Reflections on Friction in Quantum Mechanics
Directory of Open Access Journals (Sweden)
Yair Rezek
2010-08-01
Full Text Available Distinctly quantum friction effects of three types are surveyed: internalfriction, measurement-induced friction, and quantum-fluctuation-induced friction. We demonstrate that external driving will lead to quantum internal friction, and critique the measurement-based interpretation of friction. We conclude that in general systems will experience internal and external quantum friction over and beyond the classical frictional contributions.
Reflections on Quantum Data Hiding
Winter, Andreas
Quantum data hiding, originally invented as a limitation on local operations and classical communications (LOCC) in distinguishing globally orthogonal states, is actually a phenomenon arising generically in statistics whenever comparing a `strong' set of measurements (i.e., decision rules) with a `weak' one. The classical statistical analogue of this would be secret sharing, in which two perfectly distinguishable multi-partite hypotheses appear to be indistinguishable when accessing only a marginal. The quantum versions are richer in that for example LOCC allows for state tomography, so the states cannot be come perfectly indistinguishable but only nearly so, and hence the question is one of efficiency. I will discuss two concrete examples and associated sets of problems: 1. Gaussian operations and classical computation (GOCC): Not very surprisingly, GOCC cannot distinguish optimally even two coherent states of a single mode. Here we find states, each a mixture of multi-mode coherent states, which are almost perfectly distinguishable by suitable measurements, by when restricted to GOCC, i.e. linear optics and post-processing, the states appear almost identical. The construction is random and relies on coding arguments. Open questions include whether there one can give a constructive version of the argument, and whether for instance even thermal states can be used, or how efficient the hiding is. 2. Local operation and classical communication (LOCC): It is well-known that in a bipartite dxd-system, asymptotically logd bits can be hidden. Here we show for the first time, using the calculus of min-entropies, that this is asymptotically optimal. In fact, we get bounds on the data hiding capacity of any preparation system; these are however not always tight. While it is known that data hiding by separable states is possible (i.e. the state preparation can be done by LOCC), it is open whether the optimal information efficiency of (asymptotically) log d bits can be
Commuting quantum traces: the case of reflection algebras
Energy Technology Data Exchange (ETDEWEB)
Avan, Jean [Laboratory of Theoretical Physics and Modelization, University of Cergy, 5 mail Gay-Lussac, Neuville-sur-Oise, F-95031, Cergy-Pontoise Cedex (France); Doikou, Anastasia [Theoretical Physics Laboratory of Annecy-Le-Vieux, LAPTH, BP 110, Annecy-Le-Vieux, F-74941 (France)
2004-02-06
We formulate a systematic construction of commuting quantum traces for reflection algebras. This is achieved by introducing two dual sets of generalized reflection equations with associated consistent fusion procedures. Products of their respective solutions yield commuting quantum traces.
Quantum reflection in the linearly downward potential
Chamnan, N.; Krunavakarn, B.
2017-09-01
In this work, the motion of a particle in one dimension under the influence of the linearly downward potential well is studied within the context of the non-relativistic quantum mechanics. The attention is paid on the paradoxical phenomenon of the reflection of a particle that is in contrast between classical and quantum physics. Classically, the reflection effect occurs only at a potential barrier. To demonstrate such counter-intuitive phenomenon, the Schrödinger equation is solved to obtain the reflection coefficient in the scattering state by considering an incident particle that is represented by a monochromatic plane wave having an energy E > 0, propagates freely from left to right, pass through the potential well. The continuity conditions at boundaries give the desired result that is expressed in terms of the Airy functions which depends on the incident energy E, the strength jV 0 j and the range L of the well. The value of the reflection coefficient R lies in the interval 0 < R < 1, and its behavior is the decreasing function with respect to the range L.
Studies of the Reflection, Refraction and Internal Reflection of Light
Lanchester, P. C.
2014-01-01
An inexpensive apparatus and associated experiments are described for studying the basic laws of reflection and refraction of light at an air-glass interface, and multiple internal reflections within a glass block. In order to motivate students and encourage their active participation, a novel technique is described for determining the refractive…
Total internal reflection effect on gyrotropic interface
Glushchenko, Alexander G.; Glushchenko, Eugene P.; Zhukov, Sergey V.
2018-02-01
This article considers the physical features of total internal reflection at gyrotropic and isotropic interfaces for two cases: electrical gyrotropy (plasma) and magnetic gyrotropy (ferrite). It is shown that the plasma magnetization may lead to the formation of the total internal reflection effect, which does not occur in isotropic plasma. The threshold values of the magnetic field, which are necessary for the total internal reflection effect, are determined. The total internal reflection effect on a ferrite-dielectric interface for waves emanating from different angles is observed in various frequency ranges and magnetization fields. The study points out the possibility of changing the total internal reflection angle value in large limits due to a change in the external magnetic field magnitude. The calculation results of the total internal reflection angle dependence on the external magnetic field magnitude are presented. The formulas are elaborated for calculating the total internal reflection angles of different interfaces for gyrotropic and isotropic media. The generalized formulas are defined for calculating the Doppler effect in the gyrotropic media. The study demonstrates how the velocity of the media interface affects the limiting angle of total internal refection.
Andreev reflections and the quantum physics of black holes
Manikandan, Sreenath K.; Jordan, Andrew N.
2017-12-01
We establish an analogy between superconductor-metal interfaces and the quantum physics of a black hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black holes. We describe quantum information transfer in Andreev reflection with a final state projection model similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev reflection analogue of Hayden and Preskill's description of a black hole final state, where the black hole is described as an information mirror. The analogy between crossed Andreev reflections and Einstein-Rosen bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through a wormhole and into another universe. Given these established connections, we conjecture that the final quantum state of a black hole is exactly the same as the ground state wave function of the superconductor/superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper pairlike singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.
Frustrated Total Internal Reflection: A Simple Application and Demonstration.
Zanella, F. P.; Magalhaes, D. V.; Oliveira, M. M.; Bianchi, R. F.; Misoguti, L.; Mendonca, C. R.
2003-01-01
Describes the total internal reflection process that occurs when the internal angle of incidence is equal to or greater than the critical angle. Presents a demonstration of the effect of frustrated total internal reflection (FTIR). (YDS)
Reflections on the information paradigm in quantum and gravitational physics
Andres Höhn, Philipp
2017-08-01
We reflect on the information paradigm in quantum and gravitational physics and on how it may assist us in approaching quantum gravity. We begin by arguing, using a reconstruction of its formalism, that quantum theory can be regarded as a universal framework governing an observer’s acquisition of information from physical systems taken as information carriers. We continue by observing that the structure of spacetime is encoded in the communication relations among observers and more generally the information flow in spacetime. Combining these insights with an information-theoretic Machian view, we argue that the quantum architecture of spacetime can operationally be viewed as a locally finite network of degrees of freedom exchanging information. An advantage - and simultaneous limitation - of an informational perspective is its quasi-universality, i.e. quasi-independence of the precise physical incarnation of the underlying degrees of freedom. This suggests to exploit these informational insights to develop a largely microphysics independent top-down approach to quantum gravity to complement extant bottom-up approaches by closing the scale gap between the unknown Planck scale physics and the familiar physics of quantum (field) theory and general relativity systematically from two sides. While some ideas have been pronounced before in similar guise and others are speculative, the way they are strung together and justified is new and supports approaches attempting to derive emergent spacetime structures from correlations of quantum degrees of freedom.
Total internal reflection tomography of small objects
International Nuclear Information System (INIS)
Chen Xudong
2008-01-01
The multiple signal classification (MUSIC) imaging method is applied to determine the locations of a collection of small anisotropic spherical scatterers in the framework of the total internal reflection tomography. Multiple scattering between scatterers is considered and the inverse scattering problem is nonlinear, which, however, is solved by the proposed fast analytical approach where no associated forward problem is iteratively evaluated. The paper also discusses the role of the polarization of incidence waves, the incidence angle, the separation of scatterers from the surface of the substrate, and the level of noise on the resolution of imaging.
Entanglement entropy in quantum spin chains with broken reflection symmetry
International Nuclear Information System (INIS)
Kadar, Zoltan; Zimboras, Zoltan
2010-01-01
We investigate the entanglement entropy of a block of L sites in quasifree translation-invariant spin chains concentrating on the effect of reflection-symmetry breaking. The Majorana two-point functions corresponding to the Jordan-Wigner transformed fermionic modes are determined in the most general case; from these, it follows that reflection symmetry in the ground state can only be broken if the model is quantum critical. The large L asymptotics of the entropy are calculated analytically for general gauge-invariant models, which have, until now, been done only for the reflection-symmetric sector. Analytical results are also derived for certain nongauge-invariant models (e.g., for the Ising model with Dzyaloshinskii-Moriya interaction). We also study numerically finite chains of length N with a nonreflection-symmetric Hamiltonian and report that the reflection symmetry of the entropy of the first L spins is violated but the reflection-symmetric Calabrese-Cardy formula is recovered asymptotically. Furthermore, for noncritical reflection-symmetry-breaking Hamiltonians, we find an anomaly in the behavior of the saturation entropy as we approach the critical line. The paper also provides a concise but extensive review of the block-entropy asymptotics in translation-invariant quasifree spin chains with an analysis of the nearest-neighbor case and the enumeration of the yet unsolved parts of the quasifree landscape.
Quantum field theory and the internal states of elementary particles
CSIR Research Space (South Africa)
Greben, JM
2011-01-01
Full Text Available A new application of quantum field theory is developed that gives a description of the internal dynamics of dressed elementary particles and predicts their masses. The fermionic and bosonic quantum fields are treated as interdependent fields...
Quantum coherence in the reflection of above barrier wavepackets
Petersen, Jakob; Pollak, Eli
2018-02-01
The quantum phenomenon of above barrier reflection is investigated from a time-dependent perspective using Gaussian wavepackets. The transition path time distribution, which in principle is experimentally measurable, is used to study the mean flight times ⟨t⟩R and ⟨t⟩T associated with the reflection and the transmission over the barrier paying special attention to their dependence on the width of the barrier. Both flight times, and their difference Δt, exhibit two distinct regimes depending on the ratio of the spatial width of the incident wavepacket and the length of the barrier. When the ratio is larger than unity, the reflection and transmission dynamics are coherent and dominated by the resonances above the barrier. The flight times ⟨t⟩R/T and the flight time difference Δt oscillate as a function of the barrier width (almost in phase with the transmission probability). These oscillations reflect a momentum filtering effect related to the coherent superposition of the reflected and transmitted waves. For a ratio less than unity, the barrier reflection and transmission dynamics are incoherent and the oscillations are absent. The barrier width which separates the coherent and incoherent regimes is identified analytically. The oscillatory structure of the time difference Δt as a function of the barrier width in the coherent regime is absent when considered in terms of the Wigner phase time delays for reflection and transmission. We conclude that the Wigner phase time does not correctly describe the temporal properties of above barrier reflection. We also find that the structure of the reflected and transmitted wavepackets depends on the coherence of the process. In the coherent regime, the wavepackets can have an overlapping peak structure, but the peaks are not fully resolved. In the incoherent regime, the wavepackets split in time into distinct separated Gaussian like waves, each one reflecting the number of times the wavepacket crosses the barrier
International Conference on Coherence and Quantum Optics
RECENT DEVELOPMENTS IN QUANTUM OPTICS
1993-01-01
This volume is composed of papers (invited and contributed) presented at the International Conference on Coherence and Quantum Optics held at the University of Hyderabad January 5-January 10, 1991. It has been organized by Professor Girish Agarwal and his colleagues at the School of Physics, University of Hyderabad, Hyder abad, India under partial support from the Department of Science and Technology, Government of India, International Center for Theoretical Physics, Trieste, Italy and the National Science Foundation, USA. Without the untiring efforts of Prof. Girish Agarwal and the members of his quantum office group, the Conference and the present volume would not have been possible. Some extraordinary circumstances resulted in a delay of the publication of the present volume. Our sincere apologies to all the authors. We deeply regret the inconvenience caused due to the delay. A debt of gratitude is due to Ms. Kim Bella for the excellent typing job of the different versions and the final version of the ma...
Forensic applications of microscopical infrared internal reflection spectroscopy
Tungol, Mary W.; Bartick, Edward G.; Reffner, John A.
1994-01-01
Applications of microscopical infrared internal reflection spectroscopy in forensic science are discussed. Internal reflection spectra of single fibers, hairs, paint chips, vehicle rubber bumpers, photocopy toners, carbon copies, writing ink on paper, lipstick on tissue, black electrical tape, and other types of forensic evidence have been obtained. The technique is convenient, non-destructive, and may permit smeared materials to be analyzed in situ.
Reflections on Dead Theory in International Relations
Thakur, Vineet
2016-01-01
In this short autobiographical essay, I trace my journey in the discipline of International Relations. While entering the discipline, I, along with a host of my classmates, were enamoured by the exciting possibilities of thinking theoretically. Almost a decade later, those promises look bleak. From the perspective of a student in the discipline, I…
REFLECTIONS ON PRODUCTION INTERNALIZATION AND ITS INTERNATIONAL TRADE IMPLICATIONS
Directory of Open Access Journals (Sweden)
CLIPA RALUCA IRINA
2014-06-01
Full Text Available Vertically-integrated multinational companies place the different stages of production and marketing chain in different countries, looking for advantages such as low production costs, lower taxes, abundant resources and so on, while benefiting from the advantages of economies of scale, control of supplies or outlets. In fact, this vertical integration of multinational companies has led to the expansion of intra-firm trade and "internalized" operations, thus creating their own markets for the vertically-integrated production. Internationally active firms operate in a way that replaces the different functions of an open market with internal transactions, i.e. intra-firm transactions, whenever internal transaction costs are lower than the open-market ones. The direct consequence over international trade is the increase of intra-firm share of trade flows to one third of world trade, those companies making a suppression of international market segments that act in favour of an internal market. The creation of a multinational market and the enhancement of intra-firm trade have profound quantitative and qualitative implications on the composition, geographic orientation and dynamics of international trade. This paper deals with the issue of production internalization, with an overview of the main contributions made to the theory of internalization, while tackling its relative dimension. However, we intend to highlight the implications of this phenomenon on international trade. The work methodology falls within the range of qualitative approaches: logical argumentation, critical theoretical analysis.
Nonimaging light concentration using total internal reflection films.
Ouellette, G; Waltham, C E; Drees, R M; Poon, A; Schubank, R; Whitehead, L A
1992-05-01
We present a method of fabricating nonimaging light concentrators from total internal reflection film. A prototype has been made and tested and found to operate in agreement with predictions of ray-tracing codes. The performance of the prototype is comparable with that of concentrators made from specular reflecting materials.
Reflections on International Certified Nursing Assistants.
Shaw, Penelope Ann
2017-01-01
The author, a former university faculty member who taught English to speakers of other languages and now a nursing home resident, shares her observations about how English language proficiency, culture, and religious differences affect her care. She provides examples of communication challenges that can be annoying or cause harm, her coping strategies, and reasons many certified nursing assistants might never be fully fluent in English. She explains how international certified nursing assistants can benefit residents because of skills developed by family-centered care in their countries of origin. She also discusses related issues-the importance of being culturally competent about U.S. culture. She points out how religiousness not only affects residents but is a buffer for staff against the stress of physically and emotionally demanding low-wage work. Overall, the author likes receiving care from individuals from other countries, finding reward in comparing how her personal struggle with illness and paralysis resonates with the trauma of migration and how learning firsthand about varying beliefs and attitudes clarifies her identity and place in world history.
International Mindedness through the Looking Glass: Reflections on a Concept
Castro, Paloma; Lundgren, Ulla; Woodin, Jane
2015-01-01
The aim of this article is to report and reflect on a research project involving the conceptualization of the term "International Mindedness", which is used across a range of International Baccalaureate (IB) global and local contexts. The research process involved both a critical analysis of IB official documents and a literature review…
Harnessing Multiple Internal Reflections to Design Highly Absorptive Acoustic Metasurfaces
Shen, Chen; Cummer, Steven A.
2018-05-01
The rapid development of metasurfaces has enabled numerous intriguing applications with acoustically thin sheets. Here we report the theory and experimental realization of a nonresonant sound-absorbing strategy using metasurfaces by harnessing multiple internal reflections. We theoretically and numerically show that the higher-order diffraction of thin gradient-index metasurfaces is tied to multiple internal reflections inside the unit cells. Highly absorbing acoustic metasurfaces can be realized by enforcing multiple internal reflections together with a small amount of loss. A reflective gradient-index acoustic metasurface is designed based on the theory, and we further experimentally verify the performance using a three-dimensional printed prototype. Measurements show over 99% energy absorption at the peak frequency and a 95% energy absorption bandwidth of around 600 Hz. The proposed mechanism provides an alternative route for sound absorption without the necessity of high absorption of the individual unit cells.
Quantum Fest 2016 International Conference on Quantum Phenomena, Quantum Control and Quantum Optics
International Nuclear Information System (INIS)
2017-01-01
The Quantum Fest is a periodic annual festival on Quantum Phenomena, Quantum Control and Geometry of Quantum States, organized by the Center for Research and Advanced Studies (Cinvestav by its acronym in Spanish) and Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPIITA-IPN) in México City, Mexico. The aim of this meeting is to bring together students and researchers which are engaged in the subjects of the festival, from both theoretical and experimental approaches, in order to get lively discussions and to enable a closer contact between them.The Quantum Fest was celebrated for the first time in the Physics Department of Cinvestav (2010), since then it has been hosted in Cinvestav, UPIITA-IPN and the Tecnológico de Monterrey, Campus Estado de México (ITESM-CEM).The Quantum Fest 2016 is the seventh edition of the festival, it took place from October 17 to 21 in the Sala de Usos Múltiples, Edificio I of UPIITA-IPN, and was addressed to join the celebration of the first eighty years of the Instituto Politécnico Nacional as well as the first twenty years of the Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional. We would like to thank the willing of the UPIITA-IPN to offer its facilities as the venue of the festival; all its help provided to simplify the logistics and organization of the conference has been welcomed and is acknowledged.The topics addressed at the short courses of the Quantum Fest 2016 were time asymmetric quantum mechanics, quantum resonances, models of quantum field theory in metamaterials, singular potentials and self-adjoint extensions, nonclassical states of light, Hardy functions and Hilbert space operators.The Lecturers of Quantum Fest 2016 were:Manuel Gadella (Valladolid University, Spain)Maribel Loaiza (Department of Mathematics, Cinvestav, Mexico)Luis Miguel Nieto (Valladolid University, Spain)Oscar Rosas
International Conference on Laser Physics and Quantum Optics
Xie, Shengwu; Zhu, Shi-Yao; Scully, Marlan
2000-01-01
Since the advent of the laser about 40 years ago, the field of laser physics and quantum optics have evolved into a major discipline. The early studies included the optical coherence theory and the semiclassical and quantum mechanical theories of the laser. More recently many new and interesting effects have been predicted. These include the role of coherent atomic effects in lasing without inversion and electromagnetically induced transparency, atom optics, laser cooling and trapping, teleportation, the single-atom micromaser and its role in quantum measurement theory, to name a few. The International Conference on Laser Physics and Quantum Optics was held in Shanghai from August 25 to August 28, 1999, to discuss these and many other exciting developments in laser physics and quantum optics. The international character of the conference was manifested by the fact that scientists from over 13 countries participated and lectured at the conference. There were four keynote lectures delivered by Nobel laureate Wi...
The Reflection of Quantum Aesthetics in Algis Mickūnas Cosmic Philosophy
Directory of Open Access Journals (Sweden)
Auridas Gajauskas
2011-04-01
Full Text Available Quantum Aesthetics phenomenon was formed in Spain, at the end of the twentieth centure. The paper analyzes this movement in the context of Algis Mickūnas phenomenological cosmic philosophy. Movement initiator is a Spanish novelist Gregorio Morales. The study is divided into two parts: the first part presents aesthetic principles of the quantum, relationship between new aesthetics and theories of quantum mechanics, physics and other sciences. The paper also examines the similarities of quantum aesthetics and New Age movements. The second part presents cosmic - phenomenological reflection of quantum theory of beauty. Mickūnas philosophical position combines theory of "eternal recurrence", "the bodily nature of consciousness", "the cosmic dance", theory of "dynamic fields" and quantum approach to aesthetics and the Universe. Summa Summarum he writes that "the conception of quantum aesthetics is involved in the composition of the rhythmic, cyclical and mood dimensioned and tensed world".
Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles
DEFF Research Database (Denmark)
Iida, Daisuke; Fadil, Ahmed; Chen, Yuntian
2015-01-01
We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhance......We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density...
International Conference on Quantum Science and Applications (ICQSA-2016)
International Nuclear Information System (INIS)
Algin, A.; Arik, M.; Gavrilik, A. M.
2016-01-01
This special volume of Journal of Physics: Conference Series is dedicated to the proceedings of “International Conference on Quantum Science and Applications (ICQSA-2016)”. The conference was organized by the Centre for Quantum Research and Applications at Eskisehir Osmangazi University, Eskisehir, Turkey. It was held in Eskisehir Osmangazi University Congress and Culture Centre during May 25-27, 2016 http://icqsa2016.ogu.edu.tr. It gathered actively 143 participants from different disciplines in natural and applied sciences coming from 16 different countries from all over the word. It was the first international conference in its content on the scientific research fields of quantum science and applications in Turkey. It also consisted of 12 plenary lectures and 119 contributed oral presentations covering interdisciplinary fields of research. The ICQSA-2016 conference focused on recent modern theoretical and experimental developments of quantum science in multi-disciplinary aspects of areas of mathematics, physics, statistics, chemistry, biology, computer science, electronics, informatics, medicine, education, etc. It served as an interaction platform for students, researchers, public, and private sector delegates for sharing new scientific and technological ideas on quantum applications in science and technology. The topics of the conference were: Quantum theory and quantum computing, quantum information theory and its applications, quantum statistics and its applications, quantum thermodynamics, quantum cryptography, classical and quantum symmetries, quantum calculus in science, engineering, medicine, education, etc., classical and quantum integrable systems, modeling and numerical methods in quantum systems, other modern mathematical methods in science and technology. Each of the submitted papers for this special volume of the proceedings of ICQSA-2016 has been reviewed by external referees. There are 36 accepted papers. Besides, it is worth pointing out
International Nuclear Information System (INIS)
Kim, Kyujung; Cho, Eun-Jin; Suh, Jin-Suck; Huh, Yong-Min; Kim, Donghyun; Kim, Dong Jun
2009-01-01
We investigated evanescent field enhancement based on subwavelength nanogratings for improved sensitivity in total internal reflection microscopy of live cells. The field enhancement is associated with subwavelength-grating-coupled plasmon excitation. An optimum sample employed a silver grating on a silver film and an SF10 glass substrate. Field intensity was enhanced by approximately 90% when measured by fluorescent excitation of microbeads relative to that on a bare prism as a control, which is in good agreement with numerical results. The subwavelength-grating-mediated field enhancement was also applied to live cell imaging of quantum dots, which confirmed the sensitivity enhancement qualitatively.
Imaging Early Steps of Sindbis Virus Infection by Total Internal Reflection Fluorescence Microscopy
Directory of Open Access Journals (Sweden)
Youling Gu
2011-01-01
Full Text Available Sindbis virus (SINV is an alphavirus that has a broad host range and has been widely used as a vector for recombinant gene transduction, DNA-based vaccine production, and oncolytic cancer therapy. The mechanism of SINV entry into host cells has yet to be fully understood. In this paper, we used single virus tracking under total internal reflection fluorescence microscopy (TIRFM to investigate SINV attachment to cell surface. Biotinylated viral particles were labeled with quantum dots, which retained viral viability and infectivity. By time-lapse imaging, we showed that the SINV exhibited a heterogeneous dynamics on the surface of the host cells. Analysis of SINV motility demonstrated a two-step attachment reaction. Moreover, dual color TIRFM of GFP-Rab5 and SINV suggested that the virus was targeted to the early endosomes after endocytosis. These findings demonstrate the utility of quantum dot labeling in studying the early steps and behavior of SINV infection.
Internal reflection spectroscopic analysis of sulphide mineral surfaces
International Nuclear Information System (INIS)
Kaoma, J.
1989-01-01
To establish the reason for flotation of sulfide minerals in the absence of any conventional collector, internal reflection spectroscopic analysis (IRS) of their surfaces was conducted. sulfur, sulfates, thiosulfates, and hydrocarbonates have been detected on the surface of as-grand sulfide minerals. On sodium sulfide-treated surfaces, both sulfur and polysulfide have also been found to be present. From these findings, the flotation of sulfide minerals without collectors is discussed. (author). 26 refs
Bohm's quantum potential as an internal energy
Energy Technology Data Exchange (ETDEWEB)
Dennis, Glen, E-mail: gdennis502@gmail.com [TPRU, Birkbeck College, University of London, London, WC1E 7HX (United Kingdom); Gosson, Maurice A. de, E-mail: maurice.de.gosson@univie.ac.at [University of Vienna, Faculty of Mathematics, NuHAG, Oskar-Morgenstern-Platz 1, 1090 Vienna (Austria); Hiley, Basil J., E-mail: b.hiley@bbk.ac.uk [TPRU, Birkbeck College, University of London, London, WC1E 7HX (United Kingdom)
2015-06-26
Highlights: • The quantum potential is seen as internal energy associated with a phase space region. • Fermi's trick shows that Bohm's particle is an extended structure in phase space. • We associate Bohm's quantum potential with a context-dependent energy redistribution. • A physically motivated derivation of Schrodinger's equation is provided. • We show the Fermi set associated with a 3-D coherent state contains a quantum blob. - Abstract: We pursue our discussion of Fermi's surface initiated by Dennis, de Gosson and Hiley and show that Bohm's quantum potential can be viewed as an internal energy of a quantum system, giving further insight into its role in stationary states. This implies that the ‘particle’ referred to in Bohm's theory is not a classical point-like object but rather has an extended structure in phase space which can be linked to the notion of a symplectic capacity, a topological feature of the underlying symplectic geometry. This structure provides us with a new, physically motivated derivation of Schrödinger's equation provided we interpret Gleason's theorem as a derivation of the Born rule from fundamental assumptions about quantum probabilities.
International Nuclear Information System (INIS)
Korenev, V V; Savelyev, A V; Zhukov, A E; Maximov, M V
2015-01-01
The ways to optimize key parameters of active region and edge reflectivity of edge- emitting semiconductor quantum dot laser are provided. It is shown that in the case of optimal cavity length and sufficiently large dispersion lasing spectrum of a given width can be obtained at injection current up to an order of magnitude lower in comparison to non-optimized sample. The influence of internal loss and edge reflection is also studied in details. (paper)
Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Maximov, M. V.
2015-11-01
The ways to optimize key parameters of active region and edge reflectivity of edge- emitting semiconductor quantum dot laser are provided. It is shown that in the case of optimal cavity length and sufficiently large dispersion lasing spectrum of a given width can be obtained at injection current up to an order of magnitude lower in comparison to non-optimized sample. The influence of internal loss and edge reflection is also studied in details.
DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR
International Nuclear Information System (INIS)
Adam, I.; Aston, D.
1997-11-01
The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design
Nonlocal transformation of the internal quantum particle structure
Directory of Open Access Journals (Sweden)
Alexey Yu. Samarin
2016-09-01
Full Text Available The analysis of the integral wave equation, having path integral kernel, has resulted, that collapse phenomenon is based on the nonlocal transformation of the internal structure of a quantum particle, considering in the form of the matter fields collection. This nonlocality allows to escape the contradiction between the reduction quantum mechanics postulate and special relativity. It is shown, that the wave function transformation, corresponding to von Neumann's reduction, has the deterministic nature and the quantum mechanics stochasticity is a consequence of a macroscopic measurer presence in the measuring process. Besides it is demonstrated, that the decogerence phenomenon has the same mechanism of the wave function transformation. EPR-type experiment is described in detail and the possibility of the faster-then light communication is proved, as well the possible rules of thumb of this communication are proposed.
Quantum reflection times and space shifts for Casimir-van der Waals potential tails
International Nuclear Information System (INIS)
Jurisch, Alexander; Friedrich, Harald
2004-01-01
When cold atoms approach a surface, they can be quantum reflected by quantal regions in the tail of the atom-surface potential. We study the phase of the reflection amplitude for Casimir-van der Waals potential tails, depending on the critical parameter ρ=ρ(C 3 ,C 4 ), which describes the relative importance of the -C 3 /r 3 and -C 4 /r 4 parts of the potential. The phase is related to observable kinematic quantities, the space and time shifts, the reflected atom experiences. We study three different models for the shape of the potential between the asymptotic limits and observe that the phases are more sensitive to the potential shape than the quantum reflection probabilities. At threshold, there are always time delays in comparison to the free movement. This is in contrast to the classical movement, which shows time gains. Further above threshold, the quantum reflected atom experiences a time gain relative to free motion, but this time gain is generally smaller than that of the classical particle
Quantum Entropy of Black Hole with Internal Global Monopole
Institute of Scientific and Technical Information of China (English)
HAN Yi-Wen; YANG Shu-Zheng; LIU Wen-Biao
2005-01-01
Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.
LSB-based Steganography Using Reflected Gray Code for Color Quantum Images
Li, Panchi; Lu, Aiping
2018-02-01
At present, the classical least-significant-bit (LSB) based image steganography has been extended to quantum image processing. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel LSB-based steganography using reflected Gray code for colored quantum images, and the embedding capacity of this scheme is up to 4 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 4-bit segments. For the four bits in each segment, the first bit is embedded in the second LSB of B channel of the cover image, and and the remaining three bits are embedded in LSB of RGB channels of each color pixel simultaneously using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSB of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.
Role of the substrate reflectance and surface-bulk treatments in CsI quantum efficiency
Singh, B K; Nitti, M A; Valentini, A
2003-01-01
We have experimentally investigated the following aspects related to the quantum efficiency of CsI photocathodes: the type of substrate, the film thickness and the effect of a 'bulk treatment' during the film growth. We discovered that, using a high reflectivity aluminium substrate, the photoemission of very thin CsI film is enhanced. Our study also revealed that photocathodes become less sensitive to moisture when a negative bias voltage is applied to the substrate during the film deposition process.
Bright Single-Photon Sources Based on Anti-Reflection Coated Deterministic Quantum Dot Microlenses
Directory of Open Access Journals (Sweden)
Peter Schnauber
2015-12-01
Full Text Available We report on enhancing the photon-extraction efficiency (PEE of deterministic quantum dot (QD microlenses via anti-reflection (AR coating. The AR-coating deposited on top of the curved microlens surface is composed of a thin layer of Ta2O5, and is found to effectively reduce back-reflection of light at the semiconductor-vacuum interface. A statistical analysis of spectroscopic data reveals, that the AR-coating improves the light out-coupling of respective microlenses by a factor of 1.57 ± 0.71, in quantitative agreement with numerical calculations. Taking the enhancement factor into account, we predict improved out-coupling of light with a PEE of up to 50%. The quantum nature of emission from QDs integrated into AR-coated microlenses is demonstrated via photon auto-correlation measurements revealing strong suppression of two-photon emission events with g(2(0 = 0.05 ± 0.02. As such, these bright non-classical light sources are highly attractive with respect to applications in the field of quantum cryptography.
Energy loss from internal reflection off metal layers on glass
McDowell, M. W.; Bezuidenhout, D. F.; Klee, H. W.; Theron, E.
1983-12-01
The reflection characteristics of metal layers are considered for the situation where the electromagnetic radiation is incident from the glass side. Theoretical and measured reflectance values are presented which indicate that for some metals the reflection has a strong dependence on the refractive index of the incident medium. Some examples are given of recent cases where the above results were an important consideration in the choice of the metallic reflecting material. These results indicate that aluminium should not be automatically considered the best choice for the visible region nor gold for the infra-red.
Proceedings of the international colloquium on modern quantum field theory II
International Nuclear Information System (INIS)
Das, S.R.; Mandal, G.; Mukhi, S.; Wadia, S.R.
1995-01-01
In the second International Colloquium on Modern Quantum Field Theory an attempt was made to cover a broad spectrum of topics in theoretical physics that included string theory, quantum gravity, statistical mechanics, condensed matter theory, complexity, lattice gauge theory and epistemological aspects of quantum mechanics. Papers relevant to INIS in the published proceedings are indexed separately
Total internal reflection and dynamic light scattering microscopy of gels
Gregor, Brian F.
Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third
Phase transitions and reflection positivity for a class of quantum lattice systems
International Nuclear Information System (INIS)
Perez, J.F.; Wreszinski, W.F.
1980-08-01
A form reflection positivity in planes containing sites is proved for a class of quantum lattice systems. Two apllications to typical models are given: a proof of phase transition of ferromagnetic type by the method of infrared bounds for hhe Fisher-stabilized Ising antiferromagnet in an external magnetic field with parallel and tranverse components, and a proof of a phase transition of antiferromagnetic type for the same model with no stabilization by a suitable version of the Peierls argument. The spherical model is also discussed in an appendix. (Author) [pt
Furman, Rich; Coyne, Ann; Negi, Nalini Junko
2008-01-01
This descriptive article explores the uses of poetry and journaling exercises as means of helping students develop their self-reflective capacities within the context of international social work. First, self-reflection and its importance to social work practice and education is discussed. Second, the importance of self-reflection in international…
An Arduino-Based Experiment Designed to Clarify the Transition to Total Internal Reflection
Atkin, Keith
2018-01-01
The topic of refraction and reflection of light at the boundary of transparent media is a fundamentally important one. The special case of total internal reflection is however commonly misrepresented in elementary textbooks. This paper addresses the problem and describes an experimental procedure for measuring and displaying reflected and…
Energy Technology Data Exchange (ETDEWEB)
Netzel, Carsten; Hoffmann, Veit; Wernicke, Tim; Knauer, Arne; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)
2010-07-15
To determine relevant processes affecting the internal quantum efficiency in GaInN quantum well structures, we have studied the temperature and excitation power dependent photoluminescence intensity for quantum wells with different well widths on (0001) c-plane GaN and for quantum wells on nonpolar (11-20) a-plane GaN. In thick polar quantum wells, the quantum confined Stark effect (QCSE) causes a stronger intensity decrease with increasing temperature as long as the radiative recombination dominates. At higher temperatures, when the nonradiative recombination becomes more important, thick polar quantum wells feature a lower relative intensity decrease than thinner polar or nonpolar quantum wells. Excitation power dependent photoluminescence points to a transition from a recombination of excitons to a bimolecular recombination of uncorrelated charge carriers for thick polar quantum wells in the same temperature range. This transition might contribute to the limitation of nonradiative recombination by a reduced diffusivity of charge carriers. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Foreword [International conference on algebra, analysis and quantum probability
International Nuclear Information System (INIS)
2016-01-01
The present volume of the Journal of Physics: Conference Series represents contributions from participants of the International Conference ’’Algebra, Analysis and Quantum Probability” (Tashkent, 10-12 September 2015) organized by the Institute of Mathematics and the Faculty of Mechanics and Mathematics of the National University of Uzbekistan (NUUz) in collaboration with University Putra Malaysia (UPM) and International Islamic University Malaysia (IIUM). The Conference is dedicated to the 100th anniversary of one of the outstanding scientists of Uzbekistan, the founder of the Tashkent scientific school of functional analysis, who has initiated the investigations on operator algebras and quantum probability theory in Uzbekistan - Professor Tashmukhamed Alievich Sarymsakov (10 Sept. 1915 - 19 Dec. 1995). Among the mathematical community Professor T. A. Sarymsakov is widely known for his research in the fields of probability theory, functional analysis, general topology and their applications. A gifted teacher and skilful organizer he had a beneficial effect on the development of many new mathematicians in Uzbekistan. Professor T.A. Sarymsakov, an outstanding organizer of science in Uzbekistan, was one of the founders of the Uzbekistan Academy of Sciences, where from 1943 he was a member and Vice President, and from 1946 to 1952 president of the Academy of Sciences. Professor Sarymsakov successfully combined his fruitful scientific research with teaching and social work. During 1943-1944, 1952-1958 and 1971-1983 he was the rector of Tashkent State University (now the National University of Uzbekistan). He has made a significant contribution to the development of higher education in Uzbekistan, serving from 1959 to 1960 as the Chairman of the State Committee, and from 1960 to 1971 as the Minister of Higher and Secondary Special Education of Uzbekistan. The main objective of the scientific conference was to facilitate communication and collaboration between
Maintaining International Peace and Security: Reflections on Peace ...
African Journals Online (AJOL)
take measures and develop strategies to address the peacekeeping ... measures to achieve this purpose that are to be taken by the UN Security ..... For any democratic government it ..... financing for the mission, followed by a long procurement process for .... The view is also held that wide disparities in the international.
Reflections on the development of international nuclear law
International Nuclear Information System (INIS)
Lamm, Vanda
2017-01-01
Over the course of more than seven decades, treaty norms on the production and utilisation of nuclear energy have been developed, which together form a special section within international law. These norms are the consequence of the unique nature of the field, namely that on the one hand some aspects of the uses of nuclear energy should be covered by totally new and special norms (e.g. in the field of disarmament, seeking to eliminate or at least to control the spread of nuclear weapons, and nuclear weapons tests) and on the other hand that several traditional legal solutions were not suitable for the problems that emerged in connection with other uses of nuclear energy (like liability). In this article, three aspects of the development of that special section of international law will be explored, namely: the close connections between the regulation of peaceful and military uses of nuclear energy; the effects of nuclear catastrophes on the development of international nuclear legislation; and the interaction between soft law norms and binding norms in the area of nuclear law
Wang, Shinn-Fwu; Chiu, Ming-Hung; Chen, Wei-Wu; Kao, Fu-Hsi; Chang, Rong-Seng
2009-05-01
A small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry is proposed. In this paper, a small displacement can be obtained only by measuring the variation in phase difference between s- and p-polarization states for the total internal reflection effect. In order to improve the sensitivity, we increase the number of total internal reflections by using a parallelogram prism. The theoretical resolution of the method is better than 0.417 nm. The method has some merits, e.g., high resolution, high sensitivity, and real-time measurement. Also, its feasibility is demonstrated.
Effect of the refraction factor of a plastic fiber shell on the internal reflection coefficient
International Nuclear Information System (INIS)
Pkrksypkin, A.I.; Ponomarev, L.I.
1992-01-01
Results of pilot studies of the effect of refraction factor of plastic fiber shell on the coefficient of light internal reflection in the fiber are presented. It is pointed, that the shell does not absorb the light, but effects the surface layer of the fiber centre so, that dependence of the coefficient of internal reflection on refraction factor of the shell may be described using Fresnel formulae. It is shown, that coefficient of internal reflection decreases with the increase of refraction factor. Technique to determine volume length of scintillation light absorption in the fiber is suggested
Internal Reflection Sensor for the Cone Penetrometer. Innovative Technology Summary Report
International Nuclear Information System (INIS)
None
2001-01-01
The Internal Reflection Sensor, developed by EIC Laboratories, Inc. as a cone penetrometer based technology, provides real-time detection of subsurface non-aqueous phase liquids (NAPLs). The internal reflection element is positioned against the wall of the cone penetrometer probe such that its sensing face is in contact with the soil or groundwater as the cone is pushed into the subsurface. When NAPL is present and in contact with the sensing face, the internally reflected light is diminished. This results in a decrease in the signal output by the detector - a positive indicator of NAPL presence
International Nuclear Information System (INIS)
Ohba, Ichiro; Aizawa, Yoji; Daishido, Tsuneaki; Kurihara, Susumu; Maeda, Kei-ichi; Nakazato, Hiromichi; Tasaki, Shuichi; Yuasa, Kazuya
2003-11-01
Waseda International Symposium on Fundamental Physics - New Perspectives in Quantum Physics - was held on November 12-15, 2002 at International Conference Hall (IBUKA HALL), Waseda University, Tokyo, Japan. This symposium was organized to provide an opportunity to verify fundamental physics attainments and to discuss new prospectives in quantum physics in the 21st century. These themes of the symposium were reexamined from all aspects in terms of important key words of the symposium, fundamental quantum theory, quantum coherence and decoherence, quantum chaos, time symmetry breaking, Bose-Einstein condensation and quantum information and computation. Separate abstracts were presented for 12 of the papers in this report. The remaining 40 were considered outside the subject scope of INIS. (J.P.N.)
DIRC dreams: research directions for the next generation of internally reflected imaging counters
International Nuclear Information System (INIS)
Ratcliff, Blair N.; Spanier, Stefan
1999-01-01
Some conceptual design features of the total internally reflecting, imaging Cherenkov counter (DIRC) are described. Limits of the DIRC approach to particle identification, and a few features of alternative DIRC designs, are briefly explored
Energy Technology Data Exchange (ETDEWEB)
Ratcliff, Blair N
2001-09-18
Some general conceptual design features of total internally reflecting, imaging Cherenkov counters (DIRCs) are described. Limits of the DIRC approach to particle identification and a few features of alternative DIRC designs are briefly explored.
Precise shape reconstruction by active pattern in total-internal-reflection-based tactile sensor.
