WorldWideScience

Sample records for internal reflection geometry

  1. Exploiting total internal reflection geometry for efficient optical modulation of terahertz light

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    2016-10-01

    Full Text Available Efficient methods to modulate terahertz (THz light are essential for realizing rapid THz imaging and communication applications. Here we report a novel THz modulator which utilizes the evanescent wave in a total internal reflection setup coupled with a conductive interface to enhance the attenuation efficiency of THz light. This approach makes it possible to achieve close to 100% modulation with a small interface conductivity of 12 mS. The frequency dependence of this technique is linked to the optical properties of the materials: a material with close to frequency independent conductivity that is also controllable will result in an achromatic modulation response, and the device performance can be optimized further by tuning the internal reflection angle. In this work, we focus on applying the technique in the terahertz frequency range. Using an LED array with a pump intensity of 475 mW/cm2 to produce carriers in a silicon wafer, we have achieved a modulation depth of up to 99.9% in a broad frequency range of 0.1 THz–0.8 THz. The required pumping power for the generation of the required free carriers is low because the sheet conductivity needed is far less than required for traditional transmission techniques. Consequently, the device can be modulated by an LED making it a very practical, low cost, and scalable solution for THz modulation.

  2. Comparison of conventional and total reflection excitation geometry for fluorescence X-ray absorption spectroscopy on droplet samples

    International Nuclear Information System (INIS)

    Falkenberg, G.; Pepponi, G.; Streli, C.; Wobrauschek, P.

    2003-01-01

    X-ray absorption fine structure (XAFS) experiments in fluorescence mode have been performed in total reflection excitation geometry and conventional 45 deg. /45 deg. excitation/detection geometry for comparison. The experimental results have shown that XAFS measurements are feasible under normal total reflection X-ray fluorescence (TXRF) conditions, i.e. on droplet samples, with excitation in grazing incidence and using a TXRF experimental chamber. The application of the total reflection excitation geometry for XAFS measurements increases the sensitivity compared to the conventional geometry leading to lower accessible concentration ranges. However, XAFS under total reflection excitation condition fails for highly concentrated samples because of the self-absorption effect

  3. VIII International Meeting on Lorentzian Geometry

    CERN Document Server

    Flores, José; Palomo, Francisco; GeLoMa 2016; Lorentzian geometry and related topics

    2017-01-01

    This volume contains a collection of research papers and useful surveys by experts in the field which provide a representative picture of the current status of this fascinating area. Based on contributions from the VIII International Meeting on Lorentzian Geometry, held at the University of Málaga, Spain, this volume covers topics such as distinguished (maximal, trapped, null, spacelike, constant mean curvature, umbilical...) submanifolds, causal completion of spacetimes, stationary regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation between Lorentzian and Finslerian geometries and the oscillator spacetime. In the last decades Lorentzian geometry has experienced a significant impulse, which has transformed it from just a mathematical tool for general relativity to a consolidated branch of differential geometry, interesting in and of itself. Nowadays, this field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathem...

  4. External and internal geometry of European adults.

    Science.gov (United States)

    Bertrand, Samuel; Skalli, Wafa; Delacherie, Laurent; Bonneau, Dominique; Kalifa, Gabriel; Mitton, David

    2006-12-15

    The primary objective of the study was to bring a deeper knowledge of the human anthropometry, investigating the external and internal body geometry of small women, mid-sized men and tall men. Sixty-four healthy European adults were recruited. External measurements were performed using classical anthropometric instruments. Internal measurements of the trunk bones were performed using a stereo-radiographic 3D reconstruction technique. Besides the original procedure presented in this paper for performing in vivo geometrical data acquisition on numerous volunteers, this study provides an extensive description of both external and internal (trunk skeleton) human body geometry for three morphotypes. Moreover, this study proposes a global external and internal geometrical description of 5th female 50th male and 95th male percentile subjects. This study resulted in a unique geometrical database enabling improvement for numerical models of the human body for crash test simulation and offering numerous possibilities in the anthropometry field.

  5. Analysing the impact of reflectance distributions and well geometries on vertical surface daylight levels in atria for overcast skies

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiangtao; Sharples, Steve [School of Architecture, University of Sheffield, Crookesmoor Building, Conduit Road, Sheffield S10 1FL (United Kingdom)

    2010-07-15

    This study investigated the impacts of different diffuse reflectance distributions and well geometries on vertical daylight factors and vertical internally reflected components in atria. Two forms of reflectance distribution patterns of wall surface were examined: horizontal and vertical reflectance band variation. The square atrium models studied have a broader WI range of 0.25-2.0, which represent shallow, medium and high atria. Radiance, a powerful package based on backward ray tracing technique, was used for the simulations of vertical daylight levels. The results show that different reflectance distributions of square atrium walls do have an impact on the vertical daylight factors and vertical internally reflected components under overcast sky condition. The impact relates to the orientation of the band with different reflectance distributions on the wall. Compared with the vertical band surface, the horizontal band surface has a much more complicated effect. The horizontal distributions of the reflectances significantly affects the vertical daylight levels at the locations more than 30% atrium height on the wall. For an atrium with a height more than 1/2 the width, the effect tends to increase with the increasing well index. The vertical distributions of the reflectance, nevertheless, do not substantially take effect on the vertical daylight levels in atria except for some special reflectance distribution patterns. (author)

  6. Second International workshop Geometry and Symbolic Computation

    CERN Document Server

    Walczak, Paweł; Geometry and its Applications

    2014-01-01

    This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups, and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography, and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple™ and Mathematica®, as well as presentation of new results. ...

  7. International conference on Algebraic and Complex Geometry

    CERN Document Server

    Kloosterman, Remke; Schütt, Matthias

    2014-01-01

    Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the ...

  8. Total internal reflection effect on gyrotropic interface

    Science.gov (United States)

    Glushchenko, Alexander G.; Glushchenko, Eugene P.; Zhukov, Sergey V.

    2018-02-01

    This article considers the physical features of total internal reflection at gyrotropic and isotropic interfaces for two cases: electrical gyrotropy (plasma) and magnetic gyrotropy (ferrite). It is shown that the plasma magnetization may lead to the formation of the total internal reflection effect, which does not occur in isotropic plasma. The threshold values of the magnetic field, which are necessary for the total internal reflection effect, are determined. The total internal reflection effect on a ferrite-dielectric interface for waves emanating from different angles is observed in various frequency ranges and magnetization fields. The study points out the possibility of changing the total internal reflection angle value in large limits due to a change in the external magnetic field magnitude. The calculation results of the total internal reflection angle dependence on the external magnetic field magnitude are presented. The formulas are elaborated for calculating the total internal reflection angles of different interfaces for gyrotropic and isotropic media. The generalized formulas are defined for calculating the Doppler effect in the gyrotropic media. The study demonstrates how the velocity of the media interface affects the limiting angle of total internal refection.

  9. Probing near-normally propagating bulk acoustic waves using pseudo-reflection geometry Brillouin spectroscopy

    Science.gov (United States)

    Parsons, L. C.; Andrews, G. T.

    2012-09-01

    Pseudo-reflection geometry Brillouin spectroscopy can be used to probe acoustic wave dispersion approximately along the surface normal of a material system while avoiding the difficulties associated with specularly reflected light encountered in an ideal reflection configuration. As an example of its application, we show analytically that it can be used to determine both the refractive index and bulk acoustic mode velocities of optically-isotropic non-metallic materials and confirm the utility of the approach via a series of experiments on fused quartz, gallium phosphide, water, and porous silicon films.

  10. Identifying diffraction effects in measured reflectances

    OpenAIRE

    Holzschuch , Nicolas; Pacanowski , Romain

    2015-01-01

    International audience; There are two different physical models connecting the micro-geometry of a surface and its physical reflectance properties (BRDF). The first, Cook-Torrance, assumes geometrical optics: light is reflected and masked by the micro-facets. In this model, the BRDF depends on the probability distribution of micro-facets normals. The second, Church-Takacs, assumes diffraction by the micro-geometry. In this model, the BRDF depends on the power spectral distribution of the surf...

  11. Normalization of time-series satellite reflectance data to a standard sun-target-sensor geometry using a semi-empirical model

    Science.gov (United States)

    Zhao, Yongguang; Li, Chuanrong; Ma, Lingling; Tang, Lingli; Wang, Ning; Zhou, Chuncheng; Qian, Yonggang

    2017-10-01

    Time series of satellite reflectance data have been widely used to characterize environmental phenomena, describe trends in vegetation dynamics and study climate change. However, several sensors with wide spatial coverage and high observation frequency are usually designed to have large field of view (FOV), which cause variations in the sun-targetsensor geometry in time-series reflectance data. In this study, on the basis of semiempirical kernel-driven BRDF model, a new semi-empirical model was proposed to normalize the sun-target-sensor geometry of remote sensing image. To evaluate the proposed model, bidirectional reflectance under different canopy growth conditions simulated by Discrete Anisotropic Radiative Transfer (DART) model were used. The semi-empirical model was first fitted by using all simulated bidirectional reflectance. Experimental result showed a good fit between the bidirectional reflectance estimated by the proposed model and the simulated value. Then, MODIS time-series reflectance data was normalized to a common sun-target-sensor geometry by the proposed model. The experimental results showed the proposed model yielded good fits between the observed and estimated values. The noise-like fluctuations in time-series reflectance data was also reduced after the sun-target-sensor normalization process.

  12. Variation of MODIS reflectance and vegetation indices with viewing geometry and soybean development.

    Science.gov (United States)

    Breunig, Fábio M; Galvão, Lênio S; Formaggio, Antônio R; Epiphanio, José C N

    2012-06-01

    Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI(1640) and NDWI(2120)) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.

  13. On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry

    International Nuclear Information System (INIS)

    Budinich, P.

    1981-09-01

    The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomia of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an SU(2) internal symmetry algebra. Mass is generated by spontaneously breaking the original O(4,2) symmetry of the spinor equation. (author)

  14. On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry

    International Nuclear Information System (INIS)

    Budinich, P.

    1982-01-01

    The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomials of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed, but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an su(2) internal symmetry algebra. Mass is generated by breaking spontaneously the original O(4,2) symmetry of the spinor equation. (author)

  15. Invited Article: An active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry

    Science.gov (United States)

    Liu, Xudong; Chen, Xuequan; Parrott, Edward P. J.; Han, Chunrui; Humbert, Georges; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2018-05-01

    Active broadband terahertz (THz) polarization manipulation devices are challenging to realize, but also of great demand in broadband terahertz systems. Vanadium dioxide (VO2) shows a promising phase transition for active control of THz waves and provides broadband polarization characteristics when integrated within grating-type structures. We creatively combine a VO2-based grating structure with a total internal reflection (TIR) geometry providing a novel interaction mechanism between the electromagnetic waves and the device, to realize a powerful active broadband THz polarization-controlling device. The device is based on a Si-substrate coated with a VO2 layer and a metal grating structure on top, attached to a prism for generating the TIR condition on the Si-VO2-grating interface. The grating is connected to electrodes for electrically switching the VO2 between its insulating and conducting phases. By properly selecting the incident angle of the THz waves, the grating direction, and the incident polarization state, we first achieved a broadband intensity modulator under a fused silica prism with an average modulation depth of 99.75% in the 0.2-1.1 THz region. Additionally, we realized an active ultra-broadband quarter-wave converter under a Si prism that can be switched between a 45° linear rotator and a quarter wave converter in the 0.8-1.5 THz region. This is the first demonstration of an active quarter-wave converter with ultra-broad bandwidth performance. Our work shows a highly flexible and multifunctional polarization-controlling device for broadband THz applications.

  16. Studies of the Reflection, Refraction and Internal Reflection of Light

    Science.gov (United States)

    Lanchester, P. C.

    2014-01-01

    An inexpensive apparatus and associated experiments are described for studying the basic laws of reflection and refraction of light at an air-glass interface, and multiple internal reflections within a glass block. In order to motivate students and encourage their active participation, a novel technique is described for determining the refractive…

  17. Water-Reflected 233U Uranyl Nitrate Solutions in Simple Geometry

    International Nuclear Information System (INIS)

    Elam, K.R.

    2001-01-01

    A number of critical experiments involving 233 U were performed in the Oak Ridge National Laboratory Building 9213 Critical Experiments Facility during the years 1952 and 1953. These experiments, reported in Reference 1, were directed toward determining bounding values for the minimum critical mass, minimum critical volume, and maximum safe pipe size of water-moderated solutions of 233 U. Additional information on the critical experiments was found in the experimental logbooks. Two experiments utilizing uranyl nitrate (UO 2 (NO 3 ) 2 ) solutions in simple geometry are evaluated in this report. Experiment 37 is in a 10.4-inch diameter sphere, and Experiment 39 is in a 10-inch diameter cylinder. The 233 U concentration ranges from 49 to 62 g 233 U/l. Both experiments were reflected by at least 6 inches of water in all directions. Paraffin-reflected uranyl nitrate experiments, also reported in Reference 1, are evaluated elsewhere. Experiments with smaller paraffin reflected 5-, 6-, and 7.5-inch diameter cylinders are evaluated in U233-SOL-THERM-004. Experiments with paraffin reflected 8-, 8.5-, 9-, 10-, and 12-inch diameter cylinders are evaluated in U233-SOL-THERM-002. Later experiments with highly-enriched 235 U uranyl fluoride solution in the same 10.4-inch diameter sphere are reported in HEU-SOL-THERM-010. Both experiments were judged acceptable for use as criticality-safety benchmark experiments

  18. Frustrated Total Internal Reflection: A Simple Application and Demonstration.

    Science.gov (United States)

    Zanella, F. P.; Magalhaes, D. V.; Oliveira, M. M.; Bianchi, R. F.; Misoguti, L.; Mendonca, C. R.

    2003-01-01

    Describes the total internal reflection process that occurs when the internal angle of incidence is equal to or greater than the critical angle. Presents a demonstration of the effect of frustrated total internal reflection (FTIR). (YDS)

  19. Finsler geometry, relativity and gauge theories

    International Nuclear Information System (INIS)

    Asanov, G.S.

    1985-01-01

    This book provides a self-contained account of the Finslerian techniques which aim to synthesize the ideas of Finslerian metrical generalization of Riemannian geometry to merge with the primary physical concepts of general relativity and gauge field theories. The geometrization of internal symmetries in terms of Finslerian geometry, as well as the formulation of Finslerian generalization of gravitational field equations and equations of motion of matter, are two key points used to expound the techniques. The Clebsch representation of the canonical momentum field is used to formulate the Hamilton-Jacobi theory for homogeneous Lagrangians of classical mechanics. As an auxillary mathematical apparatus, the author uses invariance identities which systematically reflect the covariant properties of geometrical objects. The results of recent studies of special Finsler spaces are also applied. The book adds substantially to the mathematical monographs by Rund (1959) and Rund and Bear (1972), all basic results of the latter being reflected. It is the author's hope that thorough exploration of the materrial presented will tempt the reader to revise the habitual physical concepts supported conventionally by Riemannian geometry. (Auth.)

  20. 3rd International Conference on Computational Mathematics and Computational Geometry

    CERN Document Server

    Ravindran, Anton

    2016-01-01

    This volume presents original research contributed to the 3rd Annual International Conference on Computational Mathematics and Computational Geometry (CMCGS 2014), organized and administered by Global Science and Technology Forum (GSTF). Computational Mathematics and Computational Geometry are closely related subjects, but are often studied by separate communities and published in different venues. This volume is unique in its combination of these topics. After the conference, which took place in Singapore, selected contributions chosen for this volume and peer-reviewed. The section on Computational Mathematics contains papers that are concerned with developing new and efficient numerical algorithms for mathematical sciences or scientific computing. They also cover analysis of such algorithms to assess accuracy and reliability. The parts of this project that are related to Computational Geometry aim to develop effective and efficient algorithms for geometrical applications such as representation and computati...

  1. Kinetic treatment of magnetosonic wave reflection by minority gyroresonant ballistic waves in tokamak geometry

    International Nuclear Information System (INIS)

    Kaufman, A.N.; Brizard, A.J.; Cook, D.R.

    1993-01-01

    The analysis of the minority-ion gyroresonant heating process by a magnetosonic wave in a general magnetic field geometry with one ignorable spatial coordinate can be divided into several steps, each defined in terms of a precise mathematical problem to be solved. In this work, the authors focus their attention on the magnetosonic wave reflection problem in axisymmetric tokamak geometry; the conversion and absorption of the minority-ion gyroresonant ballistic waves are treated elsewhere. In contrast to their previous work, they employ a kinetic model based on the perturbation generating function S for the gyroresonant minority-ions. The bulk plasma response is represented by the perturbation magnetic vector potential A, corresponding to a shielded magnetosonic wave. The set of coupled equations for S and A can be derived from an action principle, which can also be used to derive explicit wave-action conservation laws in ray phase space. The reflection problem is solved in ray phase space by considering three separate steps. In the first step, the incident magnetosonic ray propagates towards the first linear mode conversion region, where action is transferred to the minority-ion gyroresonant ballistic waves. In the second step, the continuum of excited gyroresonant ballistic rays propagate towards the second linear mode conversion region. In the third step, the reflected magnetosonic wave field is excited by linear mode conversion from the minority gyroresonant ballistic rays

  2. Forensic applications of microscopical infrared internal reflection spectroscopy

    Science.gov (United States)

    Tungol, Mary W.; Bartick, Edward G.; Reffner, John A.

    1994-01-01

    Applications of microscopical infrared internal reflection spectroscopy in forensic science are discussed. Internal reflection spectra of single fibers, hairs, paint chips, vehicle rubber bumpers, photocopy toners, carbon copies, writing ink on paper, lipstick on tissue, black electrical tape, and other types of forensic evidence have been obtained. The technique is convenient, non-destructive, and may permit smeared materials to be analyzed in situ.

  3. KEMAJUAN BELAJAR SISWA PADA GEOMETRI TRANSFORMASI MENGGUNAKAN AKTIVITAS REFLEKSI GEOMETRI

    Directory of Open Access Journals (Sweden)

    Irkham Ulil Albab

    2014-10-01

    Full Text Available Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemajuan belajar siswa pada materi geometri transformasi yang didukung dengan serangkaian aktivitas belajar berdasarkan Pendidikan Matematika Realistik Indonesia. Penelitian didesain melalui tiga tahap, yaitu tahapan perancangan desain awal, pengujian desain melalui pembelajaran awal dan pembelajaran eksperimental, dan tahap analisis retrospektif. Dalam penelitian ini, Hypothetical Learning Trajectory, HLT (HLT berperan penting sebagai desain pembelajaran sekaligus instrumen penelitian. HLT diujikan terhadap 26 siswa kelas VII. Data dikumpulkan dengan teknik wawancara, pengamatan, dan catatan lapangan. Hasil penelitian menunjukkan bahwa desain pembelajaran ini mampu menstimulasi siswa untuk memberikan karakteristik refleksi dan transformasi geometri lainnya secara informal, mengklasifikasikannya dalam transformasi isometri pada level kedua, dan menemukan garis bantuan refleksi pada level yang lebih formal. Selain itu, garis bantuan refleksi digunakan oleh siswa untuk menggambar bayangan refleksi dan pola pencerminan serta memahami bentuk rotasi dan translasi sebagai kombinasi refleksi adalah level tertinggi. Keyword: transformasi geometri, kombinasi refleksi, rotasi, translasi, design research, HLT STUDENTS’ LEARNING PROGRESS ON TRANSFORMATION GEOMETRY USING THE GEOMETRY REFLECTION ACTIVITIES Abstract: This study was aimed at describing the students’ learning progress on transformation geometry supported by a set of learning activities based on Indonesian Realistic Mathematics Education. The study was designed into three stages, that is, the preliminary design stage, the design testing through initial instruction and experiment, and the restrospective analysis stage. In this study, Hypothetical Learning Trajectory (HLT played an important role as an instructional design and a research instrument. HLT was tested to 26 seventh grade students. The data were collected through interviews

  4. Transformational plane geometry

    CERN Document Server

    Umble, Ronald N

    2014-01-01

    Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...

  5. Quadrupole lamp furnace for high temperature (up to 2050 K) synchrotron powder x-ray diffraction studies in air in reflection geometry

    International Nuclear Information System (INIS)

    Sarin, P.; Yoon, W.; Jurkschat, K.; Zschack, P.; Kriven, W. M.

    2006-01-01

    A four-lamp thermal image furnace has been developed to conduct high temperature x-ray diffraction in reflection geometry on oxide ceramic powder samples in air at temperatures ≤2050 K using synchrotron radiation. A refractory crucible made of Pt20%Rh alloy was used as a specimen holder. A material with well characterized lattice expansion properties was used as an internal crystallographic thermometer to determine the specimen temperature and displacement. The performance of the apparatus was verified by measurement of the thermal expansion properties of CeO 2 , MgO, and Pt which were found to be within ±3% of the acceptable values. The advantages, limitations, and important considerations of the instrument developed are discussed

  6. Accounting for the Effects of Surface BRDF on Satellite Cloud and Trace-Gas Retrievals: A New Approach Based on Geometry-Dependent Lambertian-Equivalent Reflectivity Applied to OMI Algorithms

    Science.gov (United States)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50% in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  7. Accounting for the effects of surface BRDF on satellite cloud and trace-gas retrievals: a new approach based on geometry-dependent Lambertian equivalent reflectivity applied to OMI algorithms

    Science.gov (United States)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  8. Total internal reflection sum-frequency generation spectroscopy and dense gold nanoparticles monolayer: a route for probing adsorbed molecules

    International Nuclear Information System (INIS)

    Tourillon, Gerard; Dreesen, Laurent; Volcke, Cedric; Sartenaer, Yannick; Thiry, Paul A; Peremans, Andre

    2007-01-01

    We show that sum-frequency generation spectroscopy performed in the total internal reflection configuration (TIR-SFG) combined with a dense gold nanoparticles monolayer allows us to study, with an excellent signal to noise ratio and high signal to background ratio, the conformation of adsorbed molecules. Dodecanethiol (DDT) was used as probe molecules in order to assess the potentialities of the approach. An enhancement of more than one order of magnitude of the SFG signals arising from the adsorbed species is observed with the TIR geometry compared to the external reflection one while the SFG non-resonant contribution remains the same for both configurations. Although further work is required to fully understand the origin of the SFG process on nanoparticles, our work opens new possibilities for studying nanostructures

  9. Self-similar solutions for implosion and reflection of coalesced shocks in a plasma : spherical and cylindrical geometries

    International Nuclear Information System (INIS)

    Chavda, L.K.

    1978-01-01

    Approximate analytic solutions to the self-similar equations of gas dynamics for a plasma, treated as an ideal gas with specific heat ratio γ=5/3 are obtained for the implosion and subsequent reflection of various types of shock sequences in spherical and cylindrical geometries. This is based on the lowest-order polynomial approximation in the reduced fluid velocity, for a suitable nonlinear function of the sound velocity and the fluid velocity. However, the method developed here is powerful enough to be extended analytically to higher order polynomial approximations, to obtain successive approximations to the exact self-similar solutions. Also obtained, for the first time, are exact asymptotic solutions, in analytic form, for the reflected shocks. Criteria are given that may enable one to make a choice between the two geometries for maximising compression or temperature of the gas. These solutions should be useful in the study of inertial confinement of a plasma. (author)

  10. X-Ray Topography of the Subsurface Crystal Layers in the Skew Asymmetric Reflection Geometry

    Directory of Open Access Journals (Sweden)

    Swiątek Z.

    2016-12-01

    Full Text Available The technique of X ray topography with the asymmetric reflection geometry of X-ray diffraction presented in this paper as useful tool for structural characterization of materials, particularly, epitaxial thin films and semiconductor multi-layered crystal systems used for the optoelectronic devices. New possibilities of this technique for a layer-by-layer visualization of structural changes in the subsurface crystal layers are demonstrated for semiconductors after various types of surface treatment, such as chemical etching, laser irradiation and ion implantation.

  11. Nonimaging light concentration using total internal reflection films.

    Science.gov (United States)

    Ouellette, G; Waltham, C E; Drees, R M; Poon, A; Schubank, R; Whitehead, L A

    1992-05-01

    We present a method of fabricating nonimaging light concentrators from total internal reflection film. A prototype has been made and tested and found to operate in agreement with predictions of ray-tracing codes. The performance of the prototype is comparable with that of concentrators made from specular reflecting materials.

  12. Geometry and billiards

    CERN Document Server

    Tabachnikov, Serge

    2005-01-01

    Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. The topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course (but contains more material than can be realistically taught in one semester). Although the minimum prerequisit...

  13. Harnessing Multiple Internal Reflections to Design Highly Absorptive Acoustic Metasurfaces

    Science.gov (United States)

    Shen, Chen; Cummer, Steven A.

    2018-05-01

    The rapid development of metasurfaces has enabled numerous intriguing applications with acoustically thin sheets. Here we report the theory and experimental realization of a nonresonant sound-absorbing strategy using metasurfaces by harnessing multiple internal reflections. We theoretically and numerically show that the higher-order diffraction of thin gradient-index metasurfaces is tied to multiple internal reflections inside the unit cells. Highly absorbing acoustic metasurfaces can be realized by enforcing multiple internal reflections together with a small amount of loss. A reflective gradient-index acoustic metasurface is designed based on the theory, and we further experimentally verify the performance using a three-dimensional printed prototype. Measurements show over 99% energy absorption at the peak frequency and a 95% energy absorption bandwidth of around 600 Hz. The proposed mechanism provides an alternative route for sound absorption without the necessity of high absorption of the individual unit cells.

  14. Internal Reflection Sensor for the Cone Penetrometer. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The Internal Reflection Sensor, developed by EIC Laboratories, Inc. as a cone penetrometer based technology, provides real-time detection of subsurface non-aqueous phase liquids (NAPLs). The internal reflection element is positioned against the wall of the cone penetrometer probe such that its sensing face is in contact with the soil or groundwater as the cone is pushed into the subsurface. When NAPL is present and in contact with the sensing face, the internally reflected light is diminished. This results in a decrease in the signal output by the detector - a positive indicator of NAPL presence

  15. Variation of MODIS reflectance and vegetation indices with viewing geometry and soybean development

    Directory of Open Access Journals (Sweden)

    Fábio M. Breunig

    2012-06-01

    Full Text Available Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS. In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI1640 and NDWI2120 with the soybean development in two growing seasons (2004-2005 and 2005-2006. To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.Efeitos direcionais introduzem variabilidade na reflectância e na determinação de índices de vegetação, especialmente quando sensores de amplo campo de visada são usados (p.ex., Moderate Resolution Imaging Spectroradiometer - MODIS. Neste estudo, nós avaliamos os efeitos direcionais sobre a reflectância e quatro índices de vegetação (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized

  16. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent Surface Lambertian-Equivalent Reflectivity Calculations

    Science.gov (United States)

    Fasnacht, Zachary; Qin, Wenhan; Haffner, David P.; Loyola, Diego; Joiner, Joanna; Krotkov, Nickolay; Vasilkov, Alexander; Spurr, Robert

    2017-01-01

    Surface Lambertian-equivalent reflectivity (LER) is important for trace gas retrievals in the direct calculation of cloud fractions and indirect calculation of the air mass factor. Current trace gas retrievals use climatological surface LER's. Surface properties that impact the bidirectional reflectance distribution function (BRDF) as well as varying satellite viewing geometry can be important for retrieval of trace gases. Geometry Dependent LER (GLER) captures these effects with its calculation of sun normalized radiances (I/F) and can be used in current LER algorithms (Vasilkov et al. 2016). Pixel by pixel radiative transfer calculations are computationally expensive for large datasets. Modern satellite missions such as the Tropospheric Monitoring Instrument (TROPOMI) produce very large datasets as they take measurements at much higher spatial and spectral resolutions. Look up table (LUT) interpolation improves the speed of radiative transfer calculations but complexity increases for non-linear functions. Neural networks perform fast calculations and can accurately predict both non-linear and linear functions with little effort.

  17. RefleX: X-ray absorption and reflection in active galactic nuclei for arbitrary geometries

    Science.gov (United States)

    Paltani, S.; Ricci, C.

    2017-11-01

    Reprocessed X-ray radiation carries important information about the structure and physical characteristics of the material surrounding the supermassive black hole (SMBH) in active galactic nuclei (AGN). We report here on a newly developed simulation platform, RefleX, which allows to reproduce absorption and reflection by quasi-arbitrary geometries. We show here the reliability of our approach by comparing the results of our simulations with existing spectral models such as pexrav, MYTorus and BNTorus. RefleX implements both Compton scattering on free electrons and Rayleigh scattering and Compton scattering on bound electrons. We show the effect of bound-electron corrections on a torus geometry simulated like in MYTorus. We release with this paper the RefleX executable, as well as RXTorus, a model that assumes absorption and reflection from a torus with a varying ratio of the minor to major axis of the torus. To allow major flexibility RXTorus is also distributed in three components: absorbed primary emission, scattered radiation and fluorescent lines. RXTorus is provided for different values of the abundance, and with (atomic configuration) or without (free-electron configuration) taking into account Rayleigh scattering and bound electrons. We apply the RXTorus model in both configurations on the XMM-Newton and NuSTAR spectrum of the Compton-thick AGN NGC 424 and find that the models are able to reproduce very well the observations, but that the assumption on the bound or free state of the electrons has significant consequences on the fit parameters. RefleX executable, user manual and example models are available at http://www.astro.unige.ch/reflex. A copy of the RefleX executable is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A31

  18. Total-reflection X-ray fluorescence analysis of Austrian wine

    International Nuclear Information System (INIS)

    Gruber, X.; Kregsamer, P.; Wobrauschek, P.; Streli, C.

    2006-01-01

    The concentration of major, minor and trace elements in Austrian wine was determined by total-reflection X-ray fluorescence using gallium as internal standard. A multi-elemental analysis was possible by pipetting 6 μl of wine directly on the reflector and drying. Total-reflection X-ray fluorescence analysis was performed with Atomika EXTRA II A (Cameca) X-rays from a Mo tube with a high-energy cut-off at 20 keV in total-reflection geometry. The results showed that it was possible to identify only by the elemental analysis as fingerprint the vineyards and year of vintage among 11 different wines

  19. Total-reflection X-ray fluorescence analysis of Austrian wine

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, X. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Kregsamer, P. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Wobrauschek, P. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Streli, C. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria)]. E-mail: streli@ati.ac.at

    2006-11-15

    The concentration of major, minor and trace elements in Austrian wine was determined by total-reflection X-ray fluorescence using gallium as internal standard. A multi-elemental analysis was possible by pipetting 6 {mu}l of wine directly on the reflector and drying. Total-reflection X-ray fluorescence analysis was performed with Atomika EXTRA II A (Cameca) X-rays from a Mo tube with a high-energy cut-off at 20 keV in total-reflection geometry. The results showed that it was possible to identify only by the elemental analysis as fingerprint the vineyards and year of vintage among 11 different wines.

  20. Small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry.

    Science.gov (United States)

    Wang, Shinn-Fwu; Chiu, Ming-Hung; Chen, Wei-Wu; Kao, Fu-Hsi; Chang, Rong-Seng

    2009-05-01

    A small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry is proposed. In this paper, a small displacement can be obtained only by measuring the variation in phase difference between s- and p-polarization states for the total internal reflection effect. In order to improve the sensitivity, we increase the number of total internal reflections by using a parallelogram prism. The theoretical resolution of the method is better than 0.417 nm. The method has some merits, e.g., high resolution, high sensitivity, and real-time measurement. Also, its feasibility is demonstrated.

  1. Effects of Surface BRDF on the OMI Cloud and NO2 Retrievals: A New Approach Based on Geometry-Dependent Lambertian Equivalent Reflectivity (GLER) Derived from MODIS

    Science.gov (United States)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    The Ozone Monitoring Instrument (OMI) cloud and NO2 algorithms use a monthly gridded surface reflectivity climatology that does not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (GLER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. GLER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from MODIS over land and the Cox Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare GLER and climatological LER at 466 nm, which is used in the OMI O2-O2cloud algorithm to derive effective cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and GLERs is carried out. GLER and corresponding retrieved cloud products are then used as input to the OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with GLERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  2. Total internal reflection second-harmonic generation: probing the alkane water interface

    International Nuclear Information System (INIS)

    Conboy, J.C.; Daschbach, J.L.; Richmond, G.L.

    1994-01-01

    Total internal reflection Second-Harmonic Generation (SHG) has been used to study a series of neat n-alkane/water interfaces. Polarization and incident angular-dependent measurements of the SH response show good agreement with theoretical predictions. Analysis of the incident and polarization angular-dependent SH response allows for determination of the nonlinear optical properties of molecules comprising the interfacial region. Based on Kleinman symmetry, the measured surface nonlinear susceptibilities suggest a high degree of interfacial order for octane and decane with less order indicated by the odd carbon n-alkanes examined, heptane and nonane. The SH response in reflection and transmission has been measured under a Total Internal Reflection (TIR) of the fundamental. The measured nonlinear susceptibilities in each case are found to be identical. (orig.)

  3. International Mindedness through the Looking Glass: Reflections on a Concept

    Science.gov (United States)

    Castro, Paloma; Lundgren, Ulla; Woodin, Jane

    2015-01-01

    The aim of this article is to report and reflect on a research project involving the conceptualization of the term "International Mindedness", which is used across a range of International Baccalaureate (IB) global and local contexts. The research process involved both a critical analysis of IB official documents and a literature review…

  4. Precise shape reconstruction by active pattern in total-internal-reflection-based tactile sensor.

    Science.gov (United States)

    Saga, Satoshi; Taira, Ryosuke; Deguchi, Koichiro

    2014-03-01

    We are developing a total-internal-reflection-based tactile sensor in which the shape is reconstructed using an optical reflection. This sensor consists of silicone rubber, an image pattern, and a camera. It reconstructs the shape of the sensor surface from an image of a pattern reflected at the inner sensor surface by total internal reflection. In this study, we propose precise real-time reconstruction by employing an optimization method. Furthermore, we propose to use active patterns. Deformation of the reflection image causes reconstruction errors. By controlling the image pattern, the sensor reconstructs the surface deformation more precisely. We implement the proposed optimization and active-pattern-based reconstruction methods in a reflection-based tactile sensor, and perform reconstruction experiments using the system. A precise deformation experiment confirms the linearity and precision of the reconstruction.

  5. An algorithm for mass matrix calculation of internally constrained molecular geometries

    International Nuclear Information System (INIS)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-01

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model

  6. An algorithm for mass matrix calculation of internally constrained molecular geometries.

    Science.gov (United States)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-28

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model.

  7. One-dimensional photonic crystals with highly Bi-substituted iron garnet defect in reflection polar geometry

    International Nuclear Information System (INIS)

    Mikhailova, T V; Berzhansky, V N; Karavainikov, A V; Shaposhnikov, A N; Prokopov, A R; Lyashko, S D

    2016-01-01

    It is represented the results of modelling of magnetooptical properties in reflection polar geometry of one-dimensional photonic crystal, in which highly Bi-substituted iron garnet defect of composition Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 A l0.8 O 12 / Bi 2.8 Y 0.2 Fe 5 Oi 2 is located between the dielectric Bragg mirrors (SiO 2 / TiO 2 ) m (were m is number of layer pairs) and buffer SiO 2 and gold top layers of different thicknesses is placed on structure. The modification of spectral line- shapes of microcavity and Tamm plasmon-polariton modes depending on m is found. (paper)

  8. PREFACE: The 7th International Seminar on Geometry, Continua and Microstructures

    Science.gov (United States)

    Burton, David A.

    2007-04-01

    It gives me great pleasure to present the proceedings of the 7th International Seminar on Geometry, Continua and Microstructures (GCM 7). The conference took place on 25-27 September 2006 at Lancaster University and the local organisers were Robin Tucker, Tim Walton, myself and Jonathan Gratus of the Lancaster University Mathematical Physics Group. Modern field theories of mechanically and electrically responsive continua have a wealth of interesting applications in physics. Such theories provide effective macroscopic models of complex systems, such as living tissue and material with dynamical defects, that capture macroscopic consequences of microscopic phenomena. GCM is an interdisciplinary conference series, initiated by the Eringen medallist Gérard A Maugin, that brings together physicists and applied mathematicians who have interests in continuum mechanics and differential geometry and who aim to develop new and powerful methods for analysing the behaviour of complex mechanical systems. The earlier conferences in the series were held in Paris, Madrid, Mannheim, Turin, Sinaia and Belgrade. This volume addresses a variety of topics including the physics of saturated porous media, the relationship between growth in living tissue and molecular transport, the mechanics of polymer bonds, the macroscopic properties of damaged elastomers, the mechanics of carbon nanotubes, the geometry of balance systems in Continuum Thermodynamics and wave propagation in the material manifold. I would like to warmly thank the rest of the organising committee and the conference participants for making GCM 7 an enjoyable and rewarding occasion. Photographs may be found at http://www.lancs.ac.uk/depts/spc/conf/gcm7/wss/index.htm David A Burton Editor

  9. Internal geometry effect of structured PLA materials manufactured by dropplet-based 3D printer on its mechanical properties

    Science.gov (United States)

    Wicaksono, Sigit T.; Ardhyananta, Hosta; Rasyida, Amaliya; Hidayat, Mas Irfan P.

    2018-04-01

    Rapid Prototyping (RP) technologies, the manufacturing technology with less time consuming including high precission and complicated structure of products, are now become high demanding technologies. Those technologies can be base on top-down or bottom-up approaches. One of the bottom-up approach of RP technology is 3D printing machine. In this research, we have succeed to apply the droplet-based 3D printer to make the structured PLA (Polylactic Acid) materials with different internal geometry structures. The internal geometry used are triangle and honeycomb structure with different size of each symmetry axis of 4.5 mm and 9 mm and the thickness varied of 1 mm and 2 mm as well. The mechanical properties of those structures including tensile and bending stregth are evaluated by using tensile and flexural test respectively. Test results show that the best performance obtained by measuring its tensile and flexural strength is the sampel with triangle geometry of 9 mm geometrical size and 2 mm of thickness. The tensile strength and flexural strength values of the specimens are 59.2996 MPa and 123 MPa respectively.

  10. Solar photovoltaic reflective trough collection structure

    Science.gov (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  11. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue

    International Nuclear Information System (INIS)

    Woodward, Ruth M; Cole, Bryan E; Wallace, Vincent P; Pye, Richard J; Arnone, Donald D; Linfield, Edmund H; Pepper, Michael

    2002-01-01

    We demonstrate the application of terahertz pulse imaging (TPI) in reflection geometry for the study of skin tissue and related cancers both in vitro and in vivo. The sensitivity of terahertz radiation to polar molecules, such as water, makes TPI suitable for studying the hydration levels in the skin and the determination of the lateral spread of skin cancer pre-operatively. By studying the terahertz pulse shape in the time domain we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC). Basal cell carcinoma has shown a positive terahertz contrast, and inflammation and scar tissue a negative terahertz contrast compared to normal tissue. In vivo measurements on the stratum corneum have enabled visualization of the stratum corneum-epidermis interface and the study of skin hydration levels. These results demonstrate the potential of terahertz pulse imaging for the study of skin tissue and its related disorders, both in vitro and in vivo

  12. An Arduino-Based Experiment Designed to Clarify the Transition to Total Internal Reflection

    Science.gov (United States)

    Atkin, Keith

    2018-01-01

    The topic of refraction and reflection of light at the boundary of transparent media is a fundamentally important one. The special case of total internal reflection is however commonly misrepresented in elementary textbooks. This paper addresses the problem and describes an experimental procedure for measuring and displaying reflected and…

  13. Attenuated total internal reflection infrared microspectroscopic imaging using a large-radius germanium internal reflection element and a linear array detector.

