 0.39% at to 6.66 % at. In the beta-phase the analysed temperature range is 982 deg C-1240 deg C. The Sn dehances the 51 Cr diffusion in beta-Zr, the effect being small but well defined. Assuming the formation of Sn-Cr dimers, the linear dehancement coefficient b and the parameters for the variation of b with temperature were calculated. The parameters Q and D o were calculated for the more diluted alloys and, upon application of the Zener theory for D o , a negative contribution to the activation entropy is found. Three experiments at different temperatures were performed in the alpha-phase. 51 Cr diffuses very fast in alpha-Zr-Sn. No definite correlation is found between the 51 Cr diffusivity and the increasing Sn concentration, probably due to the anisotropy of the alfa-phase. (M.E.L.) [es

  2. Extrinsic pseudocapacitve Li-ion storage of SnS anode via lithiation-induced structural optimization on cycling

    Science.gov (United States)

    Lian, Qingwang; Zhou, Gang; Liu, Jiatu; Wu, Chen; Wei, Weifeng; Chen, Libao; Li, Chengchao

    2017-10-01

    Here, we report a new enhanced extrinsic pseudocapacitve Li-ion storage mechanism via lithiation-induced structural optimization strategy. The flower-like C@SnS and bulk SnS exhibit initial capacity decay and subsequent increase of capacity on cycling. After a long-term lithiation/delithiation process, flower-like C@SnS and bulk SnS exhibit improved rate performance and reversible capacity in comparison with those of initial state. Moreover, a high capacity of 530 mAh g-1 is still remained even after 1550 cycles at a high current density of 5.0 A g-1 for flower-like C@SnS after pre-lithiation of 350 cycles. According to the comprehensive analysis of structural evolution and electrochemical performance, it demonstrates that SnS electrodes experience crystal size reduction and further amorphization on cycling, which enhances the reversibility of conversion reaction for SnS, leading to increasing capacity. On the other hand, surface-dominated extrinsic pseudocapacitive contribution results in enhanced rate performance because electrodes expose a large fraction of Li+ sites on surface or near-surface region with structural optimization on cycling. This study reveals that extrinsic pseudocapacitance of SnS can be stimulated via lithiation-induced structural optimization, which gives rise to high-rate and long-lived performances.

  3. Thermodynamic assessment of the Sn-Co lead-free solder system

    Science.gov (United States)

    Liu, Libin; Andersson, Cristina; Liu, Johan

    2004-09-01

    The Sn-Co-Cu eutectic alloy can be a less expensive alternative for the Sn-Ag-Cu alloy. In order to find the eutectic solder composition of the Sn-Co-Cu system, the Sn-Co binary system has been thoroughly assessed with the calculation of phase diagram (CALPHAD) method. The liquid phase, the FCC and HCP Co-rich solid solution, and the BCT Sn-rich solid solution have been described by the Redlich-Kister model. The Hillert-Jarl-Inden model has been used to describe the magnetic contributions to Gibbs energy in FCC and HCP. The CoSn2, CoSn, Co3Sn2_β, and Co3Sn2_α phases have been treated as stoichiometric phases. A series of thermodynamic parameters have been obtained. The calculated phase diagram and thermodynamic properties are in good agreement with the experimental data. The obtained thermodynamic data was used to extrapolate the ternary Sn-Co-Cu phase diagram. The composition of the Sn-rich eutectic point of the Sn-Co-Cu system was found to be 224°C, 0.4% Co, and 0.7% Cu.

  4. Effect of impurities in niobium on the growth of superconducting Nb/sub 3//Sn. [Al, Cu, Ge, Si, Sn, Zr impurities

    Energy Technology Data Exchange (ETDEWEB)

    Sekizawa, T

    1974-01-01

    In order to examine the possibility of reducing the heat treatment temperature in the manufacturing process of the superconducting intermetallic compounds wire or ribbon by the metallurgical bond method, tin cored specimens of niobium including a small amount of impurity (Al, Cu, Ge, Si, Sn and Zr) have been prepared, and the critical currents measured as a function of the heat treatment temperature and time. Experimental results are summarized as follows. (1) The effect of the impurity added into niobium is to stabilize the dislocation network cell structure in niobium, caused by the cold working, up to the forming temperature of Nb/sub 3/Sn. The stabilized dislocation network structure is considered to serve as diffusion pipes of the tin atom. As this diffusion (microscopic) is predominant over bulk diffusion (macroscopic), the cored specimen made of niobium including impurities has lower forming temperature of Nb/sub 3/Sn compared with the specimen made of pure niobium. (2) The critical current vs. heat treatment temperature characteristics show that the critical current peaks at 900/sup 0/C in the case of niobium including Si, while at 950/sup 0/C in the case of pure niobium. 6 references.

  5. Microalloying with Cd of Antifriction Sn-Sb-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Cinca Ionel Lupinca

    2012-09-01

    Full Text Available In the case of bimetallic sliding linings with superior technological characteristics, the use of an antifriction ally is imposed an alloy of the type Sn-Sb-Cu, which possesses a high adherence to the steel stand and a high durability in exploitation. For this reason we use the microalloying of the antifriction alloy with cadmium. The microalloying with Cd of antifriction alloys Sn-Sb-Cu determines an increase of the adhesion property of the antifriction alloy on the steel stand. The steel stand is previously subjected to a process of degreasing with ZnCl2 and washing so that is can later be subjected to a thermal-chemical treatment of tinning.

  6. Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage

    Science.gov (United States)

    Ding, Liping; He, Shulian; Miao, Shiding; Jorgensen, Matthew R.; Leubner, Susanne; Yan, Chenglin; Hickey, Stephen G.; Eychmüller, Alexander; Xu, Jinzhang; Schmidt, Oliver G.

    2014-04-01

    Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA.h.g-1 at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs.

  7. Phase analysis of superconducting Nb-Sn materials by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Tomasich, M.; Cirak, J.; Prejsa, M.; Kruzliak, J.

    1978-01-01

    Moessbauer spectroscopy is used for the optimalization of superconducting Nb-Sn samples preparation in the form of foils. Pure phases of Nb 3 Sn, Nb 6 Sn 5 , and NbSn 2 are determined. Two series of samples are studied at 750 and 900 0 C tinning temperature respectively, and at 750, 860, 900, and 960 0 C heating temperatures. In the samples the phases Nb 3 Sn, Nb 6 Sn 5 , NbSn 2 , and the solid solution Nb-Sn phase are observed. The results from the phase analysis lead to the assumption that the percentage amount of the phases is preferentially dependent on the tinning temperature. (author)

  8. Hierarchical three-dimensional porous SnS{sub 2}/carbon cloth anode for high-performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Junfeng, E-mail: chchjjff@163.com [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Zhang, Xiutai [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Xing, Shumin [College of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000 (China); Fan, Qiufeng; Yang, Junping; Zhao, Luhua; Li, Xiang [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China)

    2016-08-15

    Graphical abstract: Hierarchical 3D porous SnS{sub 2}/carbon cloth, good electrochemical performance. - Highlights: • Hierarchical 3D porous SnS{sub 2}/carbon cloth has been firstly synthesized. • The SnS{sub 2}/carbon clothes were good candidates for excellent lithium ion batteries. • The SnS{sub 2}/carbon cloth exhibits improved capacity compared to pure SnS{sub 2}. - Abstract: Hierarchical three-dimension (3D) porous SnS{sub 2}/carbon clothes were synthesized via a facile polyol refluxing process. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmet–Teller (BET) and UV–vis diffuse reflectance spectrometer (UV–vis DRS). The 3D porous SnS{sub 2}/carbon clothes-based lithium ion batteries exhibited high reversible capacity and good rate capability as anode materials. The good electrochemical performance for lithium ion storage could be attributed to the special nanostructure, leading to high-rate transportation of electrolyte ion and electrons throughout the electrode matrix.