Saga, Satoshi; Taira, Ryosuke; Deguchi, Koichiro
2014-03-01
We are developing a total-internal-reflection-based tactile sensor in which the shape is reconstructed using an optical reflection. This sensor consists of silicone rubber, an image pattern, and a camera. It reconstructs the shape of the sensor surface from an image of a pattern reflected at the inner sensor surface by total internal reflection. In this study, we propose precise real-time reconstruction by employing an optimization method. Furthermore, we propose to use active patterns. Deformation of the reflection image causes reconstruction errors. By controlling the image pattern, the sensor reconstructs the surface deformation more precisely. We implement the proposed optimization and active-pattern-based reconstruction methods in a reflection-based tactile sensor, and perform reconstruction experiments using the system. A precise deformation experiment confirms the linearity and precision of the reconstruction.
Nursing student voices: reflections on an international service learning experience.
Main, E Eve; Garrett-Wright, Dawn; Kerby, Molly
2013-01-01
For the past decade participation in service and experiential learning in higher education has increased. The purpose of this study was to explore the lived experience of BSN and MSN students participating in a multidisciplinary service-learning course in a rural, underserved village in Belize. Researchers analyzed student journals utilizing qualitative data analysis techniques. There were eight consistent themes found in the student journals. The findings indicate that international service learning opportunities increase students' awareness of their place in a global society and the potential contribution they can make in society. For the past decade, service and experiential learning in higher education, including nursing education, has become increasingly important. Simply put, service and experiential learning combine community service activities with a student's academic study for the sole purpose of enriching the academic experience. As faculty, we feel the goal of baccalaureate and graduate nursing education is to produce an educated professional who will become a responsible citizen.
International migration, 1995: some reflections on an exceptional year.
Bedford, R
1996-10-01
"This paper examines the 1995 international migration statistics in the context of New Zealand's immigration policy, and with reference to the impact of migration on population change in 1995. Particular attention is focused on trying to unravel and interpret the statistics relating to net migration. Considerable confusion has arisen in the public debate about immigration because of uniformed and, at times, quite misleading use of information supplied by Statistics New Zealand and the Department of Labour.... This is a reprinted version of an article originally published in the New Zealand Journal of Geography in April 1996. The article has been reprinted because a number of tables in the earlier version were incorrectly reproduced. Any inconvenience caused by this problem is regretted." excerpt
International Nuclear Information System (INIS)
Duun, Sune; Haahr, Rasmus G; Hansen, Ole; Birkelund, Karen; Thomsen, Erik V
2010-01-01
The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized for minimizing the optical power needed in reflectance pulse oximetry. To simplify packaging, backside photodiodes are made which are compatible with assembly using surface mounting technology without pre-packaging. Quantum efficiencies up to 95% and area-specific noise equivalent powers down to 30 fW Hz -1/2 cm -1 are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface is passivated with a layer of silicon nitride also serving as an optical filter. As the final process, after metallization, a hole in the center of the photodiode is etched using deep reactive ion etch.
Pedagogical Reflections on Internalizing Geopolitical Representations in Print Media
Directory of Open Access Journals (Sweden)
Wisam Khalid Abdul-Jabbar
2015-06-01
Full Text Available This essay explores how print media conceals implicit hegemonic texts that common readers unsuspectingly tend to internalize. These geopolitically infused texts are set to appropriate the reader’s worldviews by sublimating the kind of perceptions and notions they want to promote. This paper raises questions and awareness about how academia responds to these acts of internalization. These geopolitical texts, which dominate most of the print media and other resources, function at an imperceptible level to legitimize presuppositions and mould the world based on its own political imaginaries. To decode and interpret these largely shrewd texts requires a literacy skill that students need to acquire in different academic disciplines. This essay, therefore, explores how print media, such as newspapers and comics, attempts to legitimize knowledge through reports and stories that work at the subliminal level. Since all readers, students, instructors or researchers are vulnerable observers (Behar, 1996, because of our fallible human nature, the act of internalizing mediascaped knowledge becomes alarmingly simple and crucially effective on the way we are directed to perceive the world. By analogy, geopolitical texts are these id-instigated drives that the superego often suppresses and filters into dreams and fiction and yet they ominously somehow found their way out; they stealthily found expression and now they paint reality with their own biased colors. Can readers in the context be dream catchers? Cet article explore la manière dont les médias écrits dissimulent les textes hégémoniques implicites que les lecteurs ordinaires semblent assimiler à leur insu. Ces textes géopolitiquement insufflés sont appelés à approprier la vision du monde des lecteurs en sublimant le type de perceptions et de notions qu’ils souhaitent promouvoir. Cet article soulève des questions et sensibilise l’opinion sur la manière dont le monde universitaire r
15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics
Passante, Roberto; Trapani, Camillo
2016-01-01
This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.
DEFF Research Database (Denmark)
Skjølstrup, Enok Johannes Haahr; Søndergaard, Thomas; Pedersen, Thomas Garm
2018-01-01
Plasmons in ultranarrow metal gaps are highly sensitive to the electron density profile at the metal surfaces. Using a quantum mechanical approach and assuming local response, we study the effects of electron spill-out on gap plasmons and reflectance from ultrasharp metal grooves.We demonstrate...... the reflectance from arrays of ultrasharp metal grooves. These findings are explained in terms of enhanced gap plasmon absorption taking place inside the gap 1–2 °A from the walls and delocalization near the groove bottom. Reflectance calculations taking spill-out into account are shown to be in much better...
Energy Technology Data Exchange (ETDEWEB)
Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)
2013-05-15
We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.
Akai, Hisazumi; Oguchi, Tamio
2007-09-01
This special issue of Journal of Physics: Condensed Matter comprises selected papers from the 1st International Conference on Quantum Simulators and Design (QSD2006) held in Hiroshima, Japan, 3-6 December 2006. This conference was organized under the auspices of the Development of New Quantum Simulators and Quantum Design Grant-in-Aid for Scientific Research on Priority Areas, Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), and Hiroshima University Quantum design is a computational approach to the development of new materials with specified properties and functionalities. The basic ingredient is the use of quantum simulations to design a material that meets a given specification of properties and functionalities. For this to be successful, the quantum simulation should be highly reliable and be applicable to systems of realistic size. A central interest is, therefore, the development of new methods of quantum simulation and quantum design. This includes methods beyond the local density approximation of density functional theory (LDA), order-N methods, methods dealing with excitations and reactions, and so on, as well as the application of these methods to the design of new materials and devices. The field of quantum design has developed rapidly in the past few years and this conference provides an international forum for experimental and theoretical researchers to exchange ideas. A total of 183 delegates from 8 countries participated in the conference. There were 18 invited talks, 16 oral presentations and 100 posters. There were many new ideas and we foresee dramatic progress in the coming years. The 2nd International Conference on Quantum Simulators and Design will be held in Tokyo, Japan, 31 May-3 June 2008.
Optically controlled reflection modulator using GaAs-AlGaAs n-i-p-i/multiple-quantum-well structures
Law, K.-K.; Simes, R. J.; Coldren, L. A.; Gossard, A. C.; Maserjian, J.
1989-01-01
An optically controlled reflection modulator has been demonstrated that consists of a combination of a GaAs-AlGaAs n-i-p-i doping structure with a multiple-quantum-well structures on top of a distributed Bragg reflector, all grown by MBE. A modulation of approximately 60 percent is obtained on the test structure, corresponding to a differential change of absorption coefficient in the quantum wells of approximately 7500/cm. Changes in reflectance can be observed with a control beam power as low as 1.5 microW. This device structure has the potential of being developed as an optically addressed spatial light modulator for optical information processing.
International Nuclear Information System (INIS)
Jun, Niu; Zhi, Yang; Ben-Kang, Chang
2009-01-01
The mathematical expression of the electron diffusion and drift length L DE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reffection-mode uniform doping cathode, substituting L DE for L D , the equivalent quantum efficiency equation of the reffection-mode exponential doping cathode is obtained. By using the equivalent equation, theoretical simulation and experimental analysis shows that the equivalent index formula and formula-doped cathode quantum efficiency results in line. The equivalent equation avoids complicated calculation, thereby simplifies the process of solving the quantum efficiency of exponential doping photocathode
International Nuclear Information System (INIS)
Bradley, D.I.; Fisher, S.N.; Guenault, A.M.; Lowe, M.R.; Pickett, G.R.; Rahm, A.
2003-01-01
A beam of quasiparticles from a black-body radiator is directed at a localized region of quantum turbulence generated by a vibrating wire resonator driven at super-critical velocity. We are able to measure directly the fraction of the incident quasiparticle beam which is retro-reflected from the turbulence by Andreev processes. Combining these measurements with previous measurements on the spatial extent of the turbulence may allow us to infer the vortex line density
Directory of Open Access Journals (Sweden)
Moira Stephens
2016-11-01
Full Text Available This article reports on the first Virtual International Practice Development Conference, held in May 2015 to celebrate International Nurses Day. The article describes key aspects of its planning, offers a flavour of the event itself and sets out an evaluation, including learning points and recommendations to assist with planning similar events in the future. Central to our learning are: The need for practice developers to grasp skills in technology associated with virtual space The need to embrace virtual space itself as another means by which creative and communicative spaces can be established for active learning and practice development activities The potential advantages that international virtual engagement has over face-to-face national or international engagement The delivery of this virtual event made a significant international contribution to global practice development activity within the International Practice Development Collaborative and to enabling practice developers to connect and celebrate on a more global basis. Implications for practice: Virtual space technology skills can assist with sharing and translating practice development research, innovations and critical commentary Virtual space can provide an adjunct to creative and communicative learning spaces Global networking opportunities can be developed and enhanced through the use of virtual space technology Practice developers need to role model the use of virtual technologies
Directory of Open Access Journals (Sweden)
Joanne Embree
2001-01-01
Full Text Available Ideally, editorials are written one to two months before publication in the Journal. It was my turn to write this one. I had planned to write the first draft the evening after my clinic on Tuesday, September 11. It didn't get done that night or during the next week. Somehow, the topic that I had originally chosen just didn't seem that important anymore as I, along my friends and colleagues, reflected on the changes that the events of that day were likely to have on our lives.
Symbolic Uses of Evaluation in the International Aid Sector: Arguments for Critical Reflection
McNulty, James
2012-01-01
Significant progress has been made in recent years to improve the quality of the evaluation of international aid. Increasingly, this includes an interest in improving the way evaluations are used to improve policies and programmes. However, the prevalence of symbolic use--a phenomenon that is often mentioned but rarely studied--reflects an…
Bitz, Michael; Emejulu, Obiajulu
2016-01-01
This article is an international reflection on literacy, creativity, and student engagement. The authors collaborated to help Nigerian youths and their teachers develop, design, and share original comic books. By leveraging student engagement for literacy learning, the authors highlighted the crucial role of creativity in the classroom. The…
Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter
2013-01-01
We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...
Saa'd AlDin, Kawther
2014-01-01
In 2010, the International Baccalaureate (IB) Organization mandated that all its schools, including Diploma (DP) schools, adhere to the collaborative planning and reflection requirements, which emphasized the importance of integrating its theory of knowledge (TOK) core component into all disciplines. Many schools officials and educations in Amman…
Total internal reflection second-harmonic generation: probing the alkane water interface
International Nuclear Information System (INIS)
Conboy, J.C.; Daschbach, J.L.; Richmond, G.L.
1994-01-01
Total internal reflection Second-Harmonic Generation (SHG) has been used to study a series of neat n-alkane/water interfaces. Polarization and incident angular-dependent measurements of the SH response show good agreement with theoretical predictions. Analysis of the incident and polarization angular-dependent SH response allows for determination of the nonlinear optical properties of molecules comprising the interfacial region. Based on Kleinman symmetry, the measured surface nonlinear susceptibilities suggest a high degree of interfacial order for octane and decane with less order indicated by the odd carbon n-alkanes examined, heptane and nonane. The SH response in reflection and transmission has been measured under a Total Internal Reflection (TIR) of the fundamental. The measured nonlinear susceptibilities in each case are found to be identical. (orig.)
Patterson, Brian M; Havrilla, George J
2006-11-01
The number of techniques and instruments available for Fourier transform infrared (FT-IR) microspectroscopic imaging has grown significantly over the past few years. Attenuated total internal reflectance (ATR) FT-IR microspectroscopy reduces sample preparation time and has simplified the analysis of many difficult samples. FT-IR imaging has become a powerful analytical tool using either a focal plane array or a linear array detector, especially when coupled with a chemometric analysis package. The field of view of the ATR-IR microspectroscopic imaging area can be greatly increased from 300 x 300 microm to 2500 x 2500 microm using a larger internal reflection element of 12.5 mm radius instead of the typical 1.5 mm radius. This gives an area increase of 70x before aberrant effects become too great. Parameters evaluated include the change in penetration depth as a function of beam displacement, measurements of the active area, magnification factor, and change in spatial resolution over the imaging area. Drawbacks such as large file size will also be discussed. This technique has been successfully applied to the FT-IR imaging of polydimethylsiloxane foam cross-sections, latent human fingerprints, and a model inorganic mixture, which demonstrates the usefulness of the method for pharmaceuticals.
The internal waves and Rayleigh-Taylor instability in compressible quantum plasmas
International Nuclear Information System (INIS)
Lu, H. L.; Qiu, X. M.
2011-01-01
In this paper, we investigate the quantum effect on internal waves and Rayleigh-Taylor (RT) instability in compressible quantum plasmas. First of all, let us consider the case of the limit of short wavelength perturbations. In the case, the dispersion relation including quantum and compressibility effects and the RT instability growth rate can be derived using Wentzel-Kramers-Brillouin method. The results show that the internal waves can propagate along the transverse direction due to the quantum effect, which was first pointed out by Bychkov et al.[Phys. Lett. A 372, 3042 (2008)], and the coupling between it and compressibility effect, which is found out in this paper. Then, without making the approximation assumption of short wavelength limit, we examine the linearized perturbation equation following Qiu et al.'s solving process [Phys. Plasmas 10, 2956 (2003)]. It is found that the quantum effect always stabilizes the RT instability in either incompressible or compressible quantum plasmas. Moreover, in the latter case, the coupling between it and compressibility effect makes this stabilization further enhance.
Collet, P; Métens, S; Neishtadt, A; Zaslavsky, G; Chaotic Dynamics and Transport in Classical and Quantum Systems
2005-01-01
This book offers a modern updated review on the most important activities in today dynamical systems and statistical mechanics by some of the best experts in the domain. It gives a contemporary and pedagogical view on theories of classical and quantum chaos and complexity in hamiltonian and ergodic systems and their applications to anomalous transport in fluids, plasmas, oceans and atom-optic devices and to control of chaotic transport. The book is issued from lecture notes of the International Summer School on "Chaotic Dynamics and Transport in Classical and Quantum Systems" held in Cargèse (Corsica) 18th to the 30th August 2003. It reflects the spirit of the School to provide lectures at the post-doctoral level on basic concepts and tools. The first part concerns ergodicity and mixing, complexity and entropy functions, SRB measures, fractal dimensions and bifurcations in hamiltonian systems. Then, models of dynamical evolutions of transport processes in classical and quantum systems have been largely expla...
Panigrahi, Ritwik; Srivastava, Suneel K.
2015-01-01
In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have been extended on the formation of its silver nanocomposites HPPy/Ag to strengthen our contention on this novel approach. Our investigations showed that electromagnetic interference (EMI) shielding efficiency (SE) of HPPy (34.5-6 dB) is significantly higher compared to PPy (20-5 dB) in the frequency range of 0.5-8 GHz due to the trapping of EM wave by internal reflection. We also observed that EMI shielding is further enhanced to 59-23 in 10 wt% Ag loaded HPPy/Ag-10. This is attributed to the simultaneous contribution of internal reflection as well as reflection from outer surface. Such high EMI shielding capacity using conducting polymers are rarely reported.
International Workshop on "Intersubband Transitions in Quantum Wells : Physics and Applications"
Su, Yan-Kuin
1998-01-01
The International Workshop on "Intersubband Transitions in Quantum Wells:: Physics and Applications," was held at National Cheng Kung University, in Tainan, Taiwan, December 15-18, 1997. The objective of the Workshop is to facilitate the presentation and discussion of the recent results in theoretical, experimental, and applied aspects of intersubband transitions in quantum wells and dots. The program followed the tradition initiated at the 1991 conference in Cargese-France, the 1993 conference in Whistler, B. C. Canada, and the 1995 conference in Kibbutz Ginosar, Israel. Intersubband transitions in quantum wells and quantum dots have attracted considerable attention in recent years, mainly due to the promise of various applications in the mid- and far-infrared regions (2-30 J. lm). Over 40 invited and contributed papers were presented in this four-day workshop, with topics covered most aspects of the intersubband transition phenomena including: the basic intersubband transition processes, multiquantum well i...
Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana
2015-11-02
In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.
Internalization of targeted quantum dots by brain capillary endothelial cells in vivo.
Paris-Robidas, Sarah; Brouard, Danny; Emond, Vincent; Parent, Martin; Calon, Frédéric
2016-04-01
Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery. © The Author(s) 2015.
International Nuclear Information System (INIS)
Smirne, Andrea; Vacchini, Bassano
2010-01-01
We address the microscopic derivation of a quantum master equation in Lindblad form for the dynamics of a massive test particle with internal degrees of freedom, interacting through collisions with a background ideal gas. When either internal or center-of-mass degrees of freedom can be treated classically, previously established equations are obtained as special cases. If in an interferometric setup the internal degrees of freedom are not detected at the output, the equation can be recast in the form of a generalized Lindblad structure, which describes non-Markovian effects. The effect of internal degrees of freedom on center-of-mass decoherence is considered in this framework.
Ritwik Panigrahi; Suneel K. Srivastava
2015-01-01
In present work, spherical core (polystyrene, PS)/shell (polypyrrole, PPy) has been synthesized via in situ chemical oxidative copolymerization of pyrrole (Py) on the surface of sulfonated PS microsphere followed by the formation of hollow polypyrrole (HPPy) shell by dissolving PS inner core in THF. Thereafter, we first time established that such fabricated novel art of morphology acts as a conducting trap in absorbing electromagnetic (EM) wave by internal reflection. Further studies have bee...
Preparation of reflective CsI photocathodes with reproducible high quantum efficiency
Maier-Komor, P.; Bauer, B. B.; Friese, J.; Gernhäuser, R.; Kienle, P.; Körner, H. J.; Montermann, G.; Zeitelhack, K.
1995-02-01
CsI as a solid UV-photocathode material has many promising applications in fast gaseous photon detectors. They are proposed in large area Ring Imaging CHerenkov (RICH) devices in forthcoming experiments at various high-energy particle accelerators. A high photon-to-electron conversion efficiency is a basic requirement for the successful operation of these devices. High reproducible quantum efficiencies could be achieved with CsI layers prepared by electron beam evaporation from a water-cooled copper crucible. CsI films were deposited in the thickness range of 30 to 500 μg/cm 2. Absorption coefficients and quantum efficiencies were measured in the wavelength region of 150 nm to 250 nm. The influence of various evaporation parameters on the quantum efficiency were investigated.
Preparation of reflective CsI photocathodes with reproducible high quantum efficiency
Energy Technology Data Exchange (ETDEWEB)
Maier-Komor, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Bauer, B.B. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Friese, J. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Gernhaeuser, R. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Kienle, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Koerner, H.J. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Montermann, G. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Zeitelhack, K. [Technische Univ. Muenchen, Garching (Germany). Physik-Department
1995-08-01
CsI as a solid UV-photocathode material has many promising applications in fast gaseous photon detectors. They are proposed in large area Ring Imaging CHerenkov (RICH) devices in forthcoming experiments at various high-energy particle accelerators. A high photon-to-electron conversion efficiency is a basic requirement for the successful operation of these devices. High reproducible quantum efficiencies could be achieved with CsI layers prepared by electron beam evaporation from a water-cooled copper crucible. CsI films were deposited in the thickness range of 30 to 500 {mu}g/cm{sup 2}. Absorption coefficients and quantum efficiencies were measured in the wavelength region of 150 nm to 250 nm. The influence of various evaporation parameters on the quantum efficiency were investigated. (orig.).
Directory of Open Access Journals (Sweden)
Nikolenko Nataliya V.
2013-12-01
Full Text Available The article identifies the degree of correspondence of the national Provisions (Standard of Business Accounting (PSBA Lease with the international standard and provides recommendations with respect to their closing up. On the results of the study the author provides specific features of international and national standards – the existing IFRS 17 Lease and national PSBA 14 Lease by the following components: definition of lease, its classification and reflection in accounting. Also the text of PSBA 31 Financial Expenditures is supplemented with provisions on capitalisation of financial expenditures prospectively, which would allow avoidance of correction of the balance of the retained income and provision of comparative information for previous periods. The article provides an algorithm of division of lease for accounting purposes on the basis of international standards. Its use would ensure correctness of reflection of lease operations in accounting and would serve as a basis for development of methodical provisions with respect to accounting. By the result of the study the author forms definition of the qualification asset as an asset which requires considerable time for its creation, preparation for target use, sales or acquisition of the ownership right. Capitalisation of such expenditures would allow non-reduction of the accounting income and also would provide a possibility to reflect financial expenditures in accordance with their economic essence.
Room-temperature near-field reflection spectroscopy of single quantum wells
DEFF Research Database (Denmark)
Langbein, Wolfgang Werner; Hvam, Jørn Marcher; Madsen, Steen
1997-01-01
. This technique suppresses efficiently the otherwise dominating far-field background and reduces topographic artifacts. We demonstrate its performance on a thin, strained near-surface CdS/ZnS single quantum well at room temperature. The optical structure of these topographically flat samples is due to Cd...
International Nuclear Information System (INIS)
1996-01-01
In the international workshop on 'interfacial effects in quantum engineering systems (IEQES-96)' organized by Nuclear Engineering Research Laboratory, the University of Tokyo and held on August 21-23, 1996, 108 items were discussed in following 3 sessions. In the first session, on interfacial effects in fusion energy systems, 29 items on Plasma-surface interactions in fusion devices and 14 items on blanket breeder-hydrogen isotope interactions were investigated. In the second session, 38 items on interfacial effects in fission energy systems were discussed. Furthermore, in the third session, 27 items of quantum beam-material interactions were investigated. (G.K.)
Petersen, Jakob; Pollak, Eli; Miret-Artes, Salvador
2018-04-01
Quantum threshold reflection is a well-known quantum phenomenon which prescribes that at threshold, except for special circumstances, a quantum particle scattering from any potential, even if attractive at long range, will be reflected with unit probability. In the past, this property had been associated with the so-called badlands region of the potential, where the semiclassical description of the scattering fails due to a rapid spatial variation of the de Broglie wavelength. This badlands region occurs far from the strong interaction region of the potential and has therefore been used to "explain" the quantum reflection phenomenon. In this paper we show that the badlands region of the interaction potential is immaterial. The extremely long wavelength of the scattered particle at threshold is much longer than the spatial extension of the badlands region, which therefore does not affect the scattering. For this purpose, we review and generalize the proof for the existence of quantum threshold reflection to stress that it is only a consequence of continuity and boundary conditions. The nonlocal character of the scattering implies that the whole interaction potential is involved in the phenomenon. We then provide a detailed numerical study of the threshold scattering of a particle by a Morse potential and an Eckart potential, especially in the time domain. We compare exact quantum computations with incoherent results obtained from a classical Wigner approximation. This study shows that close to threshold the time-dependent amplitude of the scattered particle is negligible in the badlands region and is the same whether the potential has a reflecting wall as in the Morse potential or a steplike structure as in the Eckart smooth step potential. The mean flight time of the particle is not shortened due to a local reflection from the badlands region or due to the lower density of the wave function at short distances. This study should serve to definitely rule out the
Energy Technology Data Exchange (ETDEWEB)
Kurtz, E.; Schmitt, K.; Hommel, D.; Waag, A.; Bicknell-Tassius, R.N.; Landwehr, G. (Physikalisches Inst., Univ. Wuerzburg (Germany))
1993-01-30
Piezomodulated reflectivity (PZR) measurements are reported for the first time as a standard characterization method for CdMnTe/CdTe single (SQW) and multiple (MQW) quantum wells grown by molecular beam epitaxy on CdTe substrates 1 mm thick. Previously, modulation spectroscopy studies of II-VI structures required thin substrates which needed special preparation. In this paper we present studies of optical properties of CdMnTe/CdTe SQWs and MWQs using the PZR technique. The samples, mounted on a sinusoidally driven piezoelectric transducer are subjected to an alternating strain. Exploiting ''lock-in'' techniques, the first derivative of the reflectivity is measured directly. Specific electronic transitions, e.g. excitons, are well resolved in the modulated spectrum and can be easily identified. This makes PZR a very sensitive and powerful tool for the characterization of quantum well structures, and a useful complement to other standard techniques such as photoluminescence and excitation spectroscopy. (orig.).
Beyond ‘Innocents Abroad’: Reflecting on Sustainability Issues During International Study Trips
Directory of Open Access Journals (Sweden)
Anne H. Reilly
2016-12-01
Full Text Available With ecosystems and populations in many regions threatened by rapid development, sustainability is a critical component for businesses in mature markets and emerging economies alike. The International Association of Jesuit Business Schools notes that global sustainability involves a broad set of interconnected issues ranging from environmental preservation to social justice to desirable production and consumption patterns. Jesuit business schools are uniquely positioned to address sustainability issues with their focus on teaching managerial content in tandem with corporate social responsibility. Further, the Ignatian Pedagogy Paradigm of experience, reflection, and action would suggest that business students may benefit from reflective observation in support of learning about sustainability. In this paper, we examine the international study trip as an opportunity for students to learn about sustainability, with results suggesting that student understanding about the broad sustainability domain may be enhanced through the study abroad experience. We discuss how two classes of primarily American MBA students traveling to emerging markets (one class to Santiago, Chile and one class to Johannesburg, South Africa were able to connect local business practices with economic and social as well as environmental sustainability issues, enhancing both student engagement and learning outcomes. Further, these students’ sustainability experiences while in an unfamiliar environment provided the opportunity to apply the potentially transformative experience, reflection, and action components of the Ignatian Pedagogy Paradigm. Compared to similar graduate business students enrolled in regular classes, we argue that these students discerned deeper connections with the economic, social, and environmental issues of sustainability.
Internal-wave reflection from uniform slopes: higher harmonics and Coriolis effects
Directory of Open Access Journals (Sweden)
T. Gerkema
2006-01-01
Full Text Available Weakly nonlinear reflection of internal waves from uniform slopes produces higher harmonics and mean fields; the expressions are here derived for constant stratification and with Coriolis effects fully included, i.e. the horizontal component of the earth rotation vector (referred to as 'non-traditional'' is taken into account. Uniformity in one of the horizontal directions is assumed. It is shown that solutions can be as readily derived with as without ; hence there is no need to make the so-called Traditional Approximation. Examples of reflecting internal-wave beams are presented for super-inertial, inertial and sub-inertial frequencies. The problem of resonant and non-resonant forcing of the second harmonic is studied for single plane waves; unlike under the Traditional Approximation, the problem of reflection from a horizontal bottom no longer forms a singular case. Non-traditional effects are favourable to resonant forcing at near-tidal rather than near-inertial frequencies, and generally increase the intensity of the second harmonic. Strong stratification tends to suppress non-traditional effects, but a near-total suppression is only attained for high values of stratification that are characteristic of the seasonal thermocline; in most parts of the ocean, non-traditional effects can therefore be expected to be important.
Potts glass reflection of the decoding threshold for qudit quantum error correcting codes
Jiang, Yi; Kovalev, Alexey A.; Pryadko, Leonid P.
We map the maximum likelihood decoding threshold for qudit quantum error correcting codes to the multicritical point in generalized Potts gauge glass models, extending the map constructed previously for qubit codes. An n-qudit quantum LDPC code, where a qudit can be involved in up to m stabilizer generators, corresponds to a ℤd Potts model with n interaction terms which can couple up to m spins each. We analyze general properties of the phase diagram of the constructed model, give several bounds on the location of the transitions, bounds on the energy density of extended defects (non-local analogs of domain walls), and discuss the correlation functions which can be used to distinguish different phases in the original and the dual models. This research was supported in part by the Grants: NSF PHY-1415600 (AAK), NSF PHY-1416578 (LPP), and ARO W911NF-14-1-0272 (LPP).
Bohannon, Kevin P; Holz, Ronald W; Axelrod, Daniel
2017-10-01
The refractive index in the interior of single cells affects the evanescent field depth in quantitative studies using total internal reflection (TIR) fluorescence, but often that index is not well known. We here present method to measure and spatially map the absolute index of refraction in a microscopic sample, by imaging a collimated light beam reflected from the substrate/buffer/cell interference at variable angles of incidence. Above the TIR critical angle (which is a strong function of refractive index), the reflection is 100%, but in the immediate sub-critical angle zone, the reflection intensity is a very strong ascending function of incidence angle. By analyzing the angular position of that edge at each location in the field of view, the local refractive index can be estimated. In addition, by analyzing the steepness of the edge, the distance-to-substrate can be determined. We apply the technique to liquid calibration samples, silica beads, cultured Chinese hamster ovary cells, and primary culture chromaffin cells. The optical technique suffers from decremented lateral resolution, scattering, and interference artifacts. However, it still provides reasonable results for both refractive index (~1.38) and for distance-to-substrate (~150 nm) for the cells, as well as a lateral resolution to about 1 µm.
Wu, Feng; Sun, Haiding; Ajia, Idris A.; Roqan, Iman S.; Zhang, Daliang; Dai, Jiangnan; Chen, Changqing; Feng, Zhe Chuan; Li, Xiaohang
2017-01-01
Significant internal quantum efficiency (IQE) enhancement of GaN/AlGaN multiple quantum wells (MQWs) emitting at similar to 350 nm was achieved via a step quantum well (QW) structure design. The MQW structures were grown on AlGaN/AlN/sapphire templates by metal-organic chemical vapor deposition (MOCVD). High resolution x-ray diffraction (HR-XRD) and scanning transmission electron microscopy (STEM) were performed, showing sharp interface of the MQWs. Weak beam dark field imaging was conducted, indicating a similar dislocation density of the investigated MQWs samples. The IQE of GaN/AlGaN MQWs was estimated by temperature dependent photoluminescence (TDPL). An IQE enhancement of about two times was observed for the GaN/AlGaN step QW structure, compared with conventional QW structure. Based on the theoretical calculation, this IQE enhancement was attributed to the suppressed polarization-induced field, and thus the improved electron-hole wave-function overlap in the step QW.
Wu, Feng
2017-05-03
Significant internal quantum efficiency (IQE) enhancement of GaN/AlGaN multiple quantum wells (MQWs) emitting at similar to 350 nm was achieved via a step quantum well (QW) structure design. The MQW structures were grown on AlGaN/AlN/sapphire templates by metal-organic chemical vapor deposition (MOCVD). High resolution x-ray diffraction (HR-XRD) and scanning transmission electron microscopy (STEM) were performed, showing sharp interface of the MQWs. Weak beam dark field imaging was conducted, indicating a similar dislocation density of the investigated MQWs samples. The IQE of GaN/AlGaN MQWs was estimated by temperature dependent photoluminescence (TDPL). An IQE enhancement of about two times was observed for the GaN/AlGaN step QW structure, compared with conventional QW structure. Based on the theoretical calculation, this IQE enhancement was attributed to the suppressed polarization-induced field, and thus the improved electron-hole wave-function overlap in the step QW.
Optimal reflection-free complex absorbing potentials for quantum propagation of wave packets
International Nuclear Information System (INIS)
Shemer, Oded; Brisker, Daria; Moiseyev, Nimrod
2005-01-01
The conditions for optimal reflection-free complex-absorbing potentials (CAPs) are discussed. It is shown that the CAPs as derived from the smooth-exterior-scaling transformation of the Hamiltonian [J. Phys. B 31, 1431 (1998)] serve as optimal reflection-free CAPs (RF CAPs) in wave-packet propagation calculations of open systems. The initial wave packet, Φ(t=0), can be located in the interaction region (as in half collision experiments) where the CAPs have vanished or in the asymptote where V CAP ≠0. As we show, the optimal CAPs can be introduced also in the region where the physical potential has not vanished. The unavoided reflections due to the use of a finite number of grid points (or basis functions) are discussed. A simple way to reduce the 'edge-grid' reflection effect is described
Kuang, Cuifang; Ali, M Yakut; Hao, Xiang; Wang, Tingting; Liu, Xu
2010-10-01
In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.
Superresolution confocal technology for displacement measurements based on total internal reflection
International Nuclear Information System (INIS)
Kuang Cuifang; Hao Xiang; Wang Tingting; Liu Xu; Ali, M. Yakut
2010-01-01
In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.
Nonpolarizing beam splitter designed by frustrated total internal reflection inside a glass cube.
Xu, Xueke; Shao, Jianda; Fan, Zhengxiu
2006-06-20
A method for the design of an all-dielectric nonpolarizing prism beam splitter utilizing the principle of frustrated total internal reflection is reported. The nonpolarizing condition for a prism beam splitter is discussed, and some single layer design examples are elaborated. The concept can be applied to a wide range of wavelengths and arbitrary transmittance values, and with the help of a computer design program examples of 400-700 nm, T(p)=T(s)=0.5+/-0.01, with incident angles of 45 degrees and 62 degrees are given. In addition, the sensitivity and application of the design are also discussed.
Directory of Open Access Journals (Sweden)
Marcelina Cardoso Dos Santos
2017-06-01
Full Text Available We propose a new strategy to evaluate adhesion strength at the single cell level. This approach involves variable-angle total internal reflection fluorescence microscopy to monitor in real time the topography of cell membranes, i.e. a map of the membrane/substrate separation distance. According to the Boltzmann distribution, both potential energy profile and dissociation energy related to the interactions between the cell membrane and the substrate were determined from the membrane topography. We have highlighted on glass substrates coated with poly-L-lysine and fibronectin, that the dissociation energy is a reliable parameter to quantify the adhesion strength of MDA-MB-231 motile cells.
Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology
Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye
2013-05-01
We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.
International Nuclear Information System (INIS)
Lopuski, J.
1993-01-01
This book deals with deals of the complex issues of liability and compensation for nuclear damage which have been considered in the course of the work of the IAEA concerning the revision of the Vienna Convention on nuclear liability. It presents, in an orderly way, personal reflections of its author based on his experience gathered in years 1989-1992 when participating in this work. Necessarily it contains in some of its parts references to documents of the IAEA Standing Committee on Nuclear Liability; these documents because of their length could not be reproduced. Consequently these parts may not be fully intelligible for those who have not participated in or closely followed the Committee's work. The IAEA work on liability for nuclear damage was initiated in the wake of the impact made on the world's public opinion by the Chernobyl incident and its transboundary effects; issues of international state liability and full compensation have been raised. But humanitarian ideas have quickly been confronted with cold calculations of the cost of financial protection for victims and an open unwillingness of some nuclear states has been manifested. After three years of discussions no wide consensus could be reached on some basic issues, such as: relationship between international state and civil liability regimes, structure of international legislation, concept of nuclear damage, limits of compensation, role of public funds or jurisdiction. The author presents his approach to these controversial issue, trying to provide at the same time a theoretical outline for the future international legislation on nuclear liability. (author)
Energy Technology Data Exchange (ETDEWEB)
Feswick, A., E-mail: afeswick@yahoo.ca [Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States); Canadian Rivers Institute, University of New Brunswick, PO Box 5050, Saint John NB, CA (United States); Griffitt, R.J., E-mail: joe.griffitt@usm.edu [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States); Siebein, K., E-mail: kerry.siebein@nist.gov [Major Analytical Instrumentation Center, University of Florida, PO Box 116400, Gainesville, FL 32611 (United States); Barber, D.S., E-mail: barberd@vetmed.ufl.edu [Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States)
2013-04-15
Highlights: ► Daphnia underwent a waterborne exposure of PEG, NH{sub 2} and COOH functionalized quantum dot nanoparticles. ► There was preferential retention of COOH nanoparticles. ► TEM demonstrated that NH{sub 2} and COOH nanoparticles were internalized in cells adjacent to the GI tract. ► This cellular internalization was confirmed using energy dispersive spectroscopy. -- Abstract: Nanomaterials are a diverse group of compounds whose inevitable release into the environment warrants study of the fundamental processes that govern the ingestion, uptake and accumulation in aquatic organisms. Nanomaterials have the ability to transfer to higher trophic levels in aquatic ecosystems, and recent evidence suggests that the surface chemistry of both the nanoparticle and biological membrane can influence uptake kinetics. Therefore, our study investigates the effect of surface functionalization on uptake, internalization and depuration in Daphnia spp. Uncharged (polyethylene glycol; PEG), positively charged (amino-terminated: NH{sub 2}) and negatively charged (carboxyl-modified; COOH) cadmium selenide/zinc sulfide quantum dots were used to monitor ingestion, uptake and depuration of nanometals in Daphnia magna and Ceriodaphnia dubia over 24 h of exposure. These studies demonstrated that particles with higher negative charge (COOH quantum dots) were taken up to a greater extent by Daphnia (259.17 ± 17.70 RFU/20 Daphnia) than either the NH{sub 2} (150.01 ± 18.91) or PEG quantum dots (95.17 ± 9.78), however this is likely related to the functional groups attached to the nanoparticles as there were no real differences in zeta potential. Whole body fluorescence associates well with fluorescent microscopic images obtained at the 24 h timepoint. Confocal and electron microscopic analysis clearly demonstrated that all three types of quantum dots could cross the intestinal epithelial barrier and be translocated to other cells. Upon cessation of exposure, elimination of
ELiXIR—Solid-State Luminaire With Enhanced Light Extraction by Internal Reflection
Allen, Steven C.; Steckl, Andrew J.
2007-06-01
A phosphor-converted light-emitting diode (pcLED) luminaire featuring enhanced light extraction by internal reflection (ELiXIR) with efficacy of 60 lm/W producing 18 lumens of yellowish green light at 100 mA is presented. The luminaire consists of a commercial blue high power LED, a polymer hemispherical shell lens with interior phosphor coating, and planar aluminized reflector. High extraction efficiency of the phosphor-converted light is achieved by separating the phosphor from the LED and using internal reflection to steer the light away from lossy reflectors and the LED package and out of the device. At 10 and 500 mA, the luminaire produces 2.1 and 66 lumens with efficacies of 80 and 37 lm/W, respectively. Technological improvements over existing commercial LEDs, such as more efficient pcLED packages or, alternatively, higher efficiency green or yellow for color mixing, will be essential to achieving 150 200 lm/W solid-state lighting. Advances in both areas are demonstrated.
International Nuclear Information System (INIS)
Gleńska-Olender, J.; Dworecki, K.; Sęk, S.; Kwinkowski, M.; Kaca, W.
2013-01-01
Total internal reflection ellipsometry (TIRE), a label-free optical detection technique for studying interactions between biomolecules, was used to examine the adsorption of various forms of lipopolysaccharides (LPSs) isolated from Proteus mirabilis S1959, R110, and R45 strains on a gold surface. The thickness of the adsorbed layers was determined by TIRE, with the average values for S1959, R110, and R45 LPS layers being 78 ± 5, 39 ± 3, and 12 ± 2 nm, respectively. The thickness of LPS layers corresponds to the presence and length of O-specific parts in P. mirabilis LPS molecules. Atomic force microscopy was used as a complementary technique for visualizing lipopolysaccharides on the surface. Force measurements seem to confirm the data obtained from TIRE experiments. - Highlights: • Proteus mirabilis lipopolysaccharides were adsorbed on the gold surface. • Thickness of adsorbed layers was determined by total internal reflection ellipsometry. • Atomic force microscopy was used to visualize lipopolysaccharide build-up on gold surface. • Time is important in the evolution of biomolecular film thickness created on gold surface
Deng, Zhichao; Wang, Jin; Ye, Qing; Sun, Tengqian; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo
2016-01-01
The complex refractive index dispersion (CRID), which contains the information on the refractive index dispersion and extinction coefficient spectra, is an important optical parameter of biotissue. However, it is hard to perform the CRID measurement on biotissues due to their high scattering property. Continuous CRID measurement based on internal reflection (CCRIDM-IR) is introduced. By using a lab-made apparatus, internal reflectance spectra of biotissue samples at multiple incident angles were detected, from which the continuous CRIDs were calculated based on the Fresnel formula. Results showed that in 400- to 750-nm range, hemoglobin solution has complicated dispersion and extinction coefficient spectra, while other biotissues have normal dispersion properties, and their extinction coefficients do not vary much with different wavelengths. The normal dispersion can be accurately described by several coefficients of dispersion equations (Cauchy equation, Cornu equation, and Conrady equation). To our knowledge, this is the first time that the continuous CRID of scattering biotissue over a continuous spectral region is measured, and we hereby have proven that CCRIDM-IR is a good method for continuous CRID research of biotissue.