    Science.gov (United States)

    Patterson, Brian M; Havrilla, George J

    2006-11-01

    The number of techniques and instruments available for Fourier transform infrared (FT-IR) microspectroscopic imaging has grown significantly over the past few years. Attenuated total internal reflectance (ATR) FT-IR microspectroscopy reduces sample preparation time and has simplified the analysis of many difficult samples. FT-IR imaging has become a powerful analytical tool using either a focal plane array or a linear array detector, especially when coupled with a chemometric analysis package. The field of view of the ATR-IR microspectroscopic imaging area can be greatly increased from 300 x 300 microm to 2500 x 2500 microm using a larger internal reflection element of 12.5 mm radius instead of the typical 1.5 mm radius. This gives an area increase of 70x before aberrant effects become too great. Parameters evaluated include the change in penetration depth as a function of beam displacement, measurements of the active area, magnification factor, and change in spatial resolution over the imaging area. Drawbacks such as large file size will also be discussed. This technique has been successfully applied to the FT-IR imaging of polydimethylsiloxane foam cross-sections, latent human fingerprints, and a model inorganic mixture, which demonstrates the usefulness of the method for pharmaceuticals.

  14. Effect of the refraction factor of a plastic fiber shell on the internal reflection coefficient

    International Nuclear Information System (INIS)

    Pkrksypkin, A.I.; Ponomarev, L.I.

    1992-01-01

    Results of pilot studies of the effect of refraction factor of plastic fiber shell on the coefficient of light internal reflection in the fiber are presented. It is pointed, that the shell does not absorb the light, but effects the surface layer of the fiber centre so, that dependence of the coefficient of internal reflection on refraction factor of the shell may be described using Fresnel formulae. It is shown, that coefficient of internal reflection decreases with the increase of refraction factor. Technique to determine volume length of scintillation light absorption in the fiber is suggested

  15. Fast Focal Point Correction in Prism-Coupled Total Internal Reflection Scanning Imager Using an Electronically Tunable Lens

    Directory of Open Access Journals (Sweden)

    Chenggang Zhu

    2018-02-01

    Full Text Available Total internal reflection (TIR is useful for interrogating physical and chemical processes that occur at the interface between two transparent media. Yet prism-coupled TIR imaging microscopes suffer from limited sensing areas due to the fact that the interface (the object plane is not perpendicular to the optical axis of the microscope. In this paper, we show that an electrically tunable lens can be used to rapidly and reproducibly correct the focal length of an oblique-incidence scanning microscope (OI-RD in a prism-coupled TIR geometry. We demonstrate the performance of such a correction by acquiring an image of a protein microarray over a scan area of 4 cm2 with an effective resolution of less than 20 microns. The electronic focal length tuning eliminates the mechanical movement of the illumination lens in the scanning microscope and in turn the noise and background drift associated with the motion.

  16. Internal reflection spectroscopic analysis of sulphide mineral surfaces

    International Nuclear Information System (INIS)

    Kaoma, J.

    1989-01-01

    To establish the reason for flotation of sulfide minerals in the absence of any conventional collector, internal reflection spectroscopic analysis (IRS) of their surfaces was conducted. sulfur, sulfates, thiosulfates, and hydrocarbonates have been detected on the surface of as-grand sulfide minerals. On sodium sulfide-treated surfaces, both sulfur and polysulfide have also been found to be present. From these findings, the flotation of sulfide minerals without collectors is discussed. (author). 26 refs

  17. Fractal geometry mathematical foundations and applications

    CERN Document Server

    Falconer, Kenneth

    2013-01-01

    The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals.  The book introduces and develops the general theory and applica

  18. Total internal reflection tomography of small objects

    International Nuclear Information System (INIS)

    Chen Xudong

    2008-01-01

    The multiple signal classification (MUSIC) imaging method is applied to determine the locations of a collection of small anisotropic spherical scatterers in the framework of the total internal reflection tomography. Multiple scattering between scatterers is considered and the inverse scattering problem is nonlinear, which, however, is solved by the proposed fast analytical approach where no associated forward problem is iteratively evaluated. The paper also discusses the role of the polarization of incidence waves, the incidence angle, the separation of scatterers from the surface of the substrate, and the level of noise on the resolution of imaging.

  19. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  20. An International Experience for Social Work Students: Self-Reflection through Poetry and Journal Writing Exercises

    Science.gov (United States)

    Furman, Rich; Coyne, Ann; Negi, Nalini Junko

    2008-01-01

    This descriptive article explores the uses of poetry and journaling exercises as means of helping students develop their self-reflective capacities within the context of international social work. First, self-reflection and its importance to social work practice and education is discussed. Second, the importance of self-reflection in international…

  1. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.

    Science.gov (United States)

    Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana

    2015-11-02

    In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.

  2. Critical experiments on single-unit spherical plutonium geometries reflected and moderated by oil

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1997-05-01

    Experimental critical configurations are reported for several dozen spherical and hemispherical single-unit assemblies of plutonium metal. Most were solid but many were hollow-centered, thick, shell-like geometries. All were constructed of nested plutonium (mostly 2139 Pu) metal hemispherical shells. Three kinds of critical configurations are reported. Two required interpolation and/or extrapolation of data to obtain the critical mass because reflector conditions were essentially infinite. The first finds the plutonium essentially fully reflected by a hydrogen-rich oil; the second is essentially unreflected. The third kind reports the critical oil reflector height above a large plutonium metal assembly of accurately known mass (no interpolation required) when that mass was too great to permit full oil reflection. Some configurations had thicknesses of mild steel just outside the plutonium metal, separating it from the oil. These experiments were performed at the Rocky Flats Critical Mass Laboratory in the late 1960s. They have not been published in a form suitable for benchmark-quality comparisons against state-of-the-art computational techniques until this paper. The age of the data and other factors lead to some difficulty in reconstructing aspects of the program and may, in turn, decrease confidence in certain details. Whenever this is true, the point is acknowledged. The plutonium metal was alpha-phase 239 Pu containing 5.9 wt-% 240 Pu. All assemblies were formed by nesting 1.667-mm-thick (nominal) bare plutonium metal hemispherical shells, also called hemishells, until the desired configuration was achieved. Very small tolerance gaps machined into radial dimensions reduced the effective density a small amount in all cases. Steel components were also nested hemispherical shells; but these were nominally 3.333-mm thick. Oil was used as the reflector because of its chemical compatibility with plutonium metal

  3. Internal-wave reflection from uniform slopes: higher harmonics and Coriolis effects

    Directory of Open Access Journals (Sweden)

    T. Gerkema

    2006-01-01

    Full Text Available Weakly nonlinear reflection of internal waves from uniform slopes produces higher harmonics and mean fields; the expressions are here derived for constant stratification and with Coriolis effects fully included, i.e. the horizontal component of the earth rotation vector (referred to as 'non-traditional'' is taken into account. Uniformity in one of the horizontal directions is assumed. It is shown that solutions can be as readily derived with as without ; hence there is no need to make the so-called Traditional Approximation. Examples of reflecting internal-wave beams are presented for super-inertial, inertial and sub-inertial frequencies. The problem of resonant and non-resonant forcing of the second harmonic is studied for single plane waves; unlike under the Traditional Approximation, the problem of reflection from a horizontal bottom no longer forms a singular case. Non-traditional effects are favourable to resonant forcing at near-tidal rather than near-inertial frequencies, and generally increase the intensity of the second harmonic. Strong stratification tends to suppress non-traditional effects, but a near-total suppression is only attained for high values of stratification that are characteristic of the seasonal thermocline; in most parts of the ocean, non-traditional effects can therefore be expected to be important.

  4. Computational commutative and non-commutative algebraic geometry

    CERN Document Server

    Cojocaru, S; Ufnarovski, V

    2005-01-01

    This publication gives a good insight in the interplay between commutative and non-commutative algebraic geometry. The theoretical and computational aspects are the central theme in this study. The topic is looked at from different perspectives in over 20 lecture reports. It emphasizes the current trends in commutative and non-commutative algebraic geometry and algebra. The contributors to this publication present the most recent and state-of-the-art progresses which reflect the topic discussed in this publication. Both researchers and graduate students will find this book a good source of information on commutative and non-commutative algebraic geometry.

  5. Advanced geometries for ballistic neutron guides

    International Nuclear Information System (INIS)

    Schanzer, Christian; Boeni, Peter; Filges, Uwe; Hils, Thomas

    2004-01-01

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands

  6. Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: A novel approach

    Science.gov (United States)

    Panigrahi, Ritwik; Srivastava, Suneel K.

    2015-01-01

    In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have been extended on the formation of its silver nanocomposites HPPy/Ag to strengthen our contention on this novel approach. Our investigations showed that electromagnetic interference (EMI) shielding efficiency (SE) of HPPy (34.5-6 dB) is significantly higher compared to PPy (20-5 dB) in the frequency range of 0.5-8 GHz due to the trapping of EM wave by internal reflection. We also observed that EMI shielding is further enhanced to 59-23 in 10 wt% Ag loaded HPPy/Ag-10. This is attributed to the simultaneous contribution of internal reflection as well as reflection from outer surface. Such high EMI shielding capacity using conducting polymers are rarely reported.

  7. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    Freidel, Laurent; Ziprick, Jonathan

    2014-01-01

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  8. Spectral BRDF-based determination of proper measurement geometries to characterize color shift of special effect coatings.

    Science.gov (United States)

    Ferrero, Alejandro; Rabal, Ana; Campos, Joaquín; Martínez-Verdú, Francisco; Chorro, Elísabet; Perales, Esther; Pons, Alicia; Hernanz, María Luisa

    2013-02-01

    A reduced set of measurement geometries allows the spectral reflectance of special effect coatings to be predicted for any other geometry. A physical model based on flake-related parameters has been used to determine nonredundant measurement geometries for the complete description of the spectral bidirectional reflectance distribution function (BRDF). The analysis of experimental spectral BRDF was carried out by means of principal component analysis. From this analysis, a set of nine measurement geometries was proposed to characterize special effect coatings. It was shown that, for two different special effect coatings, these geometries provide a good prediction of their complete color shift.

  9. Literature Reviews on Modeling Internal Geometry of Textile Composites and Rate-Independent Continuum Damage

    Science.gov (United States)

    Su-Yuen, Hsu

    2011-01-01

    Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.

  10. A Parametric Investigation of Nozzle Planform and Internal/External Geometry at Transonic Speeds

    Science.gov (United States)

    Cler, Daniel L.

    1995-01-01

    An experimental investigation of multidisciplinary (scarfed trailing edge) nozzle divergent flap geometry was conducted at transonic speeds in the NASA Langley 16-Foot Transonic Tunnel. The geometric parameters investigated include nozzle planform, nozzle contouring location (internal and/or external), and nozzle area ratio (area ratio 1.2 and 2.0). Data were acquired over a range of Mach Numbers from 0.6 to 1.2, angle-of-attack from 0.0 degrees to 9.6 degrees and nozzle pressure ratios from 1.0 to 20.0. Results showed that increasing the rate of change internal divergence angle across the width of the nozzle or increasing internal contouring will decrease static, aeropropulsive and thrust removed drag performance regardless of the speed regime. Also, increasing the rate of change in boattail angle across the width of the nozzle or increasing external contouring will provide the lowest thrust removed drag. Scarfing of the nozzle trailing edges reduces the aeropropulsive performance for the most part and adversely affects the nozzle plume shape at higher nozzle pressure ratios thus increasing the thrust removed drag. The effects of contouring were primary in nature and the effects of planform were secondary in nature. Larger losses occur supersonically than subsonically when scarfing of nozzle trailing edges occurs. The single sawtooth nozzle almost always provided lower thrust removed drag than the double sawtooth nozzles regardless the speed regime. If internal contouring is required, the double sawtooth nozzle planform provides better static and aeropropulsive performance than the single sawtooth nozzle and if no internal contouring is required the single sawtooth provides the highest static and aeropropulsive performance.

  11. A Method of Drusen Measurement Based on the Geometry of Fundus Reflectance

    Directory of Open Access Journals (Sweden)

    Barbazetto Irene

    2003-04-01

    Full Text Available Abstract Background The hallmarks of age-related macular degeneration, the leading cause of blindness in the developed world, are the subretinal deposits known as drusen. Drusen identification and measurement play a key role in clinical studies of this disease. Current manual methods of drusen measurement are laborious and subjective. Our purpose was to expedite clinical research with an accurate, reliable digital method. Methods An interactive semi-automated procedure was developed to level the macular background reflectance for the purpose of morphometric analysis of drusen. 12 color fundus photographs of patients with age-related macular degeneration and drusen were analyzed. After digitizing the photographs, the underlying background pattern in the green channel was leveled by an algorithm based on the elliptically concentric geometry of the reflectance in the normal macula: the gray scale values of all structures within defined elliptical boundaries were raised sequentially until a uniform background was obtained. Segmentation of drusen and area measurements in the central and middle subfields (1000 μm and 3000 μm diameters were performed by uniform thresholds. Two observers using this interactive semi-automated software measured each image digitally. The mean digital measurements were compared to independent stereo fundus gradings by two expert graders (stereo Grader 1 estimated the drusen percentage in each of the 24 regions as falling into one of four standard broad ranges; stereo Grader 2 estimated drusen percentages in 1% to 5% intervals. Results The mean digital area measurements had a median standard deviation of 1.9%. The mean digital area measurements agreed with stereo Grader 1 in 22/24 cases. The 95% limits of agreement between the mean digital area measurements and the more precise stereo gradings of Grader 2 were -6.4 % to +6.8 % in the central subfield and -6.0 % to +4.5 % in the middle subfield. The mean absolute

  12. DIRC dreams: research directions for the next generation of internally reflected imaging counters

    International Nuclear Information System (INIS)

    Ratcliff, Blair N.; Spanier, Stefan

    1999-01-01

    Some conceptual design features of the total internally reflecting, imaging Cherenkov counter (DIRC) are described. Limits of the DIRC approach to particle identification, and a few features of alternative DIRC designs, are briefly explored

  13. Analytic Reflected Lightcurves for Exoplanets

    Science.gov (United States)

    Haggard, Hal M.; Cowan, Nicolas B.

    2018-04-01

    The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.

  14. ELiXIR—Solid-State Luminaire With Enhanced Light Extraction by Internal Reflection

    Science.gov (United States)

    Allen, Steven C.; Steckl, Andrew J.

    2007-06-01

    A phosphor-converted light-emitting diode (pcLED) luminaire featuring enhanced light extraction by internal reflection (ELiXIR) with efficacy of 60 lm/W producing 18 lumens of yellowish green light at 100 mA is presented. The luminaire consists of a commercial blue high power LED, a polymer hemispherical shell lens with interior phosphor coating, and planar aluminized reflector. High extraction efficiency of the phosphor-converted light is achieved by separating the phosphor from the LED and using internal reflection to steer the light away from lossy reflectors and the LED package and out of the device. At 10 and 500 mA, the luminaire produces 2.1 and 66 lumens with efficacies of 80 and 37 lm/W, respectively. Technological improvements over existing commercial LEDs, such as more efficient pcLED packages or, alternatively, higher efficiency green or yellow for color mixing, will be essential to achieving 150 200 lm/W solid-state lighting. Advances in both areas are demonstrated.

  15. The hidden hyperbolic geometry of international trade: World Trade Atlas 1870-2013.

    Science.gov (United States)

    García-Pérez, Guillermo; Boguñá, Marián; Allard, Antoine; Serrano, M Ángeles

    2016-09-16

    Here, we present the World Trade Atlas 1870-2013, a collection of annual world trade maps in which distance combines economic size and the different dimensions that affect international trade beyond mere geography. Trade distances, based on a gravity model predicting the existence of significant trade channels, are such that the closer countries are in trade space, the greater their chance of becoming connected. The atlas provides us with information regarding the long-term evolution of the international trade system and demonstrates that, in terms of trade, the world is not flat but hyperbolic, as a reflection of its complex architecture. The departure from flatness has been increasing since World War I, meaning that differences in trade distances are growing and trade networks are becoming more hierarchical. Smaller-scale economies are moving away from other countries except for the largest economies; meanwhile those large economies are increasing their chances of becoming connected worldwide. At the same time, Preferential Trade Agreements do not fit in perfectly with natural communities within the trade space and have not necessarily reduced internal trade barriers. We discuss an interpretation in terms of globalization, hierarchization, and localization; three simultaneous forces that shape the international trade system.

  16. Geometry of illumination, luminance contrast, and gloss perception.

    Science.gov (United States)

    Leloup, Frédéric B; Pointer, Michael R; Dutré, Philip; Hanselaer, Peter

    2010-09-01

    The influence of both the geometry of illumination and luminance contrast on gloss perception has been examined using the method of paired comparison. Six achromatic glass samples having different lightness were illuminated by two light sources. Only one of these light sources was visible in reflection by the observer. By separate adjustment of the intensity of both light sources, the luminance of both the reflected image and the adjacent off-specular surroundings could be individually varied. It was found that visual gloss appraisal did not correlate with instrumentally measured specular gloss; however, psychometric contrast seemed to be a much better correlate. It has become clear that not only the sample surface characteristics determine gloss perception: the illumination geometry could be an even more important factor.

  17. Effect of surface plasmon polaritons on the sensitivity of refractive index measurement using total internal reflection method

    International Nuclear Information System (INIS)

    Roshan Entezar, S.

    2015-01-01

    The phase difference between two p-polarized and s-polarized plane waves which are reflected under total internal reflection from the base of a prism with a thin metal coating is studied. Typically such a quantity can be used to measure the refractive index of a test material using the total internal reflection method. It is shown that due to the excitation of surface plasmon polaritons at the interface between the tested dielectric material and the thin metal layer, the p-polarized light experiences a large phase shift which enlarges the phase difference between the p-polarized and the s-polarized waves. As a result, the sensitivity of refractive index measurement increases and the error in determining the refractive index decreases. - Highlights: • Phase difference of totally internally reflected p and s polarized beams is studied. • Excitation of the surface wave increases the phase shift of the p-polarized light. • The sensitivity of refractive index measurement increases by using a coated prism. • The error in determining the refractive index decreases using the coated prism

  18. Acoustic rhinometry (AR): An Alternative Method to Image Nasal Airway Geometry

    DEFF Research Database (Denmark)

    Straszek, Sune; Pedersen, O.F.

      ACOUSTIC RHINOMETRY (AR): AN ALTERNATIVE METHOD TO IMAGE NASAL AIRWAY GEOMETRY.  INTRODUCTION AND BACKGROUND:  In human studies the acoustic reflection technique was first applied to describe the area-distance relationship of the lower airways, but later the acoustic reflection technique appeared...... to be of more use in the description of nasal cavity geometry. Applied to human subjects AR has been applied to monitor the effect of corrective surgery and mucosal effects of pharmacological interventions. In recent years, however, AR has found use also in pharmacological studies in animals ranging in size...

  19. Students’ Errors in Geometry Viewed from Spatial Intelligence

    Science.gov (United States)

    Riastuti, N.; Mardiyana, M.; Pramudya, I.

    2017-09-01

    Geometry is one of the difficult materials because students must have ability to visualize, describe images, draw shapes, and know the kind of shapes. This study aim is to describe student error based on Newmans’ Error Analysis in solving geometry problems viewed from spatial intelligence. This research uses descriptive qualitative method by using purposive sampling technique. The datas in this research are the result of geometri material test and interview by the 8th graders of Junior High School in Indonesia. The results of this study show that in each category of spatial intelligence has a different type of error in solving the problem on the material geometry. Errors are mostly made by students with low spatial intelligence because they have deficiencies in visual abilities. Analysis of student error viewed from spatial intelligence is expected to help students do reflection in solving the problem of geometry.

  20. Euclidean geometry and its subgeometries

    CERN Document Server

    Specht, Edward John; Calkins, Keith G; Rhoads, Donald H

    2015-01-01

    In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of the...

  1. Seismic reflection imaging, accounting for primary and multiple reflections

    Science.gov (United States)

    Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel

    2015-04-01

    Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are

  2. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  3. Superresolution confocal technology for displacement measurements based on total internal reflection

    International Nuclear Information System (INIS)

    Kuang Cuifang; Hao Xiang; Wang Tingting; Liu Xu; Ali, M. Yakut

    2010-01-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  4. Superresolution confocal technology for displacement measurements based on total internal reflection.

    Science.gov (United States)

    Kuang, Cuifang; Ali, M Yakut; Hao, Xiang; Wang, Tingting; Liu, Xu

    2010-10-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  5. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  6. Total internal reflection fluorescence (TIRF) microscopy for real-time imaging of nanoparticle-cell plasma membrane interaction

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Moghimi, Seyed Moien

    2012-01-01

    Nanoparticulate systems are widely used for site-specific drug and gene delivery as well as for medical imaging. The mode of nanoparticle-cell interaction may have a significant effect on the pathway of nanoparticle internalization and subsequent intracellular trafficking. Total internal reflection...

  7. Smooth and rough Proteus mirabilis lipopolysaccharides studied by total internal reflection ellipsometry

    International Nuclear Information System (INIS)

    Gleńska-Olender, J.; Dworecki, K.; Sęk, S.; Kwinkowski, M.; Kaca, W.

    2013-01-01

    Total internal reflection ellipsometry (TIRE), a label-free optical detection technique for studying interactions between biomolecules, was used to examine the adsorption of various forms of lipopolysaccharides (LPSs) isolated from Proteus mirabilis S1959, R110, and R45 strains on a gold surface. The thickness of the adsorbed layers was determined by TIRE, with the average values for S1959, R110, and R45 LPS layers being 78 ± 5, 39 ± 3, and 12 ± 2 nm, respectively. The thickness of LPS layers corresponds to the presence and length of O-specific parts in P. mirabilis LPS molecules. Atomic force microscopy was used as a complementary technique for visualizing lipopolysaccharides on the surface. Force measurements seem to confirm the data obtained from TIRE experiments. - Highlights: • Proteus mirabilis lipopolysaccharides were adsorbed on the gold surface. • Thickness of adsorbed layers was determined by total internal reflection ellipsometry. • Atomic force microscopy was used to visualize lipopolysaccharide build-up on gold surface. • Time is important in the evolution of biomolecular film thickness created on gold surface

  8. Smooth and rough Proteus mirabilis lipopolysaccharides studied by total internal reflection ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Gleńska-Olender, J., E-mail: joannaglenska@wp.pl [Institute of Biology, Jan Kochanowski University, 25-406 Kielce (Poland); Świętokrzyski Biobank, Regional Science and Technology Center, 26-060 Chęciny (Poland); Dworecki, K. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Sęk, S. [Department of Chemistry, University of Warsaw, 02-093 Warsaw (Poland); Kwinkowski, M.; Kaca, W. [Institute of Biology, Jan Kochanowski University, 25-406 Kielce (Poland)

    2013-12-02

    Total internal reflection ellipsometry (TIRE), a label-free optical detection technique for studying interactions between biomolecules, was used to examine the adsorption of various forms of lipopolysaccharides (LPSs) isolated from Proteus mirabilis S1959, R110, and R45 strains on a gold surface. The thickness of the adsorbed layers was determined by TIRE, with the average values for S1959, R110, and R45 LPS layers being 78 ± 5, 39 ± 3, and 12 ± 2 nm, respectively. The thickness of LPS layers corresponds to the presence and length of O-specific parts in P. mirabilis LPS molecules. Atomic force microscopy was used as a complementary technique for visualizing lipopolysaccharides on the surface. Force measurements seem to confirm the data obtained from TIRE experiments. - Highlights: • Proteus mirabilis lipopolysaccharides were adsorbed on the gold surface. • Thickness of adsorbed layers was determined by total internal reflection ellipsometry. • Atomic force microscopy was used to visualize lipopolysaccharide build-up on gold surface. • Time is important in the evolution of biomolecular film thickness created on gold surface.

  9. DIRC Dreams Redux: Research Directions for the Next Generation of Internally Reflected Imaging Counters

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Blair N

    2001-09-18

    Some general conceptual design features of total internally reflecting, imaging Cherenkov counters (DIRCs) are described. Limits of the DIRC approach to particle identification and a few features of alternative DIRC designs are briefly explored.

  10. Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites

    Science.gov (United States)

    Fang, Guodong; Chen, Chenghua; Yuan, Shenggang; Meng, Songhe; Liang, Jun

    2018-06-01

    A tracking and recognizing algorithm is proposed to automatically generate irregular cross-sections and central path of braid yarn within the 3D braided composites by using sets of high resolution tomography images. Only the initial cross-sections of braid yarns in a tomography image after treatment are required to be calibrated manually as searching cross-section template. The virtual geometry of 3D braided composites including some detailed geometry information, such as the braid yarn squeezing deformation, braid yarn distortion and braid yarn path deviation etc., can be reconstructed. The reconstructed geometry model can reflect the change of braid configurations during solidification process. The geometry configurations and mechanical properties of the braided composites are analyzed by using the reconstructed geometry model.

  11. Effect of injector geometry on the performance of an internally mixed liquid atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Kushari, A.

    2010-11-15

    This paper presents the results of an experimental study of the effect of injector's geometry on the performance of an internally mixed, air-assisted, liquid injector. In this type of injector a small amount of air is injected into a liquid stream within the injector. The interaction of the liquid with the atomizing air inside the injector induces atomization. The results presented in this paper show that the size of the droplets produced by the investigated injector decreases with a decrease in the air injection area. This is due to the increase in atomizing air injection velocity that accompanies the decrease in the air injection area, which improves atomization. This study also shows that the droplet sizes decrease with an increase in the injector's length, which is attributed to the increase in total interactive force. (author)

  12. Special metrics and group actions in geometry

    CERN Document Server

    Fino, Anna; Musso, Emilio; Podestà, Fabio; Vezzoni, Luigi

    2017-01-01

    The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.

  13. Improving Collaborative Planning and Reflection Practices at International Baccalaureate Diploma Schools in Amman

    Science.gov (United States)

    Saa'd AlDin, Kawther

    2014-01-01

    In 2010, the International Baccalaureate (IB) Organization mandated that all its schools, including Diploma (DP) schools, adhere to the collaborative planning and reflection requirements, which emphasized the importance of integrating its theory of knowledge (TOK) core component into all disciplines. Many schools officials and educations in Amman…

  14. Do people ruminate because they haven't digested their goals? The relations of rumination and reflection to goal internalization and ambivalence

    DEFF Research Database (Denmark)

    Thomsen, Dorthe Kirkegaard; Tønnesvang, Jan; Schnieber, Anette

    2011-01-01

    In three studies it was investigated whether rumination was related to less internalized self-regulation and goals and whether reflection was related to more internalized self-regulation and goals. In all studies students completed questionnaires measuring rumination, reflection, and internalizat...

  15. The hidden hyperbolic geometry of international trade: World Trade Atlas 1870–2013

    Science.gov (United States)

    García-Pérez, Guillermo; Boguñá, Marián; Allard, Antoine; Serrano, M. Ángeles

    2016-01-01

    Here, we present the World Trade Atlas 1870–2013, a collection of annual world trade maps in which distance combines economic size and the different dimensions that affect international trade beyond mere geography. Trade distances, based on a gravity model predicting the existence of significant trade channels, are such that the closer countries are in trade space, the greater their chance of becoming connected. The atlas provides us with information regarding the long-term evolution of the international trade system and demonstrates that, in terms of trade, the world is not flat but hyperbolic, as a reflection of its complex architecture. The departure from flatness has been increasing since World War I, meaning that differences in trade distances are growing and trade networks are becoming more hierarchical. Smaller-scale economies are moving away from other countries except for the largest economies; meanwhile those large economies are increasing their chances of becoming connected worldwide. At the same time, Preferential Trade Agreements do not fit in perfectly with natural communities within the trade space and have not necessarily reduced internal trade barriers. We discuss an interpretation in terms of globalization, hierarchization, and localization; three simultaneous forces that shape the international trade system. PMID:27633649

  16. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology

    Science.gov (United States)

    Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye

    2013-05-01

    We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.

  17. DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR

    International Nuclear Information System (INIS)

    Adam, I.; Aston, D.

    1997-11-01

    The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design

  18. Creating Comic Books in Nigeria: International Reflections on Literacy, Creativity, and Student Engagement

    Science.gov (United States)

    Bitz, Michael; Emejulu, Obiajulu

    2016-01-01

    This article is an international reflection on literacy, creativity, and student engagement. The authors collaborated to help Nigerian youths and their teachers develop, design, and share original comic books. By leveraging student engagement for literacy learning, the authors highlighted the crucial role of creativity in the classroom. The…

  19. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  20. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution

    Directory of Open Access Journals (Sweden)

    Francesco Pennacchio

    2017-07-01

    Full Text Available Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect. Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

  1. Symbolic Uses of Evaluation in the International Aid Sector: Arguments for Critical Reflection

    Science.gov (United States)

    McNulty, James

    2012-01-01

    Significant progress has been made in recent years to improve the quality of the evaluation of international aid. Increasingly, this includes an interest in improving the way evaluations are used to improve policies and programmes. However, the prevalence of symbolic use--a phenomenon that is often mentioned but rarely studied--reflects an…

  2. Control of preexisting faults and near-surface diapirs on geometry and kinematics of fold-and-thrust belts (Internal Prebetic, Eastern Betic Cordillera)

    Science.gov (United States)

    Pedrera, Antonio; Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; García-Lobón, José Luis

    2014-07-01

    We have determined, for the first time, the 3D geometry of a sector of the eastern Internal Prebetic comprised between Parcent and Altea diapirs, combining structural, borehole and multichannel seismic reflection data. The tectonic structure of the Jurassic-Cretaceous carbonate series is characterized by regional ENE-WSW fold-and-thrusts that interact with oblique N-S and WNW-ESE folds, detached over Triassic evaporites and clays. The structural style comprises box-shape anticlines, and N-vergent anticlines with vertical to overturned limbs frequently bordered by reverse and strike-slip faults. The anticlines surround a triangular broad synclinal structure, the Tárbena basin, filled by a late Oligocene to Tortonian sedimentary sequence that recorded folding and thrusting history. The location and geometrical characteristics of fold-and-thrusts may be controlled by the positive inversion of pre-existing Mesozoic normal faults, and by the position and shape of near-surface diapirs composed of Triassic rocks. Therefore, we propose an initial near-surface diapir emplacement of Triassic evaporitic rocks driven by late Jurassic to early Cretaceous rifting of the southern Iberian paleomargin. Thrusting and folding started during the latest Oligocene (∼28-23 Ma) roughly orthogonal to the NW-directed shortening. Deformation migrated to the south during Aquitanian (∼23-20 Ma), when tectonic inversion implied the left-lateral transpressive reactivation of N-S striking former normal faults and right-lateral/reverse reactivation of inherited WNW-ESE faults. We show two mechanisms driving the extrusion of the diapirs during contraction: lateral migration of a pre-existing near-surface diapir associated with dextral transpression; and squeezing of a previous near-surface diapir at the front of an anticline. Our study underlines the value of 3D geological modeling to characterize geometry and kinematics of complex fold-and-thrust belts influenced by preexisting faults and

  3. Specific Features of Reflection of Information Regarding Lease Operations in the National and International Standards

    Directory of Open Access Journals (Sweden)

    Nikolenko Nataliya V.

    2013-12-01

    Full Text Available The article identifies the degree of correspondence of the national Provisions (Standard of Business Accounting (PSBA Lease with the international standard and provides recommendations with respect to their closing up. On the results of the study the author provides specific features of international and national standards – the existing IFRS 17 Lease and national PSBA 14 Lease by the following components: definition of lease, its classification and reflection in accounting. Also the text of PSBA 31 Financial Expenditures is supplemented with provisions on capitalisation of financial expenditures prospectively, which would allow avoidance of correction of the balance of the retained income and provision of comparative information for previous periods. The article provides an algorithm of division of lease for accounting purposes on the basis of international standards. Its use would ensure correctness of reflection of lease operations in accounting and would serve as a basis for development of methodical provisions with respect to accounting. By the result of the study the author forms definition of the qualification asset as an asset which requires considerable time for its creation, preparation for target use, sales or acquisition of the ownership right. Capitalisation of such expenditures would allow non-reduction of the accounting income and also would provide a possibility to reflect financial expenditures in accordance with their economic essence.

  4. Beyond ‘Innocents Abroad’: Reflecting on Sustainability Issues During International Study Trips

    Directory of Open Access Journals (Sweden)

    Anne H. Reilly

    2016-12-01

    Full Text Available With ecosystems and populations in many regions threatened by rapid development, sustainability is a critical component for businesses in mature markets and emerging economies alike. The International Association of Jesuit Business Schools notes that global sustainability involves a broad set of interconnected issues ranging from environmental preservation to social justice to desirable production and consumption patterns. Jesuit business schools are uniquely positioned to address sustainability issues with their focus on teaching managerial content in tandem with corporate social responsibility. Further, the Ignatian Pedagogy Paradigm of experience, reflection, and action would suggest that business students may benefit from reflective observation in support of learning about sustainability. In this paper, we examine the international study trip as an opportunity for students to learn about sustainability, with results suggesting that student understanding about the broad sustainability domain may be enhanced through the study abroad experience. We discuss how two classes of primarily American MBA students traveling to emerging markets (one class to Santiago, Chile and one class to Johannesburg, South Africa were able to connect local business practices with economic and social as well as environmental sustainability issues, enhancing both student engagement and learning outcomes. Further, these students’ sustainability experiences while in an unfamiliar environment provided the opportunity to apply the potentially transformative experience, reflection, and action components of the Ignatian Pedagogy Paradigm. Compared to similar graduate business students enrolled in regular classes, we argue that these students discerned deeper connections with the economic, social, and environmental issues of sustainability.

  5. Obtaining local reflectivity at two-way travel time by filtering acoustic reflection data

    NARCIS (Netherlands)

    Slob, E.C.; Zhang, L.; Wapenaar, C.P.A.; Mihai Popovici, A.; Fomel, S.

    2017-01-01

    A modified implementation of Marchenko redatuming leads to a filter that removes internal multiples from reflection data. It produces local reflectivity at two-way travel time. The method creates new primary reflections resulting from emitted events that eliminate internal multiples. We call these

  6. Total internal reflection and dynamic light scattering microscopy of gels

    Science.gov (United States)

    Gregor, Brian F.

    Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third

  7. Wave reflections from breakwaters

    OpenAIRE

    Dickson, William S.

    1994-01-01

    A new method is presented for estimating the reflection of a random, multi-directional sea from a coastal structure. The technique is applicable to an array of wave gauges of arbitrary geometry deployed seaward of the reflector. An expansion for small oblique wave incidence angles is used to derive an approximate relationship between measured array cross-spectra and a small number of parameters that describe the incident wave properties and the reflectivity of the structure. Model tests with ...

  8. Geometry of illumination, luminance contrast, and gloss perception

    OpenAIRE

    Leloup, Frédéric; Pointer, Michael R.; Dutré, Philip; Hanselaer, Peter

    2010-01-01

    The influence of both the geometry of illumination and luminance contrast on gloss perception has been examined using the method of paired comparison. Six achromatic glass samples having different lightness were illuminated by two light sources. Only one of these light sources was visible in reflection by the observer. By separate adjustment of the intensity of both light sources, the luminance of both the reflected image and the adjacent off-specular surroundings could be individually varied...

  9. A BRDF-BPDF database for the analysis of Earth target reflectances

    Science.gov (United States)

    Breon, Francois-Marie; Maignan, Fabienne

    2017-01-01

    Land surface reflectance is not isotropic. It varies with the observation geometry that is defined by the sun, view zenith angles, and the relative azimuth. In addition, the reflectance is linearly polarized. The reflectance anisotropy is quantified by the bidirectional reflectance distribution function (BRDF), while its polarization properties are defined by the bidirectional polarization distribution function (BPDF). The POLDER radiometer that flew onboard the PARASOL microsatellite remains the only space instrument that measured numerous samples of the BRDF and BPDF of Earth targets. Here, we describe a database of representative BRDFs and BPDFs derived from the POLDER measurements. From the huge number of data acquired by the spaceborne instrument over a period of 7 years, we selected a set of targets with high-quality observations. The selection aimed for a large number of observations, free of significant cloud or aerosol contamination, acquired in diverse observation geometries with a focus on the backscatter direction that shows the specific hot spot signature. The targets are sorted according to the 16-class International Geosphere-Biosphere Programme (IGBP) land cover classification system, and the target selection aims at a spatial representativeness within the class. The database thus provides a set of high-quality BRDF and BPDF samples that can be used to assess the typical variability of natural surface reflectances or to evaluate models. It is available freely from the PANGAEA website (PANGAEA.864090" target="_blank">doi:10.1594/PANGAEA.864090). In addition to the database, we provide a visualization and analysis tool based on the Interactive Data Language (IDL). It allows an interactive analysis of the measurements and a comparison against various BRDF and BPDF analytical models. The present paper describes the input data, the selection principles, the database format, and the analysis tool

  10. Determination of continuous complex refractive index dispersion of biotissue based on internal reflection

    Science.gov (United States)

    Deng, Zhichao; Wang, Jin; Ye, Qing; Sun, Tengqian; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

    2016-01-01

    The complex refractive index dispersion (CRID), which contains the information on the refractive index dispersion and extinction coefficient spectra, is an important optical parameter of biotissue. However, it is hard to perform the CRID measurement on biotissues due to their high scattering property. Continuous CRID measurement based on internal reflection (CCRIDM-IR) is introduced. By using a lab-made apparatus, internal reflectance spectra of biotissue samples at multiple incident angles were detected, from which the continuous CRIDs were calculated based on the Fresnel formula. Results showed that in 400- to 750-nm range, hemoglobin solution has complicated dispersion and extinction coefficient spectra, while other biotissues have normal dispersion properties, and their extinction coefficients do not vary much with different wavelengths. The normal dispersion can be accurately described by several coefficients of dispersion equations (Cauchy equation, Cornu equation, and Conrady equation). To our knowledge, this is the first time that the continuous CRID of scattering biotissue over a continuous spectral region is measured, and we hereby have proven that CCRIDM-IR is a good method for continuous CRID research of biotissue.

  11. Modeling and validation of multiple joint reflections for ultra- narrow gap laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Milewski, J.; Keel, G. [Los Alamos National Lab., NM (United States); Sklar, E. [Opticad Corp., Santa Fe, New Mexico (United States)

    1995-12-01

    The effects of multiple internal reflections within a laser weld joint as a function of joint geometry and processing conditions have been characterized. A computer model utilizing optical ray tracing is used to predict the reflective propagation of laser beam energy focused into the narrow gap of a metal joint for the purpose of predicting the location of melting and coalescence which form the weld. The model allows quantitative analysis of the effects of changes to joint geometry, laser design, materials and processing variables. This analysis method is proposed as a way to enhance process efficiency and design laser welds which display deep penetration and high depth to width aspect ratios, reduced occurrence of defects and enhanced melting. Of particular interest to laser welding is the enhancement of energy coupling to highly reflective materials. The weld joint is designed to act as an optical element which propagates and concentrates the laser energy deep within the joint to be welded. Experimentation has shown that it is possible to produce welds using multiple passes to achieve deep penetration and high depth to width aspect ratios without the use of filler material. The enhanced laser melting and welding of aluminum has been demonstrated. Optimization through modeling and experimental validation has resulted in the development of a laser welding process variant we refer to as Ultra-Narrow Gap Laser Welding.

  12. Geometries

    CERN Document Server

    Sossinsky, A B

    2012-01-01

    The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms "toy geometries", the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking t...

  13. Mid infrared upconversion spectroscopy using diffuse reflectance

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Kehlet, Louis M.; Dam, Jeppe Seidelin

    2014-01-01

    specifically that upconversion methods can be deployed using a diffuse reflectance setup where the test sample is irradiated by a thermal light source, i.e. a globar. The diffuse reflectance geometry is particularly well suited when a transmission setup cannot be used. This situation may happen for highly...

  14. Pressure-modulation dynamic attenuated-total-reflectance (ATR) FT-IR spectroscopy

    Science.gov (United States)

    Marcott, C.; Story, G. M.; Noda, I.; Bibby, A.; Manning, C. J.

    1998-06-01

    A single-reflectance attenuated-total-reflectance (ATR) accessory with a diamond internal-reflection element was modified by the addition of a piezoelectric transducer. Initial dynamic pressure-modulation experiments have been performed in the sample compartment of a step-scanning FT-IR spectrometer. A sinusoidal pressure modulation applied to samples of isotactic polypropylene and linear low density polyethylene resulted in dynamic responses which appear to be similar to those observed in previous dynamic 2D IR experiments. Preliminary pressure-modulation dynamic ATR results are also reported for a styrene-butadiene-styrene triblock copolymer. The new method has the advantages that a much wider variety of sample types and geometries can be studied and less sample preparation is required. Dynamic 2D IR experiments carried out by ATR no longer require thin films of large area and sufficient strength to withstand the dynamic strain applied by a rheometer. The ability to obtain dynamic IR spectroscopic information from a wider variety of sample types and thicknesses would greatly expand the amount of useful information that could be extracted from normally complicated, highly overlapped IR spectra.