  9. Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage

    Science.gov (United States)

    Tian, Qinghua; Li, Lingxiangyu; Chen, Jizhang; Yang, Li; Hirano, Shin-ichi

    2018-02-01

    Elaborate fabrication of state-of-the-art nanostructure SnO2@C-based composites greatly contributes to alleviate the huge volume expansion issue of the SnO2 anodes. But the preparation processes of most of them are complicated and tedious, which is generally adverse to the development of SnO2@C-based composite anodes. Herein, a unique nanostructure of TiO2@SnO2@C hollow nanobelts (TiO2@SnO2@C HNBs), including the characteristics of one-dimensional architecture, sandwich protection, hollow structure, carbon coating, and a mechanically robust TiO2 support, has been fabricated by a facile approach for the first time. As anodes for lithium-ion batteries, the as-fabricated TiO2@SnO2@C HNBs exhibit an outstanding lithium storage performance, delivering capacity of 804.6 and 384. 5 mAh g-1 at 200 and even 1000 mA g-1 after 500 cycles, respectively. It is demonstrated that thus outstanding performance is mainly attributed to the unique nanostructure of TiO2@SnO2@C HNBs.

  10. Deuteron interaction with 124Sn nuclei at sub-barrier energies

    Directory of Open Access Journals (Sweden)

    Yu.N. Pavlenko

    2015-04-01

    Full Text Available The measurements of cross sections for deuteron elastic scattering and (d,p reaction on 124Sn nuclei have been performed with aim to study the features of sub-barrier deuteron interaction with heavy nuclei. Experimental data were obtained on the electrostatic Tandem accelerator EGP-10K of the Institute for Nuclear Research (Kyiv at the deuteron beam energies Ed = 4.0; 5.0 and 5.5 MeV. Cross sections of deuteron elastic scattering were calculated in approach where the deuteron interaction potential with heavy nuclei at sub-barrier energies has been constructed in the framework of single folding model using the complex dynamic polarization potential. It is shown that the account of finite deuteron size leads to the increasing the nuclear potential in outer region of interaction and significantly improves the description of the experimental data. The calculations of elastic scattering cross sections were performed without any variations of the nuclear potential parameters. The analysis of measured integral cross sections of the 124Sn(d,p reaction and calculated cross sections of deuteron breakup reaction 124Sn(d,pn124Sn shows the dominant contribution of the neutron transfer reaction in the processes of the formation of protons and elastic scattering cross sections.

  11. Directional Solidification and Liquidus Projection of the Sn-Co-Cu System

    Science.gov (United States)

    Chen, Sinn-Wen; Chang, Jui-Shen; Pan, Kevin; Hsu, Chia-Ming; Hsu, Che-Wei

    2013-04-01

    This study investigates the Sn-Co-Cu ternary system, which is of interest to the electronics industry. Ternary Sn-Co-Cu alloys were prepared, their as-solidified microstructures were examined, and their primary solidification phases were determined. The primary solidification phases observed were Cu, Co, Co3Sn2, CoSn, CoSn2, Cu6Sn5, Co3Sn2, γ, and β phases. Although there are ternary compounds reported in this ternary system, no ternary compound was found as the primary solidification phase. The directional solidification technique was applied when difficulties were encountered using the conventional quenching method to distinguish the primary solidification phases, such as Cu6Sn5, Cu3Sn, and γ phases. Of all the primary solidification phases, the Co3Sn2 and Co phases have the largest compositional regimes in which alloys display them as the primary solidification phases. There are four class II reactions and four class III reactions. The reactions with the highest and lowest reaction temperatures are both class III reactions, and are L + CoSn2 + Cu6Sn5 = CoSn3 at 621.5 K (348.3 °C) and L + Co3Sn2 + CoSn = Cu6Sn5 at 1157.8 K (884.6 °C), respectively.

  12. Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Modibedi, RM

    2011-04-01

    Full Text Available Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts were prepared by the chemical reduction method, using sodium borohydride and ethylene glycol mixture as the reducing agent. The catalytic activity towards ethanol electro-oxidation in alkaline medium...

  13. Double-heterostructure PbSnTe lasers grown by molecular-beam epitaxy with cw operation up to 114 K

    International Nuclear Information System (INIS)

    Walpole, J.N.; Calawa, A.R.; Harman, T.C.; Groves, S.H.

    1976-01-01

    Double-heterostructure Pb/sub 1-x/Sn/sub x/Te lasers with active regions of Pb 0 . 782 Sn 0 . 218 Te have been grown by molecular-beam epitaxy which operate cw up to heat-sink temperatures of 114 0 K. Temperature tuning of the emission from 15.9 to 8.54 μm wavelength is obtained, with emission at 77 0 K near 11.5 μm. The current-voltage characteristics show an abrupt change in slope at threshold, indicating high incremental internal quantum efficiency

  14. Internal control in the management system of meat processing enterprises

    Directory of Open Access Journals (Sweden)

    Volodymyr Kushnir

    2018-03-01

    Full Text Available The article is described the theoretical basis of internal control and its practical aspects in the work of meat processing enterprises (a case in the meat processing industry in Ukraine. The purpose of the research is to establish the theoretical foundations of the internal control and its improvement in the activity of meat processing plants of various forms of management. It is proposed to use precisely internal control among other names of domestic control. Definition of internal control, its subject and purpose are improved. The subjects and objects of internal control are determined; the principles of its implementation are supplemented. Specific control tasks in meat processing plants according to the needs of this industry are outlined. Specific examples of control subjects are presented and the role of the revision commission is emphasized. The state of internal control in meat processing plants in Ukraine is investigated and it is established that it has a bad condition and unfounded approach to its implementation by managers of meat processing enterprises. To improve the situation we recommend that each meat processing enterprise have in its staff a revision commission or an apposer (auditor. It is established that internal control is more effective in joint-stock companies than in limited liability companies. The necessity of internal control as an important element in the enterprise management system is accented.

  15. Multi-step processes in the (d, t) and (d, 3He) reactions on 116Sn and 208Pb targets at Ed = 200 MeV

    International Nuclear Information System (INIS)

    Langevin-Joliot, H.; Van de Wiele, J.; Guillot, J.; Koning, A.J.

    2000-01-01

    The role of multi-step processes in the reactions 116 Sn(d,t), 208 Pb(d,t) and 116 Sn(d, 3 He), previously studied at E d = 200 MeV at forward angles and for relatively low energy transfers, has been investigated. We have performed for the first time multi-step calculations taking into account systematically collective excitations in the second and higher order step inelastic transitions. A calculation code based on the Feshbach, Kerman and Koonin model has been modified to handle explicitly these collective excitations, most important in the forward angle domain. One step double differential pick-up cross sections were built from finite range distorted wave results spread in energy using known or estimated hole state characteristics. It is shown that two-step cross sections calculated using the above method compare rather well with those deduced via coupled channel calculations for the same collective excitations. The multi-step calculations performed up to 6 steps reproduce reasonably well the 115 Sn, 207 Pb and 115 In experimental spectra measured up to E x ∼- 40 MeV and 15 deg. The relative contributions of steps of increasing order to pick-up cross sections at E d = 200 MeV and 150 MeV are discussed. (authors)

  16. CO oxidation catalyzed by ag nanoparticles supported on SnO/CeO2

    KAUST Repository

    Khan, Inayatali

    2015-01-01

    Ag-Sn/CeO2 catalysts were synthesized by the co-precipitation method with different Ag-Sn wt.% loadings and were tested for the oxidation of CO. The catalysts were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED) techniques. UV-Vis measurements were carried out to elucidate the ionic states of the silver particles, and the temperature-programmed reduction (TPR) technique was employed to check the reduction temperature of the catalyst supported on CeO2. There are peaks for silver crystallites in the X-ray diffraction patterns and the presence of SnO was not well evidenced by the XRD technique due to sintering inside the 3D array channels of CeO2 during the calcination process. The Ag-Sn/CeO2 (4%) catalyst was the most efficient and exhibited 100% CO oxidation at 100 °C due to small particle size and strong electronic interaction with the SnO/CeO2 support. © 2015 Sociedade Brasileira de Química.