Energy Technology Data Exchange (ETDEWEB)
Gleńska-Olender, J., E-mail: joannaglenska@wp.pl [Institute of Biology, Jan Kochanowski University, 25-406 Kielce (Poland); Świętokrzyski Biobank, Regional Science and Technology Center, 26-060 Chęciny (Poland); Dworecki, K. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Sęk, S. [Department of Chemistry, University of Warsaw, 02-093 Warsaw (Poland); Kwinkowski, M.; Kaca, W. [Institute of Biology, Jan Kochanowski University, 25-406 Kielce (Poland)
2013-12-02
Total internal reflection ellipsometry (TIRE), a label-free optical detection technique for studying interactions between biomolecules, was used to examine the adsorption of various forms of lipopolysaccharides (LPSs) isolated from Proteus mirabilis S1959, R110, and R45 strains on a gold surface. The thickness of the adsorbed layers was determined by TIRE, with the average values for S1959, R110, and R45 LPS layers being 78 ± 5, 39 ± 3, and 12 ± 2 nm, respectively. The thickness of LPS layers corresponds to the presence and length of O-specific parts in P. mirabilis LPS molecules. Atomic force microscopy was used as a complementary technique for visualizing lipopolysaccharides on the surface. Force measurements seem to confirm the data obtained from TIRE experiments. - Highlights: • Proteus mirabilis lipopolysaccharides were adsorbed on the gold surface. • Thickness of adsorbed layers was determined by total internal reflection ellipsometry. • Atomic force microscopy was used to visualize lipopolysaccharide build-up on gold surface. • Time is important in the evolution of biomolecular film thickness created on gold surface.
Exploiting total internal reflection geometry for efficient optical modulation of terahertz light
Directory of Open Access Journals (Sweden)
Xudong Liu
2016-10-01
Full Text Available Efficient methods to modulate terahertz (THz light are essential for realizing rapid THz imaging and communication applications. Here we report a novel THz modulator which utilizes the evanescent wave in a total internal reflection setup coupled with a conductive interface to enhance the attenuation efficiency of THz light. This approach makes it possible to achieve close to 100% modulation with a small interface conductivity of 12 mS. The frequency dependence of this technique is linked to the optical properties of the materials: a material with close to frequency independent conductivity that is also controllable will result in an achromatic modulation response, and the device performance can be optimized further by tuning the internal reflection angle. In this work, we focus on applying the technique in the terahertz frequency range. Using an LED array with a pump intensity of 475 mW/cm2 to produce carriers in a silicon wafer, we have achieved a modulation depth of up to 99.9% in a broad frequency range of 0.1 THz–0.8 THz. The required pumping power for the generation of the required free carriers is low because the sheet conductivity needed is far less than required for traditional transmission techniques. Consequently, the device can be modulated by an LED making it a very practical, low cost, and scalable solution for THz modulation.
Directory of Open Access Journals (Sweden)
Kim Myung K
2011-09-01
Full Text Available Abstract Background Total internal reflection fluorescence microscopy (TIRFM is a powerful tool for observing fluorescently labeled molecules on the plasma membrane surface of animal cells. However, the utility of TIRFM in plant cell studies has been limited by the fact that plants have cell walls, thick peripheral layers surrounding the plasma membrane. Recently, a new technique known as variable-angle epifluorescence microscopy (VAEM was developed to circumvent this problem. However, the lack of a detailed analysis of the optical principles underlying VAEM has limited its applications in plant-cell biology. Results Here, we present theoretical and experimental evidence supporting the use of variable-angle TIRFM in observations of intact plant cells. We show that when total internal reflection occurs at the cell wall/cytosol interface with an appropriate angle of incidence, an evanescent wave field of constant depth is produced inside the cytosol. Results of experimental TIRFM observations of the dynamic behaviors of phototropin 1 (a membrane receptor protein and clathrin light chain (a vesicle coat protein support our theoretical analysis. Conclusions These findings demonstrate that variable-angle TIRFM is appropriate for quantitative live imaging of cells in intact tissues of Arabidopsis thaliana.
DEFF Research Database (Denmark)
Duun, Sune Bro; Haahr, Rasmus Grønbek; Hansen, Ole
2010-01-01
The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized...
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Directory of Open Access Journals (Sweden)
Ergün Köksoy
2015-11-01
Full Text Available Public diplomacy is described as a new form of relations and communications between countries and societies in the field of international relations with the process of globalisation. The subject of refugees shown among the priority issues can be solved through international cooperation and solidarity with its results affecting all countries and societies, that’s why becoming part of public diplomacy. Asylum seekers and refugee rights are guaranteed by the Universal Declaration of Human Rights and considered to be an area that the international community needs to take the roles and share responsibilities. In this aspect, it is shown as global responsibilities and part of the humanitarian sensibility of countries and societies. In one hand, asylum seekers and refugees are considered to be the subject of the problem and crisis, on the other hand, due to contributing to the human and cultural interaction between the different communities, these are specified as part of public diplomacy. This article discusses the relationship between public diplomacy and refugees relations which provides the interaction between countries and effects the prestige and perception of them. In the study, to reveal the reflections of Turkey’s Refugees Relations on the International Media, three highest-circulation newspapers (“The Guardian”, “Le Monde”, “Der Spiegel” will be choosen from three important EU countries (United Kingdom, France, Germany. These newspapers’ headlines and news content which related to Turkey and Syrian refugees are going to be analized on three-month period. As a result, Turkish public diplomacy and refugee relations and its implications on the international media in the context of Syrian refugees will be evaluated and some recommendations for the future of Turkish public diplomacy and refugee relations will be provided.
Directory of Open Access Journals (Sweden)
Brighide M. Lynch
2015-05-01
Full Text Available Background: In 2010 a community of practice was set up for and by doctoral students engaged in person-centred and practitioner research. After three years, this community became part of a larger international community of practice. Aims and objectives: Captured under the stanzas of a poem and supported by the literature, this paper uses member narratives and creative expressions in a critical reflection on the experience of being a member of the Student International Community of Practice. Conclusions: Membership in the community of practice was experienced as beneficial, providing both support and challenge to enrich the doctoral students’ development as person-centred researchers. Retaining connectivity across an international landscape and finding effective ways to integrate new members into the community presented the greatest challenges. Implications for practice development: • The theoretical foundation and experiential knowledge could assist others considering support structures for the development of person-centred practices • Shared learning and co-creation of knowledge add value to the experience of being a doctoral researcher • Membership fluctuations present challenges to continuity of learning and the maintenance of a safe space with communities of practice. Such fluctuations, however, create chances for community members to experience diverse roles within the group and encourage explicit attention to person-centredness
Directory of Open Access Journals (Sweden)
Raúl Hernán Contreras Román
2015-12-01
Full Text Available The present article develops an initial discussion on the persistence of the peasant class in anthropology as an awkward object, which since it has become asubject for the discipline has obliged anthropologists to re-examine their disciplinary identity and re-think their theoretical bases. We start from the idea that both the emergence and the decline of peasant studies in the discipline have corresponded with localizable social, intellectual and political contexts. For this reason we present the current struggle of peasant internationalism, represented by the international movement Vía Campesina, for food sovereignty and international recognition of the rights of peasant men and women. These struggles are considered to constitute a politically novel space which has the potential to generate political opportunities for peasant claims in the face of neoliberal despoliation. Finally, we reflect on how these struggles again present the peasant class as an awkward object for anthropology and demand anthropological discussion of the subject.
Akai, Hisazumi; Tsuneyuki, Shinji
2009-02-01
This special issue of Journal of Physics: Condensed Matter comprises selected papers from the proceedings of the 2nd International Conference on Quantum Simulators and Design (QSD2008) held in Tokyo, Japan, between 31 May and 3 June 2008. This conference was organized under the auspices of the Development of New Quantum Simulators and Quantum Design Grant-in-Aid for Scientific Research on Priority Areas, Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). The conference focused on the development of first principles electronic structure calculations and their applications. The aim was to provide an opportunity for discussion on the progress in computational materials design and, in particular, the development of quantum simulators and quantum design. Computational materials design is a computational approach to the development of new materials. The essential ingredient is the use of quantum simulators to design a material that meets a given specification of properties and functionalities. For this to be successful, the quantum simulator should be very reliable and be applicable to systems of realistic size. During the conference, new methods of quantum simulation and quantum design were discussed including methods beyond the local density approximation of density functional theory, order-N methods, methods dealing with excitations and reactions, and the application of these methods to the design of novel materials, devices and systems. The conference provided an international forum for experimental and theoretical researchers to exchange ideas. A total of 220 delegates from eight countries participated in the conference. There were 13 invited talks, ten oral presentations and 120 posters. The 3rd International Conference on Quantum Simulators and Design will be held in Germany in the autumn of 2011.
International Nuclear Information System (INIS)
Al-Hashimi, M.H.; Wiese, U.-J.
2012-01-01
We consider a 1-parameter family of self-adjoint extensions of the Hamiltonian for a particle confined to a finite interval with perfectly reflecting boundary conditions. In some cases, one obtains negative energy states which seem to violate the Heisenberg uncertainty relation. We use this as a motivation to derive a generalized uncertainty relation valid for an arbitrarily shaped quantum dot with general perfectly reflecting walls in d dimensions. In addition, a general uncertainty relation for non-Hermitian operators is derived and applied to the non-Hermitian momentum operator in a quantum dot. We also consider minimal uncertainty wave packets in this situation, and we prove that the spectrum depends monotonically on the self-adjoint extension parameter. In addition, we construct the most general boundary conditions for semiconductor heterostructures such as quantum dots, quantum wires, and quantum wells, which are characterized by a 4-parameter family of self-adjoint extensions. Finally, we consider perfectly reflecting boundary conditions for relativistic fermions confined to a finite volume or localized on a domain wall, which are characterized by a 1-parameter family of self-adjoint extensions in the (1+1)-d and (2+1)-d cases, and by a 4-parameter family in the (3+1)-d and (4+1)-d cases. - Highlights: ► Finite volume Heisenberg uncertainty relation. ► General self-adjoint extensions for relativistic fermions. ► New prospective for the problem of particle in a box.
Energy Technology Data Exchange (ETDEWEB)
Lopuski, J
1994-12-31
This book deals with deals of the complex issues of liability and compensation for nuclear damage which have been considered in the course of the work of the IAEA concerning the revision of the Vienna Convention on nuclear liability. It presents, in an orderly way, personal reflections of its author based on his experience gathered in years 1989-1992 when participating in this work. Necessarily it contains in some of its parts references to documents of the IAEA Standing Committee on Nuclear Liability; these documents because of their length could not be reproduced. Consequently these parts may not be fully intelligible for those who have not participated in or closely followed the Committee`s work. The IAEA work on liability for nuclear damage was initiated in the wake of the impact made on the world`s public opinion by the Chernobyl incident and its transboundary effects; issues of international state liability and full compensation have been raised. But humanitarian ideas have quickly been confronted with cold calculations of the cost of financial protection for victims and an open unwillingness of some nuclear states has been manifested. After three years of discussions no wide consensus could be reached on some basic issues, such as: relationship between international state and civil liability regimes, structure of international legislation, concept of nuclear damage, limits of compensation, role of public funds or jurisdiction. The author presents his approach to these controversial issue, trying to provide at the same time a theoretical outline for the future international legislation on nuclear liability. (author).
Energy Technology Data Exchange (ETDEWEB)
Lopuski, J.
1993-12-31
This book deals with deals of the complex issues of liability and compensation for nuclear damage which have been considered in the course of the work of the IAEA concerning the revision of the Vienna Convention on nuclear liability. It presents, in an orderly way, personal reflections of its author based on his experience gathered in years 1989-1992 when participating in this work. Necessarily it contains in some of its parts references to documents of the IAEA Standing Committee on Nuclear Liability; these documents because of their length could not be reproduced. Consequently these parts may not be fully intelligible for those who have not participated in or closely followed the Committee`s work. The IAEA work on liability for nuclear damage was initiated in the wake of the impact made on the world`s public opinion by the Chernobyl incident and its transboundary effects; issues of international state liability and full compensation have been raised. But humanitarian ideas have quickly been confronted with cold calculations of the cost of financial protection for victims and an open unwillingness of some nuclear states has been manifested. After three years of discussions no wide consensus could be reached on some basic issues, such as: relationship between international state and civil liability regimes, structure of international legislation, concept of nuclear damage, limits of compensation, role of public funds or jurisdiction. The author presents his approach to these controversial issue, trying to provide at the same time a theoretical outline for the future international legislation on nuclear liability. (author).
DEFF Research Database (Denmark)
Parhamifar, Ladan; Moghimi, Seyed Moien
2012-01-01
Nanoparticulate systems are widely used for site-specific drug and gene delivery as well as for medical imaging. The mode of nanoparticle-cell interaction may have a significant effect on the pathway of nanoparticle internalization and subsequent intracellular trafficking. Total internal reflection...
Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy.
Mandracchia, Biagio; Gennari, Oriella; Marchesano, Valentina; Paturzo, Melania; Ferraro, Pietro
2017-09-01
The study of cell adhesion contacts is pivotal to understand cell mechanics and interaction at substrates or chemical and physical stimuli. We designed and built a HoloTIR microscope for label-free quantitative phase imaging of total internal reflection. Here we show for the first time that HoloTIR is a good choice for label-free study of focal contacts and of cell/substrate interaction as its sensitivity is enhanced in comparison with standard TIR microscopy. Finally, the simplicity of implementation and relative low cost, due to the requirement of less optical components, make HoloTIR a reasonable alternative, or even an addition, to TIRF microscopy for mapping cell/substratum topography. As a proof of concept, we studied the formation of focal contacts of fibroblasts on three substrates with different levels of affinity for cell adhesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Benchmarking of HEU mental annuli critical assemblies with internally reflected graphite cylinder
Directory of Open Access Journals (Sweden)
Xiaobo Liu
2017-01-01
Full Text Available Three experimental configurations of critical assemblies, performed in 1963 at the Oak Ridge Critical Experiment Facility, which are assembled using three different diameter HEU annuli (15-9 inches, 15-7 inches and 13-7 inches metal annuli with internally reflected graphite cylinder are evaluated and benchmarked. The experimental uncertainties which are 0.00057, 0.00058 and 0.00057 respectively, and biases to the benchmark models which are − 0.00286, − 0.00242 and − 0.00168 respectively, were determined, and the experimental benchmark keff results were obtained for both detailed and simplified models. The calculation results for both detailed and simplified models using MCNP6-1.0 and ENDF/B-VII.1 agree well to the benchmark experimental results within difference less than 0.2%. The benchmarking results were accepted for the inclusion of ICSBEP Handbook.
Chen, Youhua; Cao, Ruizhi; Liu, Wenjie; Zhu, Dazhao; Zhang, Zhiming; Kuang, Cuifang; Liu, Xu
2018-04-01
We present an alternative approach to realize structured illumination microscopy (SIM), which is capable for live cell imaging. The prototype utilizes two sets of scanning galvo mirrors, a polarization converter and a piezo-platform to generate a fast shifted, s-polarization interfered and periodic variable illumination patterns. By changing the angle of the scanning galvanometer, we can change the position of the spots at the pupil plane of the objective lens arbitrarily, making it easy to switch between widefield and total internal reflection fluorescent-SIM mode and adapting the penetration depth in the sample. Also, a twofold resolution improvement is achieved in our experiments. The prototype offers more flexibility of pattern period and illumination orientation changing than previous systems.
Goudsmits, Joris M H; van Oijen, Antoine M; Slotboom, Dirk J
2017-01-01
Cells are delineated by a lipid bilayer that physically separates the inside from the outer environment. Most polar, charged, or large molecules require proteins to reduce the energetic barrier for passage across the membrane and to achieve transport rates that are relevant for life. Here, we describe techniques to visualize the functioning of membrane transport proteins with fluorescent probes at the single-molecule level. First, we explain how to produce membrane-reconstituted transporters with fluorescent labels. Next, we detail the construction of a microfluidic flow cell to image immobilized proteoliposomes on a total internal reflection fluorescence microscope. We conclude by describing the methods that are needed to analyze fluorescence movies and obtain useful single-molecule data. © 2017 Elsevier Inc. All rights reserved.
Registration of T-2 mycotoxin with total internal reflection ellipsometry and QCM impedance methods.
Nabok, A V; Tsargorodskaya, A; Holloway, A; Starodub, N F; Gojster, O
2007-01-15
A sensitive optical method of total internal reflection ellipsometry (TIRE) in conjunction with immune assay approach was exploited for the registration of T-2 mycotoxin in a wide range of concentrations from 100 microg/ml down to 0.15 ng/ml. Association constants of 1.4x10(6) and 1.9x10(7)mol(-1)s for poly- and monoclonal T-2 antibodies, respectively, were evaluated from TIRE kinetic measurements. According to TIRE data fitting, binding of T-2 molecules to antibodies (at saturation) has resulted in the increase in adsorbed layer thickness of 4-5 nm. The QCM impedance measurements data showed anomalously large mass increase and film softening, most likely, due to the binding of large T-2 aggregates to antibodies.
Watch your step! A frustrated total internal reflection approach to forensic footwear imaging.
Needham, J A; Sharp, J S
2016-02-16
Forensic image retrieval and processing are vital tools in the fight against crime e.g. during fingerprint capture. However, despite recent advances in machine vision technology and image processing techniques (and contrary to the claims of popular fiction) forensic image retrieval is still widely being performed using outdated practices involving inkpads and paper. Ongoing changes in government policy, increasing crime rates and the reduction of forensic service budgets increasingly require that evidence be gathered and processed more rapidly and efficiently. A consequence of this is that new, low-cost imaging technologies are required to simultaneously increase the quality and throughput of the processing of evidence. This is particularly true in the burgeoning field of forensic footwear analysis, where images of shoe prints are being used to link individuals to crime scenes. Here we describe one such approach based upon frustrated total internal reflection imaging that can be used to acquire images of regions where shoes contact rigid surfaces.
Watch your step! A frustrated total internal reflection approach to forensic footwear imaging
Needham, J. A.; Sharp, J. S.
2016-02-01
Forensic image retrieval and processing are vital tools in the fight against crime e.g. during fingerprint capture. However, despite recent advances in machine vision technology and image processing techniques (and contrary to the claims of popular fiction) forensic image retrieval is still widely being performed using outdated practices involving inkpads and paper. Ongoing changes in government policy, increasing crime rates and the reduction of forensic service budgets increasingly require that evidence be gathered and processed more rapidly and efficiently. A consequence of this is that new, low-cost imaging technologies are required to simultaneously increase the quality and throughput of the processing of evidence. This is particularly true in the burgeoning field of forensic footwear analysis, where images of shoe prints are being used to link individuals to crime scenes. Here we describe one such approach based upon frustrated total internal reflection imaging that can be used to acquire images of regions where shoes contact rigid surfaces.
Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D
2015-01-27
Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.
Common-path configuration in total internal reflection digital holography microscopy.
Calabuig, Alejandro; Matrecano, Marcella; Paturzo, Melania; Ferraro, Pietro
2014-04-15
Total Internal Reflection Digital Holographic Microscopy (TIRDHM) is recognized to be a powerful tool for retrieving quantitative phase images of cell-substrate interfaces, adhesions, and tissue structures close to the prism surface. In this Letter, we develop an improved TIRDHM system, taking advantage of a refractive index mismatch between the prism and the sample substrate, to allow phase-shifting DH with just a single-beam interferometric configuration. Instead of the traditional off-axis method, phase-shift method is used to retrieve amplitude and phase images in coherent light and TIR modality. Essentially, the substrate-prism interface acts like a beam splitter generating a reference beam, where the phase-shift dependence on the incident angle is exploited in this common-path configuration. With the aim to demonstrate the technique's validity, some experiments are performed to establish the advantage of this compact and simple configuration, in which the reference arm in the setup is avoided.
Analysis of thin-film polymers using attenuated total internal reflection-Raman microspectroscopy.
Tran, Willie; Tisinger, Louis G; Lavalle, Luis E; Sommer, André J
2015-01-01
Two methods commonly employed for molecular surface analysis and thin-film analysis of microscopic areas are attenuated total reflection infrared (ATR-IR) microspectroscopy and confocal Raman microspectroscopy. In the former method, the depth of the evanescent probe beam can be controlled by the wavelength of light, the angle of incidence, or the refractive index of the internal reflection element. Because the penetration depth is proportional to the wavelength of light, one could interrogate a smaller film thickness by moving from the mid-infrared region to the visible region employing Raman spectroscopy. The investigation of ATR Raman microspectroscopy, a largely unexplored technique available to Raman microspectroscopy, was carried out. A Renishaw inVia Raman microscope was externally modified and used in conjunction with a solid immersion lens (SIL) to perform ATR Raman experiments. Thin-film polymer samples were analyzed to explore the theoretical sampling depth for experiments conducted without the SIL, with the SIL, and with the SIL using evanescent excitation. The feasibility of micro-ATR Raman was examined by collecting ATR spectra from films whose thickness measured from 200 to 60 nm. Films of these thicknesses were present on a much thicker substrate, and features from the underlying substrate did not become visible until the thin film reached a thickness of 68 nm.
Near IR Scanning Angle Total Internal Reflection Raman Spectroscopy at Smooth Gold Films
Energy Technology Data Exchange (ETDEWEB)
McKee, Kristopher; Meyer, Matthew; Smith, Emily
2012-04-13
Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (D{sub RS}). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.3–4.6 for aqueous pyridine or 2.2–3.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 89–95% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm–1 mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.
Unusual conversations: A reflection on the mechanics of internationally engaged public scholarship
Directory of Open Access Journals (Sweden)
Jonathan Damiani
2016-09-01
Full Text Available This article analyses the civic engagement pathways of researchers from the Asia-Pacific and the United States in an effort to see how the principles of what American scholars consider publicly engaged research and creative practice are being enacted in research sites across the globe. The purpose of this ongoing project is to focus on finding ways of connecting American scholars with a network of higher education and research institutions that hold a commitment and passion for social responsibility and civic engagement as it impacts education, research and service for community development overseas. The narrative includes the voices and perspectives of colleagues dedicated to engaged scholarship from across the new region in which I work (the Asia-Pacific, alongside the voices of some of Imagining America’s (IA 2014 National Conference participants. These conversations serve as a critical reflection on the mechanics of doing public scholarship overseas and frame a new model of internationally engaged scholarship. Keywords: Internationally engaged public scholarship, unusual conversations
Gong, Xiangjun; Hua, Li; Wu, Chi; Ngai, To
2013-03-01
We present a novel microrheometer by incorporating magnetic tweezers in the total internal reflection microscopy (TIRM) that enables measuring of viscoelastic properties of materials near solid surface. An evanescent wave generated by a solid∕liquid interface in the TIRM is used as the incident light source in the microrheometer. When a probe particle (of a few micrometers diameter) moves near the interface, it can interact with the evanescent field and reflect its position with respect to the interface by the scattered light intensity. The exponential distance dependence of the evanescent field, on the one hand, makes this technique extremely sensitive to small changes from z-fluctuations of the probe (with a resolution of several nanometers), and on the other, it does not require imaging of the probe with high lateral resolution. Another distinct advantage is the high sensitivity in determining the z position of the probe in the absence of any labeling. The incorporated magnetic tweezers enable us to effectively manipulate the distance of the embedded particle from the interface either by a constant or an oscillatory force. The force ramp is easy to implement through a coil current ramp. In this way, the local viscous and elastic properties of a given system under different confinements can therefore be measured by resolving the near-surface particle motion. To test the feasibility of applying this microrheology to soft materials, we measured the viscoelastic properties of sucrose and poly(ethylene glycol) solutions and compared the results to bulk rheometry. In addition, we applied this technique in monitoring the structure and properties of deformable microgel particles near the flat surface.
Wu, Jingheng; Shen, Lin; Yang, Weitao
2017-10-28
Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.
Waiting time distribution revealing the internal spin dynamics in a double quantum dot
Ptaszyński, Krzysztof
2017-07-01
Waiting time distribution and the zero-frequency full counting statistics of unidirectional electron transport through a double quantum dot molecule attached to spin-polarized leads are analyzed using the quantum master equation. The waiting time distribution exhibits a nontrivial dependence on the value of the exchange coupling between the dots and the gradient of the applied magnetic field, which reveals the oscillations between the spin states of the molecule. The zero-frequency full counting statistics, on the other hand, is independent of the aforementioned quantities, thus giving no insight into the internal dynamics. The fact that the waiting time distribution and the zero-frequency full counting statistics give a nonequivalent information is associated with two factors. Firstly, it can be explained by the sensitivity to different timescales of the dynamics of the system. Secondly, it is associated with the presence of the correlation between subsequent waiting times, which makes the renewal theory, relating the full counting statistics and the waiting time distribution, no longer applicable. The study highlights the particular usefulness of the waiting time distribution for the analysis of the internal dynamics of mesoscopic systems.
Directory of Open Access Journals (Sweden)
Hardre PL
2017-01-01
Full Text Available Patricia L Hardré,1 Mikio Nihira,2 Edgar L LeClaire3 1Department of Educational Psychology, University of Oklahoma College of Education, Norman, 2Department of Obstetrics and Gynecology, University of Oklahoma College of Medicine, Oklahoma City, OK, 3Department of Obstetrics and Gynecology, University of Kansas College of Medicine, Kansas City, KS, USA Abstract: Research in medical education does not provide a clear understanding of how professional expertise develops among surgeons and what experiential factors contribute to that development. To address this gap, the researchers interviewed 16 international experts in female pelvic medicine and reconstructive surgery to assess their reflective perceptions of what specific opportunities and experiences initiated and supported their development toward expertise in their field. Characteristics and influences explaining the speed and quality of expertise development were sorted into the following themes: the dynamic process of expertise development, internal and personal characteristics, general aptitudes and preparatory skills, role modeling and interpersonal influences, opportunities to learn and practice, and roles and reference points. Across the narratives and perspectives of these expert surgeons, both individual characteristics and choices, and contextual activities and opportunities were necessary and important. Experiences with greatest impact on quality of expertise development included those provided by the environment and mentors, as well as those sought out by learners themselves, to elaborate and supplement existing opportunities. The ideal combination across experts was interaction and integration of individual characteristics with experiential opportunities. Grounded in theory and research in expertise development, these findings can support improvement of medical education, both for individual mentors and strategic program development. As surgery evolves at a continuously
International Nuclear Information System (INIS)
Song Hongyan; Zhou Shiping
2008-01-01
We investigate Andreev reflection (AR) tunneling through a ferromagnet-quantum dot-superconductor (F-QD-S) system in the presence of an external ac field. The intradot spin-flip scattering in the QD is involved. Using the nonequilibrium Green function and BCS quasiparticle spectrum for superconductor, time-averaged AR conductance is formulated. The competition between the intradot spin-flip scattering and photon-assisted tunneling dominates the resonant behaviors of the time-averaged AR conductance. For weak intradot spin-flip scattering strengths, the AR conductance shows a series of equal interval resonant levels. However, the single-peak at main resonant level develops into a well-resolved double-peak resonance at a strong intradot spin-flip scattering strength. Remarkable, multiple-photon-assisted tunneling that generates photonic sideband peaks with a variable interval has been found. In addition, the AR conductance-bias voltage characteristic shows a transition between the single-peak to double-peak resonance as the ratio of the two tunneling strengths varies
International Nuclear Information System (INIS)
Zhu, Peifen
2016-01-01
The light extraction efficiency of top-emitting organic light-emitting diodes (OLEDs) is numerically investigated employing the finite-difference time-domain method. The periodic nanostructures formed by embedding the sphere arrays in polystyrene (PS) are placed on top of OLED to frustrate the total internal reflection at the interface between OLED and free space. These nanostructures serve as an intermediate medium to extract the light out of OLED devices. Efficiently coupling both evanescent waves and propagation waves into spheres and subsequently extracting these light waves out of the sphere is key to achieving high extraction efficiency. By tuning the thickness of PS layer, both of the in-coupling efficiency and out-coupling efficiency are optimized for achieving high light extraction efficiency. Thicker PS layer results in higher in-coupling efficiency in sphere while the thinner PS layer leads to higher out-coupling efficiency. Thus the maximum light extraction is a trade-off between the in-coupling efficiency and out-coupling efficiency. The study shows that light extraction efficiency of 89% can be achieved by embedding 0.90 μm TiO 2 sphere in 0.30 μm PS layer with optimized in-coupling efficiency, out-coupling efficiency and cavity effect. (paper)
Accessible biometrics: A frustrated total internal reflection approach to imaging fingerprints.
Smith, Nathan D; Sharp, James S
2017-05-01
Fingerprints are widely used as a means of identifying persons of interest because of the highly individual nature of the spatial distribution and types of features (or minuta) found on the surface of a finger. This individuality has led to their wide application in the comparison of fingerprints found at crime scenes with those taken from known offenders and suspects in custody. However, despite recent advances in machine vision technology and image processing techniques, fingerprint evidence is still widely being collected using outdated practices involving ink and paper - a process that can be both time consuming and expensive. Reduction of forensic service budgets increasingly requires that evidence be gathered and processed more rapidly and efficiently. However, many of the existing digital fingerprint acquisition devices have proven too expensive to roll out on a large scale. As a result new, low-cost imaging technologies are required to increase the quality and throughput of the processing of fingerprint evidence. Here we describe an inexpensive approach to digital fingerprint acquisition that is based upon frustrated total internal reflection imaging. The quality and resolution of the images produced are shown to be as good as those currently acquired using ink and paper based methods. The same imaging technique is also shown to be capable of imaging powdered fingerprints that have been lifted from a crime scene using adhesive tape or gel lifters. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
Boehm, E M; Subramanyam, S; Ghoneim, M; Washington, M Todd; Spies, M
2016-01-01
Large, dynamic macromolecular complexes play essential roles in many cellular processes. Knowing how the components of these complexes associate with one another and undergo structural rearrangements is critical to understanding how they function. Single-molecule total internal reflection fluorescence (TIRF) microscopy is a powerful approach for addressing these fundamental issues. In this article, we first discuss single-molecule TIRF microscopes and strategies to immobilize and fluorescently label macromolecules. We then review the use of single-molecule TIRF microscopy to study the formation of binary macromolecular complexes using one-color imaging and inhibitors. We conclude with a discussion of the use of TIRF microscopy to examine the formation of higher-order (i.e., ternary) complexes using multicolor setups. The focus throughout this article is on experimental design, controls, data acquisition, and data analysis. We hope that single-molecule TIRF microscopy, which has largely been the province of specialists, will soon become as common in the tool box of biophysicists and biochemists as structural approaches have become today. © 2016 Elsevier Inc. All rights reserved.
Nabok, Alexei; Tsargorodskaya, Anna; Davis, Frank; Higson, Séamus P J
2007-10-31
The adsorption of genomic DNA and subsequent interactions between adsorbed and solvated DNA was studied using a novel sensitive optical method of total internal reflection ellipsometry (TIRE), which combines spectroscopic ellipsometry with surface plasmon resonance (SPR). Single strands of DNA of two species of fish (herring and salmon) were electrostatically adsorbed on top of polyethylenimine films deposited upon gold coated glass slides. The ellipsometric spectra were recorded and data fitting utilized to extract optical parameters (thickness and refractive index) of adsorbed DNA layers. The further adsorption of single stranded DNA from an identical source, i.e. herring ss-DNA on herring ss-DNA or salmon ss-DNA on salmon ss-DNA, on the surface was observed to give rise to substantial film thickness increases at the surface of about 20-21 nm. Conversely adsorption of DNA from alternate species, i.e. salmon ss-DNA on herring ss-DNA or herring ss-DNA on salmon ss-DNA, yielded much smaller changes in thickness of 3-5 nm. AFM studies of the surface roughness of adsorbed layers were in line with the TIRE data.
New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.
Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji
2015-05-01
Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Yoshihiro Kawano
Full Text Available Whole slide imaging (WSI is a useful tool for multi-modal imaging, and in our work, we have often combined WSI with darkfield microscopy. However, traditional darkfield microscopy cannot use a single condenser to support high- and low-numerical-aperture objectives, which limits the modality of WSI. To overcome this limitation, we previously developed a darkfield internal reflection illumination (DIRI microscope using white light-emitting diodes (LEDs. Although the developed DIRI is useful for biological applications, substantial problems remain to be resolved. In this study, we propose a novel illumination technique called color DIRI. The use of three-color LEDs dramatically improves the capability of the system, such that color DIRI (1 enables optimization of the illumination color; (2 can be combined with an oil objective lens; (3 can produce fluorescence excitation illumination; (4 can adjust the wavelength of light to avoid cell damage or reactions; and (5 can be used as a photostimulator. These results clearly illustrate that the proposed color DIRI can significantly extend WSI modalities for biological applications.
International Nuclear Information System (INIS)
Dunklin, Jeremy R; Keith Roper, D; Forcherio, Gregory T
2015-01-01
Optical properties of polymer films embedded with plasmonic nanoparticles (NPs) are important in many implementations. In this work, optical extinction by polydimethylsiloxane (PDMS) films containing gold (Au) NPs was enhanced at resonance compared to AuNPs in suspensions, Beer–Lambert law, or Mie theory by internal reflection due to optical diffraction in 16 nm AuNP–PDMS films and Mie scattering in 76 nm AuNP–PDMS films. Resonant extinction per AuNP for 16 nm AuNPs with negligible resonant Mie scattering was enhanced up to 1.5-fold at interparticle separation (i.e., Wigner–Seitz radii) comparable to incident wavelength. It was attributable to diffraction through apertures formed by overlapping electric fields of adjacent, resonantly excited AuNPs at Wigner–Seitz radii equal to or less than incident wavelengths. Resonant extinction per AuNP for strongly Mie scattering 76 nm AuNPs was enhanced up to 1.3-fold at Wigner–Seitz radii four or more times greater than incident wavelength. Enhanced light trapping from diffraction and/or scattering is relevant to optoelectronic, biomedical, and catalytic activity of substrates embedded with NPs. (paper)
Gulley-Stahl, Heather J; Haas, Jennifer A; Schmidt, Katherine A; Evan, Andrew P; Sommer, André J
2009-07-01
The impact of kidney stone disease is significant worldwide, yet methods for quantifying stone components remain limited. A new approach requiring minimal sample preparation for the quantitative analysis of kidney stone components has been investigated utilizing attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FT-IR). Calcium oxalate monohydrate (COM) and hydroxylapatite (HAP), two of the most common constituents of urinary stones, were used for quantitative analysis. Calibration curves were constructed using integrated band intensities of four infrared absorptions versus concentration (weight %). The correlation coefficients of the calibration curves range from 0.997 to 0.93. The limits of detection range from 0.07 +/- 0.02% COM/HAP where COM is the analyte and HAP is the matrix, to 0.26 +/- 0.07% HAP/COM where HAP is the analyte and COM is the matrix. This study shows that linear calibration curves can be generated for the quantitative analysis of stone mixtures provided the system is well understood especially with respect to particle size.
PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics
Fring, Andreas; Jones, Hugh; Znojil, Miloslav
2008-06-01
Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the
Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures
Energy Technology Data Exchange (ETDEWEB)
Ngo, Thi Huong; Gil, Bernard; Valvin, Pierre [Laboratoire Charles Coulomb – UMR 5221, CNRS and University Montpellier, Case courier 074, 34095 Montpellier Cedex 5 (France); Damilano, Benjamin; Lekhal, Kaddour; De Mierry, Philippe [CRHEA-CNRS Centre de Recherche sur l' Hétéro-Epitaxie et ses Applications, Centre National de la Recherche Scientifique, rue Bernard Gregory, 06560 Valbonne (France)
2015-09-21
We determine the internal quantum efficiency of strain-balanced AlGaN-InGaN-GaN hetero-structures designed for yellow-amber light emission, by using a recent model based on the kinetics of the photoluminescence decay initiated by Iwata et al. [J. Appl. Phys. 117, 075701 (2015)]. Our results indicate that low temperature internal quantum efficiencies sit in the 50% range and we measure that adding an AlGaN layer increases the internal quantum efficiency from 50% up to 57% with respect to the GaN-InGaN case. More dramatic, it almost doubles from 2.5% up to 4.3% at room temperature.
Internal quantum efficiency and tunable colour temperature in monolithic white InGaN/GaN LED
Titkov, Ilya E.; Yadav, Amit; Zerova, Vera L.; Zulonas, Modestas; Tsatsulnikov, Andrey F.; Lundin, Wsevolod V.; Sakharov, Alexey V.; Rafailov, Edik U.
2014-03-01
Internal Quantum Efficiency (IQE) of two-colour monolithic white light emitting diode (LED) was measured by temperature dependant electro-luminescence (TDEL) and analysed with modified rate equation based on ABC model. External, internal and injection efficiencies of blue and green quantum wells were analysed separately. Monolithic white LED contained one green InGaN QW and two blue QWs being separated by GaN barrier. This paper reports also the tunable behaviour of correlated colour temperature (CCT) in pulsed operation mode and effect of self-heating on device performance.
Preface [EmQM15: 3. international symposium on emergent quantum mechanics
International Nuclear Information System (INIS)
2016-01-01
These proceedings comprise the invited lectures of the third international symposium on Emergent Quantum Mechanics (EmQM15), which was held at the Vienna University of Technology in Vienna, Austria, 23-25 October 2015. The symposium convened at the Festsaal and the adjacent Boeckl-Saal of the Technical University, and was devoted to the open exploration of the quantum state as a reality. The resurgence of interest in ontological quantum theory, including both deterministic and indeterministic approaches, challenges long held assumptions and focuses on the following questions: Is the world local or nonlocal? What is the nature of quantum nonlocality? If nonlocal, i.e., superluminal, influences exist then why can't they be used for superluminal signaling and communication? How is the role of the scientific observer/agent to be accounted for in realistic approaches to quantum theory? How could recent developments in the field of space-time as an emergent phenomenon advance new insight at this research frontier? What new experiments might contribute to new understanding? These and related questions were addressed in the context also of a possible deeper level theory for quantum mechanics that interconnects three fields of knowledge: emergence, the quantum, and information. Could there appear a revised image of physical reality from recognizing new links between emergence, the quantum, and information? The symposium provided a forum for considering (i) current theoretical and conceptual obstacles which need to be overcome as well as (ii) promising developments and research opportunities on the way towards realistic quantum mechanics. Contributions were invited that present current advances in both standard as well as unconventional approaches. The EmQM15 symposium was co-organized by Gerhard Grössing (Austrian Institute for Nonlinear Studies (AINS), Vienna), and by Jan Walleczek (Fetzer Franklin Fund, USA, and Phenoscience Laboratories, Berlin). After two
Le Cornu, Alison
2009-01-01
The study of the process of reflection has a dignified history. However, few have linked reflection to the development of the self in such a way that the form of reflection is understood to influence the resultant type of self. This article explores the process of reflection using a framework of meaning making, internalization, and externalization…
Ng, Vinci; Yuen, Mantak
2015-01-01
This paper reflects upon the relevance of Buddhism to counselling in general and to career counseling in particular by discussing a program implemented at an international school in Hong Kong. The authors provide an analysis of the pertinent literature related to relevant concepts within Buddhism. This topic has not yet been adequately researched…
Cardoso Dos Santos, Marcelina; Vézy, Cyrille; Jaffiol, Rodolphe
2016-02-01
Total Internal Reflection Fluorescence Microscopy (TIRFM) is a widespread technique to study cellular process occurring near the contact region with the glass substrate. In this field, determination of the accurate distance from the surface to the plasma membrane constitutes a crucial issue to investigate the physical basis of cellular adhesion process. However, quantitative interpretation of TIRF pictures regarding the distance z between a labeled membrane and the substrate is not trivial. Indeed, the contrast of TIRF images depends on several parameters more and less well known (local concentration of dyes, absorption cross section, angular emission pattern…). The strategy to get around this problem is to exploit a series of TIRF pictures recorded at different incident angles in evanescent regime. This technique called variable-angle TIRF microscopy (vaTIRFM), allowing to map the membrane-substrate separation distance with a nanometric resolution (10-20 nm). vaTIRFM was developed by Burmeister, Truskey and Reichert in the early 1990s with a prism-based TIRF setup [Journal of Microscopy 173, 39-51 (1994)]. We propose a more convenient prismless setup, which uses only a rotatable mirror to adjust precisely the laser beam on the back focal plane of the oil immersion objective (no azimuthal scanning is needed). The series of TIRF images permit us to calculate accurately membrane-surface distances in each pixel. We demonstrate that vaTIRFM are useful to quantify the adhesion of living cells for specific and unspecific membrane-surface interactions, achieved on various functionalized substrates with polymers (BSA, poly-L-lysin) or extracellular matrix proteins (collagen and fibronectin).
Attenuated total internal reflection infrared microscopy of multilayer plastic packaging foils.
van Dalen, Gerard; Heussen, Patricia C M; den Adel, Ruud; Hoeve, Robert B J
2007-06-01
Multilayer plastic foils are important packaging materials that are used to extend the shelf life of food products and drinks. Fourier transform infrared (FT-IR) spectroscopic imaging using attenuated total internal reflection (ATR) can be used for the identification and localization of different layers in multilayer foils. A new type of ATR crystal was used in combination with a linear array detector through which large sample areas (400 x 400 microm(2)) could be imaged with a pixel size of 1.6 microm. The method was tested on laminated plastic packing materials containing 5 to 12 layers. The results of the identification of the different materials using ATR-FT-IR were compared with differential scanning calorimetry (DSC) and the layer thickness of the individual layers measured by ATR-FT-IR was compared with polarized light microscopy (LM) and scanning electron microscopy (SEM). It has been demonstrated that individual layers with a thickness of about 3 microm could be identified in multilayer foils with a total thickness ranging from 100 to 150 microm. The results show a spatial resolution of about 4 microm (measured at wavenumbers ranging from 1000 to 1730 cm(-1)), which is about a factor of two better than can be obtained using transmission FT-IR imaging. An additional advantage of ATR is the ease of sample preparation. A good correspondence was found between visible and FT-IR images. The results of ATR-FT-IR imaging were in agreement with those obtained by LM, SEM, and DSC. ATR-FT-IR is superior to the combination of these techniques because it delivers both spatial and chemical information.