  15. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser.

    Science.gov (United States)

    Bathe-Peters, M; Annibale, P; Lohse, M J

    2018-02-05

    Microscopic imaging at high spatial-temporal resolution over long time scales (minutes to hours) requires rapid and precise stabilization of the microscope focus. Conventional and commercial autofocus systems are largely based on piezoelectric stages or mechanical objective actuators. Objective to sample distance is either measured by image analysis approaches or by hardware modules measuring the intensity of reflected infrared light. We propose here a truly all-optical microscope autofocus taking advantage of an electrically tunable lens and a totally internally reflected infrared probe beam. We implement a feedback-loop based on the lateral position of a totally internally reflected infrared laser on a quadrant photodetector, as an indicator of the relative defocus. We show here how to treat the combined contributions due to mechanical defocus and deformation of the tunable lens. As a result, the sample can be kept in focus without any mechanical movement, at rates up to hundreds of Hertz. The device requires only reflective optics and can be implemented at a fraction of the cost required for a comparable piezo-based actuator.

  16. Reflection-grating photorefractive self-pumped ring mirror

    Science.gov (United States)

    D'Iakov, V. A.; Korol'Kov, S. A.; Mamaev, A. V.; Shkunov, V. V.; Zozulia, A. A.

    1991-10-01

    A reflection-grating ring mirror using a photorefractive KNbO2 crystal with a response time of several milliseconds and a reflectivity of as much as 50 percent has been experimentally fabricated. A theoretical analysis of the geometry involved is made which provides only qualitative agreement with the experimental findings.

  17. REFLECTIONS ON PRODUCTION INTERNALIZATION AND ITS INTERNATIONAL TRADE IMPLICATIONS

    Directory of Open Access Journals (Sweden)

    CLIPA RALUCA IRINA

    2014-06-01

    Full Text Available Vertically-integrated multinational companies place the different stages of production and marketing chain in different countries, looking for advantages such as low production costs, lower taxes, abundant resources and so on, while benefiting from the advantages of economies of scale, control of supplies or outlets. In fact, this vertical integration of multinational companies has led to the expansion of intra-firm trade and "internalized" operations, thus creating their own markets for the vertically-integrated production. Internationally active firms operate in a way that replaces the different functions of an open market with internal transactions, i.e. intra-firm transactions, whenever internal transaction costs are lower than the open-market ones. The direct consequence over international trade is the increase of intra-firm share of trade flows to one third of world trade, those companies making a suppression of international market segments that act in favour of an internal market. The creation of a multinational market and the enhancement of intra-firm trade have profound quantitative and qualitative implications on the composition, geographic orientation and dynamics of international trade. This paper deals with the issue of production internalization, with an overview of the main contributions made to the theory of internalization, while tackling its relative dimension. However, we intend to highlight the implications of this phenomenon on international trade. The work methodology falls within the range of qualitative approaches: logical argumentation, critical theoretical analysis.

  18. Geometry

    CERN Document Server

    Prasolov, V V

    2015-01-01

    This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.

  19. Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards.

    Science.gov (United States)

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-12-20

    A study on the variation of the spectral bidirectional reflectance distribution function (BRDF) of four diffuse reflectance standards (matte ceramic, BaSO(4), Spectralon, and white Russian opal glass) is accomplished through this work. Spectral BRDF measurements were carried out and, using principal components analysis, its spectral and geometrical variation respect to a reference geometry was assessed from the experimental data. Several descriptors were defined in order to compare the spectral BRDF variation of the four materials.

  20. Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kim Myung K

    2011-09-01

    Full Text Available Abstract Background Total internal reflection fluorescence microscopy (TIRFM is a powerful tool for observing fluorescently labeled molecules on the plasma membrane surface of animal cells. However, the utility of TIRFM in plant cell studies has been limited by the fact that plants have cell walls, thick peripheral layers surrounding the plasma membrane. Recently, a new technique known as variable-angle epifluorescence microscopy (VAEM was developed to circumvent this problem. However, the lack of a detailed analysis of the optical principles underlying VAEM has limited its applications in plant-cell biology. Results Here, we present theoretical and experimental evidence supporting the use of variable-angle TIRFM in observations of intact plant cells. We show that when total internal reflection occurs at the cell wall/cytosol interface with an appropriate angle of incidence, an evanescent wave field of constant depth is produced inside the cytosol. Results of experimental TIRFM observations of the dynamic behaviors of phototropin 1 (a membrane receptor protein and clathrin light chain (a vesicle coat protein support our theoretical analysis. Conclusions These findings demonstrate that variable-angle TIRFM is appropriate for quantitative live imaging of cells in intact tissues of Arabidopsis thaliana.

  1. Using Dance to Deepen Student Understanding of Geometry

    Science.gov (United States)

    Moore, Candice; Linder, Sandra M.

    2012-01-01

    This article provides an example of a collaborative effort between a dance specialist and four third-grade classroom teachers at an arts magnet school. They developed a dance and geometry integration project including implementation strategies, assessment tools, and reflections completed by both the classroom teacher and the third-grade students.…

  2. Reflective masks for extreme ultraviolet lithography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Khanh Bao [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 μm wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  3. Contributions to the spectral theory of the linear Boltzmann operator for various geometries

    International Nuclear Information System (INIS)

    Protopopescu, V.

    1975-01-01

    The linear monoenergetic Boltzmann operator with isotropic scattering is studied for various geometries and boundary conditions as the infinitesimal generator of a positivity preserving contractive semigroup in an appropriate Hilbert space. General results about the existence and the uniqueness of the solutions of the corresponding evolution problems are reviewed. The spectrum of the Boltzmann operator is analyzed for semi-infinite, slab and parallelepipedic geometries with vacuum, periodic, perfectly reflecting, generalized and diffusely reflecting boundary condition respectively. The main features of these spectra, their importance for determining the asymptotic evolution and possible generalizations to more realistic models are put together in a final section. (author)

  4. Streaked x-ray spectrometer having a discrete selection of Bragg geometries for Omega

    Energy Technology Data Exchange (ETDEWEB)

    Millecchia, M.; Regan, S. P.; Bahr, R. E.; Romanofsky, M.; Sorce, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States)

    2012-10-15

    The streaked x-ray spectrometer (SXS) is used with streak cameras [D. H. Kalantar, P. M. Bell, R. L. Costa, B. A. Hammel, O. L. Landen, T. J. Orzechowski, J. D. Hares, and A. K. L. Dymoke-Bradshaw, in 22nd International Congress on High-Speed Photography and Photonics, edited by D. L. Paisley and A. M. Frank (SPIE, Bellingham, WA, 1997), Vol. 2869, p. 680] positioned with a ten-inch manipulator on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] and OMEGA EP [L. J. Waxer et al., Presented at CLEO/QELS 2008, San Jose, CA, 4-9 May 2008 (Paper JThB1)] for time-resolved, x-ray spectroscopy of laser-produced plasmas in the 1.4- to 20-keV photon-energy range. These experiments require measuring a portion of this photon-energy range to monitor a particular emission or absorption feature of interest. The SXS relies on a pinned mechanical reference system to create a discrete set of Bragg reflection geometries for a variety of crystals. A wide selection of spectral windows is achieved accurately and efficiently using this technique. It replaces the previous spectrometer designs that had a continuous Bragg angle adjustment and required a tedious alignment calibration procedure. The number of spectral windows needed for the SXS was determined by studying the spectral ranges selected by OMEGA users over the last decade. These selections are easily configured in the SXS using one of the 25 discrete Bragg reflection geometries and one of the six types of Bragg crystals, including two curved crystals.

  5. Stent impact on the geometry of the carotid bifurcation and the course of the internal carotid artery

    International Nuclear Information System (INIS)

    Berkefeld, J.; Zanella, F.E.; Rosendahl, H.; Theron, J.G.; Guimaraens, L.; Treggiari-Venzi, M.M.

    2002-01-01

    A measurement system is proposed to evaluate reconstructive effects of carotid stents on the geometry of the carotid bifurcation and the course of the internal carotid artery. To describe deviations of the stenotic internal carotid artery (ICA) from the extended axis of the common carotid artery (CCA) the CCA-ICA angle is measured between the CCA midaxis and the midaxis of the stenotic ICA segment. Maximal extensions of ICA tortuosities perpendicular to the course of the CCA axis are defined as ICA offset. The measurements were applied to DSA images of 224 carotid stenoses to evaluate variation and correlation between the two parameters. Comparative pre- and post-stent evaluation was performed in two series of 55 and 31 carotid stenoses treated with Wallstents and in a historic control group of 35 stenoses treated with Strecker stents. Straight course of the ICA was associated with low angle and low offset values, whereas tortuous course of the ICA showed larger angle and offset. A moderate linear correlation between the two parameters was found. Corresponding to a straightening of the stented segment, Wallstents reduced mean angle and offset values significantly. In five cases of the second series of Wallstents, transferrals of curves above the distal stent end associated with kinks were observed, and offset remained constant or increased. Strecker stent implantation caused no significant changes of bifurcational geometry. The proposed parameters corresponded to visual aspects of ICA tortuosity and detected reconstructive effects of self-expanding Wallstents on the ICA course. The measurement system may provide a basis for geometric evaluation of different stent types or implantation concepts with the aim: to optimize anatomic recanalization results in tortuous high angle-high offset bifurcations. (orig.)

  6. Survey of coherent ion reflection at the quasi-parallel bow shock

    International Nuclear Information System (INIS)

    Onsager, T.G.; Thomsen, M.F.; Gosling, J.T.; Bame, S.J.; Russell, C.T.

    1990-01-01

    Ions coherently reflected off the Earth's bow shock have previously been observed both when the upstream geometry is quasi-perpendicular and when it is quasi-parallel. In the case of quasiperpendicular geometry, the ions are reflected in a nearly specular manner and are quickly carried back into the shock by the convecting magnetic field. In the quasi-parallel geometry, however, near-specularly reflected ions' guiding center velocities would on the average be directed away from the shock, allowing the ions to escape into the upstream region. The conditions under which coherent reflection occurs and the subsequent coupling of the reflected ions to the incoming solar wind plasma are important factors when assessing the contribution of the reflected ions to the downstream temperature increase and the shock structure. The survey presented in this paper, along with previously reported observations, suggests that near-specularly reflected ions are indeed an important aspect of energy dissipation at the Earth's quasi-parallel bow shock. The authors find that (1) cool, coherent, near-specularly reflected ion beams are detected over nearly the full range of upstream plasma paraameters commonly found at the Earth's bow shock; (2) the beams are typically observed only near the shock ramp or some shock-like feature; and (3) the observed beam velocities are almost always consistent with what one would expect for near-specularly reflected ions after only a small fraction of a gyroperiod following reflection. The second and third points indicate that the beams spread very quickly in velocity space. This spread in velocities could be due either to interactions between the beam and incoming solar wind ions or to some initially small velocity spread in the beam

  7. Moduli spaces in algebraic geometry

    International Nuclear Information System (INIS)

    Goettsche, L.

    2000-01-01

    This volume of the new series of lecture notes of the Abdus Salam International Centre for Theoretical Physics contains the lecture notes of the School on Algebraic Geometry which took place at the Abdus Salam International Centre for Theoretical Physics from 26 July to 13 August 1999. The school consisted of 2 weeks of lecture courses and one week of conference. The topic of the school was moduli spaces. More specifically the lectures were divided into three subtopics: principal bundles on Riemann surfaces, moduli spaces of vector bundles and sheaves on projective varieties, and moduli spaces of curves

  8. Monoenergetic particle transport in a semi-infinite medium with reflection

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1993-01-01

    Next to neutron or photon transport in infinite geometry, particle transport in semi-infinite geometry is probably the most investigated transport problem. When the mean free path for particle interaction is small compared to the physical dimension of the scattering medium, the infinite or semi-infinite geometry assumption is reasonable for a variety of applications. These include nondestructive testing, photon transport in plant canopies, and inverse problems associated with well logging. Another important application of the transport solution in a semi-infinite medium is as a benchmark to which other more approximate methods can be compared. In this paper, the transport solution in a semi-infinite medium with both diffuse and specular reflection at the free surface is solved analytically and numerically evaluated. The approach is based on a little-known solution obtained by Sobelev for the problem with specular reflection, which itself originates from the classical albedo problem solution without reflection. Using Sobelev's solution as a partial Green's function, the exiting flux for diffuse reflection can be obtained. In this way, the exiting flux for a half-space with both constant diffuse and specular reflection coefficients is obtained for the first time. This expression can then be extended to the complex plane to obtain the interior flux as an inverse Laplace transform, which is numerically evaluated

  9. Beer analysis by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF)

    International Nuclear Information System (INIS)

    Moreira, Silvana; Vives, Ana Elisa S. de; Nascimento Filho, Virgilio F.; Zucchi, Orgheda L.D.A.

    2005-01-01

    In this work the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian Legislation and the nutritive values established by National Agricultural Library (NAL). The measurements were performed at the X-ray Fluorescence Beamline at Synchrotron Light Source Laboratory, in Campinas, Sao Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 μL of sample beers containing just an internal standard, used to correct geometry effects, were analyzed without any pre-treatment. The measuring time was 100 s and the detection limits obtained varied from 1μg.L -1 for Mn and Fe to 15μg.L -1 for P. (author)

  10. Ocean color remote sensing using polarization properties of reflected sunlight

    Science.gov (United States)

    Frouin, R.; Pouliquen, E.; Breon, F.-M.

    1994-01-01

    The effects of the atmosphere and surface on sunlight backscattered to space by the ocean may be substantially reduced by using the unpolarized component of reflectance instead of total reflectance. At 450 nm, a wavelength of interest in ocean color remote sensing, and for typical conditions, 45% of the unpolarized reflectance may originate from the water body instead of 20% of the total reflectance, which represents a gain of a factor 2.2 in useful signal for water composition retrieval. The best viewing geometries are adjacent to the glitter region; they correspond to scattering angles around 100 deg, but they may change slightly depending on the polarization characteristics of the aerosols. As aerosol optical thickness increases, the atmosphere becomes less efficient at polarizing sunlight, and the enhancement of the water body contribution to unpolarized reflectance is reduced. Since the perturbing effects are smaller on unpolarized reflectance, at least for some viewing geometries, they may be more easily corrected, leading to a more accurate water-leaving signal and, therefore, more accurate estimates of phytoplankton pigment concentration.

  11. Meaning, Internalization, and Externalization: Toward a Fuller Understanding of the Process of Reflection and Its Role in the Construction of the Self

    Science.gov (United States)

    Le Cornu, Alison

    2009-01-01

    The study of the process of reflection has a dignified history. However, few have linked reflection to the development of the self in such a way that the form of reflection is understood to influence the resultant type of self. This article explores the process of reflection using a framework of meaning making, internalization, and externalization…

  12. Kinematics of reflections in subsurface offset and angle-domain image gathers

    Science.gov (United States)

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry

  13. Conference on Strings, Duality, and Geometry

    CERN Document Server

    Phong, Duong; Yau, Shing-Tung; Mirror Symmetry IV

    2002-01-01

    This book presents contributions of participants of a workshop held at the Centre de Recherches Mathématiques (CRM), University of Montréal. It can be viewed as a sequel to Mirror Symmetry I (1998), Mirror Symmetry II (1996), and Mirror Symmetry III (1999), copublished by the AMS and International Press. The volume presents a broad survey of many of the noteworthy developments that have taken place in string theory, geometry, and duality since the mid 1990s. Some of the topics emphasized include the following: Integrable models and supersymmetric gauge theories; theory of M- and D-branes and noncommutative geometry; duality between strings and gauge theories; and elliptic genera and automorphic forms. Several introductory articles present an overview of the geometric and physical aspects of mirror symmetry and of corresponding developments in symplectic geometry. The book provides an efficient way for a very broad audience of mathematicians and physicists to explore the frontiers of research into this rapi...

  14. A climatology of visible surface reflectance spectra

    International Nuclear Information System (INIS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-01-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290–740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment–2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes. - Highlights: • Our goals was visible surface reflectance for satellite trace gas measurements. • Captured the range of surface reflectance spectra through EOF analysis. • Used satellite surface reflectance products for each given scene to anchor EOFs. • Generated a climatology of time/geometry dependent surface reflectance spectra. • Demonstrated potential to

  15. International Conference on Analytic and Algebraic Geometry held at the Tata Institute of Fundamental Research and the University of Hyderabad

    CERN Document Server

    Biswas, Indranil; Morye, Archana; Parameswaran, A

    2017-01-01

    This volume is an outcome of the International conference held in Tata Institute of Fundamental Research and the University of Hyderabad. There are fifteen articles in this volume. The main purpose of the articles is to introduce recent and advanced techniques in the area of analytic and algebraic geometry. This volume attempts to give recent developments in the area to target mainly young researchers who are new to this area. Also, some research articles have been added to give examples of how to use these techniques to prove new results.

  16. Optical geometry

    International Nuclear Information System (INIS)

    Robinson, I.; Trautman, A.

    1988-01-01

    The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem

  17. Proximal Femoral Geometry and the Risk of Fractures: Literature Review

    Directory of Open Access Journals (Sweden)

    N.V. Grygorieva

    2016-02-01

    Full Text Available This article presents the literature review of the impact of the upper third of the femur geometry (hip axis length, femoral neck angle, inter-trochanteric length, horizontal offset, thickness of the cortical bone, etc. on the risk of fractures. The article demonstrates the capabilities of techniques for measurement of hip geometry, namely conventional X-ray of pelvic bones, dual-energy X-ray absorptiometry, computed tomography. Possible correlation is shown between some genetic markers and features of the geometry of the upper third of the femur. Also, there are presented the results of own researches of age and sex characteristics of proximal hip geometry parameters in patients without fractures, as well as in patients of older age groups with internal and extraarticular femoral fractures.

  18. Critical coupling of surface plasmons in graphene attenuated total reflection geometry

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina)

    2016-12-09

    We study the optical response of an attenuated total reflection (ATR) structure in Otto configuration with graphene sheet, paying especial attention to the occurrence of total absorption. Our results show that due to excitation of surface plasmons on the graphene sheet, two different conditions of total absorption may occur. At these conditions, the energy loss of the surface plasmon by radiation is equal to its energy loss by absorption into the graphene sheet. We give necessary conditions on ATR parameters for the existence of total absorption. - Highlights: • Attenuated total reflection (ATR) structure with graphene sheet. • Surface plasmons and power matched condition. • Necessary conditions on ATR parameters for the existence of total absorption.

  19. Critical coupling of surface plasmons in graphene attenuated total reflection geometry

    International Nuclear Information System (INIS)

    Cuevas, Mauro

    2016-01-01

    We study the optical response of an attenuated total reflection (ATR) structure in Otto configuration with graphene sheet, paying especial attention to the occurrence of total absorption. Our results show that due to excitation of surface plasmons on the graphene sheet, two different conditions of total absorption may occur. At these conditions, the energy loss of the surface plasmon by radiation is equal to its energy loss by absorption into the graphene sheet. We give necessary conditions on ATR parameters for the existence of total absorption. - Highlights: • Attenuated total reflection (ATR) structure with graphene sheet. • Surface plasmons and power matched condition. • Necessary conditions on ATR parameters for the existence of total absorption.

  20. Introducing geometry concept based on history of Islamic geometry

    Science.gov (United States)

    Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.

    2018-01-01

    Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.

  1. Beer analysis by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br; Zucchi, Orgheda L.D.A. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas de Ribeirao Preto]. E-mail: olzucchi@fcfrp.usp.br

    2005-07-01

    In this work the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian Legislation and the nutritive values established by National Agricultural Library (NAL). The measurements were performed at the X-ray Fluorescence Beamline at Synchrotron Light Source Laboratory, in Campinas, Sao Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 {mu}L of sample beers containing just an internal standard, used to correct geometry effects, were analyzed without any pre-treatment. The measuring time was 100 s and the detection limits obtained varied from 1{mu}g.L{sup -1} for Mn and Fe to 15{mu}g.L{sup -1} for P. (author)

  2. Unusual conversations: A reflection on the mechanics of internationally engaged public scholarship

    Directory of Open Access Journals (Sweden)

    Jonathan Damiani

    2016-09-01

    Full Text Available This article analyses the civic engagement pathways of researchers from the Asia-Pacific and the United States in an effort to see how the principles of what American  scholars consider publicly engaged research and creative practice are being enacted in research sites across the globe. The purpose of this ongoing project is to focus on finding ways of connecting American scholars with a network of higher education and research institutions that hold a commitment and passion for social responsibility and civic engagement as it impacts education, research and service for community development overseas. The narrative includes the voices and perspectives of colleagues dedicated to engaged scholarship from across the new region in which I work (the Asia-Pacific, alongside the voices of some of Imagining America’s (IA 2014 National Conference participants. These conversations serve as a critical reflection on the mechanics of doing public scholarship overseas and frame a new model of internationally engaged scholarship. Keywords: Internationally engaged public scholarship, unusual conversations

  3. Radar reflection off extensive air showers

    CERN Document Server

    Stasielak, J; Bertaina, M; Blümer, J; Chiavassa, A; Engel, R; Haungs, A; Huege, T; Kampert, K -H; Klages, H; Kleifges, M; Krömer, O; Ludwig, M; Mathys, S; Neunteufel, P; Pekala, J; Rautenberg, J; Riegel, M; Roth, M; Salamida, F; Schieler, H; Šmída, R; Unger, M; Weber, M; Werner, F; Wilczyński, H; Wochele, J

    2012-01-01

    We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  4. Analysis of Specular Reflections Off Geostationary Satellites

    Science.gov (United States)

    Jolley, A.

    2016-09-01

    Many photometric studies of artificial satellites have attempted to define procedures that minimise the size of datasets required to infer information about satellites. However, it is unclear whether deliberately limiting the size of datasets significantly reduces the potential for information to be derived from them. In 2013 an experiment was conducted using a 14 inch Celestron CG-14 telescope to gain multiple night-long, high temporal resolution datasets of six geostationary satellites [1]. This experiment produced evidence of complex variations in the spectral energy distribution (SED) of reflections off satellite surface materials, particularly during specular reflections. Importantly, specific features relating to the SED variations could only be detected with high temporal resolution data. An update is provided regarding the nature of SED and colour variations during specular reflections, including how some of the variables involved contribute to these variations. Results show that care must be taken when comparing observed spectra to a spectral library for the purpose of material identification; a spectral library that uses wavelength as the only variable will be unable to capture changes that occur to a material's reflected spectra with changing illumination and observation geometry. Conversely, colour variations with changing illumination and observation geometry might provide an alternative means of determining material types.

  5. Refractive Index Imaging of Cells with Variable-Angle Near-Total Internal Reflection (TIR) Microscopy.

    Science.gov (United States)

    Bohannon, Kevin P; Holz, Ronald W; Axelrod, Daniel

    2017-10-01

    The refractive index in the interior of single cells affects the evanescent field depth in quantitative studies using total internal reflection (TIR) fluorescence, but often that index is not well known. We here present method to measure and spatially map the absolute index of refraction in a microscopic sample, by imaging a collimated light beam reflected from the substrate/buffer/cell interference at variable angles of incidence. Above the TIR critical angle (which is a strong function of refractive index), the reflection is 100%, but in the immediate sub-critical angle zone, the reflection intensity is a very strong ascending function of incidence angle. By analyzing the angular position of that edge at each location in the field of view, the local refractive index can be estimated. In addition, by analyzing the steepness of the edge, the distance-to-substrate can be determined. We apply the technique to liquid calibration samples, silica beads, cultured Chinese hamster ovary cells, and primary culture chromaffin cells. The optical technique suffers from decremented lateral resolution, scattering, and interference artifacts. However, it still provides reasonable results for both refractive index (~1.38) and for distance-to-substrate (~150 nm) for the cells, as well as a lateral resolution to about 1 µm.

  6. Multiple-view, Multiple-selection Visualization of Simulation Geometry in CMS

    International Nuclear Information System (INIS)

    Bauerdick, L A T; Eulisse, G; Jones, C; McCauley, T; Osborne, I; Kovalskyi, D; Mrak Tadel, A; Tadel, M; Yagil, A

    2012-01-01

    Fireworks, the event-display program of CMS, was extended with an advanced geometry visualization package. ROOT's TGeo geometry is used as internal representation, shared among several geometry views. Each view is represented by a GUI list-tree widget, implemented as a flat vector to allow for fast searching, selection, and filtering by material type, node name, and shape type. Display of logical and physical volumes is supported. Color, transparency, and visibility flags can be modified for each node or for a selection of nodes. Further operations, like opening of a new view or changing of the root node, can be performed via a context menu. Node selection and graphical properties determined by the list-tree view can be visualized in any 3D graphics view of Fireworks. As each 3D view can display any number of geometry views, a user is free to combine different geometry-view selections within the same 3D view. Node-selection by proximity to a given point is possible. A visual clipping box can be set for each geometry view to limit geometry drawing into a specified region. Visualization of geometric overlaps, as detected by TGeo, is also supported. The geometry visualization package is used for detailed inspection and display of simulation geometry with or without the event data. It also serves as a tool for geometry debugging and inspection, facilitating development of geometries for CMS detector upgrades and for SLHC.

  7. Geometry through history Euclidean, hyperbolic, and projective geometries

    CERN Document Server

    Dillon, Meighan I

    2018-01-01

    Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...

  8. Effect of target-fixture geometry on shock-wave compacted copper powders

    Science.gov (United States)

    Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop

    2018-01-01

    In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.

  9. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  10. Architectural geometry

    KAUST Repository

    Pottmann, Helmut

    2014-11-26

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  11. Architectural geometry

    KAUST Repository

    Pottmann, Helmut; Eigensatz, Michael; Vaxman, Amir; Wallner, Johannes

    2014-01-01

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  12. PREFACE: Algebra, Geometry, and Mathematical Physics 2010

    Science.gov (United States)

    Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.

    2012-02-01

    This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants

  13. Spectral reflectance "deconstruction" of the Murchison CM2 carbonaceous chondrite and implications for spectroscopic investigations of dark asteroids

    Science.gov (United States)

    Cloutis, Edward A.; Pietrasz, Valerie B.; Kiddell, Cain; Izawa, Matthew R. M.; Vernazza, Pierre; Burbine, Thomas H.; DeMeo, Francesca; Tait, Kimberly T.; Bell, James F.; Mann, Paul; Applin, Daniel M.; Reddy, Vishnu

    2018-05-01

    Carbonaceous chondrites (CCs) are important materials for understanding the early evolution of the solar system and delivery of volatiles and organic material to the early Earth. Presumed CC-like asteroids are also the targets of two current sample return missions: OSIRIS-REx to asteroid Bennu and Hayabusa-2 to asteroid Ryugu, and the Dawn orbital mission at asteroid Ceres. To improve our ability to identify and characterize CM2 CC-type parent bodies, we have examined how factors such as particle size, particle packing, and viewing geometry affect reflectance spectra of the Murchison CM2 CC. The derived relationships have implications for disc-resolved examinations of dark asteroids and sampleability. It has been found that reflectance spectra of slabs are more blue-sloped (reflectance decreasing toward longer wavelengths as measured by the 1.8/0.6 μm reflectance ratio), and generally darker, than powdered sample spectra. Decreasing the maximum grain size of a powdered sample results in progressively brighter and more red-sloped spectra. Decreasing the average grain size of a powdered sample results in a decrease in diagnostic absorption band depths, and redder and brighter spectra. Decreasing porosity of powders and variations in surface texture result in spectral changes that may be different as a function of viewing geometry. Increasing thickness of loose dust on a denser powdered substrate leads to a decrease in absorption band depths. Changes in viewing geometry lead to different changes in spectral metrics depending on whether the spectra are acquired in backscatter or forward-scatter geometries. In backscattered geometry, increasing phase angle leads to an initial increase and then decrease in spectral slope, and a general decrease in visible region reflectance and absorption band depths, and frequent decreases in absorption band minima positions. In forward scattering geometry, increasing phase angle leads to small non-systematic changes in spectral slope

  14. Two lectures on D-geometry and noncommutative geometry

    International Nuclear Information System (INIS)

    Douglas, M.R.

    1999-01-01

    This is a write-up of lectures given at the 1998 Spring School at the Abdus Salam ICTP. We give a conceptual introduction to D-geometry, the study of geometry as seen by D-branes in string theory, and to noncommutative geometry as it has appeared in D-brane and Matrix theory physics. (author)

  15. Fractal geometry and computer graphics

    CERN Document Server

    Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele

    1992-01-01

    Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...

  16. Errors Analysis of Students in Mathematics Department to Learn Plane Geometry

    Science.gov (United States)

    Mirna, M.

    2018-04-01

    This article describes the results of qualitative descriptive research that reveal the locations, types and causes of student error in answering the problem of plane geometry at the problem-solving level. Answers from 59 students on three test items informed that students showed errors ranging from understanding the concepts and principles of geometry itself to the error in applying it to problem solving. Their type of error consists of concept errors, principle errors and operational errors. The results of reflection with four subjects reveal the causes of the error are: 1) student learning motivation is very low, 2) in high school learning experience, geometry has been seen as unimportant, 3) the students' experience using their reasoning in solving the problem is very less, and 4) students' reasoning ability is still very low.

  17. Geometry and Framework Interactions of Zeolite-Encapsulated Copper(II)-Histidine Complexes

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Grommen, R.; Manikandan, P.; Gao, Y.; Shane, T.; Shane, J.J.; Schoonheydt, R.A.; Goldfarb, D.

    2000-01-01

    The coordination geometry of zeolite-encapsulated copper(II)-histidine (CuHis) complexes, prepared by ion exchange of the complexes from aqueous solutions into zeolite NaY, was determined by a combination of UV-vis-NIR diffuse reflectance spectroscopy (DRS), X-band EPR, electron-spin-echo envelope

  18. Twistor geometry

    NARCIS (Netherlands)

    van den Broek, P.M.

    1984-01-01

    The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.

  19. Geometry

    Indian Academy of Sciences (India)

    . In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...

  20. Geometry optimization of molecules within an LCGTO local-density functional approach

    International Nuclear Information System (INIS)

    Mintmire, J.W.

    1990-01-01

    We describe our implementation of geometry optimization techniques within the linear combination of Gaussian-type orbitals (LCGTO) approach to local-density functional theory. The algorithm for geometry optimization is based on the evaluation of the gradient of the total energy with respect to internal coordinates within the local-density functional scheme. We present optimization results for a range of small molecules which serve as test cases for our approach

  1. On relational nature of geometry of microphysics

    International Nuclear Information System (INIS)

    Chylinski, Z.

    1985-11-01

    A relativity principle and a curiosity of Galilei space-time is described. An internal space-time of R 4 relation is presented. Lorentz limit of R 4 geometry and a field theory is given. The sources of the effects of R 4 hypothesis are characterized. The completeness of quantum description is discussed. 32 refs. (A.S.)

  2. Geometry and analysis on manifolds in memory of professor Shoshichi Kobayashi

    CERN Document Server

    Mabuchi, Toshiki; Maeda, Yoshiaki; Noguchi, Junjiro; Weinstein, Alan

    2015-01-01

    This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi’s career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kähler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables ...

  3. Modeling the effect of reflection from metallic walls on spectroscopic measurements

    International Nuclear Information System (INIS)

    Zastrow, K.-D.; Keatings, S. R.; O'Mullane, M. G.; Marot, L.; Temmerman, G. de

    2008-01-01

    A modification of JET is presently being prepared to bring operational experience with ITER-like first wall (Be) and divertor (W) materials, geometry and plasma parameters. Reflectivity measurements of JET sample tiles have been performed and the data are used within a simplified model of the JET and ITER vessels to predict additional contributions to quantitative spectroscopic measurements. The most general method to characterize reflectivity is the bidirectional reflection distribution function (BRDF). For extended sources however, such as bremsstrahlung and edge emission of fuel and intrinsic impurities, the results obtained in the modeling are almost as accurate if the total reflectivity with ideal Lambertian angular dependence is used. This is in contrast to the experience in other communities, such as optical design, lighting design, or rendering who deal mostly with pointlike light sources. This result is so far based on a very limited set of measurements and will be reassessed when more detailed BRDF measurements of JET tiles have been made. If it is true it offers the possibility of in situ monitoring of the reflectivity of selected parts of the wall during exposure to plasma operation, while remeasurement of the BRDF is performed during interventions. For a closed vessel structure such as ITER, it is important to consider multiple reflections. This makes it more important to represent the whole of the vessel reasonably accurately in the model, which on the other hand is easier to achieve than for the more complex internal structure of JET. In both cases the dominant contribution is from the first reflection, and a detailed model of the areas intersected by lines of sight of diagnostic interest is required.

  4. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  5. Foliation theory in algebraic geometry

    CERN Document Server

    McKernan, James; Pereira, Jorge

    2016-01-01

    Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.  Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...

  6. Multiple-view, multiple-selection visualization of simulation geometry in CMS

    CERN Document Server

    Mrak Tadel, Alja

    2012-01-01

    Fireworks, the event-display program of CMS, was extended with an advanced geometry visualization package. ROOT's TGeo geometry is used as internal representation, shared among several geometry views. Each view is represented by a GUI list-tree widget, implemented as a flat vector to allow for fast searching, selection, and filtering by material type, node name, and shape type. Display of logical and physical volumes is supported. Color, transparency, and visibility flags can be modified for each node or for a selection of nodes. Further operations, like opening of a new view or changing of the root node, can be performed via a context menu. Node selection and graphical properties determined by the list-tree view can be visualized in any 3D graphics view of Fireworks. As each 3D view can display any number of geometry views, a user is free to combine different geometry-view selections within the same 3D view. Node-selection by proximity to a given point is possible. A visual clipping box can be set for each g...

  7. Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells

    International Nuclear Information System (INIS)

    Kim, Kyujung; Cho, Eun-Jin; Suh, Jin-Suck; Huh, Yong-Min; Kim, Donghyun; Kim, Dong Jun

    2009-01-01

    We investigated evanescent field enhancement based on subwavelength nanogratings for improved sensitivity in total internal reflection microscopy of live cells. The field enhancement is associated with subwavelength-grating-coupled plasmon excitation. An optimum sample employed a silver grating on a silver film and an SF10 glass substrate. Field intensity was enhanced by approximately 90% when measured by fluorescent excitation of microbeads relative to that on a bare prism as a control, which is in good agreement with numerical results. The subwavelength-grating-mediated field enhancement was also applied to live cell imaging of quantum dots, which confirmed the sensitivity enhancement qualitatively.

  8. Nonpolarizing beam splitter designed by frustrated total internal reflection inside a glass cube.

    Science.gov (United States)

    Xu, Xueke; Shao, Jianda; Fan, Zhengxiu

    2006-06-20

    A method for the design of an all-dielectric nonpolarizing prism beam splitter utilizing the principle of frustrated total internal reflection is reported. The nonpolarizing condition for a prism beam splitter is discussed, and some single layer design examples are elaborated. The concept can be applied to a wide range of wavelengths and arbitrary transmittance values, and with the help of a computer design program examples of 400-700 nm, T(p)=T(s)=0.5+/-0.01, with incident angles of 45 degrees and 62 degrees are given. In addition, the sensitivity and application of the design are also discussed.

  9. Braided affine geometry and q-analogs of wave operators

    International Nuclear Information System (INIS)

    Gurevich, Dimitri; Saponov, Pavel

    2009-01-01

    The main goal of this review is to compare different approaches to constructing the geometry associated with a Hecke type braiding (in particular, with that related to the quantum group U q (sl(n))). We place emphasis on the affine braided geometry related to the so-called reflection equation algebra (REA). All objects of such a type of geometry are defined in the spirit of affine algebraic geometry via polynomial relations on generators. We begin by comparing the Poisson counterparts of 'quantum varieties' and describe different approaches to their quantization. Also, we exhibit two approaches to introducing q-analogs of vector bundles and defining the Chern-Connes index for them on quantum spheres. In accordance with the Serre-Swan approach, the q-vector bundles are treated as finitely generated projective modules over the corresponding quantum algebras. Besides, we describe the basic properties of the REA used in this construction and compare different ways of defining q-analogs of partial derivatives and differentials on the REA and algebras close to them. In particular, we present a way of introducing a q-differential calculus via Koszul type complexes. The elements of the q-calculus are applied to defining q-analogs of some relativistic wave operators. (topical review)

  10. Common-path configuration in total internal reflection digital holography microscopy.

    Science.gov (United States)

    Calabuig, Alejandro; Matrecano, Marcella; Paturzo, Melania; Ferraro, Pietro

    2014-04-15

    Total Internal Reflection Digital Holographic Microscopy (TIRDHM) is recognized to be a powerful tool for retrieving quantitative phase images of cell-substrate interfaces, adhesions, and tissue structures close to the prism surface. In this Letter, we develop an improved TIRDHM system, taking advantage of a refractive index mismatch between the prism and the sample substrate, to allow phase-shifting DH with just a single-beam interferometric configuration. Instead of the traditional off-axis method, phase-shift method is used to retrieve amplitude and phase images in coherent light and TIR modality. Essentially, the substrate-prism interface acts like a beam splitter generating a reference beam, where the phase-shift dependence on the incident angle is exploited in this common-path configuration. With the aim to demonstrate the technique's validity, some experiments are performed to establish the advantage of this compact and simple configuration, in which the reference arm in the setup is avoided.

  11. Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology & Symplectic Geometry, Noncommutative Geometry and Physics

    CERN Document Server

    Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry

    2014-01-01

    Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...

  12. Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: A novel approach

    OpenAIRE

    Ritwik Panigrahi; Suneel K. Srivastava

    2015-01-01

    In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have bee...

  13. Effects of irregular basement structure on the geometry and emplacement of frontal thrusts and duplexes in the Quebec Appalachians: Interpretations from well and seismic reflection data

    Science.gov (United States)

    Konstantinovskaya, E.; Malo, M.; Badina, F.

    2014-12-01

    Irregular basement geometry may affect thrust propagation in foreland fold-thrust belts creating a perturbation in structural continuity of hydrocarbon fields. Here we investigate how the irregular pattern of normal faults, along with the presence of uplifts and transverse faults in the Grenvillian basement has influenced the geometry and emplacement of frontal thrusts and duplexes in the parautochthonous domain of the southern Quebec Appalachians during the middle-late Ordovician Taconian orogeny. Integration of data from surface geology, wells, and 2D and 3D seismic reflection surveys into a regional-scale structural model is used to reconstruct the 3D geometry and emplacement history of one- and two-horse duplexes in the Joly-Saint-Flavien gas storage area. The normal hinterland to foreland sequence of thrusting in this area is complicated by the differential emplacement of tectonic slices along strike of the orogenic front, starting in the SW and developing subsequently to the NE within each structural level. The shortening related to duplex emplacement decreases laterally over the distance of 20 km from - 49% in the SW (Joly area) to - 31% in the NE (Saint-Flavien area). Duplex emplacement resulted from the differential forward propagation, deflexion and vertical-axis rotation of the roof thrust (Logan's Line), which, in turn, has been induced by the presence of frontal uplift and transverse faults in the basement. The structural-lithological analysis of tectonic slices and restoration of their initial location allows us to consider the lower slice of the Joly duplex as a structural trap comparable to the fractured reservoir in lower Ordovician dolomites of the Saint-Flavien duplex.

  14. Worldsheet geometries of ambitwistor string

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Kantaro [Department of Physics, the University of Tokyo,Hongo, Bunkyo-ku, Tokyo 133-0022 (Japan)

    2015-06-12

    Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.

  15. Anthropology and the peasant class: the pertinence of the persistent. Anthropological reflections on peasant internationalism

    Directory of Open Access Journals (Sweden)

    Raúl Hernán Contreras Román

    2015-12-01

    Full Text Available The present article develops an initial discussion on the persistence of the peasant class in anthropology as an awkward object, which since it has become asubject for the discipline has  obliged anthropologists to re-examine their disciplinary identity and re-think their theoretical  bases. We start from the idea that both the emergence and the decline of peasant studies in the discipline have corresponded with localizable social, intellectual and political contexts. For this  reason we present the current struggle of peasant internationalism, represented by the international movement Vía Campesina, for food sovereignty and international recognition of the  rights of peasant men and women. These struggles are considered to constitute a politically novel space which has the potential to generate political opportunities for peasant claims in the face of  neoliberal despoliation. Finally, we reflect on how these struggles again present the peasant class as an awkward object for anthropology and demand anthropological discussion of the subject.