  17. Quench performance of a 4-m long Nb3Sn shell-type dipole coil

    Energy Technology Data Exchange (ETDEWEB)

    Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab

    2008-08-01

    Fermilab has finished the first phase of Nb{sub 3}Sn technology scale up by testing 2-m and 4-m long shell-type dipole coils in a 'magnetic mirror' configuration. The 2-m long coil, made of Powder-in-Tube (PIT) Nb{sub 3}Sn strand, reached its short sample limit at a field level of 10 T. The 4-m long coil, made of advanced Nb{sub 3}Sn strand based on the Restack Rod Process (RRP) of 108/127 design, has been recently fabricated and tested. Coil test results at 4.5 K and 2.2 K are reported and discussed.

  18. study on 113 Sn-113m In generator of the chromatographic column elution mode

    International Nuclear Information System (INIS)

    Abdel-Halim, A.A.

    2002-01-01

    this work has been carried out to study the optimum conditions required for local preparation of 113 Sn- 113m In radioisotope generator based on 12- molybdocerate- 113 Sn column matrix. this work was directed to: 1- investigate the optimum conditions of the tin target irradiation and dissolution processes. 2- study the different preparative conditions which affect the loading of 113 Sn radionuclide onto 12- molybdocerate (IV) columns and the elution of the generated 113m In radionuclide. 3- study the effect of generator life- time on the elution performance and quality control of the generated 113m In radionuclide over a period of 190 days

  19. Beta-decay studies near 100Sn

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Karny, M.; Batist, L.; Banu, A.; Becker, F.; Blazhev, A.; Burkard, K.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Janas, Z.; Jungclaus, A.; Kavatsyuk, M.; Kavatsyuk, O.; Kirchner, R.; La Commara, M.; Mandal, S.; Mazzocchi, C.; Miernik, K.; Mukha, I.; Muralithar, S.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2005-01-01

    The β-decay of 102 Sn was studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). A decay scheme has been constructed based on the γ-γ coincidence data. The total experimental Gamow-Teller strength B GT exp of 102 Sn was deduced from the TAS data to be 4.2(9). A search for β-delayed γ-rays of 100 Sn decay remained unsuccessful. However, a Gamow-Teller hindrance factor h = 2.2(3), and a cross-section of about 3nb for the production of 100 Sn in fusion-evaporation reaction between 58 Ni beam and 50 Cr target have been estimated from the data on heavier tin isotopes. The estimated hindrance factor is similar to the values derived for lower shell nuclei

  20. Electrodeposition mechanism of quaternary compounds Cu2ZnSnS4: Effect of the additives

    Science.gov (United States)

    Tang, Aiyue; Li, Zhilin; Wang, Feng; Dou, Meiling; Liu, Jingjun; Ji, Jing; Song, Ye

    2018-01-01

    The electrodeposition mechanism of pure phase Cu2ZnSnS4 (CZTS) thin film with subsequent annealing was investigated in detail. An electrolyte design principle of quaternary compounds was proposed. The complex ions of Cu(H2C6H5O7)+, Cu2(C6H5O7)+, Zn(C4H5O6)+, Sn(H2C6H5O7)+ and Sn2(C6H5O7)+, which influenced the reduction process and played important roles in co-deposition, were identified by UV spectra. Electrochemical studies indicated that trisodium citrate and tartaric acid could narrow the co-deposition potential range of the four elements to -0.8 V to -1.2 V (vs. SCE). The cause was the synergetic effect that trisodium citrate inhibited the reduction of Cu2+ and Sn2+ and tartaric acid promoted the reduction of Zn2+. The reduction of S2O32- was mainly attributed to the induction effect of the metallic ions, and the H+ dissociated from tartaric acid could also promote the cathode process of S2O32-. The reaction mechanism could be summarized as the following steps: (I) Cu(H2C6H5O7)+, Cu2(C6H5O7)+ → Cu, Sn(H2C6H5O7)+, Sn2(C6H5O7)+ → Sn, Zn(C4H5O6)+ → Zn; (II) the desorption of (H2C6H5O7)- and (C6H5O7)-, and the reduction of S2O32- induced by metallic ions and H+. The mechanism studies provided a path of electrolyte design for multicomponent compounds.

  1. A novel route to graphite-like carbon supporting SnO{sub 2} with high electron transfer and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xianjie; Liu, Fenglin; Liu, Bing [Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Hubei University, Wuhan 430062 (China); Ministry of Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Tian, Lihong, E-mail: tian7978@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Hubei University, Wuhan 430062 (China); Ministry of Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Hu, Wei; Xia, Qinghua [Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Hubei University, Wuhan 430062 (China); Ministry of Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2015-04-28

    Highlights: • Mesoporous nanocomposites that graphite-like carbon supporting SnO{sub 2} are prepared by solvothermal method combined with a post- calcination. • The polyvinylpyrrolidone not only promotes the nucleation and crystallization but also provides the carbon source in the process. • The graphite-like carbon hinders the recombination of photogenerated electron and holes efficiently. • The mesoporous carbon–SnO{sub 2} nanocomposite shows high photocatalytic activity on the degradation of Rhodamine B and glyphosate under simulated sunlight. - Abstract: Mesoporous graphite-like carbon supporting SnO{sub 2} (carbon–SnO{sub 2}) nanocomposites were prepared by a modified solvothermal method combined with a post-calcination at 500 °C under a nitrogen atmosphere. The polyvinylpyrrolidone not only promotes the nucleation and crystallization, but also provides the carbon source in the process. The results of scanning electron microscopy and transmission electron microscopy show a uniform distribution of SnO{sub 2} nanoparticles on the graphite- like carbon surface. Raman and X-ray photoelectron spectra indicate the presence of strong C–Sn interaction between SnO{sub 2} and graphite-like carbon. Photoelectrochemical measurements confirm that the effective separation of electron–hole pairs on the carbon–SnO{sub 2} nanocomposite leads to a high photocatalytic activity on the degradation of Rhodamine B and glyphosate under simulated sunlight irradiation. The nanocomposite materials show a potential application in dealing with the environmental and industrial contaminants under sunlight irradiation.

  2. 119Sn MAS NMR Study of Probe Molecules Interaction with Sn-BEA: The Origin of Penta- and Hexacoordinated Tin Formation

    DEFF Research Database (Denmark)

    Yakimov, Alexander V.; G. Kolyagin, Yury; Tolborg, Søren

    2016-01-01

    and weak Lewis acidity, respectively. The adsorption of acetonitrile and methanol resulted in observation of pentacoordinated tin species, due to the formation of 1:1 adsorption complexes over both Sn-sites. Water adsorption led first to formation of pentacoordinated tin species, which were further...... by the formation of pentacoordinated Sn species in the case of weak sites and hexacoordinated Sn over sites with strong Lewis acidity, pointing to the possibility of dissociative adsorption of secondary alcohols over strong Sn-sites....