PREFACE: The 5th International Symposium in Quantum Theory and Symmetries (QTS5)
Arratia, O.; Calzada, J. A.; Gómez-Cubillo, F.; Negro, J.; del Olmo, M. A.
2008-02-01
This volume of Journal of Physics: Conference Series contains the Proceedings of the 5th International Symposium in Quantum Theory and Symmetries (QTS5), held in Valladolid, Spain, 22-28 July 2007. This is the fifth of a series of conferences previously held in Goslar (Germany) 1999, QTS1; Cracow (Poland) 2001, QTS2; Cincinnati (USA) 2003, QTS3, and Varna (Bulgaria) 2005, QTS4. The QTS5 symposium gathered 181 participants from 39 countries working in different fields on Theoretical Physics. The spirit of the QTS conference series is to join researchers in a wide variety of topics in Theoretical Physics, as a way to make accessible recent results and the new lines of different fields. The QTS5 conference offered the following list of topics: Symmetries in String Theory, Quantum Gravity and related Symmetries in Quantum Field Theories, Conformal and Related Field Theories, Lattice and Noncommutative Theories, Gauge Theories Quantum Computing, Information and Control Foundations of Quantum Theory Quantum Optics, Coherent States, Wigner Functions Dynamical and Integrable Systems Symmetries in Condensed Matter and Statistical Physics Symmetries in Particle Physics, Nuclear, Atomic and Molecular Nonlinear Quantum Mechanics Time Asymmetric Quantum Mechanics SUSY Quantum Mechanics, PT symmetries and pseudo-Hamiltonians Mathematical Methods for Symmetries and Quantum Theories Symmetries in Chemistry Biology and other Sciences Papers accepted for publication in the present issue are based on the contributions from the participants in the QTS5 conference after a peer review process. In addition, a special issue of Journal Physics A: Mathematical and Theoretical contains contributions from plenary speakers, some participants as well as contributions from other authors whose works fit into the topics of the conference. The organization of the conference had the following pattern. In the morning there were five plenary or general sessions for all the participants, which aimed to
Optimizing the internal quantum efficiency of GaInN SQW structures for green light emitters
International Nuclear Information System (INIS)
Fuhrmann, D.; Rossow, U.; Netzel, C.; Bremers, H.; Hangleiter, A.; Ade, G.; Hinze, P.
2006-01-01
Ga x In 1-x N/GaN single quantum well (QW) structures emitting in the range of 450 nm to 620 nm have been grown by MOVPE. Temperature and excitation power dependent photoluminescence (PL) was used to determine the internal quantum efficiency (IQE) for these structures. For the blue emitting QWs high IQE values on the order of 60% were achieved. Due to a reduced growth temperature, reduced growth rate and increased V/III ratio we obtained QWs with good morphology and high In content above 25%. Thinner QWs with high In content showed a clear improvement of IQE compared to QW-structures with larger thickness but smaller In-content emitting at the same wavelength. Between λ peak =460 nm and 530 nm we observed a slight reduction in IQE with values of 58% at 490 nm and 40% at 525 nm. But towards λ peak =620 nm IQE decreased due to the electric field induced separation of the electron and hole wavefunction down to 1%. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Influence of dislocation density on internal quantum efficiency of GaN-based semiconductors
Directory of Open Access Journals (Sweden)
Jiadong Yu
2017-03-01
Full Text Available By considering the effects of stress fields coming from lattice distortion as well as charge fields coming from line charges at edge dislocation cores on radiative recombination of exciton, a model of carriers’ radiative and non-radiative recombination has been established in GaN-based semiconductors with certain dislocation density. Using vector average of the stress fields and the charge fields, the relationship between dislocation density and the internal quantum efficiency (IQE is deduced. Combined with related experimental results, this relationship is fitted well to the trend of IQEs of bulk GaN changing with screw and edge dislocation density, meanwhile its simplified form is fitted well to the IQEs of AlGaN multiple quantum well LEDs with varied threading dislocation densities but the same light emission wavelength. It is believed that this model, suitable for different epitaxy platforms such as MOCVD and MBE, can be used to predict to what extent the luminous efficiency of GaN-based semiconductors can still maintain when the dislocation density increases, so as to provide a reasonable rule of thumb for optimizing the epitaxial growth of GaN-based devices.
Recombination dynamics and internal quantum efficiency in InGaN
International Nuclear Information System (INIS)
Murotani, Hideaki; Andoh, Hiroya; Tsukamoto, Takehiko; Sugiura, Toko; Yamada, Yoichi; Tabata, Takuya; Honda, Yoshio; Yamaguchi, Masahito; Amano, Hiroshi
2014-01-01
Recombination dynamics and internal quantum efficiency (IQE) of green luminescent InGaN nanowires with different crystalline qualities have been studied by means photoluminescence (PL) and time-resolved PL spectroscopy. Temperature- and excitation-power-density-dependent PL spectroscopy enabled to evaluate the IQE as a function of excitation power density. The shape of the efficiency curves at low temperature strongly depended on the magnitude of nonradiative recombination processes. This leads to the misestimation of the IQE in the lower quality nanowire. In addition, the PL decay curves were well described by a double exponential function both at 6 and 300 K. The PL decay time of the faster component was affected by nonradiative recombination processes even at low temperature. This indicated that the radiative recombination lifetime cannot be estimated from the PL decay time in the lower quality nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Merker, L.; Costi, T. A.
2012-08-01
We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.
Lepp, Margret; Zorn, CeCelia R.; Duffy, Patricia R.; Dickson, Rana J.
2003-01-01
A nursing course connected U.S. and Swedish sites via interactive videoconferencing and used reflective methods (journaling, drama, photo language) and off-air group discussion. Evaluation by five Swedish and seven U.S. students suggested how reflection moved students toward greater authenticity and professionalism in nursing practice. (Contains…
PREFACE: The 5th International Symposium on Quantum Theory and Symmetries (QTS5)
Gadella, M.; Izquierdo, J. M.; Kuru, S.; Negro, J.; del Olmo, M. A.
2008-08-01
This special issue of Journal of Physics A: Mathematical and Theoretical appears on the occasion of the 5th International Symposium on Quantum Theory and Symmetries (QTS5), held in Valladolid, Spain, from 22-28 July 2007. This is the fith in a series of conferences previously held in Goslar (Germany) 1999, QTS1; Cracow (Poland) 2001, QTS2; Cincinnati (USA) 2003, QTS3; and Varna (Bulgaria) 2005, QTS4. The QTS5 symposium gathered 181 participants from 39 countries working in different fields of theoretical physics. The spirit of the QTS conference series is to join researchers in a wide variety of topics in theoretical physics, as a way of making accessible recent results and the new lines of different fields. This is based on the feeling that it is good for a physicist to have a general overview as well as expertise in his/her own field. There are many other conferences devoted to specific topics, which are of interest to gain deeper insight in many technical aspects and that are quite suitable for discussions due to their small size. However, we believe that general conferences like this are interesting and worth keeping. We like the talks, in both plenary and parallel sessions, which are devoted to specific topics, to be prepared so as to be accessible to any researcher in any branch of theoretical physics. We think that this objective is compatible with rigour and high standards. As is well known, similar methods and techniques can be useful for many problems in different fields. We hope that this has been appreciated during the sessions of the QTS5 conference. The QTS5 conference offered the following list of topics: 1. Symmetries in string theory, quantum gravity and related topics 2. Symmetries in quantum field theories, conformal and related field theories, lattice and noncommutative theories, gauge theories 3.Quantum computing, information and control 4. Foundations of quantum theory 5. Quantum optics, coherent states, Wigner functions 6. Dynamical and
International Nuclear Information System (INIS)
Ivanov, V.V.
2003-01-01
The present collection of letters from JINR, Dubna, contains ten separate records on the microscopic entropy and nonlocality, conditional density matrix: systems and subsystems in quantum mechanics, physics of quantum computation, flipping qubits, quantum zeno effect for N-level Friedrichs model, universal hybrid quantum processors, formation of the SU(3)-polarization states in atom-quantum electromagnetic field system under condition of the Bose-Einstein condensate existence, periodical sequences (trajectories) of outcomes of atomic state measurement on exit from the micromaser cavity, an algebraic method to solve the Tavis-Cummings problem, quantum teleportation of nuclear matter and its investigation
DEFF Research Database (Denmark)
List, Nanna Holmgaard; Beerepoot, Maarten; Olsen, Jógvan Magnus Haugaard
2015-01-01
for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark...
International Nuclear Information System (INIS)
Roshan Entezar, S.
2015-01-01
The phase difference between two p-polarized and s-polarized plane waves which are reflected under total internal reflection from the base of a prism with a thin metal coating is studied. Typically such a quantity can be used to measure the refractive index of a test material using the total internal reflection method. It is shown that due to the excitation of surface plasmon polaritons at the interface between the tested dielectric material and the thin metal layer, the p-polarized light experiences a large phase shift which enlarges the phase difference between the p-polarized and the s-polarized waves. As a result, the sensitivity of refractive index measurement increases and the error in determining the refractive index decreases. - Highlights: • Phase difference of totally internally reflected p and s polarized beams is studied. • Excitation of the surface wave increases the phase shift of the p-polarized light. • The sensitivity of refractive index measurement increases by using a coated prism. • The error in determining the refractive index decreases using the coated prism
Beyond Reflection through an Academic Lens: Refraction and International Experiential Education
Pagano, Monica; Roselle, Laura
2009-01-01
Students today are becoming more interested in international opportunities for study, and are drawn to alternative programs such as international service learning and international internships. These programs, however, must be carefully designed. In this paper, the authors propose using tools that go beyond the traditional understanding of…
Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Prati, Enrico; Vitiello, Giuseppe; Yearsley, James
2011-07-01
These proceedings present the Invited Lectures and Contributed Papers of the Fifth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2010, held at Castello Pasquini, Castiglioncello (Tuscany), 13-17 September 2010. These proceedings are intended to document the stimulating exchange of ideas at this conference for both the interested public and the wider scientific community, as well as for the participants. The number of participants attending this series of meetings has been growing steadily, which reflects its increasing attraction. Our intention to bring together leading researchers, advanced students, and renowned scholars from various areas in order to stimulate new ideas and their exchange across the borders of specialization seems to bear fruit. In this way, the series of meetings has continued successfully from the beginning with DICE 2002 [1], followed by DICE 2004 [2], DICE 2006 [3], and DICE 2008 [4], uniting more than 100 participants representing almost 30 countries worldwide. It has been a great honour and inspiration to have Professor Luc Montagnier (Nobel Prize for Medicine 2008) from the World Foundation for AIDS Research and Prevention with us, who presented the lecture DNA waves and water (included in this volume). The discussions took place under the wider theme Space-Time-Matter - current issues in quantum mechanics and beyond in the very pleasant and inspiring atmosphere of Castello Pasquini, which - with its beautiful surroundings, overlooking the Tuscany coast - hosted the conference very successfully for the second time. The five-day program was grouped according to the following topics: Gravity and Quantum Mechanics Quantum Coherent Processes in Biology / Many-Body Systems From Quantum Foundations to Particle Physics The Deep Structure of Spacetime Quantum - Relativity - Cosmology A Public Roundtable Discussion formed an integral part of the program under the theme Sull' Onda Della Coerenza" - le nuove
Energy Technology Data Exchange (ETDEWEB)
Niederle, J; Bednar, M; Bicak, J
1987-01-01
The conference, the fourth in the series of conferences on this subject, was held at the Bechyne castle (Czechoslovakia) on June 23-27, 1986, and was attended by about 100 theoreticians from 15 countries. The conference was organized by the Institute of Physics of the Czechoslovak Academy of Sciences in Prague together with the Faculties of Mathematics and Physics of the Charles University, Prague, and of the Comenius University, Bratislava, the Faculty of Nuclear Science and Physical Engineering of the Czech Techical University, Prague, with the Institute of Physics of the Electro-Physical Research Centre of the Slovak Academy of Sciences, Bratislava, and the Institute of Nuclear Physics of the Czechoslovak Academy of Sciences in Rez. It was sponsored by the International Union for Pure and Applied Physics, the International Association of Mathematical Physics and the Physical Scientific Section of the Union of Czechoslovak Mathematicians and Physicists. The main subjects discussed at the conference were: supersymmetries, supergravity and superstring theories; quantum field theory and in particular gauge theories, theories on lattices, renormalization; selected topics in non-linear equations, scattering theory and quantization. Details are given in the attached program. The proceedings include invited talks and contributions presented respectively at the morning and afternoon sessions of the conference. The main part of the proceedings will be published in the Czechoslovak Journal of Physics v. 37(1987), nos. 3,4 and 9.
International Nuclear Information System (INIS)
Niederle, J.; Bednar, M.; Bicak, J.
1987-01-01
The conference, the fourth in the series of conferences on this subject, was held at the Bechyne castle (Czechoslovakia) on June 23-27, 1986, and was attended by about 100 theoreticians from 15 countries. The conference was organized by the Institute of Physics of the Czechoslovak Academy of Sciences in Prague together with the Faculties of Mathematics and Physics of the Charles University, Prague, and of the Comenius University, Bratislava, the Faculty of Nuclear Science and Physical Engineering of the Czech Techical University, Prague, with the Institute of Physics of the Electro-Physical Research Centre of the Slovak Academy of Sciences, Bratislava, and the Institute of Nuclear Physics of the Czechoslovak Academy of Sciences in Rez. It was sponsored by the International Union for Pure and Applied Physics, the International Association of Mathematical Physics and the Physical Scientific Section of the Union of Czechoslovak Mathematicians and Physicists. The main subjects discussed at the conference were: supersymmetries, supergravity and superstring theories; quantum field theory and in particular gauge theories, theories on lattices, renormalization; selected topics in non-linear equations, scattering theory and quantization. Details are given in the attached program. The proceedings include invited talks and contributions presented respectively at the morning and afternoon sessions of the conference. The main part of the proceedings will be published in the Czechoslovak Journal of Physics v. 37(1987), nos. 3,4 and 9. (author)
Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl
2012-10-01
We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.
Bathe-Peters, M; Annibale, P; Lohse, M J
2018-02-05
Microscopic imaging at high spatial-temporal resolution over long time scales (minutes to hours) requires rapid and precise stabilization of the microscope focus. Conventional and commercial autofocus systems are largely based on piezoelectric stages or mechanical objective actuators. Objective to sample distance is either measured by image analysis approaches or by hardware modules measuring the intensity of reflected infrared light. We propose here a truly all-optical microscope autofocus taking advantage of an electrically tunable lens and a totally internally reflected infrared probe beam. We implement a feedback-loop based on the lateral position of a totally internally reflected infrared laser on a quadrant photodetector, as an indicator of the relative defocus. We show here how to treat the combined contributions due to mechanical defocus and deformation of the tunable lens. As a result, the sample can be kept in focus without any mechanical movement, at rates up to hundreds of Hertz. The device requires only reflective optics and can be implemented at a fraction of the cost required for a comparable piezo-based actuator.
A plastic total internal reflection-based photoluminescence device for enzymatic biosensors
Thakkar, Ishan G.
Growing concerns for quality of water, food and beverages in developing and developed countries drive sizeable markets for mass-producible, low cost devices that can measure the concentration of contaminant chemicals in water, food, and beverages rapidly and accurately. Several fiber-optic enzymatic biosensors have been reported for these applications, but they exhibit very strong presence of scattered excitation light in the signal for sensing, requiring expensive thin-film filters, and their non-planar structure makes them challenging to mass-produce. Several other planar optical waveguide-based biosensors prove to be relatively costly and more fragile due to constituent materials and the techniques involved in their fabrication. So, a plastic total internal reflection (TIR)-based low cost, low scatter, field-portable device for enzymatic biosensors is fabricated and demonstrated. The design concept of the TIR-based photoluminescent enzymatic biosensor device is explained. An analysis of economical materials with appropriate optical and chemical properties is presented. PMMA and PDMS are found to be appropriate due to their high chemical resistance, low cost, high optical transmittance and low auto-fluorescence. The techniques and procedures used for device fabrication are discussed. The device incorporated a PMMA-based optical waveguide core and PDMS-based fluid cell with simple multi-mode fiber-optics using cost-effective fabrication techniques like molding and surface modification. Several techniques of robustly depositing photoluminescent dyes on PMMA core surface are discussed. A pH-sensitive fluorescent dye, fluoresceinamine, and an O2-sensitive phosphorescent dye, Ru(dpp) both are successfully deposited using Si-adhesive gel-based as well as HydroThane-based deposition methods. Two different types of pH-sensors using two different techniques of depositing fluoresceinamine are demonstrated. Also, the effect of concentration of fluoresceinamine-dye molecules
Michielsen, Kristien; De Meyer, Sara; Ivanova, Olena; Anderson, Ragnar; Decat, Peter; Herbiet, Céline; Kabiru, Caroline W.; Ketting, Evert; Lees, James; Moreau, Caroline; Tolman, Deborah L.; Vega, Bernardo; Verhetsel, Elizabeth; Chandra-Mouli, Venkatraman; Vanwesenbeeck, W.M.A.
2016-01-01
On December 4th 2014, the International Centre for Reproductive Health (ICRH) at Ghent University organized an international conference on adolescent sexual and reproductive health (ASRH) and well-being. This viewpoint highlights two key messages of the conference - 1) ASRH promotion is broadening
DEFF Research Database (Denmark)
Thomsen, Dorthe Kirkegaard; Tønnesvang, Jan; Schnieber, Anette
2011-01-01
In three studies it was investigated whether rumination was related to less internalized self-regulation and goals and whether reflection was related to more internalized self-regulation and goals. In all studies students completed questionnaires measuring rumination, reflection, and internalizat...
Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu
1992-01-01
Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.
Proceedings of quantum field theory, quantum mechanics, and quantum optics
International Nuclear Information System (INIS)
Dodonov, V.V.; Man; ko, V.I.
1991-01-01
This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups
Interns reflect: the effect of formative assessment with feedback during pre-internship
Directory of Open Access Journals (Sweden)
McKenzie S
2017-01-01
Full Text Available Susan McKenzie,1 Annette Burgess,2 Craig Mellis1 1Central Clinical School, 2Education Office, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia Background: It is widely known that the opportunity for medical students to be observed and to receive feedback on their procedural skills performance is variable in the senior years. To address this problem, we provided our Pre-Intern (PrInt students with “one-to-one” formative feedback on their ability to perform urethral catheterization (U/C and hypothesized that their future practice of U/C as interns would benefit. This study sought to evaluate the performance and practice of interns in U/C 4–5 months after having received feedback on their performance of U/C as PrInt students.Methods: Between 2013 and 2014, two cohorts of interns, (total n=66 who had received recent formative feedback on their U/C performance as PrInt students at Central Clinical School, were invited to complete an anonymous survey. The survey contained nine closed unvalidated questions and one open-ended question, designed to allow interns to report on their current practice of U/C.Results: Forty-one out of 66 interns (62% completed the survey. Thirty-five out of 41 respondents (85% reported that the assessment with feedback during their PrInt term was beneficial to their practice. Thirty of 41 (73% reported being confident to perform U/C independently. Eleven out of 41 respondents (27% reported that they had received additional training at intern orientation. Nine of the 11 interns (82% reported that they had a small, but a significant, increase in confidence to perform U/C when compared with the 30 of the 41 respondents (73% who had not (p=0.03.Conclusion: Our results substantiate our hypothesis that further education by assessment with feedback in U/C during PrInt was of benefit to interns’ performance. Additional educational reinforcement in U/C during intern orientation further improved intern
Smith, Jan
2016-01-01
Research ethics in education is a challenging topic to teach and to learn. As the staff and student body in UK higher education and elsewhere diversifies, the challenges increase as shared reference points diminish. My teaching reflections focus on a key tension explored in this article: how the imperative of internationalising the curriculum…
Leeuwis, C.; Pyburn, R.; Röling, N.G.
2002-01-01
Standing in contrast to technological interventions and economics, ‘social learning’ reflects the idea that the shared learning of interdependent stakeholders is a key mechanism for arriving at more desirable solutions to complex problems in rural environments. Degradation of natural resources,
Directory of Open Access Journals (Sweden)
Michael Crossley
2012-04-01
Full Text Available Recent years have seen a resurgence of interest in comparative and international education, along with a fundamental reconceptualisation of this distinctive multidisciplinary field of study. The nature and significance of these developments are explored with particular reference to their implications for broader research capacity building initiatives worldwide. In doing so, a critique of the international transfer of globally dominant research modalities and strategies is presented--along with arguments for increased attention to context sensitivity in both international development cooperation and educational research in general. Illustrative examples that support these arguments are drawn from the author's own research, from an analysis of emergent educational policy debates in the UK, and from related studies being carried out in Malaysia. In concluding, the strategic role of comparative research traditions and perspectives in a rapidly globalizing world is highlighted, while supporting the promotion of new initiative and research centres for comparative and international education.
DEFF Research Database (Denmark)
Buhmann, Karin
: The paper aims to contribute to our understanding of whether a shift is taking place in societal attitudes towards a perception that corporations have duties based on international law. This is assessed on the basis of EU initiatives on inclusiveness and responsible competitiveness, particularly...... the EU Multistakeholder Forum and the Lisbon Strategy, with a particular focus on goals or views related to the human rights of non-discrimination and rights to work, education and vocational training, and network governance in (soft) law creation. It is found that despite obvious links, international...... law does not serve as a clear source of inclusiveness or responsible competitiveness. It is also found that the initiatives assessed do not indicate a shift at EU institutional level towards a perception that business holds duties under international law. International law seems at the most to be seen...
Interns reflect: the effect of formative assessment with feedback during pre-internship.
McKenzie, Susan; Burgess, Annette; Mellis, Craig
2017-01-01
It is widely known that the opportunity for medical students to be observed and to receive feedback on their procedural skills performance is variable in the senior years. To address this problem, we provided our Pre-Intern (PrInt) students with "one-to-one" formative feedback on their ability to perform urethral catheterization (U/C) and hypothesized that their future practice of U/C as interns would benefit. This study sought to evaluate the performance and practice of interns in U/C 4-5 months after having received feedback on their performance of U/C as PrInt students. Between 2013 and 2014, two cohorts of interns, (total n=66) who had received recent formative feedback on their U/C performance as PrInt students at Central Clinical School, were invited to complete an anonymous survey. The survey contained nine closed unvalidated questions and one open-ended question, designed to allow interns to report on their current practice of U/C. Forty-one out of 66 interns (62%) completed the survey. Thirty-five out of 41 respondents (85%) reported that the assessment with feedback during their PrInt term was beneficial to their practice. Thirty of 41 (73%) reported being confident to perform U/C independently. Eleven out of 41 respondents (27%) reported that they had received additional training at intern orientation. Nine of the 11 interns (82%) reported that they had a small, but a significant, increase in confidence to perform U/C when compared with the 30 of the 41 respondents (73%) who had not ( p =0.03). Our results substantiate our hypothesis that further education by assessment with feedback in U/C during PrInt was of benefit to interns' performance. Additional educational reinforcement in U/C during intern orientation further improved intern confidence. Our results indicate that extra pre- and post-graduation procedural skills training, with feedback, should be universal.
International Nuclear Information System (INIS)
Lorenz, Bernd
2016-01-01
The ICRP international symposium on the radiation protection system provides always extensive information on new developments in radiation protection. The ICRP 2105 discussed the following issues: radiation effects of low dose irradiation, dose coefficients for internal and external exposures, radiation protection in nuclear medicine, application of ICRP recommendations, environmental protection, studies on existing exposure situations, medical radiation protection today, science behind radiation doses, new developments in radiation effects, and ethics in radiation protection.
Troubling Metaphors and International Student Adjustment: Reflections from a Transnational Place
David Starr-Glass
2017-01-01
On many campuses, offices of International Student Affairs address the perceived needs of international students. However, a number of underlying assumptions and persistent metaphors shape these efforts and influence their outcomes. All students are uniquely different and face equally different challenges in adjusting to higher education. Labeling students “international” may make institutional sense, but it can potentially hinder their transition, adjustment, and ultimate success. Applying r...
Giersch International Symposion 2016 : Week 1 : Experimental Search for Quantum Gravity
Experimental Search for Quantum Gravity
2018-01-01
This book summarizes recent developments in the research area of quantum gravity phenomenology. A series of short and nontechnical essays lays out the prospects of various experimental possibilities and their current status. Finding observational evidence for the quantization of space-time was long thought impossible. In the last decade however, new experimental design and technological advances have changed the research landscape and opened new perspectives on quantum gravity. Formerly dominated by purely theoretical constructions, quantum gravity now has a lively phenomenology to offer. From high precision measurements using macroscopic quantum oscillators to new analysis methods of the cosmic microwave background, no stone is being left unturned in the experimental search for quantum gravity. This book sheds new light on the connection of astroparticle physics with the quantum gravity problem. Gravitational waves and their detection are covered. It illustrates findings from the interconnection between gene...
International Nuclear Information System (INIS)
Davis, J A; Dao, L V; Wen, X; Ticknor, C; Hannaford, P; Coleman, V A; Tan, H H; Jagadish, C; Koike, K; Sasa, S; Inoue, M; Yano, M
2008-01-01
Strong suppression of the effects caused by the internal electric field in ZnO/ZnMgO quantum wells following ion-implantation and rapid thermal annealing, is revealed by photoluminescence, time-resolved photoluminescence, and band structure calculations. The implantation and annealing induces Zn/Mg intermixing, resulting in graded quantum well interfaces. This reduces the quantum-confined Stark shift and increases electron-hole wavefunction overlap, which significantly reduces the exciton lifetime and increases the oscillator strength
Internal reflection of interstitial atoms from close-packed tungsten faces
International Nuclear Information System (INIS)
Dranova, Zh.I.; Mikhajlovskij, I.M.
1981-01-01
Use of field-ion microscopy methods has shown that changes in microtopography of tungsten specimens irradiated with 2-5 keV helium atoms are mainly related to the liberation of interstitial atoms on the surface. It is established that the atom liberation on the surface is considerably anisotropic: maximum quantity of atoms is observed in the vicinity of faces (100), (111) and (211) along the sections of zone lines (110) oriented along the edge of the first Brillouin zone. The atom liberation on plane sections of the most dense-packed face (110) was not observed as a rule; atomic steps of the face are interstitial atom sinks. It is concluded on the basis of the results obtained that there is the predominant inner reflection of interstitial atoms from the dense-packed faces and a possible contribution of inner reflection to the surface migration processes activated with the ion bombardment as well as material swelling have been analyzed [ru
Energy Technology Data Exchange (ETDEWEB)
Ledentsov, Nikolay Jr.; Reich, Christoph; Mehnke, Frank; Kuhn, Christian; Wernicke, Tim; Kolbe, Tim; Lobo Ploch, Neysha; Rass, Jens [Institute of Solid State Physics, Technische Universitaet Berlin (Germany); Kueller, Viola [Ferdinand-Braun-Institut, Berlin (Germany); Kneissl, Michael [Institute of Solid State Physics, Technische Universitaet Berlin (Germany); Ferdinand-Braun-Institut, Berlin (Germany)
2013-07-01
We studied (In)AlGaN multiple quantum wells (MQWs) emitting in the UV-B spectral region with photoluminescence and electroluminescence spectroscopy. The internal quantum efficiency (IQE) was determined by temperature dependent measurements (5 K-300 K). The quantum confined Stark effect (QCSE) was investigated by studying the shift of the emission energy with increasing excitation power density. In the first series, Al{sub 0.27}Ga{sub 0.73}N MQWs with different Al{sub x}Ga{sub 1-x}N barriers (0.32
Castillo, Camilo Hernán Manchola; Garrafa, Volnei; Cunha, Thiago; Hellmann, Fernando
2017-07-01
Using the United Nations (UN) and its subordinate body, the World Health Organization (WHO), as a frame of reference, this article explores access to healthcare as a human right in international intergovernmental policies. First, we look at how the theme of health is treated within the UN, focusing on the concept of global health. We then discuss the concept of global health from a human rights perspective and go on to outline the debate surrounding universal coverage versus universal access as a human right, addressing some important ethical questions. Thereafter, we discuss universal coverage versus universal access using the critical and constructivist theories of international relations as a frame of reference. Finally, it is concluded that, faced with the persistence of huge global health inequalities, the WHO began to reshape itself, leaving behind the notion of health as a human right and imposing the challenge of reducing the wide gap that separates international intergovernmental laws from reality.
International Nuclear Information System (INIS)
Arias Canete, A.
1995-01-01
This probably is a suitable moment for work to begin on an international Convention in this area, although it is a difficult task. Generally speaking, the RADWASS (Radioactive Waste Safety Standards) Programme has achieved sufficient consensus, and might serve as an important basis for work in relation to the Convention. The Convention should not go into highly technical details since consensus at this level is more difficult at the present moment, although this will undoubtedly be achieved in the medium term. An important element of the Convention should be the regulation of movements of radioactive wastes at international level. (orig./HP)
Extremely high absolute internal quantum efficiency of photoluminescence in co-doped GaN:Zn,Si
Reshchikov, M. A.; Willyard, A. G.; Behrends, A.; Bakin, A.; Waag, A.
2011-10-01
We report on the fabrication of GaN co-doped with silicon and zinc by metalorganic vapor phase epitaxy and a detailed study of photoluminescence in this material. We observe an exceptionally high absolute internal quantum efficiency of blue photoluminescence in GaN:Zn,Si. The value of 0.93±0.04 has been obtained from several approaches based on rate equations.
Patterson, Timothy
2015-01-01
Common sense thinking on international professional development suggests that the rewards for teachers are automatic. One of the most frequently advertised gains teachers are expected to see from participation includes the likelihood that they will have a transformative experience, whereby aspects of their personal or professional attributes are…
Vos, Lynn
2013-01-01
This article looks at the curriculum redesign of a master's-level program in international marketing from a UK perspective. In order to ensure that the program would be more fit-for-purpose for future managers working under conditions of complexity, uncertainty, and within regimes often very different from the home market, the team began the…
International Nuclear Information System (INIS)
Tourillon, Gerard; Dreesen, Laurent; Volcke, Cedric; Sartenaer, Yannick; Thiry, Paul A; Peremans, Andre
2007-01-01
We show that sum-frequency generation spectroscopy performed in the total internal reflection configuration (TIR-SFG) combined with a dense gold nanoparticles monolayer allows us to study, with an excellent signal to noise ratio and high signal to background ratio, the conformation of adsorbed molecules. Dodecanethiol (DDT) was used as probe molecules in order to assess the potentialities of the approach. An enhancement of more than one order of magnitude of the SFG signals arising from the adsorbed species is observed with the TIR geometry compared to the external reflection one while the SFG non-resonant contribution remains the same for both configurations. Although further work is required to fully understand the origin of the SFG process on nanoparticles, our work opens new possibilities for studying nanostructures
MöTtöNen, Mikko; Tan, Kuan Y.; Masuda, Shumpei; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Silveri, Matti; Grabert, Hermann
Quantum technology holds great potential in providing revolutionizing practical applications. However, fast and precise cooling of the functional quantum degrees of freedom on demand remains a major challenge in many solid-state implementations, such as superconducting circuits. We demonstrate direct cooling of a superconducting resonator mode using voltage-controllable quantum tunneling of electrons in a nanoscale refrigerator. In our first experiments on this type of a quantum-circuit refrigerator, we measure the drop in the mode temperature by electron thermometry at a resistor which is coupled to the resonator mode through ohmic losses. To eliminate unwanted dissipation, we remove the probe resistor and directly observe the power spectrum of the resonator output in agreement with the so-called P(E) theory. We also demonstrate in microwave reflection experiments that the internal quality factor of the resonator can be tuned by orders of magnitude. In the future, our refrigerator can be integrated with different quantum electric devices, potentially enhancing their performance. For example, it may prove useful in the initialization of superconducting quantum bits and in dissipation-assisted quantum annealing. We acknowledge European Research Council Grant SINGLEOUT (278117) and QUESS (681311) for funding.
International Nuclear Information System (INIS)
Wigger, Lothar; Buenger, Carsten
2017-01-01
The book on the educational and learning theoretical reflection of nuclear disasters as a consequence of Fukushima includes contributions on the following issues: pedagogical approach: children write on Fukushima, description of the reality as pedagogical challenge; lessons learned on the nuclear technology - perspectives and limits of pedagogical evaluation: moral education - Japanese teaching materials, educational challenges at the universities with respect to nuclear technology and technology impact assessment; education and technology - questions concerning the pedagogical responsibility: considerations on the responsibility of scientists, on the discrepancy between technology and education, disempowerment of the public by structural corruption - nuclear disaster and post-democratic tendencies in Japan.
Wang, Shinn-Fwu
2009-01-01
A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.
International Nuclear Information System (INIS)
Haynie, A.; Min, T.-J.; Luan, L.; Mu, W.; Ketterson, J. B.
2009-01-01
We describe an extension of the total-internal-reflection microscopy technique that permits direct in-plane distance measurements with high accuracy (<10 nm) over a wide range of separations. This high position accuracy arises from the creation of a standing evanescent wave and the ability to sweep the nodal positions (intensity minima of the standing wave) in a controlled manner via both the incident angle and the relative phase of the incoming laser beams. Some control over the vertical resolution is available through the ability to scan the incoming angle and with it the evanescent penetration depth.
Reflections of a TMS International Scholar: Sharing Research across Cultures and Continents
Energy Technology Data Exchange (ETDEWEB)
Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-07-19
Here, I was honored to be selected as the 2017 Japan Institute of Metals (JIM)/TMS Young Leaders International Scholar, an opportunity made possible by the TMS Foundation. One of the benefits of receiving this award for me was traveling to Japan to visit the National Institute for Materials Science (NIMS), and attending the 2017 JIM Annual Spring Meeting, held at the Tokyo Metropolitan University.
"They Will Come to Understand": Supervisor Reflections on International Medical Electives.
Roebbelen, Erica; Dorman, Katie; Hunter, Andrea; Kraeker, Christian; O'Shea, Tim; Bozinoff, Nikki
2018-03-22
Phenomenon: Increasing numbers of medical students from high-income countries are undertaking international medical electives (IMEs) during their training. Much has been written about the benefits of these experiences for the student, and concerns have been raised regarding the burden of IMEs on host communities. The voices of physicians from low- and middle-income countries who supervise IMEs have not been explored in depth. The current study sought to investigate host-physician perspectives on IMEs. Host supervisors were recruited by convenience sampling through students travelling abroad for IMEs during the summer of 2012. From 2012 through 2014, 11 semistructured interviews were conducted by telephone with host supervisors from Nepal, Uganda, Ghana, Guyana, and Kenya. Participants were invited to describe their motivations for hosting IMEs and their experiences of the benefits and harms of IMEs. Interviews were transcribed verbatim and checked for accuracy. An initial coding framework was developed and underwent multiple revisions, after which analytic categories were derived using conventional qualitative content analysis. For host supervisors, visits from international medical students provided a window into the resource-rich medical practice of high-income countries, and supervisors positioned themselves, their education, and clinical expertise against perceived standards of the international students' context. Hosting IMEs also contributed to supervisors' identities as educators connected to a global community. Supervisors described the challenge of helping students navigate their distress when confronting global health inequity. Finally, the desire for increasingly reciprocal relationships was expressed as a hope for the future. Insights: IMEs can be formative for host supervisors' identities and are used to benchmark host institutions compared with international medical standards. Reciprocity was articulated as essential for IMEs moving forward.
Czech Academy of Sciences Publication Activity Database
Hospodková, Alice; Hulicius, Eduard; Pangrác, Jiří; Dominec, Filip; Mikhailova, M. P.; Veinger, A.I.; Kochman, I.V.
2017-01-01
Roč. 464, Apr (2017), s. 206-210 ISSN 0022-0248 R&D Projects: GA MŠk LM2015087; GA MŠk LO1603 Institutional support: RVO:68378271 Keywords : low dimensional structures * MOVPE * InAs/GaSb composite quantum wells * AlSb Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016
Interns reflect: the effect of formative assessment with feedback during pre-internship
McKenzie, Susan; Burgess, Annette; Mellis, Craig
2017-01-01
Susan McKenzie,1 Annette Burgess,2 Craig Mellis1 1Central Clinical School, 2Education Office, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia Background: It is widely known that the opportunity for medical students to be observed and to receive feedback on their procedural skills performance is variable in the senior years. To address this problem, we provided our Pre-Intern (PrInt) students with “one-to-one” formative feedback on their ability to p...
Critical Reflection on the Reception of Vygotsky’s Theory in the International Academic Communities
Directory of Open Access Journals (Sweden)
Dafermos M.,
2016-12-01
Full Text Available This paper is an attempt to analyze various types of the reception of Vygotsky’s theory in the international academic communities. The paper develops a critical analysis of three widespread theoretical frameworks of interpretation of Vygotsky’s theory: cognitivism, culturalism, cultural-historical activity theory. It is argues that fragmented readings of particular ideas of Vygotsky, without enough understanding of the theoretical programme in which these ideas have been included dominates in North-Atlantic research. The paper proposes the reconstruction of the theoretical programme of cultural-historical psychology in the social and scientific context of its formation.
Ensink, Karin; Bégin, Michaël; Normandin, Lina; Fonagy, Peter
2017-11-01
The objective was to examine pathways from child sexual abuse (CSA) and maternal mentalizing to child internalizing and externalizing difficulties and to test a model of MRF as a moderator of the relationships between CSA and child difficulties. The sample was comprised of 154 mothers and children aged 2-12 where 64 children had experienced CSA. To assess parental mentalizing the Parental Development Interview was rated with the Parental Reflective Functioning Scale. Child internalizing and externalizing difficulties were assessed with the Child Behavior Checklist (CBCL). Results indicate that there were significant inverse relationships between maternal mentalizing and child internalizing and externalizing difficulties. When maternal mentalizing was considered together with CSA, only maternal mentalizing was a significant predictor of child difficulties. Furthermore, maternal mentalizing moderated the relationship between CSA and child internalizing difficulties. These findings provide evidence of the importance of the parents' mentalizing stance for psychiatric symptoms of children aged 2-12, as well as children's recovery from CSA. The clinical implications of the findings are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Ricardo Lopes Cardoso
2010-01-01
Full Text Available The main purpose of this study is to understand what the competences of the Management accountant are, compare to international studies and assess the existence of competences to be prioritized. This questioning has as motivation the placements of Hardern (1995, Morgan (1997, IMA (1996 e 1999 and IFAC (2003. The theoretical basis about competences is related to McClelland study (1973, 1998, Boyatzis (1982 and Spencer and Spencer (1993. This research is based on the study of 18 competences about knowledge, skills and attitudes obtained in accountant literature and that have been submitted to 200 Management accountants. Data collection instrument presented a 0.884 Cronbach Alpha. From a factorial analysis and after Kruskal-Wallis test 12 competences were obtained as the most relevant segregated in 3 factors, in comparison to international studies of nine common competences 4 were not considered relevant in statistical tests and only one must be prioritized. Results demonstrate differences between competences required from Brazilian Management accountants and from other countries, being that their reasons is an open-ended question up to the moment.
International Conference on Quantum Mathematical Physics : a Bridge between Mathematics and Physics
Kleiner, Johannes; Röken, Christian; Tolksdorf, Jürgen
2016-01-01
Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fu...
Caxaj, C Susana
2015-01-01
Storytelling, in its various forms, has often been described as a practice with great emancipatory potential. In turn, Indigenous knowledge shows great promise in guiding a participatory action research (PAR) methodology. Yet these two approaches are rarely discussed in relation to one another, nor, has much been written in terms of how these two approaches may work synergistically toward a decolonizing research approach. In this article, I report on a community-driven knowledge translation activity, the Peoples' International Health Tribunal, as an exemplar of how narrative and PAR approaches, guided by local Indigenous knowledge, have great potential to build methodologically and ethically robust research processes. Implications for building globally relevant research alliances and scholarship are further discussed, particularly in relation to working with Indigenous communities.