  16. Dynamic hyperbolic geometry: building intuition and understanding mediated by a Euclidean model

    Science.gov (United States)

    Moreno-Armella, Luis; Brady, Corey; Elizondo-Ramirez, Rubén

    2018-05-01

    This paper explores a deep transformation in mathematical epistemology and its consequences for teaching and learning. With the advent of non-Euclidean geometries, direct, iconic correspondences between physical space and the deductive structures of mathematical inquiry were broken. For non-Euclidean ideas even to become thinkable the mathematical community needed to accumulate over twenty centuries of reflection and effort: a precious instance of distributed intelligence at the cultural level. In geometry education after this crisis, relations between intuitions and geometrical reasoning must be established philosophically, rather than taken for granted. One approach seeks intuitive supports only for Euclidean explorations, viewing non-Euclidean inquiry as fundamentally non-intuitive in nature. We argue for moving beyond such an impoverished approach, using dynamic geometry environments to develop new intuitions even in the extremely challenging setting of hyperbolic geometry. Our efforts reverse the typical direction, using formal structures as a source for a new family of intuitions that emerge from exploring a digital model of hyperbolic geometry. This digital model is elaborated within a Euclidean dynamic geometry environment, enabling a conceptual dance that re-configures Euclidean knowledge as a support for building intuitions in hyperbolic space-intuitions based not directly on physical experience but on analogies extending Euclidean concepts.

  17. Bare AGN: an Unobscured View of the Innermost Accretion Geometry

    Science.gov (United States)

    Fink, M.; Dauser, T.; Beuchert, T.; Jeffreson, S.; Tawabutr, J.; Wilms, J.; Garcia, J.; Walton, D.

    2017-10-01

    In a systematic study of the relativistic reflection spectra and coronal properties for a sample of bare AGN we analyze high signal-to-noise spectra obtained with the XMM-Newton and NuSTAR observatories utilizing state-of-the-art reflection codes. Features of blurred reflection off an ionized accretion disk are modelled using different flavors of the relativistic ray-tracing code Relxill. We show that the more physically motivated and self-consistent lamp-post geometry is largely consistent with fits of broken power-law emissivity profiles. We provide good constraints on parameters describing the compact reprocessing corona, i.e., the reflection fraction and the lamp-post height. The latter are found to be prevalent within 1-10 r_{g}, while our models generally find close-to-maximal black hole spins. These results are discussed and compared with previous studies by Walton et al. (2013).

  18. Internal process: what is abstraction and distortion process?

    Science.gov (United States)

    Fiantika, F. R.; Budayasa, I. K.; Lukito, A.

    2018-03-01

    Geometry is one of the branch of mathematics that plays a major role in the development of science and technology. Thus, knowing the geometry concept is needed for students from their early basic level of thinking. A preliminary study showed that the elementary students have difficulty in perceiving parallelogram shape in a 2-dimention of a cube drawing as a square shape. This difficulty makes the students can not solve geometrical problems correctly. This problem is related to the internal thinking process in geometry. We conducted the exploration of students’ internal thinking processes in geometry particularly in distinguishing the square and parallelogram shape. How the students process their internal thinking through distortion and abstraction is the main aim of this study. Analysis of the geometrical test and deep interview are used in this study to obtain the data. The result of this study is there are two types of distortion and abstraction respectively in which the student used in their internal thinking processes.

  19. Arithmetic noncommutative geometry

    CERN Document Server

    Marcolli, Matilde

    2005-01-01

    Arithmetic noncommutative geometry denotes the use of ideas and tools from the field of noncommutative geometry, to address questions and reinterpret in a new perspective results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at archimedean places of arithmetic surfaces and varieties. The main reason why noncommutative geometry can be expected to say something about topics of arithmetic interest lies in the fact that it provides the right framework in which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry, such as moduli spaces (of which modular curves are the simplest case) or arithmetic varieties (completed by suitable "fibers at infinity"), by adding boundaries...

  20. Analysis of thin-film polymers using attenuated total internal reflection-Raman microspectroscopy.

    Science.gov (United States)

    Tran, Willie; Tisinger, Louis G; Lavalle, Luis E; Sommer, André J

    2015-01-01

    Two methods commonly employed for molecular surface analysis and thin-film analysis of microscopic areas are attenuated total reflection infrared (ATR-IR) microspectroscopy and confocal Raman microspectroscopy. In the former method, the depth of the evanescent probe beam can be controlled by the wavelength of light, the angle of incidence, or the refractive index of the internal reflection element. Because the penetration depth is proportional to the wavelength of light, one could interrogate a smaller film thickness by moving from the mid-infrared region to the visible region employing Raman spectroscopy. The investigation of ATR Raman microspectroscopy, a largely unexplored technique available to Raman microspectroscopy, was carried out. A Renishaw inVia Raman microscope was externally modified and used in conjunction with a solid immersion lens (SIL) to perform ATR Raman experiments. Thin-film polymer samples were analyzed to explore the theoretical sampling depth for experiments conducted without the SIL, with the SIL, and with the SIL using evanescent excitation. The feasibility of micro-ATR Raman was examined by collecting ATR spectra from films whose thickness measured from 200 to 60 nm. Films of these thicknesses were present on a much thicker substrate, and features from the underlying substrate did not become visible until the thin film reached a thickness of 68 nm.

  1. Single-Molecule Fluorescence Studies of Membrane Transporters Using Total Internal Reflection Microscopy.

    Science.gov (United States)

    Goudsmits, Joris M H; van Oijen, Antoine M; Slotboom, Dirk J

    2017-01-01

    Cells are delineated by a lipid bilayer that physically separates the inside from the outer environment. Most polar, charged, or large molecules require proteins to reduce the energetic barrier for passage across the membrane and to achieve transport rates that are relevant for life. Here, we describe techniques to visualize the functioning of membrane transport proteins with fluorescent probes at the single-molecule level. First, we explain how to produce membrane-reconstituted transporters with fluorescent labels. Next, we detail the construction of a microfluidic flow cell to image immobilized proteoliposomes on a total internal reflection fluorescence microscope. We conclude by describing the methods that are needed to analyze fluorescence movies and obtain useful single-molecule data. © 2017 Elsevier Inc. All rights reserved.

  2. Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Marcelina Cardoso Dos Santos

    2017-06-01

    Full Text Available We propose a new strategy to evaluate adhesion strength at the single cell level. This approach involves variable-angle total internal reflection fluorescence microscopy to monitor in real time the topography of cell membranes, i.e. a map of the membrane/substrate separation distance. According to the Boltzmann distribution, both potential energy profile and dissociation energy related to the interactions between the cell membrane and the substrate were determined from the membrane topography. We have highlighted on glass substrates coated with poly-L-lysine and fibronectin, that the dissociation energy is a reliable parameter to quantify the adhesion strength of MDA-MB-231 motile cells.

  3. Geometry, electronic structures and optical properties of phosphorus nanotubes

    International Nuclear Information System (INIS)

    Hu, Tao; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Using a first principles approach, we investigated the geometry, electronic structures, and optical properties of phosphorus nanotubes (PNTs). Two possible 1D configurations, the so-called α-PNTs and β-PNTs, are proposed, which are structurally related to blue and black phosphorus monolayers, respectively. Hereby, we predict that both armchair and zigzag geometries can be synthesized in α-PNTs, but the zigzag form of β-PNT is highly unfavorable because of large strain and conformation energies. The band gap of α-PNTs is expected to be ∼2.67 eV, and this is insensitive to the chirality when the tube’s inner diameter is larger than 1.3 nm, while the armchair β-PNTs have a much smaller band gap. Interestingly, we find nearly flat band structures in the zigzag α-PNT system. This may indicate that an excited particle–hole pair has a huge effective mass. We also find asymmetric optical properties with respect to the polarization direction. The armchair α-PNT for parallel polarization shows a large refractive index of 2.6 near the ultraviolet wavelength, and also we find that the refractive index can be even smaller than 1 in certain frequency ranges. The zigzag tubes show very weak reflectivity for parallel polarization, while the armchair tube displays high reflectivity. (paper)

  4. Higher geometry an introduction to advanced methods in analytic geometry

    CERN Document Server

    Woods, Frederick S

    2005-01-01

    For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study

  5. Phased Array Imaging of Complex-Geometry Composite Components.

    Science.gov (United States)

    Brath, Alex J; Simonetti, Francesco

    2017-10-01

    Progress in computational fluid dynamics and the availability of new composite materials are driving major advances in the design of aerospace engine components which now have highly complex geometries optimized to maximize system performance. However, shape complexity poses significant challenges to traditional nondestructive evaluation methods whose sensitivity and selectivity rapidly decrease as surface curvature increases. In addition, new aerospace materials typically exhibit an intricate microstructure that further complicates the inspection. In this context, an attractive solution is offered by combining ultrasonic phased array (PA) technology with immersion testing. Here, the water column formed between the complex surface of the component and the flat face of a linear or matrix array probe ensures ideal acoustic coupling between the array and the component as the probe is continuously scanned to form a volumetric rendering of the part. While the immersion configuration is desirable for practical testing, the interpretation of the measured ultrasonic signals for image formation is complicated by reflection and refraction effects that occur at the water-component interface. To account for refraction, the geometry of the interface must first be reconstructed from the reflected signals and subsequently used to compute suitable delay laws to focus inside the component. These calculations are based on ray theory and can be computationally intensive. Moreover, strong reflections from the interface can lead to a thick dead zone beneath the surface of the component which limits sensitivity to shallow subsurface defects. This paper presents a general approach that combines advanced computing for rapid ray tracing in anisotropic media with a 256-channel parallel array architecture. The full-volume inspection of complex-shape components is enabled through the combination of both reflected and transmitted signals through the part using a pair of arrays held in a yoke

  6. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, Luther Pfahler

    2005-01-01

    This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

  7. Experimental and Theoretical Methods in Algebra, Geometry and Topology

    CERN Document Server

    Veys, Willem; Bridging Algebra, Geometry, and Topology

    2014-01-01

    Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference “Experimental and Theoretical Methods in Algebra, Geometry and Topology”, held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and Ştefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research f...

  8. An analysis of Landsat Thematic Mapper P-Product internal geometry and conformity to earth surface geometry

    Science.gov (United States)

    Bryant, N. A.; Zobrist, A. L.; Walker, R. E.; Gokhman, B.

    1985-01-01

    Performance requirements regarding geometric accuracy have been defined in terms of end product goals, but until recently no precise details have been given concerning the conditions under which that accuracy is to be achieved. In order to achieve higher spatial and spectral resolutions, the Thematic Mapper (TM) sensor was designed to image in both forward and reverse mirror sweeps in two separate focal planes. Both hardware and software have been augmented and changed during the course of the Landsat TM developments to achieve improved geometric accuracy. An investigation has been conducted to determine if the TM meets the National Map Accuracy Standards for geometric accuracy at larger scales. It was found that TM imagery, in terms of geometry, has come close to, and in some cases exceeded, its stringent specifications.

  9. The Geometry Conference

    CERN Document Server

    Bárány, Imre; Vilcu, Costin

    2016-01-01

    This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.

  10. Hyperbolic geometry

    CERN Document Server

    Iversen, Birger

    1992-01-01

    Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics

  11. Geometry of the Universe

    International Nuclear Information System (INIS)

    Gurevich, L.Eh.; Gliner, Eh.B.

    1978-01-01

    Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding

  12. How Is Buddhism Relevant to Career Counseling in an International High School in Hong Kong? A Counsellor's Reflection

    Science.gov (United States)

    Ng, Vinci; Yuen, Mantak

    2015-01-01

    This paper reflects upon the relevance of Buddhism to counselling in general and to career counseling in particular by discussing a program implemented at an international school in Hong Kong. The authors provide an analysis of the pertinent literature related to relevant concepts within Buddhism. This topic has not yet been adequately researched…

  13. On organizing principles of discrete differential geometry. Geometry of spheres

    International Nuclear Information System (INIS)

    Bobenko, Alexander I; Suris, Yury B

    2007-01-01

    Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.

  14. Fundamental quantification procedure for total reflection X-ray fluorescence spectra analysis and elements determination

    International Nuclear Information System (INIS)

    Wegrzynek, D.; Holynska, B.

    1997-01-01

    A method for the determination of the concentrations of elements in particulate-like samples measured in total reflection geometry is proposed. In the proposed method the fundamental parameters are utilized for calculating the sensitivities of elements and an internal standard is used to account for the unknown mass per unit area of a sample and geometrical constant of the spectrometer. The modification of the primary excitation spectrum on its way to a sample has been taken into consideration. The concentrations of the elements to be determined are calculated simultaneously with the spectra deconvolution procedure. In the process of quantitative analysis the intensities of all X-ray peaks corresponding to K and L-series lines present in the analyzed spectrum are taken into account. (Author)

  15. Development of CAD-Based Geometry Processing Module for a Monte Carlo Particle Transport Analysis Code

    International Nuclear Information System (INIS)

    Choi, Sung Hoon; Kwark, Min Su; Shim, Hyung Jin

    2012-01-01

    As The Monte Carlo (MC) particle transport analysis for a complex system such as research reactor, accelerator, and fusion facility may require accurate modeling of the complicated geometry. Its manual modeling by using the text interface of a MC code to define the geometrical objects is tedious, lengthy and error-prone. This problem can be overcome by taking advantage of modeling capability of the computer aided design (CAD) system. There have been two kinds of approaches to develop MC code systems utilizing the CAD data: the external format conversion and the CAD kernel imbedded MC simulation. The first approach includes several interfacing programs such as McCAD, MCAM, GEOMIT etc. which were developed to automatically convert the CAD data into the MCNP geometry input data. This approach makes the most of the existing MC codes without any modifications, but implies latent data inconsistency due to the difference of the geometry modeling system. In the second approach, a MC code utilizes the CAD data for the direct particle tracking or the conversion to an internal data structure of the constructive solid geometry (CSG) and/or boundary representation (B-rep) modeling with help of a CAD kernel. MCNP-BRL and OiNC have demonstrated their capabilities of the CAD-based MC simulations. Recently we have developed a CAD-based geometry processing module for the MC particle simulation by using the OpenCASCADE (OCC) library. In the developed module, CAD data can be used for the particle tracking through primitive CAD surfaces (hereafter the CAD-based tracking) or the internal conversion to the CSG data structure. In this paper, the performances of the text-based model, the CAD-based tracking, and the internal CSG conversion are compared by using an in-house MC code, McSIM, equipped with the developed CAD-based geometry processing module

  16. Conference on Complex Geometry and Mirror Symmetry

    CERN Document Server

    Vinet, Luc; Yau, Shing-Tung; Mirror Symmetry III

    1999-01-01

    This book presents surveys from a workshop held during the theme year in geometry and topology at the Centre de recherches mathématiques (CRM, University of Montréal). The volume is in some sense a sequel to Mirror Symmetry I (1998) and Mirror Symmetry II (1996), copublished by the AMS and International Press. Included are recent developments in the theory of mirror manifolds and the related areas of complex and symplectic geometry. The long introductory articles explain the key physical ideas and motivation, namely conformal field theory, supersymmetry, and string theory. Open problems are emphasized. Thus the book provides an efficient way for a very broad audience of mathematicians and physicists to reach the frontier of research in this fast expanding area. - See more at: http://bookstore.ams.org/amsip-10#sthash.DbxEFJDx.dpuf

  17. Geometry and its applications

    CERN Document Server

    Meyer, Walter J

    2006-01-01

    Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...

  18. Analysis of 3D geometry in the stenosis of internal carotid artery siphon

    International Nuclear Information System (INIS)

    Xie Sheng; Xiao Jiangxi; Huang Yining; Zhang Chi; Li Deyu; Li Shuyu

    2010-01-01

    Objective: To identify the differences of 3D geometry of internal carotid artery (ICA) siphon between the controls and patients with ICA siphon stenosis. Methods: The clinical and imaging data of the inpatients under, vent carotid artery MRA in the past three years were collected. All patients were divided into the control group (17 males and 14 females with mean age of 67.5 years) and ICA siphon stenosis group (20 males and 9 females with mean age of 58.6 years). There were 5 smokers and 9 smokers in two groups, respectively. The atheroselerotic predisposing factors were compared between the two groups using chi-square test and paired t-test. In order to extract the 3D geometry of ICA siphon, the MRA data were transferred to PC and processed with the software of Mimics. The average curvature radius (ACR) was calculated and paired t-test was applied to determine the bilateral differences in the controls. According to the stenotic site of ICA siphon, ICA siphon stenosis group was divided into C2 segment stenosis group and C4 segment stenosis group. The differences of ACR among the control group, C2 segment stenosis group and C4 segment stenosis group were compared. In addition, the values of ACR in the stenotic and normal sides were compared with paired t-test in patients with unilateral C2 segment stenosis. Results: No significant differences were found in gender and smoker between the control group and the ICA siphon stenosis group (χ 2 =1.63, P>0.05; χ 2 =1.86, P>0.05). The systolic blood pressure was (146.6±21.3) mm Hg (1 mm Hg=0.133 kPa)and (140.3±17.3) mm Hg respectively in the ICA siphon stenosis group and the control group. The serum glucose level was (5.94±1.89) mmoL/L and (6.79±3.57) mmol/L respectively in two groups. The serum cholesterol level and triglyceride level were (4.57±0.87) mmol/L, (1.34±0.63) mmoL/L and (4.75±1.70) mmol/L, (1.54±0.72) mmol/L respectively in two groups. There were no differences in the atherosclerotic predisposing

  19. Widefield and total internal reflection fluorescent structured illumination microscopy with scanning galvo mirrors

    Science.gov (United States)

    Chen, Youhua; Cao, Ruizhi; Liu, Wenjie; Zhu, Dazhao; Zhang, Zhiming; Kuang, Cuifang; Liu, Xu

    2018-04-01

    We present an alternative approach to realize structured illumination microscopy (SIM), which is capable for live cell imaging. The prototype utilizes two sets of scanning galvo mirrors, a polarization converter and a piezo-platform to generate a fast shifted, s-polarization interfered and periodic variable illumination patterns. By changing the angle of the scanning galvanometer, we can change the position of the spots at the pupil plane of the objective lens arbitrarily, making it easy to switch between widefield and total internal reflection fluorescent-SIM mode and adapting the penetration depth in the sample. Also, a twofold resolution improvement is achieved in our experiments. The prototype offers more flexibility of pattern period and illumination orientation changing than previous systems.

  20. Assessment of MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6) for directional reflectance retrieval

    Science.gov (United States)

    Che, X.; Feng, M.; Sexton, J. O.; Channan, S.; Yang, Y.; Song, J.

    2017-12-01

    Reflection of solar radiation from Earth's surface is the basis for retrieving many higher-level terrestrial attributes such as vegetation indices and albedo. However, reflectance varies with the illumination and viewing geometry of observation (Bi-directional Reflectance Distribution Function (BRDF)) even with constant surface properties, and correcting for these artifacts increases precision of comparisons of images and time series acquired from satellites with different illumination and observation geometries. The operational MODIS processing inverts MODIS BRDF/Albedo Model Parameters (MCD43A1) to retrieve directional reflectance at any solar and view angles, and recently the MCD43A1 (Collection 6) was updated and distributed. We quantified the ability of MCD43A1 Collection 6 for retrieving directional reflectance compared to Collection 5 and tested whether changes in the land surface change over a 16-day composite period affect time series of directional reflectance. Correcting the Terra MODIS daily Surface Reflectance (MOD09GA) to the illumination and view geometries of coincidental Aqua MODIS daily Surface Reflectance (MYD09GA), MCD43A4 Collection 6 and Landsat-5 TM imagery show that the BRDF-corrected results using MCD43A1 Collection 6 hold a higher consistency with higher R2 (0.63 0.955), the slopes close to unity (0.718 0.955) and the lower RMSD (0.422 3.142) and MAE (0.282 1.735) reduced by about 10% than Collection 5. A simple parameter calibration to evaluate the variability of the roughness (R) and the volumetric (V) BRDF parameters for MCD43A1 Collection 6 shows that the assumption of stable land surface characteristic over 16-days composite period, used for BRDF parameters inversion, is plausible in spite of small improvement of directional reflectance and BRDF parameters time series. The larger fluctuations for the MCD43A1 Collection 6 do not have a discernable impact on the reflectance time series. All of these results shows that MCD43A1 Collection

  1. Beautiful geometry

    CERN Document Server

    Maor, Eli

    2014-01-01

    If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur

  2. Energy loss from internal reflection off metal layers on glass

    Science.gov (United States)

    McDowell, M. W.; Bezuidenhout, D. F.; Klee, H. W.; Theron, E.

    1983-12-01

    The reflection characteristics of metal layers are considered for the situation where the electromagnetic radiation is incident from the glass side. Theoretical and measured reflectance values are presented which indicate that for some metals the reflection has a strong dependence on the refractive index of the incident medium. Some examples are given of recent cases where the above results were an important consideration in the choice of the metallic reflecting material. These results indicate that aluminium should not be automatically considered the best choice for the visible region nor gold for the infra-red.

  3. Revolutions of Geometry

    CERN Document Server

    O'Leary, Michael

    2010-01-01

    Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull

  4. Metasurface-based anti-reflection coatings at optical frequencies

    Science.gov (United States)

    Monti, Alessio; Alù, Andrea; Toscano, Alessandro; Bilotti, Filiberto

    2018-05-01

    In this manuscript, we propose a metasurface approach for the reduction of electromagnetic reflection from an arbitrary air‑dielectric interface. The proposed technique exploits the exotic optical response of plasmonic nanoparticles to achieve complete cancellation of the field reflected by a dielectric substrate by means of destructive interference. Differently from other, earlier anti-reflection approaches based on nanoparticles, our design scheme is supported by a simple transmission-line formulation that allows a closed-form characterization of the anti-reflection performance of a nanoparticle array. Furthermore, since the working principle of the proposed devices relies on an average effect that does not critically depend on the array geometry, our approach enables low-cost production and easy scalability to large sizes. Our theoretical considerations are supported by full-wave simulations confirming the effectiveness of this design principle.

  5. Flexible intuitions of Euclidean geometry in an Amazonian indigene group

    Science.gov (United States)

    Izard, Véronique; Pica, Pierre; Spelke, Elizabeth S.; Dehaene, Stanislas

    2011-01-01

    Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that are present in all humans, even in the absence of formal mathematical education. Our tests probed intuitions of points, lines, and surfaces in participants from an indigene group in the Amazon, the Mundurucu, as well as adults and age-matched children controls from the United States and France and younger US children without education in geometry. The responses of Mundurucu adults and children converged with that of mathematically educated adults and children and revealed an intuitive understanding of essential properties of Euclidean geometry. For instance, on a surface described to them as perfectly planar, the Mundurucu's estimations of the internal angles of triangles added up to ∼180 degrees, and when asked explicitly, they stated that there exists one single parallel line to any given line through a given point. These intuitions were also partially in place in the group of younger US participants. We conclude that, during childhood, humans develop geometrical intuitions that spontaneously accord with the principles of Euclidean geometry, even in the absence of training in mathematics. PMID:21606377

  6. Analogy and Dynamic Geometry System Used to Introduce Three-Dimensional Geometry

    Science.gov (United States)

    Mammana, M. F.; Micale, B.; Pennisi, M.

    2012-01-01

    We present a sequence of classroom activities on Euclidean geometry, both plane and space geometry, used to make three dimensional geometry more catchy and simple. The activity consists of a guided research activity that leads the students to discover unexpected properties of two apparently distant geometrical entities, quadrilaterals and…

  7. Geometry, packing, and evolutionary paths to increased multicellular size

    Science.gov (United States)

    Jacobeen, Shane; Graba, Elyes C.; Brandys, Colin G.; Day, Thomas C.; Ratcliff, William C.; Yunker, Peter J.

    2018-05-01

    The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018), 10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ˜13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.

  8. Information geometry

    CERN Document Server

    Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz

    2017-01-01

    The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...

  9. Polarization properties and microfacet-based modelling of white, grey and coloured matte diffuse reflection standards

    Science.gov (United States)

    Quast, T.; Schirmacher, A.; Hauer, K.-O.; Koo, A.

    2018-02-01

    To elucidate the influence of polarization in diffuse reflectometry, we performed a series of measurements in several bidirectional geometries and determined the Stokes parameters of the diffusely reflected radiation. Different types of matte reflection standards were used, including several common white standards and ceramic colour standards. The dependence of the polarization on the sample type, wavelength and geometry have been studied systematically, the main influence factors have been identified: The effect is largest at large angles of incidence or detection and at wavelengths where the magnitude of the reflectance is small. The results for the colour standards have been modelled using a microfacet-based reflection theory which is derived from the well-known model of Torrance and Sparrow. Although the theory is very simple and only has three free parameters, the agreement with the measured data is very good, all essential features of the data can be reproduced by the model.

  10. Notions of Positivity and the Geometry of Polynomials

    CERN Document Server

    Branden, Petter; Putinar, Mihai

    2011-01-01

    The book consists of solicited articles from a select group of mathematicians and physicists working at the interface between positivity and the geometry, combinatorics or analysis of polynomials of one or several variables. It is dedicated to the memory of Julius Borcea (1968-2009), a distinguished mathematician, Professor at the University of Stockholm. With his extremely original contributions and broad vision, his impact on the topics of the planned volume cannot be underestimated. All contributors knew or have exchanged ideas with Dr. Borcea, and their articles reflect, at least partially

  11. GENIE - Generation of computational geometry-grids for internal-external flow configurations

    Science.gov (United States)

    Soni, B. K.

    1988-01-01

    Progress realized in the development of a master geometry-grid generation code GENIE is presented. The grid refinement process is enhanced by developing strategies to utilize bezier curves/surfaces and splines along with weighted transfinite interpolation technique and by formulating new forcing function for the elliptic solver based on the minimization of a non-orthogonality functional. A two step grid adaptation procedure is developed by optimally blending adaptive weightings with weighted transfinite interpolation technique. Examples of 2D-3D grids are provided to illustrate the success of these methods.

  12. Benchmarking of HEU mental annuli critical assemblies with internally reflected graphite cylinder

    Directory of Open Access Journals (Sweden)

    Xiaobo Liu

    2017-01-01

    Full Text Available Three experimental configurations of critical assemblies, performed in 1963 at the Oak Ridge Critical Experiment Facility, which are assembled using three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches metal annuli with internally reflected graphite cylinder are evaluated and benchmarked. The experimental uncertainties which are 0.00057, 0.00058 and 0.00057 respectively, and biases to the benchmark models which are − 0.00286, − 0.00242 and − 0.00168 respectively, were determined, and the experimental benchmark keff results were obtained for both detailed and simplified models. The calculation results for both detailed and simplified models using MCNP6-1.0 and ENDF/B-VII.1 agree well to the benchmark experimental results within difference less than 0.2%. The benchmarking results were accepted for the inclusion of ICSBEP Handbook.

  13. Imaging of Volume Phase Gratings in a Photosensitive Polymer, Recorded in Transmission and Reflection Geometry

    Directory of Open Access Journals (Sweden)

    Tina Sabel

    2014-02-01

    Full Text Available Volume phase gratings, recorded in a photosensitive polymer by two-beam interference exposure, are studied by means of optical microscopy. Transmission gratings and reflection gratings, with periods in the order of 10 μm down to 130 nm, were investigated. Mapping of holograms by means of imaging in sectional view is introduced to study reflection-type gratings, evading the resolution limit of classical optical microscopy. In addition, this technique is applied to examine so-called parasitic gratings, arising from interference from the incident reference beam and the reflected signal beam. The appearance and possible avoidance of such unintentionally recorded secondary structures is discussed.

  14. Parental reflective functioning as a moderator of child internalizing difficulties in the context of child sexual abuse.

    Science.gov (United States)

    Ensink, Karin; Bégin, Michaël; Normandin, Lina; Fonagy, Peter

    2017-11-01

    The objective was to examine pathways from child sexual abuse (CSA) and maternal mentalizing to child internalizing and externalizing difficulties and to test a model of MRF as a moderator of the relationships between CSA and child difficulties. The sample was comprised of 154 mothers and children aged 2-12 where 64 children had experienced CSA. To assess parental mentalizing the Parental Development Interview was rated with the Parental Reflective Functioning Scale. Child internalizing and externalizing difficulties were assessed with the Child Behavior Checklist (CBCL). Results indicate that there were significant inverse relationships between maternal mentalizing and child internalizing and externalizing difficulties. When maternal mentalizing was considered together with CSA, only maternal mentalizing was a significant predictor of child difficulties. Furthermore, maternal mentalizing moderated the relationship between CSA and child internalizing difficulties. These findings provide evidence of the importance of the parents' mentalizing stance for psychiatric symptoms of children aged 2-12, as well as children's recovery from CSA. The clinical implications of the findings are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The generalized vectorial laws of reflection and refraction

    International Nuclear Information System (INIS)

    Bhattacharjee, Pramode Ranjan

    2005-01-01

    This paper discloses two important discoveries. These are: (i) discovery of ambiguity in the well-established laws of reflection and refraction of light which have been in regular use for many years, and (ii) discovery of generalized vectorial laws of reflection and refraction of light. The existing definitions of angle of incidence, angle of reflection and angle of refraction are considered first. Each of these definitions is found to be ambiguous, not in compliance with the fundamental definition of angle in geometry. Two typical questions (one in the case of reflection and the other for refraction) have been addressed, which cannot be dealt with by using the existing laws of reflection and refraction of light. Thus, the existing laws of reflection and refraction of light seem to be ambiguous in respect of generality and their validity in a broad sense is questionable. With a view to removing the ambiguities, proper definitions of the above three angles are given first and then the statement of the generalized vectorial law of reflection (as well as that of refraction) has been offered

  16. Geometry essentials for dummies

    CERN Document Server

    Ryan, Mark

    2011-01-01

    Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque

  17. Celebrating international collaboration: reflections on the first Virtual International Practice Development Conference

    Directory of Open Access Journals (Sweden)

    Moira Stephens

    2016-11-01

    Full Text Available This article reports on the first Virtual International Practice Development Conference, held in May 2015 to celebrate International Nurses Day. The article describes key aspects of its planning, offers a flavour of the event itself and sets out an evaluation, including learning points and recommendations to assist with planning similar events in the future. Central to our learning are: The need for practice developers to grasp skills in technology associated with virtual space The need to embrace virtual space itself as another means by which creative and communicative spaces can be established for active learning and practice development activities The potential advantages that international virtual engagement has over face-to-face national or international engagement The delivery of this virtual event made a significant international contribution to global practice development activity within the International Practice Development Collaborative and to enabling practice developers to connect and celebrate on a more global basis. Implications for practice: Virtual space technology skills can assist with sharing and translating practice development research, innovations and critical commentary Virtual space can provide an adjunct to creative and communicative learning spaces Global networking opportunities can be developed and enhanced through the use of virtual space technology Practice developers need to role model the use of virtual technologies

  18. Background geometries in string and M-theory

    International Nuclear Information System (INIS)

    Jeschek, C.

    2005-01-01

    In this thesis we consider background geometries resulting from string theory compactifications. In particular, we investigate supersymmetric vacuum spaces of supergravity theories and topological twisted sigma models by means of classical and generalised G-structures. In the first part we compactify 11d supergravity on seven-dimensional manifolds due to phenomenological reasons. A certain amount of supersymmetry forces the internal background to admit a classical SU(3)- or G 2 -structure. Especially, in the case that the four-dimensional space is maximally symmetric and four form fluxes are present we calculate the relation to the intrinsic torsion. The second and main part is two-fold. Firstly, we realise that generalised geometries on six-dimensional manifolds are a natural framework to study T-duality and mirror symmetry, in particular if the B-field is non-vanishing. An explicit mirror map is given and we apply this idea to the generalised formulation of a topological twisted sigma model. Implications of mirror symmetry are studied, e.g. observables and topological A- and B-branes. Secondly, we show that seven-dimensional NS-NS backgrounds in type II supergravity theories can be described by generalised G 2 -geometries. A compactification on six manifolds leads to a new structure. We call this geometry a generalised SU(3)-structure. We study the relation between generalised SU(3)- and G 2 -structures on six- and seven-manifolds and generalise the Hitchin-flow equations. Finally, we further develop the generalised SU(3)- and G 2 -structures via a constrained variational principle to incorporate also the remaining physical R-R fields. (Orig.)

  19. Assessment of MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6 for Directional Reflectance Retrieval

    Directory of Open Access Journals (Sweden)

    Xianghong Che

    2017-11-01

    Full Text Available Measurements of solar radiation reflected from Earth’s surface are the basis for calculating albedo, vegetation indices, and other terrestrial attributes. However, the “bi-directional” geometry of illumination and viewing (i.e., the Bi-directional Reflectance Distribution Function (BRDF impacts reflectance and all variables derived or estimated based on these data. The recently released MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6 dataset enables retrieval of directional reflectance at arbitrary solar and viewing angles, potentially increasing precision and comparability of data collected under different illumination and observation geometries. We quantified the ability of MCD43A1 Collection 6 for retrieving directional reflectance and compared the daily Collection 6 retrievals to those of MCD43A1 Collection 5, which are retrieved on an eight-day basis. Correcting MODIS-based estimates of surface reflectance from the illumination and viewing geometry of the Terra satellite (MOD09GA to that of the MODIS Aqua (MYD09GA overpass, as well as MCD43A4 Collection 6 and Landsat-5 TM images show that the BRDF correction of MCD43A1 Collection 6 results in greater consistency among datasets, with higher R2 (0.63–0.955, regression slopes closer to unity (0.718–0.955, lower root mean squared difference (RMSD (0.422–3.142, and lower mean absolute error (MAE (0.282–1.735 compared to the Collection 5 data. Smaller levels of noise (observed as high-frequency variability within the time series in MCD43A1 Collection 6 in comparison to Collection 5 corroborates the improvement of BRDF parameters time series. These results corroborates that the daily MCD43A1 Collection 6 product represents the anisotropy of surface features and results in more precise directional reflectance derivation at any solar and viewing geometry than did the previous Collection 5.

  20. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro

    1993-01-01

    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  1. A massive spinless particle and the unit of length in a spinor geometry

    International Nuclear Information System (INIS)

    Lynch, J.T.

    1999-01-01

    The field equations of a spinor geometry are solved for a massive spinless particle. The particle has a composite internal structure, a quantised rest-mass, and a positive-definite and everywhere finite mass density. The particle is stable in isolation, but evidently unstable in the presence of fields due to external sources, such as the electromagnetic fields of particle detectors. On identifying the particle as a neutral meson, the unit of length of the geometry turns out to be approximately 10 -15 m

  2. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France)

    Science.gov (United States)

    Tinterri, R.; Muzzi Magalhaes, P.; Tagliaferri, A.; Cunha, R. S.

    2016-10-01

    This work discusses the significance of particular types of soft-sediment deformations very common within turbidite deposits, namely convolute laminations and load structures. Detailed facies analyses of the foredeep turbidites in the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France) show that these deformational structures tend to increase near morphological obstacles, concomitantly with contained-reflected beds. The lateral and vertical distribution of convolute laminae and load structures, as well as their geometry, has a well-defined depositional logic related to flow decelerations and reflections against bounding slopes. This evidence suggests an interaction between fine-grained sediment and the presence of morphologic relief, and impulsive and cyclic-wave loadings, which are produced by flow impacts or reflected bores and internal waves related to impinging bipartite turbidity currents.

  3. High accuracy subwavelength distance measurements: A variable-angle standing-wave total-internal-reflection optical microscope

    International Nuclear Information System (INIS)

    Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.

    2009-01-01

    We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.

  4. Geometry and Kinematics of the Lopukangri Fault System: Implications for Internal Deformation of the Tibetan Plateau

    Science.gov (United States)

    Murphy, M. A.; Taylor, M. H.

    2006-12-01

    Karakoram fault between 32°N to 30°N shows that its slip direction swings to more easterly orientations from north to south, paralleling the trace of the Himalayan thrust belt. We present a preliminary kinematic model to explain the fault slip data and regional geometry of these fault systems that incorporates eastward translation and counterclockwise rotation of a semi-triangular-shaped block. The Karakoram fault, the Dangardzong-Lopukangri fault system, and the Awong Co fault represent the major block boundaries. Although there is internal deformation within the block, inspection of satellite imagery and geologic maps suggests it is minor. We hypothesize that this strain pattern results from radial expansion of the Himalayan arc that causes regions within it to undergo arc-parallel stretching as well as arc-normal shortening. In this scenario rotation facilitates arc-normal shortening and arc-parallel stretching between south- western Tibetan plateau and Himalayan fold-thrust belt.

  5. Near IR Scanning Angle Total Internal Reflection Raman Spectroscopy at Smooth Gold Films

    Energy Technology Data Exchange (ETDEWEB)

    McKee, Kristopher; Meyer, Matthew; Smith, Emily

    2012-04-13

    Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (D{sub RS}). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.3–4.6 for aqueous pyridine or 2.2–3.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 89–95% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm–1 mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.

  6. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  7. Geometry Skill Analysis In Problem Solving Reviewed From The Difference Of Cognitive Style Students Junior High School

    Directory of Open Access Journals (Sweden)

    Andi Saparuddin Nur

    2017-12-01

    Full Text Available This study aimed to analyze the geometry skills in solving problems in terms of cognitive styles differences in the students of SMP Negeri Urumb. The type of this research is descriptive research that is qualitative with case study approach. The subject of this research is all students of SMP Negeri Urumb. Subject selection is done by using snowball sampling technique. The main instrument in this study is the researchers themselves and accompanied by supporting instruments such as diagnostic tests, geometry solving test, and interview guides. Validity and reliability of data is done through credibility test, transferability test, dependability test, and confirmability test. Data analysis consists of data collection, data reduction, data presentation, and conclusions. The results of this study were (1 reflective FI subjects showing visual, verbal, drawing, and logic skills with level of geometry thinking at level 2 (informal deduction; (2 impulsive FI subjects exhibiting visual, verbal, and drawing skills with geometric thinking level at level 1 (analysis, (3 reflective FD subjects exhibit visual skills, and draw with level of geometric thinking at level 0 (visualization, and (4 impulsive FD subjects exhibit visual, verbal skills with geometric level thinking at level 0 (visualization.

  8. Complex algebraic geometry

    CERN Document Server

    Kollár, János

    1997-01-01

    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  9. CMS geometry through 2020

    International Nuclear Information System (INIS)

    Osborne, I; Brownson, E; Eulisse, G; Jones, C D; Sexton-Kennedy, E; Lange, D J

    2014-01-01

    CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.

  10. Shallow reflection seismic soundings in bedrock at Lavia

    International Nuclear Information System (INIS)

    Okko, Olli

    1988-03-01

    The well-studied granitic block at Lavia was one of the test sites of a shallow seismic development project. A portable digital seismograph and high frequency geophones were rented fro the field period. A sledge hamme and a drop weight were tested as wave sources. The sounding was carried out on outcropped area in order to record high frequency reflections from known subhorizontal fracture zones as shallow as 30 m. Large amplitude surface waves hide most of the shallow reflections, recognizable only on few traces in the data. The data processing carried out did not reveal the geometry of these reflectors. Events arriving after the ground roll were analyzed in 2-folded CDP-sections. The continuous reflective horizons in them correspond to lithological changes and fracture zones located deeper than 200 m in the bedrock

  11. Analisis Keterampilan Geometri Siswa Dalam Memecahkan Masalah Geometri Berdasarkan Tingkat Berpikir Van Hiele

    OpenAIRE

    Muhassanah, Nuraini; Sujadi, Imam; Riyadi, Riyadi

    2014-01-01

    The objective of this research was to describe the VIII grade students geometry skills atSMP N 16 Surakarta in the level 0 (visualization), level 1 (analysis), and level 2 (informaldeduction) van Hiele level of thinking in solving the geometry problem. This research was aqualitative research in the form of case study analyzing deeply the students geometry skill insolving the geometry problem based on van Hiele level of thingking. The subject of this researchwas nine students of VIII grade at ...