  3. [CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B

    2003-10-20

    The organic-inorganic hybrid [CH(3)(CH(2))(11)NH(3)]SnI(3) presents a lamellar structure with a Sn-I framework isotypic to that of MoO(3). The SnI(3)(-) layer consists of edge and corner-sharing SnI(6) octahedra in which one of the six Sn-I bonds is distinctly elongated (e.g., 3.62 A), indicating lone-pair stereoactivity for the Sn(II) atom. The overall electronic character remains comparable with that of the well-studied SnI(4)(2)(-)-based perovskite semiconductors, such as [CH(3)(CH(2))(11)NH(3)](2)SnI(4), with a red-shifted and broadened exciton peak associated with the band gap, apparently due to the increased dimensionality of the Sn-I framework. The title compound offers, aside from the hybrid perovskites, a new type of solution-processable Sn-I network for potential applications in semiconductive devices.

  4. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants

    Directory of Open Access Journals (Sweden)

    Madlen eNietzsche

    2014-02-01

    Full Text Available In plants, SNF1-related kinase (SnRK1 responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic alpha subunit associates with a regulatory beta subunit and an activating gamma subunit. Several different metabolites as well as the hormone abscisic acid (ABA have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF 581 could interact with both isoforms of the SnRK1 alpha subunit (AKIN10/11 of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins can share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation.

  5. Highly Active, Carbon-supported, PdSn Nano-core, Partially ...

    African Journals Online (AJOL)

    Carbon-supported, Pt partially covered, PdSn alloy nanoparticles (Pt-PdSn/C) were synthesized via a metathetical reaction of PdSn alloy nanoparticles, and a platinum precursor. The electrochemical activity was evaluated by methanol oxidation. The Pt-PdSn/C catalysts were characterized by transmission electron ...

  6. DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lilin [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Haiyou [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China); Fu Ran; Liu Deming [ASM Assembly Automation Ltd. (Hong Kong); Zhang Tongyi, E-mail: mezhangt@ust.h [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China)

    2009-11-03

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO{sub 22}-(Cu,Ni){sub 3}Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO{sub 22} IMC and fcc Cu crystals in comparison with that between the equilibrium DO{sub 3} IMC and fcc Cu crystals.

  7. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.

    Science.gov (United States)

    Xi, Guangcheng; Ye, Jinhua

    2010-03-01

    A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.

  8. First Principles Investigation of the Mechanical, Thermodynamic and Electronic Properties of FeSn{sub 5} and CoSn{sub 5} Intermetallic Phases under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenming; Liu, Jing; Wang, Hong [China Building Materials Academy, Beijing (China); Zhang, Zhenwei [Linyi Academy of Technology Cooperation and Application, Linyi (China); Zhang, Liang [NeoTrident Technology Ltd., Shanghai (China); Bu, Yuxiang [Shandong University, Jinan (China)

    2017-02-15

    For guidance for developing Fe/Co-Sn-based anode materials for lithium-ion batteries, the mechanical, thermodynamic and electronic properties of FeSn{sub 5} and CoSn{sub 5} intermetallic phases under pressures ranging from 0 to 30 GPa have been investigated systematically using first-principles total-energy calculations within the framework of the generalized gradient approximation. The pressure was found to have significant effects on the mechanical, thermodynamic and electronic properties of these compounds. In the selected pressure range, CoSn{sub 5} has a more negative formation enthalpy than FeSn{sub 5}. Based on the calculated elastic constants, the bulk modulus, shear modulus, and Young's modulus were determined via the Viogt-Reuss-Hill averaging scheme. The variations of specific heats at constant volume for FeSn{sub 5} and CoSn{sub 5} in a wide pressure (0 - 30 GPa) and temperature (0 - 1000 K) range are also predicted from phonon density of states calculation. The calculated results suggested that both FeSn{sub 5} and CoSn{sub 5} are mechanically stable at pressure from 0 to 30 GPa. FeSn{sub 5} is dynamically stable at pressure up to, 30 GPa, at least, however, CoSn{sub 5} is dynamically stable no higher than 15 GPa.

  9. Lattice parameter values and phase transitions for the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, E. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Quintero, M., E-mail: mquinter@ula.v [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Morocoima, M.; Quintero, E.; Grima, P.; Tovar, R.; Bocaranda, P. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E.; Contreras, J.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Mora, A.E.; Briceno, J.M.; Avila Godoy, R.; Fernandez, J.L. [Laboratorio de Analisis Quimico y Estructural de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Henao, J.A.; Macias, M.A. [Grupo de Investigacion en Quimica Estructural (GIQUE), Facultad de Ciencias, Escuela de Quimica, Universidad Industrial de Santander, Apartado aereo 678, Bucaramanga (Colombia)

    2009-11-03

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. For Cu{sub 2}Cd{sub 0.8}Fe{sub 0.2}SnSe{sub 4} as well as for Cu{sub 2}Cd{sub 0.2}Fe{sub 0.8}SnSe{sub 4} the crystal structures were refined using the Rietveld method. It was found that the internal distortion parameter sigma decreases as Cd is replaced by either Mn and/or Fe. For the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloy systems, only two single solid phase fields, the tetragonal stannite alpha(I4-bar2m) and the wurtz-stannite delta (Pmn2{sub 1}) structures were found to occur in the diagram. In addition to the tetragonal stannite alpha phase extra X-ray diffraction lines due to MnSe and/or FeSe{sub 2} were observed for as grown samples in the range 0.7 < z < 1.0. However, it was found that the amount of the extra phase decreased for the compressed samples.

  10. Study of Sn100-xMnx amorphous system by 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Drago, V.

    1986-01-01

    Thin films of Sn 100-x Mn x amorphous alloys with large range of concentrations were procedure by vapor condensation technique on substrates at temperatures near to liquid helium. The magnetic and paramagnetic hyperfine spectra, and the ordering temperatures were measured by 119 Sn Moessbauer effect. The electrical resistivity was used for characterizing the amorphous state. All the measurements were done 'in situ'. A magnetic phase diagram is proposed. (M.C.K.) [pt

  11. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb anodes.

    Science.gov (United States)

    Xing, Xuan; Ni, Jinren; Zhu, Xiuping; Jiang, Yi; Xia, Jianxin

    2018-08-01

    Whereas electrochemical oxidation is noted for its ability to degrade bio-refractory organics, it has also been incorrectly criticized for excessive energy consumption. The present paper rectifies this misunderstanding by demonstrating that the energy actually consumed in the degradation process is much less than that wasted in the side reaction of oxygen evolution. To minimize the side reaction, the possible highest instantaneous current efficiency (PHICE) for electrochemical oxidation of phenol at Boron-doped Diamond (BDD), Ti/SnO 2 -Sb/PbO 2 (PbO 2 ), and Ti/SnO 2 -Sb (SnO 2 ) anodes has been investigated systematically, and found to reach almost 100% at the BDD anode compared with 23% at the PbO 2 anode and 9% at the SnO 2 anode. The significant discrepancy between PHICE values at the various anodes is interpreted in terms of different existing forms of hydroxyl radicals. For each anode system, the PHICEs are maintained experimentally using a computer-controlled exponential decay current mode throughout the electrolysis process. For applications, the minimized energy consumption is predicted by response surface methodology, and demonstrated for the BDD anode system. Consequently, almost 100% current efficiency is achieved (for a relatively meagre energy consumption of 17.2 kWh kgCOD -1 ) along with excellent COD degradation efficiency by optimizing the initial current density, flow rate, electrolysis time, and exponential decay constant. Compared with galvanostatic conditions, over 70% of the energy is saved in the present study, thus demonstrating the great potential of electrochemical oxidation for practical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  13. Adsorption and oxidation of acetaldehyde on carbon supported Pt, PtSn and PtSn-based trimetallic catalysts by in situ Fourier transform infrared spectroscopy