International Nuclear Information System (INIS)
Lai, Wang; Jia-Xing, Wang; Wei, Zhao; Xiang, Zou; Yi, Luo
2010-01-01
Blue In 0.2 Ga 0.8 N multiple quantum wells (MQWs) with In x Ga 1–x N (x = 0.01–0.04) barriers are grown by metal organic vapour phase epitaxy. The internal quantum efficiencies (IQEs) of these MQWs are studied in a way of temperature-dependent photoluminescence spectra. Furthermore, a 2-channel Arrhenius model is used to analyse the nonradiative recombination centres (NRCs). It is found that by adopting the InGaN barrier beneath the lowest well, it is possible to reduce the strain hence the NRCs in InGaN MQWs. By optimizing the thickness and the indium content of the InGaN barriers, the IQEs of InGaN/InGaN MQWs can be increased by about 2.5 times compared with conventional InGaN/GaN MQWs. On the other hand, the incorporation of indium atoms into the intermediate barriers between adjacent wells does not improve IQE obviously. In addition, the indium content of the intermediate barriers should match with that of the lowest barrier to avoid relaxation. (condensed matter: structure, thermal and mechanical properties)
International Nuclear Information System (INIS)
Ren, Peng; Zhang, Ning; Xue, Bin; Liu, Zhe; Wang, Junxi; Li, Jinmin
2016-01-01
The challenge for improving the internal quantum efficiency (IQE) of InGaN-based light emitting diodes (LED) in the green light range is referred to as the ‘green gap’. However the IQE of InGaN-based LEDs often drops when the emission peak wavelength is adjusted through reducing the growth temperature. Although hydrogen (H 2 ) can improve surface morphology, it reduces the indium incorporation significantly. Here, a novel usage of H 2 treatment on the GaN barrier before the InGaN quantum well is demonstrated to enhance indium incorporation efficiency and improve the IQE simultaneously for the first time. The mechanism behind it is systematically investigated and explained in detail. The possible reason for this phenomenon is the strain relieving function by the undulant GaN barrier surface after H 2 treatment. Test measurements show that applying 0.2 min H 2 treatment on the barrier would reduce defects and enhance indium incorporation, which would improve the localization effect and finally lead to a higher IQE. Although further increasing the treatment time to 0.4 min incorporates more indium atoms, the IQE decreases at the expense of more defects and a larger polarization field than the 0.2 min sample. (paper)
Struckmeier, Willi; Howard, Ken; Chilton, John
2016-08-01
The 60th anniversary of the founding of the International Association of Hydrogeologists (IAH) is an important milestone that allows pause for reflection on how the association has evolved over the years and the contributions it has made to groundwater science and water management. IAH was founded in 1956 at the 20th International Geological Congress and developed rapidly during the 1980s and 1990s in response to a growing global interest in groundwater mapping and in sound approaches to resource protection and sustainable aquifer management. Incorporated in 2000, IAH has now secured its position as the world's leading international association specialising in groundwater with over 4,100 members in 131 countries. Much credit for this success must go to members, past and present, whose individual efforts and collaboration with sister institutions are documented here. These members have shaped the association's goals and contributed selflessly to its scientific programmes, publications and educational and charitable activities. Looking ahead to the next 60 years, it is essential that IAH does not rest on past achievements but listens and adjusts to the needs of members while continuing to pursue its mission of furthering the understanding, wise use and protection of groundwater resources throughout the world.
Quantum groups and quantum homogeneous spaces
International Nuclear Information System (INIS)
Kulish, P.P.
1994-01-01
The usefulness of the R-matrix formalism and the reflection equations is demonstrated on examples of the quantum group covariant algebras (quantum homogeneous spaces): quantum Minkowski space-time, quantum sphere and super-sphere. The irreducible representations of some covariant algebras are constructed. The generalization of the reflection equation to super case is given and the existence of the quasiclassical limits is pointed out. (orig.)
Córdova Pozo, Kathya; Chandra-Mouli, Venkatraman; Decat, Peter; Nelson, Erica; De Meyer, Sara; Jaruseviciene, Lina; Vega, Bernardo; Segura, Zoyla; Auquilla, Nancy; Hagens, Arnold; Van Braeckel, Dirk; Michielsen, Kristien
2015-01-24
In February 2014, an international congress on Promoting Adolescent Sexual and Reproductive Health (ASRH) took place in Cuenca, Ecuador. Its objective was to share evidence on effective ASRH intervention projects and programs in Latin America, and to link this evidence to ASRH policy and program development. Over 800 people participated in the three-day event and sixty-six presentations were presented.This paper summarizes the key points of the Congress and of the Community Embedded Reproductive Health Care for Adolescents (CERCA) project. It aims at guiding future ASRH research and policy in Latin America. 1. Context matters. Individual behaviors are strongly influenced by the social context in which they occur, through determinants at the individual, relational, family, community and societal levels. Gender norms/attitudes and ease of communication are two key determinants. 2. Innovative action. There is limited and patchy evidence of effective approaches to reach adolescents with the health interventions they need at scale. Yet, there exist several promising and innovative examples of providing comprehensive sexuality education through conventional approaches and using new media, improving access to health services, and reaching adolescents as well as families and community members using community-based interventions were presented at the Congress. 3. Better measurement. Evaluation designs and indicators chosen to measure the effect and impact of interventions are not always sensitive to subtle and incremental changes. This can create a gap between measured effectiveness and the impact perceived by the targeted populations. Thus, one conclusion is that we need more evidence to better determine the factors impeding progress in ASRH in Latin American, to innovate and respond flexibly to changing social dynamics and cultural practices, and to better measure the impact of existing intervention strategies. Yet, this Congress offered a starting point from which to
Johnson, Heath E; Haugh, Jason M
2013-12-02
This unit focuses on the use of total internal reflection fluorescence (TIRF) microscopy and image analysis methods to study the dynamics of signal transduction mediated by class I phosphoinositide 3-kinases (PI3Ks) in mammalian cells. The first four protocols cover live-cell imaging experiments, image acquisition parameters, and basic image processing and segmentation. These methods are generally applicable to live-cell TIRF experiments. The remaining protocols outline more advanced image analysis methods, which were developed in our laboratory for the purpose of characterizing the spatiotemporal dynamics of PI3K signaling. These methods may be extended to analyze other cellular processes monitored using fluorescent biosensors. Copyright © 2013 John Wiley & Sons, Inc.
Energy Technology Data Exchange (ETDEWEB)
Ryan, M.A.; Fitzgerald, E.C.; Spitler, M.T. (Polaroid Corp., Cambridge, MA (USA))
1989-08-10
It is shown that the photoelectrochemical data on eosin Y sensitized TiO{sub 2} single-crystal electrodes cannot be interpreted unambiguously without concomitant data from flash photolysis measurements on this system. By use of a combination of internal reflection spectroscopy and laser flash photolysis, electron exchange with TiO{sub 2} was observed for the excited singlet state, the triplet state, and the cation radical of the dye. With a temporal resolution of 100 ns, the kinetics of the charge transfer are compared with those of the dye in solution and used to interpret the photoelectrochemistry of the dye at the electrode. Spectroscopic evidence revealed photocurrent production by the triplet state and a reduction of the eosin cation radical by electrons from the TiO{sub 2} conduction band and by hydroquinone.
International Nuclear Information System (INIS)
Wang Lei; Xu Guang; Shi Zhikun; Jiang Wei; Jin Wenrui
2007-01-01
We developed a sensitive single-molecule imaging method for quantification of protein by total internal reflection fluorescence microscopy with adsorption equilibrium. In this method, the adsorption equilibrium of protein was achieved between solution and glass substrate. Then, fluorescence images of protein molecules in a evanescent wave field were taken by a highly sensitive electron multiplying charge coupled device. Finally, the number of fluorescent spots corresponding to the protein molecules in the images was counted. Alexa Fluor 488-labeled goat anti-rat IgG(H + L) was chosen as the model protein. The spot number showed an excellent linear relationship with protein concentration. The concentration linear range was 5.4 x 10 -11 to 8.1 x 10 -10 mol L -1
Directory of Open Access Journals (Sweden)
Chenggang Zhu
2018-02-01
Full Text Available Total internal reflection (TIR is useful for interrogating physical and chemical processes that occur at the interface between two transparent media. Yet prism-coupled TIR imaging microscopes suffer from limited sensing areas due to the fact that the interface (the object plane is not perpendicular to the optical axis of the microscope. In this paper, we show that an electrically tunable lens can be used to rapidly and reproducibly correct the focal length of an oblique-incidence scanning microscope (OI-RD in a prism-coupled TIR geometry. We demonstrate the performance of such a correction by acquiring an image of a protein microarray over a scan area of 4 cm2 with an effective resolution of less than 20 microns. The electronic focal length tuning eliminates the mechanical movement of the illumination lens in the scanning microscope and in turn the noise and background drift associated with the motion.
Reshchikov, M. A.; Foussekis, M.; McNamara, J. D.; Behrends, A.; Bakin, A.; Waag, A.
2012-04-01
The optical properties of high-quality GaN co-doped with silicon and zinc are investigated by using temperature-dependent continuous-wave and time-resolved photoluminescence measurements. The blue luminescence band is related to the ZnGa acceptor in GaN:Si,Zn, which exhibits an exceptionally high absolute internal quantum efficiency (IQE). An IQE above 90% was calculated for several samples having different concentrations of Zn. Accurate and reliable values of the IQE were obtained by using several approaches based on rate equations. The concentrations of the ZnGa acceptors and free electrons were also estimated from the photoluminescence measurements.
Directory of Open Access Journals (Sweden)
Yoshihiro Kawano
Full Text Available We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI, also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI. Our darkfield system uses an ultra-thin light-emitting diode (LED light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1 no oil condenser is required for high resolution imaging (2 there is less scatter from dust and dirt on the slide specimen (3 there is less halo, providing a more natural darkfield contrast image, and (4 the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the
Energy Technology Data Exchange (ETDEWEB)
List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark (Denmark); Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Olsen, Jógvan Magnus Haugaard [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark (Denmark); Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)
2015-01-21
We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.
International Nuclear Information System (INIS)
List, Nanna Holmgaard; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob; Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth; Olsen, Jógvan Magnus Haugaard
2015-01-01
We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters
Quantum fluctuations of a fullerene cage modulate its internal magnetic environment.
Kawatsu, Tsutomu; Tachikawa, Masanori
2018-01-17
To investigate the effect of quantum fluctuations on the magnetic environment inside a C 60 fullerene cage, we have calculated the nuclear magnetic shielding constant of protons in H 2 @C 60 and HD@C 60 systems by on-the-fly ab initio path integral simulation, including both thermal and nuclear quantum effects. The most dominant upfield from an isolated hydrogen molecule occurs due to the diamagnetic current of the C 60 cage, which is partly cancelled by the paramagnetic current, where the paramagnetic contribution is enlarged by the zero-point vibrational fluctuation of the C 60 carbon backbone structure via a widely distributed HOMO-LUMO gap. This quantum modulation mechanism of the nuclear magnetic shielding constant is newly proposed. Because this quantum effect is independent of the difference between H 2 and HD, the H 2 /HD isotope shift occurs in spite of the C 60 cage. The nuclear magnetic constants computed for H 2 @C 60 and HD@C 60 are 32.047 and 32.081 ppm, respectively, which are in reasonable agreement with the corresponding values of 32.19 and 32.23 ppm estimated from the experimental values of the chemical shifts.
3. International Conference on Quantum Electrodynamics and Statistical Physics. Book of abstracts
International Nuclear Information System (INIS)
2011-01-01
The conference deals with the up-to-data problems of quantum field theory and elementary particle theory, QED processes at high energy, cosmology, theory of irreversible processes, nonlinear dynamics and chaos, phase transition and diffusion processes in condensed matter and gases.
International Nuclear Information System (INIS)
Wang Yang; Bao Wan-Su; Chen Rui-Ke; Zhou Chun; Jiang Mu-Sheng; Li Hong-Wei
2017-01-01
Measurement-device-independent quantum key distribution (MDI-QKD) is immune to detector side channel attacks, which is a crucial security loophole problem in traditional QKD. In order to relax a key assumption that the sources are trusted in MDI-QKD, an MDI-QKD protocol with an untrusted source has been proposed. For the security of MDI-QKD with an untrusted source, imperfections in the practical experiment should also be taken into account. In this paper, we analyze the effects of fluctuations of internal transmittance on the security of a decoy-state MDI-QKD protocol with an untrusted source. Our numerical results show that both the secret key rate and the maximum secure transmission distance decrease when taken fluctuations of internal transmittance into consideration. Especially, they are more sensitive when Charlie’s mean photon number per pulse is smaller. Our results emphasize that the stability of correlative optical devices is important for practical implementations . (paper)
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
quest for higher efficiency, better fidelity, broader bandwidth, multimode capacity and longer storage lifetime is pursued in all those approaches, as shown in this special issue. The improvement of quantum memory operation specifically requires in-depth study and control of numerous physical processes leading to atomic decoherence. The present issue reflects the development of rare earth ion doped matrices offering long lifetime superposition states, either as bulk crystals or as optical waveguides. The need for quantum sources and high efficiency detectors at the single photon level is also illustrated. Several papers address the networking of quantum memories either in long-haul cryptography or in the prospect of quantum processing. In this context, much attention has been paid recently to interfacing quantum light with superconducting qubits and with nitrogen-vacancy centers in diamond. Finally, the quantum interfacing of light with matter raises questions on entanglement. The last two papers are devoted to the generation of entanglement by dissipative processes. It is shown that long lifetime entanglement may be built in this way. We hope this special issue will help readers to become familiar with the exciting field of ensemble-based quantum memories and will stimulate them to bring deeper insights and new ideas to this area.
Ciftja, Orion
2018-05-01
It has now become evident that interplay between internal anisotropy parameters (such as electron mass anisotropy and/or anisotropic coupling of electrons to the substrate) and electron-electron correlation effects can create a rich variety of possibilities especially in quantum Hall systems. The electron mass anisotropy or material substrate effects (for example, the piezoelectric effect in GaAs) can lead to an effective anisotropic interaction potential between electrons. For lack of knowledge of realistic ab-initio potentials that may describe such effects, we adopt a phenomenological approach and assume that an anisotropic Coulomb interaction potential mimics the internal anisotropy of the system. In this work we investigate the emergence of liquid crystalline order at filling factor ν = 1/6 of the lowest Landau level, a state very close to the point where a transition from the liquid to the Wigner solid happens. We consider small finite systems of electrons interacting with an anisotropic Coulomb interaction potential and study the energy stability of an anisotropic liquid crystalline state relative to its isotropic Fermi-liquid counterpart. Quantum Monte Carlo simulation results in disk geometry show stabilization of liquid crystalline order driven by an anisotropic Coulomb interaction potential at all values of the interaction anisotropy parameter studied.
Quantum random walks using quantum accelerator modes
International Nuclear Information System (INIS)
Ma, Z.-Y.; Burnett, K.; D'Arcy, M. B.; Gardiner, S. A.
2006-01-01
We discuss the use of high-order quantum accelerator modes to achieve an atom optical realization of a biased quantum random walk. We first discuss how one can create coexistent quantum accelerator modes, and hence how momentum transfer that depends on the atoms' internal state can be achieved. When combined with microwave driving of the transition between the states, a different type of atomic beam splitter results. This permits the realization of a biased quantum random walk through quantum accelerator modes
Schmitz, R.; Yordanov, S.; Butt, H. J.; Koynov, K.; Dünweg, B.
2011-12-01
Total internal reflection fluorescence cross-correlation spectroscopy (TIR-FCCS) has recently [S. Yordanov , Optics ExpressOPEXFF1094-408710.1364/OE.17.021149 17, 21149 (2009)] been established as an experimental method to probe hydrodynamic flows near surfaces, on length scales of tens of nanometers. Its main advantage is that fluorescence occurs only for tracer particles close to the surface, thus resulting in high sensitivity. However, the measured correlation functions provide only rather indirect information about the flow parameters of interest, such as the shear rate and the slip length. In the present paper, we show how to combine detailed and fairly realistic theoretical modeling of the phenomena by Brownian dynamics simulations with accurate measurements of the correlation functions, in order to establish a quantitative method to retrieve the flow properties from the experiments. First, Brownian dynamics is used to sample highly accurate correlation functions for a fixed set of model parameters. Second, these parameters are varied systematically by means of an importance-sampling Monte Carlo procedure in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for massively parallel computers, which allows us to do the data analysis within moderate computing times. The method is applied to flow near a hydrophilic surface, where the slip length is observed to be smaller than 10nm, and, within the limitations of the experiments and the model, indistinguishable from zero.
Teng, Tun-Chien; Lai, Wei-Che
2014-12-15
This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X).
Ling, Chen; Sommer, André J
2015-06-01
Until recently, the analysis of polymer laminates using infrared microspectroscopy involved the painstaking separation of individual layers by dissection or by obtaining micrometer thin cross-sections. The latter usually requires the expertise of an individual trained in microtomy and even then, the very structure of the laminate could affect the outcome of the spectral results. The recent development of attenuated total internal reflection (ATR) infrared microspectroscopy imaging has provided a new avenue for the analysis of these multilayer structures. This report compares ATR infrared microspectroscopy imaging with conventional transmission infrared microspectroscopy imaging. The results demonstrate that the ATR method offers improved spatial resolution, eliminates a variety of competing optical processes, and requires minimal sample preparation relative to transmission measurements. These advantages were illustrated using a polymer laminate consisting of 11 different layers whose thickness ranged in size from 4-20 μm. The spatial resolution achieved by using an ATR-FTIR (Fourier transform infrared spectroscopy) imaging technique was diffraction limited. Contrast in the ATR images was enhanced by principal component analysis.
Pressl, B.; Laiho, K.; Chen, H.; Günthner, T.; Schlager, A.; Auchter, S.; Suchomel, H.; Kamp, M.; Höfling, S.; Schneider, C.; Weihs, G.
2018-04-01
Semiconductor alloys of aluminum gallium arsenide (AlGaAs) exhibit strong second-order optical nonlinearities. This makes them prime candidates for the integration of devices for classical nonlinear optical frequency conversion or photon-pair production, for example, through the parametric down-conversion (PDC) process. Within this material system, Bragg-reflection waveguides (BRW) are a promising platform, but the specifics of the fabrication process and the peculiar optical properties of the alloys require careful engineering. Previously, BRW samples have been mostly derived analytically from design equations using a fixed set of aluminum concentrations. This approach limits the variety and flexibility of the device design. Here, we present a comprehensive guide to the design and analysis of advanced BRW samples and show how to automatize these tasks. Then, nonlinear optimization techniques are employed to tailor the BRW epitaxial structure towards a specific design goal. As a demonstration of our approach, we search for the optimal effective nonlinearity and mode overlap which indicate an improved conversion efficiency or PDC pair production rate. However, the methodology itself is much more versatile as any parameter related to the optical properties of the waveguide, for example the phasematching wavelength or modal dispersion, may be incorporated as design goals. Further, we use the developed tools to gain a reliable insight in the fabrication tolerances and challenges of real-world sample imperfections. One such example is the common thickness gradient along the wafer, which strongly influences the photon-pair rate and spectral properties of the PDC process. Detailed models and a better understanding of the optical properties of a realistic BRW structure are not only useful for investigating current samples, but also provide important feedback for the design and fabrication of potential future turn-key devices.
DEFF Research Database (Denmark)
McGady, David A.
2017-01-01
-temperature path integrals for quantum field theories (QFTs) should be T-reflection invariant. Because multi-particle partition functions are equal to Euclidean path integrals for QFTs, we expect them to be T-reflection invariant. Single-particle partition functions though are often not invariant under T......In this paper, we revisit the claim that many partition functions are invariant under reflecting temperatures to negative values (T-reflection). The goal of this paper is to demarcate which partition functions should be invariant under T-reflection, and why. Our main claim is that finite...... that T-reflection is unrelated to time-reversal. Finally, we study the interplay between T-reflection and perturbation theory in the anharmonic harmonic oscillator in quantum mechanics and in Yang-Mills in four-dimensions. This is the first in a series of papers on temperature-reflections....
International Nuclear Information System (INIS)
Miller, G.A.; Sorensen, L.B.
1997-01-01
Quantum electrodynamics (QED) is used to derive the differential cross sections measured in the three new experimental internal source ensemble x-ray holographies: bremsstrahlung (BXH), fluorescence (XFH), and multiple-energy (MEXH) x-ray holography. The polarization dependence of the BXH cross section is also obtained. For BXH, we study analytically and numerically the possible effects of the virtual photons and electrons which enter QED calculations in summing over the intermediate states. For the low photon and electron energies used in the current experiments, we show that the virtual intermediate states produce only very small effects. This is because the uncertainty principle limits the distance that the virtual particles can propagate to be much shorter than the separation between the regions of high electron density in the adjacent atoms. We also find that using the asymptotic form of the scattering wave function causes about a 5 10% error for near forward scattering. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Song, H. Z.; Usuki, T.; Nakata, Y.; Yokoyama, N.; Sasakura, H.; Muto, S.
2006-01-01
InAs/GaAs quantum dots (QD's) are formed by postgrowth annealing of an InAs wetting layer thinner than the critical thickness for the transition from two- (2D) to three-dimensional (3D) growth mode. Reflection high energy electron diffraction is used to monitor the QD formation. Based on a mean-field theory [Phys. Rev. Lett. 79, 897 (1997)], the time evolution of total QD's volume, first increasing and finally saturating, is well explained by precursors forming during wetting layer growth and converting into nucleated QD's after growth stop. Both the saturation QD's volume and the QD nucleation rate depend exponentially on the InAs coverage. These behaviors and their temperature and InAs growth rate dependences are essentially understandable in the frame of the mean-field theory. Similar analysis to conventional QD growth suggests that the often observed significant mass transport from wetting layer to QD's can be ascribed to the precursors existing before 2D-3D growth mode transition
International Nuclear Information System (INIS)
Sabry, Mohamed
2016-01-01
Low-concentration Façade-integrated Photovoltaic system in the form of TIR (total internal reflection) prismatic segmented façade could play an effective role in reducing the direct component of solar radiation transmitting through buildings, hence reducing both cooling and artificial lighting load on such buildings. A prismatic segmented façade is capable of allowing diffused skylight to transmit through it to the building interior, while preventing most of the direct solar radiation and converting it into clean energy by means of the integrated PV (photovoltaics) cells. A range of prismatic TIR segmented façades with different head angles has been designed based on the geographical latitude of the chosen location. Each façade configuration is simulated by ray-tracing technique and its performance is investigated against realistic direct solar radiation data in two clear sky days representing summer and winter of the targeted location. Ray tracing simulations revealed that all of the selected configurations could collect most of the direct solar radiation in summer. In contrary, larger head angle of the segmented façade could collect wider intervals around the noon time till reaching a head angle of 23° at which most of the incident direct solar radiation could be collected. - Highlights: • 5 different head angles of prismatic segmented PV-integrated Façade are ray-traced. • Transmitted and PV-collected solar radiation percentages are determined. • DNI daily profiles with associated solar altitudes and azimuth data are simulated. • Expected transmitted and PV collected solar radiation are calculated for the proposed segments.
Liu, Xudong; Chen, Xuequan; Parrott, Edward P. J.; Han, Chunrui; Humbert, Georges; Crunteanu, Aurelian; Pickwell-MacPherson, Emma
2018-05-01
Active broadband terahertz (THz) polarization manipulation devices are challenging to realize, but also of great demand in broadband terahertz systems. Vanadium dioxide (VO2) shows a promising phase transition for active control of THz waves and provides broadband polarization characteristics when integrated within grating-type structures. We creatively combine a VO2-based grating structure with a total internal reflection (TIR) geometry providing a novel interaction mechanism between the electromagnetic waves and the device, to realize a powerful active broadband THz polarization-controlling device. The device is based on a Si-substrate coated with a VO2 layer and a metal grating structure on top, attached to a prism for generating the TIR condition on the Si-VO2-grating interface. The grating is connected to electrodes for electrically switching the VO2 between its insulating and conducting phases. By properly selecting the incident angle of the THz waves, the grating direction, and the incident polarization state, we first achieved a broadband intensity modulator under a fused silica prism with an average modulation depth of 99.75% in the 0.2-1.1 THz region. Additionally, we realized an active ultra-broadband quarter-wave converter under a Si prism that can be switched between a 45° linear rotator and a quarter wave converter in the 0.8-1.5 THz region. This is the first demonstration of an active quarter-wave converter with ultra-broad bandwidth performance. Our work shows a highly flexible and multifunctional polarization-controlling device for broadband THz applications.
Common mode frequency instability in internally phase-locked terahertz quantum cascade lasers.
Wanke, M C; Grine, A D; Fuller, C T; Nordquist, C D; Cich, M J; Reno, J L; Lee, Mark
2011-11-21
Feedback from a diode mixer integrated into a 2.8 THz quantum cascade laser (QCL) was used to phase lock the difference frequencies (DFs) among the Fabry-Perot (F-P) longitudinal modes of a QCL. Approximately 40% of the DF power was phase locked, consistent with feedback loop bandwidth of 10 kHz and phase noise bandwidth ~0.5 MHz. While the locked DF signal has ≤ 1 Hz linewidth and negligible drift over ~30 min, mixing measurements between two QCLs and between a QCL and molecular gas laser show that the common mode frequency stability is no better than a free-running QCL. © 2011 Optical Society of America
Polynomial deformations of oscillator algebras in quantum theories with internal symmetries
International Nuclear Information System (INIS)
Karassiov, V.P.
1992-01-01
This paper reports that for last years some new Lie-algebraic structures (quantum groups or algebras, W-algebras, Casimir algebras) have been introduced in different areas of modern physics. All these objects are non-linear generalizations (deformations) of usual (linear) Lie algebras which are generated by a set B = {T a } of their generators T a satisfying a commutation relations (CR) of the form [T a , T b ] = f ab ({T c }) where f ab (...) are some functions of the generators T c given by power series. From the mathematical viewpoint such objects called as nonlinear or deformed Lie algebras G d may be treated as universal algebras or algebraic systems G d = left-angle B; +, · , [,] right-angle generated by a basic set B and the usual operations of the addition (+) and the multiplication (·) together with the Lie product ([T a , T b ] = T a T b - T b T a )
International Nuclear Information System (INIS)
Boldeskul, I.E.; Pen'kovskii, V.V.; Povolotskii, M.I.
1988-01-01
A quantum-chemical investigation of the characteristics of the phosphorus-carbon bond and the internal rotation around it in phospha-alkenes has been carried out in the MNDO approximation. The results of the calculation have been compared with experimental dynamic 1 H NMR data
Fierke, Kerry K.; Lepp, Gardner A.; Bastianelli, Karen; Vogelsang, Lisa; Tornabene, Ladona
2016-01-01
The article describes a student-centered approach to generating meaningful learning outcomes in a short-term study abroad program. A practice named Intention/Reflection (I/R) was used to help students to identify, articulate, and reflect upon learning objectives that were personally meaningful, within the broader framework of the intended outcomes…
Directory of Open Access Journals (Sweden)
Matthias Goldmann
2009-02-01
class="ArticleText">Compared to the discipline of international law, scholars of physics are blessed. While the principles of classical mechanics were theorized several centuries ago, quantum theory and the theory of relativity offer supplementary ways for describing how material objects and energy interact where classical mechanics does not provide an explanation. Thus, even in the absence of an all-comprising “world theory”, physicists have a wide array of workable theories at their service. By contrast, the “classical mechanics” of international law, i.e. the explanation of the most basic causal relationships between international legal norms and the behaviour of states as the main subjects of international law, are still subject to deep theoretical controversies. International legal doctrine presupposes that international law does have an impact and does not aim at questioning or further explaining this assumption. Traditional legal theories that see the essence of legal normativity in the possibility to trigger mechanisms of physical constraint often come to the conclusion that international law, in the absence of central enforcement mechanisms, is at best a primitive form of law. More recent enquiries into international legal theory from very different theoretical angles come to even less uplifting conclusions. Some argue that international legal norms are either entirely devoid of content because of their inherent indeterminacy and therefore prone to be captured by special interests. Others consider international law to be merely epiphenomenal because rational states would only consent to legal norms if, and as long as, they describe a behaviour they would choose anyway because it promises higher payoffs. In particular the latter critique put forward so forcefully by Jack Goldsmith and Eric Posner sent considerable shock waves through the invisible college of international lawyers. This is the background that needs to be kept
Ryngaert, C.M.J.
2016-01-01
The Netherlands is home to a substantial number of international organizations, which on the basis of international agreements are entitled to immunity from jurisdiction and enforcement before Dutch courts. This immunity grant has not stopped claimants from suing international organizations in The
International Nuclear Information System (INIS)
Crutchfield, James P.; Wiesner, Karoline
2008-01-01
We introduce ways to measure information storage in quantum systems, using a recently introduced computation-theoretic model that accounts for measurement effects. The first, the quantum excess entropy, quantifies the shared information between a quantum process's past and its future. The second, the quantum transient information, determines the difficulty with which an observer comes to know the internal state of a quantum process through measurements. We contrast these with von Neumann entropy and quantum entropy rate and provide a closed-form expression for the latter for the class of deterministic quantum processes
Voloshinov, Vitaly; Polikarpova, Nataliya; Ivanova, Polina; Khorkin, Vladimir
2018-04-01
Peculiar cases of acoustic wave propagation and reflection may be observed in strongly anisotropic acousto-optical crystals. A tellurium dioxide crystal serves as a prime example of such media, since it possesses record indexes of acoustic anisotropy. We studied one of the unusual scenarios of acoustic incidence and reflection from a free crystal-vacuum boundary in paratellurite. The directions of the acoustic waves in the (001) plane of the crystal were determined, and their basic characteristics were calculated. The carried-out acousto-optic experiment at the wavelength of light 532 nm and the acoustic frequency 73 MHz confirmed the theoretical predictions. The effects examined in the paper include the acoustic wave propagation with the record walkoff angle 74°. We also observed the incidence of the wave on the boundary at the angle exceeding 90°. Finally, we registered the close-to-back reflection of acoustic energy following the incidence. One of the stunning aspects is the distribution of energy between the incident and the back-reflected wave. The unusual features of the acoustic wave reflections pointed out in the paper are valuable for their possible applications in acousto-optic devices.
Directory of Open Access Journals (Sweden)
Buddhini Gayathri Jayatilleke
2017-03-01
Full Text Available This research paper discusses the accomplishments, issues, and challenges experienced by Open University of Sri Lanka (OUSL academics when offering the first cross-border professional development online course to train online tutors and mentors. The course was delivered exclusively online and facilitated by OUSL academics and e-mentors from the USA. The course was comprised of 30 participants: 9 from Pakistan, 10 from Mauritius and 11 from Sri Lanka. This qualitative study is based on reflections of both faculty and participants. Data were collected using reflections and informal anecdotal records of the three OUSL academics and self-reflection instruments (pre, mid and final administered to participants, and reflective journal entries made by participants. Participants’ views were triangulated with the reflections of the OUSL academics to validate the results. While there were many accomplishments in the design and delivery of the course, the findings revealed that there were many challenges in implementing the course: pedagogical, organizational and technological aspects in particular. The paper provides recommendations to address such challenges when offering cross-border online courses in the future.
Greene, Catie A.
2016-01-01
The purpose of this research was to investigate the sociocultural model of eating disorder development among male and female college student-athletes as moderated by students' level of Reflective Judgment, a stage theory of adult epistemology marked by increasing cognitive complexity. A review of literature on the established relationships between…
International Nuclear Information System (INIS)
Cavalanti, C. de A.
1992-01-01
The growing importance of nuclear energy (on the threshold of the twenty-first century) and of its ethical uses is considered, including major political events in recent years, their social and economic consequences in the world scene. International Nuclear Law is seen as the most adequate instrument to promote the ethical uses of nuclear energy on a worldwide basis, so that mankind can benefit safely and properly and improving their living conditions in general. Problems associated with access to nuclear technology, plants, equipments and materials are addressed. Basic principles of international agreements ruling nuclear trade, ethical aspects are also covered. The different markets involved in international nuclear trade and their specific requirements are described. Certain international treaties on the peaceful uses of nuclear energy are discussed such as the Non-Proliferation Treaty and the Tlatelolco Treaty as are international conventions on matters related to the use of nuclear energy, such as the environment and protection of personnel. The author concludes by debating whether ethical uses of nuclear energy are a possible reality or merely utopia. Prospects on the future of international nuclear trade are considered. (author)
Burkhard, George F.; Hoke, Eric T.; McGehee, Michael D.
2010-01-01
Accurately measuring internal quantum efficiency requires knowledge of absorption in the active layer of a solar cell. The experimentally accessible total absorption includes significant contributions from the electrodes and other nonactive layers. We suggest a straightforward method for calculating the active layer contribution that minimizes error by subtracting optically-modeled electrode absorption from experimentally measured total absorption. (Figure Presented) © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Burkhard, George F.
2010-05-31
Accurately measuring internal quantum efficiency requires knowledge of absorption in the active layer of a solar cell. The experimentally accessible total absorption includes significant contributions from the electrodes and other nonactive layers. We suggest a straightforward method for calculating the active layer contribution that minimizes error by subtracting optically-modeled electrode absorption from experimentally measured total absorption. (Figure Presented) © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
ZOUMA Bernard
2010-01-01
The work presented in this thesis deals with the problem of the quality of polycrystalline silicon solar cells. This work has been done on square surface columnar grains of the bi facial solar cell. This study ends in the determination of the quality of bi facial solar cells from their recombination parameters. We propose an useful technique to determine these recombination parameters from the algorithm calculation that is based on the internal quantum efficiency. A set of dimensional approach like the three-dimensional model of the solar cell that allows taking into account the grain size and grain boundaries recombination velocity. The emitter contribution and the terrestrial magnetic field influence are taken into account too. While lighted, the emitter region becomes a recombination zone of the electron from the base region. We have obtained a new exhaustive analytical expression of the internal quantum efficiency. This theoretical efficiency is a function of the recombination parameters and it is used to fit the experimental curves of the internal quantum efficiency versus the wavelength. The results are in a good agreement with the experimental values.(Author) [fr
Reflecting reflection in supervision
DEFF Research Database (Denmark)
Lystbæk, Christian Tang
associated with reflection and an exploration of alternative conceptions that view reflection within the context of settings which have a more group- and team-based orientation. Drawing on an action research project on health care supervision, the paper questions whether we should reject earlier views...... of reflection, rehabilitate them in order to capture broader connotations or move to new ways of regarding reflection that are more in keeping with not only reflective but also emotive, normative and formative views on supervision. The paper presents a critical perspective on supervision that challenge...... the current reflective paradigm I supervision and relate this to emotive, normative and formative views supervision. The paper is relevant for Nordic educational research into the supervision and guidance...
Quantum reference frames and quantum transformations
International Nuclear Information System (INIS)
Toller, M.
1997-01-01
A quantum frame is defined by a material object following the laws of quantum mechanics. The present paper studies the relations between quantum frames, which are described by some generalization of the Poincare' group. The possibility of using a suitable quantum group is examined, but some arguments are given which show that a different mathematical structure is necessary. Some simple examples in lower-dimensional space-times are treated. They indicate the necessity of taking into account some ''internal'' degrees of freedom of the quantum frames, that can be disregarded in a classical treatment
Zeelen, Jacques; van der Linden, Josje
2009-01-01
The intent of capacity building in international development cooperation is to enable people to control their own development. Important premises are ownership, choice and self-esteem. The authors analyse the dynamics of the enabling process in practice, based on their own experiences working for several years in universities in developing…
Papajohn, Dean
2006-01-01
While many institutions have utilized TOEFL scores for international admissions for many years, a speaking section has never before been a required part of TOEFL until the development of the iBT/Next Generation TOEFL. So institutions will need to determine how to set standards for the speaking section of TOEFL, also known as TOEFL Academic…
International Nuclear Information System (INIS)
Finn, Lee Samuel
2003-01-01
The 4th International LISA Symposium was held at the National Science Foundation Physics Frontier Center for Gravitational Wave Physics at The Pennsylvania State University on 19-24 July 2002. This special issue of Classical and Quantum Gravity is the proceedings of this meeting. LISA - the Laser Interferometer Space Antenna - is part of an international effort to open a new window on the universe. Not all things radiate light, but everything gravitates. Observations of the gravitational waves radiated by black holes and compact binary star systems, in our galaxy and beyond, can reveal details about these systems and their environments that are otherwise inaccessible. The international effort, of which LISA is a part, includes ground-based detectors, and the relationship between LISA and its ground-based detector 'cousins' was an important theme for this Symposium. LISA will observe gravitational waves in the 0.1 mHz to 0.1 Hz band, complementing observations made by ground-based detectors in the 10 Hz to several KHz band. Together they will explore nearly six decades of bandwidth in the gravitational-wave sky. LISA in particular will observe the gravitational waves radiated by the coalescence of black holes at the centres of colliding galaxies, and the inspiral of compact neutron stars or stellar-mass black holes onto these black holes, virtually anywhere in the universe. It will take a census of neutron star or close white dwarf binaries in our own galaxy and observe the formation of large black holes from the very first structures to form and collapse in our universe. In doing all these things, it will shed new 'light' on the first structures to form in the universe, explore the evolution of galaxies and the roles that black holes play in their structure, test relativity near the 'edges' of a black hole, and deepen our understanding of stellar and binary system evolution. A successful conference - and this LISA Symposium, like its predecessors, was very
Changing Role of China in the International Politics of the Last 15 Years in Reflection to the US
Directory of Open Access Journals (Sweden)
Szilárd Boros
2018-04-01
Full Text Available As a result of its 30-year successful economic growth, China has been gradually reshaping its international position. After the end of the Cold War, the US has been the unquestionable hegemon in the world politics and world economy, but after the economic crisis of 2007-08, the US hegemonic power is slowly eroding, the country’s capabilities in shaping world politics are decreasing and the international order, led by the US, is in disarray. On the other hand, China has made enormous efforts to reinforce its international positions over the last decade, which suits more to its growing economic power and own interests. The first part of the paper looks into the main theories on the two major powers’ possible future relations. In the second and third part of the paper, theories are being examined on practical bases; on the one hand we look at their relative explaining strength using a geopolitical power index, on the other hand, we briefly analyse main events and processes in their bilateral relations of the last decade to see how their relation is formed dynamically. In the summary, the paper attempts to outline scenarios on how their relation will evolve in the future.
Loignon, Christine; Gottin, Thomas; Valois, Carol; Couturier, François; Williams, Robert; Roy, Pierre-Michel
2016-11-01
To explore the perceived effect of an elective international health rotation on family medicine resident learning. Qualitative, collaborative study based on semistructured interviews. Quebec. A sample of 12 family medicine residents and 9 rotation supervisors (N = 21). Semistructured interviews of residents and rotation supervisors. Residents and supervisors alike reported that their technical skills and relationship skills had benefited. All increased their knowledge of tropical pathologies and learned to expand their clinical examinations. They benefited from having very rich interactions in other care settings, working with vulnerable populations. The rotations had their greatest effect on relationship skills (communication, empathy, etc) and the ability to work with vulnerable patients. All of the participants were exposed to local therapies and local interpretations of disease symptoms and pathogenesis. The findings of this study will have a considerable effect on pedagogy. The residents' experiences of their international health rotations and what they learned in terms of medical skills and pedagogic approaches in working with patients are described. Using a collaborative approach with the rotation supervisors, the data were triangulated and the benefits of an international rotation on academic training were more accurately defined. The findings can now be used to enrich academic programs in social and preventive medicine and more adequately prepare future family physicians for work in various social and cultural settings. Copyright© the College of Family Physicians of Canada.
Kivioja, Antti; Hartus, Timo; Vuorinen, Tapani; Gane, Patrick; Jääskeläinen, Anna-Stiina
2013-06-01
The interactive behavior of ink constituents with porous substrates during and after the offset print process has an important effect on the quality of printed products. To help elucidate the distribution of ink components between the retained ink layer and the substrate, a variety of spectroscopic and microscopic analysis techniques have been developed. This paper describes for the first time the use of total internal reflection (TIR) Raman spectroscopy to analyze the penetration behavior of separated offset ink components (linseed oil, solid color pigment) in coated papers providing chemically intrinsic information rapidly, nondestructively, and with minimal sample preparation. In addition, the already widely applied technique of attenuated total reflection infrared spectroscopy (ATR-IR) was evaluated in parallel and compared. The results of the ATR-IR Raman clearly revealed an improvement in uppermost depth resolution compared with values previously published from other nondestructive techniques, and the method is shown to be capable of providing new knowledge of the setting of thin (0.25-2 μm) offset ink films, allowing the spreading and the penetration behavior on physically different paper coating surfaces to be studied.
Directory of Open Access Journals (Sweden)
Jeffrey A. Barrett
2016-09-01
Full Text Available http://dx.doi.org/10.5007/1808-1711.2016v20n1p45 Because of the conceptual difficulties it faces, quantum mechanics provides a salient example of how alternative metaphysical commitments may clarify our understanding of a physical theory and the explanations it provides. Here we will consider how postulating alternative quantum worlds in the context of Hugh Everett III’s pure wave mechanics may serve to explain determinate measurement records and the standard quantum statistics. We will focus on the properties of such worlds, then briefly consider other metaphysical options available for interpreting pure wave mechanics. These reflections will serve to illustrate both the nature and the limits of naturalized metaphysics.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
.... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...