  12. Integrated approach to 3-D seismic acquisition geometry analysis : Emphasizing the influence of the inhomogeneous subsurface

    NARCIS (Netherlands)

    van Veldhuizen, E.J.

    2006-01-01

    The seismic reflection method for imaging of the earth's interior is an essential part of the exploration and exploitation of hydrocarbon resources. A seismic survey should be designed such that the acquired data leads to a sufficiently accurate subsurface image. The survey geometry analysis method

  13. Solar Proton Transport within an ICRU Sphere Surrounded by a Complex Shield: Combinatorial Geometry

    Science.gov (United States)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    The 3DHZETRN code, with improved neutron and light ion (Z (is) less than 2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency.

  14. Computational fluid dynamics in three dimensional angiography: Preliminary hemodynamic results of various proximal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ha Youn; Park, Sung Tae; Bae, Won Kyoung; Goo, Dong Erk [Dept. of Radiology, Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2014-12-15

    We studied the influence of proximal geometry on the results of computational fluid dynamics (CFD). We made five models of different proximal geometry from three dimensional angiography of 63-year-old women with intracranial aneurysm. CFD results were analyzed as peak systolic velocity (PSV) at inlet and outlet as well as flow velocity profile at proximal level of internal carotid artery (ICA) aneurysm. Modified model of cavernous one with proximal tubing showed faster PSV at outlet than that at inlet. The PSV of outlets of other models were slower than that of inlets. The flow velocity profiles at immediate proximal to ICA aneurysm showed similar patterns in all models, suggesting that proximal vessel geometries could affect CFD results.

  15. Algorithms in Algebraic Geometry

    CERN Document Server

    Dickenstein, Alicia; Sommese, Andrew J

    2008-01-01

    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  16. Modeling the bidirectional reflectance distribution function of mixed finite plant canopies and soil

    Science.gov (United States)

    Schluessel, G.; Dickinson, R. E.; Privette, J. L.; Emery, W. J.; Kokaly, R.

    1994-01-01

    An analytical model of the bidirectional reflectance for optically semi-infinite plant canopies has been extended to describe the reflectance of finite depth canopies contributions from the underlying soil. The model depends on 10 independent parameters describing vegetation and soil optical and structural properties. The model is inverted with a nonlinear minimization routine using directional reflectance data for lawn (leaf area index (LAI) is equal to 9.9), soybeans (LAI, 2.9) and simulated reflectance data (LAI, 1.0) from a numerical bidirectional reflectance distribution function (BRDF) model (Myneni et al., 1988). While the ten-parameter model results in relatively low rms differences for the BRDF, most of the retrieved parameters exhibit poor stability. The most stable parameter was the single-scattering albedo of the vegetation. Canopy albedo could be derived with an accuracy of less than 5% relative error in the visible and less than 1% in the near-infrared. Sensitivity were performed to determine which of the 10 parameters were most important and to assess the effects of Gaussian noise on the parameter retrievals. Out of the 10 parameters, three were identified which described most of the BRDF variability. At low LAI values the most influential parameters were the single-scattering albedos (both soil and vegetation) and LAI, while at higher LAI values (greater than 2.5) these shifted to the two scattering phase function parameters for vegetation and the single-scattering albedo of the vegetation. The three-parameter model, formed by fixing the seven least significant parameters, gave higher rms values but was less sensitive to noise in the BRDF than the full ten-parameter model. A full hemispherical reflectance data set for lawn was then interpolated to yield BRDF values corresponding to advanced very high resolution radiometer (AVHRR) scan geometries collected over a period of nine days. The resulting parameters and BRDFs are similar to those for the

  17. Non-Euclidean geometry

    CERN Document Server

    Kulczycki, Stefan

    2008-01-01

    This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff

  18. A Pilot Study of a Cultural-Historical Approach to Teaching Geometry

    Science.gov (United States)

    Rowlands, Stuart

    2010-01-01

    There appears to be a widespread assumption that deductive geometry is inappropriate for most learners and that they are incapable of engaging with the abstract and rule-governed intellectual processes that became the world’s first fully developed and comprehensive formalised system of thought. This article discusses a curriculum initiative that aims to ‘bring to life’ the major transformative (primary) events in the history of Greek geometry, aims to encourage a meta-discourse that can develop a reflective consciousness and aims to provide an opportunity for the induction into the formalities of proof and to engage with the abstract. The results of a pilot study to see whether 14-15 year old ‘mixed ability’ and 15-16 year old ‘gifted and talented’ students can be meaningfully engaged with two such transformative events are discussed.

  19. Registration of T-2 mycotoxin with total internal reflection ellipsometry and QCM impedance methods.

    Science.gov (United States)

    Nabok, A V; Tsargorodskaya, A; Holloway, A; Starodub, N F; Gojster, O

    2007-01-15

    A sensitive optical method of total internal reflection ellipsometry (TIRE) in conjunction with immune assay approach was exploited for the registration of T-2 mycotoxin in a wide range of concentrations from 100 microg/ml down to 0.15 ng/ml. Association constants of 1.4x10(6) and 1.9x10(7)mol(-1)s for poly- and monoclonal T-2 antibodies, respectively, were evaluated from TIRE kinetic measurements. According to TIRE data fitting, binding of T-2 molecules to antibodies (at saturation) has resulted in the increase in adsorbed layer thickness of 4-5 nm. The QCM impedance measurements data showed anomalously large mass increase and film softening, most likely, due to the binding of large T-2 aggregates to antibodies.

  20. Geometry on the space of geometries

    International Nuclear Information System (INIS)

    Christodoulakis, T.; Zanelli, J.

    1988-06-01

    We discuss the geometric structure of the configuration space of pure gravity. This is an infinite dimensional manifold, M, where each point represents one spatial geometry g ij (x). The metric on M is dictated by geometrodynamics, and from it, the Christoffel symbols and Riemann tensor can be found. A ''free geometry'' tracing a geodesic on the manifold describes the time evolution of space in the strong gravity limit. In a regularization previously introduced by the authors, it is found that M does not have the same dimensionality, D, everywhere, and that D is not a scalar, although it is covariantly constant. In this regularization, it is seen that the path integral measure can be absorbed in a renormalization of the cosmological constant. (author). 19 refs

  1. A Lorentzian quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Grotz, Andreas

    2011-10-07

    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

  2. A Lorentzian quantum geometry

    International Nuclear Information System (INIS)

    Grotz, Andreas

    2011-01-01

    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

  3. Informal Geometry for Young Children; Cambridge Conference on School Mathematics; Feasibility Study No. 34b.

    Science.gov (United States)

    Walter, Marion

    These materials were written with the aim of reflecting the thinking of The Cambridge Conference on School Mathematics (CCSM) regarding the goals and objectives for school mathematics. These materials are intended to provide children with a variety of informal activities in intuitive geometry in the elementary school. Opportunities are provided…

  4. Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites

    Science.gov (United States)

    Cloutis, E. A.; Hiroi, T.; Gaffey, M. J.; Alexander, C. M. O.'D.; Mann, P.

    2011-03-01

    Existing reflectance spectra of CI chondrites (18 spectra of 3 CIs) have been augmented with new (18 spectra of 2 CIs) reflectance spectra to ascertain the spectral variability of this meteorite class and provide insights into their spectral properties as a function of grain size, composition, particle packing, and viewing geometry. Particle packing and viewing geometry effects have not previously been examined for CI chondrites. The current analysis is focused on the 0.3-2.5 μm interval, as this region is available for the largest number of CI spectra. Reflectance spectra of powdered CI1 chondrites are uniformly dark (IOM), as no other CI opaque phase appears able to produce concurrent darkening and bluing. Magnetite can also explain the presence of an absorption feature near 1 μm in some CI spectra. The most blue-sloped spectra are generally associated with the larger grain size samples. For incidence and emission angles <60°, increasing phase angle results in darker and redder spectra, particularly below ∼1 μm. At high incidence angles (60°), increasing emission angle results in brighter and redder spectra. More densely packed samples and underdense (fluffed) samples show lower overall reflectance than normally packed and flat-surface powdered samples. Some B-class asteroids exhibit selected spectral properties consistent with CI chondrites, although perfect spectral matches have not been found. Because many CI chondrite spectra exhibit absorption features that can be related to specific mineral phases, the search for CI parent bodies can fruitfully be conducted using such parameters.

  5. From classical to modern algebraic geometry Corrado Segre's mastership and legacy

    CERN Document Server

    Conte, Alberto; Gatto, Letterio; Giacardi, Livia; Marchisio, Marina; Verra, Alessandro

    2016-01-01

    This book commemorates the 150th birthday of Corrado Segre, one of the founders of the Italian School of Algebraic Geometry and a crucial figure in the history of Algebraic Geometry. It is the outcome of a conference held in Turin, Italy. One of the book's most unique features is the inclusion of a previously unpublished manuscript by Corrado Segre, together with a scientific commentary. Representing a prelude to Segre's seminal 1894 contribution on the theory of algebraic curves, this manuscript and other important archival sources included in the essays shed new light on the eminent role he played at the international level. Including both survey articles and original research papers, the book is divided into three parts: section one focuses on the implications of Segre's work in a historic light, while section two presents new results in his field, namely Algebraic Geometry. The third part features Segre's unpublished notebook: Sulla Geometria Sugli Enti Algebrici Semplicemente Infiniti (1890-1891). This v...

  6. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  7. Geometry and Combinatorics

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2002-01-01

    The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...

  8. Liability for nuclear damage: an international perspective. Reflections on the revision of the Vienna Convention

    Energy Technology Data Exchange (ETDEWEB)

    Lopuski, J

    1994-12-31

    This book deals with deals of the complex issues of liability and compensation for nuclear damage which have been considered in the course of the work of the IAEA concerning the revision of the Vienna Convention on nuclear liability. It presents, in an orderly way, personal reflections of its author based on his experience gathered in years 1989-1992 when participating in this work. Necessarily it contains in some of its parts references to documents of the IAEA Standing Committee on Nuclear Liability; these documents because of their length could not be reproduced. Consequently these parts may not be fully intelligible for those who have not participated in or closely followed the Committee`s work. The IAEA work on liability for nuclear damage was initiated in the wake of the impact made on the world`s public opinion by the Chernobyl incident and its transboundary effects; issues of international state liability and full compensation have been raised. But humanitarian ideas have quickly been confronted with cold calculations of the cost of financial protection for victims and an open unwillingness of some nuclear states has been manifested. After three years of discussions no wide consensus could be reached on some basic issues, such as: relationship between international state and civil liability regimes, structure of international legislation, concept of nuclear damage, limits of compensation, role of public funds or jurisdiction. The author presents his approach to these controversial issue, trying to provide at the same time a theoretical outline for the future international legislation on nuclear liability. (author).

  9. Liability for nuclear damage: an international perspective. Reflections on the revision of the Vienna Convention

    Energy Technology Data Exchange (ETDEWEB)

    Lopuski, J.

    1993-12-31

    This book deals with deals of the complex issues of liability and compensation for nuclear damage which have been considered in the course of the work of the IAEA concerning the revision of the Vienna Convention on nuclear liability. It presents, in an orderly way, personal reflections of its author based on his experience gathered in years 1989-1992 when participating in this work. Necessarily it contains in some of its parts references to documents of the IAEA Standing Committee on Nuclear Liability; these documents because of their length could not be reproduced. Consequently these parts may not be fully intelligible for those who have not participated in or closely followed the Committee`s work. The IAEA work on liability for nuclear damage was initiated in the wake of the impact made on the world`s public opinion by the Chernobyl incident and its transboundary effects; issues of international state liability and full compensation have been raised. But humanitarian ideas have quickly been confronted with cold calculations of the cost of financial protection for victims and an open unwillingness of some nuclear states has been manifested. After three years of discussions no wide consensus could be reached on some basic issues, such as: relationship between international state and civil liability regimes, structure of international legislation, concept of nuclear damage, limits of compensation, role of public funds or jurisdiction. The author presents his approach to these controversial issue, trying to provide at the same time a theoretical outline for the future international legislation on nuclear liability. (author).

  10. Liability for nuclear damage: an international perspective. Reflections on the revision of the Vienna Convention

    International Nuclear Information System (INIS)

    Lopuski, J.

    1993-01-01

    This book deals with deals of the complex issues of liability and compensation for nuclear damage which have been considered in the course of the work of the IAEA concerning the revision of the Vienna Convention on nuclear liability. It presents, in an orderly way, personal reflections of its author based on his experience gathered in years 1989-1992 when participating in this work. Necessarily it contains in some of its parts references to documents of the IAEA Standing Committee on Nuclear Liability; these documents because of their length could not be reproduced. Consequently these parts may not be fully intelligible for those who have not participated in or closely followed the Committee's work. The IAEA work on liability for nuclear damage was initiated in the wake of the impact made on the world's public opinion by the Chernobyl incident and its transboundary effects; issues of international state liability and full compensation have been raised. But humanitarian ideas have quickly been confronted with cold calculations of the cost of financial protection for victims and an open unwillingness of some nuclear states has been manifested. After three years of discussions no wide consensus could be reached on some basic issues, such as: relationship between international state and civil liability regimes, structure of international legislation, concept of nuclear damage, limits of compensation, role of public funds or jurisdiction. The author presents his approach to these controversial issue, trying to provide at the same time a theoretical outline for the future international legislation on nuclear liability. (author)

  11. A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry.

    Science.gov (United States)

    Wang, Shinn-Fwu

    2009-01-01

    A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.

  12. Drawing Dynamic Geometry Figures Online with Natural Language for Junior High School Geometry

    Science.gov (United States)

    Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Chang-Zhe

    2012-01-01

    This paper presents a tool for drawing dynamic geometric figures by understanding the texts of geometry problems. With the tool, teachers and students can construct dynamic geometric figures on a web page by inputting a geometry problem in natural language. First we need to build the knowledge base for understanding geometry problems. With the…

  13. Public Diplomacy and Refugee Relations Reflections of Turkey’s Refugees Relations on the International Media

    Directory of Open Access Journals (Sweden)

    Ergün Köksoy

    2015-11-01

    Full Text Available Public diplomacy is described as a new form of relations and communications between countries and societies in the field of international relations with the process of globalisation. The subject of refugees shown among the priority issues can be solved through international cooperation and solidarity with its results affecting all countries and societies, that’s why becoming part of public diplomacy. Asylum seekers and refugee rights are guaranteed by the Universal Declaration of Human Rights and considered to be an area that the international community needs to take the roles and share responsibilities. In this aspect, it is shown as global responsibilities and part of the humanitarian sensibility of countries and societies. In one hand, asylum seekers and refugees are considered to be the subject of the problem and crisis, on the other hand, due to contributing to the human and cultural interaction between the different communities, these are specified as part of public diplomacy. This article discusses the relationship between public diplomacy and refugees relations which provides the interaction between countries and effects the prestige and perception of them. In the study, to reveal the reflections of Turkey’s Refugees Relations on the International Media, three highest-circulation newspapers (“The Guardian”, “Le Monde”, “Der Spiegel” will be choosen from three important EU countries (United Kingdom, France, Germany. These newspapers’ headlines and news content which related to Turkey and Syrian refugees are going to be analized on three-month period. As a result, Turkish public diplomacy and refugee relations and its implications on the international media in the context of Syrian refugees will be evaluated and some recommendations for the future of Turkish public diplomacy and refugee relations will be provided.

  14. Validation of a spectral correction procedure for sun and sky reflections in above-water reflectance measurements.

    Science.gov (United States)

    Groetsch, Philipp M M; Gege, Peter; Simis, Stefan G H; Eleveld, Marieke A; Peters, Steef W M

    2017-08-07

    A three-component reflectance model (3C) is applied to above-water radiometric measurements to derive remote-sensing reflectance Rrs (λ). 3C provides a spectrally resolved offset Δ(λ) to correct for residual sun and sky radiance (Rayleigh- and aerosol-scattered) reflections on the water surface that were not represented by sky radiance measurements. 3C is validated with a data set of matching above- and below-water radiometric measurements collected in the Baltic Sea, and compared against a scalar offset correction Δ. Correction with Δ(λ) instead of Δ consistently reduced the (mean normalized root-mean-square) deviation between Rrs (λ) and reference reflectances to comparable levels for clear (Δ: 14.3 ± 2.5 %, Δ(λ): 8.2 ± 1.7 %), partly clouded (Δ: 15.4 ± 2.1 %, Δ(λ): 6.5 ± 1.4 %), and completely overcast (Δ: 10.8 ± 1.7 %, Δ(λ): 6.3 ± 1.8 %) sky conditions. The improvement was most pronounced under inhomogeneous sky conditions when measurements of sky radiance tend to be less representative of surface-reflected radiance. Accounting for both sun glint and sky reflections also relaxes constraints on measurement geometry, which was demonstrated based on a semi-continuous daytime data set recorded in a eutrophic freshwater lake in the Netherlands. Rrs (λ) that were derived throughout the day varied spectrally by less than 2 % relative standard deviation. Implications on measurement protocols are discussed. An open source software library for processing reflectance measurements was developed and is made publicly available.

  15. Software Geometry in Simulations

    Science.gov (United States)

    Alion, Tyler; Viren, Brett; Junk, Tom

    2015-04-01

    The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).

  16. Methods of information geometry

    CERN Document Server

    Amari, Shun-Ichi

    2000-01-01

    Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the \\alpha-connections. The duality between the \\alpha-connection and the (-\\alpha)-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability d...

  17. Developments in special geometry

    International Nuclear Information System (INIS)

    Mohaupt, Thomas; Vaughan, Owen

    2012-01-01

    We review the special geometry of N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we discuss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.

  18. Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy.

    Science.gov (United States)

    Mandracchia, Biagio; Gennari, Oriella; Marchesano, Valentina; Paturzo, Melania; Ferraro, Pietro

    2017-09-01

    The study of cell adhesion contacts is pivotal to understand cell mechanics and interaction at substrates or chemical and physical stimuli. We designed and built a HoloTIR microscope for label-free quantitative phase imaging of total internal reflection. Here we show for the first time that HoloTIR is a good choice for label-free study of focal contacts and of cell/substrate interaction as its sensitivity is enhanced in comparison with standard TIR microscopy. Finally, the simplicity of implementation and relative low cost, due to the requirement of less optical components, make HoloTIR a reasonable alternative, or even an addition, to TIRF microscopy for mapping cell/substratum topography. As a proof of concept, we studied the formation of focal contacts of fibroblasts on three substrates with different levels of affinity for cell adhesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    Science.gov (United States)

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.

  20. Effect of discharge duct geometry on centrifugal fan performance and noise emission

    Science.gov (United States)

    Nelson, David A.; Butrymowicz, William; Thomas, Christopher

    2005-09-01

    Non-ideal inlet and discharge duct geometries can cause significant changes to both the aerodynamic performance (``fan curve'') and specific sound power emission of a fan. A proper understanding of actual installed performance, as well as a good estimate of the system backpressure curve, is critical to achieving flow and acoustic goals as well as other criteria such as power consumption, mass and volume. To this end a battery of ISO 10302 tests was performed on a blower assembly which supports the Advanced Animal Habitat, being developed by ORBITEC for deployment on the International Space Station. The blower assembly consists of (4) identical centrifugal fans that, amongst themselves and across two prototypes, incorporated several discharge geometries. The inlet geometries were identical in all cases. Thus by comparing the dimensionless pressure-flow and noise emission characteristics across the cases, significant insight into the nature and potential magnitude of these effects is gained.

  1. The design of geometry teaching: learning from the geometry textbooks of Godfrey and Siddons

    OpenAIRE

    Fujita, Taro; Jones, Keith

    2002-01-01

    Deciding how to teach geometry remains a demanding task with one of major arguments being about how to combine the intuitive and deductive aspects of geometry into an effective teaching design. In order to try to obtain an insight into tackling this issue, this paper reports an analysis of innovative geometry textbooks which were published in the early part of the 20th Century, a time when significant efforts were being made to improve the teaching and learning of geometry. The analysis sugge...

  2. Solar proton exposure of an ICRU sphere within a complex structure Part I: Combinatorial geometry.

    Science.gov (United States)

    Wilson, John W; Slaba, Tony C; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A

    2016-06-01

    The 3DHZETRN code, with improved neutron and light ion (Z≤2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency. Published by Elsevier Ltd.

  3. Compton Reflection in AGN with Simbol-X

    Science.gov (United States)

    Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.

    2009-05-01

    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.

  4. Sources of hyperbolic geometry

    CERN Document Server

    Stillwell, John

    1996-01-01

    This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...

  5. Geometry and controls on the development of igneous sill-related forced folds: 2D seismic reflection case study from offshore Southern Australia

    Science.gov (United States)

    Jackson, Christopher; Schofield, Nick; Magee, Craig; Golenkov, Bogdan

    2017-04-01

    Emplacement of magma in the shallow subsurface can result in the development of dome-shaped folds at the Earth's surface. These so-called 'forced folds' have been described in the field and in subsurface datasets, although the exact geometry of the folds and the nature of their relationship to underlying sills remains unclear and, in some cases, controversial. As a result, the utility of these features in tracking the subsurface movement of magma, and predicting the potential size and location of potentially hazardous volcanic eruptions, is uncertain. Here we use high-quality, 2D seismic reflection and borehole data from the Ceduna sub-basin, offshore southern Australia to describe the structure and infer the evolution of igneous sill-related forced folds in the Bight Basin Igneous Complex (BBIC). We mapped 33 igneous sills, which were emplaced 200-1500 m below the palaeo-seabed in an Upper Cretaceous, coal-bearing, predominantly coastal-plain succession. The intrusions, which are expressed as packages of high-amplitude reflections, are 32-250 m thick and 7-19 km in diameter. They are overlain by dome-shaped folds, which are up to 17 km wide and display up to 210 m of relief. The edges of these folds coincide with the margins of the underlying sills and the folds display the greatest relief where the underlying sills are thickest; the folds are therefore interpreted as forced folds that formed in response to emplacement of magma in the shallow subsurface. The folds are onlapped by Lutetian (middle Eocene) strata, indicating they formed and the intrusions were emplaced during the latest Ypresian (c. 48 Ma). We demonstrate that fold amplitude is typically less than sill thickness even for sills with very large diameter-to-depth ratios, suggesting that pure elastic bending (forced folding) of the overburden is not the only process accommodating magma emplacement, and that supra-sill compaction may be important even at relatively shallow depths. Based on the

  6. The experience of being a member of the Student International Community of Practice: a collaborative reflection

    Directory of Open Access Journals (Sweden)

    Brighide M. Lynch

    2015-05-01

    Full Text Available Background: In 2010 a community of practice was set up for and by doctoral students engaged in person-centred and practitioner research. After three years, this community became part of a larger international community of practice. Aims and objectives: Captured under the stanzas of a poem and supported by the literature, this paper uses member narratives and creative expressions in a critical reflection on the experience of being a member of the Student International Community of Practice. Conclusions: Membership in the community of practice was experienced as beneficial, providing both support and challenge to enrich the doctoral students’ development as person-centred researchers. Retaining connectivity across an international landscape and finding effective ways to integrate new members into the community presented the greatest challenges. Implications for practice development: • The theoretical foundation and experiential knowledge could assist others considering support structures for the development of person-centred practices • Shared learning and co-creation of knowledge add value to the experience of being a doctoral researcher • Membership fluctuations present challenges to continuity of learning and the maintenance of a safe space with communities of practice. Such fluctuations, however, create chances for community members to experience diverse roles within the group and encourage explicit attention to person-centredness

  7. Geometry effects on magnetization dynamics in circular cross-section wires

    Energy Technology Data Exchange (ETDEWEB)

    Sturma, M. [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Univ. Grenoble Alpes, I. Neel, F-38000 Grenoble (France); CNRS, I. Neel, F-38000 Grenoble (France); Toussaint, J.-C., E-mail: jean-christophe.toussaint@neel.cnrs.fr, E-mail: daria.gusakova@cea.fr [Univ. Grenoble Alpes, I. Neel, F-38000 Grenoble (France); CNRS, I. Neel, F-38000 Grenoble (France); Gusakova, D., E-mail: jean-christophe.toussaint@neel.cnrs.fr, E-mail: daria.gusakova@cea.fr [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France)

    2015-06-28

    Three-dimensional magnetic memory design based on circular-cross section nanowires with modulated diameter is the emerging field of spintronics. The consequences of the mutual interaction between electron spins and local magnetic moments in such non-trivial geometries are still open to debate. This paper describes the theoretical study of domain wall dynamics within such wires subjected to spin polarized current. We used our home-made finite element software to characterize the variety of domain wall dynamical regimes observed for different constriction to wire diameter ratios d/D. Also, we studied how sizeable geometry irregularities modify the internal micromagnetic configuration and the electron spin spatial distribution in the system, the geometrical reasons underlying the additional contribution to the system's nonadiabaticity, and the specific domain wall width oscillations inherent to fully three-dimensional systems.

  8. The geometry description markup language

    International Nuclear Information System (INIS)

    Chytracek, R.

    2001-01-01

    Currently, a lot of effort is being put on designing complex detectors. A number of simulation and reconstruction frameworks and applications have been developed with the aim to make this job easier. A very important role in this activity is played by the geometry description of the detector apparatus layout and its working environment. However, no real common approach to represent geometry data is available and such data can be found in various forms starting from custom semi-structured text files, source code (C/C++/FORTRAN), to XML and database solutions. The XML (Extensible Markup Language) has proven to provide an interesting approach for describing detector geometries, with several different but incompatible XML-based solutions existing. Therefore, interoperability and geometry data exchange among different frameworks is not possible at present. The author introduces a markup language for geometry descriptions. Its aim is to define a common approach for sharing and exchanging of geometry description data. Its requirements and design have been driven by experience and user feedback from existing projects which have their geometry description in XML

  9. Complex analysis and CR geometry

    CERN Document Server

    Zampieri, Giuseppe

    2008-01-01

    Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the \\bar\\partial-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometry requires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting to graduate students who wish to learn it. However, the present book does not aim at introducing all the topics of current interest in CR geometry. Instead, an attempt is made to be friendly to the novice by moving, in a fairly relaxed way, f...

  10. Reflection: A Socratic approach.

    Science.gov (United States)

    Van Seggelen-Damen, Inge C M; Van Hezewijk, René; Helsdingen, Anne S; Wopereis, Iwan G J H

    2017-12-01

    Reflection is a fuzzy concept. In this article we reveal the paradoxes involved in studying the nature of reflection. Whereas some scholars emphasize its discursive nature, we go further and underline its resemblance to the self-biased dialogue Socrates had with the slave in Plato's Meno . The individual and internal nature of the reflection process creates difficulty for studying it validly and reliably. We focus on methodological issues and use Hans Linschoten's view of coupled systems to identify, analyze, and interpret empirical research on reflection. We argue that researchers and research participants can take on roles in several possible system couplings. Depending on who controls the manipulation of the stimulus, who controls the measuring instrument, who interprets the measurement and the response, different types of research questions can be answered. We conclude that reflection may be validly studied by combining different couplings of experimenter, manipulation, stimulus, participant, measurement, and response.

  11. Global aspects of complex geometry

    CERN Document Server

    Catanese, Fabrizio; Huckleberry, Alan T

    2006-01-01

    Present an overview of developments in Complex Geometry. This book covers topics that range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kahler geometry, and group actions to Hodge theory and characteristic p-geometry.

  12. Analytic geometry

    CERN Document Server

    Burdette, A C

    1971-01-01

    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  13. Vector geometry

    CERN Document Server

    Robinson, Gilbert de B

    2011-01-01

    This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom

  14. Physics- and engineering knowledge-based geometry repair system for robust parametric CAD geometries

    OpenAIRE

    Li, Dong

    2012-01-01

    In modern multi-objective design optimisation, an effective geometry engine is becoming an essential tool and its performance has a significant impact on the entire process. Building a parametric geometry requires difficult compromises between the conflicting goals of robustness and flexibility. The work presents a solution for improving the robustness of parametric geometry models by capturing and modelling relative engineering knowledge into a surrogate model, and deploying it automatically...

  15. KAMPUNG SENI ISLAM DI MAKASSAR DENGAN PENDEKATAN ARSITEKTUR ISLAM GEOMETRI

    Directory of Open Access Journals (Sweden)

    Yaumil Maghfirah Asaf

    2015-06-01

    work produced. So it can be recognized by both local and international. The approach used in the building of Islamic Art Village is Islamic architecture geometry. Geometry is a branch of mathematics that studies of point, line, plane and space objects along with their properties, the measurements, and the relationship between each other. Islamic architectural design more use patterns in the form of lines, circles and other geometric patterns arranged to form a unity which implies spiritual and aesthetic value or beauty of a high level. Islamic art looks association complex geometry, between forms, ornaments, and façade Key Word: Village Islamic Art, Islamic architecture geometry

  16. Imaging Early Steps of Sindbis Virus Infection by Total Internal Reflection Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Youling Gu

    2011-01-01

    Full Text Available Sindbis virus (SINV is an alphavirus that has a broad host range and has been widely used as a vector for recombinant gene transduction, DNA-based vaccine production, and oncolytic cancer therapy. The mechanism of SINV entry into host cells has yet to be fully understood. In this paper, we used single virus tracking under total internal reflection fluorescence microscopy (TIRFM to investigate SINV attachment to cell surface. Biotinylated viral particles were labeled with quantum dots, which retained viral viability and infectivity. By time-lapse imaging, we showed that the SINV exhibited a heterogeneous dynamics on the surface of the host cells. Analysis of SINV motility demonstrated a two-step attachment reaction. Moreover, dual color TIRFM of GFP-Rab5 and SINV suggested that the virus was targeted to the early endosomes after endocytosis. These findings demonstrate the utility of quantum dot labeling in studying the early steps and behavior of SINV infection.

  17. Watch your step! A frustrated total internal reflection approach to forensic footwear imaging.

    Science.gov (United States)

    Needham, J A; Sharp, J S

    2016-02-16

    Forensic image retrieval and processing are vital tools in the fight against crime e.g. during fingerprint capture. However, despite recent advances in machine vision technology and image processing techniques (and contrary to the claims of popular fiction) forensic image retrieval is still widely being performed using outdated practices involving inkpads and paper. Ongoing changes in government policy, increasing crime rates and the reduction of forensic service budgets increasingly require that evidence be gathered and processed more rapidly and efficiently. A consequence of this is that new, low-cost imaging technologies are required to simultaneously increase the quality and throughput of the processing of evidence. This is particularly true in the burgeoning field of forensic footwear analysis, where images of shoe prints are being used to link individuals to crime scenes. Here we describe one such approach based upon frustrated total internal reflection imaging that can be used to acquire images of regions where shoes contact rigid surfaces.

  18. Watch your step! A frustrated total internal reflection approach to forensic footwear imaging

    Science.gov (United States)

    Needham, J. A.; Sharp, J. S.

    2016-02-01

    Forensic image retrieval and processing are vital tools in the fight against crime e.g. during fingerprint capture. However, despite recent advances in machine vision technology and image processing techniques (and contrary to the claims of popular fiction) forensic image retrieval is still widely being performed using outdated practices involving inkpads and paper. Ongoing changes in government policy, increasing crime rates and the reduction of forensic service budgets increasingly require that evidence be gathered and processed more rapidly and efficiently. A consequence of this is that new, low-cost imaging technologies are required to simultaneously increase the quality and throughput of the processing of evidence. This is particularly true in the burgeoning field of forensic footwear analysis, where images of shoe prints are being used to link individuals to crime scenes. Here we describe one such approach based upon frustrated total internal reflection imaging that can be used to acquire images of regions where shoes contact rigid surfaces.

  19. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  20. Noncommutative geometry

    CERN Document Server

    Connes, Alain

    1994-01-01

    This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat

  1. Geometry Revealed

    CERN Document Server

    Berger, Marcel

    2010-01-01

    Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,

  2. Discrete differential geometry. Consistency as integrability

    OpenAIRE

    Bobenko, Alexander I.; Suris, Yuri B.

    2005-01-01

    A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...

  3. Reflective thinking in solving an algebra problem: a case study of field independent-prospective teacher

    Science.gov (United States)

    Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag

    2017-10-01

    Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.

  4. Spinorial Geometry and Branes

    International Nuclear Information System (INIS)

    Sloane, Peter

    2007-01-01

    We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)

  5. An introduction to incidence geometry

    CERN Document Server

    De Bruyn, Bart

    2016-01-01

    This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...

  6. System Geometries and Transit/Eclipse Probabilities

    Directory of Open Access Journals (Sweden)

    Howard A.

    2011-02-01

    Full Text Available Transiting exoplanets provide access to data to study the mass-radius relation and internal structure of extrasolar planets. Long-period transiting planets allow insight into planetary environments similar to the Solar System where, in contrast to hot Jupiters, planets are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses additionally permit studies of exoplanet temperatures and large-scale exo-atmospheric properties. We show how transit and eclipse probabilities are related to planet-star system geometries, particularly for long-period, eccentric orbits. The resulting target selection and observational strategies represent the principal ingredients of our photometric survey of known radial-velocity planets with the aim of detecting transit signatures (TERMS.

  7. Spinorial Geometry and Branes

    Energy Technology Data Exchange (ETDEWEB)

    Sloane, Peter [Department of Mathematics, King' s College, University of London, Strand, London WC2R 2LS (United Kingdom)

    2007-09-15

    We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)

  8. Introduction to non-Euclidean geometry

    CERN Document Server

    Wolfe, Harold E

    2012-01-01

    One of the first college-level texts for elementary courses in non-Euclidean geometry, this concise, readable volume is geared toward students familiar with calculus. A full treatment of the historical background explores the centuries-long efforts to prove Euclid's parallel postulate and their triumphant conclusion. Numerous original exercises form an integral part of the book.Topics include hyperbolic plane geometry and hyperbolic plane trigonometry, applications of calculus to the solutions of some problems in hyperbolic geometry, elliptic plane geometry and trigonometry, and the consistenc

  9. Security enhancement of hand geometry scanners using optical blood flow detection

    Science.gov (United States)

    Crihalmeanu, Musat C.; Jerabek, Mark A.; Meehan, Kathleen

    2004-08-01

    In today's security conscious society the efficiency of biometric systems has an increasing tendency to replace the classic but less effective keys and passwords. Hand geometry readers are popular biometrics used for acces control and time and attendance applications. One of their weaknesses is vulnerability to spoofing using fake hands (latex, play-doh or dead-hands). The object of this paper is to design a feature to be added to the hand geometry scanner in order to detect vitality in the hand, reducing the possibilities for spoofing. This paper demonstrates how the hand reader was successfully spoofed and shows the implementation of the vitality detection feature through an inexpensive but efficient electronic design. The method used for detection is photo-plethysmography. The Reflectance Sensor built is of original conception. After amplifying, filtering and processing the sensor's signal, a message is shown via an LCD display, concerning the liveness of the hand and the pulse rate.

  10. Optical geometry across the horizon

    International Nuclear Information System (INIS)

    Jonsson, Rickard

    2006-01-01

    In a recent paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework

  11. Optimization of armour geometry and bonding techniques for tungsten-armoured high heat flux components

    International Nuclear Information System (INIS)

    Giniyatulin, R.N.; Komarov, V.L.; Kuzmin, E.G.; Makhankov, A.N.; Mazul, I.V.; Yablokov, N.A.; Zhuk, A.N.

    2002-01-01

    Joining of tungsten with copper-based cooling structure and armour geometry optimization are the major aspects in development of the tungsten-armoured plasma facing components (PFC). Fabrication techniques and high heat flux (HHF) tests of tungsten-armoured components have to reflect different PFC designs and acceptable manufacturing cost. The authors present the recent results of tungsten-armoured mock-ups development based on manufacturing and HHF tests. Two aspects were investigated--selection of armour geometry and examination of tungsten-copper bonding techniques. Brazing and casting tungsten-copper bonding techniques were used in small mock-ups. The mock-ups with armour tiles (20x5x10, 10x10x10, 20x20x10, 27x27x10) mm 3 in dimensions were tested by cyclic heat fluxes in the range of (5-20) MW/m 2 , the number of thermal cycles varied from hundreds to several thousands for each mock-up. The results of the tests show the applicability of different geometry and different bonding technique to corresponding heat loading. A medium-scale mock-up 0.6-m in length was manufactured and tested. HHF tests of the medium-scale mock-up have demonstrated the applicability of the applied bonding techniques and armour geometry for full-scale PFC's manufacturing

  12. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  13. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  14. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano

    2017-01-01

    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  15. Initiation to global Finslerian geometry

    CERN Document Server

    Akbar-Zadeh, Hassan

    2006-01-01

    After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p

  16. Monaural and binaural benefit from early reflections for speech intelligibility

    DEFF Research Database (Denmark)

    Arweiler, Iris; Buchholz, Jörg; Dau, Torsten

    2010-01-01

    The auditory system takes advantage of early reflections (ER’s) in a room by integrating them with the direct sound (DS) and thereby increasing the effective speech level. The energy, spectral content and direction of the ER’s are dependent on wall absorptions and room geometries and therefore di...... to investigate if ER processing is a monaural or binaural effect....

  17. Sutherland models for complex reflection groups

    International Nuclear Information System (INIS)

    Crampe, N.; Young, C.A.S.

    2008-01-01

    There are known to be integrable Sutherland models associated to every real root system, or, which is almost equivalent, to every real reflection group. Real reflection groups are special cases of complex reflection groups. In this paper we associate certain integrable Sutherland models to the classical family of complex reflection groups. Internal degrees of freedom are introduced, defining dynamical spin chains, and the freezing limit taken to obtain static chains of Haldane-Shastry type. By considering the relation of these models to the usual BC N case, we are led to systems with both real and complex reflection groups as symmetries. We demonstrate their integrability by means of new Dunkl operators, associated to wreath products of dihedral groups

  18. Algebraic geometry in India

    Indian Academy of Sciences (India)

    algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.

  19. IVA2 verification: Expansion phase experiment in SNR geometry

    International Nuclear Information System (INIS)

    Kolev, N.I.

    1987-09-01

    Using the IVA2/005 computer code the SNR model explosion experiment SGI-09-1 was numerically simulated. The experiment consists of high pressure gas injection into a low pressure liquid pool with a free surface in a cylindrical geometry with internals. Bubble formation and pressure history as a function of time was predicted and compared with the experimental observation. A good agreement between theory and experiment was obtained. Numerical diffusion and its influence on the results are discussed. (orig.) [de

  20. Generalizing optical geometry

    International Nuclear Information System (INIS)

    Jonsson, Rickard; Westman, Hans

    2006-01-01

    We show that by employing the standard projected curvature as a measure of spatial curvature, we can make a certain generalization of optical geometry (Abramowicz M A and Lasota J-P 1997 Class. Quantum Grav. A 14 23-30). This generalization applies to any spacetime that admits a hypersurface orthogonal shearfree congruence of worldlines. This is a somewhat larger class of spacetimes than the conformally static spacetimes assumed in standard optical geometry. In the generalized optical geometry, which in the generic case is time dependent, photons move with unit speed along spatial geodesics and the sideways force experienced by a particle following a spatially straight line is independent of the velocity. Also gyroscopes moving along spatial geodesics do not precess (relative to the forward direction). Gyroscopes that follow a curved spatial trajectory precess according to a very simple law of three-rotation. We also present an inertial force formalism in coordinate representation for this generalization. Furthermore, we show that by employing a new sense of spatial curvature (Jonsson R 2006 Class. Quantum Grav. 23 1)) closely connected to Fermat's principle, we can make a more extensive generalization of optical geometry that applies to arbitrary spacetimes. In general this optical geometry will be time dependent, but still geodesic photons move with unit speed and follow lines that are spatially straight in the new sense. Also, the sideways experienced (comoving) force on a test particle following a line that is straight in the new sense will be independent of the velocity

  1. Pressure loss coefficient evaluation based on CFD analysis for simple geometries and PWR reactor vessel without geometry simplification

    International Nuclear Information System (INIS)

    Ko II, B.; Park, J. P.; Jeong, J. H.