    Science.gov (United States)

    Beyhan, Seden; Léger, Jean-Michel; Kadırgan, Figen

    2013-11-01

    The adsorption and oxidation of acetaldehyde on carbon supported Pt, Pt90Sn10 and Pt80Sn10M10 (M = Ni, Co, Rh, Pd) catalysts have been investigated by using in situ Fourier transform infrared (FTIR) spectroscopy. The result revealed that Pt90Sn10/C catalyst is not very efficient for the conversion of acetaldehyde to CO2 due to the weak adsorption of acetaldehyde in the presence of Sn. However, the addition of a third metal to Pt--Sn facilitates the C-C bond cleavage of acetaldehyde. It seems that acetaldehyde is adsorbed dissociatively on the surface of Pt80Sn10Ni10/C, Pt80Sn10Co10/C, Pt80Sn10Rh10/C catalysts, producing CH3 and CHO adsorbate species, which can be further oxidized to CO2. However, the pathway forming CO2 for Pt80Sn10Pd10/C catalyst mainly originates from the oxidation of CH3CO species. Thus, the presence of third metal in the PtSn catalyst has a strong impact upon the acetaldehyde adsorption behaviour and its reaction products.

  14. Tin (Sn) for enhancing performance in silicon CMOS

    KAUST Repository

    Hussain, Aftab M.; Fahad, Hossain M.; Singh, Nirpendra; Sevilla, Galo T.; Schwingenschlö gl, Udo; Hussain, Muhammad Mustafa

    2013-01-01

    We study a group IV element: tin (Sn) by integrating it into silicon lattice, to enhance the performance of silicon CMOS. We have evaluated the electrical properties of the SiSn lattice by performing simulations using First-principle studies, followed by experimental device fabrication and characterization. We fabricated high-κ/metal gate based Metal-Oxide-Semiconductor capacitors (MOSCAPs) using SiSn as channel material to study the impact of Sn integration into silicon. © 2013 IEEE.

  15. Tin (Sn) for enhancing performance in silicon CMOS

    KAUST Repository

    Hussain, Aftab M.

    2013-10-01

    We study a group IV element: tin (Sn) by integrating it into silicon lattice, to enhance the performance of silicon CMOS. We have evaluated the electrical properties of the SiSn lattice by performing simulations using First-principle studies, followed by experimental device fabrication and characterization. We fabricated high-κ/metal gate based Metal-Oxide-Semiconductor capacitors (MOSCAPs) using SiSn as channel material to study the impact of Sn integration into silicon. © 2013 IEEE.

  16. Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage

    Science.gov (United States)

    Ding, Liping; He, Shulian; Miao, Shiding; Jorgensen, Matthew R.; Leubner, Susanne; Yan, Chenglin; Hickey, Stephen G.; Eychmüller, Alexander; Xu, Jinzhang; Schmidt, Oliver G.

    2014-01-01

    Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g−1 at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs. PMID:24732294

  17. Phase formation in Mg-Sn-Si and Mg-Sn-Si-Ca alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A.; Groebner, J. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, R., E-mail: schmid-fetzer@tu-clausthal.de [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany)

    2011-02-17

    Research highlights: > The solidification paths of ternary and quaternary alloys are analyzed in detail, using the tool of thermodynamic calculations. > The precipitation sequence of phases and their amounts compare well with the microstructure of alloys. > The most efficient comparison to the experimental thermal analysis data is done by calculation of the enthalpy variation with temperature. > The viability of a procedure for the selection of multicomponent key samples is demonstrated for the development of the Mg-Ca-Si-Sn phase diagram. - Abstract: Experimental work is done and combined with the Calphad method to generate a consistent thermodynamic description of the Mg-Ca-Si-Sn quaternary system, validated for Mg-rich alloys. The viability of a procedure for the selection of multicomponent key samples is demonstrated for this multicomponent system. Dedicated thermal analysis with DTA/DSC on sealed samples is performed and the microstructure of slowly solidified alloys is analyzed using SEM/EDX. The thermodynamic description and phase diagram of the ternary Mg-Si-Sn system, developed in detail also in this work, deviates significantly from a previous literature proposal. The phase formation in ternary and quaternary alloys is analyzed using the tool of thermodynamic equilibrium and Scheil calculations for the solidification paths and compared with present experimental data. The significant ternary/quaternary solid solubilities of pertinent intermetallic phases are quantitatively introduced in the quaternary Mg-Ca-Si-Sn phase diagram and validated by experimental data.

  18. Semiconducting ZnSnN{sub 2} thin films for Si/ZnSnN{sub 2} p-n junctions

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ruifeng [Hebei Engineering Laboratory of Photoelectronic Functional Crystals, Hebei University of Technology (HEBUT), Tianjin 300401 (China); Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo 315201 (China); Cao, Hongtao; Liang, Lingyan, E-mail: lly@nimte.ac.cn, E-mail: swz@hebut.edu.cn; Xie, Yufang; Zhuge, Fei; Zhang, Hongliang; Gao, Junhua; Javaid, Kashif [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo 315201 (China); Liu, Caichi; Sun, Weizhong, E-mail: lly@nimte.ac.cn, E-mail: swz@hebut.edu.cn [Hebei Engineering Laboratory of Photoelectronic Functional Crystals, Hebei University of Technology (HEBUT), Tianjin 300401 (China)

    2016-04-04

    ZnSnN{sub 2} is regarded as a promising photovoltaic absorber candidate due to earth-abundance, non-toxicity, and high absorption coefficient. However, it is still a great challenge to synthesize ZnSnN{sub 2} films with a low electron concentration, in order to promote the applications of ZnSnN{sub 2} as the core active layer in optoelectronic devices. In this work, polycrystalline and high resistance ZnSnN{sub 2} films were fabricated by magnetron sputtering technique, then semiconducting films were achieved after post-annealing, and finally Si/ZnSnN{sub 2} p-n junctions were constructed. The electron concentration and Hall mobility were enhanced from 2.77 × 10{sup 17} to 6.78 × 10{sup 17 }cm{sup −3} and from 0.37 to 2.07 cm{sup 2} V{sup −1} s{sup −1}, corresponding to the annealing temperature from 200 to 350 °C. After annealing at 300 °C, the p-n junction exhibited the optimum rectifying characteristics, with a forward-to-reverse ratio over 10{sup 3}. The achievement of this ZnSnN{sub 2}-based p-n junction makes an opening step forward to realize the practical application of the ZnSnN{sub 2} material. In addition, the nonideal behaviors of the p-n junctions under both positive and negative voltages are discussed, in hope of suggesting some ideas to further improve the rectifying characteristics.