Ishioka, Sachio; Fujikawa, Kazuo
2009-06-01
Committee -- Obituary: Professor Sadao Nakajima -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Cold atoms and molecules. Pseudopotential method in cold atom research / C. N. Yang. Symmetry breaking in Bose-Einstein condensates / M. Ueda. Quantized vortices in atomic Bose-Einstein condensates / M. Tsubota. Quantum degenerate gases of Ytterbium atoms / S. Uetake ... [et al.]. Superfluid properties of an ultracold fermi gas in the BCS-BEC crossover region / Y. Ohashi, N. Fukushima. Fermionic superfluidity and the BEC-BCS crossover in ultracold atomic fermi gases / M. W. Zwierlein. Kibble-Zurek mechanism in magnetization of a spinor Bose-Einstein condensate / H. Saito, Y. Kawaguchi, M. Ueda. Quasiparticle inducing Josephson effect in a Bose-Einstein condensate / S. Tsuchiya, Y. Ohashi. Stability of superfluid fermi gases in optical lattices / Y. Yunomae ... [et al.]. Z[symbol] symmetry breaking in multi-band bosonic atoms confined by a two-dimensional harmonic potential / M. Sato, A. Tokuno -- Spin hall effect and anomalous hall effect. Recent advances in anomalous hall effect and spin hall effect / N. Nagaosa. Topological insulators and the quantum spin hall effect / C. L. Kane. Application of direct and inverse spin-hall effects: electric manipulation of spin relaxation and electric detection of spin currents / K. Ando, E. Saitoh. Novel current pumping mechanism by spin dynamics / A. Takeuchi, K. Hosono, G. Tatara. Quantum spin hall phase in bismuth ultrathin film / S. Murakami. Anomalous hall effect due to the vector chirality / K. Taguchi, G. Tatara. Spin current distributions and spin hall effect in nonlocal magnetic nanostructures / R. Sugano ... [et al.]. New boundary critical phenomenon at the metal-quantum spin hall insulator transition / H. Obuse. On scaling behaviors of anomalous hall conductivity in disordered ferromagnets studied with the coherent potential approximation / S. Onoda -- Magnetic domain wall dynamics and spin related
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed; Blaschke, David; Issadykov, Aidos; Ivanov, Mikhail (eds.)
2017-04-15
The Helmholtz International Summer School (HISS) entitled ''Quantum Field Theory at the Limits: from Strong Fields to Heavy Quarks (SF→HQ)'', was held in the period July 18-30, 2016 at the Bogolyubov Laboratory of Theoretical Physics (BLTP) of the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, as part of the activities of the Dubna International Advanced School of Theoretical Physics (DIAS-TH). It was co-organized by Ahmed Ali (DESY Hamburg), David Blaschke (JINR Dubna, MEPhI and Univ. Wroclaw), Holger Gies (HI Jena), and Mikhail Ivanov (JINR Dubna), and was attended by 82 participants (faculty+students), not counting the JINR physicists who attended some lectures as non-registered participants. The school (SF→HQ) continued the workshops and schools of the HISS series held earlier in Dubna (1993, 1996, 2000, 2005, 2008, 2013), Bad Honnef (1994) and Rostock (1997). The scientific program of the school consisted of five regular (one-hour long) lectures in the morning and afternoon sessions, with typically two contributed talks given by younger participants (students and postdocs), each half-hour long, in the late afternoons. Altogether, we had sixty lectures by the faculty and participants. In addition, black-board exercises were held in the post-lunch periods on selected aspects of strong fields and field theory. The HISS series of schools has played an important role in bringing together an international faculty and young physicists (Ph.D. and postdocs), mostly from Russia and Germany, but increasingly also from other countries, including those affiliated to JINR Dubna. They participate in two-week long intense scientific discourse, mainly dedicated lectures on selected topics covering the foundation and the frontiers of high energy physics and cosmology. The novelty of this year's school was its bifocal interest, which brought together two different physical science communities - particle and laser physicists. There were
International Nuclear Information System (INIS)
Ali, Ahmed; Blaschke, David; Issadykov, Aidos; Ivanov, Mikhail
2017-04-01
The Helmholtz International Summer School (HISS) entitled ''Quantum Field Theory at the Limits: from Strong Fields to Heavy Quarks (SF→HQ)'', was held in the period July 18-30, 2016 at the Bogolyubov Laboratory of Theoretical Physics (BLTP) of the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, as part of the activities of the Dubna International Advanced School of Theoretical Physics (DIAS-TH). It was co-organized by Ahmed Ali (DESY Hamburg), David Blaschke (JINR Dubna, MEPhI and Univ. Wroclaw), Holger Gies (HI Jena), and Mikhail Ivanov (JINR Dubna), and was attended by 82 participants (faculty+students), not counting the JINR physicists who attended some lectures as non-registered participants. The school (SF→HQ) continued the workshops and schools of the HISS series held earlier in Dubna (1993, 1996, 2000, 2005, 2008, 2013), Bad Honnef (1994) and Rostock (1997). The scientific program of the school consisted of five regular (one-hour long) lectures in the morning and afternoon sessions, with typically two contributed talks given by younger participants (students and postdocs), each half-hour long, in the late afternoons. Altogether, we had sixty lectures by the faculty and participants. In addition, black-board exercises were held in the post-lunch periods on selected aspects of strong fields and field theory. The HISS series of schools has played an important role in bringing together an international faculty and young physicists (Ph.D. and postdocs), mostly from Russia and Germany, but increasingly also from other countries, including those affiliated to JINR Dubna. They participate in two-week long intense scientific discourse, mainly dedicated lectures on selected topics covering the foundation and the frontiers of high energy physics and cosmology. The novelty of this year's school was its bifocal interest, which brought together two different physical science communities - particle and laser physicists. There were
Fujinami, Taku; Kigami, Hiroshi; Unno, Noriyuki; Taniguchi, Jun; Satake, Shin-ichi
2018-03-01
Total internal reflection fluorescence microscopy (TIRFM) is a promising method for measuring fluid flow close to a wall with nanoscale resolution in a process that is termed "multilayer nanoparticle image velocimetry" (MnPIV). TIRFM uses evanescent light that is generated on a substrate (typically a glass slide) by total internal reflection of light. Many researchers have previously studied x-y-z (3D) flows of water close to flat glass slides using MnPIV. On the other hand, a fluid flow close to a structured surface is also important. To measure flows of water near micro-patterns, we previously developed an MnPIV technique that uses a refractive-index-matching method. In previous study, the micropattern is made of a thermoplastic material with a refractive index that closely matches that of water. In this study, ultraviolet nanoimprint lithography was used for fabricating the appropriate micro-patterns because this technique can fabricate a pattern with a high resolution. As a result, we succeeded in performing MnPIV in water with a circular hole array pattern made by ultraviolet nanoimprint using a refractive-index-matching method. We believe that this technique will be helpful in elucidating fluid flows around microstructures.
International Nuclear Information System (INIS)
Lizana, A; Foldyna, M; Garcia-Caurel, E; Stchakovsky, M; Georges, B; Nicolas, D
2013-01-01
High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV–visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV–NIR reflectometer. We used the variance–covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer. (paper)
Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.
2013-03-01
High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.
Quantum capacity of quantum black holes
Adami, Chris; Bradler, Kamil
2014-03-01
The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.
Silicon Quantum Dots for Quantum Information Processing
2013-11-01
S. Lai, C. Tahan, A. Morello and A. S. Dzurak, Electron Spin lifetimes in multi-valley sil- icon quantum dots, S3NANO Winter School Few spin solid...lifetimes in multi-valley sil- icon quantum dots, International Workshop on Silicon Quantum Electronics, Grenoble, France, February 2012 (Poster). C...typically plunger gates), PMMA A5 is spun at 5000 rpm for 30 seconds, resulting in a 280 nm resist thickness. The resists are baked for 90 seconds at 180
International Nuclear Information System (INIS)
Béaur, L.; Bretagnon, T.; Guillet, T.; Brimont, C.; Gallart, M.; Gil, B.; Gilliot, P.; Morhain, C.
2013-01-01
We report on absorption phenomena in ZnO/(Zn, Mg)O quantum wells grown along the c-axis by molecular beam epitaxy. The optical properties of such quantum wells are affected by a huge internal electric field. For wide quantum wells the absorption is driven by Quantum Confined Stark Effect. Phonon-assisted formation of excitons is observed in the case of thin quantum wells. The physical origin of these hot excitons is determined by using both low temperature (T=10 K) photoluminescence excitation spectroscopy and reflectivity measurements. -- Highlights: ► High structural quality ZnO/(Zn, Mg)O quantum wells are growth along the polar c-direction. ► Indirect phonon-assisted formation of excitons in the thin single quantum wells. ► Strong internal electric field present in polar heterostructures prevents the observation of hot excitons
Directory of Open Access Journals (Sweden)
Wederson Rufino dos Santos
2010-07-01
Full Text Available This paper reviews the debate on the social model of disability has influenced conceptions of the International Classification of Functioning, Disability and Health adopted by the World Health Organization in 2001 and adopted in Brazil in 2007, through the law of the Continuous Cash Benefit. The BPC is a major social policy of income transfer to poor disabled people, affecting over one million and half disabled people in the country. Since 2009, the evaluation of persons with disabilities for the BPC will make by medical and social skills targeted by ICF. Will be demonstrated that, although the adoption of the ICF maybe to represent regard to how to understand disability as social inequality, the adoption of the ICF by the law of the BPC will face challenges in ensuring the right to dignity of disabled people.
Spencer, Phoebe R; Sanders, Katherine A; Judge, Debra S
2018-02-01
Population-specific growth references are important in understanding local growth variation, especially in developing countries where child growth is poor and the need for effective health interventions is high. In this article, we use mixed longitudinal data to calculate the first growth curves for rural East Timorese children to identify where, during development, deviation from the international standards occurs. Over an eight-year period, 1,245 children from two ecologically distinct rural areas of Timor-Leste were measured a total of 4,904 times. We compared growth to the World Health Organization (WHO) standards using z-scores, and modeled height and weight velocity using the SuperImposition by Translation And Rotation (SITAR) method. Using the Generalized Additive Model for Location, Scale and Shape (GAMLSS) method, we created the first growth curves for rural Timorese children for height, weight and body mass index (BMI). Relative to the WHO standards, children show early-life growth faltering, and stunting throughout childhood and adolescence. The median height and weight for this population tracks below the WHO fifth centile. Males have poorer growth than females in both z-BMI (p = .001) and z-height-for-age (p = .018) and, unlike females, continue to grow into adulthood. This is the most comprehensive investigation to date of rural Timorese children's growth, and the growth curves created may potentially be used to identify future secular trends in growth as the country develops. We show significant deviation from the international standard that becomes most pronounced at adolescence, similar to the growth of other Asian populations. Males and females show different growth responses to challenging conditions in this population. © 2017 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Sérgio Carvalho Benício de Mello
2011-03-01
Full Text Available Internal marketing perspective has gaining primordial space. It happens through an interdisciplinary process with human management discipline and is based on the assumption that a significant part of the organizational success depends on the attitudes, commitment and performance of people in an organization, above all the ones that interact with the customers. Assuming the premise that such procedure depends on the relationship between the contact employees and the customers of an organization, we revise in this essay fundamental notions of interpresonel relationships to discuss the role of the internal marketing in the formation of employees that becomes reflexive subjects. We understand such premise as a fundamental characteristic for those to carry out his/her role in a conscious way. Our conclusion is a theoretical proposal of how this can be developed.A perspectiva do marketing interno tem ganho espaço primordial. Isto ocorre por meio de um processo interdisciplinar com a gestão de pessoas, por se compreender que parte do êxito organizacional dependa das atitudes, do comprometimento e do desempenho de todos os envolvidos numa organização, sobretudo os que interagem com os clientes. Assumindo a premissa de que tal procedimento dependa do relacionamento entre o funcionário de contato e os clientes de uma organização, neste ensaio teórico revisamos noções fundamentais do conhecimento acerca das relações interpessoais para discutir o papel do marketing interno na formação de funcionários que se tornem sujeitos reflexivos. Tal premissa é por nos compreendida como característica fundamental para que estes desempenhem seu papel de forma consciente. Nossa chegada é uma proposta teórica de como isto possa ser desenvolvido.
Loi, Shyeh Tjing; Papaloizou, John C. B.
2018-04-01
The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.
International Nuclear Information System (INIS)
ElBaradei, M.
2005-01-01
Emerging nuclear challenges are proliferation of nuclear weapons and sensitive nuclear technologies, emergence of nuclear clandestine procurement networks in nuclear materials and equipment and the sluggishment in nuclear disarmament. Practical steps to address them are 1) better control of access to nuclear fuel cycle technology; 2) supporting effective nuclear verification; 3) strengthening the credibility of enforcement mechanisms; 4) protecting nuclear material and 5) developing an alternative approach to collective security. For better control of access to nuclear fuel cycle technology a group of international experts proposes to a) provide assurance of supply of reactor technology and nuclear fuel; b) accept a time-limited moratorium (of perhaps 5-10 years) on new uranium enrichment and plutonium separation facilities - at the very least for countries that do not currently have such technologies; c) establish a framework for multilateral management and control of the 'back end' of the fuel cycle (i.e. spent fuel reprocessing and waste disposal); and d) create a similar framework for multilateral management and control of the 'front end' of the fuel cycle (i.e. enrichment and fuel production). The effectiveness of nuclear verification depends on the extend of access to information and locations in a given country and inspections can only verify what countries declare. The expanded access provided by the Additional Protocol to safeguards agreements enables the Agency to verify possible undeclared activities however both safeguards agreements are focused on nuclear material and therefore the Agency's authority to investigate possible parallel weaponization activity is limited. In addition only 70 countries have the additional protocol on force. A dditional transparency measures' may be required as well as additional funding to support R and D on new technologies for detecting clandestine nuclear facilities and activity. An important step to address the nuclear
Ishioka, Sachio; Fujikawa, Kazuo
2006-06-01
Preface -- Committees -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Special lecture. Albert Einstein: opportunity and perception / C. N. Yang -- Quantum information and entanglement. Quantum optics with single atoms and photons / H. J. Kimble. Quantum information system experiments using a single photon source / Y. Yamamoto. Quantum communication and quantum computation with entangled photons / A. Zeilinger. High-fidelity quantum teleportation and a quantum teleportation network for continuous variables / N. Takei, A. Furusawa. Long lived entangled states / H. Häffner ... [et al.]. Quantum non-locality using tripartite entanglement with non-orthogonal states / J. V. Corbett, D. Home. Quantum entanglement and wedge product / H Heydari. Analysis of the generation of photon pairs in periodically poled lithium niobate / J. Söderholm ... [et al.]. Generation of entangled photons in a semiconductor and violation of Bell's inequality / G. Oohata, R. Shimizu, K. Edamatsu -- Quantum computing. Decoherence of a Josephson junction flux qubit / Y. Nakamura ... [et al.]. Spectroscopic analysis of a candidate two-qubit silicon quantum computer in the microwave regime / J. Gorman, D. G. Hasko, D. A. Williams. Berry phase detection in charge-coupled flux-qubits and the effect of decoherence / H. Nakano ... [et al.]. Locally observable conditions for the successful implementation of entangling multi-qubit quantum gates / H. F. Hofmann, R. Okamoto, S. Takeuchi. State control in flux qubit circuits: manipulating optical selection rules of microwave-assisted transitions in three-level artificial atoms / Y.-X. Liu ... [et al.]. The effect of local structure and non-uniformity on decoherence-free states of charge qubits / T. Tanamoto, S. Fujita. Entanglement-assisted estimation of quantum channels / A. Fujiwara. Superconducting quantum bit with ferromagnetic [symbol]-Junction / T. Yamashita, S. Takahashi, S. Maekawa. Generation of macroscopic Greenberger
Tachibana, Tomihisa; Tanahashi, Katsuto; Mochizuki, Toshimitsu; Shirasawa, Katsuhiko; Takato, Hidetaka
2018-04-01
Bifacial interdigitated-back-contact (IBC) silicon solar cells with a high bifaciality of 0.91 were fabricated. Screen printing and firing technology were used to reduce the production cost. For the first time, the relationship between the rear side structure and carrier collection probability was evaluated using internal quantum efficiency (IQE) mapping. The measurement results showed that the screen-printed electrode and back surface field (BSF) area led to low IQE. The low carrier collection probability by BSF area can be explained by electrical shading effects. Thus, it is clear that the IQE mapping system is useful to evaluate the IBC cell.
Directory of Open Access Journals (Sweden)
Wagner Moura Lamounier
2008-10-01
Full Text Available In this research, we analyzed the short and long term interdependence and relationship between the stock indices of the major emerging capital markets and the major developed markets for the period 1995-2005. The aim was to verify the existence and the dynamics of the “contagion” between the markets, or if the occurrence of crises and changes in the behavior of a market would have impacts on the behavior of the others. In the development of the work, we applied the methodology of the Vector Error Correction Model (VEC. We found the presence of cointegrating relationships between the markets analyzed, but was able to see that, despite being cointegrated markets, investors could beneﬁt from international diversiﬁcation of portfolios. That’s because the speed of adjustment of the long-term ratio of cointegration between the markets was low for the period analyzed. Accordingly, investors would have the opportunity to reduce risk by diversifying their portfolios.
Hoang, U; Luna, P; Russell, P; Bergonzi-King, L; Ashton, J; McCarthy, C; Donovan, H; Inman, P; Seminog, O; Botchway, S
2018-03-01
Film competitions can be a helpful method to understand issues of quality in health films. In this paper, we describe the development and use of explicit quality criteria to identify the 'best' films for the first ever international public health film competition. A film selection committee encompassing a range of stakeholders was compiled. The committee drew up 10 explicit quality criteria to judge films drawing upon other film festival's selection criteria. These criteria were then applied to a broad range of health-related films entered into a film competition to select the 'best' film to screen. Eighty-four films from 20 different countries were submitted to the public health film competition. The originality of the subject covered by the film, the public health importance of the issue and story-telling approach in the film were found to be the most discriminatory criteria to select films. Selection of health films for festivals can be undertaken using explicit quality criteria. There are a number of advantages to such an approach; however, explicit selection involves a large commitment of resources from film festival organizers and there is further research required to test the validity of the quality criteria applied to health-related films.
International Nuclear Information System (INIS)
Leivo, H.P.
1992-01-01
The algebraic approach to quantum groups is generalized to include what may be called an anyonic symmetry, reflecting the appearance of phases more general than ±1 under transposition. (author). 6 refs
Starmans, L. W. E.; Kok, M. B.; Sanders, H. M. H. F.; Zhao, Y.; Donegá, C. de Mello; Meijerink, A.; Mulder, W. J. M.; Grüll, H.; Strijkers, G. J.; Nicolay, K.
2011-01-01
Quantum dot micelles (pQDs) with a paramagnetic coating are promising nanoparticles for bimodal molecular imaging. Their bright fluorescence allows for optical detection, while their Gd payload enables visualization with contrast-enhanced MRI. A popular approach in molecular MRI is the targeting of
Quantum phase transition with dissipative frustration
Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.
2018-04-01
We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.
International Nuclear Information System (INIS)
Jeon, H.C.; Lee, S.J.; Kang, T.W.; Park, S.H.
2012-01-01
The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.
Energy Technology Data Exchange (ETDEWEB)
Garro, N.; Cros, A.; Budagosky, J.A.; Cantarero, A. [Institut de Ciencia dels Materials, Universitat de Valencia, 46071 Valencia (Spain); Vinattieri, A.; Gurioli, M. [INFM, Dept. of Physics and LENS, Universita di Firenze, Via Sansone 1, 50019 Sesto Fiorentino (Italy); Founta, S.; Mariette, H.; Daudin, B. [CEA-CNRS Group ' ' Nanophysique et Semiconducteurs' ' , Departement de Recherche Fondamentale sur la Matiere Condensee, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble (France)
2005-11-01
We present a study of the emission of a multi-layer stack of self-assembled GaN/AlN quantum dots grown on the a-plane of 6H-SiC. We look for signatures of the internal electric field in the power dependence of the time-integrated and time-resolved photoluminescence spectra. The lack of a dynamical red-shift reveals that internal electric fields are significantly reduced in these dots. A band on the low energy side of the emission is observed whose intensity quenches fast when increasing the temperature. The polarization selection rules of the emission are examined in order to determine the physical nature of this band. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy Technology Data Exchange (ETDEWEB)
Jeon, H.C. [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Lee, S.J., E-mail: leesj@dongguk.edu [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Kang, T.W. [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Park, S.H. [Department of Electronics Engineering, Catholic University of Daegu, Kyeongbuk 712-702 (Korea, Republic of)
2012-05-15
The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.
Le, Nam Cao Hoai; Yokokawa, Ryuji; Dao, Dzung Viet; Nguyen, Thien Duy; Wells, John C; Sugiyama, Susumu
2009-01-21
A poly(dimethylsiloxane) (PDMS) chip for Total Internal Reflection (TIR)-based imaging and detection has been developed using Si bulk micromachining and PDMS casting. In this paper, we report the applications of the chip on both inverted and upright fluorescent microscopes and confirm that two types of sample delivery platforms, PDMS microchannel and glass microchannel, can be easily integrated depending on the magnification of an objective lens needed to visualize a sample. Although any device configuration can be achievable, here we performed two experiments to demonstrate the versatility of the microfluidic TIR-based devices. The first experiment was velocity measurement of Nile red microbeads with nominal diameter of 500 nm in a pressure-driven flow. The time-sequenced fluorescent images of microbeads, illuminated by an evanescent field, were cross-correlated by a Particle Image Velocimetry (PIV) program to obtain near-wall velocity field of the microbeads at various flow rates from 500 nl/min to 3000 nl/min. We then evaluated the capabilities of the device for Single Molecule Detection (SMD) of fluorescently labeled DNA molecules from 30 bp to 48.5 kbp and confirm that DNA molecules as short as 1105 bp were detectable. Our versatile, integrated device could provide low-cost and fast accessibility to Total Internal Reflection Fluorescent Microscopy (TIRFM) on both conventional upright and inverted microscopes. It could also be a useful component in a Micro-Total Analysis System (micro-TAS) to analyze nanoparticles or biomolecules near-wall transport or motion.
Quantum Erasure: Quantum Interference Revisited
Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.
2005-01-01
Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.
Bai, Xu-Fang; Xin, Wei; Yin, Hong-Wu; Eerdunchaolu
2017-06-01
The electromagnetic-field dependence of the ground and the first excited-state (GFES) energy eigenvalues and eigenfunctions of the strong-coupling polaron in a quantum dot (QD) was studied for various QD thicknesses by using the variational method of the Pekar type (VMPT). On this basis, we construct a qubit in the quantum dot (QQD) by taking a two-level structure of the polaron as the carrier. The results of numerical calculations indicate that the oscillation period of the qubit, {itT}{in0}, increases with increasing the thickness of the quantum dot (TQD) {itL}, but decreases with increasing the cyclotron frequency of the magnetic field (CFMF) ω{in{itc}}, electric-field strength {itF}, and electron-phonon coupling strength (EPCS) α. The probability density of the qubit |Ψ({itρ}, {itz}, {itt})|{su2} presents a normal distribution of the electronic transverse coordinate ρ, significantly influenced by the TQD and effective radius of the quantum dot (ERQD) {itR}{in0}, and shows a periodic oscillation with variations in the electronic longitudinal coordinate {itz}, polar angle φ and time {itt}. The decoherence time τ and the quality factor {itQ} of the free rotation increase with increasing the CFMF ω{in{itc}}, dispersion coefficient η, and EPCS α, but decrease with increasing the electric-field strength {itF}, TQD {itL}, and ERQD {itR}{in0}. The TQD is an important parameter of the qubit. Theoretically, the target, which is to regulate the oscillation period, decoherence time and quality factor of the free rotation of the qubit, can be achieved by designing different TQDs and regulating the strength of the electromagnetic field.
Malinowska , Agnieszka B.; Torres , Delfim
2014-01-01
International audience; Introduces readers to the treatment of the calculus of variations with q-differences and Hahn difference operators Provides the reader with the first extended treatment of quantum variational calculus Shows how the techniques described can be applied to economic models as well as other mathematical systems This Brief puts together two subjects, quantum and variational calculi by considering variational problems involving Hahn quantum operators. The main advantage of it...
Energy Technology Data Exchange (ETDEWEB)
Abram, I [Centre National d' Etudes des Telecommunications (CNET), 196 Avenue Henri Ravera, F-92220 Bagneux (France)
1999-02-01
results in an improvement in the bit-error rate of the transmission. The fact that squeezing does not survive attenuation does not matter in this case, since it is alive during the nonlinear interaction when it is needed. Another possible application of squeezed solitons would be in switching devices and logic gates based on soliton interactions, such as the fibre-end devices for signal processing in telecommunications developed by Mohamed Islam at AT and T in the US in the early 1990s. The use of number-squeezing would allow collisions between solitons to be controlled to high precision, thus significantly reducing the error rate of these devices. Solitons and quantum information It might also be possible to use solitons in the processing of quantum information. Quantum information is an emerging field of physics that takes advantage of phenomena that are particular to quantum mechanics such as uncertainty, superposition and entanglement to code, transmit or process information (see Physics World March 1998). Recent highlights in this field include quantum cryptography (which can be used to achieve unconditionally secure key distribution) and quantum computing, which considerably speeds up the solution of problems that are exponentially difficult. These problems include the factorization of large numbers and searches of large databases. Although most proposals for processing quantum information to date concentrate on single-photon or single-spin implementations, optical solitons may offer an alternative that is easier to handle experimentally, yet still provides many of the basic quantum features that are displayed by single quanta. This could lead to new paradigms for computation and communications. In particular, the existence of quantum correlations in the fluctuations of the spectral and temporal sidebands of the solitons turns them into macroscopic quantum objects with internal entanglement. If these internal quantum correlations can be tailored into prescribed
Alsdorf, Doug
1997-08-01
Migration of deep seismic data is often hindered by a narrow recording aperture (line length by record length) and a low signal-to-noise ratio. The severity of typical migration artifacts (e.g., lateral smearing of discontinuous reflections into synforms, "smiles") increases with travel time such that interpreters of deep seismic data have often substituted migrated line drawings for the actual sections. As part of Project INDEPTH (International Deep Profiling of Tibet and the Himalaya), a new migration method was developed to address both the noise and migration issues. The method works in the time-space domain and uses the simple, constant velocity, straight ray path to perform the migration. First, only amplitudes within a given range are retained for migration, thus avoiding high-amplitude noise bursts and low-amplitude background noise. Then, the local dip of a reflection is found by automatically fitting a straight line to the highest amplitudes within a small window (several time samples by several traces) and calculating the dip of the line using a constant velocity. Finally, using this dip, the method migrates a selected amplitude value. The dips, lateral positions, and depths of the migrated events compare very well with output from more conventional algorithms (e.g.,fk-Stolt, finite difference, etc.). The advantages of the new method include fewer artifacts, fast computer run times, low memory use and the ability to migrate long profiles and travel times (e.g., 50 s). The output of the method is a grid of migrated amplitudes (not wavelets) or dip values which is particularly effective for making small figures, such as those needed for publication. The principal disadvantage is the use of a constant migration velocity.
Jung, Yebin; Jeong, Sanghwa; Nayoun, Won; Ahn, Boeun; Kwag, Jungheon; Geol Kim, Sang; Kim, Sungjee
2015-04-01
Quantum dot (QD) imaging capability was investigated by the imaging depth at a near-infrared second optical window (SOW; 1000 to 1400 nm) using time-modulated pulsed laser excitations to control the effective fluence rate. Various media, such as liquid phantoms, tissues, and in vivo small animals, were used and the imaging depths were compared with our predicted values. The QD imaging depth under excitation of continuous 20 mW/cm2 laser was determined to be 10.3 mm for 2 wt% hemoglobin phantom medium and 5.85 mm for 1 wt% intralipid phantom, which were extended by more than two times on increasing the effective fluence rate to 2000 mW/cm2. Bovine liver and porcine skin tissues also showed similar enhancement in the contrast-to-noise ratio (CNR) values. A QD sample was inserted into the abdomen of a mouse. With a higher effective fluence rate, the CNR increased more than twofold and the QD sample became clearly visualized, which was completely undetectable under continuous excitation. Multiple acquisitions of QD images and averaging process pixel by pixel were performed to overcome the thermal noise issue of the detector in SOW, which yielded significant enhancement in the imaging capability, showing up to a 1.5 times increase in the CNR.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...
International Nuclear Information System (INIS)
Itoh, Shinichi
2005-06-01
1 MW-class pulsed-neutron sources will be constructed in Japan, United State and United Kingdom in a few years. Now is the time for a challenge to innovate on neutron science and extend new science fields. Toward the new era, we develop new pulsed-neutron technologies as well as new neutron devices under the international collaborations with existing pulsed-neutron facilities, such as the UK-Japan collaboration program on neutron scattering. At the same time, the new era will bring international competitions to neutron researchers. We aim to create new neutron science toward the new pulsed-neutron era by introducing the new technologies developed here. For this purpose, we have started the research project, 'Advanced pulsed-neutron research on quantum functions in nano-scale materials,' in the duration between JFY2004 and JFY2008. The 2nd meeting of this project was held on 22-24 February 2005 to summarize activities in FY2004 and to propose research projects in the coming new fiscal year. In this international session as a part of this meeting, the scientific results and research plans on the UK-Japan collaboration program, the research plans on the collaboration between IPNS (Intense Pulsed Neutron Source, Argonne National Laboratory) and KENS (Neutron Science Laboratory, KEK), also the recent scientific results arisen form this project were presented. (author)
Martinez, Nicole
The first study in Part 1 examines the effects of lake tropic structure on the uptake of iodine-131 (131I) in rainbow trout (Oncorhynchus mykiss) and considers a simple computational model for the estimation of resulting radiation dose. Iodine-131 is a major component of the atmospheric releases following reactor accidents, and the passage of 131I through food chains from grass to human thyroids has been extensively studied. By comparison, the fate and effects of 131I deposition onto lakes and other aquatic systems has been less studied. In this study we reanalyze 1960s data from experimental releases of 131I into two small lakes and compare the effects of differences in lake trophic structures on 131I accumulation in fish. The largest concentrations in the thyroids of trout may occur from 8 to 32 days post initial release. DCFs for trout for whole body as well as thyroid were computed using Monte Carlo modeling with an anatomically-appropriate model of trout thyroid structure. Activity concentration data was used in conjunction with the calculated DCFs to estimate dose rates and ultimately determine cumulative radiation dose (Gy) to the thyroids after 32 days. The estimated cumulative thyroid doses at 32 days post-release ranged from 6 mGy to 18 mGy per 1 Bq mL-1 of initial 131I in the water, depending upon fish size. The subsequent studies in Part 1 seek to develop and compare different, increasingly detailed anatomical phantoms for O. mykiss for the purpose of estimating organ radiation dose and dose rates from 131I uptake and from molybdenum-99 (99Mo) uptake. Model comparison and refinement is important to the process of determining both dose rates and dose effects, and we develop and compare three models for O. mykiss: a simplistic geometry considering a single organ, a more specific geometry employing anatomically relevant organ size and location, and voxel reconstruction of internal anatomy obtained from CT imaging (referred to as CSUTROUT). Dose Conversion
Sastre Toraño, J; van Hattum, S H
2001-10-01
A new method is presented for the quantitative analysis of compounds in pharmaceutical preparations Fourier transform (FT) mid-infrared (MIR) spectroscopy with an attenuated total reflection (ATR) module. Reduction of the quantity of overlapping absorption bands, by interaction of the compound of interest with an appropriate solvent, and the employment of an internal standard (IS), makes MIR suitable for quantitative analysis. Vigabatrin, as active compound in vigabatrin 100-mg capsules, was used as a model compound for the development of the method. Vigabatrin was extracted from the capsule content with water after addition of a sodium thiosulfate IS solution. The extract was concentrated by volume reduction and applied to the FTMIR-ATR module. Concentrations of unknown samples were calculated from the ratio of the vigabatrin band area (1321-1610 cm(-1)) and the IS band area (883-1215 cm(-1)) using a calibration standard. The ratio of the area of the vigabatrin peak to that of the IS was linear with the concentration in the range of interest (90-110 mg, in twofold; n=2). The accuracy of the method in this range was 99.7-100.5% (n=5) with a variability of 0.4-1.3% (n=5). The comparison of the presented method with an HPLC assay showed similar results; the analysis of five vigabatrin 100-mg capsules resulted in a mean concentration of 102 mg with a variation of 2% with both methods.
Design of coherent quantum observers for linear quantum systems
International Nuclear Information System (INIS)
Vuglar, Shanon L; Amini, Hadis
2014-01-01
Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H ∞ optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)
Directory of Open Access Journals (Sweden)
Møller K. B.
2013-03-01
Full Text Available In this paper we present 4-state, 5-dimensional Vibronic Coupling Hamiltonians for cyclobutanone and cyclopentanone. Wave packet calculations using these Hamiltonians reveal that for cyclobutanone the (n,3s to (n,π* internal conversion involves direct motion in nuclear modes coupling the two states leading to fast population transfer. For cyclopentanone, internal vibrational energy redistribution is a bottleneck for activating reactive nuclear modes leading to slower population transfer.
DEFF Research Database (Denmark)
Kuhlman, T. S.; Sauer, Stephan P. A.; Solling, T. I.
2013-01-01
In this paper we present 4-state, 5-dimensional Vibronic Coupling Hamiltonians for cyclobutanone and cyclopentanone. Wave packet calculations using these Hamiltonians reveal that for cyclobutanone the (n,3s) to (n,π*) internal conversion involves direct motion in nuclear modes coupling the two st...... states leading to fast population transfer. For cyclopentanone, internal vibrational energy redistribution is a bottleneck for activating reactive nuclear modes leading to slower population transfer....
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
International Nuclear Information System (INIS)
Xiang Guo-Yong; Guo Guang-Can
2013-01-01
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)
International Nuclear Information System (INIS)
Koeppel, H.; Gromov, E.V.; Trofimov, A.B.
2004-01-01
The multi-mode and multi-state vibronic interactions in the heterocyclic molecules furan, pyrrole, thiophene and their radical cations are investigated theoretically, employing a linear vibronic coupling scheme. The underlying system parameters are determined from large-scale ab initio computations. Previous time-independent dynamical calculations on the radical cations are extended by wave-packet propagations (using the MCTDH method) confirming the strong nonadiabatic coupling effects. For the singlet excited states of furan and thiophene quantum dynamical calculations are presented which go beyond the two-state approximation frequently applied in the literature. The characteristic spectral structures are well reproduced, especially in the case of furan. The implications of these results on the photochemical reaction dynamics of these species are discussed
The open quantum Brownian motions
International Nuclear Information System (INIS)
Bauer, Michel; Bernard, Denis; Tilloy, Antoine
2014-01-01
Using quantum parallelism on random walks as the original seed, we introduce new quantum stochastic processes, the open quantum Brownian motions. They describe the behaviors of quantum walkers—with internal degrees of freedom which serve as random gyroscopes—interacting with a series of probes which serve as quantum coins. These processes may also be viewed as the scaling limit of open quantum random walks and we develop this approach along three different lines: the quantum trajectory, the quantum dynamical map and the quantum stochastic differential equation. We also present a study of the simplest case, with a two level system as an internal gyroscope, illustrating the interplay between the ballistic and diffusive behaviors at work in these processes. Notation H z : orbital (walker) Hilbert space, C Z in the discrete, L 2 (R) in the continuum H c : internal spin (or gyroscope) Hilbert space H sys =H z ⊗H c : system Hilbert space H p : probe (or quantum coin) Hilbert space, H p =C 2 ρ t tot : density matrix for the total system (walker + internal spin + quantum coins) ρ-bar t : reduced density matrix on H sys : ρ-bar t =∫dxdy ρ-bar t (x,y)⊗|x〉 z 〈y| ρ-hat t : system density matrix in a quantum trajectory: ρ-hat t =∫dxdy ρ-hat t (x,y)⊗|x〉 z 〈y|. If diagonal and localized in position: ρ-hat t =ρ t ⊗|X t 〉 z 〈X t | ρ t : internal density matrix in a simple quantum trajectory X t : walker position in a simple quantum trajectory B t : normalized Brownian motion ξ t , ξ t † : quantum noises (paper)
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
The Reflective Learning Continuum: Reflecting on Reflection
Peltier, James W.; Hay, Amanda; Drago, William
2005-01-01
The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research that considers reflection within the context of both the marketing and general business education literature. This article describes the use of an instrument that can be used to measure four identified levels of a…
Toy models of crossed Andreev reflection
International Nuclear Information System (INIS)
Melin, R; Jirari, H; Peysson, S
2003-01-01
We propose toy models of crossed Andreev reflection in multiterminal hybrid structures containing out-of-equilibrium conductors. We apply the description to two possible experiments: (i) to a device containing a large quantum dot inserted in a crossed Andreev reflection circuit, and (ii) to a device containing an Aharonov-Bohm loop inserted in a crossed Andreev reflection circuit
Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel
2014-01-01
This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of
Quantum networks based on cavity QED
Energy Technology Data Exchange (ETDEWEB)
Ritter, Stephan; Bochmann, Joerg; Figueroa, Eden; Hahn, Carolin; Kalb, Norbert; Muecke, Martin; Neuzner, Andreas; Noelleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Rempe, Gerhard [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)
2014-07-01
Quantum repeaters require an efficient interface between stationary quantum memories and flying photons. Single atoms in optical cavities are ideally suited as universal quantum network nodes that are capable of sending, storing, retrieving, and even processing quantum information. We demonstrate this by presenting an elementary version of a quantum network based on two identical nodes in remote, independent laboratories. The reversible exchange of quantum information and the creation of remote entanglement are achieved by exchange of a single photon. Quantum teleportation is implemented using a time-resolved photonic Bell-state measurement. Quantum control over all degrees of freedom of the single atom also allows for the nondestructive detection of flying photons and the implementation of a quantum gate between the spin state of the atom and the polarization of a photon upon its reflection from the cavity. Our approach to quantum networking offers a clear perspective for scalability and provides the essential components for the realization of a quantum repeater.
Directory of Open Access Journals (Sweden)
Giorgina B Piccoli
2018-03-01
Full Text Available Chronic Kidney Disease affects approximately 10% of the world’s adult population: it is within the top 20 causes of death worldwide, and its impact on patients and their families can be devastating. World Kidney Day and International Women’s Day in 2018 coincide, thus offering an opportunity to reflect on the importance of women’s health and specifically their kidney health, on the community, and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women so that we may apply those learnings more broadly. Girls and women, who make up approximately 50% of the world’s population, are important contributors to society and their families. Gender differences continue to exist around the world in access to education, medical care, and participation in clinical studies. Pregnancy is a unique state for women, offering an opportunity for diagnosis of kidney disease, but also a state where acute and chronic kidney diseases may manifest, and which may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for child bearing, and on the fetus. Women have different complications on dialysis than men, and are more likely to be donors than recipients of kidney transplants. In this editorial, we focus on what we do and do not know about women, kidney health, and kidney disease, and what we might learn in the future to improve outcomes worldwide
Directory of Open Access Journals (Sweden)
Giorgina B. Piccoli
2018-03-01
Full Text Available Chronic kidney disease affects approximately 10% of the world's adult population: it is within the top 20 causes of death worldwide, and its impact on patients and their families can be devastating. World Kidney Day and International Women's Day in 2018 coincide, thus offering an opportunity to reflect on the importance of women's health and specifically their kidney health, on the community, and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women so that we may apply those learnings more broadly.Girls and women, who make up approximately 50% of the world's population, are important contributors to society and their families. Gender differences continue to exist around the world in access to education, medical care, and participation in clinical studies. Pregnancy is a unique state for women, offering an opportunity for diagnosis of kidney disease, but also a state where acute and chronic kidney diseases may manifest, and which may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for child bearing, and on the fetus. Women have different complications on dialysis than men, and are more likely to be donors than recipients of kidney transplants.In this editorial, we focus on what we do and do not know about women, kidney health, and kidney disease, and what we might learn in the future to improve outcomes worldwide. Keywords: Women, Access to care, Kidney health, Acute and chronic kidney disease, Inequities
Grenoble, Zlata; Baldelli, Steven
2013-08-29
The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface
Bretón, N.; Fernández, D.; Kielanowski, P.
2015-06-01
The International Conference on 'Quantum Control, Exact or Perturbative, Linear or Nonlinear', took place in Mexico City on 22-24 October 2014. It was held with the aim of celebrating the first fifty years of scientific career of Bogdan Mielnik, an outstanding scientist whose professional trajectory spans over Poland and Mexico and who is currently Professor Emeritus in the Physics Department of Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav) in Mexico. Bogdan Mielnik was born on May 6th, 1936 in Warsaw, Poland. He studied elementary and high school until 1953. In the autumn of 1953 he started the studies in the Faculty of Mathematics and Physics at the University of Warsaw, and at the end of 1957 he did his master work under the direction of Professor Jerzy Plebański. In 1962 he was invited to the newly opened Research Center of IPN (Cinvestav), in Mexico, as an assistant and PhD student of Jerzy Plebański. On October 22nd, 1964, he submitted to Cinvestav his PhD Thesis entitled ''Analytic functions of the displacement operator'', marking the offcial beginning of his scientific career. It is worth mentioning that Bogdan Mielnik is the first PhD graduate of the Physics Department of Cinvestav, so with this Conference our Department was also celebrating an important date on its calendar. A more detailed information can be found in the website http://www.fis.cinvestav.mx/mielnik50/. It was our great pleasure to see that many collaborators and former students of Bogdan Mielnik attended this Conference. The articles collected in this volume are the written contributions of the majority of talks presented at the conference. They have been organized according to the research subjects that Bogdan Mielnik has been involved in. Thus, the articles of JG Hirsch, L Hughston, G Morales-Luna, O Rosas-Ortiz and G Torres-Vega deal with Fundamental Problems in Quantum Mechanics. On the other hand, the papers by F Delgado, H Hernández-Coronado, G Herrera
Quantum crystallography: A perspective.