    2008-01-01

    Nuclear vendors and utilities perform lots of simulations and analyses in order to ensure the safe operation of nuclear power plants (NPPs). In general, the simulations are carried out using vendor-specific design codes and best-estimate system analysis codes and most of them were developed based on 1-dimensional lumped parameter models. These thermal-hydraulic system analysis codes require user input for pressure loss coefficient, k-factor; since they numerically solve Euler-equation. In spite of its high impact on the safety analysis results, there has not been good validation method for the selection of loss coefficient. During the past decade, however; computers, parallel computation methods, and 3-dimensional computational fluid dynamics (CFD) codes have been dramatically enhanced. It is believed to be beneficial to take advantage of advanced commercial CFD codes in safety analysis and design of NPP5. The present work aims to validate pressure loss coefficient evaluation for simple geometries and k-factor calculation for PWR based on CFD. The performances of standard k-ε model, RNG k-ε model, Reynolds stress model (RSM) on the simulation of pressure drop for simple geometry such as, or sudden-expansion, and sudden-contraction are evaluated. The calculated value was compared with pressure loss coefficient in handbook of hydraulic resistance. Then the present work carried out analysis for flow distribution in downcomer and lower plenum of Korean standard nuclear power plants (KSNPs) using STAR-CD. The lower plenum geometry of a PWR is very complicated since there are so many reactor internals, which hinders in CFD analysis for real reactor geometry up to now. The present work takes advantage of 3D CAD model so that real geometry of lower plenum is used. The results give a clear figure about flow fields in the reactor vessel, which is one of major safety concerns. The calculated pressure drop across downcomer and lower plenum appears to be in good agreement

  2. Introduction to combinatorial geometry

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Emmett, M.B.

    1985-01-01

    The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity

  3. Criticality safety validation: Simple geometry, single unit 233U systems

    International Nuclear Information System (INIS)

    Putman, V.L.

    1997-06-01

    Typically used LMITCO criticality safety computational methods are evaluated for suitability when applied to INEEL 233 U systems which reasonably can be modeled as simple-geometry, single-unit systems. Sixty-seven critical experiments of uranium highly enriched in 233 U, including 57 aqueous solution, thermal-energy systems and 10 metal, fast-energy systems, were modeled. These experiments include 41 cylindrical and 26 spherical cores, and 41 reflected and 26 unreflected systems. No experiments were found for intermediate-neutron-energy ranges, or with interstitial non-hydrogenous materials typical of waste systems, mixed 233 U and plutonium, or reflectors such as steel, lead, or concrete. No simple geometry experiments were found with cubic or annular cores, or approximating infinite sea systems. Calculations were performed with various tools and methodologies. Nine cross-section libraries, based on ENDF/B-IV, -V, or -VI.2, or on Hansen-Roach source data, were used with cross-section processing methods of MCNP or SCALE. The k eff calculations were performed with neutral-particle transport and Monte Carlo methods of criticality codes DANT, MCNP 4A, and KENO Va

  4. Radiation transport benchmarks for simple geometries with void regions using the spherical harmonics method

    International Nuclear Information System (INIS)

    Kobayashi, K.

    2009-01-01

    In 2001, an international cooperation on the 3D radiation transport benchmarks for simple geometries with void region was performed under the leadership of E. Sartori of OECD/NEA. There were contributions from eight institutions, where 6 contributions were by the discrete ordinate method and only two were by the spherical harmonics method. The 3D spherical harmonics program FFT3 by the finite Fourier transformation method has been improved for this presentation, and benchmark solutions for the 2D and 3D simple geometries with void region by the FFT2 and FFT3 are given showing fairly good accuracy. (authors)

  5. An excursion through elementary mathematics, volume ii euclidean geometry

    CERN Document Server

    Caminha Muniz Neto, Antonio

    2018-01-01

    This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This second volume covers Plane Geometry, Trigonometry, Space Geometry, Vectors in the Plane, Solids and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as well as many...

  6. Graded geometry and Poisson reduction

    OpenAIRE

    Cattaneo, A S; Zambon, M

    2009-01-01

    The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics

  7. Geometry of multihadron production

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.

  8. Geometry of multihadron production

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions

  9. Geometry of higher-dimensional black hole thermodynamics

    International Nuclear Information System (INIS)

    Aaman, Jan E.; Pidokrajt, Narit

    2006-01-01

    We investigate thermodynamic curvatures of the Kerr and Reissner-Nordstroem (RN) black holes in spacetime dimensions higher than four. These black holes possess thermodynamic geometries similar to those in four-dimensional spacetime. The thermodynamic geometries are the Ruppeiner geometry and the conformally related Weinhold geometry. The Ruppeiner geometry for a d=5 Kerr black hole is curved and divergent in the extremal limit. For a d≥6 Kerr black hole there is no extremality but the Ruppeiner curvature diverges where one suspects that the black hole becomes unstable. The Weinhold geometry of the Kerr black hole in arbitrary dimension is a flat geometry. For the RN black hole the Ruppeiner geometry is flat in all spacetime dimensions, whereas its Weinhold geometry is curved. In d≥5 the Kerr black hole can possess more than one angular momentum. Finally we discuss the Ruppeiner geometry for the Kerr black hole in d=5 with double angular momenta

  10. An active one-particle microrheometer: incorporating magnetic tweezers to total internal reflection microscopy.

    Science.gov (United States)

    Gong, Xiangjun; Hua, Li; Wu, Chi; Ngai, To

    2013-03-01

    We present a novel microrheometer by incorporating magnetic tweezers in the total internal reflection microscopy (TIRM) that enables measuring of viscoelastic properties of materials near solid surface. An evanescent wave generated by a solid∕liquid interface in the TIRM is used as the incident light source in the microrheometer. When a probe particle (of a few micrometers diameter) moves near the interface, it can interact with the evanescent field and reflect its position with respect to the interface by the scattered light intensity. The exponential distance dependence of the evanescent field, on the one hand, makes this technique extremely sensitive to small changes from z-fluctuations of the probe (with a resolution of several nanometers), and on the other, it does not require imaging of the probe with high lateral resolution. Another distinct advantage is the high sensitivity in determining the z position of the probe in the absence of any labeling. The incorporated magnetic tweezers enable us to effectively manipulate the distance of the embedded particle from the interface either by a constant or an oscillatory force. The force ramp is easy to implement through a coil current ramp. In this way, the local viscous and elastic properties of a given system under different confinements can therefore be measured by resolving the near-surface particle motion. To test the feasibility of applying this microrheology to soft materials, we measured the viscoelastic properties of sucrose and poly(ethylene glycol) solutions and compared the results to bulk rheometry. In addition, we applied this technique in monitoring the structure and properties of deformable microgel particles near the flat surface.

  11. Convex-based void filling method for CAD-based Monte Carlo geometry modeling

    International Nuclear Information System (INIS)

    Yu, Shengpeng; Cheng, Mengyun; Song, Jing; Long, Pengcheng; Hu, Liqin

    2015-01-01

    Highlights: • We present a new void filling method named CVF for CAD based MC geometry modeling. • We describe convex based void description based and quality-based space subdivision. • The results showed improvements provided by CVF for both modeling and MC calculation efficiency. - Abstract: CAD based automatic geometry modeling tools have been widely applied to generate Monte Carlo (MC) calculation geometry for complex systems according to CAD models. Automatic void filling is one of the main functions in the CAD based MC geometry modeling tools, because the void space between parts in CAD models is traditionally not modeled while MC codes such as MCNP need all the problem space to be described. A dedicated void filling method, named Convex-based Void Filling (CVF), is proposed in this study for efficient void filling and concise void descriptions. The method subdivides all the problem space into disjointed regions using Quality based Subdivision (QS) and describes the void space in each region with complementary descriptions of the convex volumes intersecting with that region. It has been implemented in SuperMC/MCAM, the Multiple-Physics Coupling Analysis Modeling Program, and tested on International Thermonuclear Experimental Reactor (ITER) Alite model. The results showed that the new method reduced both automatic modeling time and MC calculation time

  12. Lectures on Symplectic Geometry

    CERN Document Server

    Silva, Ana Cannas

    2001-01-01

    The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...

  13. Reflections on 21 years

    International Nuclear Information System (INIS)

    Eklund, S.; Mandel, H.; Teller, E.

    1977-01-01

    Personal reflections after twenty one years of nuclear power are presented by a number of those who were international figures in the nuclear energy field during that period. Lessons learnt, achievements, prospects and predictions for the future are discussed in eleven brief surveys. (U.K.)

  14. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang

    2002-01-01

    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  15. Computational synthetic geometry

    CERN Document Server

    Bokowski, Jürgen

    1989-01-01

    Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...

  16. Designs and finite geometries

    CERN Document Server

    1996-01-01

    Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

  17. Reduction of cross-polarized reflection to enhance dual-band absorption

    Science.gov (United States)

    Kundu, Debidas; Mohan, Akhilesh; Chakrabarty, Ajay

    2016-11-01

    In this paper, cross-polarized reflection from a periodic array of metal-dielectric-metal resonator units is reduced to improve its absorbing performance. Through this simple and typical example, it is shown that some reported absorbers are actually poor absorbers but efficient polarization converters, when the cross-polarized reflection is considered. Using a frequency selective surface, sandwiched between the top layer and the ground plane, the cross-polarized reflection is reduced by 7.2 dB at 5.672 GHz and 8.5 dB at 9.56 GHz, while negligibly affecting the co-polarized reflection reduction performance. The polarization conversion ratio is reduced from 90. 74% to 34.12% and 98.51% to 27.2% and total absorption is improved up to 80% from 26% and 21% around the two resonant frequencies. The reflection characteristics of the proposed absorber are quantitatively analyzed using interference theory, where the near field coupling of the resonant geometries and ground is taken into account. Measurement results show good agreement with both the numerically simulated and theoretical results.

  18. The Geometry Optimisation of a Triple Branch Pipe Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2008-01-01

    Full Text Available The paper presents the geometrical optimization of a triple branch pipesubmitted to an internal pressure. The goal of the optimization was todetermine the optimum thickness of piping and branch pipe ribs, in thecondition of reaching admissible values of the stress and displacement.The resistance calculus was realized with Cosmos DesignStar softwareand the geometry was modeled with Microstation Modeler software.

  19. d-geometries revisited

    CERN Document Server

    Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio

    2013-01-01

    We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.

  20. Investigation of multiple Bragg reflections at a constant neutron wavelength and their possible separation

    International Nuclear Information System (INIS)

    Mikula, P; Vrána, M; Šaroun, J; Em, V; Seong, B S

    2012-01-01

    Multiple Bragg reflections (MBR) realized in one bent-perfect crystal (BPC) slab by sets of different lattice planes behave differently in comparison to the case of perfect nondeformed or mosaic crystal. Individual sets of lattice planes are mutually in dispersive diffraction geometry and the kinematical approach can be applied on this MBR process. It has been found that contrary to the perfect nondeformed or mosaic crystal, individual reflections participating in the MBR process can be spatially separated.

  1. Treating voxel geometries in radiation protection dosimetry with a patched version of the Monte Carlo codes MCNP and MCNPX.

    Science.gov (United States)

    Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P

    2007-01-01

    The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.

  2. Geometry success in 20 minutes a day

    CERN Document Server

    LLC, LearningExpress

    2014-01-01

    Whether you're new to geometry or just looking for a refresher, Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day: Covers all vital geometry skills, from the basic building blocks of geometry to ratio, proportion, and similarity to trigonometry and beyond Provides hundreds of practice exercises in test format Applies geometr

  3. Terahertz wave reflective sensing and imaging

    Science.gov (United States)

    Zhong, Hua

    Sensing and imaging technologies using terahertz (THz) radiation have found diverse applications as they approach maturity. Since the burgeoning of this technique in the 1990's, many THz sensing and imaging investigations have been designed and conducted in transmission geometry, which provides sufficient phase and amplitude contrast for the study of the spectral properties of targets in the THz domain. Driven by rising expectations that THz technology will be a potential candidate in the next generation of security screening, remote sensing, biomedical imaging and non-destructive testing (NDT), most THz sensing and imaging modalities are being extended to reflection geometry, which offers unique and adaptive solutions, and multi-dimensional information in many real scenarios. This thesis takes an application-focused approach to the advancement of THz wave reflective sensing and imaging systems: The absorption signature of the explosive material hexahydro-1,3,5-trinitro-1,3,5triazine (RDX) is measured at 30 m---the longest standoff distance so far attained by THz time-domain spectroscopy (THz-TDS). The standoff distance sensing ability of THz-TDS is investigated along with discussions specifying the influences of a variety of factors such as propagation distance, water vapor absorption and collection efficiency. Highly directional THz radiation from four-wave mixing in laser-induced air plasmas is first observed and measured, which provides a potential solution for the atmospheric absorption effect in standoff THz sensing. The simulations of the beam profiles also illuminate the underlying physics behind the interaction of the optical beam with the plasma. THz wave reflective spectroscopic focal-plane imaging is realized the first time. Absorption features of some explosives and related compounds (ERCs) and biochemical materials are identified by using adaptive feature extraction method. Good classification results using multiple pattern recognition methods are

  4. Simulation study of the aerosol information content in OMI spectral reflectance measurements

    Directory of Open Access Journals (Sweden)

    B. Veihelmann

    2007-06-01

    Full Text Available The Ozone Monitoring Instrument (OMI is an imaging UV-VIS solar backscatter spectrometer and is designed and used primarily to retrieve trace gases like O3 and NO2 from the measured Earth reflectance spectrum in the UV-visible (270–500 nm. However, also aerosols are an important science target of OMI. The multi-wavelength algorithm is used to retrieve aerosol parameters from OMI spectral reflectance measurements in up to 20 wavelength bands. A Principal Component Analysis (PCA is performed to quantify the information content of OMI reflectance measurements on aerosols and to assess the capability of the multi-wavelength algorithm to discern various aerosol types. This analysis is applied to synthetic reflectance measurements for desert dust, biomass burning aerosols, and weakly absorbing anthropogenic aerosol with a variety of aerosol optical thicknesses, aerosol layer altitudes, refractive indices and size distributions. The range of aerosol parameters considered covers the natural variability of tropospheric aerosols. This theoretical analysis is performed for a large number of scenarios with various geometries and surface albedo spectra for ocean, soil and vegetation. When the surface albedo spectrum is accurately known and clouds are absent, OMI reflectance measurements have 2 to 4 degrees of freedom that can be attributed to aerosol parameters. This information content depends on the observation geometry and the surface albedo spectrum. An additional wavelength band is evaluated, that comprises the O2-O2 absorption band at a wavelength of 477 nm. It is found that this wavelength band adds significantly more information than any other individual band.

  5. Reflections on the development of international nuclear law

    International Nuclear Information System (INIS)

    Lamm, Vanda

    2017-01-01

    Over the course of more than seven decades, treaty norms on the production and utilisation of nuclear energy have been developed, which together form a special section within international law. These norms are the consequence of the unique nature of the field, namely that on the one hand some aspects of the uses of nuclear energy should be covered by totally new and special norms (e.g. in the field of disarmament, seeking to eliminate or at least to control the spread of nuclear weapons, and nuclear weapons tests) and on the other hand that several traditional legal solutions were not suitable for the problems that emerged in connection with other uses of nuclear energy (like liability). In this article, three aspects of the development of that special section of international law will be explored, namely: the close connections between the regulation of peaceful and military uses of nuclear energy; the effects of nuclear catastrophes on the development of international nuclear legislation; and the interaction between soft law norms and binding norms in the area of nuclear law

  6. International health law : an emerging field of public international law

    NARCIS (Netherlands)

    Toebes, Brigit

    This article discusses the nature and scope of international health law as an emerging field of public international law. It is argued that the protection of health reflects a pressing social need that should now be spoken of in the vocabulary of international law. Furthermore, there is an urgent

  7. Lectures on coarse geometry

    CERN Document Server

    Roe, John

    2003-01-01

    Coarse geometry is the study of spaces (particularly metric spaces) from a 'large scale' point of view, so that two spaces that look the same from a great distance are actually equivalent. This point of view is effective because it is often true that the relevant geometric properties of metric spaces are determined by their coarse geometry. Two examples of important uses of coarse geometry are Gromov's beautiful notion of a hyperbolic group and Mostow's proof of his famous rigidity theorem. The first few chapters of the book provide a general perspective on coarse structures. Even when only metric coarse structures are in view, the abstract framework brings the same simplification as does the passage from epsilons and deltas to open sets when speaking of continuity. The middle section reviews notions of negative curvature and rigidity. Modern interest in large scale geometry derives in large part from Mostow's rigidity theorem and from Gromov's subsequent 'large scale' rendition of the crucial properties of n...

  8. Introduction to tropical geometry

    CERN Document Server

    Maclagan, Diane

    2015-01-01

    Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...

  9. Geometry Euclid and beyond

    CERN Document Server

    Hartshorne, Robin

    2000-01-01

    In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...

  10. Extending Whole Slide Imaging: Color Darkfield Internal Reflection Illumination (DIRI for Biological Applications.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kawano

    Full Text Available Whole slide imaging (WSI is a useful tool for multi-modal imaging, and in our work, we have often combined WSI with darkfield microscopy. However, traditional darkfield microscopy cannot use a single condenser to support high- and low-numerical-aperture objectives, which limits the modality of WSI. To overcome this limitation, we previously developed a darkfield internal reflection illumination (DIRI microscope using white light-emitting diodes (LEDs. Although the developed DIRI is useful for biological applications, substantial problems remain to be resolved. In this study, we propose a novel illumination technique called color DIRI. The use of three-color LEDs dramatically improves the capability of the system, such that color DIRI (1 enables optimization of the illumination color; (2 can be combined with an oil objective lens; (3 can produce fluorescence excitation illumination; (4 can adjust the wavelength of light to avoid cell damage or reactions; and (5 can be used as a photostimulator. These results clearly illustrate that the proposed color DIRI can significantly extend WSI modalities for biological applications.

  11. Solar-pumped fiber laser with transverse-excitation geometry

    Science.gov (United States)

    Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatu, Yuta; Yamashita, Tomohiro; Sasaki, Kiyoto; Endo, Masamori

    2018-02-01

    In this paper, we demonstrate an extremely low-concentrated solar-pumped laser (SPL) that uses a transversely excited fiber laser geometry. To eliminate the need for precise solar tracking with an aggressive cooling system and to considerably increase the number of laser applications, low-concentration factors in SPLs are highly desired. We investigate the intrinsic low-loss property of SiO2 optical fibers; this property can be used to compensate for the extremely low gain coefficient of the weakly-pumped active medium by sunlight. As part of the experimental setup, a 40-m long Nd3+-doped SiO2 fiber coil was packed in a ring-shaped chamber filled with a sensitizer solution; this solution functioned as a down-shifter. The dichroic top window of the chamber transmitted a wide range of sunlight and reflected the down-shifted photons, confining them to the highly-reflective chamber until they were absorbed by the Nd3+ ions in the active fiber. We demonstrated a lasing threshold that is 10 times the concentration of natural sunlight and two orders of magnitude smaller than that of conventional SPLs.

  12. Basic algebraic geometry, v.2

    CERN Document Server

    Shafarevich, Igor Rostislavovich

    1994-01-01

    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  13. Reflection of a polarized light cone

    Science.gov (United States)

    Brody, Jed; Weiss, Daniel; Berland, Keith

    2013-01-01

    We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.

  14. Canonical differential geometry of string backgrounds

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Wohlfarth, Mattias N.R.

    2006-01-01

    String backgrounds and D-branes do not possess the structure of Lorentzian manifolds, but that of manifolds with area metric. Area metric geometry is a true generalization of metric geometry, which in particular may accommodate a B-field. While an area metric does not determine a connection, we identify the appropriate differential geometric structure which is of relevance for the minimal surface equation in such a generalized geometry. In particular the notion of a derivative action of areas on areas emerges naturally. Area metric geometry provides new tools in differential geometry, which promise to play a role in the description of gravitational dynamics on D-branes

  15. Reflective Self-Regenerative Systems Architecture Study

    National Research Council Canada - National Science Library

    Pu, Carlton; Blough, Douglas

    2006-01-01

    In this study, we develop the Reflective Self-Regenerative Systems (RSRS) architecture in detail, describing the internal structure of each component and the mutual invocations among the components...

  16. Detection limit calculations for different total reflection techniques

    International Nuclear Information System (INIS)

    Sanchez, H.J.

    2000-01-01

    In this work, theoretical calculations of detection limits for different total-reflection techniques are presented.. Calculations include grazing incidence (TXRF) and gracing exit (GEXRF) conditions. These calculations are compared with detection limits obtained for conventional x-ray fluorescence (XRF). In order to compute detection limits the Shiraiwa and Fujino's model to calculate x-ray fluorescence intensities was used. This model made certain assumptions and approximations to achieve the calculations, specially in the case of the geometrical conditions of the sample, and the incident and takeoff beams. Nevertheless the calculated data of detection limits for conventional XRF and total-reflection XRF show a good agreement with previous results. The model proposed here allows to analyze the different sources of background and the influence of the excitation geometry, which contribute to the understanding of the physical processes involved in the XRF analysis by total reflection. Finally, a comparison between detection limits in total-reflection analysis at grazing incidence and at grazing exit is carried out. Here a good agreement with the theoretical predictions of the reversibility principle is found, showing that detection limits are similar for both techniques. (author)

  17. The Beauty of Geometry

    Science.gov (United States)

    Morris, Barbara H.

    2004-01-01

    This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…

  18. Teaching Spatial Geometry in a Virtual World

    DEFF Research Database (Denmark)

    Förster, Klaus-Tycho

    2017-01-01

    Spatial geometry is one of the fundamental mathematical building blocks of any engineering education. However, it is overshadowed by planar geometry in the curriculum between playful early primary education and later analytical geometry, leaving a multi-year gap where spatial geometry is absent...

  19. Trends and developments in computational geometry

    NARCIS (Netherlands)

    Berg, de M.

    1997-01-01

    This paper discusses some trends and achievements in computational geometry during the past five years, with emphasis on problems related to computer graphics. Furthermore, a direction of research in computational geometry is discussed that could help in bringing the fields of computational geometry

  20. An Experimental Text in Transformational Geometry, Student Text; Cambridge Conference on School Mathematics Feasibility Study No. 43a.

    Science.gov (United States)

    Cambridge Conference on School Mathematics, Newton, MA.

    This is part of a student text which was written with the aim of reflecting the thinking of The Cambridge Conference on School Mathematics (CCSM) regarding the goals and objectives for mathematics. The instructional materials were developed for teaching geometry in the secondary schools. This document is chapter six and titled Motions and…

  1. Reflections on Dead Theory in International Relations

    Science.gov (United States)

    Thakur, Vineet

    2016-01-01

    In this short autobiographical essay, I trace my journey in the discipline of International Relations. While entering the discipline, I, along with a host of my classmates, were enamoured by the exciting possibilities of thinking theoretically. Almost a decade later, those promises look bleak. From the perspective of a student in the discipline, I…

  2. Solution of the neutron transport equation by the collision probability for 3D geometries; Resolution de l`equation du transport pour les neutrons par la methode des probabilites de collision dans le geometries 3D

    Energy Technology Data Exchange (ETDEWEB)

    Oujidi, B.

    1996-09-19

    The TDT code solves the multigroup transport equation by the interface current method for unstructured 2D geometries. This works presents the extension of TDT to the treatment of 3D geometries obtained by axial displacement of unstructured 2D geometries. Three-dimensional trajectories are obtained by lifting the 2D trajectories. The code allows for the definition of macro-domains in the axial direction to be used in the interface-current method. Specular and isotropic reflection or translations boundary conditions can be applied to the horizontal boundaries of the domain. Numerical studies have shown the need for longer trajectory cutoffs for trajectories intersecting horizontal boundaries. Numerical applications to the calculation of local power peaks are given in a second part for: the local destruction of a Pyrex absorbent and inter-assembly (UO{sub 2}-MOX) power distortion due to pellet collapsing at the top of the core. Calculations with 16 groups were performed by coupling TDT to the spectral code APOLLO2. One-group comparisons with the Monte Carlo code TRIMARAN2 are also given. (author). 30 refs.

  3. Procedural wound geometry and blood flow generation for medical training simulators

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong; Li, Jiang

    2012-02-01

    Efficient application of wound treatment procedures is vital in both emergency room and battle zone scenes. In order to train first responders for such situations, physical casualty simulation kits, which are composed of tens of individual items, are commonly used. Similar to any other training scenarios, computer simulations can be effective means for wound treatment training purposes. For immersive and high fidelity virtual reality applications, realistic 3D models are key components. However, creation of such models is a labor intensive process. In this paper, we propose a procedural wound geometry generation technique that parameterizes key simulation inputs to establish the variability of the training scenarios without the need of labor intensive remodeling of the 3D geometry. The procedural techniques described in this work are entirely handled by the graphics processing unit (GPU) to enable interactive real-time operation of the simulation and to relieve the CPU for other computational tasks. The visible human dataset is processed and used as a volumetric texture for the internal visualization of the wound geometry. To further enhance the fidelity of the simulation, we also employ a surface flow model for blood visualization. This model is realized as a dynamic texture that is composed of a height field and a normal map and animated at each simulation step on the GPU. The procedural wound geometry and the blood flow model are applied to a thigh model and the efficiency of the technique is demonstrated in a virtual surgery scene.

  4. Effect of interior geometry on local climate inside an electronic device enclosure

    DEFF Research Database (Denmark)

    Joshy, Salil; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    Electronic enclosure design and the internal arrangement of PCBs and components influence microclimate inside the enclosure. This work features a general electronic unit with parallel PCBs. One of the PCB is considered to have heat generating components on it. The humidity and temperature profiles...... geometry of the device and related enclosure design parameters on the humidity and temperature profiles inside the electronic device enclosure....

  5. MORET: a Monte Carlo program for fast computation of the effective multiplying factors of fissile media within complex geometries

    International Nuclear Information System (INIS)

    Caizergues, Robert; Poullot, Gilles; Teillet, J.-R.

    1976-06-01

    The MORET code determines effective multiplying factors. It uses the Monte Carlo technique and the multigroup theory; a collision is taken as isotropic, but anisotropy is taken into account by means of the transport correction. Complex geometries can be rapidly treated: the array to be studied is divided in simple elementary volumes (spheres, cylinders, boxes, cones, half space planes...) to which are applied operators of the theory of sets. Some constant or differential (albedos) reflection coefficients simulate neighboring reflections on the outer volume [fr

  6. An approach for management of geometry data

    Science.gov (United States)

    Dube, R. P.; Herron, G. J.; Schweitzer, J. E.; Warkentine, E. R.

    1980-01-01

    The strategies for managing Integrated Programs for Aerospace Design (IPAD) computer-based geometry are described. The computer model of geometry is the basis for communication, manipulation, and analysis of shape information. IPAD's data base system makes this information available to all authorized departments in a company. A discussion of the data structures and algorithms required to support geometry in IPIP (IPAD's data base management system) is presented. Through the use of IPIP's data definition language, the structure of the geometry components is defined. The data manipulation language is the vehicle by which a user defines an instance of the geometry. The manipulation language also allows a user to edit, query, and manage the geometry. The selection of canonical forms is a very important part of the IPAD geometry. IPAD has a canonical form for each entity and provides transformations to alternate forms; in particular, IPAD will provide a transformation to the ANSI standard. The DBMS schemas required to support IPAD geometry are explained.

  7. Infrared reflection properties and modelling of in situ reflection measurements on plasma-facing materials in Tore Supra

    International Nuclear Information System (INIS)

    Reichle, R; Desgranges, C; Faisse, F; Pocheau, C; Lasserre, J-P; Oelhoffen, F; Eupherte, L; Todeschini, M

    2009-01-01

    Tore Supra has-like ITER-reflecting internal surfaces, which can perturb the machine protection systems based on infrared (IR) thermography. To ameliorate this situation, we have measured and modelled in the 3-5 μm wavelength range the bi-directional reflection distribution function (BRDF) of wall material samples from Tore Supra and conducted in situ reflection measurements and simulated them with the CEA COSMOS code. BRDF results are presented for B 4 C and carbon fibre composite (CFC) tiles. The hemispherical integrated reflection ranges from 0.12 for the B 4 C sample to 0.39 for a CFC tile from the limiter erosion zone. In situ measurements of the IR reflection of a blackbody source off an ICRH and an LHCD antenna of Tore Supra are well reproduced by the simulation.

  8. Infrared reflection properties and modelling of in situ reflection measurements on plasma-facing materials in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, R; Desgranges, C; Faisse, F; Pocheau, C [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Lasserre, J-P; Oelhoffen, F; Eupherte, L; Todeschini, M [CEA, DAM, CESTA, F-33114 Le Barp (France)

    2009-12-15

    Tore Supra has-like ITER-reflecting internal surfaces, which can perturb the machine protection systems based on infrared (IR) thermography. To ameliorate this situation, we have measured and modelled in the 3-5 {mu}m wavelength range the bi-directional reflection distribution function (BRDF) of wall material samples from Tore Supra and conducted in situ reflection measurements and simulated them with the CEA COSMOS code. BRDF results are presented for B{sub 4}C and carbon fibre composite (CFC) tiles. The hemispherical integrated reflection ranges from 0.12 for the B{sub 4}C sample to 0.39 for a CFC tile from the limiter erosion zone. In situ measurements of the IR reflection of a blackbody source off an ICRH and an LHCD antenna of Tore Supra are well reproduced by the simulation.

  9. "WGL," a Web Laboratory for Geometry

    Science.gov (United States)

    Quaresma, Pedro; Santos, Vanda; Maric, Milena

    2018-01-01

    The role of information and communication technologies (ICT) in education is nowadays well recognised. The "Web Geometry Laboratory," is an e-learning, collaborative and adaptive, Web environment for geometry, integrating a well known dynamic geometry system. In a collaborative session, teachers and students, engaged in solving…

  10. Analytische Geometrie

    Science.gov (United States)

    Kemnitz, Arnfried

    Der Grundgedanke der Analytischen Geometrie besteht darin, dass geometrische Untersuchungen mit rechnerischen Mitteln geführt werden. Geometrische Objekte werden dabei durch Gleichungen beschrieben und mit algebraischen Methoden untersucht.

  11. Connections between algebra, combinatorics, and geometry

    CERN Document Server

    Sather-Wagstaff, Sean

    2014-01-01

    Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...

  12. Three-dimensional particle tracking in concave structures made by ultraviolet nanoimprint via total internal reflection fluorescence microscopy and refractive-index-matching method

    Science.gov (United States)

    Fujinami, Taku; Kigami, Hiroshi; Unno, Noriyuki; Taniguchi, Jun; Satake, Shin-ichi

    2018-03-01

    Total internal reflection fluorescence microscopy (TIRFM) is a promising method for measuring fluid flow close to a wall with nanoscale resolution in a process that is termed "multilayer nanoparticle image velocimetry" (MnPIV). TIRFM uses evanescent light that is generated on a substrate (typically a glass slide) by total internal reflection of light. Many researchers have previously studied x-y-z (3D) flows of water close to flat glass slides using MnPIV. On the other hand, a fluid flow close to a structured surface is also important. To measure flows of water near micro-patterns, we previously developed an MnPIV technique that uses a refractive-index-matching method. In previous study, the micropattern is made of a thermoplastic material with a refractive index that closely matches that of water. In this study, ultraviolet nanoimprint lithography was used for fabricating the appropriate micro-patterns because this technique can fabricate a pattern with a high resolution. As a result, we succeeded in performing MnPIV in water with a circular hole array pattern made by ultraviolet nanoimprint using a refractive-index-matching method. We believe that this technique will be helpful in elucidating fluid flows around microstructures.

  13. Darkfield adapter for whole slide imaging: adapting a darkfield internal reflection illumination system to extend WSI applications.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kawano

    Full Text Available We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI, also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI. Our darkfield system uses an ultra-thin light-emitting diode (LED light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1 no oil condenser is required for high resolution imaging (2 there is less scatter from dust and dirt on the slide specimen (3 there is less halo, providing a more natural darkfield contrast image, and (4 the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the

  14. Algebraic Geometry and Number Theory Summer School

    CERN Document Server

    Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk

    2017-01-01

    This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.

  15. Applications of Affine and Weyl geometry

    CERN Document Server

    García-Río, Eduardo; Nikcevic, Stana

    2013-01-01

    Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia

  16. The Idea of Order at Geometry Class.

    Science.gov (United States)

    Rishel, Thomas

    The idea of order in geometry is explored using the experience of assignments given to undergraduates in a college geometry course "From Space to Geometry." Discussed are the definition of geometry, and earth measurement using architecture, art, and common experience. This discussion concludes with a consideration of the question of whether…

  17. Special geometry

    International Nuclear Information System (INIS)

    Strominger, A.

    1990-01-01

    A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)

  18. International Relations

    OpenAIRE

    McGlinchey, S.

    2017-01-01

    A ‘Day 0’ introduction to International Relations for beginners. Written by a range of emerging and established experts, the chapters offer a broad sweep of the basic components of International Relations and the key contemporary issues that concern the discipline. The narrative arc forms a complete circle, taking readers from no knowledge to competency. The journey starts by examining how the international system was formed and ends by reflecting that International Relations is always adapti...

  19. Using Dynamic Geometry Software to Improve Eight Grade Students' Understanding of Transformation Geometry

    Science.gov (United States)

    Guven, Bulent

    2012-01-01

    This study examines the effect of dynamic geometry software (DGS) on students' learning of transformation geometry. A pre- and post-test quasi-experimental design was used. Participants in the study were 68 eighth grade students (36 in the experimental group and 32 in the control group). While the experimental group students were studying the…

  20. The International Association of Hydrogeologists (IAH): reflecting on 60 years of contributions to groundwater science and water management

    Science.gov (United States)

    Struckmeier, Willi; Howard, Ken; Chilton, John

    2016-08-01

    The 60th anniversary of the founding of the International Association of Hydrogeologists (IAH) is an important milestone that allows pause for reflection on how the association has evolved over the years and the contributions it has made to groundwater science and water management. IAH was founded in 1956 at the 20th International Geological Congress and developed rapidly during the 1980s and 1990s in response to a growing global interest in groundwater mapping and in sound approaches to resource protection and sustainable aquifer management. Incorporated in 2000, IAH has now secured its position as the world's leading international association specialising in groundwater with over 4,100 members in 131 countries. Much credit for this success must go to members, past and present, whose individual efforts and collaboration with sister institutions are documented here. These members have shaped the association's goals and contributed selflessly to its scientific programmes, publications and educational and charitable activities. Looking ahead to the next 60 years, it is essential that IAH does not rest on past achievements but listens and adjusts to the needs of members while continuing to pursue its mission of furthering the understanding, wise use and protection of groundwater resources throughout the world.

  1. Accessible biometrics: A frustrated total internal reflection approach to imaging fingerprints.

    Science.gov (United States)

    Smith, Nathan D; Sharp, James S

    2017-05-01

    Fingerprints are widely used as a means of identifying persons of interest because of the highly individual nature of the spatial distribution and types of features (or minuta) found on the surface of a finger. This individuality has led to their wide application in the comparison of fingerprints found at crime scenes with those taken from known offenders and suspects in custody. However, despite recent advances in machine vision technology and image processing techniques, fingerprint evidence is still widely being collected using outdated practices involving ink and paper - a process that can be both time consuming and expensive. Reduction of forensic service budgets increasingly requires that evidence be gathered and processed more rapidly and efficiently. However, many of the existing digital fingerprint acquisition devices have proven too expensive to roll out on a large scale. As a result new, low-cost imaging technologies are required to increase the quality and throughput of the processing of fingerprint evidence. Here we describe an inexpensive approach to digital fingerprint acquisition that is based upon frustrated total internal reflection imaging. The quality and resolution of the images produced are shown to be as good as those currently acquired using ink and paper based methods. The same imaging technique is also shown to be capable of imaging powdered fingerprints that have been lifted from a crime scene using adhesive tape or gel lifters. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  2. Wave Reflection Model Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Larsen, Brian Juul

    The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...

  3. Solution of the neutron transport equation by the collision probability method for 3D geometries; Resolution de l`equation du transport par les neutrons par la methode des probabilites de collision dans les geometries 3D

    Energy Technology Data Exchange (ETDEWEB)

    Oujidi, B

    1996-09-19

    The TDT code solves the multigroup transport equation by the interface-current method for unstructured 2D geometries. This works presents the extension of TDT to the treatment of 3D geometries obtained by axial displacement of unstructured 2D geometries. Three-dimensional trajectories are obtained by lifting the 2D trajectories. The code allows for the definition of macro-domains in the axial direction to be used in interface-current method. Specular and isotropic reflection or translations boundary conditions can be applied to the horizontal boundaries of the domain. Numerical studies have shown the need for longer trajectory cutoffs for trajectories intersecting horizontal boundaries. Numerical applications to the calculation of local power peaks are given in a second part for: the local destruction of a Pyrex absorbent, inter-assembly (U02-MOX) power distortion due to pellet collapsing at the top of the core. Calculations with 16 groups were performed by coupling TDT to the spectral code APOLLO2. One-group comparisons with the Monte Carlo code TRIMARAN2 are also given. (author) 30 refs.

  4. Disformal transformation in Newton-Cartan geometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peng [Zhejiang Chinese Medical University, Department of Information, Hangzhou (China); Sun Yat-Sen University, School of Physics and Astronomy, Guangzhou (China); Yuan, Fang-Fang [Nankai University, School of Physics, Tianjin (China)

    2016-08-15

    Newton-Cartan geometry has played a central role in recent discussions of the non-relativistic holography and condensed matter systems. Although the conformal transformation in non-relativistic holography can easily be rephrased in terms of Newton-Cartan geometry, we show that it requires a nontrivial procedure to arrive at the consistent form of anisotropic disformal transformation in this geometry. Furthermore, as an application of the newly obtained transformation, we use it to induce a geometric structure which may be seen as a particular non-relativistic version of the Weyl integrable geometry. (orig.)

  5. INFLUENCE OF THE VIEWING GEOMETRY WITHIN HYPERSPECTRAL IMAGES RETRIEVED FROM UAV SNAPSHOT CAMERAS

    Directory of Open Access Journals (Sweden)

    H. Aasen

    2016-06-01

    Full Text Available Hyperspectral data has great potential for vegetation parameter retrieval. However, due to angular effects resulting from different sun-surface-sensor geometries, objects might appear differently depending on the position of an object within the field of view of a sensor. Recently, lightweight snapshot cameras have been introduced, which capture hyperspectral information in two spatial and one spectral dimension and can be mounted on unmanned aerial vehicles. This study investigates the influence of the different viewing geometries within an image on the apparent hyperspectral reflection retrieved by these sensors. Additionally, it is evaluated how hyperspectral vegetation indices like the NDVI are effected by the angular effects within a single image and if the viewing geometry influences the apparent heterogeneity with an area of interest. The study is carried out for a barley canopy at booting stage. The results show significant influences of the position of the area of interest within the image. The red region of the spectrum is more influenced by the position than the near infrared. The ability of the NDVI to compensate these effects was limited to the capturing positions close to nadir. The apparent heterogeneity of the area of interest is the highest close to a nadir.

  6. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  7. Optimizing solar-cell grid geometry

    Science.gov (United States)

    Crossley, A. P.

    1969-01-01

    Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.

  8. Geometry and Cloaking Devices

    Science.gov (United States)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  9. A first course in geometry

    CERN Document Server

    Walsh, Edward T

    2014-01-01

    This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl

  10. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  11. Metal ions diffusion through polymeric matrices: A total reflection X-ray fluorescence study

    International Nuclear Information System (INIS)

    Boeykens, S.; Caracciolo, N.; D'Angelo, M.V.; Vazquez, C.

    2006-01-01

    This work proposes the use of X-ray fluorescence with total reflection geometry to explore the metal ions transport in aqueous hydrophilic polymer solutions. It is centered in the study of polymer concentration influence on ion diffusion. This subject is relevant to various and diverse applications, such as drug controlled release, microbiologic corrosion protection and enhanced oil recovery. It is anticipated that diffusion is influenced by various factors in these systems, including those specific to the diffusing species, such as charge, shape, molecular size, and those related to the structural complexity of the matrix as well as any specific interaction between the diffusing species and the matrix. The diffusion of nitrate salts of Ba and Mn (same charge, different hydrodynamic radii) through water-swollen polymeric solutions and gels in the 0.01% to 1% concentration ranges was investigated. The measurements of the metal concentration were performed by TXRF analysis using the scattered radiation by the sample as internal standard. Results are discussed according to different physical models for solute diffusion in polymeric solutions

  12. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  13. Rheumatoid arthritis is associated with less optimal hip structural geometry.