  19. Structural properties and hyperfine characterization of Sn-substituted goethites

    Energy Technology Data Exchange (ETDEWEB)

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  20. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Soto-Burgos, Junmarie; Bassham, Diane C

    2017-01-01

    Autophagy is a degradation process in which cells break down and recycle their cytoplasmic contents when subjected to environmental stress or during cellular remodeling. The Arabidopsis thaliana SnRK1 complex is a protein kinase that senses changes in energy levels and triggers downstream responses to enable survival. Its mammalian ortholog, AMPK, and yeast ortholog, Snf-1, activate autophagy in response to low energy conditions. We therefore hypothesized that SnRK1 may play a role in the regulation of autophagy in response to nutrient or energy deficiency in Arabidopsis. To test this hypothesis, we determined the effect of overexpression or knockout of the SnRK1 catalytic subunit KIN10 on autophagy activation by abiotic stresses, including nutrient deficiency, salt, osmotic, oxidative, and ER stress. While wild-type plants had low basal autophagy activity in control conditions, KIN10 overexpression lines had increased autophagy under these conditions, indicating activation of autophagy by SnRK1. A kin10 mutant had a basal level of autophagy under control conditions similar to wild-type plants, but activation of autophagy by most abiotic stresses was blocked, indicating that SnRK1 is required for autophagy induction by a wide variety of stress conditions. In mammals, TOR is a negative regulator of autophagy, and AMPK acts to activate autophagy both upstream of TOR, by inhibiting its activity, and in a parallel pathway. Inhibition of Arabidopsis TOR leads to activation of autophagy; inhibition of SnRK1 did not block this activation. Furthermore, an increase in SnRK1 activity was unable to induce autophagy when TOR was also activated. These results demonstrate that SnRK1 acts upstream of TOR in the activation of autophagy in Arabidopsis.

  1. Atomic Layer Deposition of Electron Selective SnOx and ZnO Films on Mixed Halide Perovskite: Compatibility and Performance.

    Science.gov (United States)

    Hultqvist, Adam; Aitola, Kerttu; Sveinbjörnsson, Kári; Saki, Zahra; Larsson, Fredrik; Törndahl, Tobias; Johansson, Erik; Boschloo, Gerrit; Edoff, Marika

    2017-09-06

    The compatibility of atomic layer deposition directly onto the mixed halide perovskite formamidinium lead iodide:methylammonium lead bromide (CH(NH 2 ) 2 , CH 3 NH 3 )Pb(I,Br) 3 (FAPbI 3 :MAPbBr 3 ) perovskite films is investigated by exposing the perovskite films to the full or partial atomic layer deposition processes for the electron selective layer candidates ZnO and SnO x . Exposing the samples to the heat, the vacuum, and even the counter reactant of H 2 O of the atomic layer deposition processes does not appear to alter the perovskite films in terms of crystallinity, but the choice of metal precursor is found to be critical. The Zn precursor Zn(C 2 H 5 ) 2 either by itself or in combination with H 2 O during the ZnO atomic layer deposition (ALD) process is found to enhance the decomposition of the bulk of the perovskite film into PbI 2 without even forming ZnO. In contrast, the Sn precursor Sn(N(CH 3 ) 2 ) 4 does not seem to degrade the bulk of the perovskite film, and conformal SnO x films can successfully be grown on top of it using atomic layer deposition. Using this SnO x film as the electron selective layer in inverted perovskite solar cells results in a lower power conversion efficiency of 3.4% than the 8.4% for the reference devices using phenyl-C 70 -butyric acid methyl ester. However, the devices with SnO x show strong hysteresis and can be pushed to an efficiency of 7.8% after biasing treatments. Still, these cells lacks both open circuit voltage and fill factor compared to the references, especially when thicker SnO x films are used. Upon further investigation, a possible cause of these losses could be that the perovskite/SnO x interface is not ideal and more specifically found to be rich in Sn, O, and halides, which is probably a result of the nucleation during the SnO x growth and which might introduce barriers or alter the band alignment for the transport of charge carriers.

  2. SiSn diodes: Theoretical analysis and experimental verification

    KAUST Repository

    Hussain, Aftab M.; Wehbe, Nimer; Hussain, Muhammad Mustafa

    2015-01-01

    We report a theoretical analysis and experimental verification of change in band gap of silicon lattice due to the incorporation of tin (Sn). We formed SiSn ultra-thin film on the top surface of a 4 in. silicon wafer using thermal diffusion of Sn

  3. Single-Particle States in $^{133}$Sn

    CERN Multimedia

    Huck, A

    2002-01-01

    % IS338 \\\\ \\\\ It is suggested to investigate the $\\beta^- $-decay of $^{133}$In and $^{134}$In in order to determine the single-particle states in $^{133}$Sn, which are so far unknown and needed for the shell-model description of the region close to $^{132}$Sn. Large hyper-pure Ge-detectors will be used for the $\\gamma$-ray spectroscopy. In the experiments with $^{134}$In, delayed neutrons in coincidence with $\\gamma$-rays from excited states in $^{133}$Sn provide the opportunity for a very selective detection of the states in question.

  4. Processes of international collaboration in management research

    DEFF Research Database (Denmark)

    Jonsen, Karsten; Butler, Christina; Mäkelä, Kristiina

    2013-01-01

    Scientists and academics increasingly work on collaborative projects and write papers in international research teams. This trend is driven by greater publishing demands in terms of the quality and breadth of data and analysis methods, which tend to be difficult to achieve without collaborating...... across institutional and national boundaries. Yet, our understanding of the collaborative processes in an academic setting and the potential tensions associated with them remains limited. We use a reflexive, autoethnographic approach to explicitly investigate our own experiences of international...... collaborative research. We offer systematic insights into the social and intellectual processes of academic collaborative writing, identifying six lessons and two key tensions that influence the success of international research teams. Our findings may benefit the formation of future coauthor teams...

  5. The tin-rich copper lithium stannides: Li{sub 3}Cu{sub 6}Sn{sub 4} and Li{sub 2}CuSn{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Flandorfer, Hans [Vienna Univ. (Austria). Inst. of Inorganic Chemistry (Materials Chemisrty); Effenberger, Herta S. [Vienna Univ. (Austria). Inst. of Mineralogy and Crystallography

    2015-05-01

    The Sn rich ternary intermetallic compounds Li{sub 3}Cu{sub 6}Sn{sub 4} (CSD-427097) and Li{sub 2}CuSn{sub 2} (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li{sub 3}Cu{sub 6}Sn{sub 4} crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe{sub 6}Ge{sub 6} (a = 5.095(2) Aa, c = 9.524(3) Aa; wR{sub 2} = 0.059; 239 unique F{sup 2}-values, 17 free variables). Li{sub 3}Cu{sub 6}Sn{sub 4} is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li{sub 2}CuSn{sub 2} (space group I4{sub 1}/amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR{sub 2} = 0.033; 213 unique F{sup 2}-values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  6. Using Reporting in the Internal Communication Process of the Company

    OpenAIRE

    Cornel Marian Iosif

    2013-01-01

    Internal communication can be regarded either as a subsistent process of the organization, or as a process helping to decode and more easily understand them. Organizations are based on the internal communication process, because without it, information, ideas could not be sent, the organization’s goals and values could not be built, and its organizational culture would simply not exist. The internal communication process is centered on sending ideas, information in the organization. Thi...