Massa, Lou; Matta, Chérif F
2018-06-30
Extraction of the complete quantum mechanics from X-ray scattering data is the ultimate goal of quantum crystallography. This article delivers a perspective for that possibility. It is desirable to have a method for the conversion of X-ray diffraction data into an electron density that reflects the antisymmetry of an N-electron wave function. A formalism for this was developed early on for the determination of a constrained idempotent one-body density matrix. The formalism ensures pure-state N-representability in the single determinant sense. Applications to crystals show that quantum mechanical density matrices of large molecules can be extracted from X-ray scattering data by implementing a fragmentation method termed the kernel energy method (KEM). It is shown how KEM can be used within the context of quantum crystallography to derive quantum mechanical properties of biological molecules (with low data-to-parameters ratio). © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Quantum Optical Multiple Scattering
DEFF Research Database (Denmark)
Ott, Johan Raunkjær
. In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...
Energy Technology Data Exchange (ETDEWEB)
Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Goeke, Ronald S.
2018-03-06
A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.
International Nuclear Information System (INIS)
Anon.
1997-01-01
This rubric reports on 10 short notes about international economical facts about nuclear power: Electricite de France (EdF) and its assistance and management contracts with Eastern Europe countries (Poland, Hungary, Bulgaria); Transnuclear Inc. company (a 100% Cogema daughter company) acquired the US Vectra Technologies company; the construction of the Khumo nuclear power plant in Northern Korea plays in favour of the reconciliation between Northern and Southern Korea; the delivery of two VVER 1000 Russian reactors to China; the enforcement of the cooperation agreement between Euratom and Argentina; Japan requested for the financing of a Russian fast breeder reactor; Russia has planned to sell a floating barge-type nuclear power plant to Indonesia; the control of the Swedish reactor vessels of Sydkraft AB company committed to Tractebel (Belgium); the renewal of the nuclear cooperation agreement between Swiss and USA; the call for bids from the Turkish TEAS electric power company for the building of the Akkuyu nuclear power plant answered by three candidates: Atomic Energy of Canada Limited (AECL), Westinghouse (US) and the French-German NPI company. (J.S.)
Seismic reflection imaging, accounting for primary and multiple reflections
Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel
2015-04-01
Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are
DEFF Research Database (Denmark)
Larsen, Niels Wessel; Nielsen, Ole Vesterlund
2014-01-01
the potential minima in the non-planar molecules were 125.5, 74.9, 98.4 and 163 cm-1 respectively. Parameters for structural relaxation during the internal rotation were calculated by the B3LYP method using aug-cc-pVDZ basis and by the MP2(full) method using aug-cc-pVTZ basis. Using these relaxation parameters...
Quantum walks, quantum gates, and quantum computers
International Nuclear Information System (INIS)
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
PREFACE Quantum Groups, Quantum Foundations and Quantum Information: a Festschrift for Tony Sudbery
Weigert, Stefan
2010-11-01
On 29 July 2008, Professor Anthony Thomas Sudbery - known as Tony to his friends and colleagues - celebrated his 65th birthday. To mark this occasion and to honour Tony's scientific achievements, a 2-day Symposion was held at the University of York on 29-30 September 2008 under the sponsorship of the Institute of Physics and the London Mathematical Society. The breadth of Tony's research interests was reflected in the twelve invited lectures by A Beige, I Bengtsson, K Brown, N Cerf, E Corrigan, J Ladyman, A J Macfarlane, S Majid, C Manogue, S Popescu, J Ryan and R W Tucker. This Festschrift, also made possible by the generosity of the IOP and the LMS, reproduces the majority of these contributions together with other invited papers. Tony obtained his PhD from the University of Cambridge in 1970. His thesis, written under the guidance of Alan Macfarlane, is entitled Some aspects of chiral su(3) × su(3) symmetry in hadron dynamics. He arrived in York in 1971 with his wife Rodie, two young daughters, a lively mind and a very contemporary shock of hair. He was at that stage interested in mathematical physics and so was classed as an applied mathematician in the departmental division in place at that time. But luckily Tony did not fit into this category. His curiosity is combined with a good nose for problems and his capacity for knocking off conjectures impressed us all. Within a short time of his arrival he was writing papers on group theory, complex analysis and combinatorics, while continuing to work on quantum mechanics. His important paper on quaternionic analysis is an example of the imagination and elegance of his ideas. By developing a derivative, he replaced the relatively obscure analytical theory of quaternions by one informed by modern complex analysis. Other interests emerged, centred round the quantum: quantum mechanics and its foundations, quantum groups and quantum information. He didn't just dabble in these areas but mastered them, gaining a national
International Nuclear Information System (INIS)
Zubairy, Suhail
2005-01-01
Langevin formalism for squeezing in lasing systems. In the last article of this part, Wiseman deals with squeezing systems when the system's environment can be deliberately engineered so that the feedback is important. The third part of the book includes four articles dealing with the applications of quantum squeezing. In the first article, Yuen presents a discussion of communications and measurement using squeezed states and discusses the advantages of using nonclassical light over classical light in communications and measurement. In the second article, Swain deals with the interaction of squeezed light with the atomic systems and presents a review of novel phenomena in spectroscopy. This chapter on two-level atomic system is followed by Ficek's article on squeezed-light based spectroscopy in three-level atomic systems. In the last article, Reid again addresses the advantages of squeezed light in communications, but her emphasis is different from that of Yuen's article. Here she discusses EPR correlations for squeezed light and presents squeezed-light based methods for quantum cryptography. All the authors are leading figures in the field of squeezed states who have made pioneering contributions to various aspects of the field over the years. This is reflected in the authoritative style with which all the articles are written. These articles are rich in content, easy to read and cover a broad base. The emphasis is however on the theoretical aspects with occasional references to experimental work. This book is an excellent collection of articles on quantum squeezing that are highly useful both for beginners who would like to learn about squeezing and its applications, as well as for experts who would like to learn about the frontiers. (book review)
Arias-Hernández, L. A.; Morales-Serrano, A. F.
2002-11-01
In this work we follow the Bender et al paper [1] to study the quantum analogues of the Stirling and Ericsson polytropic cycles. In the context of the classical thermodynamics, the Stirling and Ericsson cycles correspond to reversible heat engines with two isothermal processes joined by two polytropic branches which occur in a device called regenerator. If this device is an ideal one, the efficiency of these cycles is the Carnot efficiency. Here, we introduce the quantum analogues of the Stirling and Ericsson cycles, the first one based on a double square potential well with a finite potential barrier, since in this system the tunnel effect could be the analogue to the regeneration classical process, therefore the isochoric quantum branches would really correspond to an internal energy storage, and the last one with an unknown system where the isobaric quantum processes don't induce changes in its quantum state. With these systems the quantum engines have cycles consisting of polytropic and isothermal quantum processes analogues to the corresponding classical processes. We show that in both cases the quantum cycles have an efficiency given by ηCQM = 1 - EC/EH, which is the same expression for the quantum analogue of the Carnot cycle studied by Bender.
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
DEFF Research Database (Denmark)
Broe, Jacob; Keller, Ole
2002-01-01
It is predicted that the Goos-Hänchen effect can be resonantly enhanced by placing a metallic quantum well (ultrathin film) at the dielectric-vacuum (air) interface. We study the enhancement of the phenomenon, as it appears in frustrated total internal reflection with p-polarized light, both...... by depositing quantum wells on the glass-vacuum interfaces to obtain a better spatial photon localization....
Distribution of quantum information between an atom and two photons
International Nuclear Information System (INIS)
Weber, Bernhard
2008-01-01
The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)
Distribution of quantum information between an atom and two photons
Energy Technology Data Exchange (ETDEWEB)
Weber, Bernhard
2008-11-03
The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)
Bertelli, Marco O.; Munir, Kerim; Harris, James; Salvador-Carulla, Luis
2016-01-01
Purpose The debate as to whether intellectual disability (ID) should be conceptualized as a health condition or as a disability has intensified as the revision of World Health Organization’s (WHO’s) International Classification of Diseases (ICD) is being finalized. Defining ID as a health condition is central to retaining it in ICD, with significant implications for health policy and access to health services. The purpose of this paper is to include some reflections on the consensus document produced by the first WHO Working Group on the Classification of MR (WHO WG-MR) and on the process that was followed to realize it. The consensus report was the basis for the development of official recommendations sent to the WHO Advisory Group for ICD-11. Design/methodology/approach A mixed qualitative approach was followed in a series of meetings leading to the final consensus report submitted to the WHO Advisory group. These recommendations combined prior expert knowledge with available evidence; a nominal approach was followed throughout with face-to-face conferences. Findings The WG recommended a synonym set (“synset”) ontological approach to the conceptualisation of this health condition underlying a clinical rationale for its diagnosis. It proposed replacing MR with Intellectual Developmental Disorders (IDD) in ICD-11, defined as “a group of developmental conditions characterized by a significant impairment of cognitive functions, which are associated with limitations of learning, adaptive behaviour and skills”. The WG further advised that IDD be included under the parent category of neurodevelopmental disorders, that current distinctions (mild, moderate, severe and profound) be continued as severity qualifiers, and that problem behaviours removed from its core classification structure and instead described as associated features. Originality/value Within the ID/IDD synset two different names combine distinct aspects under a single construct that describes
Scarani, Valerio
1998-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Wu, Lian-Ao; Lidar, Daniel A.
2005-01-01
When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
Bicovariant quantum algebras and quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Liu, Betty R; Winiarz, Jeffrey G; Moon, Jong-Sik; Lo, Shih-Yen; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung
2013-11-01
Semiconductor nanoparticles, also known as quantum dots (QDs), are widely used in biomedical imaging studies and pharmaceutical research. Cell-penetrating peptides (CPPs) are a group of small peptides that are able to traverse cell membrane and deliver a variety of cargoes into living cells. CPPs deliver QDs into cells with minimal nonspecific absorption and toxic effect. In this study, water-soluble, monodisperse, carboxyl-functionalized indium phosphide (InP)/zinc sulfide (ZnS) QDs coated with polyethylene glycol lipids (designated QInP) were synthesized for the first time. The physicochemical properties (optical absorption, fluorescence and charging state) and cellular internalization of QInP and CPP/QInP complexes were characterized. CPPs noncovalently interact with QInP in vitro to form stable CPP/QInP complexes, which can then efficiently deliver QInP into human A549 cells. The introduction of 500nM of CPP/QInP complexes and QInP at concentrations of less than 1μM did not reduce cell viability. These results indicate that carboxylated and polyethylene-glycolylated (PEGylated) bifunctionalized QInP are biocompatible nanoparticles with potential for use in biomedical imaging studies and drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Reflection: A Socratic approach.
Van Seggelen-Damen, Inge C M; Van Hezewijk, René; Helsdingen, Anne S; Wopereis, Iwan G J H
2017-12-01
Reflection is a fuzzy concept. In this article we reveal the paradoxes involved in studying the nature of reflection. Whereas some scholars emphasize its discursive nature, we go further and underline its resemblance to the self-biased dialogue Socrates had with the slave in Plato's Meno . The individual and internal nature of the reflection process creates difficulty for studying it validly and reliably. We focus on methodological issues and use Hans Linschoten's view of coupled systems to identify, analyze, and interpret empirical research on reflection. We argue that researchers and research participants can take on roles in several possible system couplings. Depending on who controls the manipulation of the stimulus, who controls the measuring instrument, who interprets the measurement and the response, different types of research questions can be answered. We conclude that reflection may be validly studied by combining different couplings of experimenter, manipulation, stimulus, participant, measurement, and response.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education. Personal Reflections. Articles in Resonance – Journal of Science Education. Volume 6 Issue 3 March 2001 pp 90-93 Personal Reflections. Why did I opt for Career in Science? Jayant V Narlikar · More Details Fulltext PDF. Volume 9 Issue 8 August 2004 pp 89-89 ...
International Nuclear Information System (INIS)
Eggermont, G.
2006-01-01
In 2005, PISA organised proactive meetings of reflection groups on involvement in decision making, expert culture and ethical aspects of radiation protection.All reflection group meetings address particular targeted audiences while the output publication in book form is put forward
DEFF Research Database (Denmark)
Boura, Christina; Canteaut, Anne; Knudsen, Lars Ramkilde
2017-01-01
study the necessary properties for this coupling permutation. Special care has to be taken of some related-key distinguishers since, in the context of reflection ciphers, they may provide attacks in the single-key setting.We then derive some criteria for constructing secure reflection ciphers...
National Research Council Canada - National Science Library
Cahay, Marc
1999-01-01
The symposium addresses recent developments in the area of nanoscale semiconductors, metallic, and organic structures, porous silicon quantum dot structures self-ordered nanostructures and clusters...
DEFF Research Database (Denmark)
Alcock, Gordon Lindsay
2013-01-01
´ These are all based on Blooms taxonomy and levels of competence and form a major part of individual student and group learning portfolios. Key Words :Project-Based learning, Reflective Portfolios, Self assessment, Defining learning gains, Developing learning strategies , Reflections on and for learning....... It contrasts the students’ self-assessment in a range of ‘product’ skills such as Revit, Structural Design, Mathematics of construction, Technical Installations; as well as ‘process’ competencies such as ‘Working in a team’, Sharing knowledge, Maintaining a portfolio and Reflecting ON learning and FOR learning......This paper documents 1st semester student reflections on “learning to learn” in a team-based PBL environment with quantitative and qualitative student reflective feedback on the learning gains of 60 Architectural Technology and Construction Management students at VIA University College, Denmark...
Quantum interaction. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bruza, Peter [Queensland Univ. of Technology, Brisbane (Australia). Faculty of Science and Technology; Sofge, Donald [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States). Naval Research Lab.; Lawless, William [Paine Coll., Augusta, GA (United States); Rijsbergen, Keith van [Glasgow Univ. (United Kingdom). Dept. of Computing Science; Klusch, Matthias (eds.) [German Research Center for Artificial Intelligence, Saarbruecken (Germany)
2009-07-01
This book constitutes the refereed proceedings of the Third International Symposium on Quantum Interaction, QI 2009, held in Saarbruecken, Germany, in March 2009. The 21 revised full papers presented together with the 3 position papers were carefully reviewed and selected from numerous submissions. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, decision theory, information retrieval, information systems, social interaction, computational linguistics and finance. (orig.)
Quantum interaction. Selected papers
Energy Technology Data Exchange (ETDEWEB)
Atmanspacher, Harald [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Haven, Emmanuel [Leicester Univ. (United Kingdom). School of Management; Kitto, Kirsty [Queensland Univ. of Technology, Brisbane, QLD (Australia); Raine, Derek (ed.) [Leicester Univ. (United Kingdom). Centre for Interdisciplinary Science
2014-07-01
This book constitutes the refereed proceedings of the 7th International Conference on Quantum Interaction, QI 2013, held in Leicester, UK, in July 2013. The 31 papers presented in this book were carefully selected from numerous submissions. The papers cover various topics on quantum interaction and revolve around four themes: information processing/retrieval/semantic representation and logic; cognition and decision making; finance/economics and social structures and biological systems.
Quantum interaction. Proceedings
International Nuclear Information System (INIS)
Bruza, Peter; Rijsbergen, Keith van
2009-01-01
This book constitutes the refereed proceedings of the Third International Symposium on Quantum Interaction, QI 2009, held in Saarbruecken, Germany, in March 2009. The 21 revised full papers presented together with the 3 position papers were carefully reviewed and selected from numerous submissions. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, decision theory, information retrieval, information systems, social interaction, computational linguistics and finance. (orig.)
Quantum interaction. Selected papers
International Nuclear Information System (INIS)
Atmanspacher, Harald; Haven, Emmanuel; Raine, Derek
2014-01-01
This book constitutes the refereed proceedings of the 7th International Conference on Quantum Interaction, QI 2013, held in Leicester, UK, in July 2013. The 31 papers presented in this book were carefully selected from numerous submissions. The papers cover various topics on quantum interaction and revolve around four themes: information processing/retrieval/semantic representation and logic; cognition and decision making; finance/economics and social structures and biological systems.
Calculation of the tunneling time using the extended probability of the quantum histories approach
International Nuclear Information System (INIS)
Rewrujirek, Jiravatt; Hutem, Artit; Boonchui, Sutee
2014-01-01
The dwell time of quantum tunneling has been derived by Steinberg (1995) [7] as a function of the relation between transmission and reflection times τ t and τ r , weighted by the transmissivity and the reflectivity. In this paper, we reexamine the dwell time using the extended probability approach. The dwell time is calculated as the weighted average of three mutually exclusive events. We consider also the scattering process due to a resonance potential in the long-time limit. The results show that the dwell time can be expressed as the weighted sum of transmission, reflection and internal probabilities.
Quantum Dots and Andreev Reflections in Graphene
Liu, X.L.
2010-01-01
Graphene is an exceptionally thin semiconductor that consists of only one atomic layer of carbon atoms. The electrons in graphene live in a strictly two-dimensional (2D) world. In addition to this remarkable 2Dness, it is also peculiar that the behavior of the electrons in graphene is governed by
Discrete Lorentzian quantum gravity
Loll, R.
2000-01-01
Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated
Autocompensating quantum cryptography
International Nuclear Information System (INIS)
Bethune, Donald S.; Risk, William P.
2002-01-01
Quantum cryptographic key distribution (QKD) uses extremely faint light pulses to carry quantum information between two parties (Alice and Bob), allowing them to generate a shared, secret cryptographic key. Autocompensating QKD systems automatically and passively compensate for uncontrolled time-dependent variations of the optical fibre properties by coding the information as a differential phase between orthogonally polarized components of a light pulse sent on a round trip through the fibre, reflected at mid-course using a Faraday mirror. We have built a prototype system based on standard telecom technology that achieves a privacy-amplified bit generation rate of ∼1000 bits s -1 over a 10 km optical fibre link. Quantum cryptography is an example of an application that, by using quantum states of individual particles to represent information, accomplishes a practical task that is impossible using classical means. (author)
Quantum mechanical suppression of chaos
International Nuclear Information System (INIS)
Bluemel, R.; Smilansky, U.
1990-01-01
The relation between determinism and predictability is the central issue in the study of 'deterministic chaos'. Much knowledge has been accumulated in the past 10 years about the chaotic dynamics of macroscopic (classical) systems. The implications of chaos in the microscopic quantum world is examined, in other words, how to reconcile the correspondence principle with the inherent uncertainties which reflect the wave nature of quantum dynamics. Recent atomic physics experiments demonstrate clearly that chaos is relevant to the microscopic world. In particular, such experiments emphasise the urgent need to clarify the genuine quantum mechanism which imposes severe limitations on quantum dynamics, and renders it so very different from its classical counterpart. (author)
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
International Nuclear Information System (INIS)
Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin
2008-01-01
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
International Nuclear Information System (INIS)
Reynaud, S.; Giacobino, S.; Zinn-Justin, J.
1997-01-01
This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
Differential calculus on quantum spaces and quantum groups
International Nuclear Information System (INIS)
Zumino, B.
1992-01-01
A review of recent developments in the quantum differential calculus. The quantum group GL q (n) is treated by considering it as a particular quantum space. Functions on SL q (n) are defined as a subclass of functions on GL q (n). The case of SO q (n) is also briefly considered. These notes cover part of a lecture given at the XIX International Conference on Group Theoretic Methods in Physics, Salamanca, Spain 1992
Reflection-type hologram for atoms
International Nuclear Information System (INIS)
Shimizu, Fujio; Fujita, Jun-ichi
2002-01-01
A cold metastable neon atomic beam was manipulated with a reflective amplitude hologram that was encoded on a silicon surface. A black-and-white pattern of atoms was reconstructed on a microchannel plate detector. The hologram used the enhanced quantum reflection developed by authors and was made of a two-dimensional array of rectangular low and high reflective cells. The surface of the high reflective cell was composed of regularly spaced roof-shaped ridges, while the low reflective cell was simply a flat surface. The hologram was the first demonstration of reflective atom-optical elements that used universal interaction between a neutral atom and solid surface
International Nuclear Information System (INIS)
Larousserie, D.
2008-01-01
The development of quantum mechanics has now reached such a level that we can consider its promising applications in various fields as a looming second quantum revolution. The classical computer that relies on logical gates is out, now quantum properties open the way to new machines that will simulate nature's events exactly, this will be possible because both nature and the machine will be quantum. The machine will mimic nature and some problems like high temperature superconductivity that resist any modelling will be reproduced easily and then put within hand reach to be understood. Another application is quantum imaging based on the property of quantum entanglement. In the case of 2 entangled particle beams, the measurement of the properties of one beam fixes the values on the other beam. In other words, in case of entangled fluctuations, the measurement of the fluctuations on one beam fixes the value of the fluctuations on the other beam and by subtracting them on the second beam, we get a more accurate result: we have made the background noise disappear. Another application, that has already entered our daily life, is the generation of random numbers in a simple way: quantum mechanics states that a photon has a probability of 50 % to be reflected by a semi-reflecting plate and be detected, this experimental setting is a perfect toss play. The most known application of quantum mechanics is cryptography to assure the security of information transfer. Various systems have proved its efficiency but this technology is hampered by the damping of the signal in optical fibers and is reliable on distances shorter than a few hundreds kilometers. (A.C.)
International Nuclear Information System (INIS)
Kilin, Sergei Ya
1999-01-01
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
Energy Technology Data Exchange (ETDEWEB)
Kilin, Sergei Ya [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)
1999-05-31
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
International Nuclear Information System (INIS)
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs
DEFF Research Database (Denmark)
Burcharth, H. F.; Larsen, Brian Juul
The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...
International Nuclear Information System (INIS)
Eklund, S.; Mandel, H.; Teller, E.
1977-01-01
Personal reflections after twenty one years of nuclear power are presented by a number of those who were international figures in the nuclear energy field during that period. Lessons learnt, achievements, prospects and predictions for the future are discussed in eleven brief surveys. (U.K.)
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Okur, Serdal; Rishinaramangalam, Ashwin K.; Mishkat-Ul-Masabih, Saadat; Nami, Mohsen; Liu, Sheng; Brener, Igal; Brueck, Steven R. J.; Feezell, Daniel F.
2018-06-01
We investigate the spectrally resolved internal quantum efficiency (IQE) and carrier dynamics in semipolar (10\\bar{1}1) core–shell triangular nanostripe light-emitting diodes (TLEDs) using temperature-dependent photoluminescence (TDPL) and time-resolved photoluminescence (TRPL) at various excitation energy densities. Using electroluminescence, photoluminescence, and cathodoluminescence measurements, we verify the origins of the broad emission spectra from the nanostructures and confirm that localized regions of high-indium-content InGaN exist along the apex of the nanostructures. Spectrally resolved IQE measurements are then performed, with the spectra integrated from 400–450 nm and 450–500 nm to obtain the IQE of the QWs mainly near the sidewalls and apex of the TLEDs, respectively. TDPL and TRPL are used to decouple the radiative and non-radiative carrier lifetimes for different regions of the emission spectra. We observe that the IQE is higher for the spectral region between 450 nm and 500 nm compared to the IQE between 400 and 450 nm. This result is in contrast to the typical observation that the IQE of planar GaN-based LEDs is lower for longer wavelengths (i.e., higher indium contents). We also observe a longer non-radiative recombination lifetime for the longer wavelength portion of the spectrum. Several explanations are proposed for the improved IQE and longer non-radiative lifetime observed near the apex of the nanostructures. The results show that nanostructures may be leveraged to design more efficient green LEDs, potentially addressing a long-standing challenge in GaN-based materials.
International Nuclear Information System (INIS)
Lucon, Oswaldo; Romeiro, Viviane; Pacca, Sergio
2013-01-01
This short communication presents a synthesis of a Working Group on Carbon Emission Policy and Regulation held at the University of Sao Paulo, in Brazil. The document looked at the problems with the international negotiations, the options for Brazil as it attempts to control emissions, and ways to leverage the mitigation process. Several options are currently being proposed, but these are neither clear in order to support a solid polycentric approach with adequate metrics, nor a robust international coordination and a sound scientific communication. Brazil has a central role in this process, for having successful initiatives on renewable energy and deforestation control. Its leadership can demonstrate how such policies might take shape. However, the country´s future is uncertain in terms of low carbon development. Although the country is still well positioned among BRICS to find practical solutions to the stalemate in international cooperation, several internal challenges need to be harmonized. - Highlights: • The work presents results of a recent climate change mitigation policies workshop. • It assesses Brazil's potential role in shaping future policies and negotiations. • Policies are evaluated based on domestic and international effects. • Suggests how Brazil's national effort could leverage the international processes
BRICS and Quantum Information Processing
DEFF Research Database (Denmark)
Schmidt, Erik Meineche
1998-01-01
BRICS is a research centre and international PhD school in theoretical computer science, based at the University of Aarhus, Denmark. The centre has recently become engaged in quantum information processing in cooperation with the Department of Physics, also University of Aarhus. This extended...... abstract surveys activities at BRICS with special emphasis on the activities in quantum information processing....
Smith, J. A.; Cooper, K.; Randolph, M.
1984-01-01
A classical description of the one dimensional radiative transfer treatment of vegetation canopies was completed and the results were tested against measured prairie (blue grama) and agricultural canopies (soybean). Phase functions are calculated in terms of directly measurable biophysical characteristics of the canopy medium. While the phase functions tend to exhibit backscattering anisotropy, their exact behavior is somewhat more complex and wavelength dependent. A Monte Carlo model was developed that treats soil surfaces with large periodic variations in three dimensions. A photon-ray tracing technology is used. Currently, the rough soil surface is described by analytic functions and appropriate geometric calculations performed. A bidirectional reflectance distribution function is calculated and, hence, available for other atmospheric or canopy reflectance models as a lower boundary condition. This technique is used together with an adding model to calculate several cases where Lambertian leaves possessing anisotropic leaf angle distributions yield non-Lambertian reflectance; similar behavior is exhibited for simulated soil surfaces.
Korsch, Dietrich
1991-01-01
This is the first book dedicated exclusively to all-reflective imaging systems. It is a teaching tool as well as a practical design tool for anyone who specializes in optics, particularly for those interested in telescopes, infrared, and grazing-incidence systems. The first part of the book describes a unified geometric optical theory of all-reflective imaging systems (from near-normal to grazing incidence) developed from basic principles. The second part discusses correction methods and a multitude of closed-form solutions of well-corrected systems, supplemented with many conventional and unc
Entangled states in quantum mechanics
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
Energy Technology Data Exchange (ETDEWEB)
Drummond, P D [University of Queensland, St. Lucia, QLD (Australia).Physics Department
1999-07-01
Full text: Quantum optics in Australia has been an active research field for some years. I shall focus on recent developments in quantum and atom optics. Generally, the field as a whole is becoming more and more diverse, as technological developments drive experiments into new areas, and theorists either attempt to explain the new features, or else develop models for even more exotic ideas. The recent developments include quantum solitons, quantum computing, Bose-Einstein condensation, atom lasers, quantum cryptography, and novel tests of quantum mechanics. The talk will briefly cover current progress and outstanding problems in each of these areas. Copyright (1999) Australian Optical Society.
Integrating sphere based reflectance measurements for small-area semiconductor samples
Saylan, S.; Howells, C. T.; Dahlem, M. S.
2018-05-01
This article describes a method that enables reflectance spectroscopy of small semiconductor samples using an integrating sphere, without the use of additional optical elements. We employed an inexpensive sample holder to measure the reflectance of different samples through 2-, 3-, and 4.5-mm-diameter apertures and applied a mathematical formulation to remove the bias from the measured spectra caused by illumination of the holder. Using the proposed method, the reflectance of samples fabricated using expensive or rare materials and/or low-throughput processes can be measured. It can also be incorporated to infer the internal quantum efficiency of small-area, research-level solar cells. Moreover, small samples that reflect light at large angles and develop scattering may also be measured reliably, by virtue of an integrating sphere insensitive to directionalities.
Quantum entanglement and quantum teleportation
International Nuclear Information System (INIS)
Shih, Y.H.
2001-01-01
One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Alvarado-Mendez, E.; Torres-Cisneros, M.; Gutierrez-Hernandez, D. A.; Andrade-Lucio, J. A.; Rojas-Lagunas, R.; Pedraza-Ortega, J. C.; Torres Cisneros, G. E. [Universidad de Guanajuato, Guanajuato (Mexico); Sanchez Mondragon, J. J. [Universidad Autonoma del Estado de Morelos, Morelos (Mexico); Flores-Alvarado, G. [Preparatoria por Cooperacion Domingo Arenas, Tlaxcala (Mexico)
2001-06-01
We study the reflection of one-dimensional spatial soliton at the nonlinear interface between a saturable type medium and linear medium. Our study makes emphasis on determining the physical conditions under which the beam reflected by the interface is still a spatial soliton. Depended the incidence angle we find three critical regions for spatial solitons in the interface. We observed nonlinear Goos- Haechen shift is determined if reflection angle are conserved. Finally, we present preliminary experimental results in SBN61:Ce of the total internal reflection of one dimensional beam. [Spanish] Estudiamos la reflexion de un soliton espacial unidimensional en una interfase formada por un medio no lineal saturable y un medio lineal. Nuestros estudios hacen enfasis en determinar las condiciones fisicas bajo las cuales el haz reflejado por la interfase no lineal sigue siendo soliton. Encontramos tres regiones criticas para un soliton especial en la interfase, dependiendo del valor que tome el angulo de incidencia. Asi mismo observamos corrimiento Goos-Haechen no lineal que es determinante para la conservacion del angulo de reflexion. Finalmente, presentamos resultados preliminares experimentales en SBN61:Ce de la reflexion interna total de un haz unidimensional.
Entropy inequalities from reflection positivity
International Nuclear Information System (INIS)
Casini, H
2010-01-01
We investigate the question of whether the entropy and the Renyi entropies of the vacuum state reduced to a region of space can be represented in terms of correlators in quantum field theory. In this case, the positivity relations for the correlators are mapped into inequalities for the entropies. We write them using a real-time version of reflection positivity, which can be generalized to general quantum systems. Using this generalization we can prove an infinite sequence of inequalities which are obeyed by the Renyi entropies of integer index. There is one independent inequality involving any number of different subsystems. In quantum field theory the inequalities acquire a simple geometrical form and are consistent with the integer index Renyi entropies being given by vacuum expectation values of twisting operators in the Euclidean formulation. Several possible generalizations and specific examples are analyzed
Leung, W.S.; Coulter, D.A.; Moes, C.C.M.; Horvath, I.
2012-01-01
This paper presents a case study on the experience of delivering an Internet-based international collaborative semester course at intermediate postgraduate level and attempts to distill a model for exploring the success factors involved when presenting such courses. The pedagogic and practical
Quantum Phase Extraction in Isospectral Electronic Nanostructures
Energy Technology Data Exchange (ETDEWEB)
Moon, Christopher
2010-04-28
Quantum phase is not a direct observable and is usually determined by interferometric methods. We present a method to map complete electron wave functions, including internal quantum phase information, from measured single-state probability densities. We harness the mathematical discovery of drum-like manifolds bearing different shapes but identical resonances, and construct quantum isospectral nanostructures possessing matching electronic structure but divergent physical structure. Quantum measurement (scanning tunneling microscopy) of these 'quantum drums' [degenerate two-dimensional electron states on the Cu(111) surface confined by individually positioned CO molecules] reveals that isospectrality provides an extra topological degree of freedom enabling robust quantum state transplantation and phase extraction.
Quantum electrodynamics of strong fields
International Nuclear Information System (INIS)
Greiner, W.
1983-01-01
Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund
Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results
Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.
1999-01-01
The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Quantum computers and quantum computations
International Nuclear Information System (INIS)
Valiev, Kamil' A
2005-01-01
This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review. (reviews of topical problems)
Energy Technology Data Exchange (ETDEWEB)
Wigger, Lothar; Buenger, Carsten (eds.) [Technische Univ. Dortmund (Germany). Bereich Allgemeine Erziehungswissenschaft; Platzer, Barbara [Technische Univ. Dortmund (Germany)
2017-08-01
The book on the educational and learning theoretical reflection of nuclear disasters as a consequence of Fukushima includes contributions on the following issues: pedagogical approach: children write on Fukushima, description of the reality as pedagogical challenge; lessons learned on the nuclear technology - perspectives and limits of pedagogical evaluation: moral education - Japanese teaching materials, educational challenges at the universities with respect to nuclear technology and technology impact assessment; education and technology - questions concerning the pedagogical responsibility: considerations on the responsibility of scientists, on the discrepancy between technology and education, disempowerment of the public by structural corruption - nuclear disaster and post-democratic tendencies in Japan.
Block-free optical quantum Banyan network based on quantum state fusion and fission
International Nuclear Information System (INIS)
Zhu Chang-Hua; Meng Yan-Hong; Quan Dong-Xiao; Zhao Nan; Pei Chang-Xing
2014-01-01
Optical switch fabric plays an important role in building multiple-user optical quantum communication networks. Owing to its self-routing property and low complexity, a banyan network is widely used for building switch fabric. While, there is no efficient way to remove internal blocking in a banyan network in a classical way, quantum state fusion, by which the two-dimensional internal quantum states of two photons could be combined into a four-dimensional internal state of a single photon, makes it possible to solve this problem. In this paper, we convert the output mode of quantum state fusion from spatial-polarization mode into time-polarization mode. By combining modified quantum state fusion and quantum state fission with quantum Fredkin gate, we propose a practical scheme to build an optical quantum switch unit which is block free. The scheme can be extended to building more complex units, four of which are shown in this paper. (general)
Chanda, Rajat
1997-01-01
The book discusses the laws of quantum mechanics, several amazing quantum phenomena and some recent progress in understanding the connection between the quantum and the classical worlds. We show how paradoxes arise and how to resolve them. The significance of Bell's theorem and the remarkable experimental results on particle correlations are described in some detail. Finally, the current status of our understanding of quantum theory is summerised.
McGlinchey, S.
2017-01-01
A ‘Day 0’ introduction to International Relations for beginners. Written by a range of emerging and established experts, the chapters offer a broad sweep of the basic components of International Relations and the key contemporary issues that concern the discipline. The narrative arc forms a complete circle, taking readers from no knowledge to competency. The journey starts by examining how the international system was formed and ends by reflecting that International Relations is always adapti...
Coleman, Piers; Schofield, Andrew J
2005-01-20
As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.
Indian Academy of Sciences (India)
In the first part of this article, we had looked at how quantum physics can be harnessed to make the building blocks of a quantum computer. In this concluding part, we look at algorithms which can exploit the power of this computational device, and some practical difficulties in building such a device. Quantum Algorithms.
I, Quantum Robot: Quantum Mind control on a Quantum Computer
Zizzi, Paola
2008-01-01
The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.
Zhu, Chun-Sheng; Lin, Zhi-Jian; Xiao, Ming-Liang; Niu, Hong-Juan; Zhang, Bing
2016-03-01
Since the chromatographic fingerprint was introduced, it has been accepted by many countries to assess the quality and authenticity of Chinese herbal medicine (CHM). However, solely using the chromatographic fingerprint to assay numerous chemicals is not suitable for the assessment of the whole internal quality and pharmacodynamics of CHM. Consequently, it is necessary to develop a rational approach to connecting the chromatographic fingerprint with effective components to assess the internal quality of CHM. For this purpose, a spectrum-effect relationship theory was proposed and accepted as a new method for the assessment of CHM because of its potential use to screen effective components from CHM. In this paper, we systematically reviewed the application of the spectrum-effect relationship theory in the research of CHM, including research mentality, different chromatographic analysis techniques, data processing technologies, and structure determination. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Michail, C.; Valais, I.; Martini, N.; Koukou, V.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Fountos, G.
2016-01-01
The purpose of the present study was to determine the Detective Quantum Efficiency (DQE) of CMOS imaging detectors, coupled to structured CsI:Tl and Gd_2O_2S:Tb scintillating screens, following the new IEC 62220-1-1:2015 International Standard. DQE was assessed after the experimental determination of the Modulation Transfer Function (MTF) and the Normalized Noise Power Spectrum (NNPS) in the general radiography energy range. Two CMOS sensors were used; one with a pixel size of 22.5 μmcoupled to a columnar CsI:Tl scintillator screen with thickness of 490 μm, which was placed in direct contact with the optical sensor and one with a pixel size of 74.8 μmcoupled to a 200 μmcolumnar CsI:Tl scintillator screen. The MTF was measured using the slanted-edge method (following both the IEC 62220-1:2003 and IEC 62220-1-1:2015 methods) while NNPS was determined by 2D Fourier transforming uniformly exposed images. Both parameters were assessed by irradiation under the RQA-3 and RQA-5 (IEC 62220-1-1:2015) beam qualities. The detector response functions were linear for the exposure ranges under investigation. MTFs calculated following the 62220-1:2003 protocol, were found in all cases overestimated in the higher frequency range (spatial frequencies higher than 2 cycles/mm). DQE values, determined with the IEC 62220-1:2003 method, were also found overestimated (spatial frequencies higher than 2 cycles/mm), due to the influence of both MTF and NNPS. The influence of both additive and multiplicative lag effects were found below 0.005, insuring that lag contributes less than 0.5% of the effective exposure. - Highlights: • DQE was measured with the novel 62220-1-1:2015 protocol and compared to 62220-1:2003. • Two CMOS sensors were evaluated. • DQE of the 62220-1:2003 was overestimated due to the addition of noise when averaging MTFs.
Directory of Open Access Journals (Sweden)
Carla Bagnoli
2018-04-01
Full Text Available The purpose of this paper is to highlight some difficulties of Neil Sinhababu’s Humean theory of agency, which depend on his radically reductivist approach, rather than to his Humean sympathies. The argument is that Sinhababu’s theory builds upon a critique of reflective agency which is based on equivocation and misunderstandings of the Kantian approach. Ultimately, the objection is that his reductivist view is unequipped to address the rclassical problems of rational deliberation and agential authority.
Directory of Open Access Journals (Sweden)
Caishi Wang
2018-01-01
Full Text Available As a unitary quantum walk with infinitely many internal degrees of freedom, the quantum walk in terms of quantum Bernoulli noise (recently introduced by Wang and Ye shows a rather classical asymptotic behavior, which is quite different from the case of the usual quantum walks with a finite number of internal degrees of freedom. In this paper, we further examine the structure of the walk. By using the Fourier transform on the state space of the walk, we obtain a formula that links the moments of the walk’s probability distributions directly with annihilation and creation operators on Bernoulli functionals. We also prove some other results on the structure of the walk. Finally, as an application of these results, we establish a quantum central limit theorem for the annihilation and creation operators themselves.
Quantum walk with one variable absorbing boundary
International Nuclear Information System (INIS)
Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli
2017-01-01
Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks. - Highlights: • A novel scheme about quantum walk with variable boundary is proposed. • The analytical results of the survival probability from the absorbing boundary. • The behavior of survival probability under different boundary conditions. • The influence of different initial coin states on the survival probability.
Quantum Logic and Quantum Reconstruction
Stairs, Allen
2015-01-01
Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.
Quantum dynamics of quantum bits
International Nuclear Information System (INIS)
Nguyen, Bich Ha
2011-01-01
The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)
Adegoke, Oluwasesan; Park, Enoch Y.
2016-06-01
The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27-61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72-93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Quantum random number generator
Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin
2001-03-01
Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.
International Nuclear Information System (INIS)
Kouwenhoven, L.; Marcus, C.
1998-01-01
Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)
DEFF Research Database (Denmark)
Blasco, Maribel
2012-01-01
produces: that the self is accessible and transcendable, that reflexivity is universal across space and time, and that the self can act as its own remedial change agent or ‘inner consultant.’ I argue that because reflexivity is understood in many different ways, attention to definition is crucial, both...... on the concepts of selfhood that prevail and how notions of difference are constructed. First, I discuss how the dominant usages of reflexivity in intercultural education reflect and reproduce a Cartesian view of the self that shapes how ICC is conceptualized and taught. I discuss three assumptions that this view...
DEFF Research Database (Denmark)
Muchie, Mammo
2011-01-01
A numberof Chris Freeman's colleagues were asked to reflect on what they thought describes his life and work in a few words. Some of the colleagues replied including former SPRU students that were taught or supervised by Chris Freeman. Their views on what they thought were Chris Freeman's defining...... life is not free from fluctuations, cycles, disruptions, crises and destructions both human and ecological. Innovation research ought to position itself to address environmental, financial and economic crises. The third is innovation research for development by addressing not only poverty erdaication...