    Science.gov (United States)

    Wright, Nicole C; Lisse, Jeffrey R; Beck, Thomas J; Sherrill, Duane L; Mohler, M Jane; Bassford, Tamsen; Cauley, Jane A; Lacroix, Andrea Z; Lewis, Cora E; Chen, Zhao

    2012-01-01

    The overall goal of this study was to assess the longitudinal changes in bone strength in women reporting rheumatoid arthritis (RA; n=78) compared with nonarthritic control participants (n=4779) of the Women's Health Initiative bone mineral density (WHI-BMD) subcohort. Hip structural analysis program was applied to archived dual-energy X-ray absorptiometry scans (baseline, years 3, 6, and 9) to estimate bone mineral density (BMD) and hip structural geometry parameters in 3 femoral regions: narrow neck (NN), intertrochanteric (IT), and shaft (S). The association between RA and hip structural geometry was tested using linear regression and random coefficient models. Compared with the nonarthritic control, the RA group had a lower BMD (p=0.061) and significantly lower outer diameter (p=0.017), cross-sectional area (p=0.004), and section modulus (p=0.035) at the NN region in the longitudinal models. No significant associations were seen at the IT regions or S regions, and the association was not modified by age, ethnicity, glucocorticoid use, or time. Within the WHI-BMD, women with RA group had reduced BMD and structural geometry at baseline, and this reduction was seen at a fixed rate throughout the 9 yr of study. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  14. Gold nanoparticle-polydimethylsiloxane films reflect light internally by optical diffraction and Mie scattering

    International Nuclear Information System (INIS)

    Dunklin, Jeremy R; Keith Roper, D; Forcherio, Gregory T

    2015-01-01

    Optical properties of polymer films embedded with plasmonic nanoparticles (NPs) are important in many implementations. In this work, optical extinction by polydimethylsiloxane (PDMS) films containing gold (Au) NPs was enhanced at resonance compared to AuNPs in suspensions, Beer–Lambert law, or Mie theory by internal reflection due to optical diffraction in 16 nm AuNP–PDMS films and Mie scattering in 76 nm AuNP–PDMS films. Resonant extinction per AuNP for 16 nm AuNPs with negligible resonant Mie scattering was enhanced up to 1.5-fold at interparticle separation (i.e., Wigner–Seitz radii) comparable to incident wavelength. It was attributable to diffraction through apertures formed by overlapping electric fields of adjacent, resonantly excited AuNPs at Wigner–Seitz radii equal to or less than incident wavelengths. Resonant extinction per AuNP for strongly Mie scattering 76 nm AuNPs was enhanced up to 1.3-fold at Wigner–Seitz radii four or more times greater than incident wavelength. Enhanced light trapping from diffraction and/or scattering is relevant to optoelectronic, biomedical, and catalytic activity of substrates embedded with NPs. (paper)

  15. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  16. A geometry calibration method for rotation translation trajectory

    International Nuclear Information System (INIS)

    Zhang Jun; Yan Bin; Li Lei; Lu Lizhong; Zhang Feng

    2013-01-01

    In cone-beam CT imaging system, it is difficult to directly measure the geometry parameters. In this paper, a geometry calibration method for rotation translation trajectory is proposed. Intrinsic parameters are solved from the relationship built on geometry parameter of the system and projection trajectory of calibration object. Parameters of rotation axis are extrapolated from the unified intrinsic parameter, and geometry parameters of the idle trajectory are acquired too. The calibration geometry can be analytically determined using explicit formulae, it can avoid getting into local optimum in iterative way. Simulation experiments are carried out on misaligned geometry, experiment results indicate that geometry artifacts due to misaligned geometry are effectively depressed by the proposed method, and the image quality is enhanced. (authors)

  17. Geometry modeling for SAM-CE Monte Carlo calculations

    International Nuclear Information System (INIS)

    Steinberg, H.A.; Troubetzkoy, E.S.

    1980-01-01

    Three geometry packages have been developed and incorporated into SAM-CE, for representing in three dimensions the transport medium. These are combinatorial geometry - a general (non-lattice) system, complex combinatorial geometry - a very general system with lattice capability, and special reactor geometry - a special purpose system for light water reactor geometries. Their different attributes are described

  18. How Can Polarization States of Reflected Light from Snow Surfaces Inform Us on Surface Normals and Ultimately Snow Grain Size Measurements?

    Science.gov (United States)

    Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.

    2016-12-01

    The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.

  19. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...

  20. Advances in discrete differential geometry

    CERN Document Server

    2016-01-01

    This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

  1. The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry.

    Science.gov (United States)

    Nabok, Alexei; Tsargorodskaya, Anna; Davis, Frank; Higson, Séamus P J

    2007-10-31

    The adsorption of genomic DNA and subsequent interactions between adsorbed and solvated DNA was studied using a novel sensitive optical method of total internal reflection ellipsometry (TIRE), which combines spectroscopic ellipsometry with surface plasmon resonance (SPR). Single strands of DNA of two species of fish (herring and salmon) were electrostatically adsorbed on top of polyethylenimine films deposited upon gold coated glass slides. The ellipsometric spectra were recorded and data fitting utilized to extract optical parameters (thickness and refractive index) of adsorbed DNA layers. The further adsorption of single stranded DNA from an identical source, i.e. herring ss-DNA on herring ss-DNA or salmon ss-DNA on salmon ss-DNA, on the surface was observed to give rise to substantial film thickness increases at the surface of about 20-21 nm. Conversely adsorption of DNA from alternate species, i.e. salmon ss-DNA on herring ss-DNA or herring ss-DNA on salmon ss-DNA, yielded much smaller changes in thickness of 3-5 nm. AFM studies of the surface roughness of adsorbed layers were in line with the TIRE data.

  2. Quantification of protein based on single-molecule counting by total internal reflection fluorescence microscopy with adsorption equilibrium

    International Nuclear Information System (INIS)

    Wang Lei; Xu Guang; Shi Zhikun; Jiang Wei; Jin Wenrui

    2007-01-01

    We developed a sensitive single-molecule imaging method for quantification of protein by total internal reflection fluorescence microscopy with adsorption equilibrium. In this method, the adsorption equilibrium of protein was achieved between solution and glass substrate. Then, fluorescence images of protein molecules in a evanescent wave field were taken by a highly sensitive electron multiplying charge coupled device. Finally, the number of fluorescent spots corresponding to the protein molecules in the images was counted. Alexa Fluor 488-labeled goat anti-rat IgG(H + L) was chosen as the model protein. The spot number showed an excellent linear relationship with protein concentration. The concentration linear range was 5.4 x 10 -11 to 8.1 x 10 -10 mol L -1

  3. An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry

    Science.gov (United States)

    2015-12-01

    ARL-SR-0347 ● DEC 2015 US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary...US Army Research Laboratory An Investigation into Conversion from Non-Uniform Rational B-Spline Boundary Representation Geometry to...from Non-Uniform Rational B-Spline Boundary Representation Geometry to Constructive Solid Geometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  4. W-geometry

    International Nuclear Information System (INIS)

    Hull, C.M.

    1993-01-01

    The geometric structure of theories with gauge fields of spins two and higher should involve a higher spin generalisation of Riemannian geometry. Such geometries are discussed and the case of W ∝ -gravity is analysed in detail. While the gauge group for gravity in d dimensions is the diffeomorphism group of the space-time, the gauge group for a certain W-gravity theory (which is W ∝ -gravity in the case d=2) is the group of symplectic diffeomorphisms of the cotangent bundle of the space-time. Gauge transformations for W-gravity gauge fields are given by requiring the invariance of a generalised line element. Densities exist and can be constructed from the line element (generalising √detg μν ) only if d=1 or d=2, so that only for d=1,2 can actions be constructed. These two cases and the corresponding W-gravity actions are considered in detail. In d=2, the gauge group is effectively only a subgroup of the symplectic diffeomorphisms group. Some of the constraints that arise for d=2 are similar to equations arising in the study of self-dual four-dimensional geometries and can be analysed using twistor methods, allowing contact to be made with other formulations of W-gravity. While the twistor transform for self-dual spaces with one Killing vector reduces to a Legendre transform, that for two Killing vectors gives a generalisation of the Legendre transform. (orig.)

  5. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  6. Mapping reflectance anisotropy of a potato canopy using aerial images acquired with an unmanned aerial vehicle

    NARCIS (Netherlands)

    Roosjen, Peter; Suomalainen, Juha; Bartholomeus, Harm; Kooistra, Lammert; Clevers, Jan

    2017-01-01

    Viewing and illumination geometry has a strong influence on optical measurements of natural surfaces due to their anisotropic reflectance properties. Typically, cameras on-board unmanned aerial vehicles (UAVs) are affected by this because of their relatively large field of view (FOV) and thus large

  7. Models og International Entrepreneurship

    DEFF Research Database (Denmark)

    Rask, Morten; Servais, Per

    2015-01-01

    on International Entrepreneurship, and specifically but not exclusively, International New Ventures (INVs). The three resulting ‘meta-models’ depict the activities and loci of such firms, the motivating factors that give rise to such firms and their growth modalities and strategies. These models reflect the merger...... of entrepreneurship and international business into the field of international entrepreneurship....

  8. Numerically robust geometry engine for compound solid geometries

    International Nuclear Information System (INIS)

    Vlachoudis, V.; Sinuela-Pastor, D.

    2013-01-01

    Monte Carlo programs heavily rely on a fast and numerically robust solid geometry engines. However the success of solid modeling, depends on facilities for specifying and editing parameterized models through a user-friendly graphical front-end. Such a user interface has to be fast enough in order to be interactive for 2D and/or 3D displays, but at the same time numerically robust in order to display possible modeling errors at real time that could be critical for the simulation. The graphical user interface Flair for FLUKA currently employs such an engine where special emphasis has been given on being fast and numerically robust. The numerically robustness is achieved by a novel method of estimating the floating precision of the operations, which dynamically adapts all the decision operations accordingly. Moreover a predictive caching mechanism is ensuring that logical errors in the geometry description are found online, without compromising the processing time by checking all regions. (authors)

  9. Influence of Diesel Nozzle Geometry on Cavitation Using Eulerian Multi-Fluid Method

    Institute of Scientific and Technical Information of China (English)

    张军; 杜青; 杨延相

    2010-01-01

    Dependent on automatically generated unstructured grids, a comprehensive computational fluid dynamics(CFD)numerical simulation is performed to analyze the influence of nozzle geometry on the internal flow characteristics of a multi-hole diesel injector with the multi-phase flow model based on Eulerian multi-fluid method.The diesel components in nozzle are considered as two continuous phases, diesel liquid and diesel vapor respectively.Considering that both of them are fully coupled and interpenetrated, sepa...

  10. Quantification of Porcine Vocal Fold Geometry.

    Science.gov (United States)

    Stevens, Kimberly A; Thomson, Scott L; Jetté, Marie E; Thibeault, Susan L

    2016-07-01

    The aim of this study was to quantify porcine vocal fold medial surface geometry and three-dimensional geometric distortion induced by freezing the larynx, especially in the region of the vocal folds. The medial surface geometries of five excised porcine larynges were quantified and reported. Five porcine larynges were imaged in a micro-CT scanner, frozen, and rescanned. Segmentations and three-dimensional reconstructions were used to quantify and characterize geometric features. Comparisons were made with geometry data previously obtained using canine and human vocal folds as well as geometries of selected synthetic vocal fold models. Freezing induced an overall expansion of approximately 5% in the transverse plane and comparable levels of nonuniform distortion in sagittal and coronal planes. The medial surface of the porcine vocal folds was found to compare reasonably well with other geometries, although the compared geometries exhibited a notable discrepancy with one set of published human female vocal fold geometry. Porcine vocal folds are qualitatively geometrically similar to data available for canine and human vocal folds, as well as commonly used models. Freezing of tissue in the larynx causes distortion of around 5%. The data can provide direction in estimating uncertainty due to bulk distortion of tissue caused by freezing, as well as quantitative geometric data that can be directly used in developing vocal fold models. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. Optical profilometer using laser based conical triangulation for inspection of inner geometry of corroded pipes in cylindrical coordinates

    Science.gov (United States)

    Buschinelli, Pedro D. V.; Melo, João. Ricardo C.; Albertazzi, Armando; Santos, João. M. C.; Camerini, Claudio S.

    2013-04-01

    An axis-symmetrical optical laser triangulation system was developed by the authors to measure the inner geometry of long pipes used in the oil industry. It has a special optical configuration able to acquire shape information of the inner geometry of a section of a pipe from a single image frame. A collimated laser beam is pointed to the tip of a 45° conical mirror. The laser light is reflected in such a way that a radial light sheet is formed and intercepts the inner geometry and forms a bright laser line on a section of the inspected pipe. A camera acquires the image of the laser line through a wide angle lens. An odometer-based triggering system is used to shot the camera to acquire a set of equally spaced images at high speed while the device is moved along the pipe's axis. Image processing is done in real-time (between images acquisitions) thanks to the use of parallel computing technology. The measured geometry is analyzed to identify corrosion damages. The measured geometry and results are graphically presented using virtual reality techniques and devices as 3D glasses and head-mounted displays. The paper describes the measurement principles, calibration strategies, laboratory evaluation of the developed device, as well as, a practical example of a corroded pipe used in an industrial gas production plant.

  12. Effect of cosine current approximation in lattice cell calculations in cylindrical geometry

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1978-01-01

    It is found that one-dimensional cylindrical geometry reactor lattice cell calculations using cosine angular current approximation at spatial mesh interfaces give results surprisingly close to the results of accurate neutron transport calculations as well as experimental measurements. This is especially true for tight light water moderated lattices. Reasons for this close agreement are investigated here. By re-examining the effects of reflective and white cell boundary conditions in these calculations it is concluded that one major reason is the use of white boundary condition necessitated by the approximation of the two-dimensional reactor lattice cell by a one-dimensional one. (orig.) [de

  13. Attenuated total internal reflection Fourier transform infrared spectroscopy: a quantitative approach for kidney stone analysis.

    Science.gov (United States)

    Gulley-Stahl, Heather J; Haas, Jennifer A; Schmidt, Katherine A; Evan, Andrew P; Sommer, André J

    2009-07-01

    The impact of kidney stone disease is significant worldwide, yet methods for quantifying stone components remain limited. A new approach requiring minimal sample preparation for the quantitative analysis of kidney stone components has been investigated utilizing attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FT-IR). Calcium oxalate monohydrate (COM) and hydroxylapatite (HAP), two of the most common constituents of urinary stones, were used for quantitative analysis. Calibration curves were constructed using integrated band intensities of four infrared absorptions versus concentration (weight %). The correlation coefficients of the calibration curves range from 0.997 to 0.93. The limits of detection range from 0.07 +/- 0.02% COM/HAP where COM is the analyte and HAP is the matrix, to 0.26 +/- 0.07% HAP/COM where HAP is the analyte and COM is the matrix. This study shows that linear calibration curves can be generated for the quantitative analysis of stone mixtures provided the system is well understood especially with respect to particle size.

  14. Lectures on discrete geometry

    CERN Document Server

    2002-01-01

    Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

  15. Discrete and computational geometry

    CERN Document Server

    Devadoss, Satyan L

    2011-01-01

    Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...

  16. A prediction for bubbling geometries

    OpenAIRE

    Okuda, Takuya

    2007-01-01

    We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.

  17. Geometry -----------~--------------RESONANCE

    Indian Academy of Sciences (India)

    Parallel: A pair of lines in a plane is said to be parallel if they do not meet. Mathematicians were at war ... Subsequently, Poincare, Klein, Beltrami and others refined non-. Euclidean geometry. ... plane divides the plane into two half planes and.

  18. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  19. Beyond Reflection through an Academic Lens: Refraction and International Experiential Education

    Science.gov (United States)

    Pagano, Monica; Roselle, Laura

    2009-01-01

    Students today are becoming more interested in international opportunities for study, and are drawn to alternative programs such as international service learning and international internships. These programs, however, must be carefully designed. In this paper, the authors propose using tools that go beyond the traditional understanding of…

  20. Criticality safety validation: Simple geometry, single unit {sup 233}U systems

    Energy Technology Data Exchange (ETDEWEB)

    Putman, V.L.

    1997-06-01

    Typically used LMITCO criticality safety computational methods are evaluated for suitability when applied to INEEL {sup 233}U systems which reasonably can be modeled as simple-geometry, single-unit systems. Sixty-seven critical experiments of uranium highly enriched in {sup 233}U, including 57 aqueous solution, thermal-energy systems and 10 metal, fast-energy systems, were modeled. These experiments include 41 cylindrical and 26 spherical cores, and 41 reflected and 26 unreflected systems. No experiments were found for intermediate-neutron-energy ranges, or with interstitial non-hydrogenous materials typical of waste systems, mixed {sup 233}U and plutonium, or reflectors such as steel, lead, or concrete. No simple geometry experiments were found with cubic or annular cores, or approximating infinite sea systems. Calculations were performed with various tools and methodologies. Nine cross-section libraries, based on ENDF/B-IV, -V, or -VI.2, or on Hansen-Roach source data, were used with cross-section processing methods of MCNP or SCALE. The k{sub eff} calculations were performed with neutral-particle transport and Monte Carlo methods of criticality codes DANT, MCNP 4A, and KENO Va.

  1. Minimal local Lagrangians for higher-spin geometry

    International Nuclear Information System (INIS)

    Francia, Dario; Sagnotti, Augusto

    2005-01-01

    The Fronsdal Lagrangians for free totally symmetric rank-s tensors φ μ 1 ...μ s rest on suitable trace constraints for their gauge parameters and gauge fields. Only when these constraints are removed, however, the resulting equations reflect the expected free higher-spin geometry. We show that geometric equations, in both their local and non-local forms, can be simply recovered from local Lagrangians with only two additional fields, a rank-(s-3) compensator α μ 1 ...μ s-3 and a rank-(s-4) Lagrange multiplier β μ 1 ...μ s-4 . In a similar fashion, we show that geometric equations for unconstrained rank-n totally symmetric spinor-tensors ψ μ 1 ...μ n can be simply recovered from local Lagrangians with only two additional spinor-tensors, a rank-(n-2) compensator ξ μ 1 ...μ n-2 and a rank-(n-3) Lagrange multiplier λ μ 1 ...μ n-3

  2. Global Explorers Journaling and Reflection Initiative

    Directory of Open Access Journals (Sweden)

    John Bennion

    2016-12-01

    Full Text Available Research suggests that journaling will increase reflection and improve program outcomes (Bain, et al, 1999; Duerden, et al, 2012 This study involved a partnership with a non-profit, Global Explorers (GEx, which provides international immersion experiences for youth. Their programs are designed to teach youth participants principles of leadership, environmental awareness, service, and science. This study, which tested whether teaching journaling techniques to youth program facilitators would have a positive impact on participant outcomes, addressed the following hypotheses: 1 Greater training in reflective thinking among participants would be associated with higher outcome scores, and 2 Participants in the intervention group (facilitators trained in journaling pedagogy would show greater increases in reflective thinking than comparison group members. Results based on participant self-assessment were significant in testing the first hypothesis; reflective thinking is positively associated with outcome measures, but the intervention group did not show increases in reflective thinking.

  3. Geometry The Language of Space and Form (Revised Edition)

    CERN Document Server

    Tabak, John

    2011-01-01

    Geometry, Revised Edition describes geometry in antiquity. Beginning with a brief description of some of the geometry that preceded the geometry of the Greeks, it takes up the story of geometry during the European Renaissance as well as the significant mathematical progress in other areas of the world. It also discusses the analytic geometry of Ren Descartes and Pierre Fermat, the alternative coordinate systems invented by Isaac Newton, and the solid geometry of Leonhard Euler. Also included is an overview of the geometry of one of the most successful mathematicians of the 19th century, Bernha

  4. Shock Geometry and Spectral Breaks in Large SEP Events

    Science.gov (United States)

    Li, G.; Zank, G. P.; Verkhoglyadova, Olga; Mewaldt, R. A.; Cohen, C. M. S.; Mason, G. M.; Desai, M. I.

    2009-09-01

    Solar energetic particle (SEP) events are traditionally classified as "impulsive" or "gradual." It is now widely accepted that in gradual SEP events, particles are accelerated at coronal mass ejection-driven (CME-driven) shocks. In many of these large SEP events, particle spectra exhibit double power law or exponential rollover features, with the break energy or rollover energy ordered as (Q/A)α, with Q being the ion charge in e and A the ion mass in units of proton mass mp . This Q/A dependence of the spectral breaks provides an opportunity to study the underlying acceleration mechanism. In this paper, we examine how the Q/A dependence may depend on shock geometry. Using the nonlinear guiding center theory, we show that α ~ 1/5 for a quasi-perpendicular shock. Such a weak Q/A dependence is in contrast to the quasi-parallel shock case where α can reach 2. This difference in α reflects the difference of the underlying parallel and perpendicular diffusion coefficients κ|| and κbottom. We also examine the Q/A dependence of the break energy for the most general oblique shock case. Our analysis offers a possible way to remotely examine the geometry of a CME-driven shock when it is close to the Sun, where the acceleration of particle to high energies occurs.

  5. Consistencies far beyond chance: an analysis of learner preconceptions of reflective symmetry

    Directory of Open Access Journals (Sweden)

    Michael Kainose Mhlolo

    2013-01-01

    Full Text Available This article reports on regularities observed in learners' preconceptions of reflective symmetry. Literature suggests that the very existence of such regularities indicates a gap between what learners know and what they need to know. Such a gap inhibits further understanding and application, and hence needed to be investigated. A total of 235 Grade 11 learners, from 13 high schools that participate in the First Rand Foundation-funded Mathematics Education project in the Eastern Cape, responded to a task on reflective symmetry. Our framework for analysing the responses was based on the taxonomy of structure of the observed learning outcome. The results indicated that 85% of learner responses reflect a motion understanding of reflections, where learners considered geometric figures as physical motions on top of the plane. While this understanding is useful in some cases, it is not an essential aspect of mapping understanding, which is critical for application in function notations and other analytical geometry contexts. We suggest that if this gap is to be closed, learners need to construct these reflections physically so that they may think of reflections beyond motion.

  6. From geometry to algebra and vice versa: Realistic mathematics education principles for analyzing geometry tasks

    Science.gov (United States)

    Jupri, Al

    2017-04-01

    In this article we address how Realistic Mathematics Education (RME) principles, including the intertwinement and the reality principles, are used to analyze geometry tasks. To do so, we carried out three phases of a small-scale study. First we analyzed four geometry problems - considered as tasks inviting the use of problem solving and reasoning skills - theoretically in the light of the RME principles. Second, we tested two problems to 31 undergraduate students of mathematics education program and other two problems to 16 master students of primary mathematics education program. Finally, we analyzed student written work and compared these empirical to the theoretical results. We found that there are discrepancies between what we expected theoretically and what occurred empirically in terms of mathematization and of intertwinement of mathematical concepts from geometry to algebra and vice versa. We conclude that the RME principles provide a fruitful framework for analyzing geometry tasks that, for instance, are intended for assessing student problem solving and reasoning skills.

  7. Differential geometry curves, surfaces, manifolds

    CERN Document Server

    Kohnel, Wolfgang

    2002-01-01

    This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. Special topics that are explored include Frenet frames, ruled surfaces, minimal surfaces and the Gauss-Bonnet theorem. The second part is an introduction to the geometry of general manifolds, with particular emphasis on connections and curvature. The final two chapters are insightful examinations of the special cases of spaces of constant curvature and Einstein manifolds. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra.

  8. Projective Geometry

    Indian Academy of Sciences (India)

    mathematicians are trained to use very precise language, and so find it hard to simplify and state .... thing. If you take a plane on which there are two such triangles which enjoy the above ... within this geometry to simplify things if needed.

  9. Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding

    Science.gov (United States)

    Shi, Jianjun; Zhu, Ping; Fu, Geyan; Shi, Shihong

    2018-05-01

    Coaxial laser inside wire cladding method is very promising as it has a very high efficiency and a consistent interaction between the laser and wire. In this paper, the energy and mass conservation law, and the regression algorithm are used together for establishing the mathematical models to study the relationship between the layer geometry characteristics (width, height and cross section area) and process parameters (laser power, scanning velocity and wire feeding speed). At the selected parameter ranges, the predicted values from the models are compared with the experimental measured results, and there is minor error existing, but they reflect the same regularity. From the models, it is seen the width of the cladding layer is proportional to both the laser power and wire feeding speed, while it firstly increases and then decreases with the increasing of the scanning velocity. The height of the cladding layer is proportional to the scanning velocity and feeding speed and inversely proportional to the laser power. The cross section area increases with the increasing of feeding speed and decreasing of scanning velocity. By using the mathematical models, the geometry characteristics of the cladding layer can be predicted by the known process parameters. Conversely, the process parameters can be calculated by the targeted geometry characteristics. The models are also suitable for multi-layer forming process. By using the optimized process parameters calculated from the models, a 45 mm-high thin-wall part is formed with smooth side surfaces.

  10. The Influence of Ridge Geometry at the Ultraslow-Spreading Southwest Indiean Ridge (9 deg - 25 deg E): Basalt Composition Sensitivity to Variations in Source and Process

    National Research Council Canada - National Science Library

    Standish, Jared J

    2006-01-01

    ... with only scattered N-MORB and E-MORB erupted. Rather than a major break in mantle composition at the discontinuity between the supersegments, this sharp contrast in geometry, physiography, and chemistry reflects "source" versus "process...

  11. Geometry Design, Principles and Assembly of Micromotors

    Directory of Open Access Journals (Sweden)

    Huanpo Ning

    2018-02-01

    Full Text Available Discovery of bio-inspired, self-propelled and externally-powered nano-/micro-motors, rotors and engines (micromachines is considered a potentially revolutionary paradigm in nanoscience. Nature knows how to combine different elements together in a fluidic state for intelligent design of nano-/micro-machines, which operate by pumping, stirring, and diffusion of their internal components. Taking inspirations from nature, scientists endeavor to develop the best materials, geometries, and conditions for self-propelled motion, and to better understand their mechanisms of motion and interactions. Today, microfluidic technology offers considerable advantages for the next generation of biomimetic particles, droplets and capsules. This review summarizes recent achievements in the field of nano-/micromotors, and methods of their external control and collective behaviors, which may stimulate new ideas for a broad range of applications.

  12. Network geometry with flavor: From complexity to quantum geometry

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but

  13. Internal reflection flash photolysis study of the photochemistry of eosin at TiO sub 2 semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.A.; Fitzgerald, E.C.; Spitler, M.T. (Polaroid Corp., Cambridge, MA (USA))

    1989-08-10

    It is shown that the photoelectrochemical data on eosin Y sensitized TiO{sub 2} single-crystal electrodes cannot be interpreted unambiguously without concomitant data from flash photolysis measurements on this system. By use of a combination of internal reflection spectroscopy and laser flash photolysis, electron exchange with TiO{sub 2} was observed for the excited singlet state, the triplet state, and the cation radical of the dye. With a temporal resolution of 100 ns, the kinetics of the charge transfer are compared with those of the dye in solution and used to interpret the photoelectrochemistry of the dye at the electrode. Spectroscopic evidence revealed photocurrent production by the triplet state and a reduction of the eosin cation radical by electrons from the TiO{sub 2} conduction band and by hydroquinone.

  14. The Persistification of the ATLAS Geometry

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00068562; The ATLAS collaboration; Bianchi, Riccardo-Maria

    2016-01-01

    The complex geometry of the whole detector of the ATLAS experiment at LHC is currently stored only in custom online databases, from which it is built on-the- y on request. Accessing the online geometry guarantees accessing the latest version of the detector description, but requires the setup of the full ATLAS so ware framework “Athena”, which provides the online services and the tools to retrieve the data from the database. is operation is cumbersome and slows down the applications that need to access the geometry. Moreover, all applications that need to access the detector geom- etry need to be built and run on the same platform as the ATLAS framework, preventing the usage of the actual detector geometry in stand-alone applications. Here we propose a new mechanism to persistify and serve the geometry of HEP experiments. e new mechanism is composed by a new le format and a REST API. e new le format allows to store the whole detector description locally in a at le, and it is especially optimized to descri...

  15. Seismic Reflectivity of the Crust in the Northern Salton Trough

    Science.gov (United States)

    Bauer, K.; Fuis, G. S.; Goldman, M.; Persaud, P.; Ryberg, T.; Langenheim, V. E.; Scheirer, D. S.; Rymer, M. J.; Hole, J. A.; Stock, J. M.; Catchings, R.

    2015-12-01

    The Salton Trough in southern California is a tectonically active pull-apart basin that was formed by migrating step-overs between strike-slip faults, of which the San Andreas Fault (SAF) and the Imperial Fault are the current, northernmost examples. The Salton Seismic Imaging Project (SSIP) was undertaken to improve our knowledge of fault geometry and seismic velocities within the sedimentary basins and underlying crystalline crust around the SAF. Such data are useful as input for modeling scenarios of strong ground shaking in the surrounding high-population areas. We used pre-stack depth migration of line segments from shot gathers in several seismic profiles that were acquired in the northern part of the SSIP study area (Lines 4 - 7). Our migration approach can be considered as an infinite-frequency approximation of the Fresnel volume pre-stack depth migration method. We use line segments instead of the original waveform data. We demonstrate the method using synthetic data and analyze real data from Lines 4 - 7 to illustrate the relationship between distinct phases in the time domain and their resulting image at depth. We show both normal-moveout reflections from sub-horizontal interfaces and reverse-moveout reflections from steep interfaces, such as faults. Migrated images of dipping faults, such as the SAF and the Pinto Mountain Fault, are presented in this way. The SAF is imaged along Line 4, through the Mecca Hills, as a number of steeply dipping fault segments that collectively form a flower structure, above 5 km depth, that sole into a moderately NE-dipping fault below that depth. The individual migrated reflection packages correlate with mapped surface fault traces in the Mecca Hills. A similar geometry is seen on Line 6, from Palm Springs through Yucca Valley, where fault splays sole or project into a moderately dipping SAF below 10-km depth. We also show and discuss the reflectivity pattern of the middle and lower crust for Lines 4 - 7.

  16. Direct measurement of the static and transient magneto-optical permittivity of cobalt across the entire M -edge in reflection geometry by use of polarization scanning

    Science.gov (United States)

    Zusin, Dmitriy; Tengdin, Phoebe M.; Gopalakrishnan, Maithreyi; Gentry, Christian; Blonsky, Adam; Gerrity, Michael; Legut, Dominik; Shaw, Justin M.; Nembach, Hans T.; Silva, T. J.; Oppeneer, Peter M.; Kapteyn, Henry C.; Murnane, Margaret M.

    2018-01-01

    The microscopic state of a magnetic material is characterized by its resonant magneto-optical response through the off-diagonal dielectric tensor component ɛx y. However, the measurement of the full complex ɛx y in the extreme ultraviolet spectral region covering the M absorption edges of 3 d ferromagnets is challenging due to the need for either a careful polarization analysis, which is complicated by a lack of efficient polarization analyzers, or scanning the angle of incidence in fine steps. Here, we propose and demonstrate a technique to extract the complex resonant permittivity ɛx y simply by scanning the polarization angle of linearly polarized high harmonics to measure the magneto-optical asymmetry in reflection geometry. Because this technique is more practical and faster to experimentally implement than previous approaches, we can directly measure the full time evolution of ɛx y(t ) during laser-induced demagnetization across the entire M2 ,3 absorption edge of cobalt with femtosecond time resolution. We find that for polycrystalline Co films on an insulating substrate, the changes in ɛx y are uniform throughout the spectrum, to within our experimental precision. This result suggests that, in the regime of strong demagnetization, the ultrafast demagnetization response is primarily dominated by magnon generation. We estimate the contribution of exchange-splitting reduction to the ultrafast demagnetization process to be no more than 25%.

  17. Implosions and hypertoric geometry

    DEFF Research Database (Denmark)

    Dancer, A.; Kirwan, F.; Swann, A.

    2013-01-01

    The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....

  18. Maintaining International Peace and Security: Reflections on Peace ...

    African Journals Online (AJOL)

    take measures and develop strategies to address the peacekeeping ... measures to achieve this purpose that are to be taken by the UN Security ..... For any democratic government it ..... financing for the mission, followed by a long procurement process for .... The view is also held that wide disparities in the international.

  19. Granular flows in constrained geometries

    Science.gov (United States)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  20. Tree Canopy Characterization for EO-1 Reflective and Thermal Infrared Validation Studies: Rochester, New York

    Science.gov (United States)

    Ballard, Jerrell R., Jr.; Smith, James A.

    2002-01-01

    The tree canopy characterization presented herein provided ground and tree canopy data for different types of tree canopies in support of EO-1 reflective and thermal infrared validation studies. These characterization efforts during August and September of 2001 included stem and trunk location surveys, tree structure geometry measurements, meteorology, and leaf area index (LAI) measurements. Measurements were also collected on thermal and reflective spectral properties of leaves, tree bark, leaf litter, soil, and grass. The data presented in this report were used to generate synthetic reflective and thermal infrared scenes and images that were used for the EO-1 Validation Program. The data also were used to evaluate whether the EO-1 ALI reflective channels can be combined with the Landsat-7 ETM+ thermal infrared channel to estimate canopy temperature, and also test the effects of separating the thermal and reflective measurements in time resulting from satellite formation flying.

  1. Use of total internal reflection Raman (TIR) and attenuated total reflection infrared (ATR-IR) spectroscopy to analyze component separation in thin offset ink films after setting on coated paper surfaces.

    Science.gov (United States)

    Kivioja, Antti; Hartus, Timo; Vuorinen, Tapani; Gane, Patrick; Jääskeläinen, Anna-Stiina

    2013-06-01

    The interactive behavior of ink constituents with porous substrates during and after the offset print process has an important effect on the quality of printed products. To help elucidate the distribution of ink components between the retained ink layer and the substrate, a variety of spectroscopic and microscopic analysis techniques have been developed. This paper describes for the first time the use of total internal reflection (TIR) Raman spectroscopy to analyze the penetration behavior of separated offset ink components (linseed oil, solid color pigment) in coated papers providing chemically intrinsic information rapidly, nondestructively, and with minimal sample preparation. In addition, the already widely applied technique of attenuated total reflection infrared spectroscopy (ATR-IR) was evaluated in parallel and compared. The results of the ATR-IR Raman clearly revealed an improvement in uppermost depth resolution compared with values previously published from other nondestructive techniques, and the method is shown to be capable of providing new knowledge of the setting of thin (0.25-2 μm) offset ink films, allowing the spreading and the penetration behavior on physically different paper coating surfaces to be studied.

  2. Analisis Deskriptif Soal Geometri dalam Buku Matematika Bilingual untuk Sekolah Menengah Pertama Kelas VIII Berdasarkan Kriteria International Assessment TIMSS 2007

    Directory of Open Access Journals (Sweden)

    Etik Rahayu

    2012-06-01

    Full Text Available Tujuan penelitian ini adalah untuk mendeskripsikan  domain kognitif dan aspek kognitif (required behavior soal matematika dalam Buku Matematika Bilingual untuk Sekolah Menengah Pertama (SMP Kelas VIII berdasarkan kriteria International Assessment TIMSS 2007 dan proporsinya. Metode penelitian yang digunakan adalah deskriptif kualitatif, dengan subjek penelitian adalah soal geometri dalam Buku Matematika Bilingual SMP. yang berjudul “Mathematics for Junior High School Grade VIII 1st Semester” dan “Mathematics for Junior High School Grade VIII 2nd Semester” karangan karangan M. Cholik Adinawan dan Sugijono. Pengumpulan data menggunakan metode observasi dan wawancara tentang penggunaan buku matematika bilingual yang paling banyak digunakan di kota semarang. Pedoman analisis soal berdasarkan kriteria International Assessment TIMSS 2007, dengan validasi hasil oleh ahli. Hasil penelitian menunjukkan bahwa soal yang dianalisis memuat satu hingga tujuh aspek kognitif. Sebagian besar soal memuat 4 aspek kognitif yaitu 44.04 %, diikuti soal dengan 3 aspek kognitif  yaitu 36, 42%,  soal dengan 2 aspek kognitif yaitu 14, 90%, kemudian 1,99% untuk soal dengan 1 atau 5 aspek kognitif, dan 0,33% untuk soal dengan 6 atau 7 aspek kognitif. Proporsi tinggi pada recall (28.26% dan compute (26.57%, diikuti dengan SRP (10.85%, implement (10.65%, retrieve (8.36%, recognize (6.17%, analyze (1.99%, measure (1.59%, generalize (1.09%, SNRP (1.00%, classify (0.80%, represent (0.80%, justify (0.80%, select (0.60%, model (0.30%, synthesis (0.20%. Secara keseluruhan berdasarkan International Assessment TIMSS 2007 soal yang termasuk domain knowing memiliki persentase paling tinggi (52.28%, domain knowing-applying (24.83%, domain knowing- reasoning (12.91%, dan hanya sedikit yang termasuk domain knowing-apllying-reasoning (3.97%. Serta terdapat 4 soal (1.32% yang mempunyai ketidaksesuaian penggunaan mathematics terms serta 1 soal (0

  3. Internal reflection of interstitial atoms from close-packed tungsten faces

    International Nuclear Information System (INIS)

    Dranova, Zh.I.; Mikhajlovskij, I.M.

    1981-01-01

    Use of field-ion microscopy methods has shown that changes in microtopography of tungsten specimens irradiated with 2-5 keV helium atoms are mainly related to the liberation of interstitial atoms on the surface. It is established that the atom liberation on the surface is considerably anisotropic: maximum quantity of atoms is observed in the vicinity of faces (100), (111) and (211) along the sections of zone lines (110) oriented along the edge of the first Brillouin zone. The atom liberation on plane sections of the most dense-packed face (110) was not observed as a rule; atomic steps of the face are interstitial atom sinks. It is concluded on the basis of the results obtained that there is the predominant inner reflection of interstitial atoms from the dense-packed faces and a possible contribution of inner reflection to the surface migration processes activated with the ion bombardment as well as material swelling have been analyzed [ru

  4. A vector space approach to geometry

    CERN Document Server

    Hausner, Melvin

    2010-01-01

    The effects of geometry and linear algebra on each other receive close attention in this examination of geometry's correlation with other branches of math and science. In-depth discussions include a review of systematic geometric motivations in vector space theory and matrix theory; the use of the center of mass in geometry, with an introduction to barycentric coordinates; axiomatic development of determinants in a chapter dealing with area and volume; and a careful consideration of the particle problem. 1965 edition.

  5. Integral geometry and valuations

    CERN Document Server

    Solanes, Gil

    2014-01-01

    Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...

  6. CBM RICH geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Tariq; Hoehne, Claudia [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. The main electron identification detector in the CBM experiment will be a RICH detector with a CO{sub 2} gaseous-radiator, focusing spherical glass mirrors, and MAPMT photo-detectors being placed on a PMT-plane. The RICH detector is located directly behind the CBM dipole magnet. As the final magnet geometry is now available, some changes in the RICH geometry become necessary. In order to guarantee a magnetic field of 1 mT at maximum in the PMT plane for effective operation of the MAPMTs, two measures have to be taken: The PMT plane is moved outwards of the stray field by tilting the mirrors by 10 degrees and shielding boxes have been designed. In this contribution the results of the geometry optimization procedure are presented.

  7. Riemannian geometry

    CERN Document Server

    Petersen, Peter

    2016-01-01

    Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...

  8. Kaehler geometry and SUSY mechanics

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Nersessian, Armen

    2001-01-01

    We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed

  9. GPS: Geometry, Probability, and Statistics

    Science.gov (United States)

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  10. Models of international entrepreneurship

    DEFF Research Database (Denmark)

    Rask, Morten; Servais, Per

    2012-01-01

    on International Entrepreneurship, and specifically but not exclusively, International New Ventures (INVs). The three resulting ‘meta-models’ depict the activities and loci of such firms (Figure 1), the motivating factors that give rise to such firms (Figure 2) and their growth modalities and strategies (Figure 3......). These models reflect the merger of entrepreneurship and international business into the field of international entrepreneurship. Managers in international entrepreneurial firms and students in international business and entrepreneurship can use the models as framework for understanding international...... entrepreneurship....