  7. Origin of low thermal conductivity in SnSe

    Science.gov (United States)

    Xiao, Yu; Chang, Cheng; Pei, Yanling; Wu, Di; Peng, Kunling; Zhou, Xiaoyuan; Gong, Shengkai; He, Jiaqing; Zhang, Yongsheng; Zeng, Zhi; Zhao, Li-Dong

    2016-09-01

    We provide direct evidence to understand the origin of low thermal conductivity of SnSe using elastic measurements. Compared to state-of-the-art lead chalcogenides Pb Q (Q =Te , Se, S), SnSe exhibits low values of sound velocity (˜1420 m /s ) , Young's modulus (E ˜27.7 GPa ) , and shear modulus (G ˜9.6 GPa ) , which are ascribed to the extremely weak Sn-Se atomic interactions (or bonds between layers); meanwhile, the deduced average Grüneisen parameter γ of SnSe is as large as ˜3.13, originating from the strong anharmonicity of the bonding arrangement. The calculated phonon mean free path (l ˜ 0.84 nm) at 300 K is comparable to the lattice parameters of SnSe, indicating little room is left for further reduction of the thermal conductivity through introducing nanoscale microstructures and microscale grain boundaries. The low elastic properties indicate that the weak chemical bonding stiffness of SnSe generally causes phonon modes softening which eventually slows down phonon propagation. This work provides insightful data to understand the low lattice thermal conductivity of SnSe.

  8. Clinical evaluation of sup(99m)Tc-(Sn)-PI (sup(99m)Tc-(Sn)-pyridoxylidene isoleucine) in the various hepatobiliary disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, S; Iio, M; Yamada, H; Murata, H; Chiba, K [Tokyo Metropolitan Geriatric Medical Center (Japan)

    1978-12-01

    The purpose of this study is to evaluate the hepatobiliary scanning using sup(99m)Tc-(Sn)-PI in clinical diagnosis of various hepatobiliary disorders. Nineteen patients were scanned with sup(99m)Tc-(Sn)-PI. The results were as follows: 1) The stability of sup(99m)Tc-(Sn)-PI examined by paper chromatography using saline as a solvent showed satisfied result at scanning time. sup(99m)Tc-(Sn)-PI in the blood was assumed to be bound to serum proteins immediately after injection. sup(99m)Tc-(Sn)-PI in the urine was assumed to keep the form of sup(99m)Tc-(Sn)-PI. 2) The appearance times of kidney, liver, bile duct, gallbladder, and intestine in the normal case were 5, 5, 10 and 15 minutes respectively after injection. The peak times of hepatogram in the normal case, drug induced hepatitis and obstructive jaundice were 12, 15 and 18 minutes respectively after injection. The images obtained by sup(99m)Tc-(Sn)-PI was superior to the images obtained by /sup 131/I-BSP. 3) The blood clearance and urinary excretion rate of sup(99m)Tc-(Sn)-PI also provided us clinical usefulness. 4) The scanning of Dubin-Johnson syndrome of sup(99m)Tc-(Sn)-PI showed almost normal hepatobiliary image similar to the sequential scan by /sup 131/I-RB as was reported previously by authors. In conclusion, the hepatobiliary scan using sup(99m)Tc-(Sn)-PI provided clear hepatobiliary images. Other parameters such as blood clearance, urinary excretion rate and diameter of choledochus were also favorable. By combining it with sup(99m)Tc-HIDA a differential diagnosis of congenital jaundice is also expected.

  9. Clinical evaluation of sup(99m)Tc-(Sn)-PI [sup(99m)Tc-(Sn)-pyridoxylidene isoleucine] in the various hepatobiliary disorders

    International Nuclear Information System (INIS)

    Kawaguchi, Schinichiro; Iio, Masahiro; Yamada, Hideo; Murata, Hajime; Chiba, Kazuo

    1978-01-01

    The purpose of this study is to evaluate the hepatobiliary scanning using sup(99m)Tc-(Sn)-PI in clinical diagnosis of various hepatobiliary disorders. Nineteen patients were scanned with sup(99m)Tc-(Sn)-PI. The results were as follows: 1) The stability of sup(99m)Tc-(Sn)-PI examined by paper chromatography using saline as a solvent showed satisfied result at scanning time. sup(99m)Tc-(Sn)-PI in the blood was assumed to be bound to serum proteins immediately after injection. sup(99m)Tc-(Sn)-PI in the urine was assumed to keep the form of sup(99m)Tc-(Sn)-PI. 2) The appearance times of kidney, liver, bile duct, gallbladder, and intestine in the normal case were 5, 5, 10 and 15 minutes respectively after injection. The peak times of hepatogram in the normal case, drug induced hepatitis and obstructive jaundice were 12, 15 and 18 minutes respectively after injection. The images obtained by sup(99m)Tc-(Sn)-PI was superior to the images obtained by 131 I-BSP. 3) The blood clearance and urinary excretion rate of sup(99m)Tc-(Sn)-PI also provided us clinical usefulness. 4) The scanning of Dubin-Johnson syndrome of sup(99m)Tc-(Sn)-PI showed almost normal hepatobiliary image similar to the sequential scan by 131 I-RB as was reported previously by authors. In conclusion, the hepatobiliary scan using sup(99m)Tc-(Sn)-PI provided clear hepatobiliary images. Other parameters such as blood clearance, urinary excretion rate and diameter of choledochus were also favorable. By combining it with sup(99m)Tc-HIDA a differential diagnosis of congenital jaundice is also expected. (author)

  10. Shape Engineering Driven by Selective Growth of SnO2 on Doped Ga2O3 Nanowires.

    Science.gov (United States)

    Alonso-Orts, Manuel; Sánchez, Ana M; Hindmarsh, Steven A; López, Iñaki; Nogales, Emilio; Piqueras, Javier; Méndez, Bianchi

    2017-01-11

    Tailoring the shape of complex nanostructures requires control of the growth process. In this work, we report on the selective growth of nanostructured tin oxide on gallium oxide nanowires leading to the formation of SnO 2 /Ga 2 O 3 complex nanostructures. Ga 2 O 3 nanowires decorated with either crossing SnO 2 nanowires or SnO 2 particles have been obtained in a single step treatment by thermal evaporation. The reason for this dual behavior is related to the growth direction of trunk Ga 2 O 3 nanowires. Ga 2 O 3 nanowires grown along the [001] direction favor the formation of crossing SnO 2 nanowires. Alternatively, SnO 2 forms rhombohedral particles on [110] Ga 2 O 3 nanowires leading to skewer-like structures. These complex oxide structures were grown by a catalyst-free vapor-solid process. When pure Ga and tin oxide were used as source materials and compacted powders of Ga 2 O 3 acted as substrates, [110] Ga 2 O 3 nanowires grow preferentially. High-resolution transmission electron microscopy analysis reveals epitaxial relationship lattice matching between the Ga 2 O 3 axis and SnO 2 particles, forming skewer-like structures. The addition of chromium oxide to the source materials modifies the growth direction of the trunk Ga 2 O 3 nanowires, growing along the [001], with crossing SnO 2 wires. The SnO 2 /Ga 2 O 3 junctions does not meet the lattice matching condition, forming a grain boundary. The electronic and optical properties have been studied by XPS and CL with high spatial resolution, enabling us to get both local chemical and electronic information on the surface in both type of structures. The results will allow tuning optical and electronic properties of oxide complex nanostructures locally as a function of the orientation. In particular, we report a dependence of the visible CL emission of SnO 2 on its particular shape. Orange emission dominates in SnO 2 /Ga 2 O 3 crossing wires while green-blue emission is observed in SnO 2 particles attached to Ga 2

  11. Wafer level hermetic packaging based on Cu-Sn isothermal solidification technology

    International Nuclear Information System (INIS)

    Cao Yuhan; Luo Le

    2009-01-01

    A novel wafer level bonding method based on Cu-Sn isothermal solidification technology is established. A multi-layer sealing ring and the bonding processing are designed, and the amount of solder and the bonding parameters are optimized based on both theoretical and experimental results. Verification shows that oxidation of the solder layer, voids and the scalloped-edge appearance of the Cu 6 Sn 5 phase are successfully avoided. An average shear strength of 19.5 MPa and an excellent leak rate of around 1.9 x 10 -9 atm cc/s are possible, meeting the demands of MIL-STD-883E. (semiconductor technology)

  12. Model-based internal wave processing

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Chambers, D.H.

    1995-06-09

    A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.

  13. Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells

    International Nuclear Information System (INIS)

    Avellaneda, David; Delgado, Guadalupe; Nair, M.T.S.; Nair, P.K.

    2007-01-01

    Chemically deposited SnS thin films possess p-type electrical conductivity. We report a photovoltaic structure: SnO 2 :F-CdS-SnS-(CuS)-silver print, with V oc > 300 mV and J sc up to 5 mA/cm 2 under 850 W/m 2 tungsten halogen illumination. Here, SnO 2 :F is a commercial spray-CVD (Pilkington TEC-8) coating, and the rest deposited from different chemical baths: CdS (80 nm) at 333 K, SnS (450 nm) and CuS (80 nm) at 293-303 K. The structure may be heated in nitrogen at 573 K, before applying the silver print. The photovoltaic behavior of the structure varies with heating: V oc ∼ 400 mV and J sc 2 , when heated at 423 K in air, but V oc decreases and J sc increases when heated at higher temperatures. These photovoltaic structures have been found to be stable over a period extending over one year by now. The overall cost of materials, simplicity of the deposition process, and possibility of easily varying the parameters to improve the cell characteristics inspire further work. Here we report two different baths for the deposition of SnS thin films of about 500 nm by chemical deposition. There is a considerable difference in the nature of growth, crystalline structure and chemical stability of these films under air-heating at 623-823 K or while heating SnS-CuS layers, evidenced in XRF and grazing incidence angle XRD studies. Heating of SnS-CuS films results in the formation of SnS-Cu x SnS y . 'All-chemically deposited photovoltaic structures' involving these materials are presented

  14. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    Science.gov (United States)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-12-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  15. {sup 119}Sn NMR investigations on superconducting Ca{sub 3}Ir{sub 4}Sn{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Rajib; Brueckner, Felix; Guenther, Marco; Klauss, Hans-Henning [IFP, TU Dresden (Germany); Petrovic, Cedomir; Wang, Kefeng [CMPMS, BNL, Upton, NY (United States); Luetkens, Hubertus; Biswas, Pabitra; Morenzoni, Elvezio; Amato, Alex [PSI, Villigen (Switzerland)

    2014-07-01

    Ca{sub 3}Ir{sub 4}Sn{sub 13} was found to exhibit superconducting transition with T{sub c} ∼ 7 K. It received considerable attention due to the possible coexistence of superconductivity and ferromagnetic spin fluctuation as well as the three-dimensional charge density wave (CDW) from the superlattice transition. While thermal, transport, and thermodynamic characterization of Ca{sub 3}Ir{sub 4}Sn{sub 13} single crystals suggest that it is a weakly correlated nodeless superconductor, recent μSR investigation reveals that the electron-phonon pairing interaction is in the strong-coupling limit. Here we present {sup 119}Sn NMR investigations on Ca{sub 3}Ir{sub 4}Sn{sub 13} polycrystalline samples and discuss the symmetry of the superconducting order parameter together with the normal state properties. Our preliminary results of spin-lattice relaxation rate (1/T{sub 1}) indicate that this is a BCS superconductor with weak-coupling limit.

  16. Functional organization of the Sm core in the crystal structure of human U1 snRNP.

    Science.gov (United States)

    Weber, Gert; Trowitzsch, Simon; Kastner, Berthold; Lührmann, Reinhard; Wahl, Markus C

    2010-12-15

    U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5'-splice site early during spliceosome assembly. It represents a prototype spliceosomal subunit containing a paradigmatic Sm core RNP. The crystal structure of human U1 snRNP obtained from natively purified material by in situ limited proteolysis at 4.4 Å resolution reveals how the seven Sm proteins, each recognize one nucleotide of the Sm site RNA using their Sm1 and Sm2 motifs. Proteins D1 and D2 guide the snRNA into and out of the Sm ring, and proteins F and E mediate a direct interaction between the Sm site termini. Terminal extensions of proteins D1, D2 and B/B', and extended internal loops in D2 and B/B' support a four-way RNA junction and a 3'-terminal stem-loop on opposite sides of the Sm core RNP, respectively. On a higher organizational level, the core RNP presents multiple attachment sites for the U1-specific 70K protein. The intricate, multi-layered interplay of proteins and RNA rationalizes the hierarchical assembly of U snRNPs in vitro and in vivo.

  17. Investigation of passive and active silica-tin oxide nanostructured optical fibers fabricated by " inverse dip-coating " and " powder in tube " method based on the chemical sol-gel process and laser emission

    OpenAIRE

    Granger , Geoffroy; Restoin , Christine; Roy , Philippe; Jamier , Raphaël; Rougier , Sébastien; Duclere , Jean-René; Lecomte , André; Dauliat , Romain; Blondy , Jean-Marc

    2015-01-01

    International audience; This paper presents a study of original nanostructured optical fibers based on the SiO 2-SnO 2-(Yb 3+) system. Two different processes have been developed and compared: the sol-gel chemical method associated to the " inverse dip-coating " (IDC) and the " powder in tube " (PIT) process. The microstructural and optical properties of the fibers are studied according to the concentration of SnO 2. X-Ray Diffraction as well as Transmission Electron Microscopy studies show t...

  18. Effects of annealing on evaporated SnS thin films

    International Nuclear Information System (INIS)

    Samsudi Sakrani; Bakar Ismail

    1994-01-01

    The effects of annealing of evaporated tin sulphide thin films (SnS) are described. The films were initially deposited onto glass substrate, followed by annealing in an encapsulated carbon block under the running argon gas at 310 degree Celsius. Short time annealing of the films results in a slight change of the compositions to a mix SnS/SnS sub 2 compound, and the tendency of increasing SnS sub 2 formation was observed on the films annealed for longer periods up to 20 hours. X-ray results showed the transformation of SnS peaks (040) and (080) to predominantly SnS sub 2 peaks - (001), (100), (101), and (110). The associated absorption coefficients measured on the films were found to be greater than 10 sup 5 cm sup -1, with indication of higher photon energy leading to the formation of SnS sub 2 compound

  19. Effects of annealing on evaporated SnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sakrani, Samsudi; Ismail, Bakar [Universiti Teknologi Malaysia, Skudai, Johor Bahru (Malaysia). Dept. of Physics

    1994-12-31

    The effects of annealing of evaporated tin sulphide thin films (SnS) are described. The films were initially deposited onto glass substrate, followed by annealing in an encapsulated carbon block under the running argon gas at 310 degree Celsius. Short time annealing of the films results in a slight change of the compositions to a mix SnS/SnS sub 2 compound, and the tendency of increasing SnS sub 2 formation was observed on the films annealed for longer periods up to 20 hours. X-ray results showed the transformation of SnS peaks (040) and (080) to predominantly SnS sub 2 peaks - (001), (100), (101), and (110). The associated absorption coefficients measured on the films were found to be greater than 10 sup 5 cm sup -1, with indication of higher photon energy leading to the formation of SnS sub 2 compound.

  20. Internal quality assurance reviews: challenges and processes ...

    African Journals Online (AJOL)

    Internal quality assurance reviews: challenges and processes – Walter Sisulu University\\'s Business, Management Sciences and Law Faculty. ... This article examines some of the challenges and processes followed by six of the departments ...