DEFF Research Database (Denmark)
Ahrenkiel Jørgensen, Andriette
2016-01-01
In Breve fra min Have (Letters from my Garden), the Swedish landscape architect, Sven-Ingvar Andersson, produces dialogues about his garden to a wide circle of friends, colleagues, deceased and still living acquaintances such as Karen Blixen, Gertrude Stein, C. Th. Sørensen, Albrecht Dürer, Peter...... Høeg etetera. The dialogues work as a tool of reflection in terms of providing opportunity to examine his own beliefs, to explore the possible reasons for engaging in a particular activity. On the basis of Sven-Ingvar Andersson’s book a teaching program at the Aarhus School of Architecture provides...
1994-01-01
The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.
Quantum information. Teleporation - cryptography - quantum computer
International Nuclear Information System (INIS)
Breuer, Reinhard
2010-01-01
The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)
Quantum linear Boltzmann equation
International Nuclear Information System (INIS)
Vacchini, Bassano; Hornberger, Klaus
2009-01-01
We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.
Directory of Open Access Journals (Sweden)
Mariya Riekkinen
2016-01-01
Full Text Available This article deals with the much debated issue of children’s public participation from the perspective of legal practices in the Russian Federation. Having emerged at the level of national jurisdictions, the practice of engaging minors in decision-making processes on issues of public significance – or the practice of public participation of children – is stipulated by the UN Committee on the Rights of the Child, based on Article 12 of the UN Convention on the Rights of the Child. Public participation of minors implies that children have clearly defined opportunities to take part in decision-making processes concerning those political and public matters affecting their interests.Albeit limited by the clause “regarding the issues concerning them,” the claims for such participation are dictated by emerging standards of international law. The author has examined the process of devising these standards in Russian public law. Moreover, an analysis of the evolution of academic views on public participation of children in Russian legal scholarship is also included in this article.Relying extensively on the method of legal analysis and the comparative analysis of the conformity of national public law standards with respect to international law, the author proposes several legal amendments to the Federal law “On the Basic Guarantees of the Rights of the Child in the Russian Federation,” which would lead to anchoring more solidly the participatory right of minors in the legal system of the Russian Federation.
Quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Schomerus, V.
1993-02-01
Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry
Directory of Open Access Journals (Sweden)
Cousin Fabrice
2015-01-01
Full Text Available The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples and two examples related to the materials for energy.
Formalization of Quantum Protocols using Coq
Directory of Open Access Journals (Sweden)
Jaap Boender
2015-11-01
Full Text Available Quantum Information Processing, which is an exciting area of research at the intersection of physics and computer science, has great potential for influencing the future development of information processing systems. The building of practical, general purpose Quantum Computers may be some years into the future. However, Quantum Communication and Quantum Cryptography are well developed. Commercial Quantum Key Distribution systems are easily available and several QKD networks have been built in various parts of the world. The security of the protocols used in these implementations rely on information-theoretic proofs, which may or may not reflect actual system behaviour. Moreover, testing of implementations cannot guarantee the absence of bugs and errors. This paper presents a novel framework for modelling and verifying quantum protocols and their implementations using the proof assistant Coq. We provide a Coq library for quantum bits (qubits, quantum gates, and quantum measurement. As a step towards verifying practical quantum communication and security protocols such as Quantum Key Distribution, we support multiple qubits, communication and entanglement. We illustrate these concepts by modelling the Quantum Teleportation Protocol, which communicates the state of an unknown quantum bit using only a classical channel.
Directory of Open Access Journals (Sweden)
Mitzkat, Anika
2016-04-01
Full Text Available The terminology which has been used up until now within interprofessional healthcare has been characterised by a certain definitional weakness, which, among other factors, has been caused by an uncritical adoption of language conventions and a lack of theoretical reflection. However, as terminological clarity plays a significant role in the development and profiling of a discipline, the clarification and definition of commonly-used terminology has manifested itself as a considerable objective for the interprofessional research community. One of the most important journals for research in the area of interprofessional education and care, the Journal of Interprofessional Care, has expanded its author guidelines relating to terminology, modeled after the conceptual considerations of the research group around Barr et. al and Reeves et al. A German translation of the suggested terms therein has been presented in this contribution, and discussed in light of the challenges to a possible adaptation for the German-speaking world. The objective is to assist communication in practice and research in becoming clearer, while promoting an increasing awareness to and the transparency of determined definitions and terminologies.
Directory of Open Access Journals (Sweden)
Lucía Inés Coppa
2014-12-01
Full Text Available The following article intends to approach some aspects of bourdiean thoughts in order to develop an approach to the notion of gender and the way in which – within an androcentric symbolic order and a normative heterosexual matrix – function these diagrams in the way gender makes up the subjective corporal form. From those notions, we want to reflect about the emergency of sexual identities that transgress the cultural precepts around gender founded in doxic experience. Likewise, we will sketch a brief reference among inconscient dimension across psychoanalytical tradition and performative theory across Judith Butler in the feminists debates.Through this conceptual framework we will attempt to examine how may the dominant representations of femininity, androcentric and heterosexually regulated, influence the identity formation of a feminine transsexual person, founded in the morphological ideal which has sustenance in the man-woman dichotomy, leaving the questioning open about the ways that the transgressive assumption of sex of what appears like the order of things may take in a binomic gender matrix, examining the reception of this debates in te Gender Identity Law N° 26.743
Quantum games as quantum types
Delbecque, Yannick
In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other
Quantum Nonlocality and Reality
Bell, Mary; Gao, Shan
2016-09-01
Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective
Sabin, John R
2013-01-01
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features
Quantum foundations in the light of quantum cryptography
International Nuclear Information System (INIS)
Brassard, G.; Fuchs, C.A.
2005-01-01
Full text: Consider the two great physical theories of the twentieth century: relativity and quantum mechanics. Einstein derived relativity from very simple principles such as: 'The speed of light in empty space is independent of the speed of its source' and 'Physics should appear the same in all inertial reference frames'. By contrast, the foundation of quantum mechanics is built on a set of rather strange, disjointed and ad hoc axioms. Why is that? Must quantum mechanics be inherently less elegant than relativity? Or is it rather that the current axioms of quantum mechanics reflect at best the history that led to its discovery by too many people (compared to one person for relativity), over too long a period of time? The purpose of this talk is to argue that a better foundation for quantum mechanics lies within the teachings of quantum information science. We postulate that the truly fundamental laws of nature concern information, not waves or particles. For example, it has been proven, from the current axioms of quantum mechanics, that 'nature allows for the unconditionally secure transmission of confidential information', but 'nature does not allow for unconditionally secure bit commitment' (these are standard classical cryptographic primitives). We propose to turn the table around, start from these two theorems and possibly a few others, upgrade them as axioms, and ask how much of quantum mechanics they can derive. This provocative talk is meant as an eye-opener: we shall ask far more questions than we shall resolve. (author)
Obtaining local reflectivity at two-way travel time by filtering acoustic reflection data
Slob, E.C.; Zhang, L.; Wapenaar, C.P.A.; Mihai Popovici, A.; Fomel, S.
2017-01-01
A modified implementation of Marchenko redatuming leads to a filter that removes internal multiples from reflection data. It produces local reflectivity at two-way travel time. The method creates new primary reflections resulting from emitted events that eliminate internal multiples. We call these
Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari
2016-01-01
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....
Walls, D F
2007-01-01
Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook. More than 40 exercises helps readers test their understanding and provide practice in quantitative problem solving.
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
Directory of Open Access Journals (Sweden)
Peter Šenk
2013-07-01
Full Text Available The paper presents the international urban-architectural workshop Maribor-South (2010-11 as a model for “Maribor’s” urban-architectural workshops, which urban planners evaluate and use to direct urban development and theoretical discussion. The presented interdisciplinary project explored possibilities for designing the southern edge of the city in the area where the southern bypass construction is planned. In addition describing the example of the workshop, which develops the theoretical field through a “practical and project approach” with the defined project basis, i.e. the defined area of discussion and project issue, the paper also highlights the opportunity for a “theoretical approach”. The theoretical approach aims at providing a wider insight into the related theoretical field based on a generalised spatial issue. As one of the key priorities of contemporary urban planning and sustainable urban redevelopment, the planned direction of urban development in the areas of constructing transport infrastructure, which is evident in the first approach, moves into a wider referential field (no longer directly related to the project with the second approach by examining the issues of mobility, space, place, diversity of infrastructures of contemporary space, etc. While in the first approach developing design concepts strives for theoretical conceptualisation, the second approach facilitates focusing on finding links between the theoretical concept and manifestations in real space, though the approaches are always separated. Their operationality is possible only on the level of “combinatorial thinking” and remains beyond direct instrumentality.
Stapp, Henry P.
2011-01-01
Robert Griffiths has recently addressed, within the framework of a 'consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. O...
Grifoni, Milena
1997-01-01
In this thesis, ratchet systems operating in the quantum regime are investigated. Ratchet systems, also known as Brownian motors, are periodic systems presenting an intrinsic asymmetry which can be exploited to extract work out of unbiased forces. As a model for ratchet systems, we consider the motion of a particle in a one-dimensional periodic and asymmetric potential, interacting with a thermal environment, and subject to an unbiased driving force. In quantum ratchets, intrinsic quantum flu...
Quantum space and quantum completeness
Jurić, Tajron
2018-05-01
Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.
2011-02-01
The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibard, J.; Joffre, M.
2008-01-01
All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)
International Nuclear Information System (INIS)
Rodgers, P.
1998-01-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
International Nuclear Information System (INIS)
Khrennikov, Andrei; Klein, Moshe; Mor, Tal
2010-01-01
In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.
International Nuclear Information System (INIS)
Deutsch, D.
1992-01-01
As computers become ever more complex, they inevitably become smaller. This leads to a need for components which are fabricated and operate on increasingly smaller size scales. Quantum theory is already taken into account in microelectronics design. This article explores how quantum theory will need to be incorporated into computers in future in order to give them their components functionality. Computation tasks which depend on quantum effects will become possible. Physicists may have to reconsider their perspective on computation in the light of understanding developed in connection with universal quantum computers. (UK)
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by
Shaw, Malcolm N
2017-01-01
International Law is the definitive and authoritative text on the subject, offering Shaw's unbeatable combination of clarity of expression and academic rigour and ensuring both understanding and critical analysis in an engaging and authoritative style. Encompassing the leading principles, practice and cases, and retaining and developing the detailed references which encourage and assist the reader in further study, this new edition motivates and challenges students and professionals while remaining accessible and engaging. Fully updated to reflect recent case law and treaty developments, this edition contains an expanded treatment of the relationship between international and domestic law, the principles of international humanitarian law, and international criminal law alongside additional material on international economic law.
Quantum mechanics from classical statistics
International Nuclear Information System (INIS)
Wetterich, C.
2010-01-01
Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.
Minimal computational-space implementation of multiround quantum protocols
International Nuclear Information System (INIS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Chiribella, Giulio
2011-01-01
A single-party strategy in a multiround quantum protocol can be implemented by sequential networks of quantum operations connected by internal memories. Here, we provide an efficient realization in terms of computational-space resources.
Felder-Puig, Rosemarie; Griebler, Robert; Samdal, Oddrun; King, Matthew A; Freeman, John; Duer, Wolfgang
2012-09-01
Given the pressure that educators and policy makers are under to achieve academic standards for students, understanding the relationship of academic success to various aspects of health is important. The international Health Behavior in School-Aged Children (HBSC) questionnaire, being used in 41 countries with different school and grading systems, has contained an item assessing perceived school performance (PSP) since 1986. Whereas the test-retest reliability of this item has been reported previously, we determined its convergent and discriminant validity. This cross-sectional study used anonymous self-report data from Austrian (N = 266), Norwegian (N = 240), and Canadian (N = 9,717) samples. Students were between 10 and 17 years old. PSP responses were compared to the self-reported average school grades in 6 subjects (Austria) or 8 subjects (Norway), respectively, or to a general, 5-category-based appraisal of most recent school grades (Canada). Correlations between PSP and self-reported average school grade scores were between 0.51 and 0.65, representing large effect sizes. Differences between the median school grades in the 4 categories of the PSP item were statistically significant in all 3 samples. The PSP item showed predominantly small associations with some randomly selected HBSC items or scales designed to measure different concepts. The PSP item seems to be a valid and useful question that can distinguish groups of respondents that get good grades at school from those that do not. The meaning of PSP may be context-specific and may have different connotations across student populations from different countries with different school systems. © 2012, American School Health Association.
Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can
2016-11-01
In 1935, Einstein, Podolsky and Rosen published their influential paper proposing a now famous paradox (the EPR paradox) that threw doubt on the completeness of quantum mechanics. Two fundamental concepts: entanglement and steering, were given in the response to the EPR paper by Schrodinger, which both reflect the nonlocal nature of quantum mechanics. In 1964, John Bell obtained an experimentally testable inequality, in which its violation contradicts the prediction of local hidden variable models and agrees with that of quantum mechanics. Since then, great efforts have been made to experimentally investigate the nonlocal feature of quantum mechanics and many distinguished quantum properties were observed. In this work, along with the discussion of the development of quantum nonlocality, we would focus on our recent experimental efforts in investigating quantum correlations and their applications with optical systems, including the study of entanglement-assisted entropic uncertainty principle, Einstein-Podolsky-Rosen steering and the dynamics of quantum correlations.
Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons
Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas
2018-04-01
Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.
Directory of Open Access Journals (Sweden)
Arno Tausch
2013-01-01
Full Text Available BackgroundThis article looks at the long-term, structural determinants of environmental and public health performance in the world system. MethodsIn multiple standard ordinary least squares (OLS regression models, we tested the effects of 26 standard predictor variables, including the ‘four freedoms’ of goods, capital, labour and services, on the following indicators of sustainable development and public health: avoiding net trade of ecological footprint global hectare (gha per person; avoiding high carbon emissions per million US dollars GDP; avoiding high CO2 per capita (gha/cap; avoiding high ecological footprint per capita; avoiding becoming victim of natural disasters; a good performance on the Environmental Performance Index (EPI; a good performance on the Happy Life Years (HLYs scale; and a good performance on the Happy Planet Index (HPI. ResultsOur research showed that the apprehensions of quantitative research, critical of neo-liberal globalization, are fully vindicated by the significant negative environmental and public health effects of the foreign savings rate. High foreign savings are indeed a driver of global footprint, and are a blockade against a satisfactory HPI performance. The new international division of labour is one of the prime drivers of high CO2 per capita emissions. Multinational Corporation (MNC penetration, the master variable of most quantitative dependency theories, blocks EPI and several other socially important processes. Worker remittances have a significant positive effect on the HPI, and HLYs. ConclusionWe re-analysed the solid macro-political and macro-sociological evidence on a global scale, published in the world’s leading peer-reviewed social science, ecological and public health journals, which seem to indicate that there are contradictions between unfettered globalization and unconstrained world economic openness and sustainable development and public health development. We suggest that there
Tausch, Arno
2013-08-01
This article looks at the long-term, structural determinants of environmental and public health performance in the world system. In multiple standard ordinary least squares (OLS) regression models, we tested the effects of 26 standard predictor variables, including the 'four freedoms' of goods, capital, labour and services, on the following indicators of sustainable development and public health: avoiding net trade of ecological footprint global hectare (gha) per person; avoiding high carbon emissions per million US dollars GDP; avoiding high CO2 per capita (gha/cap); avoiding high ecological footprint per capita; avoiding becoming victim of natural disasters; a good performance on the Environmental Performance Index (EPI); a good performance on the Happy Life Years (HLYs) scale; and a good performance on the Happy Planet Index (HPI). Our research showed that the apprehensions of quantitative research, critical of neo-liberal globalization, are fully vindicated by the significant negative environmental and public health effects of the foreign savings rate. High foreign savings are indeed a driver of global footprint, and are a blockade against a satisfactory HPI performance. The new international division of labour is one of the prime drivers of high CO2 per capita emissions. Multinational Corporation (MNC) penetration, the master variable of most quantitative dependency theories, blocks EPI and several other socially important processes. Worker remittances have a significant positive effect on the HPI, and HLYs. We re-analysed the solid macro-political and macro-sociological evidence on a global scale, published in the world's leading peer-reviewed social science, ecological and public health journals, which seem to indicate that there are contradictions between unfettered globalization and unconstrained world economic openness and sustainable development and public health development. We suggest that there seems to be a strong interaction between 'transnational
1991-07-20
published. 261 TOPOLOGICAL ARROW OF TIME AND QUANTUM-MECHANICAL EVOLUTION Pedro F. Gonzilez-Dfaz. Consejo Superior de Investigaciones Cientfficas Serrano 121...LOCAL AND IRREDUCIBLE REALIZATIONS OF LIE GROUPS .JA%’’LER NEGRO AND MAIIIANo A. DEL. OLMlO Departaieitto dit Fisica Te6rica, Univ~ersidad de Valladolid...describes one N-valued degree of freedom. Otherwise N is a product of prime numbers and § On sabatical leave from Institulo de Fisica Teorica, State
Quantum group and quantum symmetry
International Nuclear Information System (INIS)
Chang Zhe.
1994-05-01
This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs
Quantum information. Teleportation - cryptography - quantum computer
International Nuclear Information System (INIS)
Koenneker, Carsten
2012-01-01
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
Quantum ensembles of quantum classifiers.
Schuld, Maria; Petruccione, Francesco
2018-02-09
Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.
Quantum computer games: quantum minesweeper
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Quantum measurement in quantum optics
International Nuclear Information System (INIS)
Kimble, H.J.
1993-01-01
Recent progress in the generation and application of manifestly quantum or nonclassical states of the electromagnetic field is reviewed with emphasis on the research of the Quantum Optics Group at Caltech. In particular, the possibilities for spectroscopy with non-classical light are discussed both in terms of improved quantitative measurement capabilities and for the fundamental alteration of atomic radiative processes. Quantum correlations for spatially extended systems are investigated in a variety of experiments which utilize nondegenerate parametric down conversion. Finally, the prospects for measurement of the position of a free mass with precision beyond the standard quantum limit are briefly considered. (author). 38 refs., 1 fig
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2015-01-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state disp...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Quantum Computing - Building Blocks of a Quantum Computer. C S Vijay Vishal Gupta. General Article Volume 5 Issue 9 September 2000 pp 69-81. Fulltext. Click here to view fulltext PDF. Permanent link:
International Nuclear Information System (INIS)
Doplicher, S.
1996-01-01
We review some recent result and work in progress on the quantum structure of spacetime at scales comparable with the Planck length; the models discussed here are operationally motivated by the limitations in the accuracy of localization of events in spacetime imposed by the interplay between quantum mechanics and classical general relativity. (orig.)
Kyte, Derek; Reeve, Bryce B; Efficace, Fabio; Haywood, Kirstie; Mercieca-Bebber, Rebecca; King, Madeleine T; Norquist, Josephine M; Lenderking, William R; Snyder, Claire; Ring, Lena; Velikova, Galina; Calvert, Melanie
2016-02-01
In 2014, the European Medicines Agency (EMA) released for comment a draft reflection paper on the use of patient-reported outcome (PRO) measures in oncology studies. A twelve-member International Society for Quality of Life Research (ISOQOL) taskforce was convened to coordinate the ISOQOL response. Twenty-one ISOQOL members provided detailed comments and suggestions on the paper: 81 % from academia and 19 % from industry. Taskforce members consolidated and further refined these comments and shared the recommendations with the wider ISOQOL membership. A final response was submitted to the EMA in November 2014. The impending publication of the EMA reflection paper presents a valuable opportunity for ISOQOL to comment on the current direction of EMA PRO guidance and strategy. The EMA paper, although focused on cancer, could serve as a model for using PROs in other conditions, as it provides a useful update surrounding some of the design issues common to all trial research including PRO endpoints. However, we believe there are a number of additional areas in need of greater consideration. The purpose of this commentary is therefore to highlight the strengths of this timely and potentially useful document, but also to outline areas that may warrant further discussion.
Directory of Open Access Journals (Sweden)
Tatiana A. Alekseeva
2016-01-01
Full Text Available The article deals with the evolution of constructivist paradigm of international relations. The issue is of utmost importance in terms of the search for theoretical alternatives in the IR thinking. First, we are giving basic introduction of constructivism on the basis of historical and hermeneutical approaches. There is no doubt that the paradigm has faced different theoretical challenges and a lot of critics which has to be addressed. The authors reconsider some constructivist theories and notions in Alexander Wendt's works and the way Wendt tried to reinforce and reassure the constructivist paradigm. This allows us to claim that quantum turn in recent Wendt's work was almost inevitable. Second, the article attempts to answer a question whether the fundamentals of quantum physics are relevant when speaking about social and political processes. At first glance, quantum physics approach has nothing in common with the theory of politics and the theory of international relations. However, there are some grounds to believe that certain problem issues of the political science and IR theory are not deadlocks. In the second part of the article we use the unleashed and underestimated potential of analytical philosophy. To conclude, we believe that today there are more questions than answers but the quantum paradigm is expected to be the important part of the political studies and IR theory as well.
Pearsall, Thomas P
2017-01-01
This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of nonlocality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...
International Nuclear Information System (INIS)
Hawking, S.W.
1984-01-01
The subject of these lectures is quantum effects in cosmology. The author deals first with situations in which the gravitational field can be treated as a classical, unquantized background on which the quantum matter fields propagate. This is the case with inflation at the GUT era. Nevertheless the curvature of spacetime can have important effects on the behaviour of the quantum fields and on the development of long-range correlations. He then turns to the question of the quantization of the gravitational field itself. The plan of these lectures is as follows: Euclidean approach to quantum field theory in flat space; the extension of techniques to quantum fields on a curved background with the four-sphere, the Euclidean version of De Sitter space as a particular example; the GUT era; quantization of the gravitational field by Euclidean path integrals; mini superspace model. (Auth.)
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Richter, Johannes; Farnell, Damian; Bishop, Raymod
2004-01-01
The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.
International Nuclear Information System (INIS)
Steane, Andrew
1998-01-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from
Energy Technology Data Exchange (ETDEWEB)
Steane, Andrew [Department of Atomic and Laser Physics, University of Oxford, Clarendon Laboratory, Oxford (United Kingdom)
1998-02-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from
Dynamics of quantum discord in a quantum critical environment
International Nuclear Information System (INIS)
Xi Zhengjun; Li Yongming; Lu Xiaoming; Sun Zhe
2011-01-01
We study the dynamics of quantum discord (QD) of two qubits independently coupled to an Ising spin chain in a transverse field, which exhibits a quantum phase transition. For this model, we drive the corresponding Kraus operators, obtain the analytic results of QD and compare the dynamics of QD with the dynamics of relative entropy of entanglement nearby the critical point. It is shown that the impact of the quantum criticality environment on QD can be concentrated in a very narrow region nearby the critical point, so it supplies an efficient way to detect the critical points. In the vicinity of the critical point, the evolution of QD is shown to be more complicated than that of entanglement. Furthermore, we find that separable states can also be used to reflect the quantum criticality of the environment.
Quantum hall effect. A perspective
International Nuclear Information System (INIS)
Aoki, Hideo
2006-01-01
Novel concepts and phenomena are emerging recently in the physics of quantum Hall effect. This article gives an overview, which starts from the fractional quantum Hall system viewed as an extremely strongly correlated system, and move on to present various phenomena involving internal degrees of freedom (spin and layer), non-equilibrium and optical properties, and finally the spinoff to anomalous Hall effect and the rotating Bose-Einstein condensate. (author)
Imaging Hybrid Photon Detectors with a Reflective Photocathode
Ferenc, D
2000-01-01
Modern epitaxially grown photocathodes, like GaAsP, bring a very high inherent quantum efficiency, but are rather expensive due to the complicated manufacturing and mounting process. We argue that such photocathodes could be used in reflective mode, in order to avoid the risky and expensive removal of the epitaxial growth substrate. Besides that the quantum efficiency should increase considerably. In this paper we present results of the development of large imaging Hybrid Photon Detectors (HPDs), particularly designed for such reflective photocathodes.
Quantum mechanics with quantum time
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Using a non-canonical Lie structure of classical mechanics a new algebra of quantum mechanical observables is constructed. The new algebra, in addition to the notion of classical time, makes it possible to introduce the notion of quantum time. A new type of uncertainty relation is derived. (author)
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibart, J.
1997-01-01
This pedagogical book gives an initiation to the principles and practice of quantum mechanics. A large part is devoted to experimental facts and to their analysis: concrete facts, phenomena and applications related to fundamental physics, elementary particles, astrophysics, high-technology, semi-conductors, micro-electronics and lasers. The book is divided in 22 chapters dealing with: quantum phenomena, wave function and Schroedinger equation, physical units and measurements, energy quantification of some simple systems, Hilbert space, Dirac formalism and quantum mechanics postulates, two-state systems and ammonia Maser principle, bands theory and crystals conductibility, commutation of observables, Stern and Gerlach experiment, approximation methods, kinetic momentum in quantum mechanics, first description of atoms, 1/2 spin formalism and magnetic resonance, Lagrangian, Hamiltonian and Lorentz force in quantum mechanics, addition of kinetic momenta and fine and hyper-fine structure of atomic lines, identical particle systems and Pauli principle, qualitative physics and scale of size of some microscopic and macroscopic phenomena, systems evolution, collisions and cross sections, invariance and conservation laws, quantum mechanics and astrophysics, and historical aspects of quantum mechanics. (J.S.)
Cariolaro, Gianfranco
2015-01-01
This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: · development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; · general formulation of a transmitter–receiver system · particular treatment of the most popular quantum co...
Drummond, P. D.; Chaturvedi, S.; Dechoum, K.; Comey, J.
2001-02-01
We investigate the theory of quantum fluctuations in non-equilibrium systems having large critical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical systems in which macroscopic 'Schrödinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrödinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrödinger cat. -Pacs: 03.65.Bz
Valeriy P. Ivanskiy
2015-01-01
In the present article author reveals the concept of State, contained in the doctrine of John Locke, but in line with the post-non-classical science, one of the research lines of the event information and quantum legal concept. Despite the diverse palette of the "state" definitions the most appropriate definition is the definition, where it is identified with the union of people - people living in the particular area. Due to the fact that the system of "people" is made up of interconnected co...
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Institute of Scientific and Technical Information of China (English)
ZHOU Nan-run; GONG Li-hua; LIU Ye
2006-01-01
In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
International Nuclear Information System (INIS)
Rae, A.I.M.
1981-01-01
This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)
International Nuclear Information System (INIS)
Steiner, F.
1994-01-01
A short historical overview is given on the development of our knowledge of complex dynamical systems with special emphasis on ergodicity and chaos, and on the semiclassical quantization of integrable and chaotic systems. The general trace formular is discussed as a sound mathematical basis for the semiclassical quantization of chaos. Two conjectures are presented on the basis of which it is argued that there are unique fluctuation properties in quantum mechanics which are universal and, in a well defined sense, maximally random if the corresponding classical system is strongly chaotic. These properties constitute the quantum mechanical analogue of the phenomenon of chaos in classical mechanics. Thus quantum chaos has been found. (orig.)
International Nuclear Information System (INIS)
Beretta, G.P.; Gyftopoulos, E.P.; Park, J.L.
1985-01-01
A novel nonlinear equation of motion is proposed for a general quantum system consisting of more than one distinguishable elementary constituent of matter. In the domain of idempotent quantum-mechanical state operators, it is satisfied by all unitary evolutions generated by the Schroedinger equation. But in the broader domain of nonidempotent state operators not contemplated by conventional quantum mechanics, it generates a generally nonunitary evolution, it keeps the energy invariant and causes the entropy to increase with time until the system reaches a state of equilibrium or a limit cycle
Lowe, John P
1993-01-01
Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,
Basic quantum irreversibility in neutron interferometry
International Nuclear Information System (INIS)
Rauch, H
2009-01-01
The transition between the quantum and classical world is a topical problem in quantum physics, which can be investigated by neutron interferometric methods. Here we discuss unavoidable quantum losses as they appear in neutron phase-echo and spin rotation experiments and we show how entanglement effects in a single-particle system demonstrate quantum contextuality, i.e. an entanglement between external and internal degrees of freedom in single-particle systems. This contextuality phenomenon also shows that a quantum system carries much more information than usually extracted. In all cases of an interaction, parasitic beams are produced which cannot be recombined completely with the original beam. This means that a complete reconstruction of the original state is, in principle, impossible which causes a kind of intrinsic irreversibility. Even small interaction potentials can have huge effects when they are applied in quantum Zeno-like experiments. The path towards advanced neutron quantum optics will be discussed.
Realizing Controllable Quantum States
Takayanagi, Hideaki; Nitta, Junsaku
1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara
Energy Technology Data Exchange (ETDEWEB)
Cros, A.; Budagosky, J.A.; Garcia-Cristobal, A.; Garro, N.; Cantarero, A. [Institut de Ciencia dels Materials, Universitat de Valencia, 46071 Valencia (Spain); Founta, S.; Mariette, H.; Daudin, B. [CEA-CNRS Group ' ' Nanophysique et Semiconducteurs' ' , Departement de Recherche Fondamentale sur la Matiere Condensee, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble (France)
2006-06-15
The strain state of stacks of GaN/AlN quantum dots (QDs) grown on (0001) and (11 anti 20) 6H-SiC has been investigated by means of Raman spectroscopy. Depending on the orientation of the wurtzite axis with respect to the growth direction it is found that the piezoelectric contribution to the electrostatic potential may either reinforce that arising from the spontaneous polarization or oppose it. The experimental results are compared with a theoretical model for the strain and polarization field in QDs of both orientations that allows the calculation of the electrostatic potential in the QDs. Both the experimental results and the theoretical model indicate that the internal electric field and electrostatic potential are strongly reduced in the QDs grown on (11 anti 20) 6H-SiC as compared to those grown along the wurtzite c-axis. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Beenakker, C W J
2005-01-01
Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The
International Nuclear Information System (INIS)
Nguyen, Ba An
2006-01-01
Absolutely and asymptotically secure protocols for organizing an exam in a quantum way are proposed basing judiciously on multipartite entanglement. The protocols are shown to stand against common types of eavesdropping attack
International Nuclear Information System (INIS)
Tittel, W.; Brendel, J.; Gissin, N.; Ribordy, G.; Zbinden, H.
1999-01-01
The principles of quantum cryptography based on non-local correlations of entanglement photons are outlined. The method of coding and decoding of information and experiments is also described. The prospects of the technique are briefly discussed. (Z.J.)
International Nuclear Information System (INIS)
Cejnar, P.
2007-01-01
Chaos is a name given in physics to a branch which, within classical mechanics, studies the consequences of sensitive dependences of the behavior of physical systems on the starting conditions, i.e., the 'butterfly wing effect'. However, how to describe chaotic behavior in the world of quantum particles? It appears that quantum mechanics does not admit the sensitive dependence on the starting conditions, and moreover, predicts a substantial suppression of chaos also at the macroscopic level. Still, the quantum properties of systems that are chaotic in terms of classical mechanics differ basically from the properties of classically arranged systems. This topic is studied by a field of physics referred to as quantum chaos. (author)
International Nuclear Information System (INIS)
Faraggi, A.E.; Matone, M.
1998-01-01
We show that the quantum Hamilton-Jacobi equation can be written in the classical form with the spatial derivative ∂ q replaced by ∂ q with dq = dq/√1-β 2 (q), where β 2 (q) is strictly related to the quantum potential. This can be seen as the opposite of the problem of finding the wave function representation of classical mechanics as formulated by Schiller and Rosen. The structure of the above open-quotes quantum transformationclose quotes, related to the recently formulated equivalence principle, indicates that the potential deforms space geometry. In particular, a result by Flanders implies that both W(q) = V(q) - E and the quantum potential Q are proportional to the curvatures κ W and κ Q which arise as natural invariants in an equivalence problem for curves in the projective line. In this formulation the Schroedinger equation takes the geometrical form (∂ q 2 + κ W )ψ = 0
Continuous-wave spatial quantum correlations of light induced by multiple scattering
DEFF Research Database (Denmark)
Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander
2012-01-01
and reflectance. Utilizing frequency-resolved quantum noise measurements, we observe that the strength of the spatial quantum correlation function can be controlled by changing the quantum state of an incident bright squeezed-light source. Our results are found to be in excellent agreement with the developed......We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance...... theory and form a basis for future research on, e. g., quantum interference of multiple quantum states in a multiple scattering medium....
Quantum Correlations Evolution Asymmetry in Quantum Channels
International Nuclear Information System (INIS)
Li Meng; Huang Yun-Feng; Guo Guang-Can
2017-01-01
It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. (paper)
Duality Quantum Information and Duality Quantum Communication
International Nuclear Information System (INIS)
Li, C. Y.; Wang, W. Y.; Wang, C.; Song, S. Y.; Long, G. L.
2011-01-01
Quantum mechanical systems exhibit particle wave duality property. This duality property has been exploited for information processing. A duality quantum computer is a quantum computer on the move and passing through a multi-slits. It offers quantum wave divider and quantum wave combiner operations in addition to those allowed in an ordinary quantum computer. It has been shown that all linear bounded operators can be realized in a duality quantum computer, and a duality quantum computer with n qubits and d-slits can be realized in an ordinary quantum computer with n qubits and a qudit in the so-called duality quantum computing mode. The quantum particle-wave duality can be used in providing secure communication. In this paper, we will review duality quantum computing and duality quantum key distribution.
Quantum correlations and distinguishability of quantum states
Energy Technology Data Exchange (ETDEWEB)
Spehner, Dominique [Université Grenoble Alpes and CNRS, Institut Fourier, F-38000 Grenoble, France and Laboratoire de Physique et Modélisation des Milieux Condensés, F-38000 Grenoble (France)
2014-07-15
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
Quantum correlations and distinguishability of quantum states
International Nuclear Information System (INIS)
Spehner, Dominique
2014-01-01
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature
Stapp, Henry P.
2012-05-01
Robert Griffiths has recently addressed, within the framework of a `consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths' rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his `consistent quantum theory' shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths' reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent `consistent framework' ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows
CERN Bulletin
2013-01-01
On April Fools' Day, CERN Quantum Diaries blogger Pauline Gagnon held a giveaway of microscopic proportion. Up for grabs? Ten Higgs bosons, courtesy of CERN. Pauline announced the winners last week; let's see what they'll really be getting in the mail... Custom-made Particle Zoo Higgs bosons were sent out to the winners. Read more about the prize in the Quantum Diaries post "Higgs boson lottery: when CERN plays April Fools' jokes".
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Grunspan, C.
2003-01-01
This text gives some results about quantum torsors. Our starting point is an old reformulation of torsors recalled recently by Kontsevich. We propose an unification of the definitions of torsors in algebraic geometry and in Poisson geometry. Any quantum torsor is equipped with two comodule-algebra structures over Hopf algebras and these structures commute with each other. In the finite dimensional case, these two Hopf algebras share the same finite dimension. We show that any Galois extension...
Mazilu, Michael
2015-01-01
ICOAM 2015 The electromagnetic momentum transferred transferred to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ℏk does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the tran...
Fixed point algebras for easy quantum groups
DEFF Research Database (Denmark)
Gabriel, Olivier; Weber, Moritz
2016-01-01
Compact matrix quantum groups act naturally on Cuntz algebras. The first author isolated certain conditions under which the fixed point algebras under this action are Kirchberg algebras. Hence they are completely determined by their K-groups. Building on prior work by the second author,we prove...... that free easy quantum groups satisfy these conditions and we compute the K-groups of their fixed point algebras in a general form. We then turn to examples such as the quantum permutation group S+ n,the free orthogonal quantum group O+ n and the quantum reflection groups Hs+ n. Our fixed point......-algebra construction provides concrete examples of free actions of free orthogonal easy quantum groups,which are related to Hopf-Galois extensions....
Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro
2016-05-01
We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from
International Nuclear Information System (INIS)
Hadjiivanov, L.; Todorov, I.
2015-01-01
Expository paper providing a historical survey of the gradual transformation of the 'philosophical discussions' between Bohr, Einstein and Schrödinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schrödinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminating with the work of Alain Aspect) it was Feynman who made public the idea of a quantum computer based on the observed effect
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Sunstein, Cass Robert; Allcott, Hunt
2015-01-01
This paper offers a framework for regulating internalities. Using a simple economic model, we provide four principles for designing and evaluating behaviorally-motivated policy. We then outline rules for determining which contexts reliably reflect true preferences and discuss empirical strategies for measuring internalities. As a case study, we focus on energy efficiency policy, including Corporate Average Fuel Economy (CAFE) standards and appliance and lighting energy efficiency standards.
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Ethical reflection and psychotherapy.
Vyskocilová, Jana; Prasko, Jan
2013-01-01
Theories of ethics and ethical reflection may be applied to both theory and practice in psychotherapy. There is a natural affinity between ethics and psychotherapy. Psychotherapy practice is concerned with human problems, dilemmas and emotions related to both one's own and other people's values. Ethics is also concerned with dilemmas in human thinking and with how these dilemmas reflect other individuals' values. Philosophical reflection itself is not a sufficient basis for the ethics of psychotherapy but it may aid in exploring attitudes related to psychotherapy, psychiatry and health care. PubMed, Web of Science and Scopus databases were searched for articles containing the keywords "psychotherapy", "ethics", "therapeutic relationship" and "supervision". The search was conducted by repeating the terms in various combinations without language or time restrictions. Also included were data from monographs cited in reviews. The resulting text is a review with conclusions concerning ethical aspects of psychotherapy. The ability to behave altruistically, sense for justice and reciprocity and mutual help are likely to be genetically determined as dispositions to be later developed by upbringing or to be formed or deformed by upbringing. Early experiences lead to formation of ethical attitudes which are internalized and then applied to both one's own and other people's behavior. Altruistic behavior has a strong impact on an individual's health and its acceptance may positively influence the pathophysiological mechanisms underlying numerous diseases. Ethical theory and reflection, however, may be applied to both theory and practice of psychotherapy in a conscious, targeted and thoughtful manner. In everyday practice, psychotherapists and organizations must necessarily deal with conscious conflicts between therapeutic possibilities, clients' wishes, their own as well as clients' ideas and the real world. Understanding one's own motives in therapy is one of the aims of a
Beyond quantum microcanonical statistics
International Nuclear Information System (INIS)
Fresch, Barbara; Moro, Giorgio J.
2011-01-01
Descriptions of molecular systems usually refer to two distinct theoretical frameworks. On the one hand the quantum pure state, i.e., the wavefunction, of an isolated system is determined to calculate molecular properties and their time evolution according to the unitary Schroedinger equation. On the other hand a mixed state, i.e., a statistical density matrix, is the standard formalism to account for thermal equilibrium, as postulated in the microcanonical quantum statistics. In the present paper an alternative treatment relying on a statistical analysis of the possible wavefunctions of an isolated system is presented. In analogy with the classical ergodic theory, the time evolution of the wavefunction determines the probability distribution in the phase space pertaining to an isolated system. However, this alone cannot account for a well defined thermodynamical description of the system in the macroscopic limit, unless a suitable probability distribution for the quantum constants of motion is introduced. We present a workable formalism assuring the emergence of typical values of thermodynamic functions, such as the internal energy and the entropy, in the large size limit of the system. This allows the identification of macroscopic properties independently of the specific realization of the quantum state. A description of material systems in agreement with equilibrium thermodynamics is then derived without constraints on the physical constituents and interactions of the system. Furthermore, the canonical statistics is recovered in all generality for the reduced density matrix of a subsystem.
Quantum computing: Quantum advantage deferred
Childs, Andrew M.
2017-12-01
A type of optics experiment called a boson sampler could be among the easiest routes to demonstrating the power of quantum computers. But recent work shows that super-classical boson sampling may be a long way off.
Gamma camera with reflectivity mask
International Nuclear Information System (INIS)
Stout, K.J.
1980-01-01
In accordance with the present invention there is provided a radiographic camera comprising: a scintillator; a plurality of photodectors positioned to face said scintillator; a plurality of masked regions formed upon a face of said scintillator opposite said photdetectors and positioned coaxially with respective ones of said photodetectors for decreasing the amount of internal reflection of optical photons generated within said scintillator. (auth)
International Nuclear Information System (INIS)
Bednorz, Adam
2015-01-01
The question of whether quantum measurements reflect some underlying objective reality has no generally accepted answer. We show that a description of such reality is possible under natural conditions such as linearity and causality, although in terms of moments and cumulants of finite order and without relativistic invariance. The proposed construction of observations’ probability distribution originates from weak, noninvasive measurements, with detection error replaced by some external finite noise. The noise allows us to construct microscopic objective reality, but remains dynamically decoupled and hence unobservable at the macroscopic level. (paper)
Quantum Physics for Beginners.
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
Quantum Transmemetic Intelligence
Piotrowski, Edward W.; Sładkowski, Jan
The following sections are included: * Introduction * A Quantum Model of Free Will * Quantum Acquisition of Knowledge * Thinking as a Quantum Algorithm * Counterfactual Measurement as a Model of Intuition * Quantum Modification of Freud's Model of Consciousness * Conclusion * Acknowledgements * References
Gaussian Hypothesis Testing and Quantum Illumination.
Wilde, Mark M; Tomamichel, Marco; Lloyd, Seth; Berta, Mario
2017-09-22
Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental links with quantum communication and estimation theory. In this paper, we establish a formula that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect our formula to have applications in settings well beyond those considered in this paper, especially to quantum communication tasks involving quantum Gaussian channels.