  11. Attenuated total internal reflection infrared microscopy of multilayer plastic packaging foils.

    Science.gov (United States)

    van Dalen, Gerard; Heussen, Patricia C M; den Adel, Ruud; Hoeve, Robert B J

    2007-06-01

    Multilayer plastic foils are important packaging materials that are used to extend the shelf life of food products and drinks. Fourier transform infrared (FT-IR) spectroscopic imaging using attenuated total internal reflection (ATR) can be used for the identification and localization of different layers in multilayer foils. A new type of ATR crystal was used in combination with a linear array detector through which large sample areas (400 x 400 microm(2)) could be imaged with a pixel size of 1.6 microm. The method was tested on laminated plastic packing materials containing 5 to 12 layers. The results of the identification of the different materials using ATR-FT-IR were compared with differential scanning calorimetry (DSC) and the layer thickness of the individual layers measured by ATR-FT-IR was compared with polarized light microscopy (LM) and scanning electron microscopy (SEM). It has been demonstrated that individual layers with a thickness of about 3 microm could be identified in multilayer foils with a total thickness ranging from 100 to 150 microm. The results show a spatial resolution of about 4 microm (measured at wavenumbers ranging from 1000 to 1730 cm(-1)), which is about a factor of two better than can be obtained using transmission FT-IR imaging. An additional advantage of ATR is the ease of sample preparation. A good correspondence was found between visible and FT-IR images. The results of ATR-FT-IR imaging were in agreement with those obtained by LM, SEM, and DSC. ATR-FT-IR is superior to the combination of these techniques because it delivers both spatial and chemical information.

  12. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Isadore M.

    2008-03-04

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  13. Final Report: Geometry And Elementary Particle Physics

    International Nuclear Information System (INIS)

    Singer, Isadore M.

    2008-01-01

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  14. Discrete quantum geometries and their effective dimension

    International Nuclear Information System (INIS)

    Thuerigen, Johannes

    2015-01-01

    In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.

  15. International Education and Reflection: Transition of Swedish and American Nursing Students to Authenticity.

    Science.gov (United States)

    Lepp, Margret; Zorn, CeCelia R.; Duffy, Patricia R.; Dickson, Rana J.

    2003-01-01

    A nursing course connected U.S. and Swedish sites via interactive videoconferencing and used reflective methods (journaling, drama, photo language) and off-air group discussion. Evaluation by five Swedish and seven U.S. students suggested how reflection moved students toward greater authenticity and professionalism in nursing practice. (Contains…

  16. TX 2000: total reflection and 45o energy dispersive x-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Pasti, F.; Torboli, A.; Valdes, M.

    2000-01-01

    This equipment, developed by Ital Structures, combines two kinds of energy dispersive X-ray fluorescence techniques, the first using total reflection geometry and the second conventional 45 o geometry. The equipment is completely controlled by a PC and to reach the condition of total reflection is very easy because it is enough to load the file with the right position for the corresponding energy. In this apparatus we used an x-ray tube with an alloy anode of Mo/W with a long fine focus at 2200 W. To monochromatize the x-ray beam while choosing, for example, the Mo K alpha or W L alpha or a piece of white spectrum of 33 keV, we use a highly reflective multilayer made of Si/W with 2d = 45.5 A o . The detector used in the equipment is a lithium drifted silicon detector (Si(Li)) with an excellent energy resolution of 135 eV at 5.9 keV and 1000 cps. We developed two programs written in Windows 95, 98 and NT for a 32 bit microprocessor. The first one is called TYACQ32 and has the following functions: first, complete control of the hardware, second automatic alignment of the TX 2000 spectrometer and third acquisition of spectra. The second program is EDXRF32. This is a program to accomplish spectrum and quantitative analysis for TXRF and EDXRF 45 o degrees analysis. (author)

  17. Introduction into integral geometry and stereology

    DEFF Research Database (Denmark)

    Kiderlen, Markus

    Statistics and Random Fields and is a self-containing introduction into integral geometry and its applications in stereology. The most important integral geometric tools for stereological applications are kinematic formulas and results of Blaschke-Petkantschin type. Therefore, Crofton's formula......This text is the extended version of two talks held at the Summer Academy Stochastic Geometry, Spatial Statistics and Random Fields in the Soellerhaus, Germany, in September 2009. It forms (with slight modifications) a chapter of the Springer lecture notes Lectures on Stochastic Geometry, Spatial...

  18. Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects

    KAUST Repository

    Wu, Ying

    2013-05-06

    In this work, we investigate wave transmission property through a zero index metamaterial (ZIM) waveguide embedded with rectangular dielectric defects. We show that total reflection and total transmission (cloaking) can be achieved by adjusting the geometric sizes and/or permittivities of the defects. Our work provides another possibility of manipulating wave propagation through ZIM in addition to the widely studied dielectric defects with cylindrical geometries.

  19. Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects

    KAUST Repository

    Wu, Ying; Li, Jichun

    2013-01-01

    In this work, we investigate wave transmission property through a zero index metamaterial (ZIM) waveguide embedded with rectangular dielectric defects. We show that total reflection and total transmission (cloaking) can be achieved by adjusting the geometric sizes and/or permittivities of the defects. Our work provides another possibility of manipulating wave propagation through ZIM in addition to the widely studied dielectric defects with cylindrical geometries.

  20. Surrogate Modeling for Geometry Optimization

    DEFF Research Database (Denmark)

    Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie

    2009-01-01

    A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....

  1. Geometric control theory and sub-Riemannian geometry

    CERN Document Server

    Boscain, Ugo; Gauthier, Jean-Paul; Sarychev, Andrey; Sigalotti, Mario

    2014-01-01

    This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as  sub-Riemannian, Finslerian  geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods  has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group  of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume.

  2. Guide to Computational Geometry Processing

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François

    be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces......, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes...

  3. A Whirlwind Tour of Computational Geometry.

    Science.gov (United States)

    Graham, Ron; Yao, Frances

    1990-01-01

    Described is computational geometry which used concepts and results from classical geometry, topology, combinatorics, as well as standard algorithmic techniques such as sorting and searching, graph manipulations, and linear programing. Also included are special techniques and paradigms. (KR)

  4. Regulating Internalities

    OpenAIRE

    Sunstein, Cass Robert; Allcott, Hunt

    2015-01-01

    This paper offers a framework for regulating internalities. Using a simple economic model, we provide four principles for designing and evaluating behaviorally-motivated policy. We then outline rules for determining which contexts reliably reflect true preferences and discuss empirical strategies for measuring internalities. As a case study, we focus on energy efficiency policy, including Corporate Average Fuel Economy (CAFE) standards and appliance and lighting energy efficiency standards.

  5. Age-related changes in thoracic skeletal geometry of elderly females.

    Science.gov (United States)

    Holcombe, Sven A; Wang, Stewart C; Grotberg, James B

    2017-05-29

    Both females and the elderly have been identified as vulnerable populations with increased injury and mortality risk in multiple crash scenarios. Particularly in frontal impacts, older females show higher risk to the chest and thorax than their younger or male counterparts. Thoracic geometry plays a role in this increase, and this study aims to quantify key parts of that geometry in a way that can directly inform human body models that incorporate the concept of person age. Computed tomography scans from 2 female subject groups aged 20-35 and 65-99 were selected from the International Center for Automotive Medicine scan database representing young and old female populations. A model of thoracic skeletal anatomy was built for each subject from independent parametric models of the spine, ribs, and sternum, along with further parametric models of those components' spatial relationships. Parameter values between the 2 groups are directly compared, and average parameter values within each group are used to generate statistically average skeletal geometry for young and old females. In addition to the anatomic measures explicitly used in the parameterization scheme, key measures of rib cage depth and spine curvature are taken from both the underlying subject pool and from the resultant representative geometries. Statistically significant differences were seen between the young and old groups' spine and rib anatomic components, with no significant differences in local sternal geometry found. Vertebral segments in older females had higher angles relative to their inferior neighbors, providing a quantification of the kyphotic curvature known to be associated with age. Ribs in older females had greater end-to-end span, greater aspect ratio, and reduced out-of-plane deviation, producing an elongated and overall flatter curvature that leads to distal rib ends extending further anteriorly in older individuals. Combined differences in spine curvature and rib geometry led to an 18

  6. Monte Carlo simulation of fully Markovian stochastic geometries

    International Nuclear Information System (INIS)

    Lepage, Thibaut; Delaby, Lucie; Malvagi, Fausto; Mazzolo, Alain

    2010-01-01

    The interest in resolving the equation of transport in stochastic media has continued to increase these last years. For binary stochastic media it is often assumed that the geometry is Markovian, which is never the case in usual environments. In the present paper, based on rigorous mathematical theorems, we construct fully two-dimensional Markovian stochastic geometries and we study their main properties. In particular, we determine a percolation threshold p c , equal to 0.586 ± 0.0015 for such geometries. Finally, Monte Carlo simulations are performed through these geometries and the results compared to homogeneous geometries. (author)

  7. Tidal stresses and energy gaps in microstate geometries

    Science.gov (United States)

    Tyukov, Alexander; Walker, Robert; Warner, Nicholas P.

    2018-02-01

    We compute energy gaps and study infalling massive geodesic probes in the new families of scaling, microstate geometries that have been constructed recently and for which the holographic duals are known. We find that in the deepest geometries, which have the lowest energy gaps, the geodesic deviation shows that the stress reaches the Planck scale long before the probe reaches the cap of the geometry. Such probes must therefore undergo a stringy transition as they fall into microstate geometry. We discuss the scales associated with this transition and comment on the implications for scrambling in microstate geometries.

  8. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  9. Observing system simulations for small satellite formations estimating bidirectional reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  10. Multilevel geometry optimization

    Science.gov (United States)

    Rodgers, Jocelyn M.; Fast, Patton L.; Truhlar, Donald G.

    2000-02-01

    Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol.

  11. Planning for Evolution in a Production Environment: Migration from a Legacy Geometry Code to an Abstract Geometry Modeling Language in STAR

    Science.gov (United States)

    Webb, Jason C.; Lauret, Jerome; Perevoztchikov, Victor

    2012-12-01

    Increasingly detailed descriptions of complex detector geometries are required for the simulation and analysis of today's high-energy and nuclear physics experiments. As new tools for the representation of geometry models become available during the course of an experiment, a fundamental challenge arises: how best to migrate from legacy geometry codes developed over many runs to the new technologies, such as the ROOT/TGeo [1] framework, without losing touch with years of development, tuning and validation. One approach, which has been discussed within the community for a number of years, is to represent the geometry model in a higher-level language independent of the concrete implementation of the geometry. The STAR experiment has used this approach to successfully migrate its legacy GEANT 3-era geometry to an Abstract geometry Modelling Language (AgML), which allows us to create both native GEANT 3 and ROOT/TGeo implementations. The language is supported by parsers and a C++ class library which enables the automated conversion of the original source code to AgML, supports export back to the original AgSTAR[5] representation, and creates the concrete ROOT/TGeo geometry implementation used by our track reconstruction software. In this paper we present our approach, design and experience and will demonstrate physical consistency between the original AgSTAR and new AgML geometry representations.

  12. Quantifying the Assembly of Multicomponent Molecular Machines by Single-Molecule Total Internal Reflection Fluorescence Microscopy.

    Science.gov (United States)

    Boehm, E M; Subramanyam, S; Ghoneim, M; Washington, M Todd; Spies, M

    2016-01-01

    Large, dynamic macromolecular complexes play essential roles in many cellular processes. Knowing how the components of these complexes associate with one another and undergo structural rearrangements is critical to understanding how they function. Single-molecule total internal reflection fluorescence (TIRF) microscopy is a powerful approach for addressing these fundamental issues. In this article, we first discuss single-molecule TIRF microscopes and strategies to immobilize and fluorescently label macromolecules. We then review the use of single-molecule TIRF microscopy to study the formation of binary macromolecular complexes using one-color imaging and inhibitors. We conclude with a discussion of the use of TIRF microscopy to examine the formation of higher-order (i.e., ternary) complexes using multicolor setups. The focus throughout this article is on experimental design, controls, data acquisition, and data analysis. We hope that single-molecule TIRF microscopy, which has largely been the province of specialists, will soon become as common in the tool box of biophysicists and biochemists as structural approaches have become today. © 2016 Elsevier Inc. All rights reserved.

  13. Optimization of geometry of annular seat valves suitable for Digital Displacement fluid power pumps/motors

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital Displacement Fluid Power is an upcoming technology setting new standards for the achievable efficiency of fluid power pumps and motors. The core element of the Digital Displacement technology is high performance electronically controlled seat valves, which must exhibit very low flow...... work an annular seat valve suitable for use in Digital Displacement units is considered, and the ring geometry is optimized using finite element analysis including non-linear material behaviour, contact elements and fluid pressure penetrating load, closely reflecting the actual load of the seat valve...

  14. International law

    CERN Document Server

    Shaw, Malcolm N

    2017-01-01

    International Law is the definitive and authoritative text on the subject, offering Shaw's unbeatable combination of clarity of expression and academic rigour and ensuring both understanding and critical analysis in an engaging and authoritative style. Encompassing the leading principles, practice and cases, and retaining and developing the detailed references which encourage and assist the reader in further study, this new edition motivates and challenges students and professionals while remaining accessible and engaging. Fully updated to reflect recent case law and treaty developments, this edition contains an expanded treatment of the relationship between international and domestic law, the principles of international humanitarian law, and international criminal law alongside additional material on international economic law.

  15. MIFT: GIFT Combinatorial Geometry Input to VCS Code

    Science.gov (United States)

    1977-03-01

    r-w w-^ H ^ß0318is CQ BRL °RCUMr REPORT NO. 1967 —-S: ... MIFT: GIFT COMBINATORIAL GEOMETRY INPUT TO VCS CODE Albert E...TITLE (and Subtitle) MIFT: GIFT Combinatorial Geometry Input to VCS Code S. TYPE OF REPORT & PERIOD COVERED FINAL 6. PERFORMING ORG. REPORT NUMBER...Vehicle Code System (VCS) called MORSE was modified to accept the GIFT combinatorial geometry package. GIFT , as opposed to the geometry package

  16. Unlocking reflective practice for nurses: innovations in working with master of nursing students in Hong Kong.

    Science.gov (United States)

    Joyce-McCoach, Joanne T; Parrish, Dominique R; Andersen, Patrea R; Wall, Natalie

    2013-09-01

    Being reflective is well established as an important conduit of practice development, a desirable tertiary graduate quality and a core competency of health professional membership. By assisting students to be more effective in their ability to reflect, they are better able to formulate strategies to manage issues experienced within a professional context, which ultimately assists them to be better service providers. However, some students are challenged by the practice of reflection and these challenges are even more notable for international students. This paper presents a teaching initiative that focused specifically on enhancing the capacity of an international cohort of nursing students, to engage in reflective practice. The initiative centered on an evaluation of a reflective practice core subject, which was taught in a Master of Nursing programme delivered in Hong Kong. A learning-centered framework was used to evaluate the subject and identify innovative strategies that would better assist international students to develop reflective practices. The outcomes of curriculum and teaching analysis and proposed changes and innovations in teaching practice to support international students are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Physical meaning of the optical reference geometry

    International Nuclear Information System (INIS)

    Abramowicz, M.A.

    1990-09-01

    I show that contrary to a popular misconception the optical reference geometry, introduced a few years ago as a formally possible metric of a 3-space corresponding to a static spacetime, is quite satisfactory also from the physical point of view. The optical reference geometry has a clear physical meaning, as it may be constructed experimentally by measuring light round travel time between static observers. Distances and directions in the optical reference geometry are more strongly connected to experiment than distances and directions in the widely used directly projected metric (discussed e.g. in Landau and Lifshitz textbook. In addition, the optical reference geometry is more natural and convenient than the directly projected one in application to dynamics. In the optical geometry dynamical behaviour of matter is described by concepts and formulae identical to those well known in Newtonian dynamics on a given two dimensional (curved) surface. (author). 22 refs

  18. 'Combined reflectance stratigraphy' - subdivision of loess successions by diffuse reflectance spectrometry (DRS)

    Science.gov (United States)

    Szeberényi, Jozsef; Bradak-Hayashi, Balázs; Kiss, Klaudia; Kovács, József; Varga, György; Balázs, Réka; Szalai, Zoltán; Viczián, István

    2016-04-01

    the "combined reflectance stratigraphy" as a stratigraphical method and as an environmental proxy also. Acknowledgment Bradák-Hayashi, B.'s fellowship at Department of Planetology (Kobe University, Japan) was supported by the Japan Society for the Promotion of Science (JSPS). The investigation was supported by International Visegrad Fund. Project No: 11410020.

  19. Interns reflect: the effect of formative assessment with feedback during pre-internship

    Directory of Open Access Journals (Sweden)

    McKenzie S

    2017-01-01

    Full Text Available Susan McKenzie,1 Annette Burgess,2 Craig Mellis1 1Central Clinical School, 2Education Office, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia Background: It is widely known that the opportunity for medical students to be observed and to receive feedback on their procedural skills performance is variable in the senior years. To address this problem, we provided our Pre-Intern (PrInt students with “one-to-one” formative feedback on their ability to perform urethral catheterization (U/C and hypothesized that their future practice of U/C as interns would benefit. This study sought to evaluate the performance and practice of interns in U/C 4–5 months after having received feedback on their performance of U/C as PrInt students.Methods: Between 2013 and 2014, two cohorts of interns, (total n=66 who had received recent formative feedback on their U/C performance as PrInt students at Central Clinical School, were invited to complete an anonymous survey. The survey contained nine closed unvalidated questions and one open-ended question, designed to allow interns to report on their current practice of U/C.Results: Forty-one out of 66 interns (62% completed the survey. Thirty-five out of 41 respondents (85% reported that the assessment with feedback during their PrInt term was beneficial to their practice. Thirty of 41 (73% reported being confident to perform U/C independently. Eleven out of 41 respondents (27% reported that they had received additional training at intern orientation. Nine of the 11 interns (82% reported that they had a small, but a significant, increase in confidence to perform U/C when compared with the 30 of the 41 respondents (73% who had not (p=0.03.Conclusion: Our results substantiate our hypothesis that further education by assessment with feedback in U/C during PrInt was of benefit to interns’ performance. Additional educational reinforcement in U/C during intern orientation further improved intern

  20. Massive neutrinos in almost-commutative geometry

    International Nuclear Information System (INIS)

    Stephan, Christoph A.

    2007-01-01

    In the noncommutative formulation of the standard model of particle physics by Chamseddine and Connes [Commun. Math. Phys. 182, 155 (1996), e-print hep-th/9606001], one of the three generations of fermions has to possess a massless neutrino. [C. P. Martin et al., Phys. Rep. 29, 363 (1998), e-print hep-th-9605001]. This formulation is consistent with neutrino oscillation experiments and the known bounds of the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS matrix). But future experiments which may be able to detect neutrino masses directly and high-precision measurements of the PMNS matrix might need massive neutrinos in all three generations. In this paper we present an almost-commutative geometry which allows for a standard model with massive neutrinos in all three generations. This model does not follow in a straightforward way from the version of Chamseddine and Connes since it requires an internal algebra with four summands of matrix algebras, instead of three summands for the model with one massless neutrino

  1. Geometric Transformations in Engineering Geometry

    Directory of Open Access Journals (Sweden)

    I. F. Borovikov

    2015-01-01

    Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry

  2. Transformasi Geometri Rotasi Berbantuan Software Geogebra

    Directory of Open Access Journals (Sweden)

    Muhamad Hanafi

    2018-02-01

    Full Text Available Penelitian  ini bertujuan untuk membantu visualisasi dan menemukan konsep pada Transformasi geometri Rotasi di titik Pusat  dengan menggunakan software GeoGebra. Penelitian ini mengulas tentang Koordinat Kartesius dan Polar, dan selanjutntya Transformasi geometri Rotasi di titik Pusat .

  3. Algebra, Geometry and Mathematical Physics Conference

    CERN Document Server

    Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander

    2014-01-01

    This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...

  4. Homological mirror symmetry and tropical geometry

    CERN Document Server

    Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia

    2014-01-01

    The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...

  5. Quantitative analysis of phosphoinositide 3-kinase (PI3K) signaling using live-cell total internal reflection fluorescence (TIRF) microscopy.

    Science.gov (United States)

    Johnson, Heath E; Haugh, Jason M

    2013-12-02

    This unit focuses on the use of total internal reflection fluorescence (TIRF) microscopy and image analysis methods to study the dynamics of signal transduction mediated by class I phosphoinositide 3-kinases (PI3Ks) in mammalian cells. The first four protocols cover live-cell imaging experiments, image acquisition parameters, and basic image processing and segmentation. These methods are generally applicable to live-cell TIRF experiments. The remaining protocols outline more advanced image analysis methods, which were developed in our laboratory for the purpose of characterizing the spatiotemporal dynamics of PI3K signaling. These methods may be extended to analyze other cellular processes monitored using fluorescent biosensors. Copyright © 2013 John Wiley & Sons, Inc.

  6. Think Pair Share Using Realistic Mathematics Education Approach in Geometry Learning

    Science.gov (United States)

    Afthina, H.; Mardiyana; Pramudya, I.

    2017-09-01

    This research aims to determine the impact of mathematics learning applying Think Pair Share (TPS) using Realistic Mathematics Education (RME) viewed from mathematical-logical intelligence in geometry learning. Method that used in this research is quasi experimental research The result of this research shows that (1) mathematics achievement applying TPS using RME approach gives a better result than those applying direct learning model; (2) students with high mathematical-logical intelligence can reach a better mathematics achievement than those with average and low one, whereas students with average mathematical-logical intelligence can reach a better achievement than those with low one; (3) there is no interaction between learning model and the level of students’ mathematical-logical intelligence in giving a mathematics achievement. The impact of this research is that TPS model using RME approach can be applied in mathematics learning so that students can learn more actively and understand the material more, and mathematics learning become more meaningful. On the other hand, internal factors of students must become a consideration toward the success of students’ mathematical achievement particularly in geometry material.

  7. Use of information technologies in teaching course "Analytical geometry" in higher schools on example of software "ANALYTICAL GEOMETRY"

    OpenAIRE

    V. B. Grigorieva

    2009-01-01

    In article are considered the methodical questions of using of computer technologies, for example, the software "Analytical geometry", in process of teaching course of analytical geometry in the higher school.

  8. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    Science.gov (United States)

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  9. Variable geometry Darrieus wind machine

    Science.gov (United States)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  10. Flux compactifications and generalized geometries

    International Nuclear Information System (INIS)

    Grana, Mariana

    2006-01-01

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry

  11. Flux compactifications and generalized geometries

    Energy Technology Data Exchange (ETDEWEB)

    Grana, Mariana [Service de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2006-11-07

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T{sup 6} /(Z{sub 3} x Z{sub 3}) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry.

  12. Unified tractable model for downlink MIMO cellular networks using stochastic geometry

    KAUST Repository

    Afify, Laila H.

    2016-07-26

    Several research efforts are invested to develop stochastic geometry models for cellular networks with multiple antenna transmission and reception (MIMO). On one hand, there are models that target abstract outage probability and ergodic rate for simplicity. On the other hand, there are models that sacrifice simplicity to target more tangible performance metrics such as the error probability. Both types of models are completely disjoint in terms of the analytic steps to obtain the performance measures, which makes it challenging to conduct studies that account for different performance metrics. This paper unifies both techniques and proposes a unified stochastic-geometry based mathematical paradigm to account for error probability, outage probability, and ergodic rates in MIMO cellular networks. The proposed model is also unified in terms of the antenna configurations and leads to simpler error probability analysis compared to existing state-of-the-art models. The core part of the analysis is based on abstracting unnecessary information conveyed within the interfering signals by assuming Gaussian signaling. To this end, the accuracy of the proposed framework is verified against state-of-the-art models as well as system level simulations. We provide via this unified study insights on network design by reflecting system parameters effect on different performance metrics. © 2016 IEEE.

  13. Reconstruction of MODIS Spectral Reflectance under Cloudy-Sky Condition

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2016-09-01

    Full Text Available Clouds usually cause invalid observations for sensors aboard satellites, which corrupts the spatio-temporal continuity of land surface parameters retrieved from remote sensing data (e.g., MODerate Resolution Imaging Spectroradiometer (MODIS data and prevents the fusing of multi-source remote sensing data in the field of quantitative remote sensing. Based on the requirements of spatio-temporal continuity and the necessity of methods to restore bad pixels, primarily resulting from image processing, this study developed a novel method to derive the spectral reflectance for MODIS band of cloudy pixels in the visual–near infrared (VIS–NIR spectral channel based on the Bidirectional Reflectance Distribution Function (BRDF and multi-spatio-temporal observations. The proposed method first constructs the spatial distribution of land surface reflectance based on the corresponding BRDF and the solar-viewing geometry; then, a geographically weighted regression (GWR is introduced to individually derive the spectral surface reflectance for MODIS band of cloudy pixels. A validation of the proposed method shows that a total root-mean-square error (RMSE of less than 6% and a total R2 of more than 90% are detected, which indicates considerably better precision than those exhibited by other existing methods. Further validation of the retrieved white-sky albedo based on the spectral reflectance for MODIS band of cloudy pixels confirms an RMSE of 3.6% and a bias of 2.2%, demonstrating very high accuracy of the proposed method.

  14. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    Science.gov (United States)

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Curvature tensor copies in affine geometry

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1981-01-01

    The sets of space-time and spin-connections which give rise to the same curvature tensor are constructed. The corresponding geometries are compared. Results are illustrated by an explicit calculation and comment on the copies in Einstein-Cartan and Weyl-Cartan geometries. (Author) [pt

  16. Poisson geometry from a Dirac perspective

    Science.gov (United States)

    Meinrenken, Eckhard

    2018-03-01

    We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.

  17. Development of the geometry database for the CBM experiment

    Science.gov (United States)

    Akishina, E. P.; Alexandrov, E. I.; Alexandrov, I. N.; Filozova, I. A.; Friese, V.; Ivanov, V. V.

    2018-01-01

    The paper describes the current state of the Geometry Database (Geometry DB) for the CBM experiment. The main purpose of this database is to provide convenient tools for: (1) managing the geometry modules; (2) assembling various versions of the CBM setup as a combination of geometry modules and additional files. The CBM users of the Geometry DB may use both GUI (Graphical User Interface) and API (Application Programming Interface) tools for working with it.

  18. SABRINA, Geometry Plot Program for MCNP

    International Nuclear Information System (INIS)

    SEIDL, Marcus

    2003-01-01

    1 - Description of program or function: SABRINA is an interactive, three-dimensional, geometry-modeling code system, primarily for use with CCC-200/MCNP. SABRINA's capabilities include creation, visualization, and verification of three-dimensional geometries specified by either surface- or body-base combinatorial geometry; display of particle tracks are calculated by MCNP; and volume fraction generation. 2 - Method of solution: Rendering is performed by ray tracing or an edge and intersection algorithm. Volume fraction calculations are made by ray tracing. 3 - Restrictions on the complexity of the problem: A graphics display with X Window capability is required

  19. Differential geometry and topology of curves

    CERN Document Server

    Animov, Yu

    2001-01-01

    Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.

  20. Reflections on International Certified Nursing Assistants.

    Science.gov (United States)

    Shaw, Penelope Ann

    2017-01-01

    The author, a former university faculty member who taught English to speakers of other languages and now a nursing home resident, shares her observations about how English language proficiency, culture, and religious differences affect her care. She provides examples of communication challenges that can be annoying or cause harm, her coping strategies, and reasons many certified nursing assistants might never be fully fluent in English. She explains how international certified nursing assistants can benefit residents because of skills developed by family-centered care in their countries of origin. She also discusses related issues-the importance of being culturally competent about U.S. culture. She points out how religiousness not only affects residents but is a buffer for staff against the stress of physically and emotionally demanding low-wage work. Overall, the author likes receiving care from individuals from other countries, finding reward in comparing how her personal struggle with illness and paralysis resonates with the trauma of migration and how learning firsthand about varying beliefs and attitudes clarifies her identity and place in world history.

  1. Geometry of surfaces a practical guide for mechanical engineers

    CERN Document Server

    Radzevich, Stephen P

    2012-01-01

    Presents an in-depth analysis of geometry of part surfaces and provides the tools for solving complex engineering problems Geometry of Surfaces: A Practical Guide for Mechanical Engineers is a comprehensive guide to applied geometry of surfaces with focus on practical applications in various areas of mechanical engineering. The book is divided into three parts on Part Surfaces, Geometry of Contact of Part Surfaces and Mapping of the Contacting Part Surfaces. Geometry of Surfaces: A Practical Guide for Mechanical Engineers combines differential geometry and gearing theory and presents new developments in the elementary theory of enveloping surfaces. Written by a leading expert of the field, this book also provides the reader with the tools for solving complex engineering problems in the field of mechanical engineering. Presents an in-depth analysis of geometry of part surfaces Provides tools for solving complex engineering problems in the field of mechanical engineering Combines differential geometry an...

  2. Multilevel geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Jocelyn M. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Fast, Patton L. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Truhlar, Donald G. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)

    2000-02-15

    Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol. (c) 2000 American Institute of Physics.

  3. Machine learning spatial geometry from entanglement features

    Science.gov (United States)

    You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang

    2018-02-01

    Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).

  4. GEOMETRY – AN IMPORTANT MEANS OF EDUCATION IN THE CIVILISATION SCOPE

    OpenAIRE

    Liliana TOCARIU, PhD

    2017-01-01

    Geometry (from the Greek: γεωμετρία; geo = earth, metria = measure) is a genuine science, rooted in mathematics, which studies the plane and spatial forms of bodies from the objective or conceptual reality and the nature of the relationship that exists between them. Due to its complexity, geometry is divided into: Euclidian geometry, analytical geometry, descriptive geometry, projective geometry, kinematic geometry, surface and curve differential geometry, axiomatic geometry,...

  5. Interns reflect: the effect of formative assessment with feedback during pre-internship.

    Science.gov (United States)

    McKenzie, Susan; Burgess, Annette; Mellis, Craig

    2017-01-01

    It is widely known that the opportunity for medical students to be observed and to receive feedback on their procedural skills performance is variable in the senior years. To address this problem, we provided our Pre-Intern (PrInt) students with "one-to-one" formative feedback on their ability to perform urethral catheterization (U/C) and hypothesized that their future practice of U/C as interns would benefit. This study sought to evaluate the performance and practice of interns in U/C 4-5 months after having received feedback on their performance of U/C as PrInt students. Between 2013 and 2014, two cohorts of interns, (total n=66) who had received recent formative feedback on their U/C performance as PrInt students at Central Clinical School, were invited to complete an anonymous survey. The survey contained nine closed unvalidated questions and one open-ended question, designed to allow interns to report on their current practice of U/C. Forty-one out of 66 interns (62%) completed the survey. Thirty-five out of 41 respondents (85%) reported that the assessment with feedback during their PrInt term was beneficial to their practice. Thirty of 41 (73%) reported being confident to perform U/C independently. Eleven out of 41 respondents (27%) reported that they had received additional training at intern orientation. Nine of the 11 interns (82%) reported that they had a small, but a significant, increase in confidence to perform U/C when compared with the 30 of the 41 respondents (73%) who had not ( p =0.03). Our results substantiate our hypothesis that further education by assessment with feedback in U/C during PrInt was of benefit to interns' performance. Additional educational reinforcement in U/C during intern orientation further improved intern confidence. Our results indicate that extra pre- and post-graduation procedural skills training, with feedback, should be universal.

  6. Random geometry and Yang-Mills theory

    International Nuclear Information System (INIS)

    Froehlich, J.

    1981-01-01

    The author states various problems and discusses a very few preliminary rigorous results in a branch of mathematics and mathematical physics which one might call random (or stochastic) geometry. Furthermore, he points out why random geometry is important in the quantization of Yang-Mills theory. (Auth.)

  7. Quantification of variability in bedform geometry

    NARCIS (Netherlands)

    van der Mark, C.F.; Blom, Astrid; Hulscher, Suzanne J.M.H.

    2008-01-01

    We analyze the variability in bedform geometry in laboratory and field studies. Even under controlled steady flow conditions in laboratory flumes, bedforms are irregular in size, shape, and spacing, also in case of well-sorted sediment. Our purpose is to quantify the variability in bedform geometry.

  8. Analysis of Mathematical Communication Skills and Confidence of 10th Grader of SMK in Geometry Material Viewed from Cognitive Style

    Directory of Open Access Journals (Sweden)

    Elanda Laksinta Putri

    2017-03-01

    Full Text Available The purpose of this study were to describe the mathematical communication skills and the confidence of grade X SMK students on Van Hiele model geometry learning based on their cognitive styles. It was a qualitative descriptive research. The subjects were 2 impulsive students and 2 reflective students which were selected with MFFT instrument. The data collection techniques were mathematical communication skills tests (written and orally, interviews, documentation, attitude scale and activity observation sheets. The results showed that both written and orally, reflective students were able to meet 5 indicators of mathematical communication skills, and less meet another indicators. While, impulsive students less meet all of the mathematical communication skills indictors. The impulsive students confidence was in the medium category. In contrary, the reflective students confidence was in the high category.

  9. 10th China-Japan Geometry Conference

    CERN Document Server

    Miyaoka, Reiko; Tang, Zizhou; Zhang, Weiping

    2016-01-01

    Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincaré conjecture, the Yau–Tian–Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger–Yau–Zaslow conjecture on mirror symmetry, the relative Yau–Tian–Donaldson conjecture in Kähler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists. The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, sympl...

  10. Gamma camera with reflectivity mask

    International Nuclear Information System (INIS)

    Stout, K.J.

    1980-01-01

    In accordance with the present invention there is provided a radiographic camera comprising: a scintillator; a plurality of photodectors positioned to face said scintillator; a plurality of masked regions formed upon a face of said scintillator opposite said photdetectors and positioned coaxially with respective ones of said photodetectors for decreasing the amount of internal reflection of optical photons generated within said scintillator. (auth)

  11. DOGBONE GEOMETRY FOR RECIRCULATING ACCELERATORS

    International Nuclear Information System (INIS)

    BERG, J.S.; JOHNSTONE, C.; SUMMERS, D.

    2001-01-01

    Most scenarios for accelerating muons require recirculating acceleration. A racetrack shape for the accelerator requires particles with lower energy in early passes to traverse almost the same length of arc as particles with the highest energy. This extra arc length may lead to excess decays and excess cost. Changing the geometry to a dogbone shape, where there is a single linac and the beam turns completely around at the end of the linac, returning to the same end of the linac from which it exited, addresses this problem. In this design, the arc lengths can be proportional to the particle's momentum. This paper proposes an approximate cost model for a recirculating accelerator, attempts to make cost-optimized designs for both racetrack and dogbone geometries, and demonstrates that the dogbone geometry does appear to be more cost effective

  12. Versatile microfluidic total internal reflection (TIR)-based devices: application to microbeads velocity measurement and single molecule detection with upright and inverted microscope.

    Science.gov (United States)

    Le, Nam Cao Hoai; Yokokawa, Ryuji; Dao, Dzung Viet; Nguyen, Thien Duy; Wells, John C; Sugiyama, Susumu

    2009-01-21

    A poly(dimethylsiloxane) (PDMS) chip for Total Internal Reflection (TIR)-based imaging and detection has been developed using Si bulk micromachining and PDMS casting. In this paper, we report the applications of the chip on both inverted and upright fluorescent microscopes and confirm that two types of sample delivery platforms, PDMS microchannel and glass microchannel, can be easily integrated depending on the magnification of an objective lens needed to visualize a sample. Although any device configuration can be achievable, here we performed two experiments to demonstrate the versatility of the microfluidic TIR-based devices. The first experiment was velocity measurement of Nile red microbeads with nominal diameter of 500 nm in a pressure-driven flow. The time-sequenced fluorescent images of microbeads, illuminated by an evanescent field, were cross-correlated by a Particle Image Velocimetry (PIV) program to obtain near-wall velocity field of the microbeads at various flow rates from 500 nl/min to 3000 nl/min. We then evaluated the capabilities of the device for Single Molecule Detection (SMD) of fluorescently labeled DNA molecules from 30 bp to 48.5 kbp and confirm that DNA molecules as short as 1105 bp were detectable. Our versatile, integrated device could provide low-cost and fast accessibility to Total Internal Reflection Fluorescent Microscopy (TIRFM) on both conventional upright and inverted microscopes. It could also be a useful component in a Micro-Total Analysis System (micro-TAS) to analyze nanoparticles or biomolecules near-wall transport or motion.

  13. Adsorption of benzyldimethylhexadecylammonium chloride at the hydrophobic silica-water interface studied by total internal reflection Raman spectroscopy: effects of silica surface properties and metal salt addition.

    Science.gov (United States)

    Grenoble, Zlata; Baldelli, Steven

    2013-08-29

    The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface

  14. Increasing insightful thinking in analytic geometry

    NARCIS (Netherlands)

    Timmer, Mark; Verhoef, Neeltje Cornelia

    Elsewhere in this issue Ferdinand Verhulst described the discussion of the interaction of analysis and geometry in the 19th century. In modern times such discussions come up again and again. As of 2014, synthetic geometry will not be part of the Dutch 'vwo - mathematics B' programme anymore.

  15. Development and application of CATIA-GDML geometry builder

    International Nuclear Information System (INIS)

    Belogurov, S; Chernogorov, A; Ovcharenko, E; Schetinin, V; Berchun, Yu; Malzacher, P

    2014-01-01

    Due to conceptual difference between geometry descriptions in Computer-Aided Design (CAD) systems and particle transport Monte Carlo (MC) codes direct conversion of detector geometry in either direction is not feasible. The paper presents an update on functionality and application practice of the CATIA-GDML geometry builder first introduced at CHEP2010. This set of CATIAv5 tools has been developed for building a MC optimized GEANT4/ROOT compatible geometry based on the existing CAD model. The model can be exported via Geometry Description Markup Language (GDML). The builder allows also import and visualization of GEANT4/ROOT geometries in CATIA. The structure of a GDML file, including replicated volumes, volume assemblies and variables, is mapped into a part specification tree. A dedicated file template, a wide range of primitives, tools for measurement and implicit calculation of parameters, different types of multiple volume instantiation, mirroring, positioning and quality check have been implemented. Several use cases are discussed.

  16. Memory: Enduring Traces of Perceptual and Reflective Attention

    Science.gov (United States)

    Chun, Marvin M.; Johnson, Marcia K.

    2011-01-01

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: To what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. PMID:22099456

  17. Memory: enduring traces of perceptual and reflective attention.

    Science.gov (United States)

    Chun, Marvin M; Johnson, Marcia K

    2011-11-17

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: to what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    Science.gov (United States)

    Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.

    2013-03-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.

  19. Adjustable internal structure for reconstructing gradient index profile of crystalline lens.

    Science.gov (United States)

    Bahrami, Mehdi; Goncharov, Alexander V; Pierscionek, Barbara K

    2014-03-01

    Employing advanced technologies in studying the crystalline lens of the eye has improved our understanding of the refractive index gradient of the lens. Reconstructing and studying such a complex structure requires models with adaptable internal geometry that can be altered to simulate geometrical and optical changes of the lens with aging. In this Letter, we introduce an optically well-defined, geometrical structure for modeling the gradient refractive index profile of the crystalline lens with the advantage of an adjustable internal structure that is not available with existing models. The refractive index profile assigned to this rotationally symmetric geometry is calculated numerically, yet it is shown that this does not limit the model. The study provides a basis for developing lens models with sophisticated external and internal structures without the need for analytical solutions to calculate refractive index profiles.

  20. Remarks on Hamiltonian structures in G2-geometry

    International Nuclear Information System (INIS)

    Cho, Hyunjoo; Salur, Sema; Todd, A. J.

    2013-01-01

    In this article, we treat G 2 -geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G 2 -structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G 2 -structